]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/bcache/alloc.c
Merge remote-tracking branch 'regulator/topic/helpers' into regulator-next
[karo-tx-linux.git] / drivers / md / bcache / alloc.c
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62
63 #include "bcache.h"
64 #include "btree.h"
65
66 #include <linux/freezer.h>
67 #include <linux/kthread.h>
68 #include <linux/random.h>
69 #include <trace/events/bcache.h>
70
71 #define MAX_IN_FLIGHT_DISCARDS          8U
72
73 /* Bucket heap / gen */
74
75 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
76 {
77         uint8_t ret = ++b->gen;
78
79         ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
80         WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
81
82         if (CACHE_SYNC(&ca->set->sb)) {
83                 ca->need_save_prio = max(ca->need_save_prio,
84                                          bucket_disk_gen(b));
85                 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
86         }
87
88         return ret;
89 }
90
91 void bch_rescale_priorities(struct cache_set *c, int sectors)
92 {
93         struct cache *ca;
94         struct bucket *b;
95         unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
96         unsigned i;
97         int r;
98
99         atomic_sub(sectors, &c->rescale);
100
101         do {
102                 r = atomic_read(&c->rescale);
103
104                 if (r >= 0)
105                         return;
106         } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
107
108         mutex_lock(&c->bucket_lock);
109
110         c->min_prio = USHRT_MAX;
111
112         for_each_cache(ca, c, i)
113                 for_each_bucket(b, ca)
114                         if (b->prio &&
115                             b->prio != BTREE_PRIO &&
116                             !atomic_read(&b->pin)) {
117                                 b->prio--;
118                                 c->min_prio = min(c->min_prio, b->prio);
119                         }
120
121         mutex_unlock(&c->bucket_lock);
122 }
123
124 /* Discard/TRIM */
125
126 struct discard {
127         struct list_head        list;
128         struct work_struct      work;
129         struct cache            *ca;
130         long                    bucket;
131
132         struct bio              bio;
133         struct bio_vec          bv;
134 };
135
136 static void discard_finish(struct work_struct *w)
137 {
138         struct discard *d = container_of(w, struct discard, work);
139         struct cache *ca = d->ca;
140         char buf[BDEVNAME_SIZE];
141
142         if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
143                 pr_notice("discard error on %s, disabling",
144                          bdevname(ca->bdev, buf));
145                 d->ca->discard = 0;
146         }
147
148         mutex_lock(&ca->set->bucket_lock);
149
150         fifo_push(&ca->free, d->bucket);
151         list_add(&d->list, &ca->discards);
152         atomic_dec(&ca->discards_in_flight);
153
154         mutex_unlock(&ca->set->bucket_lock);
155
156         closure_wake_up(&ca->set->bucket_wait);
157         wake_up_process(ca->alloc_thread);
158
159         closure_put(&ca->set->cl);
160 }
161
162 static void discard_endio(struct bio *bio, int error)
163 {
164         struct discard *d = container_of(bio, struct discard, bio);
165         schedule_work(&d->work);
166 }
167
168 static void do_discard(struct cache *ca, long bucket)
169 {
170         struct discard *d = list_first_entry(&ca->discards,
171                                              struct discard, list);
172
173         list_del(&d->list);
174         d->bucket = bucket;
175
176         atomic_inc(&ca->discards_in_flight);
177         closure_get(&ca->set->cl);
178
179         bio_init(&d->bio);
180
181         d->bio.bi_sector        = bucket_to_sector(ca->set, d->bucket);
182         d->bio.bi_bdev          = ca->bdev;
183         d->bio.bi_rw            = REQ_WRITE|REQ_DISCARD;
184         d->bio.bi_max_vecs      = 1;
185         d->bio.bi_io_vec        = d->bio.bi_inline_vecs;
186         d->bio.bi_size          = bucket_bytes(ca);
187         d->bio.bi_end_io        = discard_endio;
188         bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
189
190         submit_bio(0, &d->bio);
191 }
192
193 /* Allocation */
194
195 static inline bool can_inc_bucket_gen(struct bucket *b)
196 {
197         return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
198                 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
199 }
200
201 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
202 {
203         BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
204
205         if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
206             CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
207                 return false;
208
209         b->prio = 0;
210
211         if (can_inc_bucket_gen(b) &&
212             fifo_push(&ca->unused, b - ca->buckets)) {
213                 atomic_inc(&b->pin);
214                 return true;
215         }
216
217         return false;
218 }
219
220 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
221 {
222         return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
223                 !atomic_read(&b->pin) &&
224                 can_inc_bucket_gen(b);
225 }
226
227 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
228 {
229         bch_inc_gen(ca, b);
230         b->prio = INITIAL_PRIO;
231         atomic_inc(&b->pin);
232         fifo_push(&ca->free_inc, b - ca->buckets);
233 }
234
235 #define bucket_prio(b)                          \
236         (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
237
238 #define bucket_max_cmp(l, r)    (bucket_prio(l) < bucket_prio(r))
239 #define bucket_min_cmp(l, r)    (bucket_prio(l) > bucket_prio(r))
240
241 static void invalidate_buckets_lru(struct cache *ca)
242 {
243         struct bucket *b;
244         ssize_t i;
245
246         ca->heap.used = 0;
247
248         for_each_bucket(b, ca) {
249                 /*
250                  * If we fill up the unused list, if we then return before
251                  * adding anything to the free_inc list we'll skip writing
252                  * prios/gens and just go back to allocating from the unused
253                  * list:
254                  */
255                 if (fifo_full(&ca->unused))
256                         return;
257
258                 if (!can_invalidate_bucket(ca, b))
259                         continue;
260
261                 if (!GC_SECTORS_USED(b) &&
262                     bch_bucket_add_unused(ca, b))
263                         continue;
264
265                 if (!heap_full(&ca->heap))
266                         heap_add(&ca->heap, b, bucket_max_cmp);
