]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu-v3.c
iommu/arm-smmu-v3: Add IORT configuration
[karo-tx-linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV     2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT      48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT       0
276 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT         32
278 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
279 #define STRTAB_STE_2_S2AA64             (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
281 #define STRTAB_STE_2_S2PTW              (1UL << 54)
282 #define STRTAB_STE_2_S2R                (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT        4
285 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS               8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
290 #define ARM64_TCR_T0SZ_SHIFT            0
291 #define ARM64_TCR_T0SZ_MASK             0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
293 #define ARM64_TCR_TG0_SHIFT             14
294 #define ARM64_TCR_TG0_MASK              0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
296 #define ARM64_TCR_IRGN0_SHIFT           8
297 #define ARM64_TCR_IRGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
299 #define ARM64_TCR_ORGN0_SHIFT           10
300 #define ARM64_TCR_ORGN0_MASK            0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
302 #define ARM64_TCR_SH0_SHIFT             12
303 #define ARM64_TCR_SH0_MASK              0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
305 #define ARM64_TCR_EPD0_SHIFT            7
306 #define ARM64_TCR_EPD0_MASK             0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
308 #define ARM64_TCR_EPD1_SHIFT            23
309 #define ARM64_TCR_EPD1_MASK             0x1UL
310
311 #define CTXDESC_CD_0_ENDI               (1UL << 15)
312 #define CTXDESC_CD_0_V                  (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
315 #define ARM64_TCR_IPS_SHIFT             32
316 #define ARM64_TCR_IPS_MASK              0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
318 #define ARM64_TCR_TBI0_SHIFT            37
319 #define ARM64_TCR_TBI0_MASK             0x1UL
320
321 #define CTXDESC_CD_0_AA64               (1UL << 41)
322 #define CTXDESC_CD_0_R                  (1UL << 45)
323 #define CTXDESC_CD_0_A                  (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT         47
325 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT         48
328 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT         4
331 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT         0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
337         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
338          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS                 2
342 #define CMDQ_MAX_SZ_SHIFT               8
343
344 #define CMDQ_ERR_SHIFT                  24
345 #define CMDQ_ERR_MASK                   0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX        0
347 #define CMDQ_ERR_CERROR_ILL_IDX         1
348 #define CMDQ_ERR_CERROR_ABT_IDX         2
349
350 #define CMDQ_0_OP_SHIFT                 0
351 #define CMDQ_0_OP_MASK                  0xffUL
352 #define CMDQ_0_SSV                      (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT       32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
356 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT           32
359 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT         0
362 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT          32
365 #define CMDQ_TLBI_0_ASID_SHIFT          48
366 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT           12
371 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT            32
373 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT          0
375 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT           12
377 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT            12
382 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS                 4
387 #define EVTQ_MAX_SZ_SHIFT               7
388
389 #define EVTQ_0_ID_SHIFT                 0
390 #define EVTQ_0_ID_MASK                  0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS                 2
394 #define PRIQ_MAX_SZ_SHIFT               8
395
396 #define PRIQ_0_SID_SHIFT                0
397 #define PRIQ_0_SID_MASK                 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT               32
399 #define PRIQ_0_SSID_MASK                0xfffffUL
400 #define PRIQ_0_PERM_PRIV                (1UL << 58)
401 #define PRIQ_0_PERM_EXEC                (1UL << 59)
402 #define PRIQ_0_PERM_READ                (1UL << 60)
403 #define PRIQ_0_PERM_WRITE               (1UL << 61)
404 #define PRIQ_0_PRG_LAST                 (1UL << 62)
405 #define PRIQ_0_SSID_V                   (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT            0
408 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT               12
410 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US        100
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421         PRI_RESP_DENY,
422         PRI_RESP_FAIL,
423         PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427         EVTQ_MSI_INDEX,
428         GERROR_MSI_INDEX,
429         PRIQ_MSI_INDEX,
430         ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434         [EVTQ_MSI_INDEX] = {
435                 ARM_SMMU_EVTQ_IRQ_CFG0,
436                 ARM_SMMU_EVTQ_IRQ_CFG1,
437                 ARM_SMMU_EVTQ_IRQ_CFG2,
438         },
439         [GERROR_MSI_INDEX] = {
440                 ARM_SMMU_GERROR_IRQ_CFG0,
441                 ARM_SMMU_GERROR_IRQ_CFG1,
442                 ARM_SMMU_GERROR_IRQ_CFG2,
443         },
444         [PRIQ_MSI_INDEX] = {
445                 ARM_SMMU_PRIQ_IRQ_CFG0,
446                 ARM_SMMU_PRIQ_IRQ_CFG1,
447                 ARM_SMMU_PRIQ_IRQ_CFG2,
448         },
449 };
450
451 struct arm_smmu_cmdq_ent {
452         /* Common fields */
453         u8                              opcode;
454         bool                            substream_valid;
455
456         /* Command-specific fields */
457         union {
458                 #define CMDQ_OP_PREFETCH_CFG    0x1
459                 struct {
460                         u32                     sid;
461                         u8                      size;
462                         u64                     addr;
463                 } prefetch;
464
465                 #define CMDQ_OP_CFGI_STE        0x3
466                 #define CMDQ_OP_CFGI_ALL        0x4
467                 struct {
468                         u32                     sid;
469                         union {
470                                 bool            leaf;
471                                 u8              span;
472                         };
473                 } cfgi;
474
475                 #define CMDQ_OP_TLBI_NH_ASID    0x11
476                 #define CMDQ_OP_TLBI_NH_VA      0x12
477                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
478                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
479                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
480                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
481                 struct {
482                         u16                     asid;
483                         u16                     vmid;
484                         bool                    leaf;
485                         u64                     addr;
486                 } tlbi;
487
488                 #define CMDQ_OP_PRI_RESP        0x41
489                 struct {
490                         u32                     sid;
491                         u32                     ssid;
492                         u16                     grpid;
493                         enum pri_resp           resp;
494                 } pri;
495
496                 #define CMDQ_OP_CMD_SYNC        0x46
497         };
498 };
499
500 struct arm_smmu_queue {
501         int                             irq; /* Wired interrupt */
502
503         __le64                          *base;
504         dma_addr_t                      base_dma;
505         u64                             q_base;
506
507         size_t                          ent_dwords;
508         u32                             max_n_shift;
509         u32                             prod;
510         u32                             cons;
511
512         u32 __iomem                     *prod_reg;
513         u32 __iomem                     *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517         struct arm_smmu_queue           q;
518         spinlock_t                      lock;
519 };
520
521 struct arm_smmu_evtq {
522         struct arm_smmu_queue           q;
523         u32                             max_stalls;
524 };
525
526 struct arm_smmu_priq {
527         struct arm_smmu_queue           q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532         u8                              span;
533
534         __le64                          *l2ptr;
535         dma_addr_t                      l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539         __le64                          *cdptr;
540         dma_addr_t                      cdptr_dma;
541
542         struct arm_smmu_ctx_desc {
543                 u16     asid;
544                 u64     ttbr;
545                 u64     tcr;
546                 u64     mair;
547         }                               cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551         u16                             vmid;
552         u64                             vttbr;
553         u64                             vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557         bool                            valid;
558
559         bool                            bypass; /* Overrides s1/s2 config */
560         struct arm_smmu_s1_cfg          *s1_cfg;
561         struct arm_smmu_s2_cfg          *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565         __le64                          *strtab;
566         dma_addr_t                      strtab_dma;
567         struct arm_smmu_strtab_l1_desc  *l1_desc;
568         unsigned int                    num_l1_ents;
569
570         u64                             strtab_base;
571         u32                             strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576         struct device                   *dev;
577         void __iomem                    *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
583 #define ARM_SMMU_FEAT_PRI               (1 << 4)
584 #define ARM_SMMU_FEAT_ATS               (1 << 5)
585 #define ARM_SMMU_FEAT_SEV               (1 << 6)
586 #define ARM_SMMU_FEAT_MSI               (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
591 #define ARM_SMMU_FEAT_HYP               (1 << 12)
592         u32                             features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
595         u32                             options;
596
597         struct arm_smmu_cmdq            cmdq;
598         struct arm_smmu_evtq            evtq;
599         struct arm_smmu_priq            priq;
600
601         int                             gerr_irq;
602
603         unsigned long                   ias; /* IPA */
604         unsigned long                   oas; /* PA */
605         unsigned long                   pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
608         unsigned int                    asid_bits;
609         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
612         unsigned int                    vmid_bits;
613         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615         unsigned int                    ssid_bits;
616         unsigned int                    sid_bits;
617
618         struct arm_smmu_strtab_cfg      strtab_cfg;
619 };
620
621 /* SMMU private data for each master */
