]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu.c
iommu/arm-smmu: Support DMA-API domains
[karo-tx-linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - Context fault reporting
27  */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-iommu.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/err.h>
35 #include <linux/interrupt.h>
36 #include <linux/io.h>
37 #include <linux/iommu.h>
38 #include <linux/iopoll.h>
39 #include <linux/module.h>
40 #include <linux/of.h>
41 #include <linux/of_address.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include "io-pgtable.h"
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS                128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS               128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65  * SMMU global address space with conditional offset to access secure
66  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67  * nsGFSYNR0: 0x450)
68  */
69 #define ARM_SMMU_GR0_NS(smmu)                                           \
70         ((smmu)->base +                                                 \
71                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
72                         ? 0x400 : 0))
73
74 #ifdef CONFIG_64BIT
75 #define smmu_writeq     writeq_relaxed
76 #else
77 #define smmu_writeq(reg64, addr)                                \
78         do {                                                    \
79                 u64 __val = (reg64);                            \
80                 void __iomem *__addr = (addr);                  \
81                 writel_relaxed(__val >> 32, __addr + 4);        \
82                 writel_relaxed(__val, __addr);                  \
83         } while (0)
84 #endif
85
86 /* Configuration registers */
87 #define ARM_SMMU_GR0_sCR0               0x0
88 #define sCR0_CLIENTPD                   (1 << 0)
89 #define sCR0_GFRE                       (1 << 1)
90 #define sCR0_GFIE                       (1 << 2)
91 #define sCR0_GCFGFRE                    (1 << 4)
92 #define sCR0_GCFGFIE                    (1 << 5)
93 #define sCR0_USFCFG                     (1 << 10)
94 #define sCR0_VMIDPNE                    (1 << 11)
95 #define sCR0_PTM                        (1 << 12)
96 #define sCR0_FB                         (1 << 13)
97 #define sCR0_BSU_SHIFT                  14
98 #define sCR0_BSU_MASK                   0x3
99
100 /* Identification registers */
101 #define ARM_SMMU_GR0_ID0                0x20
102 #define ARM_SMMU_GR0_ID1                0x24
103 #define ARM_SMMU_GR0_ID2                0x28
104 #define ARM_SMMU_GR0_ID3                0x2c
105 #define ARM_SMMU_GR0_ID4                0x30
106 #define ARM_SMMU_GR0_ID5                0x34
107 #define ARM_SMMU_GR0_ID6                0x38
108 #define ARM_SMMU_GR0_ID7                0x3c
109 #define ARM_SMMU_GR0_sGFSR              0x48
110 #define ARM_SMMU_GR0_sGFSYNR0           0x50
111 #define ARM_SMMU_GR0_sGFSYNR1           0x54
112 #define ARM_SMMU_GR0_sGFSYNR2           0x58
113
114 #define ID0_S1TS                        (1 << 30)
115 #define ID0_S2TS                        (1 << 29)
116 #define ID0_NTS                         (1 << 28)
117 #define ID0_SMS                         (1 << 27)
118 #define ID0_ATOSNS                      (1 << 26)
119 #define ID0_CTTW                        (1 << 14)
120 #define ID0_NUMIRPT_SHIFT               16
121 #define ID0_NUMIRPT_MASK                0xff
122 #define ID0_NUMSIDB_SHIFT               9
123 #define ID0_NUMSIDB_MASK                0xf
124 #define ID0_NUMSMRG_SHIFT               0
125 #define ID0_NUMSMRG_MASK                0xff
126
127 #define ID1_PAGESIZE                    (1 << 31)
128 #define ID1_NUMPAGENDXB_SHIFT           28
129 #define ID1_NUMPAGENDXB_MASK            7
130 #define ID1_NUMS2CB_SHIFT               16
131 #define ID1_NUMS2CB_MASK                0xff
132 #define ID1_NUMCB_SHIFT                 0
133 #define ID1_NUMCB_MASK                  0xff
134
135 #define ID2_OAS_SHIFT                   4
136 #define ID2_OAS_MASK                    0xf
137 #define ID2_IAS_SHIFT                   0
138 #define ID2_IAS_MASK                    0xf
139 #define ID2_UBS_SHIFT                   8
140 #define ID2_UBS_MASK                    0xf
141 #define ID2_PTFS_4K                     (1 << 12)
142 #define ID2_PTFS_16K                    (1 << 13)
143 #define ID2_PTFS_64K                    (1 << 14)
144
145 /* Global TLB invalidation */
146 #define ARM_SMMU_GR0_TLBIVMID           0x64
147 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
148 #define ARM_SMMU_GR0_TLBIALLH           0x6c
149 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
150 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
151 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
152 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
153
154 /* Stream mapping registers */
155 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
156 #define SMR_VALID                       (1 << 31)
157 #define SMR_MASK_SHIFT                  16
158 #define SMR_MASK_MASK                   0x7fff
159 #define SMR_ID_SHIFT                    0
160 #define SMR_ID_MASK                     0x7fff
161
162 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
163 #define S2CR_CBNDX_SHIFT                0
164 #define S2CR_CBNDX_MASK                 0xff
165 #define S2CR_TYPE_SHIFT                 16
166 #define S2CR_TYPE_MASK                  0x3
167 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
168 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
169 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
170
171 #define S2CR_PRIVCFG_SHIFT              24
172 #define S2CR_PRIVCFG_UNPRIV             (2 << S2CR_PRIVCFG_SHIFT)
173
174 /* Context bank attribute registers */
175 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
176 #define CBAR_VMID_SHIFT                 0
177 #define CBAR_VMID_MASK                  0xff
178 #define CBAR_S1_BPSHCFG_SHIFT           8
179 #define CBAR_S1_BPSHCFG_MASK            3
180 #define CBAR_S1_BPSHCFG_NSH             3
181 #define CBAR_S1_MEMATTR_SHIFT           12
182 #define CBAR_S1_MEMATTR_MASK            0xf
183 #define CBAR_S1_MEMATTR_WB              0xf
184 #define CBAR_TYPE_SHIFT                 16
185 #define CBAR_TYPE_MASK                  0x3
186 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
187 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
188 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
189 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
190 #define CBAR_IRPTNDX_SHIFT              24
191 #define CBAR_IRPTNDX_MASK               0xff
192
193 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
194 #define CBA2R_RW64_32BIT                (0 << 0)
195 #define CBA2R_RW64_64BIT                (1 << 0)
196
197 /* Translation context bank */
198 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
199 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
200
201 #define ARM_SMMU_CB_SCTLR               0x0
202 #define ARM_SMMU_CB_RESUME              0x8
203 #define ARM_SMMU_CB_TTBCR2              0x10
204 #define ARM_SMMU_CB_TTBR0               0x20
205 #define ARM_SMMU_CB_TTBR1               0x28
206 #define ARM_SMMU_CB_TTBCR               0x30
207 #define ARM_SMMU_CB_S1_MAIR0            0x38
208 #define ARM_SMMU_CB_S1_MAIR1            0x3c
209 #define ARM_SMMU_CB_PAR_LO              0x50
210 #define ARM_SMMU_CB_PAR_HI              0x54
211 #define ARM_SMMU_CB_FSR                 0x58
212 #define ARM_SMMU_CB_FAR_LO              0x60
213 #define ARM_SMMU_CB_FAR_HI              0x64
214 #define ARM_SMMU_CB_FSYNR0              0x68
215 #define ARM_SMMU_CB_S1_TLBIVA           0x600
216 #define ARM_SMMU_CB_S1_TLBIASID         0x610
217 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
218 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
219 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
220 #define ARM_SMMU_CB_ATS1PR              0x800
221 #define ARM_SMMU_CB_ATSR                0x8f0
222
223 #define SCTLR_S1_ASIDPNE                (1 << 12)
224 #define SCTLR_CFCFG                     (1 << 7)
225 #define SCTLR_CFIE                      (1 << 6)
226 #define SCTLR_CFRE                      (1 << 5)
227 #define SCTLR_E                         (1 << 4)
228 #define SCTLR_AFE                       (1 << 2)
229 #define SCTLR_TRE                       (1 << 1)
230 #define SCTLR_M                         (1 << 0)
231 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
232
233 #define CB_PAR_F                        (1 << 0)
234
235 #define ATSR_ACTIVE                     (1 << 0)
236
237 #define RESUME_RETRY                    (0 << 0)
238 #define RESUME_TERMINATE                (1 << 0)
239
240 #define TTBCR2_SEP_SHIFT                15
241 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
242
243 #define TTBRn_ASID_SHIFT                48
244
245 #define FSR_MULTI                       (1 << 31)
246 #define FSR_SS                          (1 << 30)
247 #define FSR_UUT                         (1 << 8)
248 #define FSR_ASF                         (1 << 7)
