]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/iommu/exynos-iommu.c
cpufreq: intel_pstate: Add support for Gemini Lake
[karo-tx-linux.git] / drivers / iommu / exynos-iommu.c
1 /*
2  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50                           ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
59 #endif
60
61 /*
62  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63  * v5.0 introduced support for 36bit physical address space by shifting
64  * all page entry values by 4 bits.
65  * All SYSMMU controllers in the system support the address spaces of the same
66  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
67  * value (0 or 4).
68  */
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
72
73 static const sysmmu_pte_t *LV1_PROT;
74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
75         ((0 << 15) | (0 << 10)), /* no access */
76         ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
77         ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
78         ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
79 };
80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
81         (0 << 4), /* no access */
82         (1 << 4), /* IOMMU_READ only */
83         (2 << 4), /* IOMMU_WRITE only */
84         (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
85 };
86
87 static const sysmmu_pte_t *LV2_PROT;
88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
89         ((0 << 9) | (0 << 4)), /* no access */
90         ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
91         ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
92         ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
93 };
94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
95         (0 << 2), /* no access */
96         (1 << 2), /* IOMMU_READ only */
97         (2 << 2), /* IOMMU_WRITE only */
98         (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
99 };
100
101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
102
103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
105 #define section_offs(iova) (iova & (SECT_SIZE - 1))
106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
110
111 #define NUM_LV1ENTRIES 4096
112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
113
114 static u32 lv1ent_offset(sysmmu_iova_t iova)
115 {
116         return iova >> SECT_ORDER;
117 }
118
119 static u32 lv2ent_offset(sysmmu_iova_t iova)
120 {
121         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
122 }
123
124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
126
127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
129
130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
134
135 #define CTRL_ENABLE     0x5
136 #define CTRL_BLOCK      0x7
137 #define CTRL_DISABLE    0x0
138
139 #define CFG_LRU         0x1
140 #define CFG_EAP         (1 << 2)
141 #define CFG_QOS(n)      ((n & 0xF) << 7)
142 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
143 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
144 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
145
146 /* common registers */
147 #define REG_MMU_CTRL            0x000
148 #define REG_MMU_CFG             0x004
149 #define REG_MMU_STATUS          0x008
150 #define REG_MMU_VERSION         0x034
151
152 #define MMU_MAJ_VER(val)        ((val) >> 7)
153 #define MMU_MIN_VER(val)        ((val) & 0x7F)
154 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
155
156 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
157
158 /* v1.x - v3.x registers */
159 #define REG_MMU_FLUSH           0x00C
160 #define REG_MMU_FLUSH_ENTRY     0x010
161 #define REG_PT_BASE_ADDR        0x014
162 #define REG_INT_STATUS          0x018
163 #define REG_INT_CLEAR           0x01C
164
165 #define REG_PAGE_FAULT_ADDR     0x024
166 #define REG_AW_FAULT_ADDR       0x028
167 #define REG_AR_FAULT_ADDR       0x02C
168 #define REG_DEFAULT_SLAVE_ADDR  0x030
169
170 /* v5.x registers */
171 #define REG_V5_PT_BASE_PFN      0x00C
172 #define REG_V5_MMU_FLUSH_ALL    0x010
173 #define REG_V5_MMU_FLUSH_ENTRY  0x014
174 #define REG_V5_INT_STATUS       0x060
175 #define REG_V5_INT_CLEAR        0x064
176 #define REG_V5_FAULT_AR_VA      0x070
177 #define REG_V5_FAULT_AW_VA      0x080
178
179 #define has_sysmmu(dev)         (dev->archdata.iommu != NULL)
180
181 static struct device *dma_dev;
182 static struct kmem_cache *lv2table_kmem_cache;
183 static sysmmu_pte_t *zero_lv2_table;
184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
185
186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
187 {
188         return pgtable + lv1ent_offset(iova);
189 }
190
191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
192 {
193         return (sysmmu_pte_t *)phys_to_virt(
194                                 lv2table_base(sent)) + lv2ent_offset(iova);
195 }
196
197 /*
198  * IOMMU fault information register
199  */
200 struct sysmmu_fault_info {
201         unsigned int bit;       /* bit number in STATUS register */
202         unsigned short addr_reg; /* register to read VA fault address */
203         const char *name;       /* human readable fault name */
204         unsigned int type;      /* fault type for report_iommu_fault */
205 };
206
207 static const struct sysmmu_fault_info sysmmu_faults[] = {
208         { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
209         { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
210         { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
211         { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
212         { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
213         { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214         { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
215         { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
216 };
217
218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
219         { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
220         { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
221         { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
222         { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
223         { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
224         { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
225         { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
226         { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
227         { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
228         { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
229 };
230
231 /*
232  * This structure is attached to dev.archdata.iommu of the master device
233  * on device add, contains a list of SYSMMU controllers defined by device tree,
234  * which are bound to given master device. It is usually referenced by 'owner'
235  * pointer.
236 */
237 struct exynos_iommu_owner {
238         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
239         struct iommu_domain *domain;    /* domain this device is attached */
240         struct mutex rpm_lock;          /* for runtime pm of all sysmmus */
241 };
242
243 /*
244  * This structure exynos specific generalization of struct iommu_domain.