622 struct arm_smmu_master_data {
623         struct arm_smmu_device          *smmu;
624         struct arm_smmu_strtab_ent      ste;
625 };
626
627 /* SMMU private data for an IOMMU domain */
628 enum arm_smmu_domain_stage {
629         ARM_SMMU_DOMAIN_S1 = 0,
630         ARM_SMMU_DOMAIN_S2,
631         ARM_SMMU_DOMAIN_NESTED,
632 };
633
634 struct arm_smmu_domain {
635         struct arm_smmu_device          *smmu;
636         struct mutex                    init_mutex; /* Protects smmu pointer */
637
638         struct io_pgtable_ops           *pgtbl_ops;
639         spinlock_t                      pgtbl_lock;
640
641         enum arm_smmu_domain_stage      stage;
642         union {
643                 struct arm_smmu_s1_cfg  s1_cfg;
644                 struct arm_smmu_s2_cfg  s2_cfg;
645         };
646
647         struct iommu_domain             domain;
648 };
649
650 struct arm_smmu_option_prop {
651         u32 opt;
652         const char *prop;
653 };
654
655 static struct arm_smmu_option_prop arm_smmu_options[] = {
656         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
657         { 0, NULL},
658 };
659
660 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
661 {
662         return container_of(dom, struct arm_smmu_domain, domain);
663 }
664
665 static void parse_driver_options(struct arm_smmu_device *smmu)
666 {
667         int i = 0;
668
669         do {
670                 if (of_property_read_bool(smmu->dev->of_node,
671                                                 arm_smmu_options[i].prop)) {
672                         smmu->options |= arm_smmu_options[i].opt;
673                         dev_notice(smmu->dev, "option %s\n",
674                                 arm_smmu_options[i].prop);
675                 }
676         } while (arm_smmu_options[++i].opt);
677 }
678
679 /* Low-level queue manipulation functions */
680 static bool queue_full(struct arm_smmu_queue *q)
681 {
682         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
683                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
684 }
685
686 static bool queue_empty(struct arm_smmu_queue *q)
687 {
688         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
689                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
690 }
691
692 static void queue_sync_cons(struct arm_smmu_queue *q)
693 {
694         q->cons = readl_relaxed(q->cons_reg);
695 }
696
697 static void queue_inc_cons(struct arm_smmu_queue *q)
698 {
699         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
700
701         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
702         writel(q->cons, q->cons_reg);
703 }
704
705 static int queue_sync_prod(struct arm_smmu_queue *q)
706 {
707         int ret = 0;
708         u32 prod = readl_relaxed(q->prod_reg);
709
710         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
711                 ret = -EOVERFLOW;
712
713         q->prod = prod;
714         return ret;
715 }
716
717 static void queue_inc_prod(struct arm_smmu_queue *q)
718 {
719         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
720
721         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
722         writel(q->prod, q->prod_reg);
723 }
724
725 /*
726  * Wait for the SMMU to consume items. If drain is true, wait until the queue
727  * is empty. Otherwise, wait until there is at least one free slot.
728  */
729 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
730 {
731         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
732
733         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
734                 if (ktime_compare(ktime_get(), timeout) > 0)
735                         return -ETIMEDOUT;
736
737                 if (wfe) {
738                         wfe();
739                 } else {
740                         cpu_relax();
741                         udelay(1);
742                 }
743         }
744
745         return 0;
746 }
747
748 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
749 {
750         int i;
751
752         for (i = 0; i < n_dwords; ++i)
753                 *dst++ = cpu_to_le64(*src++);
754 }
755
756 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
757 {
758         if (queue_full(q))
759                 return -ENOSPC;
760
761         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
762         queue_inc_prod(q);
763         return 0;
764 }
765
766 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
767 {
768         int i;
769
770         for (i = 0; i < n_dwords; ++i)
771                 *dst++ = le64_to_cpu(*src++);
772 }
773
774 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
775 {
776         if (queue_empty(q))
777                 return -EAGAIN;
778
779         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
780         queue_inc_cons(q);
781         return 0;
782 }
783
784 /* High-level queue accessors */
785 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
786 {
787         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
788         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
789
790         switch (ent->opcode) {
791         case CMDQ_OP_TLBI_EL2_ALL:
792         case CMDQ_OP_TLBI_NSNH_ALL:
793                 break;
794         case CMDQ_OP_PREFETCH_CFG:
795                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
796                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
797                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
798                 break;
799         case CMDQ_OP_CFGI_STE:
800                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
801                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
802                 break;
803         case CMDQ_OP_CFGI_ALL:
804                 /* Cover the entire SID range */
805                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
806                 break;
807         case CMDQ_OP_TLBI_NH_VA:
808                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
809                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
810                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
811                 break;
812         case CMDQ_OP_TLBI_S2_IPA:
813                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
814                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
815                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
816                 break;
817         case CMDQ_OP_TLBI_NH_ASID:
818                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
819                 /* Fallthrough */
820         case CMDQ_OP_TLBI_S12_VMALL:
821                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
822                 break;
823         case CMDQ_OP_PRI_RESP:
824                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
825                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
826                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
827                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
828                 switch (ent->pri.resp) {
829                 case PRI_RESP_DENY:
830                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
831                         break;
832                 case PRI_RESP_FAIL:
833                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
834                         break;
835                 case PRI_RESP_SUCC:
836                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
837                         break;
838                 default:
839                         return -EINVAL;
840                 }
841                 break;
842         case CMDQ_OP_CMD_SYNC:
843                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
844                 break;
845         default:
846                 return -ENOENT;
847         }
848
849         return 0;
850 }
851
852 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
853 {
854         static const char *cerror_str[] = {
855                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
856                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
857                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
858         };
859
860         int i;
861         u64 cmd[CMDQ_ENT_DWORDS];
862         struct arm_smmu_queue *q = &smmu->cmdq.q;
863         u32 cons = readl_relaxed(q->cons_reg);
864         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
865         struct arm_smmu_cmdq_ent cmd_sync = {
866                 .opcode = CMDQ_OP_CMD_SYNC,
867         };
868
869         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
870                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
871
872         switch (idx) {
873         case CMDQ_ERR_CERROR_ABT_IDX:
874                 dev_err(smmu->dev, "retrying command fetch\n");
875         case CMDQ_ERR_CERROR_NONE_IDX:
876                 return;
877         case CMDQ_ERR_CERROR_ILL_IDX:
878                 /* Fallthrough */
879         default:
880                 break;
881         }
882
883         /*
884          * We may have concurrent producers, so we need to be careful
885          * not to touch any of the shadow cmdq state.
886          */
887         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
888         dev_err(smmu->dev, "skipping command in error state:\n");
889         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
890                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
891
892         /* Convert the erroneous command into a CMD_SYNC */
893         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
894                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
895                 return;
896         }
897
898         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
899 }
900
901 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
902                                     struct arm_smmu_cmdq_ent *ent)
903 {
904         u64 cmd[CMDQ_ENT_DWORDS];
905         unsigned long flags;
906         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
907         struct arm_smmu_queue *q = &smmu->cmdq.q;
908
909         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
910                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
911                          ent->opcode);
912                 return;
913         }
914
915         spin_lock_irqsave(&smmu->cmdq.lock, flags);
916         while (queue_insert_raw(q, cmd) == -ENOSPC) {
917                 if (queue_poll_cons(q, false, wfe))
918                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
919         }
920
921         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
922                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
923         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
924 }
925
926 /* Context descriptor manipulation functions */
927 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
928 {
929         u64 val = 0;
930
931         /* Repack the TCR. Just care about TTBR0 for now */
932         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
933         val |= ARM_SMMU_TCR2CD(tcr, TG0);
934         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
935         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
936         val |= ARM_SMMU_TCR2CD(tcr, SH0);
937         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
938         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
939         val |= ARM_SMMU_TCR2CD(tcr, IPS);
940         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
941
942         return val;
943 }
944
945 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
946                                     struct arm_smmu_s1_cfg *cfg)
947 {
948         u64 val;
949
950         /*
951          * We don't need to issue any invalidation here, as we'll invalidate
952          * the STE when installing the new entry anyway.
