2 * Copyright © 2015 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * Authors: David Woodhouse <dwmw2@infradead.org>
16 #include <linux/intel-iommu.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21 #include <linux/intel-svm.h>
22 #include <linux/rculist.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/dmar.h>
26 #include <linux/interrupt.h>
28 static irqreturn_t prq_event_thread(int irq, void *d);
34 struct pasid_state_entry {
38 int intel_svm_alloc_pasid_tables(struct intel_iommu *iommu)
43 /* Start at 2 because it's defined as 2^(1+PSS) */
44 iommu->pasid_max = 2 << ecap_pss(iommu->ecap);
46 /* Eventually I'm promised we will get a multi-level PASID table
47 * and it won't have to be physically contiguous. Until then,
48 * limit the size because 8MiB contiguous allocations can be hard
49 * to come by. The limit of 0x20000, which is 1MiB for each of
50 * the PASID and PASID-state tables, is somewhat arbitrary. */
51 if (iommu->pasid_max > 0x20000)
52 iommu->pasid_max = 0x20000;
54 order = get_order(sizeof(struct pasid_entry) * iommu->pasid_max);
55 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
57 pr_warn("IOMMU: %s: Failed to allocate PASID table\n",
61 iommu->pasid_table = page_address(pages);
62 pr_info("%s: Allocated order %d PASID table.\n", iommu->name, order);
64 if (ecap_dis(iommu->ecap)) {
65 /* Just making it explicit... */
66 BUILD_BUG_ON(sizeof(struct pasid_entry) != sizeof(struct pasid_state_entry));
67 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
69 iommu->pasid_state_table = page_address(pages);
71 pr_warn("IOMMU: %s: Failed to allocate PASID state table\n",
75 idr_init(&iommu->pasid_idr);
80 int intel_svm_free_pasid_tables(struct intel_iommu *iommu)
82 int order = get_order(sizeof(struct pasid_entry) * iommu->pasid_max);
84 if (iommu->pasid_table) {
85 free_pages((unsigned long)iommu->pasid_table, order);
86 iommu->pasid_table = NULL;
88 if (iommu->pasid_state_table) {
89 free_pages((unsigned long)iommu->pasid_state_table, order);
90 iommu->pasid_state_table = NULL;
92 idr_destroy(&iommu->pasid_idr);
98 int intel_svm_enable_prq(struct intel_iommu *iommu)
103 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER);
105 pr_warn("IOMMU: %s: Failed to allocate page request queue\n",
109 iommu->prq = page_address(pages);
111 irq = dmar_alloc_hwirq(DMAR_UNITS_SUPPORTED + iommu->seq_id, iommu->node, iommu);
113 pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n",
117 free_pages((unsigned long)iommu->prq, PRQ_ORDER);
123 snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id);
125 ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT,
126 iommu->prq_name, iommu);
128 pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n",
130 dmar_free_hwirq(irq);
133 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
134 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
135 dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER);
140 int intel_svm_finish_prq(struct intel_iommu *iommu)
142 dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL);
143 dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL);
144 dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL);
146 free_irq(iommu->pr_irq, iommu);
147 dmar_free_hwirq(iommu->pr_irq);
150 free_pages((unsigned long)iommu->prq, PRQ_ORDER);
156 static void intel_flush_svm_range_dev (struct intel_svm *svm, struct intel_svm_dev *sdev,
157 unsigned long address, unsigned long pages, int ih, int gl)
162 /* For global kernel pages we have to flush them in *all* PASIDs
163 * because that's the only option the hardware gives us. Despite
164 * the fact that they are actually only accessible through one. */
