]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu-v3.c
iommu/arm-smmu: Fix polling of command queue
[karo-tx-linux.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_platform.h>
34 #include <linux/pci.h>
35 #include <linux/platform_device.h>
36
37 #include "io-pgtable.h"
38
39 /* MMIO registers */
40 #define ARM_SMMU_IDR0                   0x0
41 #define IDR0_ST_LVL_SHIFT               27
42 #define IDR0_ST_LVL_MASK                0x3
43 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
44 #define IDR0_STALL_MODEL_SHIFT          24
45 #define IDR0_STALL_MODEL_MASK           0x3
46 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
47 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
48 #define IDR0_TTENDIAN_SHIFT             21
49 #define IDR0_TTENDIAN_MASK              0x3
50 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
51 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
52 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
53 #define IDR0_CD2L                       (1 << 19)
54 #define IDR0_VMID16                     (1 << 18)
55 #define IDR0_PRI                        (1 << 16)
56 #define IDR0_SEV                        (1 << 14)
57 #define IDR0_MSI                        (1 << 13)
58 #define IDR0_ASID16                     (1 << 12)
59 #define IDR0_ATS                        (1 << 10)
60 #define IDR0_HYP                        (1 << 9)
61 #define IDR0_COHACC                     (1 << 4)
62 #define IDR0_TTF_SHIFT                  2
63 #define IDR0_TTF_MASK                   0x3
64 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
65 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
66 #define IDR0_S1P                        (1 << 1)
67 #define IDR0_S2P                        (1 << 0)
68
69 #define ARM_SMMU_IDR1                   0x4
70 #define IDR1_TABLES_PRESET              (1 << 30)
71 #define IDR1_QUEUES_PRESET              (1 << 29)
72 #define IDR1_REL                        (1 << 28)
73 #define IDR1_CMDQ_SHIFT                 21
74 #define IDR1_CMDQ_MASK                  0x1f
75 #define IDR1_EVTQ_SHIFT                 16
76 #define IDR1_EVTQ_MASK                  0x1f
77 #define IDR1_PRIQ_SHIFT                 11
78 #define IDR1_PRIQ_MASK                  0x1f
79 #define IDR1_SSID_SHIFT                 6
80 #define IDR1_SSID_MASK                  0x1f
81 #define IDR1_SID_SHIFT                  0
82 #define IDR1_SID_MASK                   0x3f
83
84 #define ARM_SMMU_IDR5                   0x14
85 #define IDR5_STALL_MAX_SHIFT            16
86 #define IDR5_STALL_MAX_MASK             0xffff
87 #define IDR5_GRAN64K                    (1 << 6)
88 #define IDR5_GRAN16K                    (1 << 5)
89 #define IDR5_GRAN4K                     (1 << 4)
90 #define IDR5_OAS_SHIFT                  0
91 #define IDR5_OAS_MASK                   0x7
92 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
94 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
95 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
98
99 #define ARM_SMMU_CR0                    0x20
100 #define CR0_CMDQEN                      (1 << 3)
101 #define CR0_EVTQEN                      (1 << 2)
102 #define CR0_PRIQEN                      (1 << 1)
103 #define CR0_SMMUEN                      (1 << 0)
104
105 #define ARM_SMMU_CR0ACK                 0x24
106
107 #define ARM_SMMU_CR1                    0x28
108 #define CR1_SH_NSH                      0
109 #define CR1_SH_OSH                      2
110 #define CR1_SH_ISH                      3
111 #define CR1_CACHE_NC                    0
112 #define CR1_CACHE_WB                    1
113 #define CR1_CACHE_WT                    2
114 #define CR1_TABLE_SH_SHIFT              10
115 #define CR1_TABLE_OC_SHIFT              8
116 #define CR1_TABLE_IC_SHIFT              6
117 #define CR1_QUEUE_SH_SHIFT              4
118 #define CR1_QUEUE_OC_SHIFT              2
119 #define CR1_QUEUE_IC_SHIFT              0
120
121 #define ARM_SMMU_CR2                    0x2c
122 #define CR2_PTM                         (1 << 2)
123 #define CR2_RECINVSID                   (1 << 1)
124 #define CR2_E2H                         (1 << 0)
125
126 #define ARM_SMMU_IRQ_CTRL               0x50
127 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
128 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
129 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
130
131 #define ARM_SMMU_IRQ_CTRLACK            0x54
132
133 #define ARM_SMMU_GERROR                 0x60
134 #define GERROR_SFM_ERR                  (1 << 8)
135 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
136 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
137 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
138 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
139 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
140 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
141 #define GERROR_CMDQ_ERR                 (1 << 0)
142 #define GERROR_ERR_MASK                 0xfd
143
144 #define ARM_SMMU_GERRORN                0x64
145
146 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
147 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
148 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
149
150 #define ARM_SMMU_STRTAB_BASE            0x80
151 #define STRTAB_BASE_RA                  (1UL << 62)
152 #define STRTAB_BASE_ADDR_SHIFT          6
153 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
154
155 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
156 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
157 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
158 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
159 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
160 #define STRTAB_BASE_CFG_FMT_SHIFT       16
161 #define STRTAB_BASE_CFG_FMT_MASK        0x3
162 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
163 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
164
165 #define ARM_SMMU_CMDQ_BASE              0x90
166 #define ARM_SMMU_CMDQ_PROD              0x98
167 #define ARM_SMMU_CMDQ_CONS              0x9c
168
169 #define ARM_SMMU_EVTQ_BASE              0xa0
170 #define ARM_SMMU_EVTQ_PROD              0x100a8
171 #define ARM_SMMU_EVTQ_CONS              0x100ac
172 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
173 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
174 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
175
176 #define ARM_SMMU_PRIQ_BASE              0xc0
177 #define ARM_SMMU_PRIQ_PROD              0x100c8
178 #define ARM_SMMU_PRIQ_CONS              0x100cc
179 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
180 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
181 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
182
183 /* Common MSI config fields */
184 #define MSI_CFG0_ADDR_SHIFT             2
185 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
186 #define MSI_CFG2_SH_SHIFT               4
187 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
188 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
189 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
190 #define MSI_CFG2_MEMATTR_SHIFT          0
191 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
192
193 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
194 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
195 #define Q_OVERFLOW_FLAG                 (1 << 31)
196 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
197 #define Q_ENT(q, p)                     ((q)->base +                    \
198                                          Q_IDX(q, p) * (q)->ent_dwords)
199
200 #define Q_BASE_RWA                      (1UL << 62)
201 #define Q_BASE_ADDR_SHIFT               5
202 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
203 #define Q_BASE_LOG2SIZE_SHIFT           0
204 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
205
206 /*
207  * Stream table.
