2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
32 /* We do not consider super section mapping (16MB) */
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
62 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63 * v5.0 introduced support for 36bit physical address space by shifting
64 * all page entry values by 4 bits.
65 * All SYSMMU controllers in the system support the address spaces of the same
66 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
73 static const sysmmu_pte_t *LV1_PROT;
74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
75 ((0 << 15) | (0 << 10)), /* no access */
76 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
77 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
78 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
81 (0 << 4), /* no access */
82 (1 << 4), /* IOMMU_READ only */
83 (2 << 4), /* IOMMU_WRITE only */
84 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
87 static const sysmmu_pte_t *LV2_PROT;
88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
89 ((0 << 9) | (0 << 4)), /* no access */
90 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
91 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
92 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
95 (0 << 2), /* no access */
96 (1 << 2), /* IOMMU_READ only */
97 (2 << 2), /* IOMMU_WRITE only */
98 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
105 #define section_offs(iova) (iova & (SECT_SIZE - 1))
106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
111 #define NUM_LV1ENTRIES 4096
112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
114 static u32 lv1ent_offset(sysmmu_iova_t iova)
116 return iova >> SECT_ORDER;
119 static u32 lv2ent_offset(sysmmu_iova_t iova)
121 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
135 #define CTRL_ENABLE 0x5
136 #define CTRL_BLOCK 0x7
137 #define CTRL_DISABLE 0x0
140 #define CFG_EAP (1 << 2)
141 #define CFG_QOS(n) ((n & 0xF) << 7)
142 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
143 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
144 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
146 /* common registers */
147 #define REG_MMU_CTRL 0x000
148 #define REG_MMU_CFG 0x004
149 #define REG_MMU_STATUS 0x008
150 #define REG_MMU_VERSION 0x034
152 #define MMU_MAJ_VER(val) ((val) >> 7)
153 #define MMU_MIN_VER(val) ((val) & 0x7F)
154 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
156 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
158 /* v1.x - v3.x registers */
159 #define REG_MMU_FLUSH 0x00C
160 #define REG_MMU_FLUSH_ENTRY 0x010
161 #define REG_PT_BASE_ADDR 0x014
162 #define REG_INT_STATUS 0x018
163 #define REG_INT_CLEAR 0x01C
165 #define REG_PAGE_FAULT_ADDR 0x024
166 #define REG_AW_FAULT_ADDR 0x028
167 #define REG_AR_FAULT_ADDR 0x02C
168 #define REG_DEFAULT_SLAVE_ADDR 0x030
171 #define REG_V5_PT_BASE_PFN 0x00C
172 #define REG_V5_MMU_FLUSH_ALL 0x010
173 #define REG_V5_MMU_FLUSH_ENTRY 0x014
174 #define REG_V5_INT_STATUS 0x060
175 #define REG_V5_INT_CLEAR 0x064
176 #define REG_V5_FAULT_AR_VA 0x070
177 #define REG_V5_FAULT_AW_VA 0x080
179 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
181 static struct device *dma_dev;
182 static struct kmem_cache *lv2table_kmem_cache;
183 static sysmmu_pte_t *zero_lv2_table;
184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
188 return pgtable + lv1ent_offset(iova);
191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
193 return (sysmmu_pte_t *)phys_to_virt(
194 lv2table_base(sent)) + lv2ent_offset(iova);
198 * IOMMU fault information register
200 struct sysmmu_fault_info {
201 unsigned int bit; /* bit number in STATUS register */
202 unsigned short addr_reg; /* register to read VA fault address */
203 const char *name; /* human readable fault name */
204 unsigned int type; /* fault type for report_iommu_fault */
207 static const struct sysmmu_fault_info sysmmu_faults[] = {
208 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
209 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
210 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
211 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
212 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
213 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
215 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
219 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
220 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
221 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
222 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
223 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
224 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
225 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
226 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
227 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
228 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
232 * This structure is attached to dev.archdata.iommu of the master device
233 * on device add, contains a list of SYSMMU controllers defined by device tree,
234 * which are bound to given master device. It is usually referenced by 'owner'
237 struct exynos_iommu_owner {
238 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
239 struct iommu_domain *domain; /* domain this device is attached */
240 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
244 * This structure exynos specific generalization of struct iommu_domain.
