]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/lightnvm/rrpc.c
lightnvm: remove unnecessary variables in rrpc
[karo-tx-linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                         unsigned int len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         while (1) {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 if (rqd)
102                         break;
103
104                 schedule();
105         }
106
107         if (IS_ERR(rqd)) {
108                 pr_err("rrpc: unable to acquire inflight IO\n");
109                 bio_io_error(bio);
110                 return;
111         }
112
113         rrpc_invalidate_range(rrpc, slba, len);
114         rrpc_inflight_laddr_release(rrpc, rqd);
115 }
116
117 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
118 {
119         return (rblk->next_page == rrpc->dev->sec_per_blk);
120 }
121
122 /* Calculate relative addr for the given block, considering instantiated LUNs */
123 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
124 {
125         struct nvm_block *blk = rblk->parent;
126         int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
127
128         return lun_blk * rrpc->dev->sec_per_blk;
129 }
130
131 /* Calculate global addr for the given block */
132 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
133 {
134         struct nvm_block *blk = rblk->parent;
135
136         return blk->id * rrpc->dev->sec_per_blk;
137 }
138
139 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
140 {
141         struct ppa_addr paddr;
142
143         paddr.ppa = addr;
144         return linear_to_generic_addr(dev, paddr);
145 }
146
147 /* requires lun->lock taken */
148 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk,
149                                                 struct rrpc_block **cur_rblk)
150 {
151         struct rrpc *rrpc = rlun->rrpc;
152
153         if (*cur_rblk) {
154                 spin_lock(&(*cur_rblk)->lock);
155                 WARN_ON(!block_is_full(rrpc, *cur_rblk));
156                 spin_unlock(&(*cur_rblk)->lock);
157         }
158         *cur_rblk = new_rblk;
159 }
160
161 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
162                                                         unsigned long flags)
163 {
164         struct nvm_block *blk;
165         struct rrpc_block *rblk;
166
167         blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
168         if (!blk) {
169                 pr_err("nvm: rrpc: cannot get new block from media manager\n");
170                 return NULL;
171         }
172
173         rblk = rrpc_get_rblk(rlun, blk->id);
174         blk->priv = rblk;
175         bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
176         rblk->next_page = 0;
177         rblk->nr_invalid_pages = 0;
178         atomic_set(&rblk->data_cmnt_size, 0);
179
180         return rblk;
181 }
182
183 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
184 {
185         nvm_put_blk(rrpc->dev, rblk->parent);
186 }
187
188 static void rrpc_put_blks(struct rrpc *rrpc)
189 {
190         struct rrpc_lun *rlun;
191         int i;
192
193         for (i = 0; i < rrpc->nr_luns; i++) {
194                 rlun = &rrpc->luns[i];
195                 if (rlun->cur)
196                         rrpc_put_blk(rrpc, rlun->cur);
197                 if (rlun->gc_cur)
198                         rrpc_put_blk(rrpc, rlun->gc_cur);
199         }
200 }
201
202 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
203 {
204         int next = atomic_inc_return(&rrpc->next_lun);
205
206         return &rrpc->luns[next % rrpc->nr_luns];
207 }
208
209 static void rrpc_gc_kick(struct rrpc *rrpc)
210 {
211         struct rrpc_lun *rlun;
212         unsigned int i;
213
214         for (i = 0; i < rrpc->nr_luns; i++) {
215                 rlun = &rrpc->luns[i];
216                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
217         }
218 }
219
220 /*
221  * timed GC every interval.
222  */
223 static void rrpc_gc_timer(unsigned long data)
224 {
225         struct rrpc *rrpc = (struct rrpc *)data;
226
227         rrpc_gc_kick(rrpc);
228         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
229 }
230
231 static void rrpc_end_sync_bio(struct bio *bio)
232 {
233         struct completion *waiting = bio->bi_private;
234
235         if (bio->bi_error)
236                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
237
238         complete(waiting);
239 }
240
241 /*
242  * rrpc_move_valid_pages -- migrate live data off the block
243  * @rrpc: the 'rrpc' structure
244  * @block: the block from which to migrate live pages
245  *
246  * Description:
247  *   GC algorithms may call this function to migrate remaining live
248  *   pages off the block prior to erasing it. This function blocks
249  *   further execution until the operation is complete.