208  *
209  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
210  * 2lvl: 128k L1 entries,
211  *       256 lazy entries per table (each table covers a PCI bus)
212  */
213 #define STRTAB_L1_SZ_SHIFT              20
214 #define STRTAB_SPLIT                    8
215
216 #define STRTAB_L1_DESC_DWORDS           1
217 #define STRTAB_L1_DESC_SPAN_SHIFT       0
218 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
219 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
220 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
221
222 #define STRTAB_STE_DWORDS               8
223 #define STRTAB_STE_0_V                  (1UL << 0)
224 #define STRTAB_STE_0_CFG_SHIFT          1
225 #define STRTAB_STE_0_CFG_MASK           0x7UL
226 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
227 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
228 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
229 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
230
231 #define STRTAB_STE_0_S1FMT_SHIFT        4
232 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
233 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
234 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
235 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
236 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
237
238 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
239 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
240 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
241 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
242 #define STRTAB_STE_1_S1C_SH_NSH         0UL
243 #define STRTAB_STE_1_S1C_SH_OSH         2UL
244 #define STRTAB_STE_1_S1C_SH_ISH         3UL
245 #define STRTAB_STE_1_S1CIR_SHIFT        2
246 #define STRTAB_STE_1_S1COR_SHIFT        4
247 #define STRTAB_STE_1_S1CSH_SHIFT        6
248
249 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
250
251 #define STRTAB_STE_1_EATS_ABT           0UL
252 #define STRTAB_STE_1_EATS_TRANS         1UL
253 #define STRTAB_STE_1_EATS_S1CHK         2UL
254 #define STRTAB_STE_1_EATS_SHIFT         28
255
256 #define STRTAB_STE_1_STRW_NSEL1         0UL
257 #define STRTAB_STE_1_STRW_EL2           2UL
258 #define STRTAB_STE_1_STRW_SHIFT         30
259
260 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
261 #define STRTAB_STE_1_SHCFG_SHIFT        44
262
263 #define STRTAB_STE_2_S2VMID_SHIFT       0
264 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
265 #define STRTAB_STE_2_VTCR_SHIFT         32
266 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
267 #define STRTAB_STE_2_S2AA64             (1UL << 51)
268 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
269 #define STRTAB_STE_2_S2PTW              (1UL << 54)
270 #define STRTAB_STE_2_S2R                (1UL << 58)
271
272 #define STRTAB_STE_3_S2TTB_SHIFT        4
273 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
274
275 /* Context descriptor (stage-1 only) */
276 #define CTXDESC_CD_DWORDS               8
277 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
278 #define ARM64_TCR_T0SZ_SHIFT            0
279 #define ARM64_TCR_T0SZ_MASK             0x1fUL
280 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
281 #define ARM64_TCR_TG0_SHIFT             14
282 #define ARM64_TCR_TG0_MASK              0x3UL
283 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
284 #define ARM64_TCR_IRGN0_SHIFT           8
285 #define ARM64_TCR_IRGN0_MASK            0x3UL
286 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
287 #define ARM64_TCR_ORGN0_SHIFT           10
288 #define ARM64_TCR_ORGN0_MASK            0x3UL
289 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
290 #define ARM64_TCR_SH0_SHIFT             12
291 #define ARM64_TCR_SH0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
293 #define ARM64_TCR_EPD0_SHIFT            7
294 #define ARM64_TCR_EPD0_MASK             0x1UL
295 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
296 #define ARM64_TCR_EPD1_SHIFT            23
297 #define ARM64_TCR_EPD1_MASK             0x1UL
298
299 #define CTXDESC_CD_0_ENDI               (1UL << 15)
300 #define CTXDESC_CD_0_V                  (1UL << 31)
301
302 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
303 #define ARM64_TCR_IPS_SHIFT             32
304 #define ARM64_TCR_IPS_MASK              0x7UL
305 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
306 #define ARM64_TCR_TBI0_SHIFT            37
307 #define ARM64_TCR_TBI0_MASK             0x1UL
308
309 #define CTXDESC_CD_0_AA64               (1UL << 41)
310 #define CTXDESC_CD_0_R                  (1UL << 45)
311 #define CTXDESC_CD_0_A                  (1UL << 46)
312 #define CTXDESC_CD_0_ASET_SHIFT         47
313 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
314 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
315 #define CTXDESC_CD_0_ASID_SHIFT         48
316 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
317
318 #define CTXDESC_CD_1_TTB0_SHIFT         4
319 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
320
321 #define CTXDESC_CD_3_MAIR_SHIFT         0
322
323 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
324 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
325         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
326          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
327
328 /* Command queue */
329 #define CMDQ_ENT_DWORDS                 2
330 #define CMDQ_MAX_SZ_SHIFT               8
331
332 #define CMDQ_ERR_SHIFT                  24
333 #define CMDQ_ERR_MASK                   0x7f
334 #define CMDQ_ERR_CERROR_NONE_IDX        0
335 #define CMDQ_ERR_CERROR_ILL_IDX         1
336 #define CMDQ_ERR_CERROR_ABT_IDX         2
337
338 #define CMDQ_0_OP_SHIFT                 0
339 #define CMDQ_0_OP_MASK                  0xffUL
340 #define CMDQ_0_SSV                      (1UL << 11)
341
342 #define CMDQ_PREFETCH_0_SID_SHIFT       32
343 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
344 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
345
346 #define CMDQ_CFGI_0_SID_SHIFT           32
347 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
348 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
349 #define CMDQ_CFGI_1_RANGE_SHIFT         0
350 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
351
352 #define CMDQ_TLBI_0_VMID_SHIFT          32
353 #define CMDQ_TLBI_0_ASID_SHIFT          48
354 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
355 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
356 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
357
358 #define CMDQ_PRI_0_SSID_SHIFT           12
359 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
360 #define CMDQ_PRI_0_SID_SHIFT            32
361 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
362 #define CMDQ_PRI_1_GRPID_SHIFT          0
363 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
364 #define CMDQ_PRI_1_RESP_SHIFT           12
365 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
366 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
367 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
368
369 #define CMDQ_SYNC_0_CS_SHIFT            12
370 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
371 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
372
373 /* Event queue */
374 #define EVTQ_ENT_DWORDS                 4
375 #define EVTQ_MAX_SZ_SHIFT               7
376
377 #define EVTQ_0_ID_SHIFT                 0
378 #define EVTQ_0_ID_MASK                  0xffUL
379
380 /* PRI queue */
381 #define PRIQ_ENT_DWORDS                 2
382 #define PRIQ_MAX_SZ_SHIFT               8
383
384 #define PRIQ_0_SID_SHIFT                0
385 #define PRIQ_0_SID_MASK                 0xffffffffUL
386 #define PRIQ_0_SSID_SHIFT               32
387 #define PRIQ_0_SSID_MASK                0xfffffUL
388 #define PRIQ_0_PERM_PRIV                (1UL << 58)
389 #define PRIQ_0_PERM_EXEC                (1UL << 59)
390 #define PRIQ_0_PERM_READ                (1UL << 60)
391 #define PRIQ_0_PERM_WRITE               (1UL << 61)
392 #define PRIQ_0_PRG_LAST                 (1UL << 62)
393 #define PRIQ_0_SSID_V                   (1UL << 63)
394
395 #define PRIQ_1_PRG_IDX_SHIFT            0
396 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
397 #define PRIQ_1_ADDR_SHIFT               12
398 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
399
400 /* High-level queue structures */
401 #define ARM_SMMU_POLL_TIMEOUT_US        100
402
403 static bool disable_bypass;
404 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
405 MODULE_PARM_DESC(disable_bypass,
406         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
407
408 enum pri_resp {
409         PRI_RESP_DENY,
410         PRI_RESP_FAIL,
411         PRI_RESP_SUCC,
412 };
413
414 enum arm_smmu_msi_index {
415         EVTQ_MSI_INDEX,
416         GERROR_MSI_INDEX,
417         PRIQ_MSI_INDEX,
418         ARM_SMMU_MAX_MSIS,
419 };
420
421 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
422         [EVTQ_MSI_INDEX] = {
423                 ARM_SMMU_EVTQ_IRQ_CFG0,
424                 ARM_SMMU_EVTQ_IRQ_CFG1,
425                 ARM_SMMU_EVTQ_IRQ_CFG2,
426         },
427         [GERROR_MSI_INDEX] = {
428                 ARM_SMMU_GERROR_IRQ_CFG0,
429                 ARM_SMMU_GERROR_IRQ_CFG1,
430                 ARM_SMMU_GERROR_IRQ_CFG2,
431         },
432         [PRIQ_MSI_INDEX] = {
433                 ARM_SMMU_PRIQ_IRQ_CFG0,
434                 ARM_SMMU_PRIQ_IRQ_CFG1,
435                 ARM_SMMU_PRIQ_IRQ_CFG2,
436         },
437 };
438
439 struct arm_smmu_cmdq_ent {
440         /* Common fields */
441         u8                              opcode;
442         bool                            substream_valid;
443
444         /* Command-specific fields */
445         union {
446                 #define CMDQ_OP_PREFETCH_CFG    0x1
447                 struct {
448                         u32                     sid;
449                         u8                      size;
450                         u64                     addr;
451                 } prefetch;
452
453                 #define CMDQ_OP_CFGI_STE        0x3
454                 #define CMDQ_OP_CFGI_ALL        0x4
455                 struct {
456                         u32                     sid;
457                         union {
458                                 bool            leaf;
459                                 u8              span;
460                         };
461                 } cfgi;
462
463                 #define CMDQ_OP_TLBI_NH_ASID    0x11
464                 #define CMDQ_OP_TLBI_NH_VA      0x12
465                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
466                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
467                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
468                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
469                 struct {
470                         u16                     asid;
471                         u16                     vmid;
472                         bool                    leaf;
473                         u64                     addr;
474                 } tlbi;
475
476                 #define CMDQ_OP_PRI_RESP        0x41
477                 struct {
478                         u32                     sid;
479                         u32                     ssid;
480                         u16                     grpid;
481                         enum pri_resp           resp;
482                 } pri;
483
484                 #define CMDQ_OP_CMD_SYNC        0x46
485         };
486 };
487
488 struct arm_smmu_queue {
489         int                             irq; /* Wired interrupt */
490
491         __le64                          *base;
492         dma_addr_t                      base_dma;
493         u64                             q_base;
494
495         size_t                          ent_dwords;
496         u32                             max_n_shift;
497         u32                             prod;
498         u32                             cons;
499
500         u32 __iomem                     *prod_reg;
501         u32 __iomem                     *cons_reg;
502 };
503
504 struct arm_smmu_cmdq {
505         struct arm_smmu_queue           q;
506         spinlock_t                      lock;
507 };
508
509 struct arm_smmu_evtq {
510         struct arm_smmu_queue           q;
511         u32                             max_stalls;
512 };
513
514 struct arm_smmu_priq {
515         struct arm_smmu_queue           q;
516 };
517
518 /* High-level stream table and context descriptor structures */
519 struct arm_smmu_strtab_l1_desc {
520         u8                              span;
521
522         __le64                          *l2ptr;
523         dma_addr_t                      l2ptr_dma;
524 };
525
526 struct arm_smmu_s1_cfg {
527         __le64                          *cdptr;
528         dma_addr_t                      cdptr_dma;
529
530         struct arm_smmu_ctx_desc {
531                 u16     asid;
532                 u64     ttbr;
533                 u64     tcr;
534                 u64     mair;
535         }                               cd;
536 };
537
538 struct arm_smmu_s2_cfg {
539         u16                             vmid;
540         u64                             vttbr;
541         u64                             vtcr;
542 };
543
544 struct arm_smmu_strtab_ent {
545         bool                            valid;
546
547         bool                            bypass; /* Overrides s1/s2 config */
548         struct arm_smmu_s1_cfg          *s1_cfg;
549         struct arm_smmu_s2_cfg          *s2_cfg;
550 };
551
552 struct arm_smmu_strtab_cfg {
553         __le64                          *strtab;
554         dma_addr_t                      strtab_dma;
555         struct arm_smmu_strtab_l1_desc  *l1_desc;
556         unsigned int                    num_l1_ents;
557
558         u64                             strtab_base;
559         u32                             strtab_base_cfg;
560 };
561
562 /* An SMMUv3 instance */
563 struct arm_smmu_device {