249 #define FSR_TLBLKF                      (1 << 6)
250 #define FSR_TLBMCF                      (1 << 5)
251 #define FSR_EF                          (1 << 4)
252 #define FSR_PF                          (1 << 3)
253 #define FSR_AFF                         (1 << 2)
254 #define FSR_TF                          (1 << 1)
255
256 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
257                                          FSR_TLBMCF | FSR_TLBLKF)
258 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
259                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
260
261 #define FSYNR0_WNR                      (1 << 4)
262
263 static int force_stage;
264 module_param_named(force_stage, force_stage, int, S_IRUGO);
265 MODULE_PARM_DESC(force_stage,
266         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
267
268 enum arm_smmu_arch_version {
269         ARM_SMMU_V1 = 1,
270         ARM_SMMU_V2,
271 };
272
273 struct arm_smmu_smr {
274         u8                              idx;
275         u16                             mask;
276         u16                             id;
277 };
278
279 struct arm_smmu_master_cfg {
280         int                             num_streamids;
281         u16                             streamids[MAX_MASTER_STREAMIDS];
282         struct arm_smmu_smr             *smrs;
283 };
284
285 struct arm_smmu_master {
286         struct device_node              *of_node;
287         struct rb_node                  node;
288         struct arm_smmu_master_cfg      cfg;
289 };
290
291 struct arm_smmu_device {
292         struct device                   *dev;
293
294         void __iomem                    *base;
295         unsigned long                   size;
296         unsigned long                   pgshift;
297
298 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
299 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
300 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
301 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
302 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
303 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
304         u32                             features;
305
306 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
307         u32                             options;
308         enum arm_smmu_arch_version      version;
309
310         u32                             num_context_banks;
311         u32                             num_s2_context_banks;
312         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
313         atomic_t                        irptndx;
314
315         u32                             num_mapping_groups;
316         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
317
318         unsigned long                   va_size;
319         unsigned long                   ipa_size;
320         unsigned long                   pa_size;
321
322         u32                             num_global_irqs;
323         u32                             num_context_irqs;
324         unsigned int                    *irqs;
325
326         struct list_head                list;
327         struct rb_root                  masters;
328 };
329
330 struct arm_smmu_cfg {
331         u8                              cbndx;
332         u8                              irptndx;
333         u32                             cbar;
334 };
335 #define INVALID_IRPTNDX                 0xff
336
337 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
338 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
339
340 enum arm_smmu_domain_stage {
341         ARM_SMMU_DOMAIN_S1 = 0,
342         ARM_SMMU_DOMAIN_S2,
343         ARM_SMMU_DOMAIN_NESTED,
344 };
345
346 struct arm_smmu_domain {
347         struct arm_smmu_device          *smmu;
348         struct io_pgtable_ops           *pgtbl_ops;
349         spinlock_t                      pgtbl_lock;
350         struct arm_smmu_cfg             cfg;
351         enum arm_smmu_domain_stage      stage;
352         struct mutex                    init_mutex; /* Protects smmu pointer */
353         struct iommu_domain             domain;
354 };
355
356 static struct iommu_ops arm_smmu_ops;
357
358 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
359 static LIST_HEAD(arm_smmu_devices);
360
361 struct arm_smmu_option_prop {
362         u32 opt;
363         const char *prop;
364 };
365
366 static struct arm_smmu_option_prop arm_smmu_options[] = {
367         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
368         { 0, NULL},
369 };
370
371 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
372 {
373         return container_of(dom, struct arm_smmu_domain, domain);
374 }
375
376 static void parse_driver_options(struct arm_smmu_device *smmu)
377 {
378         int i = 0;
379
380         do {
381                 if (of_property_read_bool(smmu->dev->of_node,
382                                                 arm_smmu_options[i].prop)) {
383                         smmu->options |= arm_smmu_options[i].opt;
384                         dev_notice(smmu->dev, "option %s\n",
385                                 arm_smmu_options[i].prop);
386                 }
387         } while (arm_smmu_options[++i].opt);
388 }
389
390 static struct device_node *dev_get_dev_node(struct device *dev)
391 {
392         if (dev_is_pci(dev)) {
393                 struct pci_bus *bus = to_pci_dev(dev)->bus;
394
395                 while (!pci_is_root_bus(bus))
396                         bus = bus->parent;
397                 return bus->bridge->parent->of_node;
398         }
399
400         return dev->of_node;
401 }
402
403 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
404                                                 struct device_node *dev_node)
405 {
406         struct rb_node *node = smmu->masters.rb_node;
407
408         while (node) {
409                 struct arm_smmu_master *master;
410
411                 master = container_of(node, struct arm_smmu_master, node);
412
413                 if (dev_node < master->of_node)
414                         node = node->rb_left;
415                 else if (dev_node > master->of_node)
416                         node = node->rb_right;
417                 else
418                         return master;
419         }
420
421         return NULL;
422 }
423
424 static struct arm_smmu_master_cfg *
425 find_smmu_master_cfg(struct device *dev)
426 {
427         struct arm_smmu_master_cfg *cfg = NULL;
428         struct iommu_group *group = iommu_group_get(dev);
429
430         if (group) {
431                 cfg = iommu_group_get_iommudata(group);
432                 iommu_group_put(group);
433         }
434
435         return cfg;
436 }
437
438 static int insert_smmu_master(struct arm_smmu_device *smmu,
439                               struct arm_smmu_master *master)
440 {
441         struct rb_node **new, *parent;
442
443         new = &smmu->masters.rb_node;
444         parent = NULL;
445         while (*new) {
446                 struct arm_smmu_master *this
447                         = container_of(*new, struct arm_smmu_master, node);
448
449                 parent = *new;
450                 if (master->of_node < this->of_node)
451                         new = &((*new)->rb_left);
452                 else if (master->of_node > this->of_node)
453                         new = &((*new)->rb_right);
454                 else
455                         return -EEXIST;
456         }
457
458         rb_link_node(&master->node, parent, new);
459         rb_insert_color(&master->node, &smmu->masters);
460         return 0;
461 }
462
463 static int register_smmu_master(struct arm_smmu_device *smmu,
464                                 struct device *dev,
465                                 struct of_phandle_args *masterspec)
466 {
467         int i;
468         struct arm_smmu_master *master;
469
470         master = find_smmu_master(smmu, masterspec->np);
471         if (master) {
472                 dev_err(dev,
473                         "rejecting multiple registrations for master device %s\n",
474                         masterspec->np->name);
475                 return -EBUSY;
476         }
477
478         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
479                 dev_err(dev,
480                         "reached maximum number (%d) of stream IDs for master device %s\n",
481                         MAX_MASTER_STREAMIDS, masterspec->np->name);
482                 return -ENOSPC;
483         }
484
485         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
486         if (!master)
487                 return -ENOMEM;
488
489         master->of_node                 = masterspec->np;
490         master->cfg.num_streamids       = masterspec->args_count;
491
492         for (i = 0; i < master->cfg.num_streamids; ++i) {
493                 u16 streamid = masterspec->args[i];
494
495                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
496                      (streamid >= smmu->num_mapping_groups)) {
497                         dev_err(dev,
498                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