245 * It contains list of SYSMMU controllers from all master devices, which has
246 * been attached to this domain and page tables of IO address space defined by
247 * it. It is usually referenced by 'domain' pointer.
249 struct exynos_iommu_domain {
250 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
252 short *lv2entcnt; /* free lv2 entry counter for each section */
253 spinlock_t lock; /* lock for modyfying list of clients */
254 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
255 struct iommu_domain domain; /* generic domain data structure */
259 * This structure hold all data of a single SYSMMU controller, this includes
260 * hw resources like registers and clocks, pointers and list nodes to connect
261 * it to all other structures, internal state and parameters read from device
262 * tree. It is usually referenced by 'data' pointer.
264 struct sysmmu_drvdata {
265 struct device *sysmmu; /* SYSMMU controller device */
266 struct device *master; /* master device (owner) */
267 void __iomem *sfrbase; /* our registers */
268 struct clk *clk; /* SYSMMU's clock */
269 struct clk *aclk; /* SYSMMU's aclk clock */
270 struct clk *pclk; /* SYSMMU's pclk clock */
271 struct clk *clk_master; /* master's device clock */
272 spinlock_t lock; /* lock for modyfying state */
273 bool active; /* current status */
274 struct exynos_iommu_domain *domain; /* domain we belong to */
275 struct list_head domain_node; /* node for domain clients list */
276 struct list_head owner_node; /* node for owner controllers list */
277 phys_addr_t pgtable; /* assigned page table structure */
278 unsigned int version; /* our version */
280 struct iommu_device iommu; /* IOMMU core handle */
283 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
285 return container_of(dom, struct exynos_iommu_domain, domain);
288 static void sysmmu_unblock(struct sysmmu_drvdata *data)
290 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
293 static bool sysmmu_block(struct sysmmu_drvdata *data)
297 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
298 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
301 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
302 sysmmu_unblock(data);
309 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
311 if (MMU_MAJ_VER(data->version) < 5)
312 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
314 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
317 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
318 sysmmu_iova_t iova, unsigned int num_inv)
322 for (i = 0; i < num_inv; i++) {
323 if (MMU_MAJ_VER(data->version) < 5)
324 writel((iova & SPAGE_MASK) | 1,
325 data->sfrbase + REG_MMU_FLUSH_ENTRY);
327 writel((iova & SPAGE_MASK) | 1,
328 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
333 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
335 if (MMU_MAJ_VER(data->version) < 5)
336 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
338 writel(pgd >> PAGE_SHIFT,
339 data->sfrbase + REG_V5_PT_BASE_PFN);
341 __sysmmu_tlb_invalidate(data);
344 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
346 BUG_ON(clk_prepare_enable(data->clk_master));
347 BUG_ON(clk_prepare_enable(data->clk));
348 BUG_ON(clk_prepare_enable(data->pclk));
349 BUG_ON(clk_prepare_enable(data->aclk));
352 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
354 clk_disable_unprepare(data->aclk);
355 clk_disable_unprepare(data->pclk);
356 clk_disable_unprepare(data->clk);
357 clk_disable_unprepare(data->clk_master);
360 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
364 __sysmmu_enable_clocks(data);
366 ver = readl(data->sfrbase + REG_MMU_VERSION);
368 /* controllers on some SoCs don't report proper version */
369 if (ver == 0x80000001u)
370 data->version = MAKE_MMU_VER(1, 0);
372 data->version = MMU_RAW_VER(ver);
374 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
375 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
377 __sysmmu_disable_clocks(data);
380 static void show_fault_information(struct sysmmu_drvdata *data,