953          */
954         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
955 #ifdef __BIG_ENDIAN
956               CTXDESC_CD_0_ENDI |
957 #endif
958               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
959               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
960               CTXDESC_CD_0_V;
961         cfg->cdptr[0] = cpu_to_le64(val);
962
963         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
964         cfg->cdptr[1] = cpu_to_le64(val);
965
966         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
967 }
968
969 /* Stream table manipulation functions */
970 static void
971 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
972 {
973         u64 val = 0;
974
975         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
976                 << STRTAB_L1_DESC_SPAN_SHIFT;
977         val |= desc->l2ptr_dma &
978                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
979
980         *dst = cpu_to_le64(val);
981 }
982
983 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
984 {
985         struct arm_smmu_cmdq_ent cmd = {
986                 .opcode = CMDQ_OP_CFGI_STE,
987                 .cfgi   = {
988                         .sid    = sid,
989                         .leaf   = true,
990                 },
991         };
992
993         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994         cmd.opcode = CMDQ_OP_CMD_SYNC;
995         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
996 }
997
998 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
999                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1000 {
1001         /*
1002          * This is hideously complicated, but we only really care about
1003          * three cases at the moment:
1004          *
1005          * 1. Invalid (all zero) -> bypass  (init)
1006          * 2. Bypass -> translation (attach)
1007          * 3. Translation -> bypass (detach)
1008          *
1009          * Given that we can't update the STE atomically and the SMMU
1010          * doesn't read the thing in a defined order, that leaves us
1011          * with the following maintenance requirements:
1012          *
1013          * 1. Update Config, return (init time STEs aren't live)
1014          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1015          * 3. Update Config, sync
1016          */
1017         u64 val = le64_to_cpu(dst[0]);
1018         bool ste_live = false;
1019         struct arm_smmu_cmdq_ent prefetch_cmd = {
1020                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1021                 .prefetch       = {
1022                         .sid    = sid,
1023                 },
1024         };
1025
1026         if (val & STRTAB_STE_0_V) {
1027                 u64 cfg;
1028
1029                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1030                 switch (cfg) {
1031                 case STRTAB_STE_0_CFG_BYPASS:
1032                         break;
1033                 case STRTAB_STE_0_CFG_S1_TRANS:
1034                 case STRTAB_STE_0_CFG_S2_TRANS:
1035                         ste_live = true;
1036                         break;
1037                 case STRTAB_STE_0_CFG_ABORT:
1038                         if (disable_bypass)
1039                                 break;
1040                 default:
1041                         BUG(); /* STE corruption */
1042                 }
1043         }
1044
1045         /* Nuke the existing Config, as we're going to rewrite it */
1046         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1047
1048         if (ste->valid)
1049                 val |= STRTAB_STE_0_V;
1050         else
1051                 val &= ~STRTAB_STE_0_V;
1052
1053         if (ste->bypass) {
1054                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1055                                       : STRTAB_STE_0_CFG_BYPASS;
1056                 dst[0] = cpu_to_le64(val);
1057                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1058                          << STRTAB_STE_1_SHCFG_SHIFT);
1059                 dst[2] = 0; /* Nuke the VMID */
1060                 if (ste_live)
1061                         arm_smmu_sync_ste_for_sid(smmu, sid);
1062                 return;
1063         }
1064
1065         if (ste->s1_cfg) {
1066                 BUG_ON(ste_live);
1067                 dst[1] = cpu_to_le64(
1068                          STRTAB_STE_1_S1C_CACHE_WBRA
1069                          << STRTAB_STE_1_S1CIR_SHIFT |
1070                          STRTAB_STE_1_S1C_CACHE_WBRA
1071                          << STRTAB_STE_1_S1COR_SHIFT |
1072                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1073 #ifdef CONFIG_PCI_ATS
1074                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1075 #endif
1076                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1077                          STRTAB_STE_1_PRIVCFG_UNPRIV <<
1078                          STRTAB_STE_1_PRIVCFG_SHIFT);
1079
1080                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1081                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1082
1083                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1084                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1085                         STRTAB_STE_0_CFG_S1_TRANS;
1086
1087         }
1088
1089         if (ste->s2_cfg) {
1090                 BUG_ON(ste_live);
1091                 dst[2] = cpu_to_le64(
1092                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1093                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1094                           << STRTAB_STE_2_VTCR_SHIFT |
1095 #ifdef __BIG_ENDIAN
1096                          STRTAB_STE_2_S2ENDI |
1097 #endif
1098                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1099                          STRTAB_STE_2_S2R);
1100
1101                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1102                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1103
1104                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1105         }
1106
1107         arm_smmu_sync_ste_for_sid(smmu, sid);
1108         dst[0] = cpu_to_le64(val);
1109         arm_smmu_sync_ste_for_sid(smmu, sid);
1110
1111         /* It's likely that we'll want to use the new STE soon */
1112         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1113                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1114 }
1115
1116 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1117 {
1118         unsigned int i;
1119         struct arm_smmu_strtab_ent ste = {
1120                 .valid  = true,
1121                 .bypass = true,
1122         };
1123
1124         for (i = 0; i < nent; ++i) {
1125                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1126                 strtab += STRTAB_STE_DWORDS;
1127         }
1128 }
1129
1130 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1131 {
1132         size_t size;
1133         void *strtab;
1134         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1135         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1136
1137         if (desc->l2ptr)
1138                 return 0;
1139
1140         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1141         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1142
1143         desc->span = STRTAB_SPLIT + 1;
1144         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1145                                           GFP_KERNEL | __GFP_ZERO);
1146         if (!desc->l2ptr) {
1147                 dev_err(smmu->dev,
1148                         "failed to allocate l2 stream table for SID %u\n",
1149                         sid);
1150                 return -ENOMEM;
1151         }
1152
1153         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1154         arm_smmu_write_strtab_l1_desc(strtab, desc);
1155         return 0;
1156 }
1157
1158 /* IRQ and event handlers */
1159 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1160 {
1161         int i;
1162         struct arm_smmu_device *smmu = dev;
1163         struct arm_smmu_queue *q = &smmu->evtq.q;
1164         u64 evt[EVTQ_ENT_DWORDS];
1165
1166         do {
1167                 while (!queue_remove_raw(q, evt)) {
1168                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1169
1170                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1171                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1172                                 dev_info(smmu->dev, "\t0x%016llx\n",
1173                                          (unsigned long long)evt[i]);
1174
1175                 }
1176
1177                 /*
1178                  * Not much we can do on overflow, so scream and pretend we're
1179                  * trying harder.
