]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/kvm/mmu.c
KVM: Simply gfn_to_page()
[karo-tx-linux.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #define ASSERT(x)                                                       \
56         if (!(x)) {                                                     \
57                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
58                        __FILE__, __LINE__, #x);                         \
59         }
60
61 #define PT64_PT_BITS 9
62 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
63 #define PT32_PT_BITS 10
64 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
65
66 #define PT_WRITABLE_SHIFT 1
67
68 #define PT_PRESENT_MASK (1ULL << 0)
69 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
70 #define PT_USER_MASK (1ULL << 2)
71 #define PT_PWT_MASK (1ULL << 3)
72 #define PT_PCD_MASK (1ULL << 4)
73 #define PT_ACCESSED_MASK (1ULL << 5)
74 #define PT_DIRTY_MASK (1ULL << 6)
75 #define PT_PAGE_SIZE_MASK (1ULL << 7)
76 #define PT_PAT_MASK (1ULL << 7)
77 #define PT_GLOBAL_MASK (1ULL << 8)
78 #define PT64_NX_MASK (1ULL << 63)
79
80 #define PT_PAT_SHIFT 7
81 #define PT_DIR_PAT_SHIFT 12
82 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
83
84 #define PT32_DIR_PSE36_SIZE 4
85 #define PT32_DIR_PSE36_SHIFT 13
86 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
87
88
89 #define PT32_PTE_COPY_MASK \
90         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
91
92 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 9
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
99
100 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
101 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
102
103 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
104 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
105
106 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
107
108 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
109
110 #define PT64_LEVEL_BITS 9
111
112 #define PT64_LEVEL_SHIFT(level) \
113                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
114
115 #define PT64_LEVEL_MASK(level) \
116                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
117
118 #define PT64_INDEX(address, level)\
119         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
120
121
122 #define PT32_LEVEL_BITS 10
123
124 #define PT32_LEVEL_SHIFT(level) \
125                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
126
127 #define PT32_LEVEL_MASK(level) \
128                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
129
130 #define PT32_INDEX(address, level)\
131         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132
133
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
135 #define PT64_DIR_BASE_ADDR_MASK \
136         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137
138 #define PT32_BASE_ADDR_MASK PAGE_MASK
139 #define PT32_DIR_BASE_ADDR_MASK \
140         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
141
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 struct kvm_rmap_desc {
158         u64 *shadow_ptes[RMAP_EXT];
159         struct kvm_rmap_desc *more;
160 };
161
162 static int is_write_protection(struct kvm_vcpu *vcpu)
163 {
164         return vcpu->cr0 & CR0_WP_MASK;
165 }
166
167 static int is_cpuid_PSE36(void)
168 {
169         return 1;
170 }
171
172 static int is_nx(struct kvm_vcpu *vcpu)
173 {
174         return vcpu->shadow_efer & EFER_NX;
175 }
176
177 static int is_present_pte(unsigned long pte)
178 {
179         return pte & PT_PRESENT_MASK;
180 }
181
182 static int is_writeble_pte(unsigned long pte)
183 {
184         return pte & PT_WRITABLE_MASK;
185 }
186
187 static int is_io_pte(unsigned long pte)
188 {
189         return pte & PT_SHADOW_IO_MARK;
190 }
191
192 static int is_rmap_pte(u64 pte)
193 {
194         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
195                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
196 }
197
198 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
199                                   size_t objsize, int min)
200 {
201         void *obj;
202
203         if (cache->nobjs >= min)
204                 return 0;
205         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
206                 obj = kzalloc(objsize, GFP_NOWAIT);
207                 if (!obj)
208                         return -ENOMEM;
209                 cache->objects[cache->nobjs++] = obj;
210         }
211         return 0;
212 }
213
214 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
215 {
216         while (mc->nobjs)
217                 kfree(mc->objects[--mc->nobjs]);
218 }
219
220 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
221 {
222         int r;
223
224         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
225                                    sizeof(struct kvm_pte_chain), 4);
226         if (r)
227                 goto out;
228         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
229                                    sizeof(struct kvm_rmap_desc), 1);
230 out:
231         return r;
232 }
233
234 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
235 {
236         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
237         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
238 }
239
240 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
241                                     size_t size)
242 {
243         void *p;
244
245         BUG_ON(!mc->nobjs);
246         p = mc->objects[--mc->nobjs];
247         memset(p, 0, size);
248         return p;
249 }
250
251 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
252 {
253         if (mc->nobjs < KVM_NR_MEM_OBJS)
254                 mc->objects[mc->nobjs++] = obj;
255         else
256                 kfree(obj);
257 }
258
259 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
260 {
261         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
262                                       sizeof(struct kvm_pte_chain));
263 }
264
265 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
266                                struct kvm_pte_chain *pc)
267 {
268         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
269 }
270
271 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
272 {
273         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
274                                       sizeof(struct kvm_rmap_desc));
275 }
276
277 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
278                                struct kvm_rmap_desc *rd)
279 {
280         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
281 }
282
283 /*
284  * Reverse mapping data structures:
285  *
286  * If page->private bit zero is zero, then page->private points to the
287  * shadow page table entry that points to page_address(page).