381 const struct sysmmu_fault_info *finfo,
382 sysmmu_iova_t fault_addr)
386 dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
387 dev_name(data->master), finfo->name, fault_addr);
388 dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
389 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
390 dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
391 if (lv1ent_page(ent)) {
392 ent = page_entry(ent, fault_addr);
393 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
397 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
399 /* SYSMMU is in blocked state when interrupt occurred. */
400 struct sysmmu_drvdata *data = dev_id;
401 const struct sysmmu_fault_info *finfo;
402 unsigned int i, n, itype;
403 sysmmu_iova_t fault_addr = -1;
404 unsigned short reg_status, reg_clear;
407 WARN_ON(!data->active);
409 if (MMU_MAJ_VER(data->version) < 5) {
410 reg_status = REG_INT_STATUS;
411 reg_clear = REG_INT_CLEAR;
412 finfo = sysmmu_faults;
413 n = ARRAY_SIZE(sysmmu_faults);
415 reg_status = REG_V5_INT_STATUS;
416 reg_clear = REG_V5_INT_CLEAR;
417 finfo = sysmmu_v5_faults;
418 n = ARRAY_SIZE(sysmmu_v5_faults);
421 spin_lock(&data->lock);
423 clk_enable(data->clk_master);
425 itype = __ffs(readl(data->sfrbase + reg_status));
426 for (i = 0; i < n; i++, finfo++)
427 if (finfo->bit == itype)
429 /* unknown/unsupported fault */
432 /* print debug message */
433 fault_addr = readl(data->sfrbase + finfo->addr_reg);
434 show_fault_information(data, finfo, fault_addr);
437 ret = report_iommu_fault(&data->domain->domain,
438 data->master, fault_addr, finfo->type);
439 /* fault is not recovered by fault handler */
442 writel(1 << itype, data->sfrbase + reg_clear);
444 sysmmu_unblock(data);
446 clk_disable(data->clk_master);
448 spin_unlock(&data->lock);
453 static void __sysmmu_disable(struct sysmmu_drvdata *data)
457 clk_enable(data->clk_master);
459 spin_lock_irqsave(&data->lock, flags);
460 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
461 writel(0, data->sfrbase + REG_MMU_CFG);
462 data->active = false;
463 spin_unlock_irqrestore(&data->lock, flags);
465 __sysmmu_disable_clocks(data);
468 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
472 if (data->version <= MAKE_MMU_VER(3, 1))
473 cfg = CFG_LRU | CFG_QOS(15);
474 else if (data->version <= MAKE_MMU_VER(3, 2))
475 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
477 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
479 cfg |= CFG_EAP; /* enable access protection bits check */
481 writel(cfg, data->sfrbase + REG_MMU_CFG);
484 static void __sysmmu_enable(struct sysmmu_drvdata *data)
488 __sysmmu_enable_clocks(data);
490 spin_lock_irqsave(&data->lock, flags);
491 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
492 __sysmmu_init_config(data);
493 __sysmmu_set_ptbase(data, data->pgtable);
494 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
496 spin_unlock_irqrestore(&data->lock, flags);
499 * SYSMMU driver keeps master's clock enabled only for the short
500 * time, while accessing the registers. For performing address
501 * translation during DMA transaction it relies on the client
502 * driver to enable it.
504 clk_disable(data->clk_master);
507 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
512 spin_lock_irqsave(&data->lock, flags);
513 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
514 clk_enable(data->clk_master);
515 if (sysmmu_block(data)) {
516 if (data->version >= MAKE_MMU_VER(5, 0))
517 __sysmmu_tlb_invalidate(data);
519 __sysmmu_tlb_invalidate_entry(data, iova, 1);
520 sysmmu_unblock(data);
522 clk_disable(data->clk_master);
524 spin_unlock_irqrestore(&data->lock, flags);
527 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
528 sysmmu_iova_t iova, size_t size)
532 spin_lock_irqsave(&data->lock, flags);
534 unsigned int num_inv = 1;
536 clk_enable(data->clk_master);
539 * L2TLB invalidation required
540 * 4KB page: 1 invalidation
541 * 64KB page: 16 invalidations
542 * 1MB page: 64 invalidations
543 * because it is set-associative TLB
544 * with 8-way and 64 sets.