1180                  */
1181                 if (queue_sync_prod(q) == -EOVERFLOW)
1182                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1183         } while (!queue_empty(q));
1184
1185         /* Sync our overflow flag, as we believe we're up to speed */
1186         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1187         return IRQ_HANDLED;
1188 }
1189
1190 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1191 {
1192         u32 sid, ssid;
1193         u16 grpid;
1194         bool ssv, last;
1195
1196         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1197         ssv = evt[0] & PRIQ_0_SSID_V;
1198         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1199         last = evt[0] & PRIQ_0_PRG_LAST;
1200         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1201
1202         dev_info(smmu->dev, "unexpected PRI request received:\n");
1203         dev_info(smmu->dev,
1204                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1205                  sid, ssid, grpid, last ? "L" : "",
1206                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1207                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1208                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1209                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1210                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1211
1212         if (last) {
1213                 struct arm_smmu_cmdq_ent cmd = {
1214                         .opcode                 = CMDQ_OP_PRI_RESP,
1215                         .substream_valid        = ssv,
1216                         .pri                    = {
1217                                 .sid    = sid,
1218                                 .ssid   = ssid,
1219                                 .grpid  = grpid,
1220                                 .resp   = PRI_RESP_DENY,
1221                         },
1222                 };
1223
1224                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1225         }
1226 }
1227
1228 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1229 {
1230         struct arm_smmu_device *smmu = dev;
1231         struct arm_smmu_queue *q = &smmu->priq.q;
1232         u64 evt[PRIQ_ENT_DWORDS];
1233
1234         do {
1235                 while (!queue_remove_raw(q, evt))
1236                         arm_smmu_handle_ppr(smmu, evt);
1237
1238                 if (queue_sync_prod(q) == -EOVERFLOW)
1239                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1240         } while (!queue_empty(q));
1241
1242         /* Sync our overflow flag, as we believe we're up to speed */
1243         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1244         return IRQ_HANDLED;
1245 }
1246
1247 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1248 {
1249         /* We don't actually use CMD_SYNC interrupts for anything */
1250         return IRQ_HANDLED;
1251 }
1252
1253 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1254
1255 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1256 {
1257         u32 gerror, gerrorn, active;
1258         struct arm_smmu_device *smmu = dev;
1259
1260         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1261         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1262
1263         active = gerror ^ gerrorn;
1264         if (!(active & GERROR_ERR_MASK))
1265                 return IRQ_NONE; /* No errors pending */
1266
1267         dev_warn(smmu->dev,
1268                  "unexpected global error reported (0x%08x), this could be serious\n",
1269                  active);
1270
1271         if (active & GERROR_SFM_ERR) {
1272                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1273                 arm_smmu_device_disable(smmu);
1274         }
1275
1276         if (active & GERROR_MSI_GERROR_ABT_ERR)
1277                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1278
1279         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1280                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1281
1282         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1283                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1284
1285         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1286                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1287                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1288         }
1289
1290         if (active & GERROR_PRIQ_ABT_ERR)
1291                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1292
1293         if (active & GERROR_EVTQ_ABT_ERR)
1294                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1295
1296         if (active & GERROR_CMDQ_ERR)
1297                 arm_smmu_cmdq_skip_err(smmu);
1298
1299         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1300         return IRQ_HANDLED;
1301 }
1302
1303 /* IO_PGTABLE API */
1304 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1305 {
1306         struct arm_smmu_cmdq_ent cmd;
1307
1308         cmd.opcode = CMDQ_OP_CMD_SYNC;
1309         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1310 }
1311
1312 static void arm_smmu_tlb_sync(void *cookie)
1313 {
1314         struct arm_smmu_domain *smmu_domain = cookie;
1315         __arm_smmu_tlb_sync(smmu_domain->smmu);
1316 }
1317
1318 static void arm_smmu_tlb_inv_context(void *cookie)
1319 {
1320         struct arm_smmu_domain *smmu_domain = cookie;
1321         struct arm_smmu_device *smmu = smmu_domain->smmu;
1322         struct arm_smmu_cmdq_ent cmd;
1323
1324         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1325                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1326                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1327                 cmd.tlbi.vmid   = 0;
1328         } else {
1329                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1330                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1331         }
1332
1333         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1334         __arm_smmu_tlb_sync(smmu);
1335 }
1336
1337 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1338                                           size_t granule, bool leaf, void *cookie)
1339 {
1340         struct arm_smmu_domain *smmu_domain = cookie;
1341         struct arm_smmu_device *smmu = smmu_domain->smmu;
1342         struct arm_smmu_cmdq_ent cmd = {
1343                 .tlbi = {
1344                         .leaf   = leaf,
1345                         .addr   = iova,
1346                 },
1347         };
1348
1349         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1350                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1351                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1352         } else {
1353                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1354                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1355         }
1356
1357         do {
1358                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1359                 cmd.tlbi.addr += granule;
1360         } while (size -= granule);
1361 }
1362
1363 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1364         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1365         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1366         .tlb_sync       = arm_smmu_tlb_sync,
1367 };
1368
1369 /* IOMMU API */
1370 static bool arm_smmu_capable(enum iommu_cap cap)
1371 {
1372         switch (cap) {
1373         case IOMMU_CAP_CACHE_COHERENCY:
1374                 return true;
1375         case IOMMU_CAP_INTR_REMAP:
1376                 return true; /* MSIs are just memory writes */
1377         case IOMMU_CAP_NOEXEC:
1378                 return true;
1379         default:
1380                 return false;
1381         }
1382 }
1383
1384 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1385 {
1386         struct arm_smmu_domain *smmu_domain;
1387
1388         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1389                 return NULL;
1390
1391         /*
1392          * Allocate the domain and initialise some of its data structures.
1393          * We can't really do anything meaningful until we've added a
1394          * master.
1395          */
1396         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1397         if (!smmu_domain)
1398                 return NULL;
1399
1400         if (type == IOMMU_DOMAIN_DMA &&
1401             iommu_get_dma_cookie(&smmu_domain->domain)) {
1402                 kfree(smmu_domain);
1403                 return NULL;
1404         }
1405
1406         mutex_init(&smmu_domain->init_mutex);
1407         spin_lock_init(&smmu_domain->pgtbl_lock);
1408         return &smmu_domain->domain;
1409 }
1410
1411 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1412 {
1413         int idx, size = 1 << span;
1414
1415         do {
1416                 idx = find_first_zero_bit(map, size);
1417                 if (idx == size)
1418                         return -ENOSPC;
1419         } while (test_and_set_bit(idx, map));
1420
1421         return idx;
1422 }
1423
1424 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1425 {
1426         clear_bit(idx, map);
1427 }
1428
1429 static void arm_smmu_domain_free(struct iommu_domain *domain)
1430 {
1431         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1432         struct arm_smmu_device *smmu = smmu_domain->smmu;
1433
1434         iommu_put_dma_cookie(domain);
1435         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1436
1437         /* Free the CD and ASID, if we allocated them */
1438         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1439                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1440
1441                 if (cfg->cdptr) {
1442                         dmam_free_coherent(smmu_domain->smmu->dev,
1443                                            CTXDESC_CD_DWORDS << 3,
1444                                            cfg->cdptr,
1445                                            cfg->cdptr_dma);
1446
1447                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1448                 }
1449         } else {
1450                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1451                 if (cfg->vmid)
1452                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1453         }
1454
1455         kfree(smmu_domain);
1456 }
1457
1458 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1459                                        struct io_pgtable_cfg *pgtbl_cfg)
1460 {
1461         int ret;
1462         int asid;
1463         struct arm_smmu_device *smmu = smmu_domain->smmu;
1464         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1465
1466         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1467         if (asid < 0)
1468                 return asid;
1469
1470         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1471                                          &cfg->cdptr_dma,
1472                                          GFP_KERNEL | __GFP_ZERO);
1473         if (!cfg->cdptr) {
1474                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1475                 ret = -ENOMEM;
1476                 goto out_free_asid;
1477         }
1478
1479         cfg->cd.asid    = (u16)asid;
1480         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1481         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1482         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1483         return 0;
1484
1485 out_free_asid:
1486         arm_smmu_bitmap_free(smmu->asid_map, asid);
1487         return ret;
1488 }
1489
1490 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1491                                        struct io_pgtable_cfg *pgtbl_cfg)
1492 {
1493         int vmid;
1494         struct arm_smmu_device *smmu = smmu_domain->smmu;
1495         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1496