245  * It contains list of SYSMMU controllers from all master devices, which has
246  * been attached to this domain and page tables of IO address space defined by
247  * it. It is usually referenced by 'domain' pointer.
248  */
249 struct exynos_iommu_domain {
250         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
252         short *lv2entcnt;       /* free lv2 entry counter for each section */
253         spinlock_t lock;        /* lock for modyfying list of clients */
254         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
255         struct iommu_domain domain; /* generic domain data structure */
256 };
257
258 /*
259  * This structure hold all data of a single SYSMMU controller, this includes
260  * hw resources like registers and clocks, pointers and list nodes to connect
261  * it to all other structures, internal state and parameters read from device
262  * tree. It is usually referenced by 'data' pointer.
263  */
264 struct sysmmu_drvdata {
265         struct device *sysmmu;          /* SYSMMU controller device */
266         struct device *master;          /* master device (owner) */
267         void __iomem *sfrbase;          /* our registers */
268         struct clk *clk;                /* SYSMMU's clock */
269         struct clk *aclk;               /* SYSMMU's aclk clock */
270         struct clk *pclk;               /* SYSMMU's pclk clock */
271         struct clk *clk_master;         /* master's device clock */
272         spinlock_t lock;                /* lock for modyfying state */
273         bool active;                    /* current status */
274         struct exynos_iommu_domain *domain; /* domain we belong to */
275         struct list_head domain_node;   /* node for domain clients list */
276         struct list_head owner_node;    /* node for owner controllers list */
277         phys_addr_t pgtable;            /* assigned page table structure */
278         unsigned int version;           /* our version */
279
280         struct iommu_device iommu;      /* IOMMU core handle */
281 };
282
283 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
284 {
285         return container_of(dom, struct exynos_iommu_domain, domain);
286 }
287
288 static void sysmmu_unblock(struct sysmmu_drvdata *data)
289 {
290         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
291 }
292
293 static bool sysmmu_block(struct sysmmu_drvdata *data)
294 {
295         int i = 120;
296
297         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
298         while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
299                 --i;
300
301         if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
302                 sysmmu_unblock(data);
303                 return false;
304         }
305
306         return true;
307 }
308
309 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
310 {
311         if (MMU_MAJ_VER(data->version) < 5)
312                 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
313         else
314                 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
315 }
316
317 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
318                                 sysmmu_iova_t iova, unsigned int num_inv)
319 {
320         unsigned int i;
321
322         for (i = 0; i < num_inv; i++) {
323                 if (MMU_MAJ_VER(data->version) < 5)
324                         writel((iova & SPAGE_MASK) | 1,
325                                      data->sfrbase + REG_MMU_FLUSH_ENTRY);
326                 else
327                         writel((iova & SPAGE_MASK) | 1,
328                                      data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
329                 iova += SPAGE_SIZE;
330         }
331 }
332
333 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
334 {
335         if (MMU_MAJ_VER(data->version) < 5)
336                 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
337         else
338                 writel(pgd >> PAGE_SHIFT,
339                              data->sfrbase + REG_V5_PT_BASE_PFN);
340
341         __sysmmu_tlb_invalidate(data);
342 }
343
344 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
345 {
346         BUG_ON(clk_prepare_enable(data->clk_master));
347         BUG_ON(clk_prepare_enable(data->clk));
348         BUG_ON(clk_prepare_enable(data->pclk));
349         BUG_ON(clk_prepare_enable(data->aclk));
350 }
351
352 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
353 {
354         clk_disable_unprepare(data->aclk);
355         clk_disable_unprepare(data->pclk);
356         clk_disable_unprepare(data->clk);
357         clk_disable_unprepare(data->clk_master);
358 }
359
360 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
361 {
362         u32 ver;
363
364         __sysmmu_enable_clocks(data);
365
366         ver = readl(data->sfrbase + REG_MMU_VERSION);
367
368         /* controllers on some SoCs don't report proper version */
369         if (ver == 0x80000001u)
370                 data->version = MAKE_MMU_VER(1, 0);
371         else
372                 data->version = MMU_RAW_VER(ver);
373
374         dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
375                 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
376
377         __sysmmu_disable_clocks(data);
378 }
379
380 static void show_fault_information(struct sysmmu_drvdata *data,
381                                    const struct sysmmu_fault_info *finfo,
382                                    sysmmu_iova_t fault_addr)
383 {
384         sysmmu_pte_t *ent;
385
386         dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