250  */
251 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
252 {
253         struct request_queue *q = rrpc->dev->q;
254         struct rrpc_rev_addr *rev;
255         struct nvm_rq *rqd;
256         struct bio *bio;
257         struct page *page;
258         int slot;
259         int nr_sec_per_blk = rrpc->dev->sec_per_blk;
260         u64 phys_addr;
261         DECLARE_COMPLETION_ONSTACK(wait);
262
263         if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
264                 return 0;
265
266         bio = bio_alloc(GFP_NOIO, 1);
267         if (!bio) {
268                 pr_err("nvm: could not alloc bio to gc\n");
269                 return -ENOMEM;
270         }
271
272         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
273         if (!page) {
274                 bio_put(bio);
275                 return -ENOMEM;
276         }
277
278         while ((slot = find_first_zero_bit(rblk->invalid_pages,
279                                             nr_sec_per_blk)) < nr_sec_per_blk) {
280
281                 /* Lock laddr */
282                 phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
283
284 try:
285                 spin_lock(&rrpc->rev_lock);
286                 /* Get logical address from physical to logical table */
287                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
288                 /* already updated by previous regular write */
289                 if (rev->addr == ADDR_EMPTY) {
290                         spin_unlock(&rrpc->rev_lock);
291                         continue;
292                 }
293
294                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
295                 if (IS_ERR_OR_NULL(rqd)) {
296                         spin_unlock(&rrpc->rev_lock);
297                         schedule();
298                         goto try;
299                 }
300
301                 spin_unlock(&rrpc->rev_lock);
302
303                 /* Perform read to do GC */
304                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
305                 bio_set_op_attrs(bio,  REQ_OP_READ, 0);
306                 bio->bi_private = &wait;
307                 bio->bi_end_io = rrpc_end_sync_bio;
308
309                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
310                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
311
312                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
313                         pr_err("rrpc: gc read failed.\n");
314                         rrpc_inflight_laddr_release(rrpc, rqd);
315                         goto finished;
316                 }
317                 wait_for_completion_io(&wait);
318                 if (bio->bi_error) {
319                         rrpc_inflight_laddr_release(rrpc, rqd);
320                         goto finished;
321                 }
322
323                 bio_reset(bio);
324                 reinit_completion(&wait);
325
326                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
327                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
328                 bio->bi_private = &wait;
329                 bio->bi_end_io = rrpc_end_sync_bio;
330
331                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
332
333                 /* turn the command around and write the data back to a new
334                  * address
335                  */
336                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
337                         pr_err("rrpc: gc write failed.\n");
338                         rrpc_inflight_laddr_release(rrpc, rqd);
339                         goto finished;
340                 }
341                 wait_for_completion_io(&wait);
342
343                 rrpc_inflight_laddr_release(rrpc, rqd);
344                 if (bio->bi_error)
345                         goto finished;
346
347                 bio_reset(bio);
348         }
349
350 finished:
351         mempool_free(page, rrpc->page_pool);
352         bio_put(bio);
353
354         if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
355                 pr_err("nvm: failed to garbage collect block\n");
356                 return -EIO;
357         }
358
359         return 0;
360 }
361
362 static void rrpc_block_gc(struct work_struct *work)
363 {
364         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
365                                                                         ws_gc);
366         struct rrpc *rrpc = gcb->rrpc;
367         struct rrpc_block *rblk = gcb->rblk;
368         struct rrpc_lun *rlun = rblk->rlun;
369         struct nvm_dev *dev = rrpc->dev;
370
371         mempool_free(gcb, rrpc->gcb_pool);
372         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
373
374         if (rrpc_move_valid_pages(rrpc, rblk))
375                 goto put_back;
376
377         if (nvm_erase_blk(dev, rblk->parent, 0))
378                 goto put_back;
379
380         rrpc_put_blk(rrpc, rblk);
381
382         return;
383
384 put_back:
385         spin_lock(&rlun->lock);
386         list_add_tail(&rblk->prio, &rlun->prio_list);
387         spin_unlock(&rlun->lock);
388 }
389
390 /* the block with highest number of invalid pages, will be in the beginning
391  * of the list
392  */
393 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
394                                                         struct rrpc_block *rb)
395 {
396         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
397                 return ra;
398
399         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
400 }
401
402 /* linearly find the block with highest number of invalid pages
403  * requires lun->lock
404  */
405 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
406 {
407         struct list_head *prio_list = &rlun->prio_list;
408         struct rrpc_block *rblock, *max;
409
410         BUG_ON(list_empty(prio_list));
411
412         max = list_first_entry(prio_list, struct rrpc_block, prio);
413         list_for_each_entry(rblock, prio_list, prio)
414                 max = rblock_max_invalid(max, rblock);
415
416         return max;
417 }
418
419 static void rrpc_lun_gc(struct work_struct *work)
420 {
421         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
422         struct rrpc *rrpc = rlun->rrpc;
423         struct nvm_lun *lun = rlun->parent;
424         struct rrpc_block_gc *gcb;
425         unsigned int nr_blocks_need;
426
427         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
428
429         if (nr_blocks_need < rrpc->nr_luns)
430                 nr_blocks_need = rrpc->nr_luns;
431
432         spin_lock(&rlun->lock);
433         while (nr_blocks_need > lun->nr_free_blocks &&
434                                         !list_empty(&rlun->prio_list)) {
435                 struct rrpc_block *rblock = block_prio_find_max(rlun);
436                 struct nvm_block *block = rblock->parent;
437
438                 if (!rblock->nr_invalid_pages)
439                         break;
440
441                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
442                 if (!gcb)
443                         break;
444
445                 list_del_init(&rblock->prio);
446
447                 BUG_ON(!block_is_full(rrpc, rblock));
448
449                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
450
451                 gcb->rrpc = rrpc;
452                 gcb->rblk = rblock;
453                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
454
455                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
456
457                 nr_blocks_need--;
458         }
459         spin_unlock(&rlun->lock);
460
461         /* TODO: Hint that request queue can be started again */
462 }
463
464 static void rrpc_gc_queue(struct work_struct *work)
465 {
466         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
467                                                                         ws_gc);
468         struct rrpc *rrpc = gcb->rrpc;
469         struct rrpc_block *rblk = gcb->rblk;
470         struct rrpc_lun *rlun = rblk->rlun;
471
472         spin_lock(&rlun->lock);
473         list_add_tail(&rblk->prio, &rlun->prio_list);
474         spin_unlock(&rlun->lock);
475
476         mempool_free(gcb, rrpc->gcb_pool);
477         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
478                                                         rblk->parent->id);
479 }
480
481 static const struct block_device_operations rrpc_fops = {
482         .owner          = THIS_MODULE,
483 };
484
485 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
486 {
487         unsigned int i;
488         struct rrpc_lun *rlun, *max_free;
489
490         if (!is_gc)
491                 return get_next_lun(rrpc);
492
493         /* during GC, we don't care about RR, instead we want to make
494          * sure that we maintain evenness between the block luns.