564         struct device                   *dev;
565         void __iomem                    *base;
566
567 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
568 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
569 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
570 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
571 #define ARM_SMMU_FEAT_PRI               (1 << 4)
572 #define ARM_SMMU_FEAT_ATS               (1 << 5)
573 #define ARM_SMMU_FEAT_SEV               (1 << 6)
574 #define ARM_SMMU_FEAT_MSI               (1 << 7)
575 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
576 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
577 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
578 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
579 #define ARM_SMMU_FEAT_HYP               (1 << 12)
580         u32                             features;
581
582 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
583         u32                             options;
584
585         struct arm_smmu_cmdq            cmdq;
586         struct arm_smmu_evtq            evtq;
587         struct arm_smmu_priq            priq;
588
589         int                             gerr_irq;
590
591         unsigned long                   ias; /* IPA */
592         unsigned long                   oas; /* PA */
593         unsigned long                   pgsize_bitmap;
594
595 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
596         unsigned int                    asid_bits;
597         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
598
599 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
600         unsigned int                    vmid_bits;
601         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
602
603         unsigned int                    ssid_bits;
604         unsigned int                    sid_bits;
605
606         struct arm_smmu_strtab_cfg      strtab_cfg;
607 };
608
609 /* SMMU private data for an IOMMU group */
610 struct arm_smmu_group {
611         struct arm_smmu_device          *smmu;
612         struct arm_smmu_domain          *domain;
613         int                             num_sids;
614         u32                             *sids;
615         struct arm_smmu_strtab_ent      ste;
616 };
617
618 /* SMMU private data for an IOMMU domain */
619 enum arm_smmu_domain_stage {
620         ARM_SMMU_DOMAIN_S1 = 0,
621         ARM_SMMU_DOMAIN_S2,
622         ARM_SMMU_DOMAIN_NESTED,
623 };
624
625 struct arm_smmu_domain {
626         struct arm_smmu_device          *smmu;
627         struct mutex                    init_mutex; /* Protects smmu pointer */
628
629         struct io_pgtable_ops           *pgtbl_ops;
630         spinlock_t                      pgtbl_lock;
631
632         enum arm_smmu_domain_stage      stage;
633         union {
634                 struct arm_smmu_s1_cfg  s1_cfg;
635                 struct arm_smmu_s2_cfg  s2_cfg;
636         };
637
638         struct iommu_domain             domain;
639 };
640
641 struct arm_smmu_option_prop {
642         u32 opt;
643         const char *prop;
644 };
645
646 static struct arm_smmu_option_prop arm_smmu_options[] = {
647         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
648         { 0, NULL},
649 };
650
651 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
652 {
653         return container_of(dom, struct arm_smmu_domain, domain);
654 }
655
656 static void parse_driver_options(struct arm_smmu_device *smmu)
657 {
658         int i = 0;
659
660         do {
661                 if (of_property_read_bool(smmu->dev->of_node,
662                                                 arm_smmu_options[i].prop)) {
663                         smmu->options |= arm_smmu_options[i].opt;
664                         dev_notice(smmu->dev, "option %s\n",
665                                 arm_smmu_options[i].prop);
666                 }
667         } while (arm_smmu_options[++i].opt);
668 }
669
670 /* Low-level queue manipulation functions */
671 static bool queue_full(struct arm_smmu_queue *q)
672 {
673         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
674                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
675 }
676
677 static bool queue_empty(struct arm_smmu_queue *q)
678 {
679         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
680                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
681 }
682
683 static void queue_sync_cons(struct arm_smmu_queue *q)
684 {
685         q->cons = readl_relaxed(q->cons_reg);
686 }
687
688 static void queue_inc_cons(struct arm_smmu_queue *q)
689 {
690         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
691
692         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
693         writel(q->cons, q->cons_reg);
694 }
695
696 static int queue_sync_prod(struct arm_smmu_queue *q)
697 {
698         int ret = 0;
699         u32 prod = readl_relaxed(q->prod_reg);
700
701         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
702                 ret = -EOVERFLOW;
703
704         q->prod = prod;
705         return ret;
706 }
707
708 static void queue_inc_prod(struct arm_smmu_queue *q)
709 {
710         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
711
712         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
713         writel(q->prod, q->prod_reg);
714 }
715
716 /*
717  * Wait for the SMMU to consume items. If drain is true, wait until the queue
718  * is empty. Otherwise, wait until there is at least one free slot.
719  */
720 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
721 {
722         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
723
724         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
725                 if (ktime_compare(ktime_get(), timeout) > 0)
726                         return -ETIMEDOUT;
727
728                 if (wfe) {
729                         wfe();
730                 } else {
731                         cpu_relax();
732                         udelay(1);
733                 }
734         }
735
736         return 0;
737 }
738
739 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
740 {
741         int i;
742
743         for (i = 0; i < n_dwords; ++i)
744                 *dst++ = cpu_to_le64(*src++);
745 }
746
747 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
748 {
749         if (queue_full(q))
750                 return -ENOSPC;
751
752         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
753         queue_inc_prod(q);
754         return 0;
755 }
756
757 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
758 {
759         int i;
760
761         for (i = 0; i < n_dwords; ++i)
762                 *dst++ = le64_to_cpu(*src++);
763 }
764
765 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
766 {
767         if (queue_empty(q))
768                 return -EAGAIN;
769
770         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
771         queue_inc_cons(q);
772         return 0;
773 }
774
775 /* High-level queue accessors */
776 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
777 {
778         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
779         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
780
781         switch (ent->opcode) {
782         case CMDQ_OP_TLBI_EL2_ALL:
783         case CMDQ_OP_TLBI_NSNH_ALL:
784                 break;
785         case CMDQ_OP_PREFETCH_CFG:
786                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
787                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
788                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
789                 break;
790         case CMDQ_OP_CFGI_STE:
791                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
792                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
793                 break;
794         case CMDQ_OP_CFGI_ALL:
795                 /* Cover the entire SID range */
796                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
797                 break;
798         case CMDQ_OP_TLBI_NH_VA:
799                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
800                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
801                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
802                 break;
803         case CMDQ_OP_TLBI_S2_IPA:
804                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
805                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
806                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
807                 break;
808         case CMDQ_OP_TLBI_NH_ASID:
809                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
810                 /* Fallthrough */
811         case CMDQ_OP_TLBI_S12_VMALL:
812                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
813                 break;
814         case CMDQ_OP_PRI_RESP:
815                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
816                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
817                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
818                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
819                 switch (ent->pri.resp) {
820                 case PRI_RESP_DENY:
821                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
822                         break;
823                 case PRI_RESP_FAIL:
824                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
825                         break;
826                 case PRI_RESP_SUCC:
827                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
828                         break;
829                 default:
830                         return -EINVAL;
831                 }
832                 break;
833         case CMDQ_OP_CMD_SYNC:
834                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
835                 break;
836         default:
837                 return -ENOENT;
838         }
839
840         return 0;
841 }
842
843 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
844 {
845         static const char *cerror_str[] = {
846                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
847                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
848                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
849         };
850
851         int i;
852         u64 cmd[CMDQ_ENT_DWORDS];
853         struct arm_smmu_queue *q = &smmu->cmdq.q;
854         u32 cons = readl_relaxed(q->cons_reg);
855         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
856         struct arm_smmu_cmdq_ent cmd_sync = {
857                 .opcode = CMDQ_OP_CMD_SYNC,
858         };
859
860         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
861                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
862
863         switch (idx) {
864         case CMDQ_ERR_CERROR_ABT_IDX:
865                 dev_err(smmu->dev, "retrying command fetch\n");
866         case CMDQ_ERR_CERROR_NONE_IDX:
867                 return;
868         case CMDQ_ERR_CERROR_ILL_IDX:
869                 /* Fallthrough */
870         default:
871                 break;
872         }
873
874         /*
875          * We may have concurrent producers, so we need to be careful
876          * not to touch any of the shadow cmdq state.
877          */
878         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
879         dev_err(smmu->dev, "skipping command in error state:\n");
880         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
881                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
882
883         /* Convert the erroneous command into a CMD_SYNC */
884         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
885                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
886                 return;
887         }
888
889         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
890 }
891
892 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
893                                     struct arm_smmu_cmdq_ent *ent)
894 {
895         u64 cmd[CMDQ_ENT_DWORDS];
896         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
897         struct arm_smmu_queue *q = &smmu->cmdq.q;
898
899         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
900                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
901                          ent->opcode);
902                 return;
903         }
904
905         spin_lock(&smmu->cmdq.lock);
906         while (queue_insert_raw(q, cmd) == -ENOSPC) {
907                 if (queue_poll_cons(q, false, wfe))
908                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
909         }
910
911         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
912                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
913         spin_unlock(&smmu->cmdq.lock);
914 }
915
916 /* Context descriptor manipulation functions */
917 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
918 {
919         u64 val = 0;
920
921         /* Repack the TCR. Just care about TTBR0 for now */
922         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
923         val |= ARM_SMMU_TCR2CD(tcr, TG0);
924         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
925         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
926         val |= ARM_SMMU_TCR2CD(tcr, SH0);
927         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
928         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
929         val |= ARM_SMMU_TCR2CD(tcr, IPS);
930         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
931
932         return val;
933 }
934
935 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
936                                     struct arm_smmu_s1_cfg *cfg)
937 {
938         u64 val;
939
940         /*
941          * We don't need to issue any invalidation here, as we'll invalidate
942          * the STE when installing the new entry anyway.