545 * 1MB page can be cached in one of all sets.
546 * 64KB page can be one of 16 consecutive sets.
548 if (MMU_MAJ_VER(data->version) == 2)
549 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
551 if (sysmmu_block(data)) {
552 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
553 sysmmu_unblock(data);
555 clk_disable(data->clk_master);
557 spin_unlock_irqrestore(&data->lock, flags);
560 static struct iommu_ops exynos_iommu_ops;
562 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
565 struct device *dev = &pdev->dev;
566 struct sysmmu_drvdata *data;
567 struct resource *res;
569 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
573 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
574 data->sfrbase = devm_ioremap_resource(dev, res);
575 if (IS_ERR(data->sfrbase))
576 return PTR_ERR(data->sfrbase);
578 irq = platform_get_irq(pdev, 0);
580 dev_err(dev, "Unable to find IRQ resource\n");
584 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
585 dev_name(dev), data);
587 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
591 data->clk = devm_clk_get(dev, "sysmmu");
592 if (PTR_ERR(data->clk) == -ENOENT)
594 else if (IS_ERR(data->clk))
595 return PTR_ERR(data->clk);
597 data->aclk = devm_clk_get(dev, "aclk");
598 if (PTR_ERR(data->aclk) == -ENOENT)
600 else if (IS_ERR(data->aclk))
601 return PTR_ERR(data->aclk);
603 data->pclk = devm_clk_get(dev, "pclk");
604 if (PTR_ERR(data->pclk) == -ENOENT)
606 else if (IS_ERR(data->pclk))
607 return PTR_ERR(data->pclk);
609 if (!data->clk && (!data->aclk || !data->pclk)) {
610 dev_err(dev, "Failed to get device clock(s)!\n");
614 data->clk_master = devm_clk_get(dev, "master");
615 if (PTR_ERR(data->clk_master) == -ENOENT)
616 data->clk_master = NULL;
617 else if (IS_ERR(data->clk_master))
618 return PTR_ERR(data->clk_master);
621 spin_lock_init(&data->lock);
623 ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
624 dev_name(data->sysmmu));
628 iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
629 iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
631 ret = iommu_device_register(&data->iommu);
635 platform_set_drvdata(pdev, data);
637 __sysmmu_get_version(data);
638 if (PG_ENT_SHIFT < 0) {
639 if (MMU_MAJ_VER(data->version) < 5) {
640 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
641 LV1_PROT = SYSMMU_LV1_PROT;
642 LV2_PROT = SYSMMU_LV2_PROT;
644 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
645 LV1_PROT = SYSMMU_V5_LV1_PROT;
646 LV2_PROT = SYSMMU_V5_LV2_PROT;
650 pm_runtime_enable(dev);
655 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
657 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
658 struct device *master = data->master;
661 struct exynos_iommu_owner *owner = master->archdata.iommu;
663 mutex_lock(&owner->rpm_lock);
665 dev_dbg(data->sysmmu, "saving state\n");
666 __sysmmu_disable(data);
668 mutex_unlock(&owner->rpm_lock);
673 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
675 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
676 struct device *master = data->master;
679 struct exynos_iommu_owner *owner = master->archdata.iommu;
681 mutex_lock(&owner->rpm_lock);
683 dev_dbg(data->sysmmu, "restoring state\n");
684 __sysmmu_enable(data);
686 mutex_unlock(&owner->rpm_lock);
691 static const struct dev_pm_ops sysmmu_pm_ops = {
692 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
693 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
694 pm_runtime_force_resume)
697 static const struct of_device_id sysmmu_of_match[] __initconst = {
698 { .compatible = "samsung,exynos-sysmmu", },
702 static struct platform_driver exynos_sysmmu_driver __refdata = {
703 .probe = exynos_sysmmu_probe,
705 .name = "exynos-sysmmu",
706 .of_match_table = sysmmu_of_match,
707 .pm = &sysmmu_pm_ops,
708 .suppress_bind_attrs = true,
712 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
714 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
716 *ent = cpu_to_le32(val);
717 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
721 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
723 struct exynos_iommu_domain *domain;