499                                 masterspec->np->name, smmu->num_mapping_groups);
500                         return -ERANGE;
501                 }
502                 master->cfg.streamids[i] = streamid;
503         }
504         return insert_smmu_master(smmu, master);
505 }
506
507 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
508 {
509         struct arm_smmu_device *smmu;
510         struct arm_smmu_master *master = NULL;
511         struct device_node *dev_node = dev_get_dev_node(dev);
512
513         spin_lock(&arm_smmu_devices_lock);
514         list_for_each_entry(smmu, &arm_smmu_devices, list) {
515                 master = find_smmu_master(smmu, dev_node);
516                 if (master)
517                         break;
518         }
519         spin_unlock(&arm_smmu_devices_lock);
520
521         return master ? smmu : NULL;
522 }
523
524 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
525 {
526         int idx;
527
528         do {
529                 idx = find_next_zero_bit(map, end, start);
530                 if (idx == end)
531                         return -ENOSPC;
532         } while (test_and_set_bit(idx, map));
533
534         return idx;
535 }
536
537 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
538 {
539         clear_bit(idx, map);
540 }
541
542 /* Wait for any pending TLB invalidations to complete */
543 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
544 {
545         int count = 0;
546         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
547
548         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
549         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
550                & sTLBGSTATUS_GSACTIVE) {
551                 cpu_relax();
552                 if (++count == TLB_LOOP_TIMEOUT) {
553                         dev_err_ratelimited(smmu->dev,
554                         "TLB sync timed out -- SMMU may be deadlocked\n");
555                         return;
556                 }
557                 udelay(1);
558         }
559 }
560
561 static void arm_smmu_tlb_sync(void *cookie)
562 {
563         struct arm_smmu_domain *smmu_domain = cookie;
564         __arm_smmu_tlb_sync(smmu_domain->smmu);
565 }
566
567 static void arm_smmu_tlb_inv_context(void *cookie)
568 {
569         struct arm_smmu_domain *smmu_domain = cookie;
570         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
571         struct arm_smmu_device *smmu = smmu_domain->smmu;
572         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
573         void __iomem *base;
574
575         if (stage1) {
576                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
577                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
578                                base + ARM_SMMU_CB_S1_TLBIASID);
579         } else {
580                 base = ARM_SMMU_GR0(smmu);
581                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
582                                base + ARM_SMMU_GR0_TLBIVMID);
583         }
584
585         __arm_smmu_tlb_sync(smmu);
586 }
587
588 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
589                                           size_t granule, bool leaf, void *cookie)
590 {
591         struct arm_smmu_domain *smmu_domain = cookie;
592         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
593         struct arm_smmu_device *smmu = smmu_domain->smmu;
594         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
595         void __iomem *reg;
596
597         if (stage1) {
598                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
599                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
600
601                 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
602                         iova &= ~12UL;
603                         iova |= ARM_SMMU_CB_ASID(cfg);
604                         do {
605                                 writel_relaxed(iova, reg);
606                                 iova += granule;
607                         } while (size -= granule);
608 #ifdef CONFIG_64BIT
609                 } else {
610                         iova >>= 12;
611                         iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
612                         do {
613                                 writeq_relaxed(iova, reg);
614                                 iova += granule >> 12;
615                         } while (size -= granule);
616 #endif
617                 }
618 #ifdef CONFIG_64BIT
619         } else if (smmu->version == ARM_SMMU_V2) {
620                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
621                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
622                               ARM_SMMU_CB_S2_TLBIIPAS2;
623                 iova >>= 12;
624                 do {
625                         writeq_relaxed(iova, reg);
626                         iova += granule >> 12;
627                 } while (size -= granule);
628 #endif
629         } else {
630                 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
631                 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
632         }
633 }
634
635 static struct iommu_gather_ops arm_smmu_gather_ops = {
636         .tlb_flush_all  = arm_smmu_tlb_inv_context,
637         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
638         .tlb_sync       = arm_smmu_tlb_sync,
639 };
640
641 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
642 {
643         int flags, ret;
644         u32 fsr, far, fsynr, resume;
645         unsigned long iova;
646         struct iommu_domain *domain = dev;
647         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
648         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
649         struct arm_smmu_device *smmu = smmu_domain->smmu;
650         void __iomem *cb_base;
651
652         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
653         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
654
655         if (!(fsr & FSR_FAULT))
656                 return IRQ_NONE;
657
658         if (fsr & FSR_IGN)
659                 dev_err_ratelimited(smmu->dev,
660                                     "Unexpected context fault (fsr 0x%x)\n",
661                                     fsr);
662
663         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
664         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
665
666         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
667         iova = far;
668 #ifdef CONFIG_64BIT
669         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
670         iova |= ((unsigned long)far << 32);
671 #endif
672
673         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
674                 ret = IRQ_HANDLED;
675                 resume = RESUME_RETRY;
676         } else {
677                 dev_err_ratelimited(smmu->dev,
678                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
679                     iova, fsynr, cfg->cbndx);
680                 ret = IRQ_NONE;
681                 resume = RESUME_TERMINATE;
682         }
683
684         /* Clear the faulting FSR */
685         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
686
687         /* Retry or terminate any stalled transactions */
688         if (fsr & FSR_SS)
689                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
690
691         return ret;
692 }
693
694 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
695 {
696         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
697         struct arm_smmu_device *smmu = dev;
698         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
699
700         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
701         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
702         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
703         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
704
705         if (!gfsr)
706                 return IRQ_NONE;
707
708         dev_err_ratelimited(smmu->dev,
709                 "Unexpected global fault, this could be serious\n");
710         dev_err_ratelimited(smmu->dev,
711                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
712                 gfsr, gfsynr0, gfsynr1, gfsynr2);
713
714         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
715         return IRQ_HANDLED;
716 }
717
718 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
719                                        struct io_pgtable_cfg *pgtbl_cfg)
720 {
721         u32 reg;
722         u64 reg64;
723         bool stage1;
724         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
725         struct arm_smmu_device *smmu = smmu_domain->smmu;
726         void __iomem *cb_base, *gr1_base;
727
728         gr1_base = ARM_SMMU_GR1(smmu);
729         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
730         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
731
732         if (smmu->version > ARM_SMMU_V1) {
733                 /*
734                  * CBA2R.
