]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu.c
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[karo-tx-linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - 4k and 64k pages, with contiguous pte hints.
27  *      - Up to 39-bit addressing
28  *      - Context fault reporting
29  */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45
46 #include <linux/amba/bus.h>
47
48 #include <asm/pgalloc.h>
49
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS            8
52
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS                128
55
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS               128
58
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
61 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (smmu)->pagesize)
62
63 /* Page table bits */
64 #define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
65 #define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
66 #define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
67 #define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
68 #define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
69 #define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
70
71 #if PAGE_SIZE == SZ_4K
72 #define ARM_SMMU_PTE_CONT_ENTRIES       16
73 #elif PAGE_SIZE == SZ_64K
74 #define ARM_SMMU_PTE_CONT_ENTRIES       32
75 #else
76 #define ARM_SMMU_PTE_CONT_ENTRIES       1
77 #endif
78
79 #define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
80 #define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
81 #define ARM_SMMU_PTE_HWTABLE_SIZE       (PTRS_PER_PTE * sizeof(pte_t))
82
83 /* Stage-1 PTE */
84 #define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
85 #define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
86 #define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
87 #define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
88
89 /* Stage-2 PTE */
90 #define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
91 #define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
92 #define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
93 #define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
94 #define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
95 #define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
96
97 /* Configuration registers */
98 #define ARM_SMMU_GR0_sCR0               0x0
99 #define sCR0_CLIENTPD                   (1 << 0)
100 #define sCR0_GFRE                       (1 << 1)
101 #define sCR0_GFIE                       (1 << 2)
102 #define sCR0_GCFGFRE                    (1 << 4)
103 #define sCR0_GCFGFIE                    (1 << 5)
104 #define sCR0_USFCFG                     (1 << 10)
105 #define sCR0_VMIDPNE                    (1 << 11)
106 #define sCR0_PTM                        (1 << 12)
107 #define sCR0_FB                         (1 << 13)
108 #define sCR0_BSU_SHIFT                  14
109 #define sCR0_BSU_MASK                   0x3
110
111 /* Identification registers */
112 #define ARM_SMMU_GR0_ID0                0x20
113 #define ARM_SMMU_GR0_ID1                0x24
114 #define ARM_SMMU_GR0_ID2                0x28
115 #define ARM_SMMU_GR0_ID3                0x2c
116 #define ARM_SMMU_GR0_ID4                0x30
117 #define ARM_SMMU_GR0_ID5                0x34
118 #define ARM_SMMU_GR0_ID6                0x38
119 #define ARM_SMMU_GR0_ID7                0x3c
120 #define ARM_SMMU_GR0_sGFSR              0x48
121 #define ARM_SMMU_GR0_sGFSYNR0           0x50
122 #define ARM_SMMU_GR0_sGFSYNR1           0x54
123 #define ARM_SMMU_GR0_sGFSYNR2           0x58
124 #define ARM_SMMU_GR0_PIDR0              0xfe0
125 #define ARM_SMMU_GR0_PIDR1              0xfe4
126 #define ARM_SMMU_GR0_PIDR2              0xfe8
127
128 #define ID0_S1TS                        (1 << 30)
129 #define ID0_S2TS                        (1 << 29)
130 #define ID0_NTS                         (1 << 28)
131 #define ID0_SMS                         (1 << 27)
132 #define ID0_PTFS_SHIFT                  24
133 #define ID0_PTFS_MASK                   0x2
134 #define ID0_PTFS_V8_ONLY                0x2
135 #define ID0_CTTW                        (1 << 14)
136 #define ID0_NUMIRPT_SHIFT               16
137 #define ID0_NUMIRPT_MASK                0xff
138 #define ID0_NUMSMRG_SHIFT               0
139 #define ID0_NUMSMRG_MASK                0xff
140
141 #define ID1_PAGESIZE                    (1 << 31)
142 #define ID1_NUMPAGENDXB_SHIFT           28
143 #define ID1_NUMPAGENDXB_MASK            7
144 #define ID1_NUMS2CB_SHIFT               16
145 #define ID1_NUMS2CB_MASK                0xff
146 #define ID1_NUMCB_SHIFT                 0
147 #define ID1_NUMCB_MASK                  0xff
148
149 #define ID2_OAS_SHIFT                   4
150 #define ID2_OAS_MASK                    0xf
151 #define ID2_IAS_SHIFT                   0
152 #define ID2_IAS_MASK                    0xf
153 #define ID2_UBS_SHIFT                   8
154 #define ID2_UBS_MASK                    0xf
155 #define ID2_PTFS_4K                     (1 << 12)
156 #define ID2_PTFS_16K                    (1 << 13)
157 #define ID2_PTFS_64K                    (1 << 14)
158
159 #define PIDR2_ARCH_SHIFT                4
160 #define PIDR2_ARCH_MASK                 0xf
161
162 /* Global TLB invalidation */
163 #define ARM_SMMU_GR0_STLBIALL           0x60
164 #define ARM_SMMU_GR0_TLBIVMID           0x64
165 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
166 #define ARM_SMMU_GR0_TLBIALLH           0x6c
167 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
168 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
169 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
170 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
171
172 /* Stream mapping registers */
173 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
174 #define SMR_VALID                       (1 << 31)
175 #define SMR_MASK_SHIFT                  16
176 #define SMR_MASK_MASK                   0x7fff
177 #define SMR_ID_SHIFT                    0
178 #define SMR_ID_MASK                     0x7fff
179
180 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
181 #define S2CR_CBNDX_SHIFT                0
182 #define S2CR_CBNDX_MASK                 0xff
183 #define S2CR_TYPE_SHIFT                 16
184 #define S2CR_TYPE_MASK                  0x3
185 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
186 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
187 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
188
189 /* Context bank attribute registers */
190 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
191 #define CBAR_VMID_SHIFT                 0
192 #define CBAR_VMID_MASK                  0xff
193 #define CBAR_S1_MEMATTR_SHIFT           12
194 #define CBAR_S1_MEMATTR_MASK            0xf
195 #define CBAR_S1_MEMATTR_WB              0xf
196 #define CBAR_TYPE_SHIFT                 16
197 #define CBAR_TYPE_MASK                  0x3
198 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
199 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
200 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
201 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
202 #define CBAR_IRPTNDX_SHIFT              24
203 #define CBAR_IRPTNDX_MASK               0xff
204
205 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
206 #define CBA2R_RW64_32BIT                (0 << 0)
207 #define CBA2R_RW64_64BIT                (1 << 0)
208