495          */
496         max_free = &rrpc->luns[0];
497         /* prevent GC-ing lun from devouring pages of a lun with
498          * little free blocks. We don't take the lock as we only need an
499          * estimate.
500          */
501         rrpc_for_each_lun(rrpc, rlun, i) {
502                 if (rlun->parent->nr_free_blocks >
503                                         max_free->parent->nr_free_blocks)
504                         max_free = rlun;
505         }
506
507         return max_free;
508 }
509
510 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
511                                         struct rrpc_block *rblk, u64 paddr)
512 {
513         struct rrpc_addr *gp;
514         struct rrpc_rev_addr *rev;
515
516         BUG_ON(laddr >= rrpc->nr_sects);
517
518         gp = &rrpc->trans_map[laddr];
519         spin_lock(&rrpc->rev_lock);
520         if (gp->rblk)
521                 rrpc_page_invalidate(rrpc, gp);
522
523         gp->addr = paddr;
524         gp->rblk = rblk;
525
526         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
527         rev->addr = laddr;
528         spin_unlock(&rrpc->rev_lock);
529
530         return gp;
531 }
532
533 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
534 {
535         u64 addr = ADDR_EMPTY;
536
537         spin_lock(&rblk->lock);
538         if (block_is_full(rrpc, rblk))
539                 goto out;
540
541         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
542
543         rblk->next_page++;
544 out:
545         spin_unlock(&rblk->lock);
546         return addr;
547 }
548
549 /* Map logical address to a physical page. The mapping implements a round robin
550  * approach and allocates a page from the next lun available.
551  *
552  * Returns rrpc_addr with the physical address and block. Returns NULL if no
553  * blocks in the next rlun are available.
554  */
555 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
556                                                                 int is_gc)
557 {
558         struct rrpc_lun *rlun;
559         struct rrpc_block *rblk, **cur_rblk;
560         struct nvm_lun *lun;
561         u64 paddr;
562         int gc_force = 0;
563
564         rlun = rrpc_get_lun_rr(rrpc, is_gc);
565         lun = rlun->parent;
566
567         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
568                 return NULL;
569
570         /*
571          * page allocation steps:
572          * 1. Try to allocate new page from current rblk
573          * 2a. If succeed, proceed to map it in and return
574          * 2b. If fail, first try to allocate a new block from media manger,
575          *     and then retry step 1. Retry until the normal block pool is
576          *     exhausted.
577          * 3. If exhausted, and garbage collector is requesting the block,
578          *    go to the reserved block and retry step 1.
579          *    In the case that this fails as well, or it is not GC
580          *    requesting, report not able to retrieve a block and let the
581          *    caller handle further processing.
582          */
583
584         spin_lock(&rlun->lock);
585         cur_rblk = &rlun->cur;
586         rblk = rlun->cur;
587 retry:
588         paddr = rrpc_alloc_addr(rrpc, rblk);
589
590         if (paddr != ADDR_EMPTY)
591                 goto done;
592
593         if (!list_empty(&rlun->wblk_list)) {
594 new_blk:
595                 rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block,
596                                                                         prio);
597                 rrpc_set_lun_cur(rlun, rblk, cur_rblk);
598                 list_del(&rblk->prio);
599                 goto retry;
600         }
601         spin_unlock(&rlun->lock);
602
603         rblk = rrpc_get_blk(rrpc, rlun, gc_force);
604         if (rblk) {
605                 spin_lock(&rlun->lock);
606                 list_add_tail(&rblk->prio, &rlun->wblk_list);
607                 /*
608                  * another thread might already have added a new block,
609                  * Therefore, make sure that one is used, instead of the
610                  * one just added.