288  *
289  * If page->private bit zero is one, (then page->private & ~1) points
290  * to a struct kvm_rmap_desc containing more mappings.
291  */
292 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
293 {
294         struct page *page;
295         struct kvm_rmap_desc *desc;
296         int i;
297
298         if (!is_rmap_pte(*spte))
299                 return;
300         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
301         if (!page_private(page)) {
302                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
303                 set_page_private(page,(unsigned long)spte);
304         } else if (!(page_private(page) & 1)) {
305                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
306                 desc = mmu_alloc_rmap_desc(vcpu);
307                 desc->shadow_ptes[0] = (u64 *)page_private(page);
308                 desc->shadow_ptes[1] = spte;
309                 set_page_private(page,(unsigned long)desc | 1);
310         } else {
311                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
312                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
313                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
314                         desc = desc->more;
315                 if (desc->shadow_ptes[RMAP_EXT-1]) {
316                         desc->more = mmu_alloc_rmap_desc(vcpu);
317                         desc = desc->more;
318                 }
319                 for (i = 0; desc->shadow_ptes[i]; ++i)
320                         ;
321                 desc->shadow_ptes[i] = spte;
322         }
323 }
324
325 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
326                                    struct page *page,
327                                    struct kvm_rmap_desc *desc,
328                                    int i,
329                                    struct kvm_rmap_desc *prev_desc)
330 {
331         int j;
332
333         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
334                 ;
335         desc->shadow_ptes[i] = desc->shadow_ptes[j];
336         desc->shadow_ptes[j] = NULL;
337         if (j != 0)
338                 return;
339         if (!prev_desc && !desc->more)
340                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
341         else
342                 if (prev_desc)
343                         prev_desc->more = desc->more;
344                 else
345                         set_page_private(page,(unsigned long)desc->more | 1);
346         mmu_free_rmap_desc(vcpu, desc);
347 }
348
349 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
350 {
351         struct page *page;
352         struct kvm_rmap_desc *desc;
353         struct kvm_rmap_desc *prev_desc;
354         int i;
355
356         if (!is_rmap_pte(*spte))
357                 return;
358         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
359         if (!page_private(page)) {
360                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
361                 BUG();
362         } else if (!(page_private(page) & 1)) {
363                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
364                 if ((u64 *)page_private(page) != spte) {
365                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
366                                spte, *spte);
367                         BUG();
368                 }
369                 set_page_private(page,0);
370         } else {
371                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
372                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
373                 prev_desc = NULL;
374                 while (desc) {
375                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
376                                 if (desc->shadow_ptes[i] == spte) {
377                                         rmap_desc_remove_entry(vcpu, page,
378                                                                desc, i,
379                                                                prev_desc);
380                                         return;
381                                 }
382                         prev_desc = desc;
383                         desc = desc->more;
384                 }
385                 BUG();
386         }
387 }
388
389 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
390 {
391         struct kvm *kvm = vcpu->kvm;
392         struct page *page;
393         struct kvm_rmap_desc *desc;
394         u64 *spte;
395
396         page = gfn_to_page(kvm, gfn);
397         BUG_ON(!page);
398
399         while (page_private(page)) {
400                 if (!(page_private(page) & 1))
401                         spte = (u64 *)page_private(page);
402                 else {
403                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
404                         spte = desc->shadow_ptes[0];
405                 }
406                 BUG_ON(!spte);
407                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
408                        != page_to_pfn(page));
409                 BUG_ON(!(*spte & PT_PRESENT_MASK));
410                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
411                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
412                 rmap_remove(vcpu, spte);
413                 kvm_arch_ops->tlb_flush(vcpu);
414                 *spte &= ~(u64)PT_WRITABLE_MASK;
415         }
416 }
417
418 static int is_empty_shadow_page(hpa_t page_hpa)
419 {
420         u64 *pos;
421         u64 *end;
422
423         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
424                       pos != end; pos++)
425                 if (*pos != 0) {
426                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
427                                pos, *pos);
428                         return 0;
429                 }
430         return 1;
431 }
432
433 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
434 {
435         struct kvm_mmu_page *page_head = page_header(page_hpa);
436
437         ASSERT(is_empty_shadow_page(page_hpa));
438         page_head->page_hpa = page_hpa;
439         list_move(&page_head->link, &vcpu->free_pages);
440         ++vcpu->kvm->n_free_mmu_pages;
441 }
442
443 static unsigned kvm_page_table_hashfn(gfn_t gfn)
444 {
445         return gfn;
446 }
447
448 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
449                                                u64 *parent_pte)
450 {
451         struct kvm_mmu_page *page;
452
453         if (list_empty(&vcpu->free_pages))
454                 return NULL;
455
456         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
457         list_move(&page->link, &vcpu->kvm->active_mmu_pages);