209 /* Translation context bank */
210 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
211 #define ARM_SMMU_CB(smmu, n)            ((n) * (smmu)->pagesize)
212
213 #define ARM_SMMU_CB_SCTLR               0x0
214 #define ARM_SMMU_CB_RESUME              0x8
215 #define ARM_SMMU_CB_TTBCR2              0x10
216 #define ARM_SMMU_CB_TTBR0_LO            0x20
217 #define ARM_SMMU_CB_TTBR0_HI            0x24
218 #define ARM_SMMU_CB_TTBCR               0x30
219 #define ARM_SMMU_CB_S1_MAIR0            0x38
220 #define ARM_SMMU_CB_FSR                 0x58
221 #define ARM_SMMU_CB_FAR_LO              0x60
222 #define ARM_SMMU_CB_FAR_HI              0x64
223 #define ARM_SMMU_CB_FSYNR0              0x68
224 #define ARM_SMMU_CB_S1_TLBIASID         0x610
225
226 #define SCTLR_S1_ASIDPNE                (1 << 12)
227 #define SCTLR_CFCFG                     (1 << 7)
228 #define SCTLR_CFIE                      (1 << 6)
229 #define SCTLR_CFRE                      (1 << 5)
230 #define SCTLR_E                         (1 << 4)
231 #define SCTLR_AFE                       (1 << 2)
232 #define SCTLR_TRE                       (1 << 1)
233 #define SCTLR_M                         (1 << 0)
234 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
235
236 #define RESUME_RETRY                    (0 << 0)
237 #define RESUME_TERMINATE                (1 << 0)
238
239 #define TTBCR_EAE                       (1 << 31)
240
241 #define TTBCR_PASIZE_SHIFT              16
242 #define TTBCR_PASIZE_MASK               0x7
243
244 #define TTBCR_TG0_4K                    (0 << 14)
245 #define TTBCR_TG0_64K                   (1 << 14)
246
247 #define TTBCR_SH0_SHIFT                 12
248 #define TTBCR_SH0_MASK                  0x3
249 #define TTBCR_SH_NS                     0
250 #define TTBCR_SH_OS                     2
251 #define TTBCR_SH_IS                     3
252
253 #define TTBCR_ORGN0_SHIFT               10
254 #define TTBCR_IRGN0_SHIFT               8
255 #define TTBCR_RGN_MASK                  0x3
256 #define TTBCR_RGN_NC                    0
257 #define TTBCR_RGN_WBWA                  1
258 #define TTBCR_RGN_WT                    2
259 #define TTBCR_RGN_WB                    3
260
261 #define TTBCR_SL0_SHIFT                 6
262 #define TTBCR_SL0_MASK                  0x3
263 #define TTBCR_SL0_LVL_2                 0
264 #define TTBCR_SL0_LVL_1                 1
265
266 #define TTBCR_T1SZ_SHIFT                16
267 #define TTBCR_T0SZ_SHIFT                0
268 #define TTBCR_SZ_MASK                   0xf
269
270 #define TTBCR2_SEP_SHIFT                15
271 #define TTBCR2_SEP_MASK                 0x7
272
273 #define TTBCR2_PASIZE_SHIFT             0
274 #define TTBCR2_PASIZE_MASK              0x7
275
276 /* Common definitions for PASize and SEP fields */
277 #define TTBCR2_ADDR_32                  0
278 #define TTBCR2_ADDR_36                  1
279 #define TTBCR2_ADDR_40                  2
280 #define TTBCR2_ADDR_42                  3
281 #define TTBCR2_ADDR_44                  4
282 #define TTBCR2_ADDR_48                  5
283
284 #define TTBRn_HI_ASID_SHIFT             16
285
286 #define MAIR_ATTR_SHIFT(n)              ((n) << 3)
287 #define MAIR_ATTR_MASK                  0xff
288 #define MAIR_ATTR_DEVICE                0x04
289 #define MAIR_ATTR_NC                    0x44
290 #define MAIR_ATTR_WBRWA                 0xff
291 #define MAIR_ATTR_IDX_NC                0
292 #define MAIR_ATTR_IDX_CACHE             1
293 #define MAIR_ATTR_IDX_DEV               2
294
295 #define FSR_MULTI                       (1 << 31)
296 #define FSR_SS                          (1 << 30)
297 #define FSR_UUT                         (1 << 8)
298 #define FSR_ASF                         (1 << 7)
299 #define FSR_TLBLKF                      (1 << 6)
300 #define FSR_TLBMCF                      (1 << 5)
301 #define FSR_EF                          (1 << 4)
302 #define FSR_PF                          (1 << 3)
303 #define FSR_AFF                         (1 << 2)
304 #define FSR_TF                          (1 << 1)
305
306 #define FSR_IGN                         (FSR_AFF | FSR_ASF | FSR_TLBMCF |       \
307                                          FSR_TLBLKF)
308 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT |         \
309                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
310
311 #define FSYNR0_WNR                      (1 << 4)
312
313 struct arm_smmu_smr {
314         u8                              idx;
315         u16                             mask;
316         u16                             id;
317 };
318
319 struct arm_smmu_master {
320         struct device_node              *of_node;
321
322         /*
323          * The following is specific to the master's position in the
324          * SMMU chain.
325          */
326         struct rb_node                  node;
327         int                             num_streamids;
328         u16                             streamids[MAX_MASTER_STREAMIDS];
329
330         /*
331          * We only need to allocate these on the root SMMU, as we
332          * configure unmatched streams to bypass translation.
333          */
334         struct arm_smmu_smr             *smrs;
335 };
336
337 struct arm_smmu_device {
338         struct device                   *dev;
339         struct device_node              *parent_of_node;
340
341         void __iomem                    *base;
342         unsigned long                   size;
343         unsigned long                   pagesize;
344
345 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
346 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
347 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
348 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
349 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
350         u32                             features;
351         int                             version;
352
353         u32                             num_context_banks;
354         u32                             num_s2_context_banks;
355         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
356         atomic_t                        irptndx;
357
358         u32                             num_mapping_groups;
359         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
360
361         unsigned long                   input_size;
362         unsigned long                   s1_output_size;
363         unsigned long                   s2_output_size;
364
365         u32                             num_global_irqs;
366         u32                             num_context_irqs;
367         unsigned int                    *irqs;
368
369         struct list_head                list;
370         struct rb_root                  masters;
371 };
372
373 struct arm_smmu_cfg {
374         struct arm_smmu_device          *smmu;
375         u8                              cbndx;
376         u8                              irptndx;
377         u32                             cbar;
378         pgd_t                           *pgd;
379 };
380 #define INVALID_IRPTNDX                 0xff
381
382 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
383 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
384
385 struct arm_smmu_domain {
386         /*
387          * A domain can span across multiple, chained SMMUs and requires
388          * all devices within the domain to follow the same translation
389          * path.