387                 dev_name(data->master), finfo->name, fault_addr);
388         dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
389         ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
390         dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
391         if (lv1ent_page(ent)) {
392                 ent = page_entry(ent, fault_addr);
393                 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
394         }
395 }
396
397 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
398 {
399         /* SYSMMU is in blocked state when interrupt occurred. */
400         struct sysmmu_drvdata *data = dev_id;
401         const struct sysmmu_fault_info *finfo;
402         unsigned int i, n, itype;
403         sysmmu_iova_t fault_addr = -1;
404         unsigned short reg_status, reg_clear;
405         int ret = -ENOSYS;
406
407         WARN_ON(!data->active);
408
409         if (MMU_MAJ_VER(data->version) < 5) {
410                 reg_status = REG_INT_STATUS;
411                 reg_clear = REG_INT_CLEAR;
412                 finfo = sysmmu_faults;
413                 n = ARRAY_SIZE(sysmmu_faults);
414         } else {
415                 reg_status = REG_V5_INT_STATUS;
416                 reg_clear = REG_V5_INT_CLEAR;
417                 finfo = sysmmu_v5_faults;
418                 n = ARRAY_SIZE(sysmmu_v5_faults);
419         }
420
421         spin_lock(&data->lock);
422
423         clk_enable(data->clk_master);
424
425         itype = __ffs(readl(data->sfrbase + reg_status));
426         for (i = 0; i < n; i++, finfo++)
427                 if (finfo->bit == itype)
428                         break;
429         /* unknown/unsupported fault */
430         BUG_ON(i == n);
431
432         /* print debug message */
433         fault_addr = readl(data->sfrbase + finfo->addr_reg);
434         show_fault_information(data, finfo, fault_addr);
435
436         if (data->domain)
437                 ret = report_iommu_fault(&data->domain->domain,
438                                         data->master, fault_addr, finfo->type);
439         /* fault is not recovered by fault handler */
440         BUG_ON(ret != 0);
441
442         writel(1 << itype, data->sfrbase + reg_clear);
443
444         sysmmu_unblock(data);
445
446         clk_disable(data->clk_master);
447
448         spin_unlock(&data->lock);
449
450         return IRQ_HANDLED;
451 }
452
453 static void __sysmmu_disable(struct sysmmu_drvdata *data)
454 {
455         unsigned long flags;
456
457         clk_enable(data->clk_master);
458
459         spin_lock_irqsave(&data->lock, flags);
460         writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
461         writel(0, data->sfrbase + REG_MMU_CFG);
462         data->active = false;
463         spin_unlock_irqrestore(&data->lock, flags);
464
465         __sysmmu_disable_clocks(data);
466 }
467
468 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
469 {
470         unsigned int cfg;
471
472         if (data->version <= MAKE_MMU_VER(3, 1))
473                 cfg = CFG_LRU | CFG_QOS(15);
474         else if (data->version <= MAKE_MMU_VER(3, 2))
475                 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
476         else
477                 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
478
479         cfg |= CFG_EAP; /* enable access protection bits check */
480
481         writel(cfg, data->sfrbase + REG_MMU_CFG);
482 }
483
484 static void __sysmmu_enable(struct sysmmu_drvdata *data)
485 {
486         unsigned long flags;
487
488         __sysmmu_enable_clocks(data);
489
490         spin_lock_irqsave(&data->lock, flags);
491         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
492         __sysmmu_init_config(data);
493         __sysmmu_set_ptbase(data, data->pgtable);
494         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
495         data->active = true;
496         spin_unlock_irqrestore(&data->lock, flags);
497
498         /*
499          * SYSMMU driver keeps master's clock enabled only for the short
500          * time, while accessing the registers. For performing address
501          * translation during DMA transaction it relies on the client
502          * driver to enable it.
503          */
504         clk_disable(data->clk_master);
505 }
506
507 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
508                                             sysmmu_iova_t iova)
509 {
510         unsigned long flags;
511
512         spin_lock_irqsave(&data->lock, flags);
513         if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
514                 clk_enable(data->clk_master);
515                 __sysmmu_tlb_invalidate_entry(data, iova, 1);
516                 clk_disable(data->clk_master);
517         }
518         spin_unlock_irqrestore(&data->lock, flags);
519 }
520
521 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
522                                         sysmmu_iova_t iova, size_t size)
523 {
524         unsigned long flags;
525
526         spin_lock_irqsave(&data->lock, flags);
527         if (data->active) {
528                 unsigned int num_inv = 1;
529
530                 clk_enable(data->clk_master);
531
532                 /*
533                  * L2TLB invalidation required
534                  * 4KB page: 1 invalidation
535                  * 64KB page: 16 invalidations
536                  * 1MB page: 64 invalidations
537                  * because it is set-associative TLB
538                  * with 8-way and 64 sets.
539                  * 1MB page can be cached in one of all sets.
540                  * 64KB page can be one of 16 consecutive sets.
