]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/iommu/dmar.c
net: wimax/i2400m: fix NULL-deref at probe
[karo-tx-linux.git] / drivers / iommu / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #define pr_fmt(fmt)     "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
50         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
51         bool                    ignore_unhandled;
52         bool                    print_entry;
53 };
54
55 /*
56  * Assumptions:
57  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58  *    before IO devices managed by that unit.
59  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60  *    after IO devices managed by that unit.
61  * 3) Hotplug events are rare.
62  *
63  * Locking rules for DMA and interrupt remapping related global data structures:
64  * 1) Use dmar_global_lock in process context
65  * 2) Use RCU in interrupt context
66  */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static int dmar_dev_scope_status = 1;
72 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
73
74 static int alloc_iommu(struct dmar_drhd_unit *drhd);
75 static void free_iommu(struct intel_iommu *iommu);
76
77 extern const struct iommu_ops intel_iommu_ops;
78
79 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
80 {
81         /*
82          * add INCLUDE_ALL at the tail, so scan the list will find it at
83          * the very end.
84          */
85         if (drhd->include_all)
86                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
87         else
88                 list_add_rcu(&drhd->list, &dmar_drhd_units);
89 }
90
91 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
92 {
93         struct acpi_dmar_device_scope *scope;
94
95         *cnt = 0;
96         while (start < end) {
97                 scope = start;
98                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
99                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
100                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
101                         (*cnt)++;
102                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
103                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
104                         pr_warn("Unsupported device scope\n");
105                 }
106                 start += scope->length;
107         }
108         if (*cnt == 0)
109                 return NULL;
110
111         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
112 }
113
114 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
115 {
116         int i;
117         struct device *tmp_dev;
118
119         if (*devices && *cnt) {
120                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
121                         put_device(tmp_dev);
122                 kfree(*devices);
123         }
124
125         *devices = NULL;
126         *cnt = 0;
127 }
128
129 /* Optimize out kzalloc()/kfree() for normal cases */
130 static char dmar_pci_notify_info_buf[64];
131
132 static struct dmar_pci_notify_info *
133 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
134 {
135         int level = 0;
136         size_t size;
137         struct pci_dev *tmp;
138         struct dmar_pci_notify_info *info;
139
140         BUG_ON(dev->is_virtfn);
141
142         /* Only generate path[] for device addition event */
143         if (event == BUS_NOTIFY_ADD_DEVICE)
144                 for (tmp = dev; tmp; tmp = tmp->bus->self)
145                         level++;
146
147         size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
148         if (size <= sizeof(dmar_pci_notify_info_buf)) {
149                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
150         } else {
151                 info = kzalloc(size, GFP_KERNEL);
152                 if (!info) {
153                         pr_warn("Out of memory when allocating notify_info "
154                                 "for %s.\n", pci_name(dev));
155                         if (dmar_dev_scope_status == 0)
156                                 dmar_dev_scope_status = -ENOMEM;
157                         return NULL;
158                 }
159         }
160
161         info->event = event;
162         info->dev = dev;
163         info->seg = pci_domain_nr(dev->bus);
164         info->level = level;
165         if (event == BUS_NOTIFY_ADD_DEVICE) {
166                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
167                         level--;
168                         info->path[level].bus = tmp->bus->number;
169                         info->path[level].device = PCI_SLOT(tmp->devfn);
170                         info->path[level].function = PCI_FUNC(tmp->devfn);
171                         if (pci_is_root_bus(tmp->bus))
172                                 info->bus = tmp->bus->number;
173                 }
174         }
175
176         return info;
177 }
178
179 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
180 {
181         if ((void *)info != dmar_pci_notify_info_buf)
182                 kfree(info);
183 }
184
185 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
186                                 struct acpi_dmar_pci_path *path, int count)
187 {
188         int i;
189
190         if (info->bus != bus)
191                 goto fallback;
192         if (info->level != count)
193                 goto fallback;
194
195         for (i = 0; i < count; i++) {
196                 if (path[i].device != info->path[i].device ||
197                     path[i].function != info->path[i].function)
198                         goto fallback;
199         }
200
201         return true;
202
203 fallback:
204
205         if (count != 1)
206                 return false;
207
208         i = info->level - 1;
209         if (bus              == info->path[i].bus &&
210             path[0].device   == info->path[i].device &&
211             path[0].function == info->path[i].function) {
212                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
213                         bus, path[0].device, path[0].function);
214                 return true;
215         }
216
217         return false;
218 }
219
220 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
221 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
222                           void *start, void*end, u16 segment,
223                           struct dmar_dev_scope *devices,
224                           int devices_cnt)
225 {
226         int i, level;
227         struct device *tmp, *dev = &info->dev->dev;
228         struct acpi_dmar_device_scope *scope;
229         struct acpi_dmar_pci_path *path;
230
231         if (segment != info->seg)
232                 return 0;
233
234         for (; start < end; start += scope->length) {
235                 scope = start;
236                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
237                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
238                         continue;
239
240                 path = (struct acpi_dmar_pci_path *)(scope + 1);
241                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
242                 if (!dmar_match_pci_path(info, scope->bus, path, level))
243                         continue;
244
245                 /*
246                  * We expect devices with endpoint scope to have normal PCI
247                  * headers, and devices with bridge scope to have bridge PCI
248                  * headers.  However PCI NTB devices may be listed in the
249                  * DMAR table with bridge scope, even though they have a
250                  * normal PCI header.  NTB devices are identified by class
251                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
252                  * for this special case.
253                  */
254                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
255                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
256                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
257                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
258                       info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
259                         pr_warn("Device scope type does not match for %s\n",
260                                 pci_name(info->dev));
261                         return -EINVAL;
262                 }
263
264                 for_each_dev_scope(devices, devices_cnt, i, tmp)
265                         if (tmp == NULL) {
266                                 devices[i].bus = info->dev->bus->number;
267                                 devices[i].devfn = info->dev->devfn;
268                                 rcu_assign_pointer(devices[i].dev,
269                                                    get_device(dev));
270                                 return 1;
271                         }
272                 BUG_ON(i >= devices_cnt);
273         }
274
275         return 0;
276 }
277
278 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
279                           struct dmar_dev_scope *devices, int count)
280 {
281         int index;
282         struct device *tmp;
283
284         if (info->seg != segment)
285                 return 0;
286
287         for_each_active_dev_scope(devices, count, index, tmp)
288                 if (tmp == &info->dev->dev) {
289                         RCU_INIT_POINTER(devices[index].dev, NULL);
290                         synchronize_rcu();
291                         put_device(tmp);
292                         return 1;
293                 }
294
295         return 0;
296 }
297
298 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
299 {
300         int ret = 0;
301         struct dmar_drhd_unit *dmaru;
302         struct acpi_dmar_hardware_unit *drhd;
303
304         for_each_drhd_unit(dmaru) {
305                 if (dmaru->include_all)
306                         continue;
307
308                 drhd = container_of(dmaru->hdr,
309                                     struct acpi_dmar_hardware_unit, header);
310                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
311                                 ((void *)drhd) + drhd->header.length,
312                                 dmaru->segment,
313                                 dmaru->devices, dmaru->devices_cnt);
314                 if (ret != 0)
315                         break;
316         }
317         if (ret >= 0)
318                 ret = dmar_iommu_notify_scope_dev(info);
319         if (ret < 0 && dmar_dev_scope_status == 0)
320                 dmar_dev_scope_status = ret;
321
322         return ret;
323 }
324
325 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
326 {
327         struct dmar_drhd_unit *dmaru;
328
329         for_each_drhd_unit(dmaru)
330                 if (dmar_remove_dev_scope(info, dmaru->segment,
331                         dmaru->devices, dmaru->devices_cnt))
332                         break;
333         dmar_iommu_notify_scope_dev(info);
334 }
335
336 static int dmar_pci_bus_notifier(struct notifier_block *nb,
337                                  unsigned long action, void *data)
338 {
339         struct pci_dev *pdev = to_pci_dev(data);
340         struct dmar_pci_notify_info *info;
341
342         /* Only care about add/remove events for physical functions.