611                  */
612                 goto new_blk;
613         }
614
615         if (unlikely(is_gc) && !gc_force) {
616                 /* retry from emergency gc block */
617                 cur_rblk = &rlun->gc_cur;
618                 rblk = rlun->gc_cur;
619                 gc_force = 1;
620                 spin_lock(&rlun->lock);
621                 goto retry;
622         }
623
624         pr_err("rrpc: failed to allocate new block\n");
625         return NULL;
626 done:
627         spin_unlock(&rlun->lock);
628         return rrpc_update_map(rrpc, laddr, rblk, paddr);
629 }
630
631 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
632 {
633         struct rrpc_block_gc *gcb;
634
635         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
636         if (!gcb) {
637                 pr_err("rrpc: unable to queue block for gc.");
638                 return;
639         }
640
641         gcb->rrpc = rrpc;
642         gcb->rblk = rblk;
643
644         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
645         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
646 }
647
648 static void __rrpc_mark_bad_block(struct nvm_dev *dev, struct ppa_addr *ppa)
649 {
650                 nvm_mark_blk(dev, *ppa, NVM_BLK_ST_BAD);
651                 nvm_set_bb_tbl(dev, ppa, 1, NVM_BLK_T_GRWN_BAD);
652 }
653
654 static void rrpc_mark_bad_block(struct rrpc *rrpc, struct nvm_rq *rqd)
655 {
656         struct nvm_dev *dev = rrpc->dev;
657         void *comp_bits = &rqd->ppa_status;
658         struct ppa_addr ppa, prev_ppa;
659         int nr_ppas = rqd->nr_ppas;
660         int bit;
661
662         if (rqd->nr_ppas == 1)
663                 __rrpc_mark_bad_block(dev, &rqd->ppa_addr);
664
665         ppa_set_empty(&prev_ppa);
666         bit = -1;
667         while ((bit = find_next_bit(comp_bits, nr_ppas, bit + 1)) < nr_ppas) {
668                 ppa = rqd->ppa_list[bit];
669                 if (ppa_cmp_blk(ppa, prev_ppa))
670                         continue;
671
672                 __rrpc_mark_bad_block(dev, &ppa);
673         }
674 }
675
676 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
677                                                 sector_t laddr, uint8_t npages)
678 {
679         struct rrpc_addr *p;
680         struct rrpc_block *rblk;
681         struct nvm_lun *lun;
682         int cmnt_size, i;
683
684         for (i = 0; i < npages; i++) {
685                 p = &rrpc->trans_map[laddr + i];
686                 rblk = p->rblk;
687                 lun = rblk->parent->lun;
688
689                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
690                 if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
691                         rrpc_run_gc(rrpc, rblk);
692         }
693 }
694
695 static void rrpc_end_io(struct nvm_rq *rqd)
696 {
697         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
698         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
699         uint8_t npages = rqd->nr_ppas;
700         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
701
702         if (bio_data_dir(rqd->bio) == WRITE) {
703                 if (rqd->error == NVM_RSP_ERR_FAILWRITE)
704                         rrpc_mark_bad_block(rrpc, rqd);
705
706                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
707         }
708
709         bio_put(rqd->bio);
710
711         if (rrqd->flags & NVM_IOTYPE_GC)
712                 return;
713
714         rrpc_unlock_rq(rrpc, rqd);
715
716         if (npages > 1)
717                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
718
719         mempool_free(rqd, rrpc->rq_pool);
720 }
721
722 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
723                         struct nvm_rq *rqd, unsigned long flags, int npages)
724 {
725         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
726         struct rrpc_addr *gp;
727         sector_t laddr = rrpc_get_laddr(bio);
728         int is_gc = flags & NVM_IOTYPE_GC;
729         int i;
730
731         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
732                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
733                 return NVM_IO_REQUEUE;
734         }
735
736         for (i = 0; i < npages; i++) {
737                 /* We assume that mapping occurs at 4KB granularity */
738                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
739                 gp = &rrpc->trans_map[laddr + i];
740
741                 if (gp->rblk) {
742                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
743                                                                 gp->addr);
744                 } else {
745                         BUG_ON(is_gc);
746                         rrpc_unlock_laddr(rrpc, r);
747                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
748                                                         rqd->dma_ppa_list);
749                         return NVM_IO_DONE;
750                 }
751         }
752
753         rqd->opcode = NVM_OP_HBREAD;
754
755         return NVM_IO_OK;
756 }
757
758 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
759                                                         unsigned long flags)
760 {
761         int is_gc = flags & NVM_IOTYPE_GC;
762         sector_t laddr = rrpc_get_laddr(bio);
763         struct rrpc_addr *gp;
764
765         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
766                 return NVM_IO_REQUEUE;
767
768         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
769         gp = &rrpc->trans_map[laddr];
770
771         if (gp->rblk) {
772                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
773         } else {
774                 BUG_ON(is_gc);
775                 rrpc_unlock_rq(rrpc, rqd);
776                 return NVM_IO_DONE;
777         }
778
779         rqd->opcode = NVM_OP_HBREAD;
780
781         return NVM_IO_OK;
782 }
783
784 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
785                         struct nvm_rq *rqd, unsigned long flags, int npages)
786 {
787         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
788         struct rrpc_addr *p;
789         sector_t laddr = rrpc_get_laddr(bio);
790         int is_gc = flags & NVM_IOTYPE_GC;
791         int i;
792
793         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
794                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
795                 return NVM_IO_REQUEUE;
796         }
797
798         for (i = 0; i < npages; i++) {
799                 /* We assume that mapping occurs at 4KB granularity */
800                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
801                 if (!p) {
802                         BUG_ON(is_gc);
803                         rrpc_unlock_laddr(rrpc, r);
804                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
805                                                         rqd->dma_ppa_list);
806                         rrpc_gc_kick(rrpc);
807                         return NVM_IO_REQUEUE;
808                 }