390          */
391         struct arm_smmu_device          *leaf_smmu;
392         struct arm_smmu_cfg             root_cfg;
393         phys_addr_t                     output_mask;
394
395         struct mutex                    lock;
396 };
397
398 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
399 static LIST_HEAD(arm_smmu_devices);
400
401 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
402                                                 struct device_node *dev_node)
403 {
404         struct rb_node *node = smmu->masters.rb_node;
405
406         while (node) {
407                 struct arm_smmu_master *master;
408                 master = container_of(node, struct arm_smmu_master, node);
409
410                 if (dev_node < master->of_node)
411                         node = node->rb_left;
412                 else if (dev_node > master->of_node)
413                         node = node->rb_right;
414                 else
415                         return master;
416         }
417
418         return NULL;
419 }
420
421 static int insert_smmu_master(struct arm_smmu_device *smmu,
422                               struct arm_smmu_master *master)
423 {
424         struct rb_node **new, *parent;
425
426         new = &smmu->masters.rb_node;
427         parent = NULL;
428         while (*new) {
429                 struct arm_smmu_master *this;
430                 this = container_of(*new, struct arm_smmu_master, node);
431
432                 parent = *new;
433                 if (master->of_node < this->of_node)
434                         new = &((*new)->rb_left);
435                 else if (master->of_node > this->of_node)
436                         new = &((*new)->rb_right);
437                 else
438                         return -EEXIST;
439         }
440
441         rb_link_node(&master->node, parent, new);
442         rb_insert_color(&master->node, &smmu->masters);
443         return 0;
444 }
445
446 static int register_smmu_master(struct arm_smmu_device *smmu,
447                                 struct device *dev,
448                                 struct of_phandle_args *masterspec)
449 {
450         int i;
451         struct arm_smmu_master *master;
452
453         master = find_smmu_master(smmu, masterspec->np);
454         if (master) {
455                 dev_err(dev,
456                         "rejecting multiple registrations for master device %s\n",
457                         masterspec->np->name);
458                 return -EBUSY;
459         }
460
461         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
462                 dev_err(dev,
463                         "reached maximum number (%d) of stream IDs for master device %s\n",
464                         MAX_MASTER_STREAMIDS, masterspec->np->name);
465                 return -ENOSPC;
466         }
467
468         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
469         if (!master)
470                 return -ENOMEM;
471
472         master->of_node         = masterspec->np;
473         master->num_streamids   = masterspec->args_count;
474
475         for (i = 0; i < master->num_streamids; ++i)
476                 master->streamids[i] = masterspec->args[i];
477
478         return insert_smmu_master(smmu, master);
479 }
480
481 static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
482 {
483         struct arm_smmu_device *parent;
484
485         if (!smmu->parent_of_node)
486                 return NULL;
487
488         spin_lock(&arm_smmu_devices_lock);
489         list_for_each_entry(parent, &arm_smmu_devices, list)
490                 if (parent->dev->of_node == smmu->parent_of_node)
491                         goto out_unlock;
492
493         parent = NULL;
494         dev_warn(smmu->dev,
495                  "Failed to find SMMU parent despite parent in DT\n");
496 out_unlock:
497         spin_unlock(&arm_smmu_devices_lock);
498         return parent;
499 }
500
501 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
502 {
503         int idx;
504
505         do {
506                 idx = find_next_zero_bit(map, end, start);
507                 if (idx == end)
508                         return -ENOSPC;
509         } while (test_and_set_bit(idx, map));
510
511         return idx;
512 }
513
514 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
515 {
516         clear_bit(idx, map);
517 }
518
519 /* Wait for any pending TLB invalidations to complete */
520 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
521 {
522         int count = 0;
523         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
524
525         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
526         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
527                & sTLBGSTATUS_GSACTIVE) {
528                 cpu_relax();
529                 if (++count == TLB_LOOP_TIMEOUT) {
530                         dev_err_ratelimited(smmu->dev,
531                         "TLB sync timed out -- SMMU may be deadlocked\n");
532                         return;
533                 }
534                 udelay(1);
535         }
536 }
537
538 static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
539 {
540         struct arm_smmu_device *smmu = cfg->smmu;
541         void __iomem *base = ARM_SMMU_GR0(smmu);
542         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
543
544         if (stage1) {
545                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
546                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
547                                base + ARM_SMMU_CB_S1_TLBIASID);
548         } else {
549                 base = ARM_SMMU_GR0(smmu);
550                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
551                                base + ARM_SMMU_GR0_TLBIVMID);
552         }
553
554         arm_smmu_tlb_sync(smmu);
555 }
556
557 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
558 {
559         int flags, ret;
560         u32 fsr, far, fsynr, resume;
561         unsigned long iova;
562         struct iommu_domain *domain = dev;
563         struct arm_smmu_domain *smmu_domain = domain->priv;
564         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
565         struct arm_smmu_device *smmu = root_cfg->smmu;
566         void __iomem *cb_base;
567
568         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
569         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
570
571         if (!(fsr & FSR_FAULT))
572                 return IRQ_NONE;
573
574         if (fsr & FSR_IGN)
575                 dev_err_ratelimited(smmu->dev,
576                                     "Unexpected context fault (fsr 0x%u)\n",
577                                     fsr);
578
579         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
580         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
581
582         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
583         iova = far;
584 #ifdef CONFIG_64BIT
585         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
586         iova |= ((unsigned long)far << 32);
587 #endif
588
589         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
590                 ret = IRQ_HANDLED;
591                 resume = RESUME_RETRY;
592         } else {
593                 dev_err_ratelimited(smmu->dev,
594                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
595                     iova, fsynr, root_cfg->cbndx);
596                 ret = IRQ_NONE;
597                 resume = RESUME_TERMINATE;
598         }
599
600         /* Clear the faulting FSR */
601         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
602
603         /* Retry or terminate any stalled transactions */
604         if (fsr & FSR_SS)
605                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
606
607         return ret;
608 }
609
610 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
611 {
612         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
613         struct arm_smmu_device *smmu = dev;
614         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
615
616         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
617         if (!gfsr)
618                 return IRQ_NONE;
619
620         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
621         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
622         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
623
624         dev_err_ratelimited(smmu->dev,
625                 "Unexpected global fault, this could be serious\n");
626         dev_err_ratelimited(smmu->dev,
627                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
628                 gfsr, gfsynr0, gfsynr1, gfsynr2);
629
630         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
631         return IRQ_HANDLED;
632 }
633
634 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
635 {
636         u32 reg;
637         bool stage1;
638         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
639         struct arm_smmu_device *smmu = root_cfg->smmu;
640         void __iomem *cb_base, *gr0_base, *gr1_base;
641
642         gr0_base = ARM_SMMU_GR0(smmu);
643         gr1_base = ARM_SMMU_GR1(smmu);
644         stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
645         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
646
647         /* CBAR */
648         reg = root_cfg->cbar;
649         if (smmu->version == 1)
650               reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
651
652         /* Use the weakest memory type, so it is overridden by the pte */
653         if (stage1)
654                 reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
655         else
656                 reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT;
657         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
658
659         if (smmu->version > 1) {
660                 /* CBA2R */
661 #ifdef CONFIG_64BIT
662                 reg = CBA2R_RW64_64BIT;
663 #else
664                 reg = CBA2R_RW64_32BIT;
665 #endif
666                 writel_relaxed(reg,
667                                gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
668
669                 /* TTBCR2 */
670                 switch (smmu->input_size) {
671                 case 32:
672                         reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
673                         break;
674                 case 36:
675                         reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
676                         break;
677                 case 39:
678                         reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
679                         break;
680                 case 42:
681                         reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
682                         break;
683                 case 44:
684                         reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
685                         break;
686                 case 48:
687                         reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
688                         break;
689                 }
690
691                 switch (smmu->s1_output_size) {
692                 case 32:
693                         reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
694                         break;
695                 case 36:
696                         reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
697                         break;
698                 case 39:
699                         reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
700                         break;
701                 case 42:
702                         reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
703                         break;
704                 case 44:
705                         reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
706                         break;
707                 case 48:
708                         reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
709                         break;
710                 }
711
712                 if (stage1)
713                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
714         }
715
716         /* TTBR0 */
717         reg = __pa(root_cfg->pgd);
718         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
719         reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
720         if (stage1)
721                 reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT;
722         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
723
724         /*
725          * TTBCR
726          * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
727          */
728         if (smmu->version > 1) {
729                 if (PAGE_SIZE == SZ_4K)
730                         reg = TTBCR_TG0_4K;
731                 else
732                         reg = TTBCR_TG0_64K;
733
734                 if (!stage1) {
735                         switch (smmu->s2_output_size) {
736                         case 32:
737                                 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
738                                 break;
739                         case 36:
740                                 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
741                                 break;
742                         case 40:
743                                 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
744                                 break;
745                         case 42:
746                                 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
747                                 break;
748                         case 44:
749                                 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
750                                 break;
751                         case 48:
752                                 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
753                                 break;
754                         }
755                 } else {
756                         reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
757                 }
758         } else {
759                 reg = 0;
760         }
761
762         reg |= TTBCR_EAE |
763               (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
764               (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
765               (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
766               (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
767         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
768
769         /* MAIR0 (stage-1 only) */
770         if (stage1) {
771                 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
772                       (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
773                       (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
774                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
775         }
776
777         /* SCTLR */
778         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
779         if (stage1)
780                 reg |= SCTLR_S1_ASIDPNE;
781 #ifdef __BIG_ENDIAN
782         reg |= SCTLR_E;
783 #endif
784         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
785 }
786
787 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
788                                         struct device *dev)
789 {
790         int irq, ret, start;
791         struct arm_smmu_domain *smmu_domain = domain->priv;
792         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
793         struct arm_smmu_device *smmu, *parent;
794
795         /*
796          * Walk the SMMU chain to find the root device for this chain.