727 /* Check if correct PTE offsets are initialized */
728 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
730 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
734 if (type == IOMMU_DOMAIN_DMA) {
735 if (iommu_get_dma_cookie(&domain->domain) != 0)
737 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
741 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
742 if (!domain->pgtable)
745 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
746 if (!domain->lv2entcnt)
749 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
750 for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
751 domain->pgtable[i + 0] = ZERO_LV2LINK;
752 domain->pgtable[i + 1] = ZERO_LV2LINK;
753 domain->pgtable[i + 2] = ZERO_LV2LINK;
754 domain->pgtable[i + 3] = ZERO_LV2LINK;
755 domain->pgtable[i + 4] = ZERO_LV2LINK;
756 domain->pgtable[i + 5] = ZERO_LV2LINK;
757 domain->pgtable[i + 6] = ZERO_LV2LINK;
758 domain->pgtable[i + 7] = ZERO_LV2LINK;
761 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
763 /* For mapping page table entries we rely on dma == phys */
764 BUG_ON(handle != virt_to_phys(domain->pgtable));
765 if (dma_mapping_error(dma_dev, handle))
768 spin_lock_init(&domain->lock);
769 spin_lock_init(&domain->pgtablelock);
770 INIT_LIST_HEAD(&domain->clients);
772 domain->domain.geometry.aperture_start = 0;
773 domain->domain.geometry.aperture_end = ~0UL;
774 domain->domain.geometry.force_aperture = true;
776 return &domain->domain;
779 free_pages((unsigned long)domain->lv2entcnt, 1);
781 free_pages((unsigned long)domain->pgtable, 2);
783 if (type == IOMMU_DOMAIN_DMA)
784 iommu_put_dma_cookie(&domain->domain);
790 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
792 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
793 struct sysmmu_drvdata *data, *next;
797 WARN_ON(!list_empty(&domain->clients));
799 spin_lock_irqsave(&domain->lock, flags);
801 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
802 spin_lock(&data->lock);
803 __sysmmu_disable(data);
806 list_del_init(&data->domain_node);
807 spin_unlock(&data->lock);
810 spin_unlock_irqrestore(&domain->lock, flags);
812 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
813 iommu_put_dma_cookie(iommu_domain);
815 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
818 for (i = 0; i < NUM_LV1ENTRIES; i++)
819 if (lv1ent_page(domain->pgtable + i)) {
820 phys_addr_t base = lv2table_base(domain->pgtable + i);
822 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
824 kmem_cache_free(lv2table_kmem_cache,
828 free_pages((unsigned long)domain->pgtable, 2);
829 free_pages((unsigned long)domain->lv2entcnt, 1);
833 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
836 struct exynos_iommu_owner *owner = dev->archdata.iommu;
837 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
838 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
839 struct sysmmu_drvdata *data, *next;
842 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
845 mutex_lock(&owner->rpm_lock);
847 list_for_each_entry(data, &owner->controllers, owner_node) {
848 pm_runtime_get_noresume(data->sysmmu);
849 if (pm_runtime_active(data->sysmmu))
850 __sysmmu_disable(data);
851 pm_runtime_put(data->sysmmu);
854 spin_lock_irqsave(&domain->lock, flags);
855 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
856 spin_lock(&data->lock);
859 list_del_init(&data->domain_node);
860 spin_unlock(&data->lock);
862 owner->domain = NULL;
863 spin_unlock_irqrestore(&domain->lock, flags);
865 mutex_unlock(&owner->rpm_lock);
867 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
871 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
874 struct exynos_iommu_owner *owner = dev->archdata.iommu;
875 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
876 struct sysmmu_drvdata *data;
877 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
880 if (!has_sysmmu(dev))
884 exynos_iommu_detach_device(owner->domain, dev);
886 mutex_lock(&owner->rpm_lock);
888 spin_lock_irqsave(&domain->lock, flags);
889 list_for_each_entry(data, &owner->controllers, owner_node) {
890 spin_lock(&data->lock);