1497         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1498         if (vmid < 0)
1499                 return vmid;
1500
1501         cfg->vmid       = (u16)vmid;
1502         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1503         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1504         return 0;
1505 }
1506
1507 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1508 {
1509         int ret;
1510         unsigned long ias, oas;
1511         enum io_pgtable_fmt fmt;
1512         struct io_pgtable_cfg pgtbl_cfg;
1513         struct io_pgtable_ops *pgtbl_ops;
1514         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1515                                  struct io_pgtable_cfg *);
1516         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1517         struct arm_smmu_device *smmu = smmu_domain->smmu;
1518
1519         /* Restrict the stage to what we can actually support */
1520         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1521                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1522         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1523                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1524
1525         switch (smmu_domain->stage) {
1526         case ARM_SMMU_DOMAIN_S1:
1527                 ias = VA_BITS;
1528                 oas = smmu->ias;
1529                 fmt = ARM_64_LPAE_S1;
1530                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1531                 break;
1532         case ARM_SMMU_DOMAIN_NESTED:
1533         case ARM_SMMU_DOMAIN_S2:
1534                 ias = smmu->ias;
1535                 oas = smmu->oas;
1536                 fmt = ARM_64_LPAE_S2;
1537                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1538                 break;
1539         default:
1540                 return -EINVAL;
1541         }
1542
1543         pgtbl_cfg = (struct io_pgtable_cfg) {
1544                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1545                 .ias            = ias,
1546                 .oas            = oas,
1547                 .tlb            = &arm_smmu_gather_ops,
1548                 .iommu_dev      = smmu->dev,
1549         };
1550
1551         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1552         if (!pgtbl_ops)
1553                 return -ENOMEM;
1554
1555         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1556         domain->geometry.aperture_end = (1UL << ias) - 1;
1557         domain->geometry.force_aperture = true;
1558         smmu_domain->pgtbl_ops = pgtbl_ops;
1559
1560         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1561         if (ret < 0)
1562                 free_io_pgtable_ops(pgtbl_ops);
1563
1564         return ret;
1565 }
1566
1567 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1568 {
1569         __le64 *step;
1570         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1571
1572         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1573                 struct arm_smmu_strtab_l1_desc *l1_desc;
1574                 int idx;
1575
1576                 /* Two-level walk */
1577                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1578                 l1_desc = &cfg->l1_desc[idx];
1579                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1580                 step = &l1_desc->l2ptr[idx];
1581         } else {
1582                 /* Simple linear lookup */
1583                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1584         }
1585
1586         return step;
1587 }
1588
1589 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1590 {
1591         int i;
1592         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1593         struct arm_smmu_device *smmu = master->smmu;
1594
1595         for (i = 0; i < fwspec->num_ids; ++i) {
1596                 u32 sid = fwspec->ids[i];
1597                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1598
1599                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1600         }
1601
1602         return 0;
1603 }
1604
1605 static void arm_smmu_detach_dev(struct device *dev)
1606 {
1607         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1608
1609         master->ste.bypass = true;
1610         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1611                 dev_warn(dev, "failed to install bypass STE\n");
1612 }
1613
1614 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1615 {
1616         int ret = 0;
1617         struct arm_smmu_device *smmu;
1618         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1619         struct arm_smmu_master_data *master;
1620         struct arm_smmu_strtab_ent *ste;
1621
1622         if (!dev->iommu_fwspec)
1623                 return -ENOENT;
1624
1625         master = dev->iommu_fwspec->iommu_priv;
1626         smmu = master->smmu;
1627         ste = &master->ste;
1628
1629         /* Already attached to a different domain? */
1630         if (!ste->bypass)
1631                 arm_smmu_detach_dev(dev);
1632
1633         mutex_lock(&smmu_domain->init_mutex);
1634
1635         if (!smmu_domain->smmu) {
1636                 smmu_domain->smmu = smmu;
1637                 ret = arm_smmu_domain_finalise(domain);
1638                 if (ret) {
1639                         smmu_domain->smmu = NULL;
1640                         goto out_unlock;
1641                 }
1642         } else if (smmu_domain->smmu != smmu) {
1643                 dev_err(dev,
1644                         "cannot attach to SMMU %s (upstream of %s)\n",
1645                         dev_name(smmu_domain->smmu->dev),
1646                         dev_name(smmu->dev));
1647                 ret = -ENXIO;
1648                 goto out_unlock;
1649         }
1650
1651         ste->bypass = false;
1652         ste->valid = true;
1653
1654         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1655                 ste->s1_cfg = &smmu_domain->s1_cfg;
1656                 ste->s2_cfg = NULL;
1657                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1658         } else {
1659                 ste->s1_cfg = NULL;
1660                 ste->s2_cfg = &smmu_domain->s2_cfg;
1661         }
1662
1663         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1664         if (ret < 0)
1665                 ste->valid = false;
1666
1667 out_unlock:
1668         mutex_unlock(&smmu_domain->init_mutex);
1669         return ret;
1670 }
1671
1672 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1673                         phys_addr_t paddr, size_t size, int prot)
1674 {
1675         int ret;
1676         unsigned long flags;
1677         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1678         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1679
1680         if (!ops)
1681                 return -ENODEV;
1682
1683         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1684         ret = ops->map(ops, iova, paddr, size, prot);
1685         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1686         return ret;
1687 }
1688
1689 static size_t
1690 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1691 {
1692         size_t ret;
1693         unsigned long flags;
1694         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1695         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1696
1697         if (!ops)
1698                 return 0;
1699
1700         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1701         ret = ops->unmap(ops, iova, size);
1702         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1703         return ret;
1704 }
1705
1706 static phys_addr_t
1707 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1708 {
1709         phys_addr_t ret;
1710         unsigned long flags;
1711         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1712         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1713
1714         if (!ops)
1715                 return 0;
1716
1717         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1718         ret = ops->iova_to_phys(ops, iova);
1719         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1720
1721         return ret;
1722 }
1723
1724 static struct platform_driver arm_smmu_driver;
1725
1726 static int arm_smmu_match_node(struct device *dev, void *data)
1727 {
1728         return dev->fwnode == data;
1729 }
1730
1731 static
1732 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1733 {
1734         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1735                                                 fwnode, arm_smmu_match_node);
1736         put_device(dev);
1737         return dev ? dev_get_drvdata(dev) : NULL;
1738 }
1739
1740 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1741 {
1742         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1743
1744         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1745                 limit *= 1UL << STRTAB_SPLIT;
1746
1747         return sid < limit;
1748 }
1749
1750 static struct iommu_ops arm_smmu_ops;
1751
1752 static int arm_smmu_add_device(struct device *dev)
1753 {
1754         int i, ret;
1755         struct arm_smmu_device *smmu;
1756         struct arm_smmu_master_data *master;
1757         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1758         struct iommu_group *group;
1759
1760         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1761                 return -ENODEV;
1762         /*
1763          * We _can_ actually withstand dodgy bus code re-calling add_device()
1764          * without an intervening remove_device()/of_xlate() sequence, but
1765          * we're not going to do so quietly...
1766          */
1767         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1768                 master = fwspec->iommu_priv;
1769                 smmu = master->smmu;
1770         } else {
1771                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1772                 if (!smmu)
1773                         return -ENODEV;
1774                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1775                 if (!master)
1776                         return -ENOMEM;
1777
1778                 master->smmu = smmu;
1779                 fwspec->iommu_priv = master;
1780         }
1781
1782         /* Check the SIDs are in range of the SMMU and our stream table */
1783         for (i = 0; i < fwspec->num_ids; i++) {
1784                 u32 sid = fwspec->ids[i];
1785
1786                 if (!arm_smmu_sid_in_range(smmu, sid))
1787                         return -ERANGE;
1788
1789                 /* Ensure l2 strtab is initialised */
1790                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1791                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1792                         if (ret)
1793                                 return ret;
1794                 }
1795         }
1796
1797         group = iommu_group_get_for_dev(dev);
1798         if (!IS_ERR(group))
1799                 iommu_group_put(group);
1800
1801         return PTR_ERR_OR_ZERO(group);
1802 }
1803
1804 static void arm_smmu_remove_device(struct device *dev)
1805 {
1806         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1807         struct arm_smmu_master_data *master;
1808
1809         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1810                 return;
1811
1812         master = fwspec->iommu_priv;
1813         if (master && master->ste.valid)
1814                 arm_smmu_detach_dev(dev);
1815         iommu_group_remove_device(dev);
1816         kfree(master);
1817         iommu_fwspec_free(dev);
1818 }
1819
1820 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1821 {
1822         struct iommu_group *group;
1823
1824         /*
1825          * We don't support devices sharing stream IDs other than PCI RID
1826          * aliases, since the necessary ID-to-device lookup becomes rather
1827          * impractical given a potential sparse 32-bit stream ID space.