343          * For VFs we actually do the lookup based on the corresponding
344          * PF in device_to_iommu() anyway. */
345         if (pdev->is_virtfn)
346                 return NOTIFY_DONE;
347         if (action != BUS_NOTIFY_ADD_DEVICE &&
348             action != BUS_NOTIFY_REMOVED_DEVICE)
349                 return NOTIFY_DONE;
350
351         info = dmar_alloc_pci_notify_info(pdev, action);
352         if (!info)
353                 return NOTIFY_DONE;
354
355         down_write(&dmar_global_lock);
356         if (action == BUS_NOTIFY_ADD_DEVICE)
357                 dmar_pci_bus_add_dev(info);
358         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
359                 dmar_pci_bus_del_dev(info);
360         up_write(&dmar_global_lock);
361
362         dmar_free_pci_notify_info(info);
363
364         return NOTIFY_OK;
365 }
366
367 static struct notifier_block dmar_pci_bus_nb = {
368         .notifier_call = dmar_pci_bus_notifier,
369         .priority = INT_MIN,
370 };
371
372 static struct dmar_drhd_unit *
373 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
374 {
375         struct dmar_drhd_unit *dmaru;
376
377         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
378                 if (dmaru->segment == drhd->segment &&
379                     dmaru->reg_base_addr == drhd->address)
380                         return dmaru;
381
382         return NULL;
383 }
384
385 /**
386  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
387  * structure which uniquely represent one DMA remapping hardware unit
388  * present in the platform
389  */
390 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
391 {
392         struct acpi_dmar_hardware_unit *drhd;
393         struct dmar_drhd_unit *dmaru;
394         int ret = 0;
395
396         drhd = (struct acpi_dmar_hardware_unit *)header;
397         dmaru = dmar_find_dmaru(drhd);
398         if (dmaru)
399                 goto out;
400
401         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
402         if (!dmaru)
403                 return -ENOMEM;
404
405         /*
406          * If header is allocated from slab by ACPI _DSM method, we need to
407          * copy the content because the memory buffer will be freed on return.
408          */
409         dmaru->hdr = (void *)(dmaru + 1);
410         memcpy(dmaru->hdr, header, header->length);
411         dmaru->reg_base_addr = drhd->address;
412         dmaru->segment = drhd->segment;
413         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
414         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
415                                               ((void *)drhd) + drhd->header.length,
416                                               &dmaru->devices_cnt);
417         if (dmaru->devices_cnt && dmaru->devices == NULL) {
418                 kfree(dmaru);
419                 return -ENOMEM;
420         }
421
422         ret = alloc_iommu(dmaru);
423         if (ret) {
424                 dmar_free_dev_scope(&dmaru->devices,
425                                     &dmaru->devices_cnt);
426                 kfree(dmaru);
427                 return ret;
428         }
429         dmar_register_drhd_unit(dmaru);
430
431 out:
432         if (arg)
433                 (*(int *)arg)++;
434
435         return 0;
436 }
437
438 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
439 {
440         if (dmaru->devices && dmaru->devices_cnt)
441                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
442         if (dmaru->iommu)
443                 free_iommu(dmaru->iommu);
444         kfree(dmaru);
445 }
446
447 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
448                                       void *arg)
449 {
450         struct acpi_dmar_andd *andd = (void *)header;
451
452         /* Check for NUL termination within the designated length */
453         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
454                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
455                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
456                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
457                            dmi_get_system_info(DMI_BIOS_VENDOR),
458                            dmi_get_system_info(DMI_BIOS_VERSION),
459                            dmi_get_system_info(DMI_PRODUCT_VERSION));
460                 return -EINVAL;
461         }
462         pr_info("ANDD device: %x name: %s\n", andd->device_number,
463                 andd->device_name);
464
465         return 0;
466 }
467
468 #ifdef CONFIG_ACPI_NUMA
469 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
470 {
471         struct acpi_dmar_rhsa *rhsa;
472         struct dmar_drhd_unit *drhd;
473
474         rhsa = (struct acpi_dmar_rhsa *)header;
475         for_each_drhd_unit(drhd) {
476                 if (drhd->reg_base_addr == rhsa->base_address) {
477                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
478
479                         if (!node_online(node))
480                                 node = -1;
481                         drhd->iommu->node = node;
482                         return 0;
483                 }
484         }
485         WARN_TAINT(
486                 1, TAINT_FIRMWARE_WORKAROUND,
487                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
488                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
489                 drhd->reg_base_addr,
490                 dmi_get_system_info(DMI_BIOS_VENDOR),
491                 dmi_get_system_info(DMI_BIOS_VERSION),
492                 dmi_get_system_info(DMI_PRODUCT_VERSION));
493
494         return 0;
495 }
496 #else
497 #define dmar_parse_one_rhsa             dmar_res_noop
498 #endif
499
500 static void __init
501 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
502 {
503         struct acpi_dmar_hardware_unit *drhd;
504         struct acpi_dmar_reserved_memory *rmrr;
505         struct acpi_dmar_atsr *atsr;
506         struct acpi_dmar_rhsa *rhsa;
507
508         switch (header->type) {
509         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
510                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
511                                     header);
512                 pr_info("DRHD base: %#016Lx flags: %#x\n",
513                         (unsigned long long)drhd->address, drhd->flags);
514                 break;
515         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
516                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
517                                     header);
518                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
519                         (unsigned long long)rmrr->base_address,
520                         (unsigned long long)rmrr->end_address);
521                 break;
522         case ACPI_DMAR_TYPE_ROOT_ATS:
523                 atsr = container_of(header, struct acpi_dmar_atsr, header);
524                 pr_info("ATSR flags: %#x\n", atsr->flags);
525                 break;
526         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
527                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
528                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
529                        (unsigned long long)rhsa->base_address,
530                        rhsa->proximity_domain);
531                 break;
532         case ACPI_DMAR_TYPE_NAMESPACE:
533                 /* We don't print this here because we need to sanity-check
534                    it first. So print it in dmar_parse_one_andd() instead. */
535                 break;
536         }
537 }
538
539 /**
540  * dmar_table_detect - checks to see if the platform supports DMAR devices
541  */
542 static int __init dmar_table_detect(void)
543 {
544         acpi_status status = AE_OK;
545
546         /* if we could find DMAR table, then there are DMAR devices */
547         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
548
549         if (ACPI_SUCCESS(status) && !dmar_tbl) {
550                 pr_warn("Unable to map DMAR\n");
551                 status = AE_NOT_FOUND;
552         }
553
554         return (ACPI_SUCCESS(status) ? 1 : 0);
555 }
556
557 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
558                                        size_t len, struct dmar_res_callback *cb)
559 {
560         int ret = 0;
561         struct acpi_dmar_header *iter, *next;
562         struct acpi_dmar_header *end = ((void *)start) + len;
563
564         for (iter = start; iter < end && ret == 0; iter = next) {
565                 next = (void *)iter + iter->length;