735                  * *Must* be initialised before CBAR thanks to VMID16
736                  * architectural oversight affected some implementations.
737                  */
738 #ifdef CONFIG_64BIT
739                 reg = CBA2R_RW64_64BIT;
740 #else
741                 reg = CBA2R_RW64_32BIT;
742 #endif
743                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
744         }
745
746         /* CBAR */
747         reg = cfg->cbar;
748         if (smmu->version == ARM_SMMU_V1)
749                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
750
751         /*
752          * Use the weakest shareability/memory types, so they are
753          * overridden by the ttbcr/pte.
754          */
755         if (stage1) {
756                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
757                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
758         } else {
759                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
760         }
761         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
762
763         /* TTBRs */
764         if (stage1) {
765                 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
766
767                 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
768                 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
769
770                 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
771                 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
772                 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
773         } else {
774                 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
775                 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
776         }
777
778         /* TTBCR */
779         if (stage1) {
780                 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
781                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
782                 if (smmu->version > ARM_SMMU_V1) {
783                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
784                         reg |= TTBCR2_SEP_UPSTREAM;
785                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
786                 }
787         } else {
788                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
789                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
790         }
791
792         /* MAIRs (stage-1 only) */
793         if (stage1) {
794                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
795                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
796                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
797                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
798         }
799
800         /* SCTLR */
801         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
802         if (stage1)
803                 reg |= SCTLR_S1_ASIDPNE;
804 #ifdef __BIG_ENDIAN
805         reg |= SCTLR_E;
806 #endif
807         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
808 }
809
810 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
811                                         struct arm_smmu_device *smmu)
812 {
813         int irq, start, ret = 0;
814         unsigned long ias, oas;
815         struct io_pgtable_ops *pgtbl_ops;
816         struct io_pgtable_cfg pgtbl_cfg;
817         enum io_pgtable_fmt fmt;
818         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
819         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
820
821         mutex_lock(&smmu_domain->init_mutex);
822         if (smmu_domain->smmu)
823                 goto out_unlock;
824
825         /*
826          * Mapping the requested stage onto what we support is surprisingly
827          * complicated, mainly because the spec allows S1+S2 SMMUs without
828          * support for nested translation. That means we end up with the
829          * following table:
830          *
831          * Requested        Supported        Actual
832          *     S1               N              S1
833          *     S1             S1+S2            S1
834          *     S1               S2             S2
835          *     S1               S1             S1
836          *     N                N              N
837          *     N              S1+S2            S2
838          *     N                S2             S2
839          *     N                S1             S1
840          *
841          * Note that you can't actually request stage-2 mappings.
842          */
843         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
844                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
845         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
846                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
847
848         switch (smmu_domain->stage) {
849         case ARM_SMMU_DOMAIN_S1:
850                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
851                 start = smmu->num_s2_context_banks;
852                 ias = smmu->va_size;
853                 oas = smmu->ipa_size;
854                 if (IS_ENABLED(CONFIG_64BIT))
855                         fmt = ARM_64_LPAE_S1;
856                 else
857                         fmt = ARM_32_LPAE_S1;
858                 break;
859         case ARM_SMMU_DOMAIN_NESTED:
860                 /*
861                  * We will likely want to change this if/when KVM gets
862                  * involved.
863                  */
864         case ARM_SMMU_DOMAIN_S2:
865                 cfg->cbar = CBAR_TYPE_S2_TRANS;
866                 start = 0;
867                 ias = smmu->ipa_size;
868                 oas = smmu->pa_size;
869                 if (IS_ENABLED(CONFIG_64BIT))
870                         fmt = ARM_64_LPAE_S2;
871                 else
872                         fmt = ARM_32_LPAE_S2;
873                 break;
874         default:
875                 ret = -EINVAL;
876                 goto out_unlock;
877         }
878
879         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
880                                       smmu->num_context_banks);
881         if (IS_ERR_VALUE(ret))
882                 goto out_unlock;
883
884         cfg->cbndx = ret;
885         if (smmu->version == ARM_SMMU_V1) {
886                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
887                 cfg->irptndx %= smmu->num_context_irqs;
888         } else {
889                 cfg->irptndx = cfg->cbndx;
890         }
891
892         pgtbl_cfg = (struct io_pgtable_cfg) {
893                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
894                 .ias            = ias,
895                 .oas            = oas,
896                 .tlb            = &arm_smmu_gather_ops,
897                 .iommu_dev      = smmu->dev,
898         };
899
900         smmu_domain->smmu = smmu;
901         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
902         if (!pgtbl_ops) {
903                 ret = -ENOMEM;
904                 goto out_clear_smmu;
905         }
906
907         /* Update our support page sizes to reflect the page table format */
908         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
909
910         /* Initialise the context bank with our page table cfg */
911         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
912
913         /*
914          * Request context fault interrupt. Do this last to avoid the
915          * handler seeing a half-initialised domain state.