541                  */
542                 if (MMU_MAJ_VER(data->version) == 2)
543                         num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
544
545                 if (sysmmu_block(data)) {
546                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
547                         sysmmu_unblock(data);
548                 }
549                 clk_disable(data->clk_master);
550         }
551         spin_unlock_irqrestore(&data->lock, flags);
552 }
553
554 static struct iommu_ops exynos_iommu_ops;
555
556 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
557 {
558         int irq, ret;
559         struct device *dev = &pdev->dev;
560         struct sysmmu_drvdata *data;
561         struct resource *res;
562
563         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
564         if (!data)
565                 return -ENOMEM;
566
567         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
568         data->sfrbase = devm_ioremap_resource(dev, res);
569         if (IS_ERR(data->sfrbase))
570                 return PTR_ERR(data->sfrbase);
571
572         irq = platform_get_irq(pdev, 0);
573         if (irq <= 0) {
574                 dev_err(dev, "Unable to find IRQ resource\n");
575                 return irq;
576         }
577
578         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
579                                 dev_name(dev), data);
580         if (ret) {
581                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
582                 return ret;
583         }
584
585         data->clk = devm_clk_get(dev, "sysmmu");
586         if (PTR_ERR(data->clk) == -ENOENT)
587                 data->clk = NULL;
588         else if (IS_ERR(data->clk))
589                 return PTR_ERR(data->clk);
590
591         data->aclk = devm_clk_get(dev, "aclk");
592         if (PTR_ERR(data->aclk) == -ENOENT)
593                 data->aclk = NULL;
594         else if (IS_ERR(data->aclk))
595                 return PTR_ERR(data->aclk);
596
597         data->pclk = devm_clk_get(dev, "pclk");
598         if (PTR_ERR(data->pclk) == -ENOENT)
599                 data->pclk = NULL;
600         else if (IS_ERR(data->pclk))
601                 return PTR_ERR(data->pclk);
602
603         if (!data->clk && (!data->aclk || !data->pclk)) {
604                 dev_err(dev, "Failed to get device clock(s)!\n");
605                 return -ENOSYS;
606         }
607
608         data->clk_master = devm_clk_get(dev, "master");
609         if (PTR_ERR(data->clk_master) == -ENOENT)
610                 data->clk_master = NULL;
611         else if (IS_ERR(data->clk_master))
612                 return PTR_ERR(data->clk_master);
613
614         data->sysmmu = dev;
615         spin_lock_init(&data->lock);
616
617         ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
618                                      dev_name(data->sysmmu));
619         if (ret)
620                 return ret;
621
622         iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
623         iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
624
625         ret = iommu_device_register(&data->iommu);
626         if (ret)
627                 return ret;
628
629         platform_set_drvdata(pdev, data);
630
631         __sysmmu_get_version(data);
632         if (PG_ENT_SHIFT < 0) {
633                 if (MMU_MAJ_VER(data->version) < 5) {
634                         PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
635                         LV1_PROT = SYSMMU_LV1_PROT;
636                         LV2_PROT = SYSMMU_LV2_PROT;
637                 } else {
638                         PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
639                         LV1_PROT = SYSMMU_V5_LV1_PROT;
640                         LV2_PROT = SYSMMU_V5_LV2_PROT;
641                 }
642         }
643
644         pm_runtime_enable(dev);
645
646         return 0;
647 }
648
649 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
650 {
651         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
652         struct device *master = data->master;
653
654         if (master) {
655                 struct exynos_iommu_owner *owner = master->archdata.iommu;
656
657                 mutex_lock(&owner->rpm_lock);
658                 if (data->domain) {
659                         dev_dbg(data->sysmmu, "saving state\n");
660                         __sysmmu_disable(data);
661                 }
662                 mutex_unlock(&owner->rpm_lock);
663         }
664         return 0;
665 }
666
667 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
668 {
669         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
670         struct device *master = data->master;
671
672         if (master) {
673                 struct exynos_iommu_owner *owner = master->archdata.iommu;
674
675                 mutex_lock(&owner->rpm_lock);
676                 if (data->domain) {
677                         dev_dbg(data->sysmmu, "restoring state\n");
678                         __sysmmu_enable(data);
679                 }
680                 mutex_unlock(&owner->rpm_lock);
681         }
682         return 0;
683 }
684
685 static const struct dev_pm_ops sysmmu_pm_ops = {
686         SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
687         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
688                                 pm_runtime_force_resume)
689 };
690
691 static const struct of_device_id sysmmu_of_match[] __initconst = {
692         { .compatible   = "samsung,exynos-sysmmu", },
693         { },
694 };
695
696 static struct platform_driver exynos_sysmmu_driver __refdata = {
697         .probe  = exynos_sysmmu_probe,
698         .driver = {
699                 .name           = "exynos-sysmmu",
700                 .of_match_table = sysmmu_of_match,
701                 .pm             = &sysmmu_pm_ops,
702                 .suppress_bind_attrs = true,
703         }
704 };
705
706 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
707 {
708         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
709                                 DMA_TO_DEVICE);
710         *ent = cpu_to_le32(val);
711         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
712                                    DMA_TO_DEVICE);
713 }
714
715 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
716 {
717         struct exynos_iommu_domain *domain;
718         dma_addr_t handle;
719         int i;
720
721         /* Check if correct PTE offsets are initialized */
722         BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
723
724         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
725         if (!domain)
726                 return NULL;
727
728         if (type == IOMMU_DOMAIN_DMA) {
729                 if (iommu_get_dma_cookie(&domain->domain) != 0)
730                         goto err_pgtable;
731         } else if (type != IOMMU_DOMAIN_UNMANAGED) {
732                 goto err_pgtable;
733         }
734
735         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
736         if (!domain->pgtable)
737                 goto err_dma_cookie;
738
739         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
740         if (!domain->lv2entcnt)
741                 goto err_counter;
742
743         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
744         for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
745                 domain->pgtable[i + 0] = ZERO_LV2LINK;
746                 domain->pgtable[i + 1] = ZERO_LV2LINK;
747                 domain->pgtable[i + 2] = ZERO_LV2LINK;