797          * We assume that no masters have translations which terminate
798          * early, and therefore check that the root SMMU does indeed have
799          * a StreamID for the master in question.
800          */
801         parent = dev->archdata.iommu;
802         smmu_domain->output_mask = -1;
803         do {
804                 smmu = parent;
805                 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
806         } while ((parent = find_parent_smmu(smmu)));
807
808         if (!find_smmu_master(smmu, dev->of_node)) {
809                 dev_err(dev, "unable to find root SMMU for device\n");
810                 return -ENODEV;
811         }
812
813         if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
814                 /*
815                  * We will likely want to change this if/when KVM gets
816                  * involved.
817                  */
818                 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
819                 start = smmu->num_s2_context_banks;
820         } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
821                 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
822                 start = 0;
823         } else {
824                 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
825                 start = smmu->num_s2_context_banks;
826         }
827
828         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
829                                       smmu->num_context_banks);
830         if (IS_ERR_VALUE(ret))
831                 return ret;
832
833         root_cfg->cbndx = ret;
834         if (smmu->version == 1) {
835                 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
836                 root_cfg->irptndx %= smmu->num_context_irqs;
837         } else {
838                 root_cfg->irptndx = root_cfg->cbndx;
839         }
840
841         irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
842         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
843                           "arm-smmu-context-fault", domain);
844         if (IS_ERR_VALUE(ret)) {
845                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
846                         root_cfg->irptndx, irq);
847                 root_cfg->irptndx = INVALID_IRPTNDX;
848                 goto out_free_context;
849         }
850
851         root_cfg->smmu = smmu;
852         arm_smmu_init_context_bank(smmu_domain);
853         return ret;
854
855 out_free_context:
856         __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
857         return ret;
858 }
859
860 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
861 {
862         struct arm_smmu_domain *smmu_domain = domain->priv;
863         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
864         struct arm_smmu_device *smmu = root_cfg->smmu;
865         void __iomem *cb_base;
866         int irq;
867
868         if (!smmu)
869                 return;
870
871         /* Disable the context bank and nuke the TLB before freeing it. */
872         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
873         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
874         arm_smmu_tlb_inv_context(root_cfg);
875
876         if (root_cfg->irptndx != INVALID_IRPTNDX) {
877                 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
878                 free_irq(irq, domain);
879         }
880
881         __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
882 }
883
884 static int arm_smmu_domain_init(struct iommu_domain *domain)
885 {
886         struct arm_smmu_domain *smmu_domain;
887         pgd_t *pgd;
888
889         /*
890          * Allocate the domain and initialise some of its data structures.
891          * We can't really do anything meaningful until we've added a
892          * master.
893          */
894         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
895         if (!smmu_domain)
896                 return -ENOMEM;
897
898         pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
899         if (!pgd)
900                 goto out_free_domain;
901         smmu_domain->root_cfg.pgd = pgd;
902
903         mutex_init(&smmu_domain->lock);
904         domain->priv = smmu_domain;
905         return 0;
906
907 out_free_domain:
908         kfree(smmu_domain);
909         return -ENOMEM;
910 }
911
912 static void arm_smmu_free_ptes(pmd_t *pmd)
913 {
914         pgtable_t table = pmd_pgtable(*pmd);
915         pgtable_page_dtor(table);
916         __free_page(table);
917 }
918
919 static void arm_smmu_free_pmds(pud_t *pud)
920 {
921         int i;
922         pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
923
924         pmd = pmd_base;
925         for (i = 0; i < PTRS_PER_PMD; ++i) {
926                 if (pmd_none(*pmd))
927                         continue;
928
929                 arm_smmu_free_ptes(pmd);
930                 pmd++;
931         }
932
933         pmd_free(NULL, pmd_base);
934 }
935
936 static void arm_smmu_free_puds(pgd_t *pgd)
937 {
938         int i;
939         pud_t *pud, *pud_base = pud_offset(pgd, 0);
940
941         pud = pud_base;
942         for (i = 0; i < PTRS_PER_PUD; ++i) {
943                 if (pud_none(*pud))
944                         continue;
945
946                 arm_smmu_free_pmds(pud);
947                 pud++;
948         }
949
950         pud_free(NULL, pud_base);
951 }
952
953 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
954 {
955         int i;
956         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
957         pgd_t *pgd, *pgd_base = root_cfg->pgd;
958
959         /*
960          * Recursively free the page tables for this domain. We don't
961          * care about speculative TLB filling, because the TLB will be
962          * nuked next time this context bank is re-allocated and no devices
963          * currently map to these tables.
964          */
965         pgd = pgd_base;
966         for (i = 0; i < PTRS_PER_PGD; ++i) {
967                 if (pgd_none(*pgd))
968                         continue;
969                 arm_smmu_free_puds(pgd);
970                 pgd++;
971         }
972
973         kfree(pgd_base);
974 }
975
976 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
977 {
978         struct arm_smmu_domain *smmu_domain = domain->priv;
979
980         /*
981          * Free the domain resources. We assume that all devices have
982          * already been detached.
