]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/lightnvm/rrpc.c
Merge branch 'akpm/master'
[karo-tx-linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->pgs_per_blk);
117 }
118
119 static sector_t block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120 {
121         struct nvm_block *blk = rblk->parent;
122
123         return blk->id * rrpc->dev->pgs_per_blk;
124 }
125
126 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev,
127                                                                 sector_t addr)
128 {
129         struct ppa_addr paddr;
130
131         paddr.ppa = addr;
132         return __linear_to_generic_addr(dev, paddr);
133 }
134
135 /* requires lun->lock taken */
136 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
137 {
138         struct rrpc *rrpc = rlun->rrpc;
139
140         BUG_ON(!rblk);
141
142         if (rlun->cur) {
143                 spin_lock(&rlun->cur->lock);
144                 WARN_ON(!block_is_full(rrpc, rlun->cur));
145                 spin_unlock(&rlun->cur->lock);
146         }
147         rlun->cur = rblk;
148 }
149
150 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
151                                                         unsigned long flags)
152 {
153         struct nvm_block *blk;
154         struct rrpc_block *rblk;
155
156         blk = nvm_get_blk(rrpc->dev, rlun->parent, 0);
157         if (!blk)
158                 return NULL;
159
160         rblk = &rlun->blocks[blk->id];
161         blk->priv = rblk;
162
163         bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
164         rblk->next_page = 0;
165         rblk->nr_invalid_pages = 0;
166         atomic_set(&rblk->data_cmnt_size, 0);
167
168         return rblk;
169 }
170
171 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
172 {
173         nvm_put_blk(rrpc->dev, rblk->parent);
174 }
175
176 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
177 {
178         int next = atomic_inc_return(&rrpc->next_lun);
179
180         return &rrpc->luns[next % rrpc->nr_luns];
181 }
182
183 static void rrpc_gc_kick(struct rrpc *rrpc)
184 {
185         struct rrpc_lun *rlun;
186         unsigned int i;
187
188         for (i = 0; i < rrpc->nr_luns; i++) {
189                 rlun = &rrpc->luns[i];
190                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
191         }
192 }
193
194 /*
195  * timed GC every interval.
196  */
197 static void rrpc_gc_timer(unsigned long data)
198 {
199         struct rrpc *rrpc = (struct rrpc *)data;
200
201         rrpc_gc_kick(rrpc);
202         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
203 }
204
205 static void rrpc_end_sync_bio(struct bio *bio)
206 {
207         struct completion *waiting = bio->bi_private;
208
209         if (bio->bi_error)
210                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
211
212         complete(waiting);
213 }
214
215 /*
216  * rrpc_move_valid_pages -- migrate live data off the block
217  * @rrpc: the 'rrpc' structure
218  * @block: the block from which to migrate live pages
219  *
220  * Description:
221  *   GC algorithms may call this function to migrate remaining live
222  *   pages off the block prior to erasing it. This function blocks
223  *   further execution until the operation is complete.
224  */
225 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
226 {
227         struct request_queue *q = rrpc->dev->q;
228         struct rrpc_rev_addr *rev;
229         struct nvm_rq *rqd;
230         struct bio *bio;
231         struct page *page;
232         int slot;
233         int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
234         sector_t phys_addr;
235         DECLARE_COMPLETION_ONSTACK(wait);
236
237         if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
238                 return 0;
239
240         bio = bio_alloc(GFP_NOIO, 1);
241         if (!bio) {
242                 pr_err("nvm: could not alloc bio to gc\n");
243                 return -ENOMEM;
244         }
245
246         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
247
248         while ((slot = find_first_zero_bit(rblk->invalid_pages,
249                                             nr_pgs_per_blk)) < nr_pgs_per_blk) {
250
251                 /* Lock laddr */
252                 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
253
254 try:
255                 spin_lock(&rrpc->rev_lock);
256                 /* Get logical address from physical to logical table */
257                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
258                 /* already updated by previous regular write */
259                 if (rev->addr == ADDR_EMPTY) {
260                         spin_unlock(&rrpc->rev_lock);
261                         continue;
262                 }
263
264                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
265                 if (IS_ERR_OR_NULL(rqd)) {
266                         spin_unlock(&rrpc->rev_lock);
267                         schedule();
268                         goto try;
269                 }
270
271                 spin_unlock(&rrpc->rev_lock);
272
273                 /* Perform read to do GC */
274                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
275                 bio->bi_rw = READ;
276                 bio->bi_private = &wait;
277                 bio->bi_end_io = rrpc_end_sync_bio;
278
279                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
280                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
281
282                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
283                         pr_err("rrpc: gc read failed.\n");
284                         rrpc_inflight_laddr_release(rrpc, rqd);
285                         goto finished;
286                 }