748                 domain->pgtable[i + 3] = ZERO_LV2LINK;
749                 domain->pgtable[i + 4] = ZERO_LV2LINK;
750                 domain->pgtable[i + 5] = ZERO_LV2LINK;
751                 domain->pgtable[i + 6] = ZERO_LV2LINK;
752                 domain->pgtable[i + 7] = ZERO_LV2LINK;
753         }
754
755         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
756                                 DMA_TO_DEVICE);
757         /* For mapping page table entries we rely on dma == phys */
758         BUG_ON(handle != virt_to_phys(domain->pgtable));
759         if (dma_mapping_error(dma_dev, handle))
760                 goto err_lv2ent;
761
762         spin_lock_init(&domain->lock);
763         spin_lock_init(&domain->pgtablelock);
764         INIT_LIST_HEAD(&domain->clients);
765
766         domain->domain.geometry.aperture_start = 0;
767         domain->domain.geometry.aperture_end   = ~0UL;
768         domain->domain.geometry.force_aperture = true;
769
770         return &domain->domain;
771
772 err_lv2ent:
773         free_pages((unsigned long)domain->lv2entcnt, 1);
774 err_counter:
775         free_pages((unsigned long)domain->pgtable, 2);
776 err_dma_cookie:
777         if (type == IOMMU_DOMAIN_DMA)
778                 iommu_put_dma_cookie(&domain->domain);
779 err_pgtable:
780         kfree(domain);
781         return NULL;
782 }
783
784 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
785 {
786         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
787         struct sysmmu_drvdata *data, *next;
788         unsigned long flags;
789         int i;
790
791         WARN_ON(!list_empty(&domain->clients));
792
793         spin_lock_irqsave(&domain->lock, flags);
794
795         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
796                 spin_lock(&data->lock);
797                 __sysmmu_disable(data);
798                 data->pgtable = 0;
799                 data->domain = NULL;
800                 list_del_init(&data->domain_node);
801                 spin_unlock(&data->lock);
802         }
803
804         spin_unlock_irqrestore(&domain->lock, flags);
805
806         if (iommu_domain->type == IOMMU_DOMAIN_DMA)
807                 iommu_put_dma_cookie(iommu_domain);
808
809         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
810                          DMA_TO_DEVICE);
811
812         for (i = 0; i < NUM_LV1ENTRIES; i++)
813                 if (lv1ent_page(domain->pgtable + i)) {
814                         phys_addr_t base = lv2table_base(domain->pgtable + i);
815
816                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
817                                          DMA_TO_DEVICE);
818                         kmem_cache_free(lv2table_kmem_cache,
819                                         phys_to_virt(base));
820                 }
821
822         free_pages((unsigned long)domain->pgtable, 2);
823         free_pages((unsigned long)domain->lv2entcnt, 1);
824         kfree(domain);
825 }
826
827 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
828                                     struct device *dev)
829 {
830         struct exynos_iommu_owner *owner = dev->archdata.iommu;
831         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
832         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
833         struct sysmmu_drvdata *data, *next;
834         unsigned long flags;
835
836         if (!has_sysmmu(dev) || owner->domain != iommu_domain)
837                 return;
838
839         mutex_lock(&owner->rpm_lock);
840
841         list_for_each_entry(data, &owner->controllers, owner_node) {
842                 pm_runtime_get_noresume(data->sysmmu);
843                 if (pm_runtime_active(data->sysmmu))
844                         __sysmmu_disable(data);
845                 pm_runtime_put(data->sysmmu);
846         }
847
848         spin_lock_irqsave(&domain->lock, flags);
849         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
850                 spin_lock(&data->lock);
851                 data->pgtable = 0;
852                 data->domain = NULL;
853                 list_del_init(&data->domain_node);
854                 spin_unlock(&data->lock);
855         }
856         owner->domain = NULL;
857         spin_unlock_irqrestore(&domain->lock, flags);
858
859         mutex_unlock(&owner->rpm_lock);
860
861         dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
862                 &pagetable);
863 }
864
865 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
866                                    struct device *dev)
867 {
868         struct exynos_iommu_owner *owner = dev->archdata.iommu;
869         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
870         struct sysmmu_drvdata *data;
871         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
872         unsigned long flags;
873
874         if (!has_sysmmu(dev))
875                 return -ENODEV;
876
877         if (owner->domain)
878                 exynos_iommu_detach_device(owner->domain, dev);
879
880         mutex_lock(&owner->rpm_lock);
881
882         spin_lock_irqsave(&domain->lock, flags);
883         list_for_each_entry(data, &owner->controllers, owner_node) {
884                 spin_lock(&data->lock);
885                 data->pgtable = pagetable;
886                 data->domain = domain;
887                 list_add_tail(&data->domain_node, &domain->clients);
888                 spin_unlock(&data->lock);
889         }
890         owner->domain = iommu_domain;
891         spin_unlock_irqrestore(&domain->lock, flags);
892
893         list_for_each_entry(data, &owner->controllers, owner_node) {
894                 pm_runtime_get_noresume(data->sysmmu);
895                 if (pm_runtime_active(data->sysmmu))
896                         __sysmmu_enable(data);
897                 pm_runtime_put(data->sysmmu);
898         }
899
900         mutex_unlock(&owner->rpm_lock);
901
902         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
903                 &pagetable);
904
905         return 0;
906 }
907
908 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
909                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
910 {
911         if (lv1ent_section(sent)) {
912                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
913                 return ERR_PTR(-EADDRINUSE);
914         }
915
916         if (lv1ent_fault(sent)) {
917                 dma_addr_t handle;
918                 sysmmu_pte_t *pent;
919                 bool need_flush_flpd_cache = lv1ent_zero(sent);
920
921                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
922                 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
923                 if (!pent)
924                         return ERR_PTR(-ENOMEM);
925
926                 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
927                 kmemleak_ignore(pent);
928                 *pgcounter = NUM_LV2ENTRIES;
929                 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
930                                         DMA_TO_DEVICE);
931                 if (dma_mapping_error(dma_dev, handle)) {
932                         kmem_cache_free(lv2table_kmem_cache, pent);
933                         return ERR_PTR(-EADDRINUSE);
934                 }
935
936                 /*
937                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
938                  * FLPD cache may cache the address of zero_l2_table. This
939                  * function replaces the zero_l2_table with new L2 page table
940                  * to write valid mappings.