458         ASSERT(is_empty_shadow_page(page->page_hpa));
459         page->slot_bitmap = 0;
460         page->multimapped = 0;
461         page->parent_pte = parent_pte;
462         --vcpu->kvm->n_free_mmu_pages;
463         return page;
464 }
465
466 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
467                                     struct kvm_mmu_page *page, u64 *parent_pte)
468 {
469         struct kvm_pte_chain *pte_chain;
470         struct hlist_node *node;
471         int i;
472
473         if (!parent_pte)
474                 return;
475         if (!page->multimapped) {
476                 u64 *old = page->parent_pte;
477
478                 if (!old) {
479                         page->parent_pte = parent_pte;
480                         return;
481                 }
482                 page->multimapped = 1;
483                 pte_chain = mmu_alloc_pte_chain(vcpu);
484                 INIT_HLIST_HEAD(&page->parent_ptes);
485                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
486                 pte_chain->parent_ptes[0] = old;
487         }
488         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
489                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
490                         continue;
491                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
492                         if (!pte_chain->parent_ptes[i]) {
493                                 pte_chain->parent_ptes[i] = parent_pte;
494                                 return;
495                         }
496         }
497         pte_chain = mmu_alloc_pte_chain(vcpu);
498         BUG_ON(!pte_chain);
499         hlist_add_head(&pte_chain->link, &page->parent_ptes);
500         pte_chain->parent_ptes[0] = parent_pte;
501 }
502
503 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
504                                        struct kvm_mmu_page *page,
505                                        u64 *parent_pte)
506 {
507         struct kvm_pte_chain *pte_chain;
508         struct hlist_node *node;
509         int i;
510
511         if (!page->multimapped) {
512                 BUG_ON(page->parent_pte != parent_pte);
513                 page->parent_pte = NULL;
514                 return;
515         }
516         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
517                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
518                         if (!pte_chain->parent_ptes[i])
519                                 break;
520                         if (pte_chain->parent_ptes[i] != parent_pte)
521                                 continue;
522                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
523                                 && pte_chain->parent_ptes[i + 1]) {
524                                 pte_chain->parent_ptes[i]
525                                         = pte_chain->parent_ptes[i + 1];
526                                 ++i;
527                         }
528                         pte_chain->parent_ptes[i] = NULL;
529                         if (i == 0) {
530                                 hlist_del(&pte_chain->link);
531                                 mmu_free_pte_chain(vcpu, pte_chain);
532                                 if (hlist_empty(&page->parent_ptes)) {
533                                         page->multimapped = 0;
534                                         page->parent_pte = NULL;
535                                 }
536                         }
537                         return;
538                 }
539         BUG();
540 }
541
542 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
543                                                 gfn_t gfn)
544 {
545         unsigned index;
546         struct hlist_head *bucket;
547         struct kvm_mmu_page *page;
548         struct hlist_node *node;
549
550         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
551         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
552         bucket = &vcpu->kvm->mmu_page_hash[index];
553         hlist_for_each_entry(page, node, bucket, hash_link)
554                 if (page->gfn == gfn && !page->role.metaphysical) {
555                         pgprintk("%s: found role %x\n",
556                                  __FUNCTION__, page->role.word);
557                         return page;
558                 }
559         return NULL;
560 }
561
562 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
563                                              gfn_t gfn,
564                                              gva_t gaddr,
565                                              unsigned level,
566                                              int metaphysical,
567                                              unsigned hugepage_access,
568                                              u64 *parent_pte)
569 {
570         union kvm_mmu_page_role role;
571         unsigned index;
572         unsigned quadrant;
573         struct hlist_head *bucket;
574         struct kvm_mmu_page *page;
575         struct hlist_node *node;
576
577         role.word = 0;
578         role.glevels = vcpu->mmu.root_level;
579         role.level = level;
580         role.metaphysical = metaphysical;
581         role.hugepage_access = hugepage_access;
582         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
583                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
584                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
585                 role.quadrant = quadrant;
586         }
587         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
588                  gfn, role.word);
589         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
590         bucket = &vcpu->kvm->mmu_page_hash[index];
591         hlist_for_each_entry(page, node, bucket, hash_link)
592                 if (page->gfn == gfn && page->role.word == role.word) {
593                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
594                         pgprintk("%s: found\n", __FUNCTION__);
595                         return page;
596                 }
597         page = kvm_mmu_alloc_page(vcpu, parent_pte);
598         if (!page)
599                 return page;
600         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
601         page->gfn = gfn;
602         page->role = role;
603         hlist_add_head(&page->hash_link, bucket);
604         if (!metaphysical)
605                 rmap_write_protect(vcpu, gfn);
606         return page;
607 }
608
609 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
610                                          struct kvm_mmu_page *page)
611 {
612         unsigned i;