287                 wait_for_completion_io(&wait);
288
289                 bio_reset(bio);
290                 reinit_completion(&wait);
291
292                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
293                 bio->bi_rw = WRITE;
294                 bio->bi_private = &wait;
295                 bio->bi_end_io = rrpc_end_sync_bio;
296
297                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
298
299                 /* turn the command around and write the data back to a new
300                  * address
301                  */
302                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
303                         pr_err("rrpc: gc write failed.\n");
304                         rrpc_inflight_laddr_release(rrpc, rqd);
305                         goto finished;
306                 }
307                 wait_for_completion_io(&wait);
308
309                 rrpc_inflight_laddr_release(rrpc, rqd);
310
311                 bio_reset(bio);
312         }
313
314 finished:
315         mempool_free(page, rrpc->page_pool);
316         bio_put(bio);
317
318         if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
319                 pr_err("nvm: failed to garbage collect block\n");
320                 return -EIO;
321         }
322
323         return 0;
324 }
325
326 static void rrpc_block_gc(struct work_struct *work)
327 {
328         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
329                                                                         ws_gc);
330         struct rrpc *rrpc = gcb->rrpc;
331         struct rrpc_block *rblk = gcb->rblk;
332         struct nvm_dev *dev = rrpc->dev;
333
334         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
335
336         if (rrpc_move_valid_pages(rrpc, rblk))
337                 goto done;
338
339         nvm_erase_blk(dev, rblk->parent);
340         rrpc_put_blk(rrpc, rblk);
341 done:
342         mempool_free(gcb, rrpc->gcb_pool);
343 }
344
345 /* the block with highest number of invalid pages, will be in the beginning
346  * of the list
347  */
348 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
349                                                         struct rrpc_block *rb)
350 {
351         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
352                 return ra;
353
354         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
355 }
356
357 /* linearly find the block with highest number of invalid pages
358  * requires lun->lock
359  */
360 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
361 {
362         struct list_head *prio_list = &rlun->prio_list;
363         struct rrpc_block *rblock, *max;
364
365         BUG_ON(list_empty(prio_list));
366
367         max = list_first_entry(prio_list, struct rrpc_block, prio);
368         list_for_each_entry(rblock, prio_list, prio)
369                 max = rblock_max_invalid(max, rblock);
370
371         return max;
372 }
373
374 static void rrpc_lun_gc(struct work_struct *work)
375 {
376         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
377         struct rrpc *rrpc = rlun->rrpc;
378         struct nvm_lun *lun = rlun->parent;
379         struct rrpc_block_gc *gcb;
380         unsigned int nr_blocks_need;
381
382         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
383
384         if (nr_blocks_need < rrpc->nr_luns)
385                 nr_blocks_need = rrpc->nr_luns;
386
387         spin_lock(&lun->lock);
388         while (nr_blocks_need > lun->nr_free_blocks &&
389                                         !list_empty(&rlun->prio_list)) {
390                 struct rrpc_block *rblock = block_prio_find_max(rlun);
391                 struct nvm_block *block = rblock->parent;
392
393                 if (!rblock->nr_invalid_pages)
394                         break;
395
396                 list_del_init(&rblock->prio);
397
398                 BUG_ON(!block_is_full(rrpc, rblock));
399
400                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
401
402                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
403                 if (!gcb)
404                         break;
405
406                 gcb->rrpc = rrpc;
407                 gcb->rblk = rblock;
408                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
409
410                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
411
412                 nr_blocks_need--;
413         }
414         spin_unlock(&lun->lock);
415
416         /* TODO: Hint that request queue can be started again */
417 }
418
419 static void rrpc_gc_queue(struct work_struct *work)
420 {
421         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
422                                                                         ws_gc);
423         struct rrpc *rrpc = gcb->rrpc;
424         struct rrpc_block *rblk = gcb->rblk;
425         struct nvm_lun *lun = rblk->parent->lun;
426         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
427
428         spin_lock(&rlun->lock);
429         list_add_tail(&rblk->prio, &rlun->prio_list);
430         spin_unlock(&rlun->lock);
431
432         mempool_free(gcb, rrpc->gcb_pool);
433         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
434                                                         rblk->parent->id);
435 }
436
437 static const struct block_device_operations rrpc_fops = {
438         .owner          = THIS_MODULE,
439 };
440
441 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
442 {
443         unsigned int i;
444         struct rrpc_lun *rlun, *max_free;
445
446         if (!is_gc)
447                 return get_next_lun(rrpc);
448
449         /* during GC, we don't care about RR, instead we want to make
450          * sure that we maintain evenness between the block luns.