566                 if (iter->length == 0) {
567                         /* Avoid looping forever on bad ACPI tables */
568                         pr_debug(FW_BUG "Invalid 0-length structure\n");
569                         break;
570                 } else if (next > end) {
571                         /* Avoid passing table end */
572                         pr_warn(FW_BUG "Record passes table end\n");
573                         ret = -EINVAL;
574                         break;
575                 }
576
577                 if (cb->print_entry)
578                         dmar_table_print_dmar_entry(iter);
579
580                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
581                         /* continue for forward compatibility */
582                         pr_debug("Unknown DMAR structure type %d\n",
583                                  iter->type);
584                 } else if (cb->cb[iter->type]) {
585                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
586                 } else if (!cb->ignore_unhandled) {
587                         pr_warn("No handler for DMAR structure type %d\n",
588                                 iter->type);
589                         ret = -EINVAL;
590                 }
591         }
592
593         return ret;
594 }
595
596 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
597                                        struct dmar_res_callback *cb)
598 {
599         return dmar_walk_remapping_entries((void *)(dmar + 1),
600                         dmar->header.length - sizeof(*dmar), cb);
601 }
602
603 /**
604  * parse_dmar_table - parses the DMA reporting table
605  */
606 static int __init
607 parse_dmar_table(void)
608 {
609         struct acpi_table_dmar *dmar;
610         int ret = 0;
611         int drhd_count = 0;
612         struct dmar_res_callback cb = {
613                 .print_entry = true,
614                 .ignore_unhandled = true,
615                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
616                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
617                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
618                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
619                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
620                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
621         };
622
623         /*
624          * Do it again, earlier dmar_tbl mapping could be mapped with
625          * fixed map.
626          */
627         dmar_table_detect();
628
629         /*
630          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
631          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
632          */
633         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
634
635         dmar = (struct acpi_table_dmar *)dmar_tbl;
636         if (!dmar)
637                 return -ENODEV;
638
639         if (dmar->width < PAGE_SHIFT - 1) {
640                 pr_warn("Invalid DMAR haw\n");
641                 return -EINVAL;
642         }
643
644         pr_info("Host address width %d\n", dmar->width + 1);
645         ret = dmar_walk_dmar_table(dmar, &cb);
646         if (ret == 0 && drhd_count == 0)
647                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
648
649         return ret;
650 }
651
652 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
653                                  int cnt, struct pci_dev *dev)
654 {
655         int index;
656         struct device *tmp;
657
658         while (dev) {
659                 for_each_active_dev_scope(devices, cnt, index, tmp)
660                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
661                                 return 1;
662
663                 /* Check our parent */
664                 dev = dev->bus->self;
665         }
666
667         return 0;
668 }
669
670 struct dmar_drhd_unit *
671 dmar_find_matched_drhd_unit(struct pci_dev *dev)
672 {
673         struct dmar_drhd_unit *dmaru;
674         struct acpi_dmar_hardware_unit *drhd;
675
676         dev = pci_physfn(dev);
677
678         rcu_read_lock();
679         for_each_drhd_unit(dmaru) {
680                 drhd = container_of(dmaru->hdr,
681                                     struct acpi_dmar_hardware_unit,
682                                     header);
683
684                 if (dmaru->include_all &&
685                     drhd->segment == pci_domain_nr(dev->bus))
686                         goto out;
687
688                 if (dmar_pci_device_match(dmaru->devices,
689                                           dmaru->devices_cnt, dev))
690                         goto out;
691         }
692         dmaru = NULL;
693 out:
694         rcu_read_unlock();
695
696         return dmaru;
697 }
698
699 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
700                                               struct acpi_device *adev)
701 {
702         struct dmar_drhd_unit *dmaru;
703         struct acpi_dmar_hardware_unit *drhd;
704         struct acpi_dmar_device_scope *scope;
705         struct device *tmp;
706         int i;
707         struct acpi_dmar_pci_path *path;
708
709         for_each_drhd_unit(dmaru) {
710                 drhd = container_of(dmaru->hdr,
711                                     struct acpi_dmar_hardware_unit,
712                                     header);
713
714                 for (scope = (void *)(drhd + 1);
715                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
716                      scope = ((void *)scope) + scope->length) {
717                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
718                                 continue;
719                         if (scope->enumeration_id != device_number)
720                                 continue;
721
722                         path = (void *)(scope + 1);
723                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
724                                 dev_name(&adev->dev), dmaru->reg_base_addr,
725                                 scope->bus, path->device, path->function);
726                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
727                                 if (tmp == NULL) {
728                                         dmaru->devices[i].bus = scope->bus;
729                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
730                                                                             path->function);
731                                         rcu_assign_pointer(dmaru->devices[i].dev,
732                                                            get_device(&adev->dev));
733                                         return;
734                                 }
735                         BUG_ON(i >= dmaru->devices_cnt);
736                 }
737         }
738         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
739                 device_number, dev_name(&adev->dev));
740 }
741
742 static int __init dmar_acpi_dev_scope_init(void)
743 {
744         struct acpi_dmar_andd *andd;
745
746         if (dmar_tbl == NULL)
747                 return -ENODEV;
748
749         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
750              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
751              andd = ((void *)andd) + andd->header.length) {
752                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
753                         acpi_handle h;
754                         struct acpi_device *adev;
755
756                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
757                                                           andd->device_name,
758                                                           &h))) {
759                                 pr_err("Failed to find handle for ACPI object %s\n",
760                                        andd->device_name);
761                                 continue;
762                         }
763                         if (acpi_bus_get_device(h, &adev)) {
764                                 pr_err("Failed to get device for ACPI object %s\n",
765                                        andd->device_name);
766                                 continue;
767                         }
768                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
769                 }
770         }
771         return 0;
772 }
773
774 int __init dmar_dev_scope_init(void)
775 {
776         struct pci_dev *dev = NULL;
777         struct dmar_pci_notify_info *info;
778
779         if (dmar_dev_scope_status != 1)
780                 return dmar_dev_scope_status;
781
782         if (list_empty(&dmar_drhd_units)) {