613         u64 *pt;
614         u64 ent;
615
616         pt = __va(page->page_hpa);
617
618         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
619                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
620                         if (pt[i] & PT_PRESENT_MASK)
621                                 rmap_remove(vcpu, &pt[i]);
622                         pt[i] = 0;
623                 }
624                 kvm_arch_ops->tlb_flush(vcpu);
625                 return;
626         }
627
628         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
629                 ent = pt[i];
630
631                 pt[i] = 0;
632                 if (!(ent & PT_PRESENT_MASK))
633                         continue;
634                 ent &= PT64_BASE_ADDR_MASK;
635                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
636         }
637 }
638
639 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
640                              struct kvm_mmu_page *page,
641                              u64 *parent_pte)
642 {
643         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
644 }
645
646 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
647                              struct kvm_mmu_page *page)
648 {
649         u64 *parent_pte;
650
651         while (page->multimapped || page->parent_pte) {
652                 if (!page->multimapped)
653                         parent_pte = page->parent_pte;
654                 else {
655                         struct kvm_pte_chain *chain;
656
657                         chain = container_of(page->parent_ptes.first,
658                                              struct kvm_pte_chain, link);
659                         parent_pte = chain->parent_ptes[0];
660                 }
661                 BUG_ON(!parent_pte);
662                 kvm_mmu_put_page(vcpu, page, parent_pte);
663                 *parent_pte = 0;
664         }
665         kvm_mmu_page_unlink_children(vcpu, page);
666         if (!page->root_count) {
667                 hlist_del(&page->hash_link);
668                 kvm_mmu_free_page(vcpu, page->page_hpa);
669         } else
670                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
671 }
672
673 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
674 {
675         unsigned index;
676         struct hlist_head *bucket;
677         struct kvm_mmu_page *page;
678         struct hlist_node *node, *n;
679         int r;
680
681         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
682         r = 0;
683         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
684         bucket = &vcpu->kvm->mmu_page_hash[index];
685         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
686                 if (page->gfn == gfn && !page->role.metaphysical) {
687                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
688                                  page->role.word);
689                         kvm_mmu_zap_page(vcpu, page);
690                         r = 1;
691                 }
692         return r;
693 }
694
695 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
696 {
697         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
698         struct kvm_mmu_page *page_head = page_header(__pa(pte));
699
700         __set_bit(slot, &page_head->slot_bitmap);
701 }
702
703 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
704 {
705         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
706
707         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
708 }
709
710 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
711 {
712         struct page *page;
713
714         ASSERT((gpa & HPA_ERR_MASK) == 0);
715         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
716         if (!page)
717                 return gpa | HPA_ERR_MASK;
718         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
719                 | (gpa & (PAGE_SIZE-1));
720 }
721
722 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
723 {
724         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
725
726         if (gpa == UNMAPPED_GVA)
727                 return UNMAPPED_GVA;
728         return gpa_to_hpa(vcpu, gpa);
729 }
730
731 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
732 {
733         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
734
735         if (gpa == UNMAPPED_GVA)
736                 return NULL;
737         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
738 }
739
740 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
741 {
742 }
743
744 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
745 {
746         int level = PT32E_ROOT_LEVEL;
747         hpa_t table_addr = vcpu->mmu.root_hpa;
748
749         for (; ; level--) {
750                 u32 index = PT64_INDEX(v, level);
751                 u64 *table;
752                 u64 pte;
753
754                 ASSERT(VALID_PAGE(table_addr));
755                 table = __va(table_addr);
756
757                 if (level == 1) {
758                         pte = table[index];
759                         if (is_present_pte(pte) && is_writeble_pte(pte))
760                                 return 0;
761                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
762                         page_header_update_slot(vcpu->kvm, table, v);
763                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
764                                                                 PT_USER_MASK;
765                         rmap_add(vcpu, &table[index]);
766                         return 0;
767                 }
768
769                 if (table[index] == 0) {
770                         struct kvm_mmu_page *new_table;
771                         gfn_t pseudo_gfn;
772
773                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
774                                 >> PAGE_SHIFT;
775                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
776                                                      v, level - 1,
777                                                      1, 0, &table[index]);
778                         if (!new_table) {
779                                 pgprintk("nonpaging_map: ENOMEM\n");
780                                 return -ENOMEM;
781                         }
782
783                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
784                                 | PT_WRITABLE_MASK | PT_USER_MASK;
785                 }
786                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
787         }
788 }
789
790 static void mmu_free_roots(struct kvm_vcpu *vcpu)
791 {
792         int i;
793         struct kvm_mmu_page *page;
794
795 #ifdef CONFIG_X86_64