451          */
452         max_free = &rrpc->luns[0];
453         /* prevent GC-ing lun from devouring pages of a lun with
454          * little free blocks. We don't take the lock as we only need an
455          * estimate.
456          */
457         rrpc_for_each_lun(rrpc, rlun, i) {
458                 if (rlun->parent->nr_free_blocks >
459                                         max_free->parent->nr_free_blocks)
460                         max_free = rlun;
461         }
462
463         return max_free;
464 }
465
466 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
467                                         struct rrpc_block *rblk, sector_t paddr)
468 {
469         struct rrpc_addr *gp;
470         struct rrpc_rev_addr *rev;
471
472         BUG_ON(laddr >= rrpc->nr_pages);
473
474         gp = &rrpc->trans_map[laddr];
475         spin_lock(&rrpc->rev_lock);
476         if (gp->rblk)
477                 rrpc_page_invalidate(rrpc, gp);
478
479         gp->addr = paddr;
480         gp->rblk = rblk;
481
482         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
483         rev->addr = laddr;
484         spin_unlock(&rrpc->rev_lock);
485
486         return gp;
487 }
488
489 static sector_t rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
490 {
491         sector_t addr = ADDR_EMPTY;
492
493         spin_lock(&rblk->lock);
494         if (block_is_full(rrpc, rblk))
495                 goto out;
496
497         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
498
499         rblk->next_page++;
500 out:
501         spin_unlock(&rblk->lock);
502         return addr;
503 }
504
505 /* Simple round-robin Logical to physical address translation.
506  *
507  * Retrieve the mapping using the active append point. Then update the ap for
508  * the next write to the disk.
509  *
510  * Returns rrpc_addr with the physical address and block. Remember to return to
511  * rrpc->addr_cache when request is finished.
512  */
513 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
514                                                                 int is_gc)
515 {
516         struct rrpc_lun *rlun;
517         struct rrpc_block *rblk;
518         struct nvm_lun *lun;
519         sector_t paddr;
520
521         rlun = rrpc_get_lun_rr(rrpc, is_gc);
522         lun = rlun->parent;
523
524         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
525                 return NULL;
526
527         spin_lock(&rlun->lock);
528
529         rblk = rlun->cur;
530 retry:
531         paddr = rrpc_alloc_addr(rrpc, rblk);
532
533         if (paddr == ADDR_EMPTY) {
534                 rblk = rrpc_get_blk(rrpc, rlun, 0);
535                 if (rblk) {
536                         rrpc_set_lun_cur(rlun, rblk);
537                         goto retry;
538                 }
539
540                 if (is_gc) {
541                         /* retry from emergency gc block */
542                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
543                         if (paddr == ADDR_EMPTY) {
544                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
545                                 if (!rblk) {
546                                         pr_err("rrpc: no more blocks");
547                                         goto err;
548                                 }
549
550                                 rlun->gc_cur = rblk;
551                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
552                         }
553                         rblk = rlun->gc_cur;
554                 }
555         }
556
557         spin_unlock(&rlun->lock);
558         return rrpc_update_map(rrpc, laddr, rblk, paddr);
559 err:
560         spin_unlock(&rlun->lock);
561         return NULL;
562 }
563
564 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
565 {
566         struct rrpc_block_gc *gcb;
567
568         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
569         if (!gcb) {
570                 pr_err("rrpc: unable to queue block for gc.");
571                 return;
572         }
573
574         gcb->rrpc = rrpc;
575         gcb->rblk = rblk;
576
577         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
578         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
579 }
580
581 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
582                                                 sector_t laddr, uint8_t npages)
583 {
584         struct rrpc_addr *p;
585         struct rrpc_block *rblk;
586         struct nvm_lun *lun;
587         int cmnt_size, i;
588
589         for (i = 0; i < npages; i++) {
590                 p = &rrpc->trans_map[laddr + i];
591                 rblk = p->rblk;
592                 lun = rblk->parent->lun;
593
594                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
595                 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
596                         rrpc_run_gc(rrpc, rblk);
597         }
598 }
599
600 static int rrpc_end_io(struct nvm_rq *rqd, int error)
601 {
602         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
603         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
604         uint8_t npages = rqd->nr_pages;
605         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
606
607         if (bio_data_dir(rqd->bio) == WRITE)
608                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
609
610         if (rrqd->flags & NVM_IOTYPE_GC)
611                 return 0;
612
