]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/kvm/svm.c
cd966739970f4b5d9d1eaba6925d56da3acef8c4
[karo-tx-linux.git] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/vmalloc.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define KVM_EFER_LMA (1 << 10)
46 #define KVM_EFER_LME (1 << 8)
47
48 #define SVM_FEATURE_NPT  (1 << 0)
49 #define SVM_FEATURE_LBRV (1 << 1)
50 #define SVM_DEATURE_SVML (1 << 2)
51
52 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
53 {
54         return container_of(vcpu, struct vcpu_svm, vcpu);
55 }
56
57 unsigned long iopm_base;
58 unsigned long msrpm_base;
59
60 struct kvm_ldttss_desc {
61         u16 limit0;
62         u16 base0;
63         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
64         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
65         u32 base3;
66         u32 zero1;
67 } __attribute__((packed));
68
69 struct svm_cpu_data {
70         int cpu;
71
72         u64 asid_generation;
73         u32 max_asid;
74         u32 next_asid;
75         struct kvm_ldttss_desc *tss_desc;
76
77         struct page *save_area;
78 };
79
80 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
81 static uint32_t svm_features;
82
83 struct svm_init_data {
84         int cpu;
85         int r;
86 };
87
88 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
89
90 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
91 #define MSRS_RANGE_SIZE 2048
92 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
93
94 #define MAX_INST_SIZE 15
95
96 static inline u32 svm_has(u32 feat)
97 {
98         return svm_features & feat;
99 }
100
101 static unsigned get_addr_size(struct vcpu_svm *svm)
102 {
103         struct vmcb_save_area *sa = &svm->vmcb->save;
104         u16 cs_attrib;
105
106         if (!(sa->cr0 & X86_CR0_PE) || (sa->rflags & X86_EFLAGS_VM))
107                 return 2;
108
109         cs_attrib = sa->cs.attrib;
110
111         return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
112                                 (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
113 }
114
115 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
116 {
117         int word_index = __ffs(vcpu->irq_summary);
118         int bit_index = __ffs(vcpu->irq_pending[word_index]);
119         int irq = word_index * BITS_PER_LONG + bit_index;
120
121         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
122         if (!vcpu->irq_pending[word_index])
123                 clear_bit(word_index, &vcpu->irq_summary);
124         return irq;
125 }
126
127 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
128 {
129         set_bit(irq, vcpu->irq_pending);
130         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
131 }
132
133 static inline void clgi(void)
134 {
135         asm volatile (SVM_CLGI);
136 }
137
138 static inline void stgi(void)
139 {
140         asm volatile (SVM_STGI);
141 }
142
143 static inline void invlpga(unsigned long addr, u32 asid)
144 {
145         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
146 }
147
148 static inline unsigned long kvm_read_cr2(void)
149 {
150         unsigned long cr2;
151
152         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
153         return cr2;
154 }
155
156 static inline void kvm_write_cr2(unsigned long val)
157 {
158         asm volatile ("mov %0, %%cr2" :: "r" (val));
159 }
160
161 static inline unsigned long read_dr6(void)
162 {
163         unsigned long dr6;
164
165         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
166         return dr6;
167 }
168
169 static inline void write_dr6(unsigned long val)
170 {
171         asm volatile ("mov %0, %%dr6" :: "r" (val));
172 }
173
174 static inline unsigned long read_dr7(void)
175 {
176         unsigned long dr7;
177
178         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
179         return dr7;
180 }
181
182 static inline void write_dr7(unsigned long val)
183 {
184         asm volatile ("mov %0, %%dr7" :: "r" (val));
185 }
186
187 static inline void force_new_asid(struct kvm_vcpu *vcpu)
188 {
189         to_svm(vcpu)->asid_generation--;
190 }
191
192 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
193 {
194         force_new_asid(vcpu);
195 }
196
197 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
198 {
199         if (!(efer & KVM_EFER_LMA))
200                 efer &= ~KVM_EFER_LME;
201
202         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
203         vcpu->shadow_efer = efer;
204 }
205
206 static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
207 {
208         struct vcpu_svm *svm = to_svm(vcpu);
209
210         svm->vmcb->control.event_inj =          SVM_EVTINJ_VALID |
211                                                 SVM_EVTINJ_VALID_ERR |
212                                                 SVM_EVTINJ_TYPE_EXEPT |
213                                                 GP_VECTOR;
214         svm->vmcb->control.event_inj_err = error_code;
215 }
216
217 static void inject_ud(struct kvm_vcpu *vcpu)
218 {
219         to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
220                                                 SVM_EVTINJ_TYPE_EXEPT |
221                                                 UD_VECTOR;
222 }
223
224 static int is_page_fault(uint32_t info)
225 {
226         info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227         return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
228 }
229
230 static int is_external_interrupt(u32 info)
231 {
232         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
233         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
234 }
235
236 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
237 {
238         struct vcpu_svm *svm = to_svm(vcpu);
239
240         if (!svm->next_rip) {
241                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
242                 return;
243         }
244         if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
245                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
246                        __FUNCTION__,
247                        svm->vmcb->save.rip,
248                        svm->next_rip);
249         }
250
251         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
252         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
253
254         vcpu->interrupt_window_open = 1;
255 }
256
257 static int has_svm(void)
258 {
259         uint32_t eax, ebx, ecx, edx;
260
261         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
262                 printk(KERN_INFO "has_svm: not amd\n");
263                 return 0;
264         }
265
266         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
267         if (eax < SVM_CPUID_FUNC) {
268                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
269                 return 0;
270         }
271
272         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
273         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
274                 printk(KERN_DEBUG "has_svm: svm not available\n");
275                 return 0;
276         }
277         return 1;
278 }
279
280 static void svm_hardware_disable(void *garbage)
281 {
282         struct svm_cpu_data *svm_data
283                 = per_cpu(svm_data, raw_smp_processor_id());
284
285         if (svm_data) {
286                 uint64_t efer;
287
288                 wrmsrl(MSR_VM_HSAVE_PA, 0);
289                 rdmsrl(MSR_EFER, efer);
290                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
291                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
292                 __free_page(svm_data->save_area);
293                 kfree(svm_data);
294         }
295 }
296
297 static void svm_hardware_enable(void *garbage)
298 {
299
300         struct svm_cpu_data *svm_data;
301         uint64_t efer;
302 #ifdef CONFIG_X86_64
303         struct desc_ptr gdt_descr;
304 #else
305         struct Xgt_desc_struct gdt_descr;
306 #endif
307         struct desc_struct *gdt;
308         int me = raw_smp_processor_id();
309
310         if (!has_svm()) {
311                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
312                 return;
313         }
314         svm_data = per_cpu(svm_data, me);
315
316         if (!svm_data) {
317                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
318                        me);
319                 return;
320         }
321
322         svm_data->asid_generation = 1;
323         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
324         svm_data->next_asid = svm_data->max_asid + 1;
325         svm_features = cpuid_edx(SVM_CPUID_FUNC);
326
327         asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