943          */
944         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
945 #ifdef __BIG_ENDIAN
946               CTXDESC_CD_0_ENDI |
947 #endif
948               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
949               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
950               CTXDESC_CD_0_V;
951         cfg->cdptr[0] = cpu_to_le64(val);
952
953         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
954         cfg->cdptr[1] = cpu_to_le64(val);
955
956         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
957 }
958
959 /* Stream table manipulation functions */
960 static void
961 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
962 {
963         u64 val = 0;
964
965         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
966                 << STRTAB_L1_DESC_SPAN_SHIFT;
967         val |= desc->l2ptr_dma &
968                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
969
970         *dst = cpu_to_le64(val);
971 }
972
973 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
974 {
975         struct arm_smmu_cmdq_ent cmd = {
976                 .opcode = CMDQ_OP_CFGI_STE,
977                 .cfgi   = {
978                         .sid    = sid,
979                         .leaf   = true,
980                 },
981         };
982
983         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
984         cmd.opcode = CMDQ_OP_CMD_SYNC;
985         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
986 }
987
988 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
989                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
990 {
991         /*
992          * This is hideously complicated, but we only really care about
993          * three cases at the moment:
994          *
995          * 1. Invalid (all zero) -> bypass  (init)
996          * 2. Bypass -> translation (attach)
997          * 3. Translation -> bypass (detach)
998          *
999          * Given that we can't update the STE atomically and the SMMU
1000          * doesn't read the thing in a defined order, that leaves us
1001          * with the following maintenance requirements:
1002          *
1003          * 1. Update Config, return (init time STEs aren't live)
1004          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1005          * 3. Update Config, sync
1006          */
1007         u64 val = le64_to_cpu(dst[0]);
1008         bool ste_live = false;
1009         struct arm_smmu_cmdq_ent prefetch_cmd = {
1010                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1011                 .prefetch       = {
1012                         .sid    = sid,
1013                 },
1014         };
1015
1016         if (val & STRTAB_STE_0_V) {
1017                 u64 cfg;
1018
1019                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1020                 switch (cfg) {
1021                 case STRTAB_STE_0_CFG_BYPASS:
1022                         break;
1023                 case STRTAB_STE_0_CFG_S1_TRANS:
1024                 case STRTAB_STE_0_CFG_S2_TRANS:
1025                         ste_live = true;
1026                         break;
1027                 case STRTAB_STE_0_CFG_ABORT:
1028                         if (disable_bypass)
1029                                 break;
1030                 default:
1031                         BUG(); /* STE corruption */
1032                 }
1033         }
1034
1035         /* Nuke the existing Config, as we're going to rewrite it */
1036         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1037
1038         if (ste->valid)
1039                 val |= STRTAB_STE_0_V;
1040         else
1041                 val &= ~STRTAB_STE_0_V;
1042
1043         if (ste->bypass) {
1044                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1045                                       : STRTAB_STE_0_CFG_BYPASS;
1046                 dst[0] = cpu_to_le64(val);
1047                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1048                          << STRTAB_STE_1_SHCFG_SHIFT);
1049                 dst[2] = 0; /* Nuke the VMID */
1050                 if (ste_live)
1051                         arm_smmu_sync_ste_for_sid(smmu, sid);
1052                 return;
1053         }
1054
1055         if (ste->s1_cfg) {
1056                 BUG_ON(ste_live);
1057                 dst[1] = cpu_to_le64(
1058                          STRTAB_STE_1_S1C_CACHE_WBRA
1059                          << STRTAB_STE_1_S1CIR_SHIFT |
1060                          STRTAB_STE_1_S1C_CACHE_WBRA
1061                          << STRTAB_STE_1_S1COR_SHIFT |
1062                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1063 #ifdef CONFIG_PCI_ATS
1064                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1065 #endif
1066                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1067
1068                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1069                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1070
1071                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1072                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1073                         STRTAB_STE_0_CFG_S1_TRANS;
1074
1075         }
1076
1077         if (ste->s2_cfg) {
1078                 BUG_ON(ste_live);
1079                 dst[2] = cpu_to_le64(
1080                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1081                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1082                           << STRTAB_STE_2_VTCR_SHIFT |
1083 #ifdef __BIG_ENDIAN
1084                          STRTAB_STE_2_S2ENDI |
1085 #endif
1086                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1087                          STRTAB_STE_2_S2R);
1088
1089                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1090                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1091
1092                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1093         }
1094
1095         arm_smmu_sync_ste_for_sid(smmu, sid);
1096         dst[0] = cpu_to_le64(val);
1097         arm_smmu_sync_ste_for_sid(smmu, sid);
1098
1099         /* It's likely that we'll want to use the new STE soon */
1100         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1101                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1102 }
1103
1104 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1105 {
1106         unsigned int i;
1107         struct arm_smmu_strtab_ent ste = {
1108                 .valid  = true,
1109                 .bypass = true,
1110         };
1111
1112         for (i = 0; i < nent; ++i) {
1113                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1114                 strtab += STRTAB_STE_DWORDS;
1115         }
1116 }
1117
1118 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1119 {
1120         size_t size;
1121         void *strtab;
1122         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1123         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1124
1125         if (desc->l2ptr)
1126                 return 0;
1127
1128         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1129         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1130
1131         desc->span = STRTAB_SPLIT + 1;
1132         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1133                                           GFP_KERNEL | __GFP_ZERO);
1134         if (!desc->l2ptr) {
1135                 dev_err(smmu->dev,
1136                         "failed to allocate l2 stream table for SID %u\n",
1137                         sid);
1138                 return -ENOMEM;
1139         }
1140
1141         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1142         arm_smmu_write_strtab_l1_desc(strtab, desc);
1143         return 0;
1144 }
1145
1146 /* IRQ and event handlers */
1147 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1148 {
1149         int i;
1150         struct arm_smmu_device *smmu = dev;
1151         struct arm_smmu_queue *q = &smmu->evtq.q;
1152         u64 evt[EVTQ_ENT_DWORDS];
1153
1154         do {
1155                 while (!queue_remove_raw(q, evt)) {
1156                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1157
1158                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1159                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1160                                 dev_info(smmu->dev, "\t0x%016llx\n",
1161                                          (unsigned long long)evt[i]);
1162
1163                 }
1164
1165                 /*
1166                  * Not much we can do on overflow, so scream and pretend we're
1167                  * trying harder.
1168                  */
1169                 if (queue_sync_prod(q) == -EOVERFLOW)
1170                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1171         } while (!queue_empty(q));
1172
1173         /* Sync our overflow flag, as we believe we're up to speed */
1174         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1175         return IRQ_HANDLED;
1176 }
1177
1178 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1179 {
1180         u32 sid, ssid;
1181         u16 grpid;
1182         bool ssv, last;
1183
1184         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1185         ssv = evt[0] & PRIQ_0_SSID_V;
1186         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1187         last = evt[0] & PRIQ_0_PRG_LAST;
1188         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1189
1190         dev_info(smmu->dev, "unexpected PRI request received:\n");
1191         dev_info(smmu->dev,
1192                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1193                  sid, ssid, grpid, last ? "L" : "",
1194                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1195                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1196                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1197                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1198                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1199
1200         if (last) {
1201                 struct arm_smmu_cmdq_ent cmd = {
1202                         .opcode                 = CMDQ_OP_PRI_RESP,
1203                         .substream_valid        = ssv,
1204                         .pri                    = {
1205                                 .sid    = sid,
1206                                 .ssid   = ssid,
1207                                 .grpid  = grpid,
1208                                 .resp   = PRI_RESP_DENY,
1209                         },
1210                 };
1211
1212                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1213         }
1214 }
1215
1216 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1217 {
1218         struct arm_smmu_device *smmu = dev;
1219         struct arm_smmu_queue *q = &smmu->priq.q;
1220         u64 evt[PRIQ_ENT_DWORDS];
1221
1222         do {
1223                 while (!queue_remove_raw(q, evt))
1224                         arm_smmu_handle_ppr(smmu, evt);
1225
1226                 if (queue_sync_prod(q) == -EOVERFLOW)
1227                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1228         } while (!queue_empty(q));
1229
1230         /* Sync our overflow flag, as we believe we're up to speed */
1231         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1232         return IRQ_HANDLED;
1233 }
1234
1235 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1236 {
1237         /* We don't actually use CMD_SYNC interrupts for anything */
1238         return IRQ_HANDLED;
1239 }
1240
1241 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1242
1243 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1244 {
1245         u32 gerror, gerrorn, active;
1246         struct arm_smmu_device *smmu = dev;
1247
1248         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1249         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1250
1251         active = gerror ^ gerrorn;
1252         if (!(active & GERROR_ERR_MASK))
1253                 return IRQ_NONE; /* No errors pending */
1254
1255         dev_warn(smmu->dev,
1256                  "unexpected global error reported (0x%08x), this could be serious\n",
1257                  active);
1258
1259         if (active & GERROR_SFM_ERR) {
1260                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1261                 arm_smmu_device_disable(smmu);
1262         }
1263
1264         if (active & GERROR_MSI_GERROR_ABT_ERR)
1265                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1266
1267         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1268                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1269
1270         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1271                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1272
1273         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1274                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1275                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1276         }
1277
1278         if (active & GERROR_PRIQ_ABT_ERR)
1279                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1280
1281         if (active & GERROR_EVTQ_ABT_ERR)
1282                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1283
1284         if (active & GERROR_CMDQ_ERR)
1285                 arm_smmu_cmdq_skip_err(smmu);
1286
1287         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1288         return IRQ_HANDLED;
1289 }
1290
1291 /* IO_PGTABLE API */
1292 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1293 {
1294         struct arm_smmu_cmdq_ent cmd;
1295