613         rrpc_unlock_rq(rrpc, rqd);
614         bio_put(rqd->bio);
615
616         if (npages > 1)
617                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
618         if (rqd->metadata)
619                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
620
621         mempool_free(rqd, rrpc->rq_pool);
622
623         return 0;
624 }
625
626 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
627                         struct nvm_rq *rqd, unsigned long flags, int npages)
628 {
629         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
630         struct rrpc_addr *gp;
631         sector_t laddr = rrpc_get_laddr(bio);
632         int is_gc = flags & NVM_IOTYPE_GC;
633         int i;
634
635         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
636                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
637                 return NVM_IO_REQUEUE;
638         }
639
640         for (i = 0; i < npages; i++) {
641                 /* We assume that mapping occurs at 4KB granularity */
642                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
643                 gp = &rrpc->trans_map[laddr + i];
644
645                 if (gp->rblk) {
646                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
647                                                                 gp->addr);
648                 } else {
649                         BUG_ON(is_gc);
650                         rrpc_unlock_laddr(rrpc, r);
651                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
652                                                         rqd->dma_ppa_list);
653                         return NVM_IO_DONE;
654                 }
655         }
656
657         rqd->opcode = NVM_OP_HBREAD;
658
659         return NVM_IO_OK;
660 }
661
662 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
663                                                         unsigned long flags)
664 {
665         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
666         int is_gc = flags & NVM_IOTYPE_GC;
667         sector_t laddr = rrpc_get_laddr(bio);
668         struct rrpc_addr *gp;
669
670         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
671                 return NVM_IO_REQUEUE;
672
673         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
674         gp = &rrpc->trans_map[laddr];
675
676         if (gp->rblk) {
677                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
678         } else {
679                 BUG_ON(is_gc);
680                 rrpc_unlock_rq(rrpc, rqd);
681                 return NVM_IO_DONE;
682         }
683
684         rqd->opcode = NVM_OP_HBREAD;
685         rrqd->addr = gp;
686
687         return NVM_IO_OK;
688 }
689
690 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
691                         struct nvm_rq *rqd, unsigned long flags, int npages)
692 {
693         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
694         struct rrpc_addr *p;
695         sector_t laddr = rrpc_get_laddr(bio);
696         int is_gc = flags & NVM_IOTYPE_GC;
697         int i;
698
699         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
700                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
701                 return NVM_IO_REQUEUE;
702         }
703
704         for (i = 0; i < npages; i++) {
705                 /* We assume that mapping occurs at 4KB granularity */
706                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
707                 if (!p) {
708                         BUG_ON(is_gc);
709                         rrpc_unlock_laddr(rrpc, r);
710                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
711                                                         rqd->dma_ppa_list);
712                         rrpc_gc_kick(rrpc);
713                         return NVM_IO_REQUEUE;
714                 }
715
716                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
717                                                                 p->addr);
718         }
719
720         rqd->opcode = NVM_OP_HBWRITE;
721
722         return NVM_IO_OK;
723 }
724
725 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
726                                 struct nvm_rq *rqd, unsigned long flags)
727 {
728         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
729         struct rrpc_addr *p;
730         int is_gc = flags & NVM_IOTYPE_GC;
731         sector_t laddr = rrpc_get_laddr(bio);
732
733         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
734                 return NVM_IO_REQUEUE;
735
736         p = rrpc_map_page(rrpc, laddr, is_gc);
737         if (!p) {
738                 BUG_ON(is_gc);
739                 rrpc_unlock_rq(rrpc, rqd);
740                 rrpc_gc_kick(rrpc);
741                 return NVM_IO_REQUEUE;
742         }
743
744         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
745         rqd->opcode = NVM_OP_HBWRITE;
746         rrqd->addr = p;
747
748         return NVM_IO_OK;
749 }
750
751 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
752                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
753 {
754         if (npages > 1) {
755                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
756                                                         &rqd->dma_ppa_list);
757                 if (!rqd->ppa_list) {
758                         pr_err("rrpc: not able to allocate ppa list\n");