328         gdt = (struct desc_struct *)gdt_descr.address;
329         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
330
331         rdmsrl(MSR_EFER, efer);
332         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
333
334         wrmsrl(MSR_VM_HSAVE_PA,
335                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
336 }
337
338 static int svm_cpu_init(int cpu)
339 {
340         struct svm_cpu_data *svm_data;
341         int r;
342
343         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
344         if (!svm_data)
345                 return -ENOMEM;
346         svm_data->cpu = cpu;
347         svm_data->save_area = alloc_page(GFP_KERNEL);
348         r = -ENOMEM;
349         if (!svm_data->save_area)
350                 goto err_1;
351
352         per_cpu(svm_data, cpu) = svm_data;
353
354         return 0;
355
356 err_1:
357         kfree(svm_data);
358         return r;
359
360 }
361
362 static int set_msr_interception(u32 *msrpm, unsigned msr,
363                                 int read, int write)
364 {
365         int i;
366
367         for (i = 0; i < NUM_MSR_MAPS; i++) {
368                 if (msr >= msrpm_ranges[i] &&
369                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
370                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
371                                           msrpm_ranges[i]) * 2;
372
373                         u32 *base = msrpm + (msr_offset / 32);
374                         u32 msr_shift = msr_offset % 32;
375                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
376                         *base = (*base & ~(0x3 << msr_shift)) |
377                                 (mask << msr_shift);
378                         return 1;
379                 }
380         }
381         printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
382         return 0;
383 }
384
385 static __init int svm_hardware_setup(void)
386 {
387         int cpu;
388         struct page *iopm_pages;
389         struct page *msrpm_pages;
390         void *iopm_va, *msrpm_va;
391         int r;
392
393         kvm_emulator_want_group7_invlpg();
394
395         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
396
397         if (!iopm_pages)
398                 return -ENOMEM;
399
400         iopm_va = page_address(iopm_pages);
401         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
402         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
403         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
404
405
406         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
407
408         r = -ENOMEM;
409         if (!msrpm_pages)
410                 goto err_1;
411
412         msrpm_va = page_address(msrpm_pages);
413         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
414         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
415
416 #ifdef CONFIG_X86_64
417         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
418         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
419         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
420         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
421         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
422         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
423 #endif
424         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
425         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
426         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
427         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
428
429         for_each_online_cpu(cpu) {
430                 r = svm_cpu_init(cpu);
431                 if (r)
432                         goto err_2;
433         }
434         return 0;
435
436 err_2:
437         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
438         msrpm_base = 0;
439 err_1:
440         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
441         iopm_base = 0;
442         return r;
443 }
444
445 static __exit void svm_hardware_unsetup(void)
446 {
447         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
448         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
449         iopm_base = msrpm_base = 0;
450 }
451
452 static void init_seg(struct vmcb_seg *seg)
453 {
454         seg->selector = 0;
455         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
456                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
457         seg->limit = 0xffff;
458         seg->base = 0;
459 }
460
461 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
462 {
463         seg->selector = 0;
464         seg->attrib = SVM_SELECTOR_P_MASK | type;
465         seg->limit = 0xffff;
466         seg->base = 0;
467 }
468
469 static void init_vmcb(struct vmcb *vmcb)
470 {
471         struct vmcb_control_area *control = &vmcb->control;
472         struct vmcb_save_area *save = &vmcb->save;
473
474         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
475                                         INTERCEPT_CR3_MASK |
476                                         INTERCEPT_CR4_MASK;
477
478         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
479                                         INTERCEPT_CR3_MASK |
480                                         INTERCEPT_CR4_MASK;
481
482         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
483                                         INTERCEPT_DR1_MASK |
484                                         INTERCEPT_DR2_MASK |
485                                         INTERCEPT_DR3_MASK;
486
487         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
488                                         INTERCEPT_DR1_MASK |
489                                         INTERCEPT_DR2_MASK |
490                                         INTERCEPT_DR3_MASK |
491                                         INTERCEPT_DR5_MASK |
492                                         INTERCEPT_DR7_MASK;
493
494         control->intercept_exceptions = 1 << PF_VECTOR;
495
496
497         control->intercept =    (1ULL << INTERCEPT_INTR) |
498                                 (1ULL << INTERCEPT_NMI) |
499                                 (1ULL << INTERCEPT_SMI) |
500                 /*
501                  * selective cr0 intercept bug?
502                  *      0:   0f 22 d8                mov    %eax,%cr3
503                  *      3:   0f 20 c0                mov    %cr0,%eax
504                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
505                  *      b:   0f 22 c0                mov    %eax,%cr0
506                  * set cr3 ->interception
507                  * get cr0 ->interception
508                  * set cr0 -> no interception
509                  */
510                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
511                                 (1ULL << INTERCEPT_CPUID) |
512                                 (1ULL << INTERCEPT_HLT) |
513                                 (1ULL << INTERCEPT_INVLPGA) |
514                                 (1ULL << INTERCEPT_IOIO_PROT) |
515                                 (1ULL << INTERCEPT_MSR_PROT) |
516                                 (1ULL << INTERCEPT_TASK_SWITCH) |
517                                 (1ULL << INTERCEPT_SHUTDOWN) |
518                                 (1ULL << INTERCEPT_VMRUN) |
519                                 (1ULL << INTERCEPT_VMMCALL) |
520                                 (1ULL << INTERCEPT_VMLOAD) |
521                                 (1ULL << INTERCEPT_VMSAVE) |
522                                 (1ULL << INTERCEPT_STGI) |
523                                 (1ULL << INTERCEPT_CLGI) |
524                                 (1ULL << INTERCEPT_SKINIT) |
525                                 (1ULL << INTERCEPT_MONITOR) |
526                                 (1ULL << INTERCEPT_MWAIT);
527
528         control->iopm_base_pa = iopm_base;
529         control->msrpm_base_pa = msrpm_base;
530         control->tsc_offset = 0;
531         control->int_ctl = V_INTR_MASKING_MASK;
532
533         init_seg(&save->es);
534         init_seg(&save->ss);
535         init_seg(&save->ds);
536         init_seg(&save->fs);
537         init_seg(&save->gs);
538
539         save->cs.selector = 0xf000;
540         /* Executable/Readable Code Segment */
541         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
542                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
543         save->cs.limit = 0xffff;
544         /*
545          * cs.base should really be 0xffff0000, but vmx can't handle that, so
546          * be consistent with it.