809
810                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
811                                                                 p->addr);
812         }
813
814         rqd->opcode = NVM_OP_HBWRITE;
815
816         return NVM_IO_OK;
817 }
818
819 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
820                                 struct nvm_rq *rqd, unsigned long flags)
821 {
822         struct rrpc_addr *p;
823         int is_gc = flags & NVM_IOTYPE_GC;
824         sector_t laddr = rrpc_get_laddr(bio);
825
826         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
827                 return NVM_IO_REQUEUE;
828
829         p = rrpc_map_page(rrpc, laddr, is_gc);
830         if (!p) {
831                 BUG_ON(is_gc);
832                 rrpc_unlock_rq(rrpc, rqd);
833                 rrpc_gc_kick(rrpc);
834                 return NVM_IO_REQUEUE;
835         }
836
837         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
838         rqd->opcode = NVM_OP_HBWRITE;
839
840         return NVM_IO_OK;
841 }
842
843 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
844                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
845 {
846         if (npages > 1) {
847                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
848                                                         &rqd->dma_ppa_list);
849                 if (!rqd->ppa_list) {
850                         pr_err("rrpc: not able to allocate ppa list\n");
851                         return NVM_IO_ERR;
852                 }
853
854                 if (bio_op(bio) == REQ_OP_WRITE)
855                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
856                                                                         npages);
857
858                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
859         }
860
861         if (bio_op(bio) == REQ_OP_WRITE)
862                 return rrpc_write_rq(rrpc, bio, rqd, flags);
863
864         return rrpc_read_rq(rrpc, bio, rqd, flags);
865 }
866
867 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
868                                 struct nvm_rq *rqd, unsigned long flags)
869 {
870         int err;
871         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
872         uint8_t nr_pages = rrpc_get_pages(bio);
873         int bio_size = bio_sectors(bio) << 9;
874
875         if (bio_size < rrpc->dev->sec_size)
876                 return NVM_IO_ERR;
877         else if (bio_size > rrpc->dev->max_rq_size)
878                 return NVM_IO_ERR;
879
880         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
881         if (err)
882                 return err;
883
884         bio_get(bio);
885         rqd->bio = bio;
886         rqd->ins = &rrpc->instance;
887         rqd->nr_ppas = nr_pages;
888         rrq->flags = flags;
889
890         err = nvm_submit_io(rrpc->dev, rqd);
891         if (err) {
892                 pr_err("rrpc: I/O submission failed: %d\n", err);
893                 bio_put(bio);
894                 if (!(flags & NVM_IOTYPE_GC)) {
895                         rrpc_unlock_rq(rrpc, rqd);
896                         if (rqd->nr_ppas > 1)
897                                 nvm_dev_dma_free(rrpc->dev,
898                         rqd->ppa_list, rqd->dma_ppa_list);
899                 }
900                 return NVM_IO_ERR;
901         }
902
903         return NVM_IO_OK;
904 }
905
906 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
907 {
908         struct rrpc *rrpc = q->queuedata;
909         struct nvm_rq *rqd;
910         int err;
911
912         blk_queue_split(q, &bio, q->bio_split);
913
914         if (bio_op(bio) == REQ_OP_DISCARD) {
915                 rrpc_discard(rrpc, bio);
916                 return BLK_QC_T_NONE;
917         }
918
919         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
920         if (!rqd) {
921                 pr_err_ratelimited("rrpc: not able to queue bio.");
922                 bio_io_error(bio);
923                 return BLK_QC_T_NONE;
924         }
925         memset(rqd, 0, sizeof(struct nvm_rq));
926
927         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
928         switch (err) {
929         case NVM_IO_OK:
930                 return BLK_QC_T_NONE;
931         case NVM_IO_ERR:
932                 bio_io_error(bio);
933                 break;
934         case NVM_IO_DONE:
935                 bio_endio(bio);
936                 break;
937         case NVM_IO_REQUEUE:
938                 spin_lock(&rrpc->bio_lock);
939                 bio_list_add(&rrpc->requeue_bios, bio);
940                 spin_unlock(&rrpc->bio_lock);
941                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
942                 break;
943         }
944
945         mempool_free(rqd, rrpc->rq_pool);
946         return BLK_QC_T_NONE;
947 }
948
949 static void rrpc_requeue(struct work_struct *work)
950 {
951         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
952         struct bio_list bios;
953         struct bio *bio;
954
955         bio_list_init(&bios);
956
957         spin_lock(&rrpc->bio_lock);
958         bio_list_merge(&bios, &rrpc->requeue_bios);
959         bio_list_init(&rrpc->requeue_bios);
960         spin_unlock(&rrpc->bio_lock);
961
962         while ((bio = bio_list_pop(&bios)))
963                 rrpc_make_rq(rrpc->disk->queue, bio);
964 }
965
966 static void rrpc_gc_free(struct rrpc *rrpc)
967 {
968         if (rrpc->krqd_wq)
969                 destroy_workqueue(rrpc->krqd_wq);
970
971         if (rrpc->kgc_wq)
972                 destroy_workqueue(rrpc->kgc_wq);
973 }
974
975 static int rrpc_gc_init(struct rrpc *rrpc)
976 {
977         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
978                                                                 rrpc->nr_luns);
979         if (!rrpc->krqd_wq)
980                 return -ENOMEM;
981
982         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
983         if (!rrpc->kgc_wq)
984                 return -ENOMEM;
985
986         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
987
988         return 0;
989 }
990
991 static void rrpc_map_free(struct rrpc *rrpc)
992 {
993         vfree(rrpc->rev_trans_map);
994         vfree(rrpc->trans_map);
995 }
996
997 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
998 {
999         struct rrpc *rrpc = (struct rrpc *)private;
1000         struct nvm_dev *dev = rrpc->dev;
1001         struct rrpc_addr *addr = rrpc->trans_map + slba;
1002         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1003         u64 elba = slba + nlb;
1004         u64 i;
1005
1006         if (unlikely(elba > dev->total_secs)) {
1007                 pr_err("nvm: L2P data from device is out of bounds!\n");
1008                 return -EINVAL;
1009         }
1010
1011         for (i = 0; i < nlb; i++) {
1012                 u64 pba = le64_to_cpu(entries[i]);
1013                 unsigned int mod;
1014                 /* LNVM treats address-spaces as silos, LBA and PBA are
1015                  * equally large and zero-indexed.