1296         cmd.opcode = CMDQ_OP_CMD_SYNC;
1297         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1298 }
1299
1300 static void arm_smmu_tlb_sync(void *cookie)
1301 {
1302         struct arm_smmu_domain *smmu_domain = cookie;
1303         __arm_smmu_tlb_sync(smmu_domain->smmu);
1304 }
1305
1306 static void arm_smmu_tlb_inv_context(void *cookie)
1307 {
1308         struct arm_smmu_domain *smmu_domain = cookie;
1309         struct arm_smmu_device *smmu = smmu_domain->smmu;
1310         struct arm_smmu_cmdq_ent cmd;
1311
1312         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1313                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1314                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1315                 cmd.tlbi.vmid   = 0;
1316         } else {
1317                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1318                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1319         }
1320
1321         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1322         __arm_smmu_tlb_sync(smmu);
1323 }
1324
1325 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1326                                           size_t granule, bool leaf, void *cookie)
1327 {
1328         struct arm_smmu_domain *smmu_domain = cookie;
1329         struct arm_smmu_device *smmu = smmu_domain->smmu;
1330         struct arm_smmu_cmdq_ent cmd = {
1331                 .tlbi = {
1332                         .leaf   = leaf,
1333                         .addr   = iova,
1334                 },
1335         };
1336
1337         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1338                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1339                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1340         } else {
1341                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1342                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1343         }
1344
1345         do {
1346                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1347                 cmd.tlbi.addr += granule;
1348         } while (size -= granule);
1349 }
1350
1351 static struct iommu_gather_ops arm_smmu_gather_ops = {
1352         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1353         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1354         .tlb_sync       = arm_smmu_tlb_sync,
1355 };
1356
1357 /* IOMMU API */
1358 static bool arm_smmu_capable(enum iommu_cap cap)
1359 {
1360         switch (cap) {
1361         case IOMMU_CAP_CACHE_COHERENCY:
1362                 return true;
1363         case IOMMU_CAP_INTR_REMAP:
1364                 return true; /* MSIs are just memory writes */
1365         case IOMMU_CAP_NOEXEC:
1366                 return true;
1367         default:
1368                 return false;
1369         }
1370 }
1371
1372 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1373 {
1374         struct arm_smmu_domain *smmu_domain;
1375
1376         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1377                 return NULL;
1378
1379         /*
1380          * Allocate the domain and initialise some of its data structures.
1381          * We can't really do anything meaningful until we've added a
1382          * master.
1383          */
1384         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1385         if (!smmu_domain)
1386                 return NULL;
1387
1388         if (type == IOMMU_DOMAIN_DMA &&
1389             iommu_get_dma_cookie(&smmu_domain->domain)) {
1390                 kfree(smmu_domain);
1391                 return NULL;
1392         }
1393
1394         mutex_init(&smmu_domain->init_mutex);
1395         spin_lock_init(&smmu_domain->pgtbl_lock);
1396         return &smmu_domain->domain;
1397 }
1398
1399 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1400 {
1401         int idx, size = 1 << span;
1402
1403         do {
1404                 idx = find_first_zero_bit(map, size);
1405                 if (idx == size)
1406                         return -ENOSPC;
1407         } while (test_and_set_bit(idx, map));
1408
1409         return idx;
1410 }
1411
1412 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1413 {
1414         clear_bit(idx, map);
1415 }
1416
1417 static void arm_smmu_domain_free(struct iommu_domain *domain)
1418 {
1419         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1420         struct arm_smmu_device *smmu = smmu_domain->smmu;
1421
1422         iommu_put_dma_cookie(domain);
1423         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1424
1425         /* Free the CD and ASID, if we allocated them */
1426         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1427                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1428
1429                 if (cfg->cdptr) {
1430                         dmam_free_coherent(smmu_domain->smmu->dev,
1431                                            CTXDESC_CD_DWORDS << 3,
1432                                            cfg->cdptr,
1433                                            cfg->cdptr_dma);
1434
1435                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1436                 }
1437         } else {
1438                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1439                 if (cfg->vmid)
1440                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1441         }
1442
1443         kfree(smmu_domain);
1444 }
1445
1446 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1447                                        struct io_pgtable_cfg *pgtbl_cfg)
1448 {
1449         int ret;
1450         int asid;
1451         struct arm_smmu_device *smmu = smmu_domain->smmu;
1452         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1453
1454         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1455         if (asid < 0)
1456                 return asid;
1457
1458         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1459                                          &cfg->cdptr_dma,
1460                                          GFP_KERNEL | __GFP_ZERO);
1461         if (!cfg->cdptr) {
1462                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1463                 ret = -ENOMEM;
1464                 goto out_free_asid;
1465         }
1466
1467         cfg->cd.asid    = (u16)asid;
1468         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1469         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1470         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1471         return 0;
1472
1473 out_free_asid:
1474         arm_smmu_bitmap_free(smmu->asid_map, asid);
1475         return ret;
1476 }
1477
1478 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1479                                        struct io_pgtable_cfg *pgtbl_cfg)
1480 {
1481         int vmid;
1482         struct arm_smmu_device *smmu = smmu_domain->smmu;
1483         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1484
1485         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1486         if (vmid < 0)
1487                 return vmid;
1488
1489         cfg->vmid       = (u16)vmid;
1490         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1491         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1492         return 0;
1493 }
1494
1495 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1496 {
1497         int ret;
1498         unsigned long ias, oas;
1499         enum io_pgtable_fmt fmt;
1500         struct io_pgtable_cfg pgtbl_cfg;
1501         struct io_pgtable_ops *pgtbl_ops;
1502         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1503                                  struct io_pgtable_cfg *);
1504         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1505         struct arm_smmu_device *smmu = smmu_domain->smmu;
1506
1507         /* Restrict the stage to what we can actually support */
1508         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1509                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1510         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1511                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1512
1513         switch (smmu_domain->stage) {
1514         case ARM_SMMU_DOMAIN_S1:
1515                 ias = VA_BITS;
1516                 oas = smmu->ias;
1517                 fmt = ARM_64_LPAE_S1;
1518                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1519                 break;
1520         case ARM_SMMU_DOMAIN_NESTED:
1521         case ARM_SMMU_DOMAIN_S2:
1522                 ias = smmu->ias;
1523                 oas = smmu->oas;
1524                 fmt = ARM_64_LPAE_S2;
1525                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1526                 break;
1527         default:
1528                 return -EINVAL;
1529         }
1530
1531         pgtbl_cfg = (struct io_pgtable_cfg) {
1532                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1533                 .ias            = ias,
1534                 .oas            = oas,
1535                 .tlb            = &arm_smmu_gather_ops,
1536                 .iommu_dev      = smmu->dev,
1537         };
1538
1539         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1540         if (!pgtbl_ops)
1541                 return -ENOMEM;
1542
1543         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1544         smmu_domain->pgtbl_ops = pgtbl_ops;
1545
1546         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1547         if (ret < 0)
1548                 free_io_pgtable_ops(pgtbl_ops);
1549
1550         return ret;
1551 }
1552
1553 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1554 {
1555         struct iommu_group *group;
1556         struct arm_smmu_group *smmu_group;
1557
1558         group = iommu_group_get(dev);
1559         if (!group)
1560                 return NULL;
1561
1562         smmu_group = iommu_group_get_iommudata(group);
1563         iommu_group_put(group);
1564         return smmu_group;
1565 }
1566
1567 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1568 {
1569         __le64 *step;
1570         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1571
1572         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1573                 struct arm_smmu_strtab_l1_desc *l1_desc;
1574                 int idx;
1575
1576                 /* Two-level walk */
1577                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1578                 l1_desc = &cfg->l1_desc[idx];
1579                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1580                 step = &l1_desc->l2ptr[idx];
1581         } else {
1582                 /* Simple linear lookup */
1583                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1584         }
1585
1586         return step;
1587 }
1588
1589 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1590 {
1591         int i;
1592         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1593         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1594         struct arm_smmu_device *smmu = smmu_group->smmu;
1595
1596         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1597                 ste->s1_cfg = &smmu_domain->s1_cfg;
1598                 ste->s2_cfg = NULL;
1599                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1600         } else {
1601                 ste->s1_cfg = NULL;
1602                 ste->s2_cfg = &smmu_domain->s2_cfg;
1603         }
1604
1605         for (i = 0; i < smmu_group->num_sids; ++i) {
1606                 u32 sid = smmu_group->sids[i];
1607                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1608
1609                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1610         }
1611
1612         return 0;
1613 }
1614
1615 static void arm_smmu_detach_dev(struct device *dev)
1616 {
1617         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1618
1619         smmu_group->ste.bypass = true;
1620         if (arm_smmu_install_ste_for_group(smmu_group) < 0)
1621                 dev_warn(dev, "failed to install bypass STE\n");
1622
1623         smmu_group->domain = NULL;
1624 }
1625
1626 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1627 {
1628         int ret = 0;
1629         struct arm_smmu_device *smmu;
1630         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1631         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1632
1633         if (!smmu_group)
1634                 return -ENOENT;
1635
1636         /* Already attached to a different domain? */
1637         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1638                 arm_smmu_detach_dev(dev);
1639
1640         smmu = smmu_group->smmu;
1641         mutex_lock(&smmu_domain->init_mutex);
1642
1643         if (!smmu_domain->smmu) {
1644                 smmu_domain->smmu = smmu;
1645                 ret = arm_smmu_domain_finalise(domain);
1646                 if (ret) {
1647                         smmu_domain->smmu = NULL;
1648                         goto out_unlock;
1649                 }
1650         } else if (smmu_domain->smmu != smmu) {
1651                 dev_err(dev,
1652                         "cannot attach to SMMU %s (upstream of %s)\n",
1653                         dev_name(smmu_domain->smmu->dev),
1654                         dev_name(smmu->dev));
1655                 ret = -ENXIO;
1656                 goto out_unlock;
1657         }
1658
1659         /* Group already attached to this domain? */
1660         if (smmu_group->domain)
1661                 goto out_unlock;
1662
1663         smmu_group->domain      = smmu_domain;
1664
1665         /*
1666          * FIXME: This should always be "false" once we have IOMMU-backed
1667          * DMA ops for all devices behind the SMMU.