891 data->pgtable = pagetable;
892 data->domain = domain;
893 list_add_tail(&data->domain_node, &domain->clients);
894 spin_unlock(&data->lock);
896 owner->domain = iommu_domain;
897 spin_unlock_irqrestore(&domain->lock, flags);
899 list_for_each_entry(data, &owner->controllers, owner_node) {
900 pm_runtime_get_noresume(data->sysmmu);
901 if (pm_runtime_active(data->sysmmu))
902 __sysmmu_enable(data);
903 pm_runtime_put(data->sysmmu);
906 mutex_unlock(&owner->rpm_lock);
908 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
914 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
915 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
917 if (lv1ent_section(sent)) {
918 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
919 return ERR_PTR(-EADDRINUSE);
922 if (lv1ent_fault(sent)) {
925 bool need_flush_flpd_cache = lv1ent_zero(sent);
927 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
928 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
930 return ERR_PTR(-ENOMEM);
932 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
933 kmemleak_ignore(pent);
934 *pgcounter = NUM_LV2ENTRIES;
935 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
937 if (dma_mapping_error(dma_dev, handle)) {
938 kmem_cache_free(lv2table_kmem_cache, pent);
939 return ERR_PTR(-EADDRINUSE);
943 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
944 * FLPD cache may cache the address of zero_l2_table. This
945 * function replaces the zero_l2_table with new L2 page table
946 * to write valid mappings.
947 * Accessing the valid area may cause page fault since FLPD
948 * cache may still cache zero_l2_table for the valid area
949 * instead of new L2 page table that has the mapping
950 * information of the valid area.
951 * Thus any replacement of zero_l2_table with other valid L2
952 * page table must involve FLPD cache invalidation for System
954 * FLPD cache invalidation is performed with TLB invalidation
955 * by VPN without blocking. It is safe to invalidate TLB without
956 * blocking because the target address of TLB invalidation is
957 * not currently mapped.
959 if (need_flush_flpd_cache) {
960 struct sysmmu_drvdata *data;
962 spin_lock(&domain->lock);
963 list_for_each_entry(data, &domain->clients, domain_node)
964 sysmmu_tlb_invalidate_flpdcache(data, iova);
965 spin_unlock(&domain->lock);
969 return page_entry(sent, iova);
972 static int lv1set_section(struct exynos_iommu_domain *domain,
973 sysmmu_pte_t *sent, sysmmu_iova_t iova,
974 phys_addr_t paddr, int prot, short *pgcnt)
976 if (lv1ent_section(sent)) {
977 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
982 if (lv1ent_page(sent)) {
983 if (*pgcnt != NUM_LV2ENTRIES) {
984 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
989 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
993 update_pte(sent, mk_lv1ent_sect(paddr, prot));
995 spin_lock(&domain->lock);
996 if (lv1ent_page_zero(sent)) {
997 struct sysmmu_drvdata *data;
999 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1000 * entry by speculative prefetch of SLPD which has no mapping.
1002 list_for_each_entry(data, &domain->clients, domain_node)
1003 sysmmu_tlb_invalidate_flpdcache(data, iova);
1005 spin_unlock(&domain->lock);
1010 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1011 int prot, short *pgcnt)
1013 if (size == SPAGE_SIZE) {
1014 if (WARN_ON(!lv2ent_fault(pent)))
1017 update_pte(pent, mk_lv2ent_spage(paddr, prot));
1019 } else { /* size == LPAGE_SIZE */
1021 dma_addr_t pent_base = virt_to_phys(pent);
1023 dma_sync_single_for_cpu(dma_dev, pent_base,
1024 sizeof(*pent) * SPAGES_PER_LPAGE,
1026 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1027 if (WARN_ON(!lv2ent_fault(pent))) {
1029 memset(pent - i, 0, sizeof(*pent) * i);
1033 *pent = mk_lv2ent_lpage(paddr, prot);
1035 dma_sync_single_for_device(dma_dev, pent_base,
1036 sizeof(*pent) * SPAGES_PER_LPAGE,
1038 *pgcnt -= SPAGES_PER_LPAGE;
1045 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1047 * System MMU v3.x has advanced logic to improve address translation
1048 * performance with caching more page table entries by a page table walk.