759                         return NVM_IO_ERR;
760                 }
761
762                 if (bio_rw(bio) == WRITE)
763                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
764                                                                         npages);
765
766                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
767         }
768
769         if (bio_rw(bio) == WRITE)
770                 return rrpc_write_rq(rrpc, bio, rqd, flags);
771
772         return rrpc_read_rq(rrpc, bio, rqd, flags);
773 }
774
775 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
776                                 struct nvm_rq *rqd, unsigned long flags)
777 {
778         int err;
779         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
780         uint8_t nr_pages = rrpc_get_pages(bio);
781         int bio_size = bio_sectors(bio) << 9;
782
783         if (bio_size < rrpc->dev->sec_size)
784                 return NVM_IO_ERR;
785         else if (bio_size > rrpc->dev->max_rq_size)
786                 return NVM_IO_ERR;
787
788         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
789         if (err)
790                 return err;
791
792         bio_get(bio);
793         rqd->bio = bio;
794         rqd->ins = &rrpc->instance;
795         rqd->nr_pages = nr_pages;
796         rrq->flags = flags;
797
798         err = nvm_submit_io(rrpc->dev, rqd);
799         if (err) {
800                 pr_err("rrpc: I/O submission failed: %d\n", err);
801                 return NVM_IO_ERR;
802         }
803
804         return NVM_IO_OK;
805 }
806
807 static void rrpc_make_rq(struct request_queue *q, struct bio *bio)
808 {
809         struct rrpc *rrpc = q->queuedata;
810         struct nvm_rq *rqd;
811         int err;
812
813         if (bio->bi_rw & REQ_DISCARD) {
814                 rrpc_discard(rrpc, bio);
815                 return;
816         }
817
818         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
819         if (!rqd) {
820                 pr_err_ratelimited("rrpc: not able to queue bio.");
821                 bio_io_error(bio);
822                 return;
823         }
824         memset(rqd, 0, sizeof(struct nvm_rq));
825
826         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
827         switch (err) {
828         case NVM_IO_OK:
829                 return;
830         case NVM_IO_ERR:
831                 bio_io_error(bio);
832                 break;
833         case NVM_IO_DONE:
834                 bio_endio(bio);
835                 break;
836         case NVM_IO_REQUEUE:
837                 spin_lock(&rrpc->bio_lock);
838                 bio_list_add(&rrpc->requeue_bios, bio);
839                 spin_unlock(&rrpc->bio_lock);
840                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
841                 break;
842         }
843
844         mempool_free(rqd, rrpc->rq_pool);
845 }
846
847 static void rrpc_requeue(struct work_struct *work)
848 {
849         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
850         struct bio_list bios;
851         struct bio *bio;
852
853         bio_list_init(&bios);
854
855         spin_lock(&rrpc->bio_lock);
856         bio_list_merge(&bios, &rrpc->requeue_bios);
857         bio_list_init(&rrpc->requeue_bios);
858         spin_unlock(&rrpc->bio_lock);
859
860         while ((bio = bio_list_pop(&bios)))
861                 rrpc_make_rq(rrpc->disk->queue, bio);
862 }
863
864 static void rrpc_gc_free(struct rrpc *rrpc)
865 {
866         struct rrpc_lun *rlun;
867         int i;
868
869         if (rrpc->krqd_wq)
870                 destroy_workqueue(rrpc->krqd_wq);
871
872         if (rrpc->kgc_wq)
873                 destroy_workqueue(rrpc->kgc_wq);
874
875         if (!rrpc->luns)
876                 return;
877
878         for (i = 0; i < rrpc->nr_luns; i++) {
879                 rlun = &rrpc->luns[i];
880
881                 if (!rlun->blocks)
882                         break;
883                 vfree(rlun->blocks);
884         }
885 }
886
887 static int rrpc_gc_init(struct rrpc *rrpc)
888 {
889         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
890                                                                 rrpc->nr_luns);
891         if (!rrpc->krqd_wq)
892                 return -ENOMEM;
893
894         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
895         if (!rrpc->kgc_wq)
896                 return -ENOMEM;
897
898         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
899
900         return 0;
901 }
902
903 static void rrpc_map_free(struct rrpc *rrpc)
904 {
905         vfree(rrpc->rev_trans_map);
906         vfree(rrpc->trans_map);
907 }
908
909 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
910 {
911         struct rrpc *rrpc = (struct rrpc *)private;
912         struct nvm_dev *dev = rrpc->dev;
913         struct rrpc_addr *addr = rrpc->trans_map + slba;
914         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
915         sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
916         u64 elba = slba + nlb;
917         u64 i;
918
919         if (unlikely(elba > dev->total_pages)) {
920                 pr_err("nvm: L2P data from device is out of bounds!\n");
921                 return -EINVAL;
922         }
923
924         for (i = 0; i < nlb; i++) {
925                 u64 pba = le64_to_cpu(entries[i]);
926                 /* LNVM treats address-spaces as silos, LBA and PBA are
927                  * equally large and zero-indexed.