166 desc.low = QI_EIOTLB_PASID(svm->pasid) | QI_EIOTLB_DID(sdev->did) |
167 QI_EIOTLB_GRAN(QI_GRAN_ALL_ALL) | QI_EIOTLB_TYPE;
169 desc.low = QI_EIOTLB_PASID(svm->pasid) | QI_EIOTLB_DID(sdev->did) |
170 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | QI_EIOTLB_TYPE;
173 int mask = ilog2(__roundup_pow_of_two(pages));
175 desc.low = QI_EIOTLB_PASID(svm->pasid) | QI_EIOTLB_DID(sdev->did) |
176 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | QI_EIOTLB_TYPE;
177 desc.high = QI_EIOTLB_ADDR(address) | QI_EIOTLB_GL(gl) |
178 QI_EIOTLB_IH(ih) | QI_EIOTLB_AM(mask);
180 qi_submit_sync(&desc, svm->iommu);
182 if (sdev->dev_iotlb) {
183 desc.low = QI_DEV_EIOTLB_PASID(svm->pasid) | QI_DEV_EIOTLB_SID(sdev->sid) |
184 QI_DEV_EIOTLB_QDEP(sdev->qdep) | QI_DEIOTLB_TYPE;
186 desc.high = QI_DEV_EIOTLB_ADDR(-1ULL >> 1) | QI_DEV_EIOTLB_SIZE;
187 } else if (pages > 1) {
188 /* The least significant zero bit indicates the size. So,
189 * for example, an "address" value of 0x12345f000 will
190 * flush from 0x123440000 to 0x12347ffff (256KiB). */
191 unsigned long last = address + ((unsigned long)(pages - 1) << VTD_PAGE_SHIFT);
192 unsigned long mask = __rounddown_pow_of_two(address ^ last);;
194 desc.high = QI_DEV_EIOTLB_ADDR((address & ~mask) | (mask - 1)) | QI_DEV_EIOTLB_SIZE;
196 desc.high = QI_DEV_EIOTLB_ADDR(address);
198 qi_submit_sync(&desc, svm->iommu);
202 static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address,
203 unsigned long pages, int ih, int gl)
205 struct intel_svm_dev *sdev;
207 /* Try deferred invalidate if available */
208 if (svm->iommu->pasid_state_table &&
209 !cmpxchg64(&svm->iommu->pasid_state_table[svm->pasid].val, 0, 1ULL << 63))
213 list_for_each_entry_rcu(sdev, &svm->devs, list)
214 intel_flush_svm_range_dev(svm, sdev, address, pages, ih, gl);
218 static void intel_change_pte(struct mmu_notifier *mn, struct mm_struct *mm,
219 unsigned long address, pte_t pte)
221 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
223 intel_flush_svm_range(svm, address, 1, 1, 0);
226 static void intel_invalidate_page(struct mmu_notifier *mn, struct mm_struct *mm,
227 unsigned long address)
229 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
231 intel_flush_svm_range(svm, address, 1, 1, 0);
234 /* Pages have been freed at this point */
235 static void intel_invalidate_range(struct mmu_notifier *mn,
236 struct mm_struct *mm,
237 unsigned long start, unsigned long end)
239 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
241 intel_flush_svm_range(svm, start,
242 (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0, 0);
246 static void intel_flush_pasid_dev(struct intel_svm *svm, struct intel_svm_dev *sdev, int pasid)
251 desc.low = QI_PC_TYPE | QI_PC_DID(sdev->did) | QI_PC_PASID_SEL | QI_PC_PASID(pasid);
253 qi_submit_sync(&desc, svm->iommu);
256 static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
258 struct intel_svm *svm = container_of(mn, struct intel_svm, notifier);
259 struct intel_svm_dev *sdev;
261 /* This might end up being called from exit_mmap(), *before* the page
262 * tables are cleared. And __mmu_notifier_release() will delete us from
263 * the list of notifiers so that our invalidate_range() callback doesn't
264 * get called when the page tables are cleared. So we need to protect
265 * against hardware accessing those page tables.
267 * We do it by clearing the entry in the PASID table and then flushing
268 * the IOTLB and the PASID table caches. This might upset hardware;
269 * perhaps we'll want to point the PASID to a dummy PGD (like the zero
270 * page) so that we end up taking a fault that the hardware really
271 * *has* to handle gracefully without affecting other processes.