547          *
548          * Replace when we have real mode working for vmx.
549          */
550         save->cs.base = 0xf0000;
551
552         save->gdtr.limit = 0xffff;
553         save->idtr.limit = 0xffff;
554
555         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
556         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
557
558         save->efer = MSR_EFER_SVME_MASK;
559
560         save->dr6 = 0xffff0ff0;
561         save->dr7 = 0x400;
562         save->rflags = 2;
563         save->rip = 0x0000fff0;
564
565         /*
566          * cr0 val on cpu init should be 0x60000010, we enable cpu
567          * cache by default. the orderly way is to enable cache in bios.
568          */
569         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
570         save->cr4 = X86_CR4_PAE;
571         /* rdx = ?? */
572 }
573
574 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
575 {
576         struct vcpu_svm *svm;
577         struct page *page;
578         int err;
579
580         svm = kzalloc(sizeof *svm, GFP_KERNEL);
581         if (!svm) {
582                 err = -ENOMEM;
583                 goto out;
584         }
585
586         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
587         if (err)
588                 goto free_svm;
589
590         page = alloc_page(GFP_KERNEL);
591         if (!page) {
592                 err = -ENOMEM;
593                 goto uninit;
594         }
595
596         svm->vmcb = page_address(page);
597         clear_page(svm->vmcb);
598         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
599         svm->asid_generation = 0;
600         memset(svm->db_regs, 0, sizeof(svm->db_regs));
601         init_vmcb(svm->vmcb);
602
603         fx_init(&svm->vcpu);
604         svm->vcpu.fpu_active = 1;
605         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
606         if (svm->vcpu.vcpu_id == 0)
607                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
608
609         return &svm->vcpu;
610
611 uninit:
612         kvm_vcpu_uninit(&svm->vcpu);
613 free_svm:
614         kfree(svm);
615 out:
616         return ERR_PTR(err);
617 }
618
619 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
620 {
621         struct vcpu_svm *svm = to_svm(vcpu);
622
623         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
624         kvm_vcpu_uninit(vcpu);
625         kfree(svm);
626 }
627
628 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
629 {
630         struct vcpu_svm *svm = to_svm(vcpu);
631         int i;
632
633         if (unlikely(cpu != vcpu->cpu)) {
634                 u64 tsc_this, delta;
635
636                 /*
637                  * Make sure that the guest sees a monotonically
638                  * increasing TSC.
639                  */
640                 rdtscll(tsc_this);
641                 delta = vcpu->host_tsc - tsc_this;
642                 svm->vmcb->control.tsc_offset += delta;
643                 vcpu->cpu = cpu;
644         }
645
646         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
647                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
648 }
649
650 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
651 {
652         struct vcpu_svm *svm = to_svm(vcpu);
653         int i;
654
655         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
656                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
657
658         rdtscll(vcpu->host_tsc);
659 }
660
661 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
662 {
663 }
664
665 static void svm_cache_regs(struct kvm_vcpu *vcpu)
666 {
667         struct vcpu_svm *svm = to_svm(vcpu);
668
669         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
670         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
671         vcpu->rip = svm->vmcb->save.rip;
672 }
673
674 static void svm_decache_regs(struct kvm_vcpu *vcpu)
675 {
676         struct vcpu_svm *svm = to_svm(vcpu);
677         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
678         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
679         svm->vmcb->save.rip = vcpu->rip;
680 }
681
682 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
683 {
684         return to_svm(vcpu)->vmcb->save.rflags;
685 }
686
687 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
688 {
689         to_svm(vcpu)->vmcb->save.rflags = rflags;
690 }
691
692 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
693 {
694         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
695
696         switch (seg) {
697         case VCPU_SREG_CS: return &save->cs;
698         case VCPU_SREG_DS: return &save->ds;
699         case VCPU_SREG_ES: return &save->es;
700         case VCPU_SREG_FS: return &save->fs;
701         case VCPU_SREG_GS: return &save->gs;
702         case VCPU_SREG_SS: return &save->ss;
703         case VCPU_SREG_TR: return &save->tr;
704         case VCPU_SREG_LDTR: return &save->ldtr;
705         }
706         BUG();
707         return NULL;
708 }
709
710 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
711 {
712         struct vmcb_seg *s = svm_seg(vcpu, seg);
713
714         return s->base;
715 }
716
717 static void svm_get_segment(struct kvm_vcpu *vcpu,
718                             struct kvm_segment *var, int seg)
719 {
720         struct vmcb_seg *s = svm_seg(vcpu, seg);
721
722         var->base = s->base;
723         var->limit = s->limit;
724         var->selector = s->selector;
725         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
726         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
727         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
728         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
729         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
730         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
731         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
732         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
733         var->unusable = !var->present;
734 }
735
736 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
737 {
738         struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
739
740         *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
741         *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
742 }
743
744 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
745 {
746         struct vcpu_svm *svm = to_svm(vcpu);
747
748         dt->limit = svm->vmcb->save.idtr.limit;
749         dt->base = svm->vmcb->save.idtr.base;
750 }
751
752 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
753 {
754         struct vcpu_svm *svm = to_svm(vcpu);
755
756         svm->vmcb->save.idtr.limit = dt->limit;
757         svm->vmcb->save.idtr.base = dt->base ;
758 }
759
760 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
761 {
762         struct vcpu_svm *svm = to_svm(vcpu);
763
764         dt->limit = svm->vmcb->save.gdtr.limit;
765         dt->base = svm->vmcb->save.gdtr.base;
766 }
767
768 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
769 {
770         struct vcpu_svm *svm = to_svm(vcpu);
771
772         svm->vmcb->save.gdtr.limit = dt->limit;
773         svm->vmcb->save.gdtr.base = dt->base ;
774 }
775