928                  */
929                 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
930                         pr_err("nvm: L2P data entry is out of bounds!\n");
931                         return -EINVAL;
932                 }
933
934                 /* Address zero is a special one. The first page on a disk is
935                  * protected. As it often holds internal device boot
936                  * information.
937                  */
938                 if (!pba)
939                         continue;
940
941                 addr[i].addr = pba;
942                 raddr[pba].addr = slba + i;
943         }
944
945         return 0;
946 }
947
948 static int rrpc_map_init(struct rrpc *rrpc)
949 {
950         struct nvm_dev *dev = rrpc->dev;
951         sector_t i;
952         int ret;
953
954         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
955         if (!rrpc->trans_map)
956                 return -ENOMEM;
957
958         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
959                                                         * rrpc->nr_pages);
960         if (!rrpc->rev_trans_map)
961                 return -ENOMEM;
962
963         for (i = 0; i < rrpc->nr_pages; i++) {
964                 struct rrpc_addr *p = &rrpc->trans_map[i];
965                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
966
967                 p->addr = ADDR_EMPTY;
968                 r->addr = ADDR_EMPTY;
969         }
970
971         if (!dev->ops->get_l2p_tbl)
972                 return 0;
973
974         /* Bring up the mapping table from device */
975         ret = dev->ops->get_l2p_tbl(dev->q, 0, dev->total_pages,
976                                                         rrpc_l2p_update, rrpc);
977         if (ret) {
978                 pr_err("nvm: rrpc: could not read L2P table.\n");
979                 return -EINVAL;
980         }
981
982         return 0;
983 }
984
985
986 /* Minimum pages needed within a lun */
987 #define PAGE_POOL_SIZE 16
988 #define ADDR_POOL_SIZE 64
989
990 static int rrpc_core_init(struct rrpc *rrpc)
991 {
992         down_write(&rrpc_lock);
993         if (!rrpc_gcb_cache) {
994                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
995                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
996                 if (!rrpc_gcb_cache) {
997                         up_write(&rrpc_lock);
998                         return -ENOMEM;
999                 }
1000
1001                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1002                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1003                                 0, 0, NULL);
1004                 if (!rrpc_rq_cache) {
1005                         kmem_cache_destroy(rrpc_gcb_cache);
1006                         up_write(&rrpc_lock);
1007                         return -ENOMEM;
1008                 }
1009         }
1010         up_write(&rrpc_lock);
1011
1012         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1013         if (!rrpc->page_pool)
1014                 return -ENOMEM;
1015
1016         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1017                                                                 rrpc_gcb_cache);
1018         if (!rrpc->gcb_pool)
1019                 return -ENOMEM;
1020
1021         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1022         if (!rrpc->rq_pool)
1023                 return -ENOMEM;
1024
1025         spin_lock_init(&rrpc->inflights.lock);
1026         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1027
1028         return 0;
1029 }
1030
1031 static void rrpc_core_free(struct rrpc *rrpc)