796         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
797                 hpa_t root = vcpu->mmu.root_hpa;
798
799                 ASSERT(VALID_PAGE(root));
800                 page = page_header(root);
801                 --page->root_count;
802                 vcpu->mmu.root_hpa = INVALID_PAGE;
803                 return;
804         }
805 #endif
806         for (i = 0; i < 4; ++i) {
807                 hpa_t root = vcpu->mmu.pae_root[i];
808
809                 ASSERT(VALID_PAGE(root));
810                 root &= PT64_BASE_ADDR_MASK;
811                 page = page_header(root);
812                 --page->root_count;
813                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
814         }
815         vcpu->mmu.root_hpa = INVALID_PAGE;
816 }
817
818 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
819 {
820         int i;
821         gfn_t root_gfn;
822         struct kvm_mmu_page *page;
823
824         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
825
826 #ifdef CONFIG_X86_64
827         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
828                 hpa_t root = vcpu->mmu.root_hpa;
829
830                 ASSERT(!VALID_PAGE(root));
831                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
832                                         PT64_ROOT_LEVEL, 0, 0, NULL);
833                 root = page->page_hpa;
834                 ++page->root_count;
835                 vcpu->mmu.root_hpa = root;
836                 return;
837         }
838 #endif
839         for (i = 0; i < 4; ++i) {
840                 hpa_t root = vcpu->mmu.pae_root[i];
841
842                 ASSERT(!VALID_PAGE(root));
843                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
844                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
845                 else if (vcpu->mmu.root_level == 0)
846                         root_gfn = 0;
847                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
848                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
849                                         0, NULL);
850                 root = page->page_hpa;
851                 ++page->root_count;
852                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
853         }
854         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
855 }
856
857 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
858 {
859         return vaddr;
860 }
861
862 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
863                                u32 error_code)
864 {
865         gpa_t addr = gva;
866         hpa_t paddr;
867         int r;
868
869         r = mmu_topup_memory_caches(vcpu);
870         if (r)
871                 return r;
872
873         ASSERT(vcpu);
874         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
875
876
877         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
878
879         if (is_error_hpa(paddr))
880                 return 1;
881
882         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
883 }
884
885 static void nonpaging_free(struct kvm_vcpu *vcpu)
886 {
887         mmu_free_roots(vcpu);
888 }
889
890 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
891 {
892         struct kvm_mmu *context = &vcpu->mmu;
893
894         context->new_cr3 = nonpaging_new_cr3;
895         context->page_fault = nonpaging_page_fault;
896         context->gva_to_gpa = nonpaging_gva_to_gpa;
897         context->free = nonpaging_free;
898         context->root_level = 0;
899         context->shadow_root_level = PT32E_ROOT_LEVEL;
900         mmu_alloc_roots(vcpu);
901         ASSERT(VALID_PAGE(context->root_hpa));
902         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
903         return 0;
904 }
905
906 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
907 {
908         ++kvm_stat.tlb_flush;
909         kvm_arch_ops->tlb_flush(vcpu);
910 }
911
912 static void paging_new_cr3(struct kvm_vcpu *vcpu)
913 {
914         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
915         mmu_free_roots(vcpu);
916         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
917                 kvm_mmu_free_some_pages(vcpu);
918         mmu_alloc_roots(vcpu);
919         kvm_mmu_flush_tlb(vcpu);
920         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
921 }
922
923 static inline void set_pte_common(struct kvm_vcpu *vcpu,
924                              u64 *shadow_pte,
925                              gpa_t gaddr,
926                              int dirty,
927                              u64 access_bits,
928                              gfn_t gfn)
929 {
930         hpa_t paddr;
931
932         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
933         if (!dirty)
934                 access_bits &= ~PT_WRITABLE_MASK;
935
936         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
937
938         *shadow_pte |= access_bits;
939
940         if (is_error_hpa(paddr)) {
941                 *shadow_pte |= gaddr;
942                 *shadow_pte |= PT_SHADOW_IO_MARK;
943                 *shadow_pte &= ~PT_PRESENT_MASK;
944                 return;
945         }
946
947         *shadow_pte |= paddr;
948
949         if (access_bits & PT_WRITABLE_MASK) {
950                 struct kvm_mmu_page *shadow;
951
952                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
953                 if (shadow) {
954                         pgprintk("%s: found shadow page for %lx, marking ro\n",
955                                  __FUNCTION__, gfn);
956                         access_bits &= ~PT_WRITABLE_MASK;
957                         if (is_writeble_pte(*shadow_pte)) {
958                                     *shadow_pte &= ~PT_WRITABLE_MASK;
959                                     kvm_arch_ops->tlb_flush(vcpu);
960                         }
961                 }
962         }
963
964         if (access_bits & PT_WRITABLE_MASK)
965                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
966
967         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
968         rmap_add(vcpu, shadow_pte);
969 }
970
971 static void inject_page_fault(struct kvm_vcpu *vcpu,
972                               u64 addr,
973                               u32 err_code)
974 {
975         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
976 }
977
978 static inline int fix_read_pf(u64 *shadow_ent)
979 {
980         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
981             !(*shadow_ent & PT_USER_MASK)) {
982                 /*
983                  * If supervisor write protect is disabled, we shadow kernel
984                  * pages as user pages so we can trap the write access.