776 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
777 {
778 }
779
780 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
781 {
782         struct vcpu_svm *svm = to_svm(vcpu);
783
784 #ifdef CONFIG_X86_64
785         if (vcpu->shadow_efer & KVM_EFER_LME) {
786                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
787                         vcpu->shadow_efer |= KVM_EFER_LMA;
788                         svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
789                 }
790
791                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
792                         vcpu->shadow_efer &= ~KVM_EFER_LMA;
793                         svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
794                 }
795         }
796 #endif
797         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
798                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
799                 vcpu->fpu_active = 1;
800         }
801
802         vcpu->cr0 = cr0;
803         cr0 |= X86_CR0_PG | X86_CR0_WP;
804         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
805         svm->vmcb->save.cr0 = cr0;
806 }
807
808 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
809 {
810        vcpu->cr4 = cr4;
811        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
812 }
813
814 static void svm_set_segment(struct kvm_vcpu *vcpu,
815                             struct kvm_segment *var, int seg)
816 {
817         struct vcpu_svm *svm = to_svm(vcpu);
818         struct vmcb_seg *s = svm_seg(vcpu, seg);
819
820         s->base = var->base;
821         s->limit = var->limit;
822         s->selector = var->selector;
823         if (var->unusable)
824                 s->attrib = 0;
825         else {
826                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
827                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
828                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
829                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
830                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
831                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
832                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
833                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
834         }
835         if (seg == VCPU_SREG_CS)
836                 svm->vmcb->save.cpl
837                         = (svm->vmcb->save.cs.attrib
838                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
839
840 }
841
842 /* FIXME:
843
844         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
845         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
846
847 */
848
849 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
850 {
851         return -EOPNOTSUPP;
852 }
853
854 static void load_host_msrs(struct kvm_vcpu *vcpu)
855 {
856 #ifdef CONFIG_X86_64
857         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
858 #endif
859 }
860
861 static void save_host_msrs(struct kvm_vcpu *vcpu)
862 {
863 #ifdef CONFIG_X86_64
864         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
865 #endif
866 }
867
868 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
869 {
870         if (svm_data->next_asid > svm_data->max_asid) {
871                 ++svm_data->asid_generation;
872                 svm_data->next_asid = 1;
873                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
874         }
875
876         svm->vcpu.cpu = svm_data->cpu;
877         svm->asid_generation = svm_data->asid_generation;
878         svm->vmcb->control.asid = svm_data->next_asid++;
879 }
880
881 static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
882 {
883         invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
884 }
885
886 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
887 {
888         return to_svm(vcpu)->db_regs[dr];
889 }
890
891 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
892                        int *exception)
893 {
894         struct vcpu_svm *svm = to_svm(vcpu);
895
896         *exception = 0;
897
898         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
899                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
900                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
901                 *exception = DB_VECTOR;
902                 return;
903         }
904
905         switch (dr) {
906         case 0 ... 3:
907                 svm->db_regs[dr] = value;
908                 return;
909         case 4 ... 5:
910                 if (vcpu->cr4 & X86_CR4_DE) {
911                         *exception = UD_VECTOR;
912                         return;
913                 }
914         case 7: {
915                 if (value & ~((1ULL << 32) - 1)) {
916                         *exception = GP_VECTOR;
917                         return;
918                 }
919                 svm->vmcb->save.dr7 = value;
920                 return;
921         }
922         default:
923                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
924                        __FUNCTION__, dr);
925                 *exception = UD_VECTOR;
926                 return;
927         }
928 }
929
930 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
931 {
932         u32 exit_int_info = svm->vmcb->control.exit_int_info;
933         struct kvm *kvm = svm->vcpu.kvm;
934         u64 fault_address;
935         u32 error_code;
936         enum emulation_result er;
937         int r;
938
939         if (is_external_interrupt(exit_int_info))
940                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
941
942         mutex_lock(&kvm->lock);
943
944         fault_address  = svm->vmcb->control.exit_info_2;
945         error_code = svm->vmcb->control.exit_info_1;
946         r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
947         if (r < 0) {
948                 mutex_unlock(&kvm->lock);
949                 return r;
950         }
951         if (!r) {
952                 mutex_unlock(&kvm->lock);
953                 return 1;
954         }
955         er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
956                                  error_code);
957         mutex_unlock(&kvm->lock);
958
959         switch (er) {
960         case EMULATE_DONE:
961                 return 1;
962         case EMULATE_DO_MMIO:
963                 ++svm->vcpu.stat.mmio_exits;
964                 return 0;
965         case EMULATE_FAIL:
966                 vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
967                 break;
968         default:
969                 BUG();
970         }
971
972         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
973         return 0;
974 }
975
976 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
977 {
978         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
979         if (!(svm->vcpu.cr0 & X86_CR0_TS))
980                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
981         svm->vcpu.fpu_active = 1;
982
983         return 1;
984 }
985
986 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
987 {
988         /*
989          * VMCB is undefined after a SHUTDOWN intercept
990          * so reinitialize it.