941                  * Accessing the valid area may cause page fault since FLPD
942                  * cache may still cache zero_l2_table for the valid area
943                  * instead of new L2 page table that has the mapping
944                  * information of the valid area.
945                  * Thus any replacement of zero_l2_table with other valid L2
946                  * page table must involve FLPD cache invalidation for System
947                  * MMU v3.3.
948                  * FLPD cache invalidation is performed with TLB invalidation
949                  * by VPN without blocking. It is safe to invalidate TLB without
950                  * blocking because the target address of TLB invalidation is
951                  * not currently mapped.
952                  */
953                 if (need_flush_flpd_cache) {
954                         struct sysmmu_drvdata *data;
955
956                         spin_lock(&domain->lock);
957                         list_for_each_entry(data, &domain->clients, domain_node)
958                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
959                         spin_unlock(&domain->lock);
960                 }
961         }
962
963         return page_entry(sent, iova);
964 }
965
966 static int lv1set_section(struct exynos_iommu_domain *domain,
967                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
968                           phys_addr_t paddr, int prot, short *pgcnt)
969 {
970         if (lv1ent_section(sent)) {
971                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
972                         iova);
973                 return -EADDRINUSE;
974         }
975
976         if (lv1ent_page(sent)) {
977                 if (*pgcnt != NUM_LV2ENTRIES) {
978                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
979                                 iova);
980                         return -EADDRINUSE;
981                 }
982
983                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
984                 *pgcnt = 0;
985         }
986
987         update_pte(sent, mk_lv1ent_sect(paddr, prot));
988
989         spin_lock(&domain->lock);
990         if (lv1ent_page_zero(sent)) {
991                 struct sysmmu_drvdata *data;
992                 /*
993                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
994                  * entry by speculative prefetch of SLPD which has no mapping.
995                  */
996                 list_for_each_entry(data, &domain->clients, domain_node)
997                         sysmmu_tlb_invalidate_flpdcache(data, iova);
998         }
999         spin_unlock(&domain->lock);
1000
1001         return 0;
1002 }
1003
1004 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1005                        int prot, short *pgcnt)
1006 {
1007         if (size == SPAGE_SIZE) {
1008                 if (WARN_ON(!lv2ent_fault(pent)))
1009                         return -EADDRINUSE;
1010
1011                 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1012                 *pgcnt -= 1;
1013         } else { /* size == LPAGE_SIZE */
1014                 int i;
1015                 dma_addr_t pent_base = virt_to_phys(pent);
1016
1017                 dma_sync_single_for_cpu(dma_dev, pent_base,
1018                                         sizeof(*pent) * SPAGES_PER_LPAGE,
1019                                         DMA_TO_DEVICE);
1020                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1021                         if (WARN_ON(!lv2ent_fault(pent))) {
1022                                 if (i > 0)
1023                                         memset(pent - i, 0, sizeof(*pent) * i);
1024                                 return -EADDRINUSE;
1025                         }
1026
1027                         *pent = mk_lv2ent_lpage(paddr, prot);
1028                 }
1029                 dma_sync_single_for_device(dma_dev, pent_base,
1030                                            sizeof(*pent) * SPAGES_PER_LPAGE,
1031                                            DMA_TO_DEVICE);
1032                 *pgcnt -= SPAGES_PER_LPAGE;
1033         }
1034
1035         return 0;
1036 }
1037
1038 /*
1039  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1040  *
1041  * System MMU v3.x has advanced logic to improve address translation
1042  * performance with caching more page table entries by a page table walk.
1043  * However, the logic has a bug that while caching faulty page table entries,
1044  * System MMU reports page fault if the cached fault entry is hit even though
1045  * the fault entry is updated to a valid entry after the entry is cached.
1046  * To prevent caching faulty page table entries which may be updated to valid
1047  * entries later, the virtual memory manager should care about the workaround
1048  * for the problem. The following describes the workaround.
1049  *
1050  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1051  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1052  *
1053  * Precisely, any start address of I/O virtual region must be aligned with
1054  * the following sizes for System MMU v3.1 and v3.2.