273 svm->iommu->pasid_table[svm->pasid].val = 0;
277 list_for_each_entry_rcu(sdev, &svm->devs, list) {
278 intel_flush_pasid_dev(svm, sdev, svm->pasid);
279 intel_flush_svm_range_dev(svm, sdev, 0, -1, 0, !svm->mm);
285 static const struct mmu_notifier_ops intel_mmuops = {
286 .release = intel_mm_release,
287 .change_pte = intel_change_pte,
288 .invalidate_page = intel_invalidate_page,
289 .invalidate_range = intel_invalidate_range,
292 static DEFINE_MUTEX(pasid_mutex);
294 int intel_svm_bind_mm(struct device *dev, int *pasid, int flags, struct svm_dev_ops *ops)
296 struct intel_iommu *iommu = intel_svm_device_to_iommu(dev);
297 struct intel_svm_dev *sdev;
298 struct intel_svm *svm = NULL;
299 struct mm_struct *mm = NULL;
306 if (dev_is_pci(dev)) {
307 pasid_max = pci_max_pasids(to_pci_dev(dev));
313 if ((flags & SVM_FLAG_SUPERVISOR_MODE)) {
314 if (!ecap_srs(iommu->ecap))
317 mm = get_task_mm(current);
321 mutex_lock(&pasid_mutex);
322 if (pasid && !(flags & SVM_FLAG_PRIVATE_PASID)) {
325 idr_for_each_entry(&iommu->pasid_idr, svm, i) {
327 (svm->flags & SVM_FLAG_PRIVATE_PASID))
330 if (svm->pasid >= pasid_max) {
332 "Limited PASID width. Cannot use existing PASID %d\n",
338 list_for_each_entry(sdev, &svm->devs, list) {
339 if (dev == sdev->dev) {
340 if (sdev->ops != ops) {
353 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
360 ret = intel_iommu_enable_pasid(iommu, sdev);
362 /* If they don't actually want to assign a PASID, this is
363 * just an enabling check/preparation. */
367 /* Finish the setup now we know we're keeping it */
370 init_rcu_head(&sdev->rcu);
373 svm = kzalloc(sizeof(*svm), GFP_KERNEL);
381 if (pasid_max > iommu->pasid_max)
382 pasid_max = iommu->pasid_max;
384 /* Do not use PASID 0 in caching mode (virtualised IOMMU) */
385 ret = idr_alloc(&iommu->pasid_idr, svm,
386 !!cap_caching_mode(iommu->cap),
387 pasid_max - 1, GFP_KERNEL);
393 svm->notifier.ops = &intel_mmuops;
396 INIT_LIST_HEAD_RCU(&svm->devs);
399 ret = mmu_notifier_register(&svm->notifier, mm);
401 idr_remove(&svm->iommu->pasid_idr, svm->pasid);
406 iommu->pasid_table[svm->pasid].val = (u64)__pa(mm->pgd) | 1;
408 iommu->pasid_table[svm->pasid].val = (u64)__pa(init_mm.pgd) | 1 | (1ULL << 11);
410 /* In caching mode, we still have to flush with PASID 0 when
411 * a PASID table entry becomes present. Not entirely clear
412 * *why* that would be the case — surely we could just issue
413 * a flush with the PASID value that we've changed? The PASID
414 * is the index into the table, after all. It's not like domain
415 * IDs in the case of the equivalent context-entry change in
416 * caching mode. And for that matter it's not entirely clear why
417 * a VMM would be in the business of caching the PASID table
418 * anyway. Surely that can be left entirely to the guest? */
419 if (cap_caching_mode(iommu->cap))
420 intel_flush_pasid_dev(svm, sdev, 0);
422 list_add_rcu(&sdev->list, &svm->devs);
428 mutex_unlock(&pasid_mutex);
433 EXPORT_SYMBOL_GPL(intel_svm_bind_mm);
435 int intel_svm_unbind_mm(struct device *dev, int pasid)
437 struct intel_svm_dev *sdev;
438 struct intel_iommu *iommu;
439 struct intel_svm *svm;
442 mutex_lock(&pasid_mutex);
443 iommu = intel_svm_device_to_iommu(dev);
444 if (!iommu || !iommu->pasid_table)
447 svm = idr_find(&iommu->pasid_idr, pasid);
451 list_for_each_entry(sdev, &svm->devs, list) {
452 if (dev == sdev->dev) {
456 list_del_rcu(&sdev->list);
457 /* Flush the PASID cache and IOTLB for this device.
458 * Note that we do depend on the hardware *not* using
459 * the PASID any more. Just as we depend on other
460 * devices never using PASIDs that they have no right
461 * to use. We have a *shared* PASID table, because it's
462 * large and has to be physically contiguous. So it's
463 * hard to be as defensive as we might like. */
464 intel_flush_pasid_dev(svm, sdev, svm->pasid);
465 intel_flush_svm_range_dev(svm, sdev, 0, -1, 0, !svm->mm);
466 kfree_rcu(sdev, rcu);
468 if (list_empty(&svm->devs)) {
470 idr_remove(&svm->iommu->pasid_idr, svm->pasid);
472 mmu_notifier_unregister(&svm->notifier, svm->mm);
474 /* We mandate that no page faults may be outstanding
475 * for the PASID when intel_svm_unbind_mm() is called.
476 * If that is not obeyed, subtle errors will happen.