1828          */
1829         if (dev_is_pci(dev))
1830                 group = pci_device_group(dev);
1831         else
1832                 group = generic_device_group(dev);
1833
1834         return group;
1835 }
1836
1837 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1838                                     enum iommu_attr attr, void *data)
1839 {
1840         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1841
1842         switch (attr) {
1843         case DOMAIN_ATTR_NESTING:
1844                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1845                 return 0;
1846         default:
1847                 return -ENODEV;
1848         }
1849 }
1850
1851 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1852                                     enum iommu_attr attr, void *data)
1853 {
1854         int ret = 0;
1855         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1856
1857         mutex_lock(&smmu_domain->init_mutex);
1858
1859         switch (attr) {
1860         case DOMAIN_ATTR_NESTING:
1861                 if (smmu_domain->smmu) {
1862                         ret = -EPERM;
1863                         goto out_unlock;
1864                 }
1865
1866                 if (*(int *)data)
1867                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1868                 else
1869                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1870
1871                 break;
1872         default:
1873                 ret = -ENODEV;
1874         }
1875
1876 out_unlock:
1877         mutex_unlock(&smmu_domain->init_mutex);
1878         return ret;
1879 }
1880
1881 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1882 {
1883         return iommu_fwspec_add_ids(dev, args->args, 1);
1884 }
1885
1886 static struct iommu_ops arm_smmu_ops = {
1887         .capable                = arm_smmu_capable,
1888         .domain_alloc           = arm_smmu_domain_alloc,
1889         .domain_free            = arm_smmu_domain_free,
1890         .attach_dev             = arm_smmu_attach_dev,
1891         .map                    = arm_smmu_map,
1892         .unmap                  = arm_smmu_unmap,
1893         .map_sg                 = default_iommu_map_sg,
1894         .iova_to_phys           = arm_smmu_iova_to_phys,
1895         .add_device             = arm_smmu_add_device,
1896         .remove_device          = arm_smmu_remove_device,
1897         .device_group           = arm_smmu_device_group,
1898         .domain_get_attr        = arm_smmu_domain_get_attr,
1899         .domain_set_attr        = arm_smmu_domain_set_attr,
1900         .of_xlate               = arm_smmu_of_xlate,
1901         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1902 };
1903
1904 /* Probing and initialisation functions */
1905 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1906                                    struct arm_smmu_queue *q,
1907                                    unsigned long prod_off,
1908                                    unsigned long cons_off,
1909                                    size_t dwords)
1910 {
1911         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1912
1913         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1914         if (!q->base) {
1915                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1916                         qsz);
1917                 return -ENOMEM;
1918         }
1919
1920         q->prod_reg     = smmu->base + prod_off;
1921         q->cons_reg     = smmu->base + cons_off;
1922         q->ent_dwords   = dwords;
1923
1924         q->q_base  = Q_BASE_RWA;
1925         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1926         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1927                      << Q_BASE_LOG2SIZE_SHIFT;
1928
1929         q->prod = q->cons = 0;
1930         return 0;
1931 }
1932
1933 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1934 {
1935         int ret;
1936
1937         /* cmdq */
1938         spin_lock_init(&smmu->cmdq.lock);
1939         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1940                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1941         if (ret)
1942                 return ret;
1943
1944         /* evtq */
1945         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1946                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1947         if (ret)
1948                 return ret;
1949
1950         /* priq */
1951         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1952                 return 0;
1953
1954         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1955                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1956 }
1957
1958 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1959 {
1960         unsigned int i;
1961         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1962         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1963         void *strtab = smmu->strtab_cfg.strtab;
1964
1965         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1966         if (!cfg->l1_desc) {
1967                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1968                 return -ENOMEM;
1969         }
1970
1971         for (i = 0; i < cfg->num_l1_ents; ++i) {
1972                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1973                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1974         }
1975
1976         return 0;
1977 }
1978
1979 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1980 {
1981         void *strtab;
1982         u64 reg;
1983         u32 size, l1size;
1984         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1985
1986         /*
1987          * If we can resolve everything with a single L2 table, then we
1988          * just need a single L1 descriptor. Otherwise, calculate the L1
1989          * size, capped to the SIDSIZE.
1990          */
1991         if (smmu->sid_bits < STRTAB_SPLIT) {
1992                 size = 0;
1993         } else {
1994                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
1995                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
1996         }
1997         cfg->num_l1_ents = 1 << size;
1998
1999         size += STRTAB_SPLIT;
2000         if (size < smmu->sid_bits)
2001                 dev_warn(smmu->dev,
2002                          "2-level strtab only covers %u/%u bits of SID\n",
2003                          size, smmu->sid_bits);
2004
2005         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2006         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2007                                      GFP_KERNEL | __GFP_ZERO);
2008         if (!strtab) {
2009                 dev_err(smmu->dev,
2010                         "failed to allocate l1 stream table (%u bytes)\n",
2011                         size);
2012                 return -ENOMEM;
2013         }
2014         cfg->strtab = strtab;
2015
2016         /* Configure strtab_base_cfg for 2 levels */
2017         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2018         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2019                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2020         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2021                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2022         cfg->strtab_base_cfg = reg;
2023
2024         return arm_smmu_init_l1_strtab(smmu);
2025 }
2026
2027 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2028 {
2029         void *strtab;
2030         u64 reg;
2031         u32 size;
2032         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2033
2034         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2035         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2036                                      GFP_KERNEL | __GFP_ZERO);
2037         if (!strtab) {
2038                 dev_err(smmu->dev,
2039                         "failed to allocate linear stream table (%u bytes)\n",
2040                         size);
2041                 return -ENOMEM;
2042         }
2043         cfg->strtab = strtab;
2044         cfg->num_l1_ents = 1 << smmu->sid_bits;
2045
2046         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2047         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2048         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2049                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2050         cfg->strtab_base_cfg = reg;
2051
2052         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2053         return 0;
2054 }
2055
2056 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2057 {
2058         u64 reg;
2059         int ret;
2060
2061         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2062                 ret = arm_smmu_init_strtab_2lvl(smmu);
2063         else
2064                 ret = arm_smmu_init_strtab_linear(smmu);
2065
2066         if (ret)
2067                 return ret;
2068
2069         /* Set the strtab base address */
2070         reg  = smmu->strtab_cfg.strtab_dma &
2071                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2072         reg |= STRTAB_BASE_RA;
2073         smmu->strtab_cfg.strtab_base = reg;
2074
2075         /* Allocate the first VMID for stage-2 bypass STEs */
2076         set_bit(0, smmu->vmid_map);
2077         return 0;
2078 }
2079
2080 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2081 {
2082         int ret;
2083
2084         ret = arm_smmu_init_queues(smmu);
2085         if (ret)
2086                 return ret;
2087
2088         return arm_smmu_init_strtab(smmu);
2089 }
2090
2091 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2092                                    unsigned int reg_off, unsigned int ack_off)
2093 {
2094         u32 reg;
2095
2096         writel_relaxed(val, smmu->base + reg_off);
2097         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2098                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2099 }
2100
2101 /* GBPA is "special" */
2102 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2103 {
2104         int ret;
2105         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2106
2107         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2108                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2109         if (ret)
2110                 return ret;
2111
2112         reg &= ~clr;
2113         reg |= set;
2114         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2115         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2116                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2117 }
2118
2119 static void arm_smmu_free_msis(void *data)
2120 {
2121         struct device *dev = data;
2122         platform_msi_domain_free_irqs(dev);
2123 }
2124
2125 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2126 {
2127         phys_addr_t doorbell;
2128         struct device *dev = msi_desc_to_dev(desc);
2129         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2130         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2131
2132         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2133         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2134
2135         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2136         writel_relaxed(msg->data, smmu->base + cfg[1]);
2137         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2138 }
2139
2140 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2141 {
2142         struct msi_desc *desc;
2143         int ret, nvec = ARM_SMMU_MAX_MSIS;
2144         struct device *dev = smmu->dev;
2145
2146         /* Clear the MSI address regs */
2147         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2148         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2149
2150         if (smmu->features & ARM_SMMU_FEAT_PRI)