1032 {
1033         mempool_destroy(rrpc->page_pool);
1034         mempool_destroy(rrpc->gcb_pool);
1035         mempool_destroy(rrpc->rq_pool);
1036 }
1037
1038 static void rrpc_luns_free(struct rrpc *rrpc)
1039 {
1040         kfree(rrpc->luns);
1041 }
1042
1043 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1044 {
1045         struct nvm_dev *dev = rrpc->dev;
1046         struct rrpc_lun *rlun;
1047         int i, j;
1048
1049         spin_lock_init(&rrpc->rev_lock);
1050
1051         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1052                                                                 GFP_KERNEL);
1053         if (!rrpc->luns)
1054                 return -ENOMEM;
1055
1056         /* 1:1 mapping */
1057         for (i = 0; i < rrpc->nr_luns; i++) {
1058                 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1059
1060                 if (dev->pgs_per_blk >
1061                                 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1062                         pr_err("rrpc: number of pages per block too high.");
1063                         goto err;
1064                 }
1065
1066                 rlun = &rrpc->luns[i];
1067                 rlun->rrpc = rrpc;
1068                 rlun->parent = lun;
1069                 INIT_LIST_HEAD(&rlun->prio_list);
1070                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1071                 spin_lock_init(&rlun->lock);
1072
1073                 rrpc->total_blocks += dev->blks_per_lun;
1074                 rrpc->nr_pages += dev->sec_per_lun;
1075
1076                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1077                                                 rrpc->dev->blks_per_lun);
1078                 if (!rlun->blocks)
1079                         goto err;
1080
1081                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1082                         struct rrpc_block *rblk = &rlun->blocks[j];
1083                         struct nvm_block *blk = &lun->blocks[j];
1084
1085                         rblk->parent = blk;
1086                         INIT_LIST_HEAD(&rblk->prio);
1087                         spin_lock_init(&rblk->lock);
1088                 }
1089         }
1090
1091         return 0;
1092 err:
1093         return -ENOMEM;
1094 }
1095
1096 static void rrpc_free(struct rrpc *rrpc)
1097 {
1098         rrpc_gc_free(rrpc);
1099         rrpc_map_free(rrpc);
1100         rrpc_core_free(rrpc);
1101         rrpc_luns_free(rrpc);
1102
1103         kfree(rrpc);
1104 }
1105
1106 static void rrpc_exit(void *private)
1107 {
1108         struct rrpc *rrpc = private;
1109
1110         del_timer(&rrpc->gc_timer);
1111
1112         flush_workqueue(rrpc->krqd_wq);
1113         flush_workqueue(rrpc->kgc_wq);
1114
1115         rrpc_free(rrpc);
1116 }
1117
1118 static sector_t rrpc_capacity(void *private)
1119 {
1120         struct rrpc *rrpc = private;
1121         struct nvm_dev *dev = rrpc->dev;
1122         sector_t reserved, provisioned;
1123
1124         /* cur, gc, and two emergency blocks for each lun */
1125         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1126         provisioned = rrpc->nr_pages - reserved;
1127
1128         if (reserved > rrpc->nr_pages) {
1129                 pr_err("rrpc: not enough space available to expose storage.\n");
1130                 return 0;
1131         }
1132
1133         sector_div(provisioned, 10);
1134         return provisioned * 9 * NR_PHY_IN_LOG;
1135 }
1136
1137 /*
1138  * Looks up the logical address from reverse trans map and check if its valid by
1139  * comparing the logical to physical address with the physical address.