1049 * However, the logic has a bug that while caching faulty page table entries,
1050 * System MMU reports page fault if the cached fault entry is hit even though
1051 * the fault entry is updated to a valid entry after the entry is cached.
1052 * To prevent caching faulty page table entries which may be updated to valid
1053 * entries later, the virtual memory manager should care about the workaround
1054 * for the problem. The following describes the workaround.
1056 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1057 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1059 * Precisely, any start address of I/O virtual region must be aligned with
1060 * the following sizes for System MMU v3.1 and v3.2.
1061 * System MMU v3.1: 128KiB
1062 * System MMU v3.2: 256KiB
1064 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1066 * - Any two consecutive I/O virtual regions must have a hole of size larger
1067 * than or equal to 128KiB.
1068 * - Start address of an I/O virtual region must be aligned by 128KiB.
1070 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1071 unsigned long l_iova, phys_addr_t paddr, size_t size,
1074 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1075 sysmmu_pte_t *entry;
1076 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1077 unsigned long flags;
1080 BUG_ON(domain->pgtable == NULL);
1081 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1083 spin_lock_irqsave(&domain->pgtablelock, flags);
1085 entry = section_entry(domain->pgtable, iova);
1087 if (size == SECT_SIZE) {
1088 ret = lv1set_section(domain, entry, iova, paddr, prot,
1089 &domain->lv2entcnt[lv1ent_offset(iova)]);
1093 pent = alloc_lv2entry(domain, entry, iova,
1094 &domain->lv2entcnt[lv1ent_offset(iova)]);
1097 ret = PTR_ERR(pent);
1099 ret = lv2set_page(pent, paddr, size, prot,
1100 &domain->lv2entcnt[lv1ent_offset(iova)]);
1104 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1105 __func__, ret, size, iova);
1107 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1112 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1113 sysmmu_iova_t iova, size_t size)
1115 struct sysmmu_drvdata *data;
1116 unsigned long flags;
1118 spin_lock_irqsave(&domain->lock, flags);
1120 list_for_each_entry(data, &domain->clients, domain_node)
1121 sysmmu_tlb_invalidate_entry(data, iova, size);
1123 spin_unlock_irqrestore(&domain->lock, flags);
1126 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1127 unsigned long l_iova, size_t size)
1129 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1130 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1133 unsigned long flags;
1135 BUG_ON(domain->pgtable == NULL);
1137 spin_lock_irqsave(&domain->pgtablelock, flags);
1139 ent = section_entry(domain->pgtable, iova);
1141 if (lv1ent_section(ent)) {
1142 if (WARN_ON(size < SECT_SIZE)) {
1143 err_pgsize = SECT_SIZE;
1147 /* workaround for h/w bug in System MMU v3.3 */
1148 update_pte(ent, ZERO_LV2LINK);
1153 if (unlikely(lv1ent_fault(ent))) {
1154 if (size > SECT_SIZE)
1159 /* lv1ent_page(sent) == true here */
1161 ent = page_entry(ent, iova);
1163 if (unlikely(lv2ent_fault(ent))) {
1168 if (lv2ent_small(ent)) {
1171 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1175 /* lv1ent_large(ent) == true here */
1176 if (WARN_ON(size < LPAGE_SIZE)) {
1177 err_pgsize = LPAGE_SIZE;
1181 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1182 sizeof(*ent) * SPAGES_PER_LPAGE,
1184 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1185 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1186 sizeof(*ent) * SPAGES_PER_LPAGE,
1189 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1191 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1193 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1197 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1199 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1200 __func__, size, iova, err_pgsize);
1205 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1208 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1209 sysmmu_pte_t *entry;