1016                  */
1017                 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1018                         pr_err("nvm: L2P data entry is out of bounds!\n");
1019                         return -EINVAL;
1020                 }
1021
1022                 /* Address zero is a special one. The first page on a disk is
1023                  * protected. As it often holds internal device boot
1024                  * information.
1025                  */
1026                 if (!pba)
1027                         continue;
1028
1029                 div_u64_rem(pba, rrpc->nr_sects, &mod);
1030
1031                 addr[i].addr = pba;
1032                 raddr[mod].addr = slba + i;
1033         }
1034
1035         return 0;
1036 }
1037
1038 static int rrpc_map_init(struct rrpc *rrpc)
1039 {
1040         struct nvm_dev *dev = rrpc->dev;
1041         sector_t i;
1042         int ret;
1043
1044         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1045         if (!rrpc->trans_map)
1046                 return -ENOMEM;
1047
1048         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1049                                                         * rrpc->nr_sects);
1050         if (!rrpc->rev_trans_map)
1051                 return -ENOMEM;
1052
1053         for (i = 0; i < rrpc->nr_sects; i++) {
1054                 struct rrpc_addr *p = &rrpc->trans_map[i];
1055                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1056
1057                 p->addr = ADDR_EMPTY;
1058                 r->addr = ADDR_EMPTY;
1059         }
1060
1061         if (!dev->ops->get_l2p_tbl)
1062                 return 0;
1063
1064         /* Bring up the mapping table from device */
1065         ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1066                                         rrpc_l2p_update, rrpc);
1067         if (ret) {
1068                 pr_err("nvm: rrpc: could not read L2P table.\n");
1069                 return -EINVAL;
1070         }
1071
1072         return 0;
1073 }
1074
1075 /* Minimum pages needed within a lun */
1076 #define PAGE_POOL_SIZE 16
1077 #define ADDR_POOL_SIZE 64
1078
1079 static int rrpc_core_init(struct rrpc *rrpc)
1080 {
1081         down_write(&rrpc_lock);
1082         if (!rrpc_gcb_cache) {
1083                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1084                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1085                 if (!rrpc_gcb_cache) {
1086                         up_write(&rrpc_lock);
1087                         return -ENOMEM;
1088                 }
1089
1090                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1091                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1092                                 0, 0, NULL);
1093                 if (!rrpc_rq_cache) {
1094                         kmem_cache_destroy(rrpc_gcb_cache);
1095                         up_write(&rrpc_lock);
1096                         return -ENOMEM;
1097                 }
1098         }
1099         up_write(&rrpc_lock);
1100
1101         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1102         if (!rrpc->page_pool)
1103                 return -ENOMEM;
1104
1105         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1106                                                                 rrpc_gcb_cache);
1107         if (!rrpc->gcb_pool)
1108                 return -ENOMEM;
1109
1110         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1111         if (!rrpc->rq_pool)
1112                 return -ENOMEM;
1113
1114         spin_lock_init(&rrpc->inflights.lock);
1115         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1116
1117         return 0;
1118 }
1119
1120 static void rrpc_core_free(struct rrpc *rrpc)
1121 {
1122         mempool_destroy(rrpc->page_pool);
1123         mempool_destroy(rrpc->gcb_pool);
1124         mempool_destroy(rrpc->rq_pool);
1125 }
1126
1127 static void rrpc_luns_free(struct rrpc *rrpc)
1128 {
1129         struct nvm_dev *dev = rrpc->dev;
1130         struct nvm_lun *lun;
1131         struct rrpc_lun *rlun;
1132         int i;
1133
1134         if (!rrpc->luns)
1135                 return;
1136
1137         for (i = 0; i < rrpc->nr_luns; i++) {
1138                 rlun = &rrpc->luns[i];
1139                 lun = rlun->parent;
1140                 if (!lun)
1141                         break;
1142                 dev->mt->release_lun(dev, lun->id);
1143                 vfree(rlun->blocks);
1144         }
1145
1146         kfree(rrpc->luns);
1147 }
1148