1668          */
1669         smmu_group->ste.bypass  = domain->type == IOMMU_DOMAIN_DMA;
1670
1671         ret = arm_smmu_install_ste_for_group(smmu_group);
1672         if (ret < 0)
1673                 smmu_group->domain = NULL;
1674
1675 out_unlock:
1676         mutex_unlock(&smmu_domain->init_mutex);
1677         return ret;
1678 }
1679
1680 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1681                         phys_addr_t paddr, size_t size, int prot)
1682 {
1683         int ret;
1684         unsigned long flags;
1685         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1686         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1687
1688         if (!ops)
1689                 return -ENODEV;
1690
1691         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1692         ret = ops->map(ops, iova, paddr, size, prot);
1693         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1694         return ret;
1695 }
1696
1697 static size_t
1698 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1699 {
1700         size_t ret;
1701         unsigned long flags;
1702         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1703         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1704
1705         if (!ops)
1706                 return 0;
1707
1708         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1709         ret = ops->unmap(ops, iova, size);
1710         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1711         return ret;
1712 }
1713
1714 static phys_addr_t
1715 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1716 {
1717         phys_addr_t ret;
1718         unsigned long flags;
1719         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1720         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1721
1722         if (!ops)
1723                 return 0;
1724
1725         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1726         ret = ops->iova_to_phys(ops, iova);
1727         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1728
1729         return ret;
1730 }
1731
1732 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1733 {
1734         *(u32 *)sidp = alias;
1735         return 0; /* Continue walking */
1736 }
1737
1738 static void __arm_smmu_release_pci_iommudata(void *data)
1739 {
1740         kfree(data);
1741 }
1742
1743 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1744 {
1745         struct device_node *of_node;
1746         struct platform_device *smmu_pdev;
1747         struct arm_smmu_device *smmu = NULL;
1748         struct pci_bus *bus = pdev->bus;
1749
1750         /* Walk up to the root bus */
1751         while (!pci_is_root_bus(bus))
1752                 bus = bus->parent;
1753
1754         /* Follow the "iommus" phandle from the host controller */
1755         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1756         if (!of_node)
1757                 return NULL;
1758
1759         /* See if we can find an SMMU corresponding to the phandle */
1760         smmu_pdev = of_find_device_by_node(of_node);
1761         if (smmu_pdev)
1762                 smmu = platform_get_drvdata(smmu_pdev);
1763
1764         of_node_put(of_node);
1765         return smmu;
1766 }
1767
1768 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1769 {
1770         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1771
1772         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1773                 limit *= 1UL << STRTAB_SPLIT;
1774
1775         return sid < limit;
1776 }
1777
1778 static int arm_smmu_add_device(struct device *dev)
1779 {
1780         int i, ret;
1781         u32 sid, *sids;
1782         struct pci_dev *pdev;
1783         struct iommu_group *group;
1784         struct arm_smmu_group *smmu_group;
1785         struct arm_smmu_device *smmu;
1786
1787         /* We only support PCI, for now */
1788         if (!dev_is_pci(dev))
1789                 return -ENODEV;
1790
1791         pdev = to_pci_dev(dev);
1792         group = iommu_group_get_for_dev(dev);
1793         if (IS_ERR(group))
1794                 return PTR_ERR(group);
1795
1796         smmu_group = iommu_group_get_iommudata(group);
1797         if (!smmu_group) {
1798                 smmu = arm_smmu_get_for_pci_dev(pdev);
1799                 if (!smmu) {
1800                         ret = -ENOENT;
1801                         goto out_remove_dev;
1802                 }
1803
1804                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1805                 if (!smmu_group) {
1806                         ret = -ENOMEM;
1807                         goto out_remove_dev;
1808                 }
1809
1810                 smmu_group->ste.valid   = true;
1811                 smmu_group->smmu        = smmu;
1812                 iommu_group_set_iommudata(group, smmu_group,
1813                                           __arm_smmu_release_pci_iommudata);
1814         } else {
1815                 smmu = smmu_group->smmu;
1816         }
1817
1818         /* Assume SID == RID until firmware tells us otherwise */
1819         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1820         for (i = 0; i < smmu_group->num_sids; ++i) {
1821                 /* If we already know about this SID, then we're done */
1822                 if (smmu_group->sids[i] == sid)
1823                         goto out_put_group;
1824         }
1825
1826         /* Check the SID is in range of the SMMU and our stream table */
1827         if (!arm_smmu_sid_in_range(smmu, sid)) {
1828                 ret = -ERANGE;
1829                 goto out_remove_dev;
1830         }
1831
1832         /* Ensure l2 strtab is initialised */
1833         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1834                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1835                 if (ret)
1836                         goto out_remove_dev;
1837         }
1838
1839         /* Resize the SID array for the group */
1840         smmu_group->num_sids++;
1841         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1842                         GFP_KERNEL);
1843         if (!sids) {
1844                 smmu_group->num_sids--;
1845                 ret = -ENOMEM;
1846                 goto out_remove_dev;
1847         }
1848
1849         /* Add the new SID */
1850         sids[smmu_group->num_sids - 1] = sid;
1851         smmu_group->sids = sids;
1852
1853 out_put_group:
1854         iommu_group_put(group);
1855         return 0;
1856
1857 out_remove_dev:
1858         iommu_group_remove_device(dev);
1859         iommu_group_put(group);
1860         return ret;
1861 }
1862
1863 static void arm_smmu_remove_device(struct device *dev)
1864 {
1865         iommu_group_remove_device(dev);
1866 }
1867
1868 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1869                                     enum iommu_attr attr, void *data)
1870 {
1871         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1872
1873         switch (attr) {
1874         case DOMAIN_ATTR_NESTING:
1875                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1876                 return 0;
1877         default:
1878                 return -ENODEV;
1879         }
1880 }
1881
1882 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1883                                     enum iommu_attr attr, void *data)
1884 {
1885         int ret = 0;
1886         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1887
1888         mutex_lock(&smmu_domain->init_mutex);
1889
1890         switch (attr) {
1891         case DOMAIN_ATTR_NESTING:
1892                 if (smmu_domain->smmu) {
1893                         ret = -EPERM;
1894                         goto out_unlock;
1895                 }
1896
1897                 if (*(int *)data)
1898                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1899                 else
1900                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1901
1902                 break;
1903         default:
1904                 ret = -ENODEV;
1905         }
1906
1907 out_unlock:
1908         mutex_unlock(&smmu_domain->init_mutex);
1909         return ret;
1910 }
1911
1912 static struct iommu_ops arm_smmu_ops = {
1913         .capable                = arm_smmu_capable,
1914         .domain_alloc           = arm_smmu_domain_alloc,
1915         .domain_free            = arm_smmu_domain_free,
1916         .attach_dev             = arm_smmu_attach_dev,
1917         .map                    = arm_smmu_map,
1918         .unmap                  = arm_smmu_unmap,
1919         .map_sg                 = default_iommu_map_sg,
1920         .iova_to_phys           = arm_smmu_iova_to_phys,
1921         .add_device             = arm_smmu_add_device,
1922         .remove_device          = arm_smmu_remove_device,
1923         .device_group           = pci_device_group,
1924         .domain_get_attr        = arm_smmu_domain_get_attr,
1925         .domain_set_attr        = arm_smmu_domain_set_attr,
1926         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1927 };
1928
1929 /* Probing and initialisation functions */
1930 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1931                                    struct arm_smmu_queue *q,
1932                                    unsigned long prod_off,
1933                                    unsigned long cons_off,
1934                                    size_t dwords)
1935 {
1936         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1937
1938         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1939         if (!q->base) {
1940                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1941                         qsz);
1942                 return -ENOMEM;
1943         }
1944
1945         q->prod_reg     = smmu->base + prod_off;
1946         q->cons_reg     = smmu->base + cons_off;
1947         q->ent_dwords   = dwords;
1948
1949         q->q_base  = Q_BASE_RWA;
1950         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1951         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1952                      << Q_BASE_LOG2SIZE_SHIFT;
1953
1954         q->prod = q->cons = 0;
1955         return 0;
1956 }
1957
1958 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1959 {
1960         int ret;
1961
1962         /* cmdq */
1963         spin_lock_init(&smmu->cmdq.lock);
1964         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1965                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1966         if (ret)
1967                 return ret;
1968
1969         /* evtq */
1970         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1971                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1972         if (ret)
1973                 return ret;
1974
1975         /* priq */
1976         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1977                 return 0;
1978
1979         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1980                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1981 }
1982
1983 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1984 {
1985         unsigned int i;
1986         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1987         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1988         void *strtab = smmu->strtab_cfg.strtab;
1989
1990         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1991         if (!cfg->l1_desc) {
1992                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1993                 return -ENOMEM;
1994         }
1995
1996         for (i = 0; i < cfg->num_l1_ents; ++i) {
1997                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1998                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1999         }
2000
2001         return 0;
2002 }
2003
2004 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2005 {
2006         void *strtab;
2007         u64 reg;
2008         u32 size, l1size;
2009         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2010
2011         /*
2012          * If we can resolve everything with a single L2 table, then we
2013          * just need a single L1 descriptor. Otherwise, calculate the L1
2014          * size, capped to the SIDSIZE.