916          */
917         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
918         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
919                           "arm-smmu-context-fault", domain);
920         if (IS_ERR_VALUE(ret)) {
921                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
922                         cfg->irptndx, irq);
923                 cfg->irptndx = INVALID_IRPTNDX;
924         }
925
926         mutex_unlock(&smmu_domain->init_mutex);
927
928         /* Publish page table ops for map/unmap */
929         smmu_domain->pgtbl_ops = pgtbl_ops;
930         return 0;
931
932 out_clear_smmu:
933         smmu_domain->smmu = NULL;
934 out_unlock:
935         mutex_unlock(&smmu_domain->init_mutex);
936         return ret;
937 }
938
939 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
940 {
941         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
942         struct arm_smmu_device *smmu = smmu_domain->smmu;
943         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
944         void __iomem *cb_base;
945         int irq;
946
947         if (!smmu)
948                 return;
949
950         /*
951          * Disable the context bank and free the page tables before freeing
952          * it.
953          */
954         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
955         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
956
957         if (cfg->irptndx != INVALID_IRPTNDX) {
958                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
959                 free_irq(irq, domain);
960         }
961
962         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
963         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
964 }
965
966 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
967 {
968         struct arm_smmu_domain *smmu_domain;
969
970         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
971                 return NULL;
972         /*
973          * Allocate the domain and initialise some of its data structures.
974          * We can't really do anything meaningful until we've added a
975          * master.
976          */
977         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
978         if (!smmu_domain)
979                 return NULL;
980
981         if (type == IOMMU_DOMAIN_DMA &&
982             iommu_get_dma_cookie(&smmu_domain->domain)) {
983                 kfree(smmu_domain);
984                 return NULL;
985         }
986
987         mutex_init(&smmu_domain->init_mutex);
988         spin_lock_init(&smmu_domain->pgtbl_lock);
989
990         return &smmu_domain->domain;
991 }
992
993 static void arm_smmu_domain_free(struct iommu_domain *domain)
994 {
995         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
996
997         /*
998          * Free the domain resources. We assume that all devices have
999          * already been detached.
1000          */
1001         iommu_put_dma_cookie(domain);
1002         arm_smmu_destroy_domain_context(domain);
1003         kfree(smmu_domain);
1004 }
1005
1006 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1007                                           struct arm_smmu_master_cfg *cfg)
1008 {
1009         int i;
1010         struct arm_smmu_smr *smrs;
1011         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1012
1013         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1014                 return 0;
1015
1016         if (cfg->smrs)
1017                 return -EEXIST;
1018
1019         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1020         if (!smrs) {
1021                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1022                         cfg->num_streamids);
1023                 return -ENOMEM;
1024         }
1025
1026         /* Allocate the SMRs on the SMMU */
1027         for (i = 0; i < cfg->num_streamids; ++i) {
1028                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1029                                                   smmu->num_mapping_groups);
1030                 if (IS_ERR_VALUE(idx)) {
1031                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1032                         goto err_free_smrs;
1033                 }
1034
1035                 smrs[i] = (struct arm_smmu_smr) {
1036                         .idx    = idx,
1037                         .mask   = 0, /* We don't currently share SMRs */
1038                         .id     = cfg->streamids[i],
1039                 };
1040         }
1041
1042         /* It worked! Now, poke the actual hardware */
1043         for (i = 0; i < cfg->num_streamids; ++i) {
1044                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1045                           smrs[i].mask << SMR_MASK_SHIFT;
1046                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1047         }
1048
1049         cfg->smrs = smrs;
1050         return 0;
1051
1052 err_free_smrs:
1053         while (--i >= 0)
1054                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1055         kfree(smrs);
1056         return -ENOSPC;
1057 }
1058
1059 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1060                                       struct arm_smmu_master_cfg *cfg)
1061 {
1062         int i;
1063         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1064         struct arm_smmu_smr *smrs = cfg->smrs;
1065
1066         if (!smrs)
1067                 return;
1068
1069         /* Invalidate the SMRs before freeing back to the allocator */
1070         for (i = 0; i < cfg->num_streamids; ++i) {
1071                 u8 idx = smrs[i].idx;
1072
1073                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1074                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1075         }
1076
1077         cfg->smrs = NULL;
1078         kfree(smrs);
1079 }
1080
1081 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1082                                       struct arm_smmu_master_cfg *cfg)
1083 {
1084         int i, ret;
1085         struct arm_smmu_device *smmu = smmu_domain->smmu;
1086         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1087
1088         /* Devices in an IOMMU group may already be configured */
1089         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1090         if (ret)
1091                 return ret == -EEXIST ? 0 : ret;
1092
1093         for (i = 0; i < cfg->num_streamids; ++i) {
1094                 u32 idx, s2cr;
1095
1096                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1097                 s2cr = S2CR_TYPE_TRANS | S2CR_PRIVCFG_UNPRIV |
1098                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1099                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1100         }
1101
1102         return 0;
1103 }
1104
1105 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1106                                           struct arm_smmu_master_cfg *cfg)
1107 {
1108         int i;
1109         struct arm_smmu_device *smmu = smmu_domain->smmu;
1110         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1111
1112         /* An IOMMU group is torn down by the first device to be removed */
1113         if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1114                 return;
1115
1116         /*
1117          * We *must* clear the S2CR first, because freeing the SMR means
1118          * that it can be re-allocated immediately.
1119          */
1120         for (i = 0; i < cfg->num_streamids; ++i) {
1121                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1122
1123                 writel_relaxed(S2CR_TYPE_BYPASS,
1124                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1125         }
1126
1127         arm_smmu_master_free_smrs(smmu, cfg);
1128 }
1129
1130 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1131 {
1132         int ret;
1133         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1134         struct arm_smmu_device *smmu;
1135         struct arm_smmu_master_cfg *cfg;
1136
1137         smmu = find_smmu_for_device(dev);
1138         if (!smmu) {
1139                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1140                 return -ENXIO;
1141         }
1142
1143         if (dev->archdata.iommu) {
1144                 dev_err(dev, "already attached to IOMMU domain\n");
1145                 return -EEXIST;
1146         }
1147
1148         /* Ensure that the domain is finalised */
1149         ret = arm_smmu_init_domain_context(domain, smmu);
1150         if (IS_ERR_VALUE(ret))
1151                 return ret;
1152
1153         /*
1154          * Sanity check the domain. We don't support domains across
1155          * different SMMUs.