985                  */
986                 *shadow_ent |= PT_USER_MASK;
987                 *shadow_ent &= ~PT_WRITABLE_MASK;
988
989                 return 1;
990
991         }
992         return 0;
993 }
994
995 static void paging_free(struct kvm_vcpu *vcpu)
996 {
997         nonpaging_free(vcpu);
998 }
999
1000 #define PTTYPE 64
1001 #include "paging_tmpl.h"
1002 #undef PTTYPE
1003
1004 #define PTTYPE 32
1005 #include "paging_tmpl.h"
1006 #undef PTTYPE
1007
1008 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1009 {
1010         struct kvm_mmu *context = &vcpu->mmu;
1011
1012         ASSERT(is_pae(vcpu));
1013         context->new_cr3 = paging_new_cr3;
1014         context->page_fault = paging64_page_fault;
1015         context->gva_to_gpa = paging64_gva_to_gpa;
1016         context->free = paging_free;
1017         context->root_level = level;
1018         context->shadow_root_level = level;
1019         mmu_alloc_roots(vcpu);
1020         ASSERT(VALID_PAGE(context->root_hpa));
1021         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1022                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1023         return 0;
1024 }
1025
1026 static int paging64_init_context(struct kvm_vcpu *vcpu)
1027 {
1028         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1029 }
1030
1031 static int paging32_init_context(struct kvm_vcpu *vcpu)
1032 {
1033         struct kvm_mmu *context = &vcpu->mmu;
1034
1035         context->new_cr3 = paging_new_cr3;
1036         context->page_fault = paging32_page_fault;
1037         context->gva_to_gpa = paging32_gva_to_gpa;
1038         context->free = paging_free;
1039         context->root_level = PT32_ROOT_LEVEL;
1040         context->shadow_root_level = PT32E_ROOT_LEVEL;
1041         mmu_alloc_roots(vcpu);
1042         ASSERT(VALID_PAGE(context->root_hpa));
1043         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1044                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1045         return 0;
1046 }
1047
1048 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1049 {
1050         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1051 }
1052
1053 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1054 {
1055         ASSERT(vcpu);
1056         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1057
1058         if (!is_paging(vcpu))
1059                 return nonpaging_init_context(vcpu);
1060         else if (is_long_mode(vcpu))
1061                 return paging64_init_context(vcpu);
1062         else if (is_pae(vcpu))
1063                 return paging32E_init_context(vcpu);
1064         else
1065                 return paging32_init_context(vcpu);
1066 }
1067
1068 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1069 {
1070         ASSERT(vcpu);
1071         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1072                 vcpu->mmu.free(vcpu);
1073                 vcpu->mmu.root_hpa = INVALID_PAGE;
1074         }
1075 }
1076
1077 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1078 {
1079         int r;
1080
1081         destroy_kvm_mmu(vcpu);
1082         r = init_kvm_mmu(vcpu);
1083         if (r < 0)
1084                 goto out;
1085         r = mmu_topup_memory_caches(vcpu);
1086 out:
1087         return r;
1088 }
1089
1090 static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
1091                                   struct kvm_mmu_page *page,
1092                                   u64 *spte)
1093 {
1094         u64 pte;
1095         struct kvm_mmu_page *child;
1096
1097         pte = *spte;
1098         if (is_present_pte(pte)) {
1099                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1100                         rmap_remove(vcpu, spte);
1101                 else {
1102                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1103                         mmu_page_remove_parent_pte(vcpu, child, spte);
1104                 }
1105         }
1106         *spte = 0;
1107 }
1108
1109 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1110 {
1111         gfn_t gfn = gpa >> PAGE_SHIFT;
1112         struct kvm_mmu_page *page;
1113         struct hlist_node *node, *n;
1114         struct hlist_head *bucket;
1115         unsigned index;
1116         u64 *spte;
1117         unsigned offset = offset_in_page(gpa);
1118         unsigned pte_size;
1119         unsigned page_offset;
1120         unsigned misaligned;
1121         int level;
1122         int flooded = 0;
1123         int npte;
1124
1125         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1126         if (gfn == vcpu->last_pt_write_gfn) {
1127                 ++vcpu->last_pt_write_count;
1128                 if (vcpu->last_pt_write_count >= 3)
1129                         flooded = 1;
1130         } else {
1131                 vcpu->last_pt_write_gfn = gfn;
1132                 vcpu->last_pt_write_count = 1;
1133         }
1134         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1135         bucket = &vcpu->kvm->mmu_page_hash[index];
1136         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1137                 if (page->gfn != gfn || page->role.metaphysical)
1138                         continue;
1139                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1140                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1141                 if (misaligned || flooded) {
1142                         /*
1143                          * Misaligned accesses are too much trouble to fix
1144                          * up; also, they usually indicate a page is not used
1145                          * as a page table.