991          */
992         clear_page(svm->vmcb);
993         init_vmcb(svm->vmcb);
994
995         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
996         return 0;
997 }
998
999 static int io_get_override(struct vcpu_svm *svm,
1000                           struct vmcb_seg **seg,
1001                           int *addr_override)
1002 {
1003         u8 inst[MAX_INST_SIZE];
1004         unsigned ins_length;
1005         gva_t rip;
1006         int i;
1007
1008         rip =  svm->vmcb->save.rip;
1009         ins_length = svm->next_rip - rip;
1010         rip += svm->vmcb->save.cs.base;
1011
1012         if (ins_length > MAX_INST_SIZE)
1013                 printk(KERN_DEBUG
1014                        "%s: inst length err, cs base 0x%llx rip 0x%llx "
1015                        "next rip 0x%llx ins_length %u\n",
1016                        __FUNCTION__,
1017                        svm->vmcb->save.cs.base,
1018                        svm->vmcb->save.rip,
1019                        svm->vmcb->control.exit_info_2,
1020                        ins_length);
1021
1022         if (kvm_read_guest(&svm->vcpu, rip, ins_length, inst) != ins_length)
1023                 /* #PF */
1024                 return 0;
1025
1026         *addr_override = 0;
1027         *seg = NULL;
1028         for (i = 0; i < ins_length; i++)
1029                 switch (inst[i]) {
1030                 case 0xf0:
1031                 case 0xf2:
1032                 case 0xf3:
1033                 case 0x66:
1034                         continue;
1035                 case 0x67:
1036                         *addr_override = 1;
1037                         continue;
1038                 case 0x2e:
1039                         *seg = &svm->vmcb->save.cs;
1040                         continue;
1041                 case 0x36:
1042                         *seg = &svm->vmcb->save.ss;
1043                         continue;
1044                 case 0x3e:
1045                         *seg = &svm->vmcb->save.ds;
1046                         continue;
1047                 case 0x26:
1048                         *seg = &svm->vmcb->save.es;
1049                         continue;
1050                 case 0x64:
1051                         *seg = &svm->vmcb->save.fs;
1052                         continue;
1053                 case 0x65:
1054                         *seg = &svm->vmcb->save.gs;
1055                         continue;
1056                 default:
1057                         return 1;
1058                 }
1059         printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
1060         return 0;
1061 }
1062
1063 static unsigned long io_address(struct vcpu_svm *svm, int ins, gva_t *address)
1064 {
1065         unsigned long addr_mask;
1066         unsigned long *reg;
1067         struct vmcb_seg *seg;
1068         int addr_override;
1069         struct vmcb_save_area *save_area = &svm->vmcb->save;
1070         u16 cs_attrib = save_area->cs.attrib;
1071         unsigned addr_size = get_addr_size(svm);
1072
1073         if (!io_get_override(svm, &seg, &addr_override))
1074                 return 0;
1075
1076         if (addr_override)
1077                 addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
1078
1079         if (ins) {
1080                 reg = &svm->vcpu.regs[VCPU_REGS_RDI];
1081                 seg = &svm->vmcb->save.es;
1082         } else {
1083                 reg = &svm->vcpu.regs[VCPU_REGS_RSI];
1084                 seg = (seg) ? seg : &svm->vmcb->save.ds;
1085         }
1086
1087         addr_mask = ~0ULL >> (64 - (addr_size * 8));
1088
1089         if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
1090             !(svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
1091                 *address = (*reg & addr_mask);
1092                 return addr_mask;
1093         }
1094
1095         if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
1096                 svm_inject_gp(&svm->vcpu, 0);
1097                 return 0;
1098         }
1099
1100         *address = (*reg & addr_mask) + seg->base;
1101         return addr_mask;
1102 }
1103
1104 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1105 {
1106         u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
1107         int size, down, in, string, rep;
1108         unsigned port;
1109         unsigned long count;
1110         gva_t address = 0;
1111
1112         ++svm->vcpu.stat.io_exits;
1113
1114         svm->next_rip = svm->vmcb->control.exit_info_2;
1115
1116         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1117         port = io_info >> 16;
1118         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1119         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1120         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1121         count = 1;
1122         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1123
1124         if (string) {
1125                 unsigned addr_mask;
1126
1127                 addr_mask = io_address(svm, in, &address);
1128                 if (!addr_mask) {
1129                         printk(KERN_DEBUG "%s: get io address failed\n",
1130                                __FUNCTION__);
1131                         return 1;
1132                 }
1133
1134                 if (rep)
1135                         count = svm->vcpu.regs[VCPU_REGS_RCX] & addr_mask;
1136         }
1137         return kvm_setup_pio(&svm->vcpu, kvm_run, in, size, count, string,
1138                              down, address, rep, port);
1139 }
1140
1141 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1142 {
1143         return 1;
1144 }
1145
1146 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1147 {
1148         svm->next_rip = svm->vmcb->save.rip + 1;
1149         skip_emulated_instruction(&svm->vcpu);
1150         return kvm_emulate_halt(&svm->vcpu);
1151 }
1152
1153 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1154 {
1155         svm->next_rip = svm->vmcb->save.rip + 3;
1156         skip_emulated_instruction(&svm->vcpu);
1157         return kvm_hypercall(&svm->vcpu, kvm_run);
1158 }
1159
1160 static int invalid_op_interception(struct vcpu_svm *svm,
1161                                    struct kvm_run *kvm_run)
1162 {
1163         inject_ud(&svm->vcpu);
1164         return 1;
1165 }
1166
1167 static int task_switch_interception(struct vcpu_svm *svm,
1168                                     struct kvm_run *kvm_run)
1169 {
1170         printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
1171         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1172         return 0;
1173 }
1174
1175 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1176 {
1177         svm->next_rip = svm->vmcb->save.rip + 2;
1178         kvm_emulate_cpuid(&svm->vcpu);
1179         return 1;
1180 }
1181
1182 static int emulate_on_interception(struct vcpu_svm *svm,
1183                                    struct kvm_run *kvm_run)
1184 {
1185         if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
1186                 printk(KERN_ERR "%s: failed\n", __FUNCTION__);
1187         return 1;
1188 }
1189
1190 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1191 {
1192         struct vcpu_svm *svm = to_svm(vcpu);
1193
1194         switch (ecx) {
1195         case MSR_IA32_TIME_STAMP_COUNTER: {
1196                 u64 tsc;
1197
1198                 rdtscll(tsc);
1199                 *data = svm->vmcb->control.tsc_offset + tsc;
1200                 break;
1201         }
1202         case MSR_K6_STAR:
1203                 *data = svm->vmcb->save.star;
1204                 break;
1205 #ifdef CONFIG_X86_64
1206         case MSR_LSTAR:
1207                 *data = svm->vmcb->save.lstar;
1208                 break;
1209         case MSR_CSTAR:
1210                 *data = svm->vmcb->save.cstar;
1211                 break;
1212         case MSR_KERNEL_GS_BASE:
1213                 *data = svm->vmcb->save.kernel_gs_base;
1214                 break;
1215         case MSR_SYSCALL_MASK:
1216                 *data = svm->vmcb->save.sfmask;
1217                 break;
1218 #endif
1219         case MSR_IA32_SYSENTER_CS:
1220                 *data = svm->vmcb->save.sysenter_cs;
1221                 break;
1222         case MSR_IA32_SYSENTER_EIP:
1223                 *data = svm->vmcb->save.sysenter_eip;
1224                 break;
1225         case MSR_IA32_SYSENTER_ESP:
1226                 *data = svm->vmcb->save.sysenter_esp;
1227                 break;
1228         default:
1229                 return kvm_get_msr_common(vcpu, ecx, data);
1230         }
1231         return 0;
1232 }
1233
1234 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1235 {
1236         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1237         u64 data;
1238
1239         if (svm_get_msr(&svm->vcpu, ecx, &data))
1240                 svm_inject_gp(&svm->vcpu, 0);
1241         else {
1242                 svm->vmcb->save.rax = data & 0xffffffff;
1243                 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1244                 svm->next_rip = svm->vmcb->save.rip + 2;