1055  * System MMU v3.1: 128KiB
1056  * System MMU v3.2: 256KiB
1057  *
1058  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1059  * more workarounds.
1060  * - Any two consecutive I/O virtual regions must have a hole of size larger
1061  *   than or equal to 128KiB.
1062  * - Start address of an I/O virtual region must be aligned by 128KiB.
1063  */
1064 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1065                             unsigned long l_iova, phys_addr_t paddr, size_t size,
1066                             int prot)
1067 {
1068         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1069         sysmmu_pte_t *entry;
1070         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1071         unsigned long flags;
1072         int ret = -ENOMEM;
1073
1074         BUG_ON(domain->pgtable == NULL);
1075         prot &= SYSMMU_SUPPORTED_PROT_BITS;
1076
1077         spin_lock_irqsave(&domain->pgtablelock, flags);
1078
1079         entry = section_entry(domain->pgtable, iova);
1080
1081         if (size == SECT_SIZE) {
1082                 ret = lv1set_section(domain, entry, iova, paddr, prot,
1083                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
1084         } else {
1085                 sysmmu_pte_t *pent;
1086
1087                 pent = alloc_lv2entry(domain, entry, iova,
1088                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
1089
1090                 if (IS_ERR(pent))
1091                         ret = PTR_ERR(pent);
1092                 else
1093                         ret = lv2set_page(pent, paddr, size, prot,
1094                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
1095         }
1096
1097         if (ret)
1098                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1099                         __func__, ret, size, iova);
1100
1101         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1102
1103         return ret;
1104 }
1105
1106 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1107                                               sysmmu_iova_t iova, size_t size)
1108 {
1109         struct sysmmu_drvdata *data;
1110         unsigned long flags;
1111
1112         spin_lock_irqsave(&domain->lock, flags);
1113
1114         list_for_each_entry(data, &domain->clients, domain_node)
1115                 sysmmu_tlb_invalidate_entry(data, iova, size);
1116
1117         spin_unlock_irqrestore(&domain->lock, flags);
1118 }
1119
1120 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1121                                  unsigned long l_iova, size_t size)
1122 {
1123         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1124         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1125         sysmmu_pte_t *ent;
1126         size_t err_pgsize;
1127         unsigned long flags;
1128
1129         BUG_ON(domain->pgtable == NULL);
1130
1131         spin_lock_irqsave(&domain->pgtablelock, flags);
1132
1133         ent = section_entry(domain->pgtable, iova);
1134
1135         if (lv1ent_section(ent)) {
1136                 if (WARN_ON(size < SECT_SIZE)) {
1137                         err_pgsize = SECT_SIZE;
1138                         goto err;
1139                 }
1140
1141                 /* workaround for h/w bug in System MMU v3.3 */
1142                 update_pte(ent, ZERO_LV2LINK);
1143                 size = SECT_SIZE;
1144                 goto done;
1145         }
1146
1147         if (unlikely(lv1ent_fault(ent))) {
1148                 if (size > SECT_SIZE)
1149                         size = SECT_SIZE;
1150                 goto done;
1151         }
1152
1153         /* lv1ent_page(sent) == true here */
1154
1155         ent = page_entry(ent, iova);
1156
1157         if (unlikely(lv2ent_fault(ent))) {
1158                 size = SPAGE_SIZE;
1159                 goto done;
1160         }
1161
1162         if (lv2ent_small(ent)) {
1163                 update_pte(ent, 0);
1164                 size = SPAGE_SIZE;
1165                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1166                 goto done;
1167         }
1168
1169         /* lv1ent_large(ent) == true here */
1170         if (WARN_ON(size < LPAGE_SIZE)) {
1171                 err_pgsize = LPAGE_SIZE;
1172                 goto err;
1173         }
1174
1175         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1176                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1177                                 DMA_TO_DEVICE);
1178         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1179         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1180                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1181                                    DMA_TO_DEVICE);
1182         size = LPAGE_SIZE;
1183         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1184 done:
1185         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1186
1187         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1188
1189         return size;
1190 err:
1191         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1192
1193         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1194                 __func__, size, iova, err_pgsize);
1195
1196         return 0;
1197 }
1198
1199 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1200                                           dma_addr_t iova)
1201 {
1202         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1203         sysmmu_pte_t *entry;
1204         unsigned long flags;
1205         phys_addr_t phys = 0;
1206
1207         spin_lock_irqsave(&domain->pgtablelock, flags);
1208
1209         entry = section_entry(domain->pgtable, iova);
1210
1211         if (lv1ent_section(entry)) {
1212                 phys = section_phys(entry) + section_offs(iova);
1213         } else if (lv1ent_page(entry)) {
1214                 entry = page_entry(entry, iova);
1215
1216                 if (lv2ent_large(entry))
1217                         phys = lpage_phys(entry) + lpage_offs(iova);
1218                 else if (lv2ent_small(entry))