1140  * Returns 0 on free, otherwise 1 if in use
1141  */
1142 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1143 {
1144         struct nvm_dev *dev = rrpc->dev;
1145         int offset;
1146         struct rrpc_addr *laddr;
1147         sector_t paddr, pladdr;
1148
1149         for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1150                 paddr = block_to_addr(rrpc, rblk) + offset;
1151
1152                 pladdr = rrpc->rev_trans_map[paddr].addr;
1153                 if (pladdr == ADDR_EMPTY)
1154                         continue;
1155
1156                 laddr = &rrpc->trans_map[pladdr];
1157
1158                 if (paddr == laddr->addr) {
1159                         laddr->rblk = rblk;
1160                 } else {
1161                         set_bit(offset, rblk->invalid_pages);
1162                         rblk->nr_invalid_pages++;
1163                 }
1164         }
1165 }
1166
1167 static int rrpc_blocks_init(struct rrpc *rrpc)
1168 {
1169         struct rrpc_lun *rlun;
1170         struct rrpc_block *rblk;
1171         int lun_iter, blk_iter;
1172
1173         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1174                 rlun = &rrpc->luns[lun_iter];
1175
1176                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1177                                                                 blk_iter++) {
1178                         rblk = &rlun->blocks[blk_iter];
1179                         rrpc_block_map_update(rrpc, rblk);
1180                 }
1181         }
1182
1183         return 0;
1184 }
1185
1186 static int rrpc_luns_configure(struct rrpc *rrpc)
1187 {
1188         struct rrpc_lun *rlun;
1189         struct rrpc_block *rblk;
1190         int i;
1191
1192         for (i = 0; i < rrpc->nr_luns; i++) {
1193                 rlun = &rrpc->luns[i];
1194
1195                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1196                 if (!rblk)
1197                         return -EINVAL;
1198
1199                 rrpc_set_lun_cur(rlun, rblk);
1200
1201                 /* Emergency gc block */
1202                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1203                 if (!rblk)
1204                         return -EINVAL;
1205                 rlun->gc_cur = rblk;
1206         }
1207
1208         return 0;
1209 }
1210
1211 static struct nvm_tgt_type tt_rrpc;
1212
1213 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1214                                                 int lun_begin, int lun_end)
1215 {
1216         struct request_queue *bqueue = dev->q;
1217         struct request_queue *tqueue = tdisk->queue;
1218         struct rrpc *rrpc;
1219         int ret;
1220
1221         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1222                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1223                                                         dev->identity.dom);
1224                 return ERR_PTR(-EINVAL);
1225         }
1226
1227         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1228         if (!rrpc)
1229                 return ERR_PTR(-ENOMEM);
1230
1231         rrpc->instance.tt = &tt_rrpc;
1232         rrpc->dev = dev;
1233         rrpc->disk = tdisk;
1234
1235         bio_list_init(&rrpc->requeue_bios);
1236         spin_lock_init(&rrpc->bio_lock);
1237         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1238
1239         rrpc->nr_luns = lun_end - lun_begin + 1;
1240
1241         /* simple round-robin strategy */
1242         atomic_set(&rrpc->next_lun, -1);
1243
1244         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1245         if (ret) {
1246                 pr_err("nvm: rrpc: could not initialize luns\n");
1247                 goto err;
1248         }
1249
1250         rrpc->poffset = dev->sec_per_lun * lun_begin;
1251         rrpc->lun_offset = lun_begin;
1252
1253         ret = rrpc_core_init(rrpc);
1254         if (ret) {
1255                 pr_err("nvm: rrpc: could not initialize core\n");
1256                 goto err;
1257         }
1258
1259         ret = rrpc_map_init(rrpc);
1260         if (ret) {
1261                 pr_err("nvm: rrpc: could not initialize maps\n");
1262                 goto err;
1263         }
1264
1265         ret = rrpc_blocks_init(rrpc);
1266         if (ret) {
1267                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1268                 goto err;
1269         }
1270
1271         ret = rrpc_luns_configure(rrpc);
1272         if (ret) {
1273                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1274                 goto err;
1275         }
1276
1277         ret = rrpc_gc_init(rrpc);
1278         if (ret) {
1279                 pr_err("nvm: rrpc: could not initialize gc\n");
1280                 goto err;
1281         }
1282
1283         /* inherit the size from the underlying device */
1284         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1285         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1286
1287         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1288                         rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1289
1290         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1291
1292         return rrpc;
1293 err:
1294         rrpc_free(rrpc);
1295         return ERR_PTR(ret);
1296 }
1297
1298 /* round robin, page-based FTL, and cost-based GC */
1299 static struct nvm_tgt_type tt_rrpc = {
1300         .name           = "rrpc",
1301         .version        = {1, 0, 0},
1302
1303         .make_rq        = rrpc_make_rq,
1304         .capacity       = rrpc_capacity,
1305         .end_io         = rrpc_end_io,
1306
1307         .init           = rrpc_init,
1308         .exit           = rrpc_exit,
1309 };
1310
1311 static int __init rrpc_module_init(void)
1312 {
1313         return nvm_register_target(&tt_rrpc);
1314 }
1315
1316 static void rrpc_module_exit(void)
1317 {
1318         nvm_unregister_target(&tt_rrpc);
1319 }
1320
1321 module_init(rrpc_module_init);
1322 module_exit(rrpc_module_exit);
1323 MODULE_LICENSE("GPL v2");
1324 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");