783                 dmar_dev_scope_status = -ENODEV;
784         } else {
785                 dmar_dev_scope_status = 0;
786
787                 dmar_acpi_dev_scope_init();
788
789                 for_each_pci_dev(dev) {
790                         if (dev->is_virtfn)
791                                 continue;
792
793                         info = dmar_alloc_pci_notify_info(dev,
794                                         BUS_NOTIFY_ADD_DEVICE);
795                         if (!info) {
796                                 return dmar_dev_scope_status;
797                         } else {
798                                 dmar_pci_bus_add_dev(info);
799                                 dmar_free_pci_notify_info(info);
800                         }
801                 }
802
803                 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
804         }
805
806         return dmar_dev_scope_status;
807 }
808
809
810 int __init dmar_table_init(void)
811 {
812         static int dmar_table_initialized;
813         int ret;
814
815         if (dmar_table_initialized == 0) {
816                 ret = parse_dmar_table();
817                 if (ret < 0) {
818                         if (ret != -ENODEV)
819                                 pr_info("Parse DMAR table failure.\n");
820                 } else  if (list_empty(&dmar_drhd_units)) {
821                         pr_info("No DMAR devices found\n");
822                         ret = -ENODEV;
823                 }
824
825                 if (ret < 0)
826                         dmar_table_initialized = ret;
827                 else
828                         dmar_table_initialized = 1;
829         }
830
831         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
832 }
833
834 static void warn_invalid_dmar(u64 addr, const char *message)
835 {
836         WARN_TAINT_ONCE(
837                 1, TAINT_FIRMWARE_WORKAROUND,
838                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
839                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
840                 addr, message,
841                 dmi_get_system_info(DMI_BIOS_VENDOR),
842                 dmi_get_system_info(DMI_BIOS_VERSION),
843                 dmi_get_system_info(DMI_PRODUCT_VERSION));
844 }
845
846 static int __ref
847 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
848 {
849         struct acpi_dmar_hardware_unit *drhd;
850         void __iomem *addr;
851         u64 cap, ecap;
852
853         drhd = (void *)entry;
854         if (!drhd->address) {
855                 warn_invalid_dmar(0, "");
856                 return -EINVAL;
857         }
858
859         if (arg)
860                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
861         else
862                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
863         if (!addr) {
864                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
865                 return -EINVAL;
866         }
867
868         cap = dmar_readq(addr + DMAR_CAP_REG);
869         ecap = dmar_readq(addr + DMAR_ECAP_REG);
870
871         if (arg)
872                 iounmap(addr);
873         else
874                 early_iounmap(addr, VTD_PAGE_SIZE);
875
876         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
877                 warn_invalid_dmar(drhd->address, " returns all ones");
878                 return -EINVAL;
879         }
880
881         return 0;
882 }
883
884 int __init detect_intel_iommu(void)
885 {
886         int ret;
887         struct dmar_res_callback validate_drhd_cb = {
888                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
889                 .ignore_unhandled = true,
890         };
891
892         down_write(&dmar_global_lock);
893         ret = dmar_table_detect();
894         if (ret)
895                 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
896                                             &validate_drhd_cb);
897         if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
898                 iommu_detected = 1;
899                 /* Make sure ACS will be enabled */
900                 pci_request_acs();
901         }
902
903 #ifdef CONFIG_X86
904         if (ret)
905                 x86_init.iommu.iommu_init = intel_iommu_init;
906 #endif
907
908         if (dmar_tbl) {
909                 acpi_put_table(dmar_tbl);
910                 dmar_tbl = NULL;
911         }
912         up_write(&dmar_global_lock);
913
914         return ret ? 1 : -ENODEV;
915 }
916
917
918 static void unmap_iommu(struct intel_iommu *iommu)
919 {
920         iounmap(iommu->reg);
921         release_mem_region(iommu->reg_phys, iommu->reg_size);
922 }
923
924 /**
925  * map_iommu: map the iommu's registers
926  * @iommu: the iommu to map
927  * @phys_addr: the physical address of the base resgister
928  *
929  * Memory map the iommu's registers.  Start w/ a single page, and
930  * possibly expand if that turns out to be insufficent.
931  */
932 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
933 {
934         int map_size, err=0;
935
936         iommu->reg_phys = phys_addr;
937         iommu->reg_size = VTD_PAGE_SIZE;
938
939         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
940                 pr_err("Can't reserve memory\n");
941                 err = -EBUSY;
942                 goto out;
943         }
944
945         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
946         if (!iommu->reg) {
947                 pr_err("Can't map the region\n");
948                 err = -ENOMEM;
949                 goto release;
950         }
951
952         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
953         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
954
955         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
956                 err = -EINVAL;
957                 warn_invalid_dmar(phys_addr, " returns all ones");
958                 goto unmap;
959         }
960
961         /* the registers might be more than one page */
962         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
963                          cap_max_fault_reg_offset(iommu->cap));
964         map_size = VTD_PAGE_ALIGN(map_size);
965         if (map_size > iommu->reg_size) {
966                 iounmap(iommu->reg);
967                 release_mem_region(iommu->reg_phys, iommu->reg_size);
968                 iommu->reg_size = map_size;
969                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
970                                         iommu->name)) {
971                         pr_err("Can't reserve memory\n");
972                         err = -EBUSY;
973                         goto out;
974                 }
975                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
976                 if (!iommu->reg) {
977                         pr_err("Can't map the region\n");
978                         err = -ENOMEM;
979                         goto release;
980                 }
981         }
982         err = 0;
983         goto out;
984
985 unmap:
986         iounmap(iommu->reg);
987 release:
988         release_mem_region(iommu->reg_phys, iommu->reg_size);
989 out:
990         return err;
991 }
992
993 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
994 {
995         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
996                                             DMAR_UNITS_SUPPORTED);
997         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
998                 iommu->seq_id = -1;
999         } else {
1000                 set_bit(iommu->seq_id, dmar_seq_ids);
1001                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1002         }
1003
1004         return iommu->seq_id;
1005 }
1006
1007 static void dmar_free_seq_id(struct intel_iommu *iommu)
1008 {
1009         if (iommu->seq_id >= 0) {
1010                 clear_bit(iommu->seq_id, dmar_seq_ids);
1011                 iommu->seq_id = -1;
1012         }
1013 }
1014
1015 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1016 {
1017         struct intel_iommu *iommu;
1018         u32 ver, sts;
1019         int agaw = 0;
1020         int msagaw = 0;
1021         int err;
1022
1023         if (!drhd->reg_base_addr) {
1024                 warn_invalid_dmar(0, "");
1025                 return -EINVAL;
1026         }
1027
1028         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1029         if (!iommu)
1030                 return -ENOMEM;
1031
1032         if (dmar_alloc_seq_id(iommu) < 0) {
1033                 pr_err("Failed to allocate seq_id\n");
1034                 err = -ENOSPC;
1035                 goto error;
1036         }