1146                          *
1147                          * If we're seeing too many writes to a page,
1148                          * it may no longer be a page table, or we may be
1149                          * forking, in which case it is better to unmap the
1150                          * page.
1151                          */
1152                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1153                                  gpa, bytes, page->role.word);
1154                         kvm_mmu_zap_page(vcpu, page);
1155                         continue;
1156                 }
1157                 page_offset = offset;
1158                 level = page->role.level;
1159                 npte = 1;
1160                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1161                         page_offset <<= 1;      /* 32->64 */
1162                         /*
1163                          * A 32-bit pde maps 4MB while the shadow pdes map
1164                          * only 2MB.  So we need to double the offset again
1165                          * and zap two pdes instead of one.
1166                          */
1167                         if (level == PT32_ROOT_LEVEL) {
1168                                 page_offset &= ~7; /* kill rounding error */
1169                                 page_offset <<= 1;
1170                                 npte = 2;
1171                         }
1172                         page_offset &= ~PAGE_MASK;
1173                 }
1174                 spte = __va(page->page_hpa);
1175                 spte += page_offset / sizeof(*spte);
1176                 while (npte--) {
1177                         mmu_pre_write_zap_pte(vcpu, page, spte);
1178                         ++spte;
1179                 }
1180         }
1181 }
1182
1183 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1184 {
1185 }
1186
1187 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1188 {
1189         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1190
1191         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1192 }
1193
1194 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1195 {
1196         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1197                 struct kvm_mmu_page *page;
1198
1199                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1200                                     struct kvm_mmu_page, link);
1201                 kvm_mmu_zap_page(vcpu, page);
1202         }
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1205
1206 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1207 {
1208         struct kvm_mmu_page *page;
1209
1210         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1211                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1212                                     struct kvm_mmu_page, link);
1213                 kvm_mmu_zap_page(vcpu, page);
1214         }
1215         while (!list_empty(&vcpu->free_pages)) {
1216                 page = list_entry(vcpu->free_pages.next,
1217                                   struct kvm_mmu_page, link);
1218                 list_del(&page->link);
1219                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1220                 page->page_hpa = INVALID_PAGE;
1221         }
1222         free_page((unsigned long)vcpu->mmu.pae_root);
1223 }
1224
1225 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1226 {
1227         struct page *page;
1228         int i;
1229
1230         ASSERT(vcpu);
1231
1232         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1233                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1234
1235                 INIT_LIST_HEAD(&page_header->link);
1236                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1237                         goto error_1;
1238                 set_page_private(page, (unsigned long)page_header);
1239                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1240                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1241                 list_add(&page_header->link, &vcpu->free_pages);
1242                 ++vcpu->kvm->n_free_mmu_pages;
1243         }
1244
1245         /*
1246          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1247          * Therefore we need to allocate shadow page tables in the first
1248          * 4GB of memory, which happens to fit the DMA32 zone.
1249          */
1250         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1251         if (!page)
1252                 goto error_1;
1253         vcpu->mmu.pae_root = page_address(page);
1254         for (i = 0; i < 4; ++i)
1255                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1256
1257         return 0;
1258
1259 error_1:
1260         free_mmu_pages(vcpu);
1261         return -ENOMEM;
1262 }
1263
1264 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1265 {
1266         ASSERT(vcpu);
1267         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1268         ASSERT(list_empty(&vcpu->free_pages));
1269
1270         return alloc_mmu_pages(vcpu);
1271 }
1272
1273 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1274 {
1275         ASSERT(vcpu);
1276         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1277         ASSERT(!list_empty(&vcpu->free_pages));
1278
1279         return init_kvm_mmu(vcpu);
1280 }
1281
1282 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1283 {
1284         ASSERT(vcpu);
1285
1286         destroy_kvm_mmu(vcpu);
1287         free_mmu_pages(vcpu);
1288         mmu_free_memory_caches(vcpu);
1289 }
1290
1291 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1292 {
1293         struct kvm *kvm = vcpu->kvm;
1294         struct kvm_mmu_page *page;
1295
1296         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1297                 int i;
1298                 u64 *pt;
1299
1300                 if (!test_bit(slot, &page->slot_bitmap))
1301                         continue;
1302
1303                 pt = __va(page->page_hpa);
1304                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1305                         /* avoid RMW */
1306                         if (pt[i] & PT_WRITABLE_MASK) {
1307                                 rmap_remove(vcpu, &pt[i]);
1308                                 pt[i] &= ~PT_WRITABLE_MASK;
1309                         }