1156          */
1157         if (smmu_domain->smmu != smmu) {
1158                 dev_err(dev,
1159                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1160                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1161                 return -EINVAL;
1162         }
1163
1164         /* Looks ok, so add the device to the domain */
1165         cfg = find_smmu_master_cfg(dev);
1166         if (!cfg)
1167                 return -ENODEV;
1168
1169         ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1170         if (!ret)
1171                 dev->archdata.iommu = domain;
1172         return ret;
1173 }
1174
1175 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1176 {
1177         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1178         struct arm_smmu_master_cfg *cfg;
1179
1180         cfg = find_smmu_master_cfg(dev);
1181         if (!cfg)
1182                 return;
1183
1184         dev->archdata.iommu = NULL;
1185         arm_smmu_domain_remove_master(smmu_domain, cfg);
1186 }
1187
1188 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1189                         phys_addr_t paddr, size_t size, int prot)
1190 {
1191         int ret;
1192         unsigned long flags;
1193         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1194         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1195
1196         if (!ops)
1197                 return -ENODEV;
1198
1199         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1200         ret = ops->map(ops, iova, paddr, size, prot);
1201         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1202         return ret;
1203 }
1204
1205 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1206                              size_t size)
1207 {
1208         size_t ret;
1209         unsigned long flags;
1210         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1211         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1212
1213         if (!ops)
1214                 return 0;
1215
1216         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1217         ret = ops->unmap(ops, iova, size);
1218         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1219         return ret;
1220 }
1221
1222 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1223                                               dma_addr_t iova)
1224 {
1225         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1226         struct arm_smmu_device *smmu = smmu_domain->smmu;
1227         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1228         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1229         struct device *dev = smmu->dev;
1230         void __iomem *cb_base;
1231         u32 tmp;
1232         u64 phys;
1233         unsigned long va;
1234
1235         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1236
1237         /* ATS1 registers can only be written atomically */
1238         va = iova & ~0xfffUL;
1239         if (smmu->version == ARM_SMMU_V2)
1240                 smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1241         else
1242                 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1243
1244         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1245                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1246                 dev_err(dev,
1247                         "iova to phys timed out on %pad. Falling back to software table walk.\n",
1248                         &iova);
1249                 return ops->iova_to_phys(ops, iova);
1250         }
1251
1252         phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1253         phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1254
1255         if (phys & CB_PAR_F) {
1256                 dev_err(dev, "translation fault!\n");
1257                 dev_err(dev, "PAR = 0x%llx\n", phys);
1258                 return 0;
1259         }
1260
1261         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1262 }
1263
1264 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1265                                         dma_addr_t iova)
1266 {
1267         phys_addr_t ret;
1268         unsigned long flags;
1269         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1270         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1271
1272         if (!ops)
1273                 return 0;
1274
1275         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1276         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1277                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1278                 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1279         } else {
1280                 ret = ops->iova_to_phys(ops, iova);
1281         }
1282
1283         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1284
1285         return ret;
1286 }
1287
1288 static bool arm_smmu_capable(enum iommu_cap cap)
1289 {
1290         switch (cap) {
1291         case IOMMU_CAP_CACHE_COHERENCY:
1292                 /*
1293                  * Return true here as the SMMU can always send out coherent
1294                  * requests.
1295                  */
1296                 return true;
1297         case IOMMU_CAP_INTR_REMAP:
1298                 return true; /* MSIs are just memory writes */
1299         case IOMMU_CAP_NOEXEC:
1300                 return true;
1301         default:
1302                 return false;
1303         }
1304 }
1305
1306 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1307 {
1308         *((u16 *)data) = alias;
1309         return 0; /* Continue walking */
1310 }
1311
1312 static void __arm_smmu_release_pci_iommudata(void *data)
1313 {
1314         kfree(data);
1315 }
1316
1317 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1318                                     struct iommu_group *group)
1319 {
1320         struct arm_smmu_master_cfg *cfg;
1321         u16 sid;
1322         int i;
1323
1324         cfg = iommu_group_get_iommudata(group);
1325         if (!cfg) {
1326                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1327                 if (!cfg)
1328                         return -ENOMEM;
1329
1330                 iommu_group_set_iommudata(group, cfg,
1331                                           __arm_smmu_release_pci_iommudata);
1332         }
1333
1334         if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1335                 return -ENOSPC;
1336
1337         /*
1338          * Assume Stream ID == Requester ID for now.
1339          * We need a way to describe the ID mappings in FDT.
1340          */
1341         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1342         for (i = 0; i < cfg->num_streamids; ++i)
1343                 if (cfg->streamids[i] == sid)
1344                         break;
1345
1346         /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1347         if (i == cfg->num_streamids)
1348                 cfg->streamids[cfg->num_streamids++] = sid;
1349
1350         return 0;
1351 }
1352
1353 static int arm_smmu_init_platform_device(struct device *dev,
1354                                          struct iommu_group *group)
1355 {
1356         struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1357         struct arm_smmu_master *master;
1358
1359         if (!smmu)
1360                 return -ENODEV;
1361
1362         master = find_smmu_master(smmu, dev->of_node);
1363         if (!master)
1364                 return -ENODEV;
1365
1366         iommu_group_set_iommudata(group, &master->cfg, NULL);
1367
1368         return 0;
1369 }
1370
1371 static int arm_smmu_add_device(struct device *dev)
1372 {
1373         struct iommu_group *group;
1374
1375         group = iommu_group_get_for_dev(dev);
1376         if (IS_ERR(group))
1377                 return PTR_ERR(group);
1378
1379         iommu_group_put(group);
1380         return 0;
1381 }
1382
1383 static void arm_smmu_remove_device(struct device *dev)
1384 {
1385         iommu_group_remove_device(dev);
1386 }
1387
1388 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1389 {
1390         struct iommu_group *group;
1391         int ret;
1392
1393         if (dev_is_pci(dev))
1394                 group = pci_device_group(dev);
1395         else
1396                 group = generic_device_group(dev);
1397
1398         if (IS_ERR(group))
1399                 return group;
1400
1401         if (dev_is_pci(dev))
1402                 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1403         else
1404                 ret = arm_smmu_init_platform_device(dev, group);
1405
1406         if (ret) {
1407                 iommu_group_put(group);
1408                 group = ERR_PTR(ret);
1409         }
1410
1411         return group;
1412 }
1413
1414 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1415                                     enum iommu_attr attr, void *data)
1416 {
1417         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1418
1419         switch (attr) {
1420         case DOMAIN_ATTR_NESTING:
1421                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1422                 return 0;
1423         default:
1424                 return -ENODEV;
1425         }
1426 }
1427
1428 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1429                                     enum iommu_attr attr, void *data)
1430 {
1431         int ret = 0;
1432         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1433
1434         mutex_lock(&smmu_domain->init_mutex);
1435
1436         switch (attr) {
1437         case DOMAIN_ATTR_NESTING:
1438                 if (smmu_domain->smmu) {
1439                         ret = -EPERM;
1440                         goto out_unlock;
1441                 }
1442
1443                 if (*(int *)data)