1037
1038         err = map_iommu(iommu, drhd->reg_base_addr);
1039         if (err) {
1040                 pr_err("Failed to map %s\n", iommu->name);
1041                 goto error_free_seq_id;
1042         }
1043
1044         err = -EINVAL;
1045         agaw = iommu_calculate_agaw(iommu);
1046         if (agaw < 0) {
1047                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1048                         iommu->seq_id);
1049                 goto err_unmap;
1050         }
1051         msagaw = iommu_calculate_max_sagaw(iommu);
1052         if (msagaw < 0) {
1053                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1054                         iommu->seq_id);
1055                 goto err_unmap;
1056         }
1057         iommu->agaw = agaw;
1058         iommu->msagaw = msagaw;
1059         iommu->segment = drhd->segment;
1060
1061         iommu->node = -1;
1062
1063         ver = readl(iommu->reg + DMAR_VER_REG);
1064         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1065                 iommu->name,
1066                 (unsigned long long)drhd->reg_base_addr,
1067                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1068                 (unsigned long long)iommu->cap,
1069                 (unsigned long long)iommu->ecap);
1070
1071         /* Reflect status in gcmd */
1072         sts = readl(iommu->reg + DMAR_GSTS_REG);
1073         if (sts & DMA_GSTS_IRES)
1074                 iommu->gcmd |= DMA_GCMD_IRE;
1075         if (sts & DMA_GSTS_TES)
1076                 iommu->gcmd |= DMA_GCMD_TE;
1077         if (sts & DMA_GSTS_QIES)
1078                 iommu->gcmd |= DMA_GCMD_QIE;
1079
1080         raw_spin_lock_init(&iommu->register_lock);
1081
1082         if (intel_iommu_enabled) {
1083                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1084                                              intel_iommu_groups,
1085                                              "%s", iommu->name);
1086                 if (err)
1087                         goto err_unmap;
1088
1089                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1090
1091                 err = iommu_device_register(&iommu->iommu);
1092                 if (err)
1093                         goto err_unmap;
1094         }
1095
1096         drhd->iommu = iommu;
1097
1098         return 0;
1099
1100 err_unmap:
1101         unmap_iommu(iommu);
1102 error_free_seq_id:
1103         dmar_free_seq_id(iommu);
1104 error:
1105         kfree(iommu);
1106         return err;
1107 }
1108
1109 static void free_iommu(struct intel_iommu *iommu)
1110 {
1111         if (intel_iommu_enabled) {
1112                 iommu_device_unregister(&iommu->iommu);
1113                 iommu_device_sysfs_remove(&iommu->iommu);
1114         }
1115
1116         if (iommu->irq) {
1117                 if (iommu->pr_irq) {
1118                         free_irq(iommu->pr_irq, iommu);
1119                         dmar_free_hwirq(iommu->pr_irq);
1120                         iommu->pr_irq = 0;
1121                 }
1122                 free_irq(iommu->irq, iommu);
1123                 dmar_free_hwirq(iommu->irq);
1124                 iommu->irq = 0;
1125         }
1126
1127         if (iommu->qi) {
1128                 free_page((unsigned long)iommu->qi->desc);
1129                 kfree(iommu->qi->desc_status);
1130                 kfree(iommu->qi);
1131         }
1132
1133         if (iommu->reg)
1134                 unmap_iommu(iommu);
1135
1136         dmar_free_seq_id(iommu);
1137         kfree(iommu);
1138 }
1139
1140 /*
1141  * Reclaim all the submitted descriptors which have completed its work.
1142  */
1143 static inline void reclaim_free_desc(struct q_inval *qi)
1144 {
1145         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1146                qi->desc_status[qi->free_tail] == QI_ABORT) {
1147                 qi->desc_status[qi->free_tail] = QI_FREE;
1148                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1149                 qi->free_cnt++;
1150         }
1151 }
1152
1153 static int qi_check_fault(struct intel_iommu *iommu, int index)
1154 {
1155         u32 fault;
1156         int head, tail;
1157         struct q_inval *qi = iommu->qi;
1158         int wait_index = (index + 1) % QI_LENGTH;
1159
1160         if (qi->desc_status[wait_index] == QI_ABORT)
1161                 return -EAGAIN;
1162
1163         fault = readl(iommu->reg + DMAR_FSTS_REG);
1164
1165         /*
1166          * If IQE happens, the head points to the descriptor associated
1167          * with the error. No new descriptors are fetched until the IQE
1168          * is cleared.
1169          */
1170         if (fault & DMA_FSTS_IQE) {
1171                 head = readl(iommu->reg + DMAR_IQH_REG);
1172                 if ((head >> DMAR_IQ_SHIFT) == index) {
1173                         pr_err("VT-d detected invalid descriptor: "
1174                                 "low=%llx, high=%llx\n",
1175                                 (unsigned long long)qi->desc[index].low,
1176                                 (unsigned long long)qi->desc[index].high);
1177                         memcpy(&qi->desc[index], &qi->desc[wait_index],
1178                                         sizeof(struct qi_desc));
1179                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1180                         return -EINVAL;
1181                 }
1182         }
1183
1184         /*
1185          * If ITE happens, all pending wait_desc commands are aborted.
1186          * No new descriptors are fetched until the ITE is cleared.
1187          */
1188         if (fault & DMA_FSTS_ITE) {
1189                 head = readl(iommu->reg + DMAR_IQH_REG);
1190                 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1191                 head |= 1;
1192                 tail = readl(iommu->reg + DMAR_IQT_REG);
1193                 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1194
1195                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1196
1197                 do {
1198                         if (qi->desc_status[head] == QI_IN_USE)
1199                                 qi->desc_status[head] = QI_ABORT;
1200                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1201                 } while (head != tail);
1202
1203                 if (qi->desc_status[wait_index] == QI_ABORT)
1204                         return -EAGAIN;
1205         }
1206
1207         if (fault & DMA_FSTS_ICE)
1208                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1209
1210         return 0;
1211 }
1212
1213 /*
1214  * Submit the queued invalidation descriptor to the remapping
1215  * hardware unit and wait for its completion.
1216  */
1217 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1218 {
1219         int rc;
1220         struct q_inval *qi = iommu->qi;
1221         struct qi_desc *hw, wait_desc;
1222         int wait_index, index;
1223         unsigned long flags;
1224
1225         if (!qi)
1226                 return 0;
1227
1228         hw = qi->desc;
1229
1230 restart:
1231         rc = 0;
1232
1233         raw_spin_lock_irqsave(&qi->q_lock, flags);
1234         while (qi->free_cnt < 3) {
1235                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1236                 cpu_relax();
1237                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1238         }
1239
1240         index = qi->free_head;
1241         wait_index = (index + 1) % QI_LENGTH;
1242
1243         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1244
1245         hw[index] = *desc;
1246
1247         wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1248                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1249         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1250
1251         hw[wait_index] = wait_desc;
1252
1253         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1254         qi->free_cnt -= 2;
1255
1256         /*
1257          * update the HW tail register indicating the presence of
1258          * new descriptors.
1259          */
1260         writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1261
1262         while (qi->desc_status[wait_index] != QI_DONE) {
1263                 /*
1264                  * We will leave the interrupts disabled, to prevent interrupt
1265                  * context to queue another cmd while a cmd is already submitted
1266                  * and waiting for completion on this cpu. This is to avoid
1267                  * a deadlock where the interrupt context can wait indefinitely
1268                  * for free slots in the queue.