983          */
984         arm_smmu_destroy_domain_context(domain);
985         arm_smmu_free_pgtables(smmu_domain);
986         kfree(smmu_domain);
987 }
988
989 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
990                                           struct arm_smmu_master *master)
991 {
992         int i;
993         struct arm_smmu_smr *smrs;
994         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
995
996         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
997                 return 0;
998
999         if (master->smrs)
1000                 return -EEXIST;
1001
1002         smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
1003         if (!smrs) {
1004                 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
1005                         master->num_streamids, master->of_node->name);
1006                 return -ENOMEM;
1007         }
1008
1009         /* Allocate the SMRs on the root SMMU */
1010         for (i = 0; i < master->num_streamids; ++i) {
1011                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1012                                                   smmu->num_mapping_groups);
1013                 if (IS_ERR_VALUE(idx)) {
1014                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1015                         goto err_free_smrs;
1016                 }
1017
1018                 smrs[i] = (struct arm_smmu_smr) {
1019                         .idx    = idx,
1020                         .mask   = 0, /* We don't currently share SMRs */
1021                         .id     = master->streamids[i],
1022                 };
1023         }
1024
1025         /* It worked! Now, poke the actual hardware */
1026         for (i = 0; i < master->num_streamids; ++i) {
1027                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1028                           smrs[i].mask << SMR_MASK_SHIFT;
1029                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1030         }
1031
1032         master->smrs = smrs;
1033         return 0;
1034
1035 err_free_smrs:
1036         while (--i >= 0)
1037                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1038         kfree(smrs);
1039         return -ENOSPC;
1040 }
1041
1042 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1043                                       struct arm_smmu_master *master)
1044 {
1045         int i;
1046         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1047         struct arm_smmu_smr *smrs = master->smrs;
1048
1049         /* Invalidate the SMRs before freeing back to the allocator */
1050         for (i = 0; i < master->num_streamids; ++i) {
1051                 u8 idx = smrs[i].idx;
1052                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1053                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1054         }
1055
1056         master->smrs = NULL;
1057         kfree(smrs);
1058 }
1059
1060 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1061                                            struct arm_smmu_master *master)
1062 {
1063         int i;
1064         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1065
1066         for (i = 0; i < master->num_streamids; ++i) {
1067                 u16 sid = master->streamids[i];
1068                 writel_relaxed(S2CR_TYPE_BYPASS,
1069                                gr0_base + ARM_SMMU_GR0_S2CR(sid));
1070         }
1071 }
1072
1073 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1074                                       struct arm_smmu_master *master)
1075 {
1076         int i, ret;
1077         struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1078         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1079
1080         ret = arm_smmu_master_configure_smrs(smmu, master);
1081         if (ret)
1082                 return ret;
1083
1084         /* Bypass the leaves */
1085         smmu = smmu_domain->leaf_smmu;
1086         while ((parent = find_parent_smmu(smmu))) {
1087                 /*
1088                  * We won't have a StreamID match for anything but the root
1089                  * smmu, so we only need to worry about StreamID indexing,
1090                  * where we must install bypass entries in the S2CRs.
1091                  */
1092                 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1093                         continue;
1094
1095                 arm_smmu_bypass_stream_mapping(smmu, master);
1096                 smmu = parent;
1097         }
1098
1099         /* Now we're at the root, time to point at our context bank */
1100         for (i = 0; i < master->num_streamids; ++i) {
1101                 u32 idx, s2cr;
1102                 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1103                 s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1104                        (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1105                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1106         }
1107
1108         return 0;
1109 }
1110
1111 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1112                                           struct arm_smmu_master *master)
1113 {
1114         struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1115
1116         /*
1117          * We *must* clear the S2CR first, because freeing the SMR means
1118          * that it can be re-allocated immediately.
1119          */
1120         arm_smmu_bypass_stream_mapping(smmu, master);
1121         arm_smmu_master_free_smrs(smmu, master);
1122 }
1123
1124 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1125 {
1126         int ret = -EINVAL;
1127         struct arm_smmu_domain *smmu_domain = domain->priv;
1128         struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1129         struct arm_smmu_master *master;
1130
1131         if (!device_smmu) {
1132                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1133                 return -ENXIO;
1134         }
1135
1136         /*
1137          * Sanity check the domain. We don't currently support domains
1138          * that cross between different SMMU chains.
1139          */
1140         mutex_lock(&smmu_domain->lock);
1141         if (!smmu_domain->leaf_smmu) {
1142                 /* Now that we have a master, we can finalise the domain */
1143                 ret = arm_smmu_init_domain_context(domain, dev);
1144                 if (IS_ERR_VALUE(ret))
1145                         goto err_unlock;
1146
1147                 smmu_domain->leaf_smmu = device_smmu;
1148         } else if (smmu_domain->leaf_smmu != device_smmu) {
1149                 dev_err(dev,
1150                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1151                         dev_name(smmu_domain->leaf_smmu->dev),
1152                         dev_name(device_smmu->dev));
1153                 goto err_unlock;
1154         }
1155         mutex_unlock(&smmu_domain->lock);
1156
1157         /* Looks ok, so add the device to the domain */
1158         master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1159         if (!master)
1160                 return -ENODEV;
1161
1162         return arm_smmu_domain_add_master(smmu_domain, master);
1163
1164 err_unlock:
1165         mutex_unlock(&smmu_domain->lock);
1166         return ret;
1167 }
1168
1169 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1170 {
1171         struct arm_smmu_domain *smmu_domain = domain->priv;
1172         struct arm_smmu_master *master;
1173
1174         master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1175         if (master)
1176                 arm_smmu_domain_remove_master(smmu_domain, master);
1177 }
1178
1179 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1180                                    size_t size)
1181 {
1182         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1183
1184         /*
1185          * If the SMMU can't walk tables in the CPU caches, treat them
1186          * like non-coherent DMA since we need to flush the new entries
1187          * all the way out to memory. There's no possibility of recursion
1188          * here as the SMMU table walker will not be wired through another
1189          * SMMU.
1190          */
1191         if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1192                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1193                              DMA_TO_DEVICE);
1194 }
1195
1196 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1197                                              unsigned long end)
1198 {
1199         return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1200                 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1201 }
1202
1203 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1204                                    unsigned long addr, unsigned long end,
1205                                    unsigned long pfn, int flags, int stage)
1206 {
1207         pte_t *pte, *start;
1208         pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1209
1210         if (pmd_none(*pmd)) {
1211                 /* Allocate a new set of tables */
1212                 pgtable_t table = alloc_page(PGALLOC_GFP);
1213                 if (!table)
1214                         return -ENOMEM;
1215
1216                 arm_smmu_flush_pgtable(smmu, page_address(table),
1217                                        ARM_SMMU_PTE_HWTABLE_SIZE);
1218                 if (!pgtable_page_ctor(table)) {
1219                         __free_page(table);
1220                         return -ENOMEM;
1221                 }
1222                 pmd_populate(NULL, pmd, table);
1223                 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1224         }
1225
1226         if (stage == 1) {
1227                 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1228                 if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1229                         pteval |= ARM_SMMU_PTE_AP_RDONLY;
1230
1231                 if (flags & IOMMU_CACHE)
1232                         pteval |= (MAIR_ATTR_IDX_CACHE <<
1233                                    ARM_SMMU_PTE_ATTRINDX_SHIFT);
1234         } else {
1235                 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1236                 if (flags & IOMMU_READ)
1237                         pteval |= ARM_SMMU_PTE_HAP_READ;
1238                 if (flags & IOMMU_WRITE)
1239                         pteval |= ARM_SMMU_PTE_HAP_WRITE;
1240                 if (flags & IOMMU_CACHE)
1241                         pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1242                 else
1243                         pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1244         }
1245
1246         /* If no access, create a faulting entry to avoid TLB fills */
1247         if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1248                 pteval &= ~ARM_SMMU_PTE_PAGE;
1249
1250         pteval |= ARM_SMMU_PTE_SH_IS;
1251         start = pmd_page_vaddr(*pmd) + pte_index(addr);
1252         pte = start;
1253
1254         /*
1255          * Install the page table entries. This is fairly complicated
1256          * since we attempt to make use of the contiguous hint in the
1257          * ptes where possible. The contiguous hint indicates a series
1258          * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1259          * contiguous region with the following constraints:
1260          *
1261          *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1262          *   - Each pte in the region has the contiguous hint bit set
1263          *
1264          * This complicates unmapping (also handled by this code, when
1265          * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1266          * possible, yet highly unlikely, that a client may unmap only
1267          * part of a contiguous range. This requires clearing of the
1268          * contiguous hint bits in the range before installing the new
1269          * faulting entries.