1219                         phys = spage_phys(entry) + spage_offs(iova);
1220         }
1221
1222         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1223
1224         return phys;
1225 }
1226
1227 static struct iommu_group *get_device_iommu_group(struct device *dev)
1228 {
1229         struct iommu_group *group;
1230
1231         group = iommu_group_get(dev);
1232         if (!group)
1233                 group = iommu_group_alloc();
1234
1235         return group;
1236 }
1237
1238 static int exynos_iommu_add_device(struct device *dev)
1239 {
1240         struct iommu_group *group;
1241
1242         if (!has_sysmmu(dev))
1243                 return -ENODEV;
1244
1245         group = iommu_group_get_for_dev(dev);
1246
1247         if (IS_ERR(group))
1248                 return PTR_ERR(group);
1249
1250         iommu_group_put(group);
1251
1252         return 0;
1253 }
1254
1255 static void exynos_iommu_remove_device(struct device *dev)
1256 {
1257         struct exynos_iommu_owner *owner = dev->archdata.iommu;
1258
1259         if (!has_sysmmu(dev))
1260                 return;
1261
1262         if (owner->domain) {
1263                 struct iommu_group *group = iommu_group_get(dev);
1264
1265                 if (group) {
1266                         WARN_ON(owner->domain !=
1267                                 iommu_group_default_domain(group));
1268                         exynos_iommu_detach_device(owner->domain, dev);
1269                         iommu_group_put(group);
1270                 }
1271         }
1272         iommu_group_remove_device(dev);
1273 }
1274
1275 static int exynos_iommu_of_xlate(struct device *dev,
1276                                  struct of_phandle_args *spec)
1277 {
1278         struct exynos_iommu_owner *owner = dev->archdata.iommu;
1279         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1280         struct sysmmu_drvdata *data, *entry;
1281
1282         if (!sysmmu)
1283                 return -ENODEV;
1284
1285         data = platform_get_drvdata(sysmmu);
1286         if (!data)
1287                 return -ENODEV;
1288
1289         if (!owner) {
1290                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1291                 if (!owner)
1292                         return -ENOMEM;
1293
1294                 INIT_LIST_HEAD(&owner->controllers);
1295                 mutex_init(&owner->rpm_lock);
1296                 dev->archdata.iommu = owner;
1297         }
1298
1299         list_for_each_entry(entry, &owner->controllers, owner_node)
1300                 if (entry == data)
1301                         return 0;
1302
1303         list_add_tail(&data->owner_node, &owner->controllers);
1304         data->master = dev;
1305
1306         /*
1307          * SYSMMU will be runtime activated via device link (dependency) to its
1308          * master device, so there are no direct calls to pm_runtime_get/put
1309          * in this driver.
1310          */
1311         device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1312
1313         return 0;
1314 }
1315
1316 static struct iommu_ops exynos_iommu_ops = {
1317         .domain_alloc = exynos_iommu_domain_alloc,
1318         .domain_free = exynos_iommu_domain_free,
1319         .attach_dev = exynos_iommu_attach_device,
1320         .detach_dev = exynos_iommu_detach_device,
1321         .map = exynos_iommu_map,
1322         .unmap = exynos_iommu_unmap,
1323         .map_sg = default_iommu_map_sg,
1324         .iova_to_phys = exynos_iommu_iova_to_phys,
1325         .device_group = get_device_iommu_group,
1326         .add_device = exynos_iommu_add_device,
1327         .remove_device = exynos_iommu_remove_device,
1328         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1329         .of_xlate = exynos_iommu_of_xlate,
1330 };
1331
1332 static bool init_done;
1333
1334 static int __init exynos_iommu_init(void)
1335 {
1336         int ret;
1337
1338         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1339                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1340         if (!lv2table_kmem_cache) {
1341                 pr_err("%s: Failed to create kmem cache\n", __func__);
1342                 return -ENOMEM;
1343         }
1344
1345         ret = platform_driver_register(&exynos_sysmmu_driver);
1346         if (ret) {
1347                 pr_err("%s: Failed to register driver\n", __func__);
1348                 goto err_reg_driver;
1349         }
1350
1351         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1352         if (zero_lv2_table == NULL) {
1353                 pr_err("%s: Failed to allocate zero level2 page table\n",
1354                         __func__);
1355                 ret = -ENOMEM;
1356                 goto err_zero_lv2;
1357         }
1358
1359         ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1360         if (ret) {
1361                 pr_err("%s: Failed to register exynos-iommu driver.\n",
1362                                                                 __func__);
1363                 goto err_set_iommu;
1364         }
1365
1366         init_done = true;
1367
1368         return 0;
1369 err_set_iommu:
1370         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1371 err_zero_lv2:
1372         platform_driver_unregister(&exynos_sysmmu_driver);
1373 err_reg_driver:
1374         kmem_cache_destroy(lv2table_kmem_cache);
1375         return ret;
1376 }
1377
1378 static int __init exynos_iommu_of_setup(struct device_node *np)
1379 {
1380         struct platform_device *pdev;
1381
1382         if (!init_done)
1383                 exynos_iommu_init();
1384
1385         pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1386         if (!pdev)
1387                 return -ENODEV;
1388
1389         /*
1390          * use the first registered sysmmu device for performing
1391          * dma mapping operations on iommu page tables (cpu cache flush)
1392          */
1393         if (!dma_dev)
1394                 dma_dev = &pdev->dev;
1395
1396         return 0;
1397 }
1398
1399 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1400                  exynos_iommu_of_setup);