1245                 skip_emulated_instruction(&svm->vcpu);
1246         }
1247         return 1;
1248 }
1249
1250 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1251 {
1252         struct vcpu_svm *svm = to_svm(vcpu);
1253
1254         switch (ecx) {
1255         case MSR_IA32_TIME_STAMP_COUNTER: {
1256                 u64 tsc;
1257
1258                 rdtscll(tsc);
1259                 svm->vmcb->control.tsc_offset = data - tsc;
1260                 break;
1261         }
1262         case MSR_K6_STAR:
1263                 svm->vmcb->save.star = data;
1264                 break;
1265 #ifdef CONFIG_X86_64
1266         case MSR_LSTAR:
1267                 svm->vmcb->save.lstar = data;
1268                 break;
1269         case MSR_CSTAR:
1270                 svm->vmcb->save.cstar = data;
1271                 break;
1272         case MSR_KERNEL_GS_BASE:
1273                 svm->vmcb->save.kernel_gs_base = data;
1274                 break;
1275         case MSR_SYSCALL_MASK:
1276                 svm->vmcb->save.sfmask = data;
1277                 break;
1278 #endif
1279         case MSR_IA32_SYSENTER_CS:
1280                 svm->vmcb->save.sysenter_cs = data;
1281                 break;
1282         case MSR_IA32_SYSENTER_EIP:
1283                 svm->vmcb->save.sysenter_eip = data;
1284                 break;
1285         case MSR_IA32_SYSENTER_ESP:
1286                 svm->vmcb->save.sysenter_esp = data;
1287                 break;
1288         default:
1289                 return kvm_set_msr_common(vcpu, ecx, data);
1290         }
1291         return 0;
1292 }
1293
1294 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1295 {
1296         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1297         u64 data = (svm->vmcb->save.rax & -1u)
1298                 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1299         svm->next_rip = svm->vmcb->save.rip + 2;
1300         if (svm_set_msr(&svm->vcpu, ecx, data))
1301                 svm_inject_gp(&svm->vcpu, 0);
1302         else
1303                 skip_emulated_instruction(&svm->vcpu);
1304         return 1;
1305 }
1306
1307 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1308 {
1309         if (svm->vmcb->control.exit_info_1)
1310                 return wrmsr_interception(svm, kvm_run);
1311         else
1312                 return rdmsr_interception(svm, kvm_run);
1313 }
1314
1315 static int interrupt_window_interception(struct vcpu_svm *svm,
1316                                    struct kvm_run *kvm_run)
1317 {
1318         /*
1319          * If the user space waits to inject interrupts, exit as soon as
1320          * possible
1321          */
1322         if (kvm_run->request_interrupt_window &&
1323             !svm->vcpu.irq_summary) {
1324                 ++svm->vcpu.stat.irq_window_exits;
1325                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1326                 return 0;
1327         }
1328
1329         return 1;
1330 }
1331
1332 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1333                                       struct kvm_run *kvm_run) = {
1334         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1335         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1336         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1337         /* for now: */
1338         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1339         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1340         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1341         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1342         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1343         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1344         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1345         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1346         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1347         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1348         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1349         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1350         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1351         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1352         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1353         [SVM_EXIT_INTR]                         = nop_on_interception,
1354         [SVM_EXIT_NMI]                          = nop_on_interception,
1355         [SVM_EXIT_SMI]                          = nop_on_interception,
1356         [SVM_EXIT_INIT]                         = nop_on_interception,
1357         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1358         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1359         [SVM_EXIT_CPUID]                        = cpuid_interception,
1360         [SVM_EXIT_HLT]                          = halt_interception,
1361         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1362         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1363         [SVM_EXIT_IOIO]                         = io_interception,
1364         [SVM_EXIT_MSR]                          = msr_interception,
1365         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1366         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1367         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1368         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1369         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1370         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1371         [SVM_EXIT_STGI]                         = invalid_op_interception,
1372         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1373         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1374         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1375         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1376 };
1377
1378
1379 static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1380 {
1381         u32 exit_code = svm->vmcb->control.exit_code;
1382
1383         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1384             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1385                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1386                        "exit_code 0x%x\n",
1387                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1388                        exit_code);
1389
1390         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1391             || svm_exit_handlers[exit_code] == 0) {
1392                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1393                 kvm_run->hw.hardware_exit_reason = exit_code;
1394                 return 0;
1395         }
1396
1397         return svm_exit_handlers[exit_code](svm, kvm_run);
1398 }
1399
1400 static void reload_tss(struct kvm_vcpu *vcpu)
1401 {
1402         int cpu = raw_smp_processor_id();
1403
1404         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1405         svm_data->tss_desc->type = 9; //available 32/64-bit TSS
1406         load_TR_desc();
1407 }
1408
1409 static void pre_svm_run(struct vcpu_svm *svm)
1410 {
1411         int cpu = raw_smp_processor_id();
1412
1413         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1414
1415         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1416         if (svm->vcpu.cpu != cpu ||
1417             svm->asid_generation != svm_data->asid_generation)
1418                 new_asid(svm, svm_data);
1419 }
1420
1421
1422 static inline void inject_irq(struct vcpu_svm *svm)
1423 {
1424         struct vmcb_control_area *control;
1425
1426         control = &svm->vmcb->control;
1427         control->int_vector = pop_irq(&svm->vcpu);
1428         control->int_ctl &= ~V_INTR_PRIO_MASK;
1429         control->int_ctl |= V_IRQ_MASK |
1430                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1431 }
1432
1433 static void reput_irq(struct vcpu_svm *svm)
1434 {
1435         struct vmcb_control_area *control = &svm->vmcb->control;
1436
1437         if (control->int_ctl & V_IRQ_MASK) {
1438                 control->int_ctl &= ~V_IRQ_MASK;
1439                 push_irq(&svm->vcpu, control->int_vector);
1440         }
1441
1442         svm->vcpu.interrupt_window_open =
1443                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1444 }
1445
1446 static void do_interrupt_requests(struct vcpu_svm *svm,
1447                                        struct kvm_run *kvm_run)
1448 {
1449         struct vmcb_control_area *control = &svm->vmcb->control;
1450
1451         svm->vcpu.interrupt_window_open =
1452                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1453                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1454
1455         if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1456                 /*
1457                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1458                  */
1459                 inject_irq(svm);
1460
1461         /*
1462          * Interrupts blocked.  Wait for unblock.