1149 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1150 {
1151         struct nvm_dev *dev = rrpc->dev;
1152         struct rrpc_lun *rlun;
1153         int i, j, ret = -EINVAL;
1154
1155         if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1156                 pr_err("rrpc: number of pages per block too high.");
1157                 return -EINVAL;
1158         }
1159
1160         spin_lock_init(&rrpc->rev_lock);
1161
1162         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1163                                                                 GFP_KERNEL);
1164         if (!rrpc->luns)
1165                 return -ENOMEM;
1166
1167         /* 1:1 mapping */
1168         for (i = 0; i < rrpc->nr_luns; i++) {
1169                 int lunid = lun_begin + i;
1170                 struct nvm_lun *lun;
1171
1172                 if (dev->mt->reserve_lun(dev, lunid)) {
1173                         pr_err("rrpc: lun %u is already allocated\n", lunid);
1174                         goto err;
1175                 }
1176
1177                 lun = dev->mt->get_lun(dev, lunid);
1178                 if (!lun)
1179                         goto err;
1180
1181                 rlun = &rrpc->luns[i];
1182                 rlun->parent = lun;
1183                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1184                                                 rrpc->dev->blks_per_lun);
1185                 if (!rlun->blocks) {
1186                         ret = -ENOMEM;
1187                         goto err;
1188                 }
1189
1190                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1191                         struct rrpc_block *rblk = &rlun->blocks[j];
1192                         struct nvm_block *blk = &lun->blocks[j];
1193
1194                         rblk->parent = blk;
1195                         rblk->rlun = rlun;
1196                         INIT_LIST_HEAD(&rblk->prio);
1197                         spin_lock_init(&rblk->lock);
1198                 }
1199
1200                 rlun->rrpc = rrpc;
1201                 INIT_LIST_HEAD(&rlun->prio_list);
1202                 INIT_LIST_HEAD(&rlun->wblk_list);
1203
1204                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1205                 spin_lock_init(&rlun->lock);
1206         }
1207
1208         return 0;
1209 err:
1210         return ret;
1211 }
1212
1213 /* returns 0 on success and stores the beginning address in *begin */
1214 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1215 {
1216         struct nvm_dev *dev = rrpc->dev;
1217         struct nvmm_type *mt = dev->mt;
1218         sector_t size = rrpc->nr_sects * dev->sec_size;
1219         int ret;
1220
1221         size >>= 9;
1222
1223         ret = mt->get_area(dev, begin, size);
1224         if (!ret)
1225                 *begin >>= (ilog2(dev->sec_size) - 9);
1226
1227         return ret;
1228 }
1229
1230 static void rrpc_area_free(struct rrpc *rrpc)
1231 {
1232         struct nvm_dev *dev = rrpc->dev;
1233         struct nvmm_type *mt = dev->mt;
1234         sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
1235
1236         mt->put_area(dev, begin);
1237 }
1238
1239 static void rrpc_free(struct rrpc *rrpc)
1240 {
1241         rrpc_gc_free(rrpc);
1242         rrpc_map_free(rrpc);
1243         rrpc_core_free(rrpc);
1244         rrpc_luns_free(rrpc);
1245         rrpc_area_free(rrpc);
1246
1247         kfree(rrpc);
1248 }
1249
1250 static void rrpc_exit(void *private)
1251 {
1252         struct rrpc *rrpc = private;
1253
1254         del_timer(&rrpc->gc_timer);
1255
1256         flush_workqueue(rrpc->krqd_wq);
1257         flush_workqueue(rrpc->kgc_wq);
1258
1259         rrpc_free(rrpc);
1260 }
1261
1262 static sector_t rrpc_capacity(void *private)
1263 {
1264         struct rrpc *rrpc = private;
1265         struct nvm_dev *dev = rrpc->dev;
1266         sector_t reserved, provisioned;
1267
1268         /* cur, gc, and two emergency blocks for each lun */
1269         reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
1270         provisioned = rrpc->nr_sects - reserved;
1271
1272         if (reserved > rrpc->nr_sects) {
1273                 pr_err("rrpc: not enough space available to expose storage.\n");
1274                 return 0;
1275         }
1276
1277         sector_div(provisioned, 10);
1278         return provisioned * 9 * NR_PHY_IN_LOG;
1279 }
1280
1281 /*
1282  * Looks up the logical address from reverse trans map and check if its valid by
1283  * comparing the logical to physical address with the physical address.