1270          *
1271          * Note that re-mapping an address range without first unmapping
1272          * it is not supported, so TLB invalidation is not required here
1273          * and is instead performed at unmap and domain-init time.
1274          */
1275         do {
1276                 int i = 1;
1277                 pteval &= ~ARM_SMMU_PTE_CONT;
1278
1279                 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1280                         i = ARM_SMMU_PTE_CONT_ENTRIES;
1281                         pteval |= ARM_SMMU_PTE_CONT;
1282                 } else if (pte_val(*pte) &
1283                            (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1284                         int j;
1285                         pte_t *cont_start;
1286                         unsigned long idx = pte_index(addr);
1287
1288                         idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1289                         cont_start = pmd_page_vaddr(*pmd) + idx;
1290                         for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1291                                 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1292
1293                         arm_smmu_flush_pgtable(smmu, cont_start,
1294                                                sizeof(*pte) *
1295                                                ARM_SMMU_PTE_CONT_ENTRIES);
1296                 }
1297
1298                 do {
1299                         *pte = pfn_pte(pfn, __pgprot(pteval));
1300                 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1301         } while (addr != end);
1302
1303         arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1304         return 0;
1305 }
1306
1307 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1308                                    unsigned long addr, unsigned long end,
1309                                    phys_addr_t phys, int flags, int stage)
1310 {
1311         int ret;
1312         pmd_t *pmd;
1313         unsigned long next, pfn = __phys_to_pfn(phys);
1314
1315 #ifndef __PAGETABLE_PMD_FOLDED
1316         if (pud_none(*pud)) {
1317                 pmd = pmd_alloc_one(NULL, addr);
1318                 if (!pmd)
1319                         return -ENOMEM;
1320         } else
1321 #endif
1322                 pmd = pmd_offset(pud, addr);
1323
1324         do {
1325                 next = pmd_addr_end(addr, end);
1326                 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1327                                               flags, stage);
1328                 pud_populate(NULL, pud, pmd);
1329                 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1330                 phys += next - addr;
1331         } while (pmd++, addr = next, addr < end);
1332
1333         return ret;
1334 }
1335
1336 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1337                                    unsigned long addr, unsigned long end,
1338                                    phys_addr_t phys, int flags, int stage)
1339 {
1340         int ret = 0;
1341         pud_t *pud;
1342         unsigned long next;
1343
1344 #ifndef __PAGETABLE_PUD_FOLDED
1345         if (pgd_none(*pgd)) {
1346                 pud = pud_alloc_one(NULL, addr);
1347                 if (!pud)
1348                         return -ENOMEM;
1349         } else
1350 #endif
1351                 pud = pud_offset(pgd, addr);
1352
1353         do {
1354                 next = pud_addr_end(addr, end);
1355                 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1356                                               flags, stage);
1357                 pgd_populate(NULL, pud, pgd);
1358                 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1359                 phys += next - addr;
1360         } while (pud++, addr = next, addr < end);
1361
1362         return ret;
1363 }
1364
1365 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1366                                    unsigned long iova, phys_addr_t paddr,
1367                                    size_t size, int flags)
1368 {
1369         int ret, stage;
1370         unsigned long end;
1371         phys_addr_t input_mask, output_mask;
1372         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1373         pgd_t *pgd = root_cfg->pgd;
1374         struct arm_smmu_device *smmu = root_cfg->smmu;
1375
1376         if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1377                 stage = 2;
1378                 output_mask = (1ULL << smmu->s2_output_size) - 1;
1379         } else {
1380                 stage = 1;
1381                 output_mask = (1ULL << smmu->s1_output_size) - 1;
1382         }
1383
1384         if (!pgd)
1385                 return -EINVAL;
1386
1387         if (size & ~PAGE_MASK)
1388                 return -EINVAL;
1389
1390         input_mask = (1ULL << smmu->input_size) - 1;
1391         if ((phys_addr_t)iova & ~input_mask)
1392                 return -ERANGE;
1393
1394         if (paddr & ~output_mask)
1395                 return -ERANGE;
1396
1397         mutex_lock(&smmu_domain->lock);
1398         pgd += pgd_index(iova);
1399         end = iova + size;
1400         do {
1401                 unsigned long next = pgd_addr_end(iova, end);
1402
1403                 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1404                                               flags, stage);
1405                 if (ret)
1406                         goto out_unlock;
1407
1408                 paddr += next - iova;
1409                 iova = next;
1410         } while (pgd++, iova != end);
1411
1412 out_unlock:
1413         mutex_unlock(&smmu_domain->lock);
1414
1415         /* Ensure new page tables are visible to the hardware walker */
1416         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1417                 dsb();
1418
1419         return ret;
1420 }
1421
1422 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1423                         phys_addr_t paddr, size_t size, int flags)
1424 {
1425         struct arm_smmu_domain *smmu_domain = domain->priv;
1426
1427         if (!smmu_domain)
1428                 return -ENODEV;
1429
1430         /* Check for silent address truncation up the SMMU chain. */
1431         if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1432                 return -ERANGE;
1433
1434         return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1435 }
1436
1437 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1438                              size_t size)
1439 {
1440         int ret;
1441         struct arm_smmu_domain *smmu_domain = domain->priv;
1442
1443         ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1444         arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
1445         return ret ? ret : size;
1446 }
1447
1448 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1449                                          dma_addr_t iova)
1450 {
1451         pgd_t *pgdp, pgd;
1452         pud_t pud;
1453         pmd_t pmd;
1454         pte_t pte;
1455         struct arm_smmu_domain *smmu_domain = domain->priv;
1456         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1457
1458         pgdp = root_cfg->pgd;
1459         if (!pgdp)
1460                 return 0;
1461
1462         pgd = *(pgdp + pgd_index(iova));
1463         if (pgd_none(pgd))
1464                 return 0;
1465
1466         pud = *pud_offset(&pgd, iova);
1467         if (pud_none(pud))
1468                 return 0;
1469
1470         pmd = *pmd_offset(&pud, iova);
1471         if (pmd_none(pmd))
1472                 return 0;
1473
1474         pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1475         if (pte_none(pte))
1476                 return 0;
1477
1478         return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1479 }
1480
1481 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1482                                    unsigned long cap)
1483 {
1484         unsigned long caps = 0;
1485         struct arm_smmu_domain *smmu_domain = domain->priv;
1486
1487         if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1488                 caps |= IOMMU_CAP_CACHE_COHERENCY;
1489
1490         return !!(cap & caps);
1491 }
1492
1493 static int arm_smmu_add_device(struct device *dev)
1494 {
1495         struct arm_smmu_device *child, *parent, *smmu;
1496         struct arm_smmu_master *master = NULL;
1497
1498         spin_lock(&arm_smmu_devices_lock);
1499         list_for_each_entry(parent, &arm_smmu_devices, list) {
1500                 smmu = parent;
1501
1502                 /* Try to find a child of the current SMMU. */
1503                 list_for_each_entry(child, &arm_smmu_devices, list) {
1504                         if (child->parent_of_node == parent->dev->of_node) {
1505                                 /* Does the child sit above our master? */
1506                                 master = find_smmu_master(child, dev->of_node);