1463          */
1464         if (!svm->vcpu.interrupt_window_open &&
1465             (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
1466                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1467         } else
1468                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1469 }
1470
1471 static void post_kvm_run_save(struct vcpu_svm *svm,
1472                               struct kvm_run *kvm_run)
1473 {
1474         kvm_run->ready_for_interrupt_injection
1475                 = (svm->vcpu.interrupt_window_open &&
1476                    svm->vcpu.irq_summary == 0);
1477         kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
1478         kvm_run->cr8 = svm->vcpu.cr8;
1479         kvm_run->apic_base = svm->vcpu.apic_base;
1480 }
1481
1482 /*
1483  * Check if userspace requested an interrupt window, and that the
1484  * interrupt window is open.
1485  *
1486  * No need to exit to userspace if we already have an interrupt queued.
1487  */
1488 static int dm_request_for_irq_injection(struct vcpu_svm *svm,
1489                                           struct kvm_run *kvm_run)
1490 {
1491         return (!svm->vcpu.irq_summary &&
1492                 kvm_run->request_interrupt_window &&
1493                 svm->vcpu.interrupt_window_open &&
1494                 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1495 }
1496
1497 static void save_db_regs(unsigned long *db_regs)
1498 {
1499         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1500         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1501         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1502         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1503 }
1504
1505 static void load_db_regs(unsigned long *db_regs)
1506 {
1507         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1508         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1509         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1510         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1511 }
1512
1513 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1514 {
1515         force_new_asid(vcpu);
1516 }
1517
1518 static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1519 {
1520         struct vcpu_svm *svm = to_svm(vcpu);
1521         u16 fs_selector;
1522         u16 gs_selector;
1523         u16 ldt_selector;
1524         int r;
1525
1526 again:
1527         r = kvm_mmu_reload(vcpu);
1528         if (unlikely(r))
1529                 return r;
1530
1531         if (!vcpu->mmio_read_completed)
1532                 do_interrupt_requests(svm, kvm_run);
1533
1534         clgi();
1535
1536         vcpu->guest_mode = 1;
1537         if (vcpu->requests)
1538                 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
1539                     svm_flush_tlb(vcpu);
1540
1541         pre_svm_run(svm);
1542
1543         save_host_msrs(vcpu);
1544         fs_selector = read_fs();
1545         gs_selector = read_gs();
1546         ldt_selector = read_ldt();
1547         svm->host_cr2 = kvm_read_cr2();
1548         svm->host_dr6 = read_dr6();
1549         svm->host_dr7 = read_dr7();
1550         svm->vmcb->save.cr2 = vcpu->cr2;
1551
1552         if (svm->vmcb->save.dr7 & 0xff) {
1553                 write_dr7(0);
1554                 save_db_regs(svm->host_db_regs);
1555                 load_db_regs(svm->db_regs);
1556         }
1557
1558         if (vcpu->fpu_active) {
1559                 fx_save(vcpu->host_fx_image);
1560                 fx_restore(vcpu->guest_fx_image);
1561         }
1562
1563         asm volatile (
1564 #ifdef CONFIG_X86_64
1565                 "push %%rbx; push %%rcx; push %%rdx;"
1566                 "push %%rsi; push %%rdi; push %%rbp;"
1567                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1568                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1569 #else
1570                 "push %%ebx; push %%ecx; push %%edx;"
1571                 "push %%esi; push %%edi; push %%ebp;"
1572 #endif
1573
1574 #ifdef CONFIG_X86_64
1575                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1576                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1577                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1578                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1579                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1580                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1581                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1582                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1583                 "mov %c[r10](%[svm]), %%r10 \n\t"
1584                 "mov %c[r11](%[svm]), %%r11 \n\t"
1585                 "mov %c[r12](%[svm]), %%r12 \n\t"
1586                 "mov %c[r13](%[svm]), %%r13 \n\t"
1587                 "mov %c[r14](%[svm]), %%r14 \n\t"
1588                 "mov %c[r15](%[svm]), %%r15 \n\t"
1589 #else
1590                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1591                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1592                 "mov %c[rdx](%[svm]), %%edx \n\t"
1593                 "mov %c[rsi](%[svm]), %%esi \n\t"
1594                 "mov %c[rdi](%[svm]), %%edi \n\t"
1595                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1596 #endif
1597
1598 #ifdef CONFIG_X86_64
1599                 /* Enter guest mode */
1600                 "push %%rax \n\t"
1601                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1602                 SVM_VMLOAD "\n\t"
1603                 SVM_VMRUN "\n\t"
1604                 SVM_VMSAVE "\n\t"
1605                 "pop %%rax \n\t"
1606 #else
1607                 /* Enter guest mode */
1608                 "push %%eax \n\t"
1609                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1610                 SVM_VMLOAD "\n\t"
1611                 SVM_VMRUN "\n\t"
1612                 SVM_VMSAVE "\n\t"
1613                 "pop %%eax \n\t"
1614 #endif
1615
1616                 /* Save guest registers, load host registers */
1617 #ifdef CONFIG_X86_64
1618                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1619                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1620                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1621                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1622                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1623                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1624                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1625                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1626                 "mov %%r10, %c[r10](%[svm]) \n\t"
1627                 "mov %%r11, %c[r11](%[svm]) \n\t"
1628                 "mov %%r12, %c[r12](%[svm]) \n\t"
1629                 "mov %%r13, %c[r13](%[svm]) \n\t"
1630                 "mov %%r14, %c[r14](%[svm]) \n\t"
1631                 "mov %%r15, %c[r15](%[svm]) \n\t"
1632
1633                 "pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1634                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1635                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1636                 "pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
1637 #else
1638                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1639                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1640                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1641                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1642                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1643                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1644
1645                 "pop  %%ebp; pop  %%edi; pop  %%esi;"
1646                 "pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