1210 unsigned long flags;
1211 phys_addr_t phys = 0;
1213 spin_lock_irqsave(&domain->pgtablelock, flags);
1215 entry = section_entry(domain->pgtable, iova);
1217 if (lv1ent_section(entry)) {
1218 phys = section_phys(entry) + section_offs(iova);
1219 } else if (lv1ent_page(entry)) {
1220 entry = page_entry(entry, iova);
1222 if (lv2ent_large(entry))
1223 phys = lpage_phys(entry) + lpage_offs(iova);
1224 else if (lv2ent_small(entry))
1225 phys = spage_phys(entry) + spage_offs(iova);
1228 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1233 static struct iommu_group *get_device_iommu_group(struct device *dev)
1235 struct iommu_group *group;
1237 group = iommu_group_get(dev);
1239 group = iommu_group_alloc();
1244 static int exynos_iommu_add_device(struct device *dev)
1246 struct iommu_group *group;
1248 if (!has_sysmmu(dev))
1251 group = iommu_group_get_for_dev(dev);
1254 return PTR_ERR(group);
1256 iommu_group_put(group);
1261 static void exynos_iommu_remove_device(struct device *dev)
1263 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1265 if (!has_sysmmu(dev))
1268 if (owner->domain) {
1269 struct iommu_group *group = iommu_group_get(dev);
1272 WARN_ON(owner->domain !=
1273 iommu_group_default_domain(group));
1274 exynos_iommu_detach_device(owner->domain, dev);
1275 iommu_group_put(group);
1278 iommu_group_remove_device(dev);
1281 static int exynos_iommu_of_xlate(struct device *dev,
1282 struct of_phandle_args *spec)
1284 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1285 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1286 struct sysmmu_drvdata *data, *entry;
1291 data = platform_get_drvdata(sysmmu);
1296 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1300 INIT_LIST_HEAD(&owner->controllers);
1301 mutex_init(&owner->rpm_lock);
1302 dev->archdata.iommu = owner;
1305 list_for_each_entry(entry, &owner->controllers, owner_node)
1309 list_add_tail(&data->owner_node, &owner->controllers);
1313 * SYSMMU will be runtime activated via device link (dependency) to its
1314 * master device, so there are no direct calls to pm_runtime_get/put
1317 device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1322 static struct iommu_ops exynos_iommu_ops = {
1323 .domain_alloc = exynos_iommu_domain_alloc,
1324 .domain_free = exynos_iommu_domain_free,
1325 .attach_dev = exynos_iommu_attach_device,
1326 .detach_dev = exynos_iommu_detach_device,
1327 .map = exynos_iommu_map,
1328 .unmap = exynos_iommu_unmap,
1329 .map_sg = default_iommu_map_sg,
1330 .iova_to_phys = exynos_iommu_iova_to_phys,
1331 .device_group = get_device_iommu_group,
1332 .add_device = exynos_iommu_add_device,
1333 .remove_device = exynos_iommu_remove_device,
1334 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1335 .of_xlate = exynos_iommu_of_xlate,
1338 static bool init_done;
1340 static int __init exynos_iommu_init(void)
1344 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1345 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1346 if (!lv2table_kmem_cache) {
1347 pr_err("%s: Failed to create kmem cache\n", __func__);
1351 ret = platform_driver_register(&exynos_sysmmu_driver);
1353 pr_err("%s: Failed to register driver\n", __func__);
1354 goto err_reg_driver;
1357 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1358 if (zero_lv2_table == NULL) {
1359 pr_err("%s: Failed to allocate zero level2 page table\n",
1365 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1367 pr_err("%s: Failed to register exynos-iommu driver.\n",
1376 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1378 platform_driver_unregister(&exynos_sysmmu_driver);
1380 kmem_cache_destroy(lv2table_kmem_cache);
1384 static int __init exynos_iommu_of_setup(struct device_node *np)
1386 struct platform_device *pdev;
1389 exynos_iommu_init();
1391 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1396 * use the first registered sysmmu device for performing
1397 * dma mapping operations on iommu page tables (cpu cache flush)
1400 dma_dev = &pdev->dev;
1405 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1406 exynos_iommu_of_setup);