1444                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1445                 else
1446                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1447
1448                 break;
1449         default:
1450                 ret = -ENODEV;
1451         }
1452
1453 out_unlock:
1454         mutex_unlock(&smmu_domain->init_mutex);
1455         return ret;
1456 }
1457
1458 static struct iommu_ops arm_smmu_ops = {
1459         .capable                = arm_smmu_capable,
1460         .domain_alloc           = arm_smmu_domain_alloc,
1461         .domain_free            = arm_smmu_domain_free,
1462         .attach_dev             = arm_smmu_attach_dev,
1463         .detach_dev             = arm_smmu_detach_dev,
1464         .map                    = arm_smmu_map,
1465         .unmap                  = arm_smmu_unmap,
1466         .map_sg                 = default_iommu_map_sg,
1467         .iova_to_phys           = arm_smmu_iova_to_phys,
1468         .add_device             = arm_smmu_add_device,
1469         .remove_device          = arm_smmu_remove_device,
1470         .device_group           = arm_smmu_device_group,
1471         .domain_get_attr        = arm_smmu_domain_get_attr,
1472         .domain_set_attr        = arm_smmu_domain_set_attr,
1473         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1474 };
1475
1476 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1477 {
1478         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1479         void __iomem *cb_base;
1480         int i = 0;
1481         u32 reg;
1482
1483         /* clear global FSR */
1484         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1485         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1486
1487         /* Mark all SMRn as invalid and all S2CRn as bypass */
1488         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1489                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1490                 writel_relaxed(S2CR_TYPE_BYPASS,
1491                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1492         }
1493
1494         /* Make sure all context banks are disabled and clear CB_FSR  */
1495         for (i = 0; i < smmu->num_context_banks; ++i) {
1496                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1497                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1498                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1499         }
1500
1501         /* Invalidate the TLB, just in case */
1502         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1503         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1504
1505         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1506
1507         /* Enable fault reporting */
1508         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1509
1510         /* Disable TLB broadcasting. */
1511         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1512
1513         /* Enable client access, but bypass when no mapping is found */
1514         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1515
1516         /* Disable forced broadcasting */
1517         reg &= ~sCR0_FB;
1518
1519         /* Don't upgrade barriers */
1520         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1521
1522         /* Push the button */
1523         __arm_smmu_tlb_sync(smmu);
1524         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1525 }
1526
1527 static int arm_smmu_id_size_to_bits(int size)
1528 {
1529         switch (size) {
1530         case 0:
1531                 return 32;
1532         case 1:
1533                 return 36;
1534         case 2:
1535                 return 40;
1536         case 3:
1537                 return 42;
1538         case 4:
1539                 return 44;
1540         case 5:
1541         default:
1542                 return 48;
1543         }
1544 }
1545
1546 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1547 {
1548         unsigned long size;
1549         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1550         u32 id;
1551         bool cttw_dt, cttw_reg;
1552
1553         dev_notice(smmu->dev, "probing hardware configuration...\n");
1554         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1555
1556         /* ID0 */
1557         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1558
1559         /* Restrict available stages based on module parameter */
1560         if (force_stage == 1)
1561                 id &= ~(ID0_S2TS | ID0_NTS);
1562         else if (force_stage == 2)
1563                 id &= ~(ID0_S1TS | ID0_NTS);
1564
1565         if (id & ID0_S1TS) {
1566                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1567                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1568         }
1569
1570         if (id & ID0_S2TS) {
1571                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1572                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1573         }
1574
1575         if (id & ID0_NTS) {
1576                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1577                 dev_notice(smmu->dev, "\tnested translation\n");
1578         }
1579
1580         if (!(smmu->features &
1581                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1582                 dev_err(smmu->dev, "\tno translation support!\n");
1583                 return -ENODEV;
1584         }
1585
1586         if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1587                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1588                 dev_notice(smmu->dev, "\taddress translation ops\n");
1589         }
1590
1591         /*
1592          * In order for DMA API calls to work properly, we must defer to what
1593          * the DT says about coherency, regardless of what the hardware claims.
1594          * Fortunately, this also opens up a workaround for systems where the
1595          * ID register value has ended up configured incorrectly.
1596          */
1597         cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1598         cttw_reg = !!(id & ID0_CTTW);
1599         if (cttw_dt)
1600                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1601         if (cttw_dt || cttw_reg)
1602                 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1603                            cttw_dt ? "" : "non-");
1604         if (cttw_dt != cttw_reg)
1605                 dev_notice(smmu->dev,
1606                            "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1607
1608         if (id & ID0_SMS) {
1609                 u32 smr, sid, mask;
1610
1611                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1612                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1613                                            ID0_NUMSMRG_MASK;
1614                 if (smmu->num_mapping_groups == 0) {
1615                         dev_err(smmu->dev,
1616                                 "stream-matching supported, but no SMRs present!\n");
1617                         return -ENODEV;
1618                 }
1619
1620                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1621                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1622                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1623                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1624
1625                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1626                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1627                 if ((mask & sid) != sid) {
1628                         dev_err(smmu->dev,
1629                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1630                                 mask, sid);
1631                         return -ENODEV;
1632                 }
1633
1634                 dev_notice(smmu->dev,
1635                            "\tstream matching with %u register groups, mask 0x%x",
1636                            smmu->num_mapping_groups, mask);
1637         } else {
1638                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1639                                            ID0_NUMSIDB_MASK;
1640         }
1641
1642         /* ID1 */
1643         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1644         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1645
1646         /* Check for size mismatch of SMMU address space from mapped region */
1647         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1648         size *= 2 << smmu->pgshift;
1649         if (smmu->size != size)
1650                 dev_warn(smmu->dev,
1651                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1652                         size, smmu->size);
1653
1654         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1655         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1656         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1657                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1658                 return -ENODEV;
1659         }
1660         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1661                    smmu->num_context_banks, smmu->num_s2_context_banks);
1662
1663         /* ID2 */
1664         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1665         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1666         smmu->ipa_size = size;
1667
1668         /* The output mask is also applied for bypass */
1669         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1670         smmu->pa_size = size;
1671
1672         /*
1673          * What the page table walker can address actually depends on which
1674          * descriptor format is in use, but since a) we don't know that yet,
1675          * and b) it can vary per context bank, this will have to do...