1647 #endif
1648                 :
1649                 : [svm]"a"(svm),
1650                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1651                   [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
1652                   [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
1653                   [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
1654                   [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
1655                   [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
1656                   [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
1657 #ifdef CONFIG_X86_64
1658                   ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
1659                   [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
1660                   [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
1661                   [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
1662                   [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
1663                   [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
1664                   [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
1665                   [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
1666 #endif
1667                 : "cc", "memory" );
1668
1669         vcpu->guest_mode = 0;
1670
1671         if (vcpu->fpu_active) {
1672                 fx_save(vcpu->guest_fx_image);
1673                 fx_restore(vcpu->host_fx_image);
1674         }
1675
1676         if ((svm->vmcb->save.dr7 & 0xff))
1677                 load_db_regs(svm->host_db_regs);
1678
1679         vcpu->cr2 = svm->vmcb->save.cr2;
1680
1681         write_dr6(svm->host_dr6);
1682         write_dr7(svm->host_dr7);
1683         kvm_write_cr2(svm->host_cr2);
1684
1685         load_fs(fs_selector);
1686         load_gs(gs_selector);
1687         load_ldt(ldt_selector);
1688         load_host_msrs(vcpu);
1689
1690         reload_tss(vcpu);
1691
1692         /*
1693          * Profile KVM exit RIPs:
1694          */
1695         if (unlikely(prof_on == KVM_PROFILING))
1696                 profile_hit(KVM_PROFILING,
1697                         (void *)(unsigned long)svm->vmcb->save.rip);
1698
1699         stgi();
1700
1701         reput_irq(svm);
1702
1703         svm->next_rip = 0;
1704
1705         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1706                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1707                 kvm_run->fail_entry.hardware_entry_failure_reason
1708                         = svm->vmcb->control.exit_code;
1709                 post_kvm_run_save(svm, kvm_run);
1710                 return 0;
1711         }
1712
1713         r = handle_exit(svm, kvm_run);
1714         if (r > 0) {
1715                 if (signal_pending(current)) {
1716                         ++vcpu->stat.signal_exits;
1717                         post_kvm_run_save(svm, kvm_run);
1718                         kvm_run->exit_reason = KVM_EXIT_INTR;
1719                         return -EINTR;
1720                 }
1721
1722                 if (dm_request_for_irq_injection(svm, kvm_run)) {
1723                         ++vcpu->stat.request_irq_exits;
1724                         post_kvm_run_save(svm, kvm_run);
1725                         kvm_run->exit_reason = KVM_EXIT_INTR;
1726                         return -EINTR;
1727                 }
1728                 kvm_resched(vcpu);
1729                 goto again;
1730         }
1731         post_kvm_run_save(svm, kvm_run);
1732         return r;
1733 }
1734
1735 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1736 {
1737         struct vcpu_svm *svm = to_svm(vcpu);
1738
1739         svm->vmcb->save.cr3 = root;
1740         force_new_asid(vcpu);
1741
1742         if (vcpu->fpu_active) {
1743                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1744                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1745                 vcpu->fpu_active = 0;
1746         }
1747 }
1748
1749 static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
1750                                   unsigned long  addr,
1751                                   uint32_t err_code)
1752 {
1753         struct vcpu_svm *svm = to_svm(vcpu);
1754         uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
1755
1756         ++vcpu->stat.pf_guest;
1757
1758         if (is_page_fault(exit_int_info)) {
1759
1760                 svm->vmcb->control.event_inj_err = 0;
1761                 svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1762                                                 SVM_EVTINJ_VALID_ERR |
1763                                                 SVM_EVTINJ_TYPE_EXEPT |
1764                                                 DF_VECTOR;
1765                 return;
1766         }
1767         vcpu->cr2 = addr;
1768         svm->vmcb->save.cr2 = addr;
1769         svm->vmcb->control.event_inj =  SVM_EVTINJ_VALID |
1770                                         SVM_EVTINJ_VALID_ERR |
1771                                         SVM_EVTINJ_TYPE_EXEPT |
1772                                         PF_VECTOR;
1773         svm->vmcb->control.event_inj_err = err_code;
1774 }
1775
1776
1777 static int is_disabled(void)
1778 {
1779         u64 vm_cr;
1780
1781         rdmsrl(MSR_VM_CR, vm_cr);
1782         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1783                 return 1;
1784
1785         return 0;
1786 }
1787
1788 static void
1789 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1790 {
1791         /*
1792          * Patch in the VMMCALL instruction:
1793          */
1794         hypercall[0] = 0x0f;
1795         hypercall[1] = 0x01;
1796         hypercall[2] = 0xd9;
1797         hypercall[3] = 0xc3;
1798 }
1799
1800 static struct kvm_arch_ops svm_arch_ops = {
1801         .cpu_has_kvm_support = has_svm,
1802         .disabled_by_bios = is_disabled,
1803         .hardware_setup = svm_hardware_setup,
1804         .hardware_unsetup = svm_hardware_unsetup,
1805         .hardware_enable = svm_hardware_enable,
1806         .hardware_disable = svm_hardware_disable,
1807
1808         .vcpu_create = svm_create_vcpu,
1809         .vcpu_free = svm_free_vcpu,
1810
1811         .vcpu_load = svm_vcpu_load,
1812         .vcpu_put = svm_vcpu_put,
1813         .vcpu_decache = svm_vcpu_decache,
1814
1815         .set_guest_debug = svm_guest_debug,
1816         .get_msr = svm_get_msr,
1817         .set_msr = svm_set_msr,
1818         .get_segment_base = svm_get_segment_base,
1819         .get_segment = svm_get_segment,
1820         .set_segment = svm_set_segment,
1821         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
1822         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1823         .set_cr0 = svm_set_cr0,
1824         .set_cr3 = svm_set_cr3,
1825         .set_cr4 = svm_set_cr4,
1826         .set_efer = svm_set_efer,
1827         .get_idt = svm_get_idt,
1828         .set_idt = svm_set_idt,
1829         .get_gdt = svm_get_gdt,
1830         .set_gdt = svm_set_gdt,
1831         .get_dr = svm_get_dr,
1832         .set_dr = svm_set_dr,
1833         .cache_regs = svm_cache_regs,
1834         .decache_regs = svm_decache_regs,
1835         .get_rflags = svm_get_rflags,
1836         .set_rflags = svm_set_rflags,
1837
1838         .invlpg = svm_invlpg,
1839         .tlb_flush = svm_flush_tlb,
1840         .inject_page_fault = svm_inject_page_fault,
1841
1842         .inject_gp = svm_inject_gp,
1843
1844         .run = svm_vcpu_run,
1845         .skip_emulated_instruction = skip_emulated_instruction,
1846         .patch_hypercall = svm_patch_hypercall,
1847 };
1848
1849 static int __init svm_init(void)
1850 {
1851         return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
1852 }
1853
1854 static void __exit svm_exit(void)
1855 {
1856         kvm_exit_arch();
1857 }
1858
1859 module_init(svm_init)
1860 module_exit(svm_exit)