1269                  */
1270                 rc = qi_check_fault(iommu, index);
1271                 if (rc)
1272                         break;
1273
1274                 raw_spin_unlock(&qi->q_lock);
1275                 cpu_relax();
1276                 raw_spin_lock(&qi->q_lock);
1277         }
1278
1279         qi->desc_status[index] = QI_DONE;
1280
1281         reclaim_free_desc(qi);
1282         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1283
1284         if (rc == -EAGAIN)
1285                 goto restart;
1286
1287         return rc;
1288 }
1289
1290 /*
1291  * Flush the global interrupt entry cache.
1292  */
1293 void qi_global_iec(struct intel_iommu *iommu)
1294 {
1295         struct qi_desc desc;
1296
1297         desc.low = QI_IEC_TYPE;
1298         desc.high = 0;
1299
1300         /* should never fail */
1301         qi_submit_sync(&desc, iommu);
1302 }
1303
1304 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1305                       u64 type)
1306 {
1307         struct qi_desc desc;
1308
1309         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1310                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1311         desc.high = 0;
1312
1313         qi_submit_sync(&desc, iommu);
1314 }
1315
1316 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1317                     unsigned int size_order, u64 type)
1318 {
1319         u8 dw = 0, dr = 0;
1320
1321         struct qi_desc desc;
1322         int ih = 0;
1323
1324         if (cap_write_drain(iommu->cap))
1325                 dw = 1;
1326
1327         if (cap_read_drain(iommu->cap))
1328                 dr = 1;
1329
1330         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1331                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1332         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1333                 | QI_IOTLB_AM(size_order);
1334
1335         qi_submit_sync(&desc, iommu);
1336 }
1337
1338 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1339                         u64 addr, unsigned mask)
1340 {
1341         struct qi_desc desc;
1342
1343         if (mask) {
1344                 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1345                 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1346                 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1347         } else
1348                 desc.high = QI_DEV_IOTLB_ADDR(addr);
1349
1350         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1351                 qdep = 0;
1352
1353         desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1354                    QI_DIOTLB_TYPE;
1355
1356         qi_submit_sync(&desc, iommu);
1357 }
1358
1359 /*
1360  * Disable Queued Invalidation interface.
1361  */
1362 void dmar_disable_qi(struct intel_iommu *iommu)
1363 {
1364         unsigned long flags;
1365         u32 sts;
1366         cycles_t start_time = get_cycles();
1367
1368         if (!ecap_qis(iommu->ecap))
1369                 return;
1370
1371         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1372
1373         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1374         if (!(sts & DMA_GSTS_QIES))
1375                 goto end;
1376
1377         /*
1378          * Give a chance to HW to complete the pending invalidation requests.
1379          */
1380         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1381                 readl(iommu->reg + DMAR_IQH_REG)) &&
1382                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1383                 cpu_relax();
1384
1385         iommu->gcmd &= ~DMA_GCMD_QIE;
1386         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1387
1388         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1389                       !(sts & DMA_GSTS_QIES), sts);
1390 end:
1391         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1392 }
1393
1394 /*
1395  * Enable queued invalidation.
1396  */
1397 static void __dmar_enable_qi(struct intel_iommu *iommu)
1398 {
1399         u32 sts;
1400         unsigned long flags;
1401         struct q_inval *qi = iommu->qi;
1402
1403         qi->free_head = qi->free_tail = 0;
1404         qi->free_cnt = QI_LENGTH;
1405
1406         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1407
1408         /* write zero to the tail reg */
1409         writel(0, iommu->reg + DMAR_IQT_REG);
1410
1411         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1412
1413         iommu->gcmd |= DMA_GCMD_QIE;
1414         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1415
1416         /* Make sure hardware complete it */
1417         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1418
1419         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1420 }
1421
1422 /*
1423  * Enable Queued Invalidation interface. This is a must to support
1424  * interrupt-remapping. Also used by DMA-remapping, which replaces
1425  * register based IOTLB invalidation.
1426  */
1427 int dmar_enable_qi(struct intel_iommu *iommu)
1428 {
1429         struct q_inval *qi;
1430         struct page *desc_page;
1431
1432         if (!ecap_qis(iommu->ecap))
1433                 return -ENOENT;
1434
1435         /*
1436          * queued invalidation is already setup and enabled.
1437          */
1438         if (iommu->qi)
1439                 return 0;
1440
1441         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1442         if (!iommu->qi)
1443                 return -ENOMEM;
1444
1445         qi = iommu->qi;
1446
1447
1448         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1449         if (!desc_page) {
1450                 kfree(qi);
1451                 iommu->qi = NULL;
1452                 return -ENOMEM;
1453         }
1454
1455         qi->desc = page_address(desc_page);
1456
1457         qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1458         if (!qi->desc_status) {
1459                 free_page((unsigned long) qi->desc);
1460                 kfree(qi);
1461                 iommu->qi = NULL;
1462                 return -ENOMEM;
1463         }
1464
1465         raw_spin_lock_init(&qi->q_lock);
1466
1467         __dmar_enable_qi(iommu);
1468
1469         return 0;
1470 }
1471
1472 /* iommu interrupt handling. Most stuff are MSI-like. */
1473
1474 enum faulttype {
1475         DMA_REMAP,
1476         INTR_REMAP,
1477         UNKNOWN,
1478 };
1479
1480 static const char *dma_remap_fault_reasons[] =
1481 {
1482         "Software",
1483         "Present bit in root entry is clear",
1484         "Present bit in context entry is clear",
1485         "Invalid context entry",
1486         "Access beyond MGAW",
1487         "PTE Write access is not set",
1488         "PTE Read access is not set",
1489         "Next page table ptr is invalid",
1490         "Root table address invalid",
1491         "Context table ptr is invalid",
1492         "non-zero reserved fields in RTP",
1493         "non-zero reserved fields in CTP",
1494         "non-zero reserved fields in PTE",
1495         "PCE for translation request specifies blocking",
1496 };
1497
1498 static const char *irq_remap_fault_reasons[] =
1499 {
1500         "Detected reserved fields in the decoded interrupt-remapped request",
1501         "Interrupt index exceeded the interrupt-remapping table size",
1502         "Present field in the IRTE entry is clear",
1503         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1504         "Detected reserved fields in the IRTE entry",
1505         "Blocked a compatibility format interrupt request",
1506         "Blocked an interrupt request due to source-id verification failure",
1507 };
1508
1509 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1510 {
1511         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1512                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1513                 *fault_type = INTR_REMAP;
1514                 return irq_remap_fault_reasons[fault_reason - 0x20];
1515         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1516                 *fault_type = DMA_REMAP;
1517                 return dma_remap_fault_reasons[fault_reason];
1518         } else {
1519                 *fault_type = UNKNOWN;
1520                 return "Unknown";
1521         }
1522 }
1523
1524
1525 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1526 {
1527         if (iommu->irq == irq)
1528                 return DMAR_FECTL_REG;
1529         else if (iommu->pr_irq == irq)
1530                 return DMAR_PECTL_REG;
1531         else
1532                 BUG();
1533 }
1534