1676          */
1677         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1678                 dev_warn(smmu->dev,
1679                          "failed to set DMA mask for table walker\n");
1680
1681         if (smmu->version == ARM_SMMU_V1) {
1682                 smmu->va_size = smmu->ipa_size;
1683                 size = SZ_4K | SZ_2M | SZ_1G;
1684         } else {
1685                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1686                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1687 #ifndef CONFIG_64BIT
1688                 smmu->va_size = min(32UL, smmu->va_size);
1689 #endif
1690                 size = 0;
1691                 if (id & ID2_PTFS_4K)
1692                         size |= SZ_4K | SZ_2M | SZ_1G;
1693                 if (id & ID2_PTFS_16K)
1694                         size |= SZ_16K | SZ_32M;
1695                 if (id & ID2_PTFS_64K)
1696                         size |= SZ_64K | SZ_512M;
1697         }
1698
1699         arm_smmu_ops.pgsize_bitmap &= size;
1700         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1701
1702         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1703                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1704                            smmu->va_size, smmu->ipa_size);
1705
1706         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1707                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1708                            smmu->ipa_size, smmu->pa_size);
1709
1710         return 0;
1711 }
1712
1713 static const struct of_device_id arm_smmu_of_match[] = {
1714         { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1715         { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1716         { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1717         { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1718         { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1719         { },
1720 };
1721 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1722
1723 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1724 {
1725         const struct of_device_id *of_id;
1726         struct resource *res;
1727         struct arm_smmu_device *smmu;
1728         struct device *dev = &pdev->dev;
1729         struct rb_node *node;
1730         struct of_phandle_args masterspec;
1731         int num_irqs, i, err;
1732
1733         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1734         if (!smmu) {
1735                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1736                 return -ENOMEM;
1737         }
1738         smmu->dev = dev;
1739
1740         of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1741         smmu->version = (enum arm_smmu_arch_version)of_id->data;
1742
1743         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744         smmu->base = devm_ioremap_resource(dev, res);
1745         if (IS_ERR(smmu->base))
1746                 return PTR_ERR(smmu->base);
1747         smmu->size = resource_size(res);
1748
1749         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1750                                  &smmu->num_global_irqs)) {
1751                 dev_err(dev, "missing #global-interrupts property\n");
1752                 return -ENODEV;
1753         }
1754
1755         num_irqs = 0;
1756         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1757                 num_irqs++;
1758                 if (num_irqs > smmu->num_global_irqs)
1759                         smmu->num_context_irqs++;
1760         }
1761
1762         if (!smmu->num_context_irqs) {
1763                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1764                         num_irqs, smmu->num_global_irqs + 1);
1765                 return -ENODEV;
1766         }
1767
1768         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1769                                   GFP_KERNEL);
1770         if (!smmu->irqs) {
1771                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1772                 return -ENOMEM;
1773         }
1774
1775         for (i = 0; i < num_irqs; ++i) {
1776                 int irq = platform_get_irq(pdev, i);
1777
1778                 if (irq < 0) {
1779                         dev_err(dev, "failed to get irq index %d\n", i);
1780                         return -ENODEV;
1781                 }
1782                 smmu->irqs[i] = irq;
1783         }
1784
1785         err = arm_smmu_device_cfg_probe(smmu);
1786         if (err)
1787                 return err;
1788
1789         i = 0;
1790         smmu->masters = RB_ROOT;
1791         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1792                                            "#stream-id-cells", i,
1793                                            &masterspec)) {
1794                 err = register_smmu_master(smmu, dev, &masterspec);
1795                 if (err) {
1796                         dev_err(dev, "failed to add master %s\n",
1797                                 masterspec.np->name);
1798                         goto out_put_masters;
1799                 }
1800
1801                 i++;
1802         }
1803         dev_notice(dev, "registered %d master devices\n", i);
1804
1805         parse_driver_options(smmu);
1806
1807         if (smmu->version > ARM_SMMU_V1 &&
1808             smmu->num_context_banks != smmu->num_context_irqs) {
1809                 dev_err(dev,
1810                         "found only %d context interrupt(s) but %d required\n",
1811                         smmu->num_context_irqs, smmu->num_context_banks);
1812                 err = -ENODEV;
1813                 goto out_put_masters;
1814         }
1815
1816         for (i = 0; i < smmu->num_global_irqs; ++i) {
1817                 err = request_irq(smmu->irqs[i],
1818                                   arm_smmu_global_fault,
1819                                   IRQF_SHARED,
1820                                   "arm-smmu global fault",
1821                                   smmu);
1822                 if (err) {
1823                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1824                                 i, smmu->irqs[i]);
1825                         goto out_free_irqs;
1826                 }
1827         }
1828
1829         INIT_LIST_HEAD(&smmu->list);
1830         spin_lock(&arm_smmu_devices_lock);
1831         list_add(&smmu->list, &arm_smmu_devices);
1832         spin_unlock(&arm_smmu_devices_lock);
1833
1834         arm_smmu_device_reset(smmu);
1835         return 0;
1836
1837 out_free_irqs:
1838         while (i--)
1839                 free_irq(smmu->irqs[i], smmu);
1840
1841 out_put_masters:
1842         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1843                 struct arm_smmu_master *master
1844                         = container_of(node, struct arm_smmu_master, node);
1845                 of_node_put(master->of_node);
1846         }
1847
1848         return err;
1849 }
1850
1851 static int arm_smmu_device_remove(struct platform_device *pdev)
1852 {
1853         int i;
1854         struct device *dev = &pdev->dev;
1855         struct arm_smmu_device *curr, *smmu = NULL;
1856         struct rb_node *node;
1857
1858         spin_lock(&arm_smmu_devices_lock);
1859         list_for_each_entry(curr, &arm_smmu_devices, list) {
1860                 if (curr->dev == dev) {
1861                         smmu = curr;
1862                         list_del(&smmu->list);
1863                         break;
1864                 }
1865         }
1866         spin_unlock(&arm_smmu_devices_lock);
1867
1868         if (!smmu)
1869                 return -ENODEV;
1870
1871         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1872                 struct arm_smmu_master *master
1873                         = container_of(node, struct arm_smmu_master, node);
1874                 of_node_put(master->of_node);
1875         }
1876
1877         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1878                 dev_err(dev, "removing device with active domains!\n");
1879
1880         for (i = 0; i < smmu->num_global_irqs; ++i)
1881                 free_irq(smmu->irqs[i], smmu);
1882
1883         /* Turn the thing off */
1884         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1885         return 0;
1886 }
1887
1888 static struct platform_driver arm_smmu_driver = {
1889         .driver = {
1890                 .name           = "arm-smmu",
1891                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1892         },
1893         .probe  = arm_smmu_device_dt_probe,
1894         .remove = arm_smmu_device_remove,
1895 };
1896
1897 static int __init arm_smmu_init(void)
1898 {
1899         struct device_node *np;
1900         int ret;
1901
1902         /*
1903          * Play nice with systems that don't have an ARM SMMU by checking that
1904          * an ARM SMMU exists in the system before proceeding with the driver
1905          * and IOMMU bus operation registration.
1906          */
1907         np = of_find_matching_node(NULL, arm_smmu_of_match);
1908         if (!np)
1909                 return 0;
1910
1911         of_node_put(np);
1912
1913         ret = platform_driver_register(&arm_smmu_driver);
1914         if (ret)
1915                 return ret;
1916
1917         /* Oh, for a proper bus abstraction */
1918         if (!iommu_present(&platform_bus_type))
1919                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1920
1921 #ifdef CONFIG_ARM_AMBA
1922         if (!iommu_present(&amba_bustype))
1923                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1924 #endif
1925
1926 #ifdef CONFIG_PCI
1927         if (!iommu_present(&pci_bus_type))
1928                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1929 #endif
1930
1931         return 0;
1932 }
1933
1934 static void __exit arm_smmu_exit(void)
1935 {
1936         return platform_driver_unregister(&arm_smmu_driver);
1937 }
1938
1939 subsys_initcall(arm_smmu_init);
1940 module_exit(arm_smmu_exit);
1941
1942 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1943 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1944 MODULE_LICENSE("GPL v2");