1507                                 if (master) {
1508                                         smmu = NULL;
1509                                         break;
1510                                 }
1511                         }
1512                 }
1513
1514                 /* We found some children, so keep searching. */
1515                 if (!smmu) {
1516                         master = NULL;
1517                         continue;
1518                 }
1519
1520                 master = find_smmu_master(smmu, dev->of_node);
1521                 if (master)
1522                         break;
1523         }
1524         spin_unlock(&arm_smmu_devices_lock);
1525
1526         if (!master)
1527                 return -ENODEV;
1528
1529         dev->archdata.iommu = smmu;
1530         return 0;
1531 }
1532
1533 static void arm_smmu_remove_device(struct device *dev)
1534 {
1535         dev->archdata.iommu = NULL;
1536 }
1537
1538 static struct iommu_ops arm_smmu_ops = {
1539         .domain_init    = arm_smmu_domain_init,
1540         .domain_destroy = arm_smmu_domain_destroy,
1541         .attach_dev     = arm_smmu_attach_dev,
1542         .detach_dev     = arm_smmu_detach_dev,
1543         .map            = arm_smmu_map,
1544         .unmap          = arm_smmu_unmap,
1545         .iova_to_phys   = arm_smmu_iova_to_phys,
1546         .domain_has_cap = arm_smmu_domain_has_cap,
1547         .add_device     = arm_smmu_add_device,
1548         .remove_device  = arm_smmu_remove_device,
1549         .pgsize_bitmap  = (SECTION_SIZE |
1550                            ARM_SMMU_PTE_CONT_SIZE |
1551                            PAGE_SIZE),
1552 };
1553
1554 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1555 {
1556         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1557         void __iomem *cb_base;
1558         int i = 0;
1559         u32 reg;
1560
1561         /* Clear Global FSR */
1562         reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
1563         writel(reg, gr0_base + ARM_SMMU_GR0_sGFSR);
1564
1565         /* Mark all SMRn as invalid and all S2CRn as bypass */
1566         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1567                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1568                 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1569         }
1570
1571         /* Make sure all context banks are disabled and clear CB_FSR  */
1572         for (i = 0; i < smmu->num_context_banks; ++i) {
1573                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1574                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1575                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1576         }
1577
1578         /* Invalidate the TLB, just in case */
1579         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1580         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1581         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1582
1583         reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1584
1585         /* Enable fault reporting */
1586         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1587
1588         /* Disable TLB broadcasting. */
1589         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1590
1591         /* Enable client access, but bypass when no mapping is found */
1592         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1593
1594         /* Disable forced broadcasting */
1595         reg &= ~sCR0_FB;
1596
1597         /* Don't upgrade barriers */
1598         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1599
1600         /* Push the button */
1601         arm_smmu_tlb_sync(smmu);
1602         writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sCR0);
1603 }
1604
1605 static int arm_smmu_id_size_to_bits(int size)
1606 {
1607         switch (size) {
1608         case 0:
1609                 return 32;
1610         case 1:
1611                 return 36;
1612         case 2:
1613                 return 40;
1614         case 3:
1615                 return 42;
1616         case 4:
1617                 return 44;
1618         case 5:
1619         default:
1620                 return 48;
1621         }
1622 }
1623
1624 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1625 {
1626         unsigned long size;
1627         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1628         u32 id;
1629
1630         dev_notice(smmu->dev, "probing hardware configuration...\n");
1631
1632         /* Primecell ID */
1633         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1634         smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1635         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1636
1637         /* ID0 */
1638         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1639 #ifndef CONFIG_64BIT
1640         if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1641                 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1642                 return -ENODEV;
1643         }
1644 #endif
1645         if (id & ID0_S1TS) {
1646                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1647                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1648         }
1649
1650         if (id & ID0_S2TS) {
1651                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1652                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1653         }
1654
1655         if (id & ID0_NTS) {
1656                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1657                 dev_notice(smmu->dev, "\tnested translation\n");
1658         }
1659
1660         if (!(smmu->features &
1661                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1662                  ARM_SMMU_FEAT_TRANS_NESTED))) {
1663                 dev_err(smmu->dev, "\tno translation support!\n");
1664                 return -ENODEV;
1665         }
1666
1667         if (id & ID0_CTTW) {
1668                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1669                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1670         }
1671
1672         if (id & ID0_SMS) {
1673                 u32 smr, sid, mask;
1674
1675                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1676                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1677                                            ID0_NUMSMRG_MASK;
1678                 if (smmu->num_mapping_groups == 0) {
1679                         dev_err(smmu->dev,
1680                                 "stream-matching supported, but no SMRs present!\n");
1681                         return -ENODEV;
1682                 }
1683
1684                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1685                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1686                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1687                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1688
1689                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1690                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1691                 if ((mask & sid) != sid) {
1692                         dev_err(smmu->dev,
1693                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1694                                 mask, sid);
1695                         return -ENODEV;
1696                 }
1697
1698                 dev_notice(smmu->dev,
1699                            "\tstream matching with %u register groups, mask 0x%x",
1700                            smmu->num_mapping_groups, mask);
1701         }
1702
1703         /* ID1 */
1704         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1705         smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1706
1707         /* Check for size mismatch of SMMU address space from mapped region */
1708         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1709         size *= (smmu->pagesize << 1);
1710         if (smmu->size != size)
1711                 dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs "
1712                         "from mapped region size (0x%lx)!\n", size, smmu->size);
1713
1714         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1715                                       ID1_NUMS2CB_MASK;
1716         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1717         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1718                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1719                 return -ENODEV;
1720         }
1721         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1722                    smmu->num_context_banks, smmu->num_s2_context_banks);
1723
1724         /* ID2 */
1725         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1726         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1727
1728         /*
1729          * Stage-1 output limited by stage-2 input size due to pgd
1730          * allocation (PTRS_PER_PGD).