1310         }
1311 }
1312
1313 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1314 {
1315         destroy_kvm_mmu(vcpu);
1316
1317         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1318                 struct kvm_mmu_page *page;
1319
1320                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1321                                     struct kvm_mmu_page, link);
1322                 kvm_mmu_zap_page(vcpu, page);
1323         }
1324
1325         mmu_free_memory_caches(vcpu);
1326         kvm_arch_ops->tlb_flush(vcpu);
1327         init_kvm_mmu(vcpu);
1328 }
1329
1330 #ifdef AUDIT
1331
1332 static const char *audit_msg;
1333
1334 static gva_t canonicalize(gva_t gva)
1335 {
1336 #ifdef CONFIG_X86_64
1337         gva = (long long)(gva << 16) >> 16;
1338 #endif
1339         return gva;
1340 }
1341
1342 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1343                                 gva_t va, int level)
1344 {
1345         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1346         int i;
1347         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1348
1349         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1350                 u64 ent = pt[i];
1351
1352                 if (!ent & PT_PRESENT_MASK)
1353                         continue;
1354
1355                 va = canonicalize(va);
1356                 if (level > 1)
1357                         audit_mappings_page(vcpu, ent, va, level - 1);
1358                 else {
1359                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1360                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1361
1362                         if ((ent & PT_PRESENT_MASK)
1363                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1364                                 printk(KERN_ERR "audit error: (%s) levels %d"
1365                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1366                                        audit_msg, vcpu->mmu.root_level,
1367                                        va, gpa, hpa, ent);
1368                 }
1369         }
1370 }
1371
1372 static void audit_mappings(struct kvm_vcpu *vcpu)
1373 {
1374         unsigned i;
1375
1376         if (vcpu->mmu.root_level == 4)
1377                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1378         else
1379                 for (i = 0; i < 4; ++i)
1380                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1381                                 audit_mappings_page(vcpu,
1382                                                     vcpu->mmu.pae_root[i],
1383                                                     i << 30,
1384                                                     2);
1385 }
1386
1387 static int count_rmaps(struct kvm_vcpu *vcpu)
1388 {
1389         int nmaps = 0;
1390         int i, j, k;
1391
1392         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1393                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1394                 struct kvm_rmap_desc *d;
1395
1396                 for (j = 0; j < m->npages; ++j) {
1397                         struct page *page = m->phys_mem[j];
1398
1399                         if (!page->private)
1400                                 continue;
1401                         if (!(page->private & 1)) {
1402                                 ++nmaps;
1403                                 continue;
1404                         }
1405                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1406                         while (d) {
1407                                 for (k = 0; k < RMAP_EXT; ++k)
1408                                         if (d->shadow_ptes[k])
1409                                                 ++nmaps;
1410                                         else
1411                                                 break;
1412                                 d = d->more;
1413                         }
1414                 }
1415         }
1416         return nmaps;
1417 }
1418
1419 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1420 {
1421         int nmaps = 0;
1422         struct kvm_mmu_page *page;
1423         int i;
1424
1425         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1426                 u64 *pt = __va(page->page_hpa);
1427
1428                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1429                         continue;
1430
1431                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1432                         u64 ent = pt[i];
1433
1434                         if (!(ent & PT_PRESENT_MASK))
1435                                 continue;
1436                         if (!(ent & PT_WRITABLE_MASK))
1437                                 continue;
1438                         ++nmaps;
1439                 }
1440         }
1441         return nmaps;
1442 }
1443
1444 static void audit_rmap(struct kvm_vcpu *vcpu)
1445 {
1446         int n_rmap = count_rmaps(vcpu);
1447         int n_actual = count_writable_mappings(vcpu);
1448
1449         if (n_rmap != n_actual)
1450                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1451                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1452 }
1453
1454 static void audit_write_protection(struct kvm_vcpu *vcpu)
1455 {
1456         struct kvm_mmu_page *page;
1457
1458         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1459                 hfn_t hfn;
1460                 struct page *pg;
1461
1462                 if (page->role.metaphysical)
1463                         continue;
1464
1465                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1466                         >> PAGE_SHIFT;
1467                 pg = pfn_to_page(hfn);
1468                 if (pg->private)
1469                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1470                                " mappings: gfn %lx role %x\n",
1471                                __FUNCTION__, audit_msg, page->gfn,
1472                                page->role.word);
1473         }
1474 }
1475
1476 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1477 {
1478         int olddbg = dbg;
1479
1480         dbg = 0;
1481         audit_msg = msg;
1482         audit_rmap(vcpu);
1483         audit_write_protection(vcpu);
1484         audit_mappings(vcpu);
1485         dbg = olddbg;
1486 }
1487
1488 #endif