477 * Let's make them less subtle... */
478 memset(svm, 0x6b, sizeof(*svm));
486 mutex_unlock(&pasid_mutex);
490 EXPORT_SYMBOL_GPL(intel_svm_unbind_mm);
492 /* Page request queue descriptor */
493 struct page_req_dsc {
510 #define PRQ_RING_MASK ((0x1000 << PRQ_ORDER) - 0x10)
512 static bool access_error(struct vm_area_struct *vma, struct page_req_dsc *req)
514 unsigned long requested = 0;
517 requested |= VM_EXEC;
520 requested |= VM_READ;
523 requested |= VM_WRITE;
525 return (requested & ~vma->vm_flags) != 0;
528 static irqreturn_t prq_event_thread(int irq, void *d)
530 struct intel_iommu *iommu = d;
531 struct intel_svm *svm = NULL;
532 int head, tail, handled = 0;
534 /* Clear PPR bit before reading head/tail registers, to
535 * ensure that we get a new interrupt if needed. */
536 writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG);
538 tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK;
539 head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK;
540 while (head != tail) {
541 struct intel_svm_dev *sdev;
542 struct vm_area_struct *vma;
543 struct page_req_dsc *req;
550 req = &iommu->prq[head / sizeof(*req)];
552 result = QI_RESP_FAILURE;
553 address = (u64)req->addr << VTD_PAGE_SHIFT;
554 if (!req->pasid_present) {
555 pr_err("%s: Page request without PASID: %08llx %08llx\n",
556 iommu->name, ((unsigned long long *)req)[0],
557 ((unsigned long long *)req)[1]);
561 if (!svm || svm->pasid != req->pasid) {
563 svm = idr_find(&iommu->pasid_idr, req->pasid);
564 /* It *can't* go away, because the driver is not permitted
565 * to unbind the mm while any page faults are outstanding.
566 * So we only need RCU to protect the internal idr code. */
570 pr_err("%s: Page request for invalid PASID %d: %08llx %08llx\n",
571 iommu->name, req->pasid, ((unsigned long long *)req)[0],
572 ((unsigned long long *)req)[1]);
577 result = QI_RESP_INVALID;
578 /* Since we're using init_mm.pgd directly, we should never take
579 * any faults on kernel addresses. */
582 /* If the mm is already defunct, don't handle faults. */
583 if (!mmget_not_zero(svm->mm))
585 down_read(&svm->mm->mmap_sem);
586 vma = find_extend_vma(svm->mm, address);
587 if (!vma || address < vma->vm_start)
590 if (access_error(vma, req))
593 ret = handle_mm_fault(vma, address,
594 req->wr_req ? FAULT_FLAG_WRITE : 0);
595 if (ret & VM_FAULT_ERROR)
598 result = QI_RESP_SUCCESS;
600 up_read(&svm->mm->mmap_sem);
603 /* Accounting for major/minor faults? */
605 list_for_each_entry_rcu(sdev, &svm->devs, list) {
606 if (sdev->sid == PCI_DEVID(req->bus, req->devfn))
609 /* Other devices can go away, but the drivers are not permitted
610 * to unbind while any page faults might be in flight. So it's
611 * OK to drop the 'lock' here now we have it. */
614 if (WARN_ON(&sdev->list == &svm->devs))
617 if (sdev && sdev->ops && sdev->ops->fault_cb) {
618 int rwxp = (req->rd_req << 3) | (req->wr_req << 2) |
619 (req->exe_req << 1) | (req->priv_req);
620 sdev->ops->fault_cb(sdev->dev, req->pasid, req->addr, req->private, rwxp, result);
622 /* We get here in the error case where the PASID lookup failed,
623 and these can be NULL. Do not use them below this point! */
628 /* Page Group Response */
629 resp.low = QI_PGRP_PASID(req->pasid) |
630 QI_PGRP_DID((req->bus << 8) | req->devfn) |
631 QI_PGRP_PASID_P(req->pasid_present) |
633 resp.high = QI_PGRP_IDX(req->prg_index) |
634 QI_PGRP_PRIV(req->private) | QI_PGRP_RESP_CODE(result);
636 qi_submit_sync(&resp, iommu);
637 } else if (req->srr) {
638 /* Page Stream Response */
639 resp.low = QI_PSTRM_IDX(req->prg_index) |
640 QI_PSTRM_PRIV(req->private) | QI_PSTRM_BUS(req->bus) |
641 QI_PSTRM_PASID(req->pasid) | QI_PSTRM_RESP_TYPE;
642 resp.high = QI_PSTRM_ADDR(address) | QI_PSTRM_DEVFN(req->devfn) |
643 QI_PSTRM_RESP_CODE(result);
645 qi_submit_sync(&resp, iommu);
648 head = (head + sizeof(*req)) & PRQ_RING_MASK;
651 dmar_writeq(iommu->reg + DMAR_PQH_REG, tail);
653 return IRQ_RETVAL(handled);