1731          */
1732 #ifdef CONFIG_64BIT
1733         /* Current maximum output size of 39 bits */
1734         smmu->s1_output_size = min(39UL, size);
1735 #else
1736         smmu->s1_output_size = min(32UL, size);
1737 #endif
1738
1739         /* The stage-2 output mask is also applied for bypass */
1740         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1741         smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1742
1743         if (smmu->version == 1) {
1744                 smmu->input_size = 32;
1745         } else {
1746 #ifdef CONFIG_64BIT
1747                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1748                 size = min(39, arm_smmu_id_size_to_bits(size));
1749 #else
1750                 size = 32;
1751 #endif
1752                 smmu->input_size = size;
1753
1754                 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1755                     (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1756                     (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1757                         dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1758                                 PAGE_SIZE);
1759                         return -ENODEV;
1760                 }
1761         }
1762
1763         dev_notice(smmu->dev,
1764                    "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1765                    smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1766         return 0;
1767 }
1768
1769 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1770 {
1771         struct resource *res;
1772         struct arm_smmu_device *smmu;
1773         struct device_node *dev_node;
1774         struct device *dev = &pdev->dev;
1775         struct rb_node *node;
1776         struct of_phandle_args masterspec;
1777         int num_irqs, i, err;
1778
1779         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1780         if (!smmu) {
1781                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1782                 return -ENOMEM;
1783         }
1784         smmu->dev = dev;
1785
1786         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1787         smmu->base = devm_ioremap_resource(dev, res);
1788         if (IS_ERR(smmu->base))
1789                 return PTR_ERR(smmu->base);
1790         smmu->size = resource_size(res);
1791
1792         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1793                                  &smmu->num_global_irqs)) {
1794                 dev_err(dev, "missing #global-interrupts property\n");
1795                 return -ENODEV;
1796         }
1797
1798         num_irqs = 0;
1799         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1800                 num_irqs++;
1801                 if (num_irqs > smmu->num_global_irqs)
1802                         smmu->num_context_irqs++;
1803         }
1804
1805         if (!smmu->num_context_irqs) {
1806                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1807                         num_irqs, smmu->num_global_irqs + 1);
1808                 return -ENODEV;
1809         }
1810
1811         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1812                                   GFP_KERNEL);
1813         if (!smmu->irqs) {
1814                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1815                 return -ENOMEM;
1816         }
1817
1818         for (i = 0; i < num_irqs; ++i) {
1819                 int irq = platform_get_irq(pdev, i);
1820                 if (irq < 0) {
1821                         dev_err(dev, "failed to get irq index %d\n", i);
1822                         return -ENODEV;
1823                 }
1824                 smmu->irqs[i] = irq;
1825         }
1826
1827         i = 0;
1828         smmu->masters = RB_ROOT;
1829         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1830                                            "#stream-id-cells", i,
1831                                            &masterspec)) {
1832                 err = register_smmu_master(smmu, dev, &masterspec);
1833                 if (err) {
1834                         dev_err(dev, "failed to add master %s\n",
1835                                 masterspec.np->name);
1836                         goto out_put_masters;
1837                 }
1838
1839                 i++;
1840         }
1841         dev_notice(dev, "registered %d master devices\n", i);
1842
1843         if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1844                 smmu->parent_of_node = dev_node;
1845
1846         err = arm_smmu_device_cfg_probe(smmu);
1847         if (err)
1848                 goto out_put_parent;
1849
1850         if (smmu->version > 1 &&
1851             smmu->num_context_banks != smmu->num_context_irqs) {
1852                 dev_err(dev,
1853                         "found only %d context interrupt(s) but %d required\n",
1854                         smmu->num_context_irqs, smmu->num_context_banks);
1855                 err = -ENODEV;
1856                 goto out_put_parent;
1857         }
1858
1859         for (i = 0; i < smmu->num_global_irqs; ++i) {
1860                 err = request_irq(smmu->irqs[i],
1861                                   arm_smmu_global_fault,
1862                                   IRQF_SHARED,
1863                                   "arm-smmu global fault",
1864                                   smmu);
1865                 if (err) {
1866                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1867                                 i, smmu->irqs[i]);
1868                         goto out_free_irqs;
1869                 }
1870         }
1871
1872         INIT_LIST_HEAD(&smmu->list);
1873         spin_lock(&arm_smmu_devices_lock);
1874         list_add(&smmu->list, &arm_smmu_devices);
1875         spin_unlock(&arm_smmu_devices_lock);
1876
1877         arm_smmu_device_reset(smmu);
1878         return 0;
1879
1880 out_free_irqs:
1881         while (i--)
1882                 free_irq(smmu->irqs[i], smmu);
1883
1884 out_put_parent:
1885         if (smmu->parent_of_node)
1886                 of_node_put(smmu->parent_of_node);
1887
1888 out_put_masters:
1889         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1890                 struct arm_smmu_master *master;
1891                 master = container_of(node, struct arm_smmu_master, node);
1892                 of_node_put(master->of_node);
1893         }
1894
1895         return err;
1896 }
1897
1898 static int arm_smmu_device_remove(struct platform_device *pdev)
1899 {
1900         int i;
1901         struct device *dev = &pdev->dev;
1902         struct arm_smmu_device *curr, *smmu = NULL;
1903         struct rb_node *node;
1904
1905         spin_lock(&arm_smmu_devices_lock);
1906         list_for_each_entry(curr, &arm_smmu_devices, list) {
1907                 if (curr->dev == dev) {
1908                         smmu = curr;
1909                         list_del(&smmu->list);
1910                         break;
1911                 }
1912         }
1913         spin_unlock(&arm_smmu_devices_lock);
1914
1915         if (!smmu)
1916                 return -ENODEV;
1917
1918         if (smmu->parent_of_node)
1919                 of_node_put(smmu->parent_of_node);
1920
1921         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1922                 struct arm_smmu_master *master;
1923                 master = container_of(node, struct arm_smmu_master, node);
1924                 of_node_put(master->of_node);
1925         }
1926
1927         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1928                 dev_err(dev, "removing device with active domains!\n");
1929
1930         for (i = 0; i < smmu->num_global_irqs; ++i)
1931                 free_irq(smmu->irqs[i], smmu);
1932
1933         /* Turn the thing off */
1934         writel_relaxed(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
1935         return 0;
1936 }
1937
1938 #ifdef CONFIG_OF
1939 static struct of_device_id arm_smmu_of_match[] = {
1940         { .compatible = "arm,smmu-v1", },
1941         { .compatible = "arm,smmu-v2", },
1942         { .compatible = "arm,mmu-400", },
1943         { .compatible = "arm,mmu-500", },
1944         { },
1945 };
1946 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1947 #endif
1948
1949 static struct platform_driver arm_smmu_driver = {
1950         .driver = {
1951                 .owner          = THIS_MODULE,
1952                 .name           = "arm-smmu",
1953                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1954         },
1955         .probe  = arm_smmu_device_dt_probe,
1956         .remove = arm_smmu_device_remove,
1957 };
1958
1959 static int __init arm_smmu_init(void)
1960 {
1961         int ret;
1962
1963         ret = platform_driver_register(&arm_smmu_driver);
1964         if (ret)
1965                 return ret;
1966
1967         /* Oh, for a proper bus abstraction */
1968         if (!iommu_present(&platform_bus_type))
1969                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1970
1971         if (!iommu_present(&amba_bustype))
1972                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1973
1974         return 0;
1975 }
1976
1977 static void __exit arm_smmu_exit(void)
1978 {
1979         return platform_driver_unregister(&arm_smmu_driver);
1980 }
1981
1982 subsys_initcall(arm_smmu_init);
1983 module_exit(arm_smmu_exit);
1984
1985 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1986 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1987 MODULE_LICENSE("GPL v2");