1535 void dmar_msi_unmask(struct irq_data *data)
1536 {
1537         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1538         int reg = dmar_msi_reg(iommu, data->irq);
1539         unsigned long flag;
1540
1541         /* unmask it */
1542         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1543         writel(0, iommu->reg + reg);
1544         /* Read a reg to force flush the post write */
1545         readl(iommu->reg + reg);
1546         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1547 }
1548
1549 void dmar_msi_mask(struct irq_data *data)
1550 {
1551         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1552         int reg = dmar_msi_reg(iommu, data->irq);
1553         unsigned long flag;
1554
1555         /* mask it */
1556         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1557         writel(DMA_FECTL_IM, iommu->reg + reg);
1558         /* Read a reg to force flush the post write */
1559         readl(iommu->reg + reg);
1560         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1561 }
1562
1563 void dmar_msi_write(int irq, struct msi_msg *msg)
1564 {
1565         struct intel_iommu *iommu = irq_get_handler_data(irq);
1566         int reg = dmar_msi_reg(iommu, irq);
1567         unsigned long flag;
1568
1569         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1570         writel(msg->data, iommu->reg + reg + 4);
1571         writel(msg->address_lo, iommu->reg + reg + 8);
1572         writel(msg->address_hi, iommu->reg + reg + 12);
1573         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1574 }
1575
1576 void dmar_msi_read(int irq, struct msi_msg *msg)
1577 {
1578         struct intel_iommu *iommu = irq_get_handler_data(irq);
1579         int reg = dmar_msi_reg(iommu, irq);
1580         unsigned long flag;
1581
1582         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1583         msg->data = readl(iommu->reg + reg + 4);
1584         msg->address_lo = readl(iommu->reg + reg + 8);
1585         msg->address_hi = readl(iommu->reg + reg + 12);
1586         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1587 }
1588
1589 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1590                 u8 fault_reason, u16 source_id, unsigned long long addr)
1591 {
1592         const char *reason;
1593         int fault_type;
1594
1595         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1596
1597         if (fault_type == INTR_REMAP)
1598                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1599                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1600                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1601                         fault_reason, reason);
1602         else
1603                 pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1604                        type ? "DMA Read" : "DMA Write",
1605                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1606                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1607         return 0;
1608 }
1609
1610 #define PRIMARY_FAULT_REG_LEN (16)
1611 irqreturn_t dmar_fault(int irq, void *dev_id)
1612 {
1613         struct intel_iommu *iommu = dev_id;
1614         int reg, fault_index;
1615         u32 fault_status;
1616         unsigned long flag;
1617         bool ratelimited;
1618         static DEFINE_RATELIMIT_STATE(rs,
1619                                       DEFAULT_RATELIMIT_INTERVAL,
1620                                       DEFAULT_RATELIMIT_BURST);
1621
1622         /* Disable printing, simply clear the fault when ratelimited */
1623         ratelimited = !__ratelimit(&rs);
1624
1625         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1626         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1627         if (fault_status && !ratelimited)
1628                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1629
1630         /* TBD: ignore advanced fault log currently */
1631         if (!(fault_status & DMA_FSTS_PPF))
1632                 goto unlock_exit;
1633
1634         fault_index = dma_fsts_fault_record_index(fault_status);
1635         reg = cap_fault_reg_offset(iommu->cap);
1636         while (1) {
1637                 u8 fault_reason;
1638                 u16 source_id;
1639                 u64 guest_addr;
1640                 int type;
1641                 u32 data;
1642
1643                 /* highest 32 bits */
1644                 data = readl(iommu->reg + reg +
1645                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1646                 if (!(data & DMA_FRCD_F))
1647                         break;
1648
1649                 if (!ratelimited) {
1650                         fault_reason = dma_frcd_fault_reason(data);
1651                         type = dma_frcd_type(data);
1652
1653                         data = readl(iommu->reg + reg +
1654                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1655                         source_id = dma_frcd_source_id(data);
1656
1657                         guest_addr = dmar_readq(iommu->reg + reg +
1658                                         fault_index * PRIMARY_FAULT_REG_LEN);
1659                         guest_addr = dma_frcd_page_addr(guest_addr);
1660                 }
1661
1662                 /* clear the fault */
1663                 writel(DMA_FRCD_F, iommu->reg + reg +
1664                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1665
1666                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1667
1668                 if (!ratelimited)
1669                         dmar_fault_do_one(iommu, type, fault_reason,
1670                                           source_id, guest_addr);
1671
1672                 fault_index++;
1673                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1674                         fault_index = 0;
1675                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1676         }
1677
1678         writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1679
1680 unlock_exit:
1681         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1682         return IRQ_HANDLED;
1683 }
1684
1685 int dmar_set_interrupt(struct intel_iommu *iommu)
1686 {
1687         int irq, ret;
1688
1689         /*
1690          * Check if the fault interrupt is already initialized.
1691          */
1692         if (iommu->irq)
1693                 return 0;
1694
1695         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1696         if (irq > 0) {
1697                 iommu->irq = irq;
1698         } else {
1699                 pr_err("No free IRQ vectors\n");
1700                 return -EINVAL;
1701         }
1702
1703         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1704         if (ret)
1705                 pr_err("Can't request irq\n");
1706         return ret;
1707 }
1708
1709 int __init enable_drhd_fault_handling(void)
1710 {
1711         struct dmar_drhd_unit *drhd;
1712         struct intel_iommu *iommu;
1713
1714         /*
1715          * Enable fault control interrupt.
1716          */
1717         for_each_iommu(iommu, drhd) {
1718                 u32 fault_status;
1719                 int ret = dmar_set_interrupt(iommu);
1720
1721                 if (ret) {
1722                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1723                                (unsigned long long)drhd->reg_base_addr, ret);
1724                         return -1;
1725                 }
1726
1727                 /*
1728                  * Clear any previous faults.
1729                  */
1730                 dmar_fault(iommu->irq, iommu);
1731                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1732                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1733         }
1734
1735         return 0;
1736 }
1737
1738 /*
1739  * Re-enable Queued Invalidation interface.
1740  */
1741 int dmar_reenable_qi(struct intel_iommu *iommu)
1742 {
1743         if (!ecap_qis(iommu->ecap))
1744                 return -ENOENT;
1745
1746         if (!iommu->qi)
1747                 return -ENOENT;
1748
1749         /*
1750          * First disable queued invalidation.
1751          */
1752         dmar_disable_qi(iommu);
1753         /*
1754          * Then enable queued invalidation again. Since there is no pending
1755          * invalidation requests now, it's safe to re-enable queued
1756          * invalidation.
1757          */
1758         __dmar_enable_qi(iommu);
1759
1760         return 0;
1761 }
1762
1763 /*
1764  * Check interrupt remapping support in DMAR table description.