2015          */
2016         if (smmu->sid_bits < STRTAB_SPLIT) {
2017                 size = 0;
2018         } else {
2019                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2020                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2021         }
2022         cfg->num_l1_ents = 1 << size;
2023
2024         size += STRTAB_SPLIT;
2025         if (size < smmu->sid_bits)
2026                 dev_warn(smmu->dev,
2027                          "2-level strtab only covers %u/%u bits of SID\n",
2028                          size, smmu->sid_bits);
2029
2030         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2031         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2032                                      GFP_KERNEL | __GFP_ZERO);
2033         if (!strtab) {
2034                 dev_err(smmu->dev,
2035                         "failed to allocate l1 stream table (%u bytes)\n",
2036                         size);
2037                 return -ENOMEM;
2038         }
2039         cfg->strtab = strtab;
2040
2041         /* Configure strtab_base_cfg for 2 levels */
2042         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2043         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2044                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2045         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2046                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2047         cfg->strtab_base_cfg = reg;
2048
2049         return arm_smmu_init_l1_strtab(smmu);
2050 }
2051
2052 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2053 {
2054         void *strtab;
2055         u64 reg;
2056         u32 size;
2057         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2058
2059         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2060         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2061                                      GFP_KERNEL | __GFP_ZERO);
2062         if (!strtab) {
2063                 dev_err(smmu->dev,
2064                         "failed to allocate linear stream table (%u bytes)\n",
2065                         size);
2066                 return -ENOMEM;
2067         }
2068         cfg->strtab = strtab;
2069         cfg->num_l1_ents = 1 << smmu->sid_bits;
2070
2071         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2072         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2073         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2074                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2075         cfg->strtab_base_cfg = reg;
2076
2077         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2078         return 0;
2079 }
2080
2081 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2082 {
2083         u64 reg;
2084         int ret;
2085
2086         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2087                 ret = arm_smmu_init_strtab_2lvl(smmu);
2088         else
2089                 ret = arm_smmu_init_strtab_linear(smmu);
2090
2091         if (ret)
2092                 return ret;
2093
2094         /* Set the strtab base address */
2095         reg  = smmu->strtab_cfg.strtab_dma &
2096                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2097         reg |= STRTAB_BASE_RA;
2098         smmu->strtab_cfg.strtab_base = reg;
2099
2100         /* Allocate the first VMID for stage-2 bypass STEs */
2101         set_bit(0, smmu->vmid_map);
2102         return 0;
2103 }
2104
2105 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2106 {
2107         int ret;
2108
2109         ret = arm_smmu_init_queues(smmu);
2110         if (ret)
2111                 return ret;
2112
2113         return arm_smmu_init_strtab(smmu);
2114 }
2115
2116 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2117                                    unsigned int reg_off, unsigned int ack_off)
2118 {
2119         u32 reg;
2120
2121         writel_relaxed(val, smmu->base + reg_off);
2122         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2123                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2124 }
2125
2126 static void arm_smmu_free_msis(void *data)
2127 {
2128         struct device *dev = data;
2129         platform_msi_domain_free_irqs(dev);
2130 }
2131
2132 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2133 {
2134         phys_addr_t doorbell;
2135         struct device *dev = msi_desc_to_dev(desc);
2136         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2137         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2138
2139         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2140         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2141
2142         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2143         writel_relaxed(msg->data, smmu->base + cfg[1]);
2144         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2145 }
2146
2147 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2148 {
2149         struct msi_desc *desc;
2150         int ret, nvec = ARM_SMMU_MAX_MSIS;
2151         struct device *dev = smmu->dev;
2152
2153         /* Clear the MSI address regs */
2154         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2155         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2156
2157         if (smmu->features & ARM_SMMU_FEAT_PRI)
2158                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2159         else
2160                 nvec--;
2161
2162         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2163                 return;
2164
2165         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2166         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2167         if (ret) {
2168                 dev_warn(dev, "failed to allocate MSIs\n");
2169                 return;
2170         }
2171
2172         for_each_msi_entry(desc, dev) {
2173                 switch (desc->platform.msi_index) {
2174                 case EVTQ_MSI_INDEX:
2175                         smmu->evtq.q.irq = desc->irq;
2176                         break;
2177                 case GERROR_MSI_INDEX:
2178                         smmu->gerr_irq = desc->irq;
2179                         break;
2180                 case PRIQ_MSI_INDEX:
2181                         smmu->priq.q.irq = desc->irq;
2182                         break;
2183                 default:        /* Unknown */
2184                         continue;
2185                 }
2186         }
2187
2188         /* Add callback to free MSIs on teardown */
2189         devm_add_action(dev, arm_smmu_free_msis, dev);
2190 }
2191
2192 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2193 {
2194         int ret, irq;
2195         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2196
2197         /* Disable IRQs first */
2198         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2199                                       ARM_SMMU_IRQ_CTRLACK);
2200         if (ret) {
2201                 dev_err(smmu->dev, "failed to disable irqs\n");
2202                 return ret;
2203         }
2204
2205         arm_smmu_setup_msis(smmu);
2206
2207         /* Request interrupt lines */
2208         irq = smmu->evtq.q.irq;
2209         if (irq) {
2210                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2211                                                 arm_smmu_evtq_thread,
2212                                                 IRQF_ONESHOT,
2213                                                 "arm-smmu-v3-evtq", smmu);
2214                 if (ret < 0)
2215                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2216         }
2217
2218         irq = smmu->cmdq.q.irq;
2219         if (irq) {
2220                 ret = devm_request_irq(smmu->dev, irq,
2221                                        arm_smmu_cmdq_sync_handler, 0,
2222                                        "arm-smmu-v3-cmdq-sync", smmu);
2223                 if (ret < 0)
2224                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2225         }
2226
2227         irq = smmu->gerr_irq;
2228         if (irq) {
2229                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2230                                        0, "arm-smmu-v3-gerror", smmu);
2231                 if (ret < 0)
2232                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2233         }
2234
2235         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2236                 irq = smmu->priq.q.irq;
2237                 if (irq) {
2238                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2239                                                         arm_smmu_priq_thread,
2240                                                         IRQF_ONESHOT,
2241                                                         "arm-smmu-v3-priq",
2242                                                         smmu);
2243                         if (ret < 0)
2244                                 dev_warn(smmu->dev,
2245                                          "failed to enable priq irq\n");
2246                         else
2247                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2248                 }
2249         }
2250
2251         /* Enable interrupt generation on the SMMU */
2252         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2253                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2254         if (ret)
2255                 dev_warn(smmu->dev, "failed to enable irqs\n");
2256
2257         return 0;
2258 }
2259
2260 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2261 {
2262         int ret;
2263
2264         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2265         if (ret)
2266                 dev_err(smmu->dev, "failed to clear cr0\n");
2267
2268         return ret;
2269 }
2270
2271 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2272 {
2273         int ret;
2274         u32 reg, enables;
2275         struct arm_smmu_cmdq_ent cmd;
2276
2277         /* Clear CR0 and sync (disables SMMU and queue processing) */
2278         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2279         if (reg & CR0_SMMUEN)
2280                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2281
2282         ret = arm_smmu_device_disable(smmu);
2283         if (ret)
2284                 return ret;
2285
2286         /* CR1 (table and queue memory attributes) */
2287         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2288               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2289               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2290               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2291               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2292               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2293         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2294
2295         /* CR2 (random crap) */
2296         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2297         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2298
2299         /* Stream table */
2300         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2301                        smmu->base + ARM_SMMU_STRTAB_BASE);
2302         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2303                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2304
2305         /* Command queue */
2306         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2307         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2308         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2309
2310         enables = CR0_CMDQEN;
2311         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2312                                       ARM_SMMU_CR0ACK);
2313         if (ret) {
2314                 dev_err(smmu->dev, "failed to enable command queue\n");
2315                 return ret;
2316         }
2317
2318         /* Invalidate any cached configuration */
2319         cmd.opcode = CMDQ_OP_CFGI_ALL;
2320         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321         cmd.opcode = CMDQ_OP_CMD_SYNC;
2322         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2323
2324         /* Invalidate any stale TLB entries */
2325         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2326                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2327                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2328         }
2329
2330         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2331         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2332         cmd.opcode = CMDQ_OP_CMD_SYNC;
2333         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2334
2335         /* Event queue */
2336         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2337         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2338         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2339
2340         enables |= CR0_EVTQEN;
2341         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2342                                       ARM_SMMU_CR0ACK);
2343         if (ret) {
2344                 dev_err(smmu->dev, "failed to enable event queue\n");
2345                 return ret;
2346         }
2347
2348         /* PRI queue */
2349         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2350                 writeq_relaxed(smmu->priq.q.q_base,
2351                                smmu->base + ARM_SMMU_PRIQ_BASE);
2352                 writel_relaxed(smmu->priq.q.prod,
2353                                smmu->base + ARM_SMMU_PRIQ_PROD);
2354                 writel_relaxed(smmu->priq.q.cons,
2355                                smmu->base + ARM_SMMU_PRIQ_CONS);
2356
2357                 enables |= CR0_PRIQEN;
2358                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2359                                               ARM_SMMU_CR0ACK);
2360                 if (ret) {
2361                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2362                         return ret;
2363                 }
2364         }
2365
2366         ret = arm_smmu_setup_irqs(smmu);
2367         if (ret) {
2368                 dev_err(smmu->dev, "failed to setup irqs\n");
2369                 return ret;
2370         }
2371
2372         /* Enable the SMMU interface */
2373         enables |= CR0_SMMUEN;
2374         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2375                                       ARM_SMMU_CR0ACK);
2376         if (ret) {
2377                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2378                 return ret;
2379         }
2380
2381         return 0;
2382 }
2383
2384 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2385 {
2386         u32 reg;
2387         bool coherent;
2388
2389         /* IDR0 */
2390         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2391
2392         /* 2-level structures */
2393         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2394                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2395
2396         if (reg & IDR0_CD2L)
2397                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2398
2399         /*
2400          * Translation table endianness.