2151                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2152         else
2153                 nvec--;
2154
2155         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2156                 return;
2157
2158         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2159         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2160         if (ret) {
2161                 dev_warn(dev, "failed to allocate MSIs\n");
2162                 return;
2163         }
2164
2165         for_each_msi_entry(desc, dev) {
2166                 switch (desc->platform.msi_index) {
2167                 case EVTQ_MSI_INDEX:
2168                         smmu->evtq.q.irq = desc->irq;
2169                         break;
2170                 case GERROR_MSI_INDEX:
2171                         smmu->gerr_irq = desc->irq;
2172                         break;
2173                 case PRIQ_MSI_INDEX:
2174                         smmu->priq.q.irq = desc->irq;
2175                         break;
2176                 default:        /* Unknown */
2177                         continue;
2178                 }
2179         }
2180
2181         /* Add callback to free MSIs on teardown */
2182         devm_add_action(dev, arm_smmu_free_msis, dev);
2183 }
2184
2185 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2186 {
2187         int ret, irq;
2188         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2189
2190         /* Disable IRQs first */
2191         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2192                                       ARM_SMMU_IRQ_CTRLACK);
2193         if (ret) {
2194                 dev_err(smmu->dev, "failed to disable irqs\n");
2195                 return ret;
2196         }
2197
2198         arm_smmu_setup_msis(smmu);
2199
2200         /* Request interrupt lines */
2201         irq = smmu->evtq.q.irq;
2202         if (irq) {
2203                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2204                                                 arm_smmu_evtq_thread,
2205                                                 IRQF_ONESHOT,
2206                                                 "arm-smmu-v3-evtq", smmu);
2207                 if (ret < 0)
2208                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2209         }
2210
2211         irq = smmu->cmdq.q.irq;
2212         if (irq) {
2213                 ret = devm_request_irq(smmu->dev, irq,
2214                                        arm_smmu_cmdq_sync_handler, 0,
2215                                        "arm-smmu-v3-cmdq-sync", smmu);
2216                 if (ret < 0)
2217                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2218         }
2219
2220         irq = smmu->gerr_irq;
2221         if (irq) {
2222                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2223                                        0, "arm-smmu-v3-gerror", smmu);
2224                 if (ret < 0)
2225                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2226         }
2227
2228         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2229                 irq = smmu->priq.q.irq;
2230                 if (irq) {
2231                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2232                                                         arm_smmu_priq_thread,
2233                                                         IRQF_ONESHOT,
2234                                                         "arm-smmu-v3-priq",
2235                                                         smmu);
2236                         if (ret < 0)
2237                                 dev_warn(smmu->dev,
2238                                          "failed to enable priq irq\n");
2239                         else
2240                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2241                 }
2242         }
2243
2244         /* Enable interrupt generation on the SMMU */
2245         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2246                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2247         if (ret)
2248                 dev_warn(smmu->dev, "failed to enable irqs\n");
2249
2250         return 0;
2251 }
2252
2253 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2254 {
2255         int ret;
2256
2257         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2258         if (ret)
2259                 dev_err(smmu->dev, "failed to clear cr0\n");
2260
2261         return ret;
2262 }
2263
2264 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2265 {
2266         int ret;
2267         u32 reg, enables;
2268         struct arm_smmu_cmdq_ent cmd;
2269
2270         /* Clear CR0 and sync (disables SMMU and queue processing) */
2271         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2272         if (reg & CR0_SMMUEN)
2273                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2274
2275         ret = arm_smmu_device_disable(smmu);
2276         if (ret)
2277                 return ret;
2278
2279         /* CR1 (table and queue memory attributes) */
2280         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2281               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2282               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2283               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2284               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2285               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2286         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2287
2288         /* CR2 (random crap) */
2289         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2290         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2291
2292         /* Stream table */
2293         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2294                        smmu->base + ARM_SMMU_STRTAB_BASE);
2295         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2296                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2297
2298         /* Command queue */
2299         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2300         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2301         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2302
2303         enables = CR0_CMDQEN;
2304         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2305                                       ARM_SMMU_CR0ACK);
2306         if (ret) {
2307                 dev_err(smmu->dev, "failed to enable command queue\n");
2308                 return ret;
2309         }
2310
2311         /* Invalidate any cached configuration */
2312         cmd.opcode = CMDQ_OP_CFGI_ALL;
2313         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2314         cmd.opcode = CMDQ_OP_CMD_SYNC;
2315         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2316
2317         /* Invalidate any stale TLB entries */
2318         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2319                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2320                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321         }
2322
2323         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2324         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325         cmd.opcode = CMDQ_OP_CMD_SYNC;
2326         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2327
2328         /* Event queue */
2329         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2330         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2331         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2332
2333         enables |= CR0_EVTQEN;
2334         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2335                                       ARM_SMMU_CR0ACK);
2336         if (ret) {
2337                 dev_err(smmu->dev, "failed to enable event queue\n");
2338                 return ret;
2339         }
2340
2341         /* PRI queue */
2342         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2343                 writeq_relaxed(smmu->priq.q.q_base,
2344                                smmu->base + ARM_SMMU_PRIQ_BASE);
2345                 writel_relaxed(smmu->priq.q.prod,
2346                                smmu->base + ARM_SMMU_PRIQ_PROD);
2347                 writel_relaxed(smmu->priq.q.cons,
2348                                smmu->base + ARM_SMMU_PRIQ_CONS);
2349
2350                 enables |= CR0_PRIQEN;
2351                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2352                                               ARM_SMMU_CR0ACK);
2353                 if (ret) {
2354                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2355                         return ret;
2356                 }
2357         }
2358
2359         ret = arm_smmu_setup_irqs(smmu);
2360         if (ret) {
2361                 dev_err(smmu->dev, "failed to setup irqs\n");
2362                 return ret;
2363         }
2364
2365
2366         /* Enable the SMMU interface, or ensure bypass */
2367         if (!bypass || disable_bypass) {
2368                 enables |= CR0_SMMUEN;
2369         } else {
2370                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2371                 if (ret) {
2372                         dev_err(smmu->dev, "GBPA not responding to update\n");
2373                         return ret;
2374                 }
2375         }
2376         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2377                                       ARM_SMMU_CR0ACK);
2378         if (ret) {
2379                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2380                 return ret;
2381         }
2382
2383         return 0;
2384 }
2385
2386 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2387 {
2388         u32 reg;
2389         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2390
2391         /* IDR0 */
2392         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2393
2394         /* 2-level structures */
2395         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2396                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2397
2398         if (reg & IDR0_CD2L)
2399                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2400
2401         /*
2402          * Translation table endianness.
2403          * We currently require the same endianness as the CPU, but this
2404          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2405          */
2406         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2407         case IDR0_TTENDIAN_MIXED:
2408                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2409                 break;
2410 #ifdef __BIG_ENDIAN
2411         case IDR0_TTENDIAN_BE:
2412                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2413                 break;
2414 #else
2415         case IDR0_TTENDIAN_LE:
2416                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2417                 break;
2418 #endif
2419         default:
2420                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2421                 return -ENXIO;
2422         }
2423
2424         /* Boolean feature flags */
2425         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2426                 smmu->features |= ARM_SMMU_FEAT_PRI;
2427
2428         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2429                 smmu->features |= ARM_SMMU_FEAT_ATS;
2430
2431         if (reg & IDR0_SEV)
2432                 smmu->features |= ARM_SMMU_FEAT_SEV;
2433
2434         if (reg & IDR0_MSI)
2435                 smmu->features |= ARM_SMMU_FEAT_MSI;
2436
2437         if (reg & IDR0_HYP)
2438                 smmu->features |= ARM_SMMU_FEAT_HYP;
2439
2440         /*
2441          * The coherency feature as set by FW is used in preference to the ID
2442          * register, but warn on mismatch.