1765  */
1766 int __init dmar_ir_support(void)
1767 {
1768         struct acpi_table_dmar *dmar;
1769         dmar = (struct acpi_table_dmar *)dmar_tbl;
1770         if (!dmar)
1771                 return 0;
1772         return dmar->flags & 0x1;
1773 }
1774
1775 /* Check whether DMAR units are in use */
1776 static inline bool dmar_in_use(void)
1777 {
1778         return irq_remapping_enabled || intel_iommu_enabled;
1779 }
1780
1781 static int __init dmar_free_unused_resources(void)
1782 {
1783         struct dmar_drhd_unit *dmaru, *dmaru_n;
1784
1785         if (dmar_in_use())
1786                 return 0;
1787
1788         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1789                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1790
1791         down_write(&dmar_global_lock);
1792         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1793                 list_del(&dmaru->list);
1794                 dmar_free_drhd(dmaru);
1795         }
1796         up_write(&dmar_global_lock);
1797
1798         return 0;
1799 }
1800
1801 late_initcall(dmar_free_unused_resources);
1802 IOMMU_INIT_POST(detect_intel_iommu);
1803
1804 /*
1805  * DMAR Hotplug Support
1806  * For more details, please refer to Intel(R) Virtualization Technology
1807  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1808  * "Remapping Hardware Unit Hot Plug".
1809  */
1810 static u8 dmar_hp_uuid[] = {
1811         /* 0000 */    0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1812         /* 0008 */    0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1813 };
1814
1815 /*
1816  * Currently there's only one revision and BIOS will not check the revision id,
1817  * so use 0 for safety.
1818  */
1819 #define DMAR_DSM_REV_ID                 0
1820 #define DMAR_DSM_FUNC_DRHD              1
1821 #define DMAR_DSM_FUNC_ATSR              2
1822 #define DMAR_DSM_FUNC_RHSA              3
1823
1824 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1825 {
1826         return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1827 }
1828
1829 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1830                                   dmar_res_handler_t handler, void *arg)
1831 {
1832         int ret = -ENODEV;
1833         union acpi_object *obj;
1834         struct acpi_dmar_header *start;
1835         struct dmar_res_callback callback;
1836         static int res_type[] = {
1837                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1838                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1839                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1840         };
1841
1842         if (!dmar_detect_dsm(handle, func))
1843                 return 0;
1844
1845         obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1846                                       func, NULL, ACPI_TYPE_BUFFER);
1847         if (!obj)
1848                 return -ENODEV;
1849
1850         memset(&callback, 0, sizeof(callback));
1851         callback.cb[res_type[func]] = handler;
1852         callback.arg[res_type[func]] = arg;
1853         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1854         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1855
1856         ACPI_FREE(obj);
1857
1858         return ret;
1859 }
1860
1861 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1862 {
1863         int ret;
1864         struct dmar_drhd_unit *dmaru;
1865
1866         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1867         if (!dmaru)
1868                 return -ENODEV;
1869
1870         ret = dmar_ir_hotplug(dmaru, true);
1871         if (ret == 0)
1872                 ret = dmar_iommu_hotplug(dmaru, true);
1873
1874         return ret;
1875 }
1876
1877 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1878 {
1879         int i, ret;
1880         struct device *dev;
1881         struct dmar_drhd_unit *dmaru;
1882
1883         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1884         if (!dmaru)
1885                 return 0;
1886
1887         /*
1888          * All PCI devices managed by this unit should have been destroyed.
1889          */
1890         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1891                 for_each_active_dev_scope(dmaru->devices,
1892                                           dmaru->devices_cnt, i, dev)
1893                         return -EBUSY;
1894         }
1895
1896         ret = dmar_ir_hotplug(dmaru, false);
1897         if (ret == 0)
1898                 ret = dmar_iommu_hotplug(dmaru, false);
1899
1900         return ret;
1901 }
1902
1903 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1904 {
1905         struct dmar_drhd_unit *dmaru;
1906
1907         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1908         if (dmaru) {
1909                 list_del_rcu(&dmaru->list);
1910                 synchronize_rcu();
1911                 dmar_free_drhd(dmaru);
1912         }
1913
1914         return 0;
1915 }
1916
1917 static int dmar_hotplug_insert(acpi_handle handle)
1918 {
1919         int ret;
1920         int drhd_count = 0;
1921
1922         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1923                                      &dmar_validate_one_drhd, (void *)1);
1924         if (ret)
1925                 goto out;
1926
1927         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1928                                      &dmar_parse_one_drhd, (void *)&drhd_count);
1929         if (ret == 0 && drhd_count == 0) {
1930                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1931                 goto out;
1932         } else if (ret) {
1933                 goto release_drhd;
1934         }
1935
1936         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1937                                      &dmar_parse_one_rhsa, NULL);
1938         if (ret)
1939                 goto release_drhd;
1940
1941         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1942                                      &dmar_parse_one_atsr, NULL);
1943         if (ret)
1944                 goto release_atsr;
1945
1946         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1947                                      &dmar_hp_add_drhd, NULL);
1948         if (!ret)
1949                 return 0;
1950
1951         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1952                                &dmar_hp_remove_drhd, NULL);
1953 release_atsr:
1954         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1955                                &dmar_release_one_atsr, NULL);
1956 release_drhd:
1957         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1958                                &dmar_hp_release_drhd, NULL);
1959 out:
1960         return ret;
1961 }
1962
1963 static int dmar_hotplug_remove(acpi_handle handle)
1964 {
1965         int ret;
1966
1967         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1968                                      &dmar_check_one_atsr, NULL);
1969         if (ret)
1970                 return ret;
1971
1972         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1973                                      &dmar_hp_remove_drhd, NULL);
1974         if (ret == 0) {
1975                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1976                                                &dmar_release_one_atsr, NULL));
1977                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1978                                                &dmar_hp_release_drhd, NULL));
1979         } else {
1980                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1981                                        &dmar_hp_add_drhd, NULL);
1982         }
1983
1984         return ret;
1985 }
1986
1987 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1988                                        void *context, void **retval)
1989 {
1990         acpi_handle *phdl = retval;
1991
1992         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1993                 *phdl = handle;
1994                 return AE_CTRL_TERMINATE;
1995         }
1996
1997         return AE_OK;
1998 }
1999
2000 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2001 {
2002         int ret;
2003         acpi_handle tmp = NULL;
2004         acpi_status status;
2005
2006         if (!dmar_in_use())
2007                 return 0;
2008
2009         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2010                 tmp = handle;
2011         } else {
2012                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2013                                              ACPI_UINT32_MAX,
2014                                              dmar_get_dsm_handle,
2015                                              NULL, NULL, &tmp);
2016                 if (ACPI_FAILURE(status)) {
2017                         pr_warn("Failed to locate _DSM method.\n");
2018                         return -ENXIO;
2019                 }
2020         }
2021         if (tmp == NULL)
2022                 return 0;
2023
2024         down_write(&dmar_global_lock);
2025         if (insert)
2026                 ret = dmar_hotplug_insert(tmp);
2027         else
2028                 ret = dmar_hotplug_remove(tmp);
2029         up_write(&dmar_global_lock);
2030
2031         return ret;
2032 }
2033
2034 int dmar_device_add(acpi_handle handle)
2035 {
2036         return dmar_device_hotplug(handle, true);
2037 }
2038
2039 int dmar_device_remove(acpi_handle handle)
2040 {
2041         return dmar_device_hotplug(handle, false);
2042 }