2401          * We currently require the same endianness as the CPU, but this
2402          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2403          */
2404         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2405         case IDR0_TTENDIAN_MIXED:
2406                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2407                 break;
2408 #ifdef __BIG_ENDIAN
2409         case IDR0_TTENDIAN_BE:
2410                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2411                 break;
2412 #else
2413         case IDR0_TTENDIAN_LE:
2414                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2415                 break;
2416 #endif
2417         default:
2418                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2419                 return -ENXIO;
2420         }
2421
2422         /* Boolean feature flags */
2423         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2424                 smmu->features |= ARM_SMMU_FEAT_PRI;
2425
2426         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2427                 smmu->features |= ARM_SMMU_FEAT_ATS;
2428
2429         if (reg & IDR0_SEV)
2430                 smmu->features |= ARM_SMMU_FEAT_SEV;
2431
2432         if (reg & IDR0_MSI)
2433                 smmu->features |= ARM_SMMU_FEAT_MSI;
2434
2435         if (reg & IDR0_HYP)
2436                 smmu->features |= ARM_SMMU_FEAT_HYP;
2437
2438         /*
2439          * The dma-coherent property is used in preference to the ID
2440          * register, but warn on mismatch.
2441          */
2442         coherent = of_dma_is_coherent(smmu->dev->of_node);
2443         if (coherent)
2444                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2445
2446         if (!!(reg & IDR0_COHACC) != coherent)
2447                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2448                          coherent ? "true" : "false");
2449
2450         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2451         case IDR0_STALL_MODEL_STALL:
2452                 /* Fallthrough */
2453         case IDR0_STALL_MODEL_FORCE:
2454                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2455         }
2456
2457         if (reg & IDR0_S1P)
2458                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2459
2460         if (reg & IDR0_S2P)
2461                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2462
2463         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2464                 dev_err(smmu->dev, "no translation support!\n");
2465                 return -ENXIO;
2466         }
2467
2468         /* We only support the AArch64 table format at present */
2469         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2470         case IDR0_TTF_AARCH32_64:
2471                 smmu->ias = 40;
2472                 /* Fallthrough */
2473         case IDR0_TTF_AARCH64:
2474                 break;
2475         default:
2476                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2477                 return -ENXIO;
2478         }
2479
2480         /* ASID/VMID sizes */
2481         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2482         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2483
2484         /* IDR1 */
2485         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2486         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2487                 dev_err(smmu->dev, "embedded implementation not supported\n");
2488                 return -ENXIO;
2489         }
2490
2491         /* Queue sizes, capped at 4k */
2492         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2493                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2494         if (!smmu->cmdq.q.max_n_shift) {
2495                 /* Odd alignment restrictions on the base, so ignore for now */
2496                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2497                 return -ENXIO;
2498         }
2499
2500         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2501                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2502         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2503                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2504
2505         /* SID/SSID sizes */
2506         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2507         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2508
2509         /* IDR5 */
2510         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2511
2512         /* Maximum number of outstanding stalls */
2513         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2514                                 & IDR5_STALL_MAX_MASK;
2515
2516         /* Page sizes */
2517         if (reg & IDR5_GRAN64K)
2518                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2519         if (reg & IDR5_GRAN16K)
2520                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2521         if (reg & IDR5_GRAN4K)
2522                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2523
2524         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2525                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2526         else
2527                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2528
2529         /* Output address size */
2530         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2531         case IDR5_OAS_32_BIT:
2532                 smmu->oas = 32;
2533                 break;
2534         case IDR5_OAS_36_BIT:
2535                 smmu->oas = 36;
2536                 break;
2537         case IDR5_OAS_40_BIT:
2538                 smmu->oas = 40;
2539                 break;
2540         case IDR5_OAS_42_BIT:
2541                 smmu->oas = 42;
2542                 break;
2543         case IDR5_OAS_44_BIT:
2544                 smmu->oas = 44;
2545                 break;
2546         default:
2547                 dev_info(smmu->dev,
2548                         "unknown output address size. Truncating to 48-bit\n");
2549                 /* Fallthrough */
2550         case IDR5_OAS_48_BIT:
2551                 smmu->oas = 48;
2552         }
2553
2554         /* Set the DMA mask for our table walker */
2555         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2556                 dev_warn(smmu->dev,
2557                          "failed to set DMA mask for table walker\n");
2558
2559         smmu->ias = max(smmu->ias, smmu->oas);
2560
2561         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2562                  smmu->ias, smmu->oas, smmu->features);
2563         return 0;
2564 }
2565
2566 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2567 {
2568         int irq, ret;
2569         struct resource *res;
2570         struct arm_smmu_device *smmu;
2571         struct device *dev = &pdev->dev;
2572
2573         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2574         if (!smmu) {
2575                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2576                 return -ENOMEM;
2577         }
2578         smmu->dev = dev;
2579
2580         /* Base address */
2581         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2582         if (resource_size(res) + 1 < SZ_128K) {
2583                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2584                 return -EINVAL;
2585         }
2586
2587         smmu->base = devm_ioremap_resource(dev, res);
2588         if (IS_ERR(smmu->base))
2589                 return PTR_ERR(smmu->base);
2590
2591         /* Interrupt lines */
2592         irq = platform_get_irq_byname(pdev, "eventq");
2593         if (irq > 0)
2594                 smmu->evtq.q.irq = irq;
2595
2596         irq = platform_get_irq_byname(pdev, "priq");
2597         if (irq > 0)
2598                 smmu->priq.q.irq = irq;
2599
2600         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2601         if (irq > 0)
2602                 smmu->cmdq.q.irq = irq;
2603
2604         irq = platform_get_irq_byname(pdev, "gerror");
2605         if (irq > 0)
2606                 smmu->gerr_irq = irq;
2607
2608         parse_driver_options(smmu);
2609
2610         /* Probe the h/w */
2611         ret = arm_smmu_device_probe(smmu);
2612         if (ret)
2613                 return ret;
2614
2615         /* Initialise in-memory data structures */
2616         ret = arm_smmu_init_structures(smmu);
2617         if (ret)
2618                 return ret;
2619
2620         /* Record our private device structure */
2621         platform_set_drvdata(pdev, smmu);
2622
2623         /* Reset the device */
2624         return arm_smmu_device_reset(smmu);
2625 }
2626
2627 static int arm_smmu_device_remove(struct platform_device *pdev)
2628 {
2629         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2630
2631         arm_smmu_device_disable(smmu);
2632         return 0;
2633 }
2634
2635 static struct of_device_id arm_smmu_of_match[] = {
2636         { .compatible = "arm,smmu-v3", },
2637         { },
2638 };
2639 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2640
2641 static struct platform_driver arm_smmu_driver = {
2642         .driver = {
2643                 .name           = "arm-smmu-v3",
2644                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2645         },
2646         .probe  = arm_smmu_device_dt_probe,
2647         .remove = arm_smmu_device_remove,
2648 };
2649
2650 static int __init arm_smmu_init(void)
2651 {
2652         struct device_node *np;
2653         int ret;
2654
2655         np = of_find_matching_node(NULL, arm_smmu_of_match);
2656         if (!np)
2657                 return 0;
2658
2659         of_node_put(np);
2660
2661         ret = platform_driver_register(&arm_smmu_driver);
2662         if (ret)
2663                 return ret;
2664
2665         pci_request_acs();
2666
2667         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2668 }
2669
2670 static void __exit arm_smmu_exit(void)
2671 {
2672         return platform_driver_unregister(&arm_smmu_driver);
2673 }
2674
2675 subsys_initcall(arm_smmu_init);
2676 module_exit(arm_smmu_exit);
2677
2678 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2679 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2680 MODULE_LICENSE("GPL v2");