1284  * Returns 0 on free, otherwise 1 if in use
1285  */
1286 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1287 {
1288         struct nvm_dev *dev = rrpc->dev;
1289         int offset;
1290         struct rrpc_addr *laddr;
1291         u64 bpaddr, paddr, pladdr;
1292
1293         bpaddr = block_to_rel_addr(rrpc, rblk);
1294         for (offset = 0; offset < dev->sec_per_blk; offset++) {
1295                 paddr = bpaddr + offset;
1296
1297                 pladdr = rrpc->rev_trans_map[paddr].addr;
1298                 if (pladdr == ADDR_EMPTY)
1299                         continue;
1300
1301                 laddr = &rrpc->trans_map[pladdr];
1302
1303                 if (paddr == laddr->addr) {
1304                         laddr->rblk = rblk;
1305                 } else {
1306                         set_bit(offset, rblk->invalid_pages);
1307                         rblk->nr_invalid_pages++;
1308                 }
1309         }
1310 }
1311
1312 static int rrpc_blocks_init(struct rrpc *rrpc)
1313 {
1314         struct rrpc_lun *rlun;
1315         struct rrpc_block *rblk;
1316         int lun_iter, blk_iter;
1317
1318         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1319                 rlun = &rrpc->luns[lun_iter];
1320
1321                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1322                                                                 blk_iter++) {
1323                         rblk = &rlun->blocks[blk_iter];
1324                         rrpc_block_map_update(rrpc, rblk);
1325                 }
1326         }
1327
1328         return 0;
1329 }
1330
1331 static int rrpc_luns_configure(struct rrpc *rrpc)
1332 {
1333         struct rrpc_lun *rlun;
1334         struct rrpc_block *rblk;
1335         int i;
1336
1337         for (i = 0; i < rrpc->nr_luns; i++) {
1338                 rlun = &rrpc->luns[i];
1339
1340                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1341                 if (!rblk)
1342                         goto err;
1343                 rrpc_set_lun_cur(rlun, rblk, &rlun->cur);
1344
1345                 /* Emergency gc block */
1346                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1347                 if (!rblk)
1348                         goto err;
1349                 rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur);
1350         }
1351
1352         return 0;
1353 err:
1354         rrpc_put_blks(rrpc);
1355         return -EINVAL;
1356 }
1357
1358 static struct nvm_tgt_type tt_rrpc;
1359
1360 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1361                                                 int lun_begin, int lun_end)
1362 {
1363         struct request_queue *bqueue = dev->q;
1364         struct request_queue *tqueue = tdisk->queue;
1365         struct rrpc *rrpc;
1366         sector_t soffset;
1367         int ret;
1368
1369         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1370                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1371                                                         dev->identity.dom);
1372                 return ERR_PTR(-EINVAL);
1373         }
1374
1375         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1376         if (!rrpc)
1377                 return ERR_PTR(-ENOMEM);
1378
1379         rrpc->instance.tt = &tt_rrpc;
1380         rrpc->dev = dev;
1381         rrpc->disk = tdisk;
1382
1383         bio_list_init(&rrpc->requeue_bios);
1384         spin_lock_init(&rrpc->bio_lock);
1385         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1386
1387         rrpc->nr_luns = lun_end - lun_begin + 1;
1388         rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
1389
1390         /* simple round-robin strategy */
1391         atomic_set(&rrpc->next_lun, -1);
1392
1393         ret = rrpc_area_init(rrpc, &soffset);
1394         if (ret < 0) {
1395                 pr_err("nvm: rrpc: could not initialize area\n");
1396                 return ERR_PTR(ret);
1397         }
1398         rrpc->soffset = soffset;
1399
1400         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1401         if (ret) {
1402                 pr_err("nvm: rrpc: could not initialize luns\n");
1403                 goto err;
1404         }
1405
1406         rrpc->poffset = dev->sec_per_lun * lun_begin;
1407
1408         ret = rrpc_core_init(rrpc);
1409         if (ret) {
1410                 pr_err("nvm: rrpc: could not initialize core\n");
1411                 goto err;
1412         }
1413
1414         ret = rrpc_map_init(rrpc);
1415         if (ret) {
1416                 pr_err("nvm: rrpc: could not initialize maps\n");
1417                 goto err;
1418         }
1419
1420         ret = rrpc_blocks_init(rrpc);
1421         if (ret) {
1422                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1423                 goto err;
1424         }
1425
1426         ret = rrpc_luns_configure(rrpc);
1427         if (ret) {
1428                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1429                 goto err;
1430         }
1431
1432         ret = rrpc_gc_init(rrpc);
1433         if (ret) {
1434                 pr_err("nvm: rrpc: could not initialize gc\n");
1435                 goto err;
1436         }
1437
1438         /* inherit the size from the underlying device */
1439         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1440         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1441
1442         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1443                         rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1444
1445         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1446
1447         return rrpc;
1448 err:
1449         rrpc_free(rrpc);
1450         return ERR_PTR(ret);
1451 }
1452
1453 /* round robin, page-based FTL, and cost-based GC */
1454 static struct nvm_tgt_type tt_rrpc = {
1455         .name           = "rrpc",
1456         .version        = {1, 0, 0},
1457
1458         .make_rq        = rrpc_make_rq,
1459         .capacity       = rrpc_capacity,
1460         .end_io         = rrpc_end_io,
1461
1462         .init           = rrpc_init,
1463         .exit           = rrpc_exit,
1464 };
1465
1466 static int __init rrpc_module_init(void)
1467 {
1468         return nvm_register_tgt_type(&tt_rrpc);
1469 }
1470
1471 static void rrpc_module_exit(void)
1472 {
1473         nvm_unregister_tgt_type(&tt_rrpc);
1474 }
1475
1476 module_init(rrpc_module_init);
1477 module_exit(rrpc_module_exit);
1478 MODULE_LICENSE("GPL v2");
1479 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");