2443          */
2444         if (!!(reg & IDR0_COHACC) != coherent)
2445                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2446                          coherent ? "true" : "false");
2447
2448         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2449         case IDR0_STALL_MODEL_STALL:
2450                 /* Fallthrough */
2451         case IDR0_STALL_MODEL_FORCE:
2452                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2453         }
2454
2455         if (reg & IDR0_S1P)
2456                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2457
2458         if (reg & IDR0_S2P)
2459                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2460
2461         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2462                 dev_err(smmu->dev, "no translation support!\n");
2463                 return -ENXIO;
2464         }
2465
2466         /* We only support the AArch64 table format at present */
2467         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2468         case IDR0_TTF_AARCH32_64:
2469                 smmu->ias = 40;
2470                 /* Fallthrough */
2471         case IDR0_TTF_AARCH64:
2472                 break;
2473         default:
2474                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2475                 return -ENXIO;
2476         }
2477
2478         /* ASID/VMID sizes */
2479         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2480         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2481
2482         /* IDR1 */
2483         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2484         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2485                 dev_err(smmu->dev, "embedded implementation not supported\n");
2486                 return -ENXIO;
2487         }
2488
2489         /* Queue sizes, capped at 4k */
2490         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2491                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2492         if (!smmu->cmdq.q.max_n_shift) {
2493                 /* Odd alignment restrictions on the base, so ignore for now */
2494                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2495                 return -ENXIO;
2496         }
2497
2498         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2499                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2500         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2501                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2502
2503         /* SID/SSID sizes */
2504         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2505         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2506
2507         /* IDR5 */
2508         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2509
2510         /* Maximum number of outstanding stalls */
2511         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2512                                 & IDR5_STALL_MAX_MASK;
2513
2514         /* Page sizes */
2515         if (reg & IDR5_GRAN64K)
2516                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2517         if (reg & IDR5_GRAN16K)
2518                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2519         if (reg & IDR5_GRAN4K)
2520                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2521
2522         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2523                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2524         else
2525                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2526
2527         /* Output address size */
2528         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2529         case IDR5_OAS_32_BIT:
2530                 smmu->oas = 32;
2531                 break;
2532         case IDR5_OAS_36_BIT:
2533                 smmu->oas = 36;
2534                 break;
2535         case IDR5_OAS_40_BIT:
2536                 smmu->oas = 40;
2537                 break;
2538         case IDR5_OAS_42_BIT:
2539                 smmu->oas = 42;
2540                 break;
2541         case IDR5_OAS_44_BIT:
2542                 smmu->oas = 44;
2543                 break;
2544         default:
2545                 dev_info(smmu->dev,
2546                         "unknown output address size. Truncating to 48-bit\n");
2547                 /* Fallthrough */
2548         case IDR5_OAS_48_BIT:
2549                 smmu->oas = 48;
2550         }
2551
2552         /* Set the DMA mask for our table walker */
2553         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2554                 dev_warn(smmu->dev,
2555                          "failed to set DMA mask for table walker\n");
2556
2557         smmu->ias = max(smmu->ias, smmu->oas);
2558
2559         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2560                  smmu->ias, smmu->oas, smmu->features);
2561         return 0;
2562 }
2563
2564 #ifdef CONFIG_ACPI
2565 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2566                                       struct arm_smmu_device *smmu)
2567 {
2568         struct acpi_iort_smmu_v3 *iort_smmu;
2569         struct device *dev = smmu->dev;
2570         struct acpi_iort_node *node;
2571
2572         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2573
2574         /* Retrieve SMMUv3 specific data */
2575         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2576
2577         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2578                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2579
2580         return 0;
2581 }
2582 #else
2583 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2584                                              struct arm_smmu_device *smmu)
2585 {
2586         return -ENODEV;
2587 }
2588 #endif
2589
2590 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2591                                     struct arm_smmu_device *smmu)
2592 {
2593         struct device *dev = &pdev->dev;
2594         u32 cells;
2595         int ret = -EINVAL;
2596
2597         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2598                 dev_err(dev, "missing #iommu-cells property\n");
2599         else if (cells != 1)
2600                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2601         else
2602                 ret = 0;
2603
2604         parse_driver_options(smmu);
2605
2606         if (of_dma_is_coherent(dev->of_node))
2607                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2608
2609         return ret;
2610 }
2611
2612 static int arm_smmu_device_probe(struct platform_device *pdev)
2613 {
2614         int irq, ret;
2615         struct resource *res;
2616         struct arm_smmu_device *smmu;
2617         struct device *dev = &pdev->dev;
2618         bool bypass;
2619
2620         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2621         if (!smmu) {
2622                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2623                 return -ENOMEM;
2624         }
2625         smmu->dev = dev;
2626
2627         /* Base address */
2628         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2629         if (resource_size(res) + 1 < SZ_128K) {
2630                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2631                 return -EINVAL;
2632         }
2633
2634         smmu->base = devm_ioremap_resource(dev, res);
2635         if (IS_ERR(smmu->base))
2636                 return PTR_ERR(smmu->base);
2637
2638         /* Interrupt lines */
2639         irq = platform_get_irq_byname(pdev, "eventq");
2640         if (irq > 0)
2641                 smmu->evtq.q.irq = irq;
2642
2643         irq = platform_get_irq_byname(pdev, "priq");
2644         if (irq > 0)
2645                 smmu->priq.q.irq = irq;
2646
2647         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2648         if (irq > 0)
2649                 smmu->cmdq.q.irq = irq;
2650
2651         irq = platform_get_irq_byname(pdev, "gerror");
2652         if (irq > 0)
2653                 smmu->gerr_irq = irq;
2654
2655         if (dev->of_node) {
2656                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2657         } else {
2658                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2659                 if (ret == -ENODEV)
2660                         return ret;
2661         }
2662
2663         /* Set bypass mode according to firmware probing result */
2664         bypass = !!ret;
2665
2666         /* Probe the h/w */
2667         ret = arm_smmu_device_hw_probe(smmu);
2668         if (ret)
2669                 return ret;
2670
2671         /* Initialise in-memory data structures */
2672         ret = arm_smmu_init_structures(smmu);
2673         if (ret)
2674                 return ret;
2675
2676         /* Record our private device structure */
2677         platform_set_drvdata(pdev, smmu);
2678
2679         /* Reset the device */
2680         ret = arm_smmu_device_reset(smmu, bypass);
2681         if (ret)
2682                 return ret;
2683
2684         /* And we're up. Go go go! */
2685         iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2686
2687 #ifdef CONFIG_PCI
2688         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2689                 pci_request_acs();
2690                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2691                 if (ret)
2692                         return ret;
2693         }
2694 #endif
2695 #ifdef CONFIG_ARM_AMBA
2696         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2697                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2698                 if (ret)
2699                         return ret;
2700         }
2701 #endif
2702         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2703                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2704                 if (ret)
2705                         return ret;
2706         }
2707         return 0;
2708 }
2709
2710 static int arm_smmu_device_remove(struct platform_device *pdev)
2711 {
2712         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2713
2714         arm_smmu_device_disable(smmu);
2715         return 0;
2716 }
2717
2718 static struct of_device_id arm_smmu_of_match[] = {
2719         { .compatible = "arm,smmu-v3", },
2720         { },
2721 };
2722 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2723
2724 static struct platform_driver arm_smmu_driver = {
2725         .driver = {
2726                 .name           = "arm-smmu-v3",
2727                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2728         },
2729         .probe  = arm_smmu_device_probe,
2730         .remove = arm_smmu_device_remove,
2731 };
2732
2733 static int __init arm_smmu_init(void)
2734 {
2735         static bool registered;
2736         int ret = 0;
2737
2738         if (!registered) {
2739                 ret = platform_driver_register(&arm_smmu_driver);
2740                 registered = !ret;
2741         }
2742         return ret;
2743 }
2744
2745 static void __exit arm_smmu_exit(void)
2746 {
2747         return platform_driver_unregister(&arm_smmu_driver);
2748 }
2749
2750 subsys_initcall(arm_smmu_init);
2751 module_exit(arm_smmu_exit);
2752
2753 static int __init arm_smmu_of_init(struct device_node *np)
2754 {
2755         int ret = arm_smmu_init();
2756
2757         if (ret)
2758                 return ret;
2759
2760         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2761                 return -ENODEV;
2762
2763         return 0;
2764 }
2765 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2766
2767 #ifdef CONFIG_ACPI
2768 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2769 {
2770         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2771                 return arm_smmu_init();
2772
2773         return 0;
2774 }
2775 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2776 #endif
2777
2778 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2779 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2780 MODULE_LICENSE("GPL v2");