267                 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
268                         ca->heap.data[0] = b;
269                         heap_sift(&ca->heap, 0, bucket_max_cmp);
270                 }
271         }
272
273         for (i = ca->heap.used / 2 - 1; i >= 0; --i)
274                 heap_sift(&ca->heap, i, bucket_min_cmp);
275
276         while (!fifo_full(&ca->free_inc)) {
277                 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
278                         /*
279                          * We don't want to be calling invalidate_buckets()
280                          * multiple times when it can't do anything
281                          */
282                         ca->invalidate_needs_gc = 1;
283                         bch_queue_gc(ca->set);
284                         return;
285                 }
286
287                 invalidate_one_bucket(ca, b);
288         }
289 }
290
291 static void invalidate_buckets_fifo(struct cache *ca)
292 {
293         struct bucket *b;
294         size_t checked = 0;
295
296         while (!fifo_full(&ca->free_inc)) {
297                 if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
298                     ca->fifo_last_bucket >= ca->sb.nbuckets)
299                         ca->fifo_last_bucket = ca->sb.first_bucket;
300
301                 b = ca->buckets + ca->fifo_last_bucket++;
302
303                 if (can_invalidate_bucket(ca, b))
304                         invalidate_one_bucket(ca, b);
305
306                 if (++checked >= ca->sb.nbuckets) {
307                         ca->invalidate_needs_gc = 1;
308                         bch_queue_gc(ca->set);
309                         return;
310                 }
311         }
312 }
313
314 static void invalidate_buckets_random(struct cache *ca)
315 {
316         struct bucket *b;
317         size_t checked = 0;
318
319         while (!fifo_full(&ca->free_inc)) {
320                 size_t n;
321                 get_random_bytes(&n, sizeof(n));
322
323                 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
324                 n += ca->sb.first_bucket;
325
326                 b = ca->buckets + n;
327
328                 if (can_invalidate_bucket(ca, b))
329                         invalidate_one_bucket(ca, b);
330
331                 if (++checked >= ca->sb.nbuckets / 2) {
332                         ca->invalidate_needs_gc = 1;
333                         bch_queue_gc(ca->set);
334                         return;
335                 }
336         }
337 }
338
339 static void invalidate_buckets(struct cache *ca)
340 {
341         if (ca->invalidate_needs_gc)
342                 return;
343
344         switch (CACHE_REPLACEMENT(&ca->sb)) {
345         case CACHE_REPLACEMENT_LRU:
346                 invalidate_buckets_lru(ca);
347                 break;
348         case CACHE_REPLACEMENT_FIFO:
349                 invalidate_buckets_fifo(ca);
350                 break;
351         case CACHE_REPLACEMENT_RANDOM:
352                 invalidate_buckets_random(ca);
353                 break;
354         }
355
356         trace_bcache_alloc_invalidate(ca);
357 }
358
359 #define allocator_wait(ca, cond)                                        \
360 do {                                                                    \
361         while (1) {                                                     \
362                 set_current_state(TASK_INTERRUPTIBLE);                  \
363                 if (cond)                                               \
364                         break;                                          \
365                                                                         \
366                 mutex_unlock(&(ca)->set->bucket_lock);                  \
367                 if (kthread_should_stop())                              \
368                         return 0;                                       \
369                                                                         \
370                 try_to_freeze();                                        \
371                 schedule();                                             \
372                 mutex_lock(&(ca)->set->bucket_lock);                    \
373         }                                                               \
374         __set_current_state(TASK_RUNNING);                              \
375 } while (0)
376
377 static int bch_allocator_thread(void *arg)
378 {
379         struct cache *ca = arg;
380
381         mutex_lock(&ca->set->bucket_lock);
382
383         while (1) {
384                 /*
385                  * First, we pull buckets off of the unused and free_inc lists,
386                  * possibly issue discards to them, then we add the bucket to
387                  * the free list:
388                  */
389                 while (1) {
390                         long bucket;
391
392                         if ((!atomic_read(&ca->set->prio_blocked) ||
393                              !CACHE_SYNC(&ca->set->sb)) &&
394                             !fifo_empty(&ca->unused))
395                                 fifo_pop(&ca->unused, bucket);
396                         else if (!fifo_empty(&ca->free_inc))
397                                 fifo_pop(&ca->free_inc, bucket);
398                         else
399                                 break;
400
401                         allocator_wait(ca, (int) fifo_free(&ca->free) >
402                                        atomic_read(&ca->discards_in_flight));
403
404                         if (ca->discard) {
405                                 allocator_wait(ca, !list_empty(&ca->discards));
406                                 do_discard(ca, bucket);
407                         } else {
408                                 fifo_push(&ca->free, bucket);
409                                 closure_wake_up(&ca->set->bucket_wait);
410                         }
411                 }
412
413                 /*
414                  * We've run out of free buckets, we need to find some buckets
415                  * we can invalidate. First, invalidate them in memory and add
416                  * them to the free_inc list:
417                  */
418
419                 allocator_wait(ca, ca->set->gc_mark_valid &&
420                                (ca->need_save_prio > 64 ||
421                                 !ca->invalidate_needs_gc));
422                 invalidate_buckets(ca);
423
424                 /*
425                  * Now, we write their new gens to disk so we can start writing
426                  * new stuff to them:
427                  */
428                 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
429                 if (CACHE_SYNC(&ca->set->sb) &&
430                     (!fifo_empty(&ca->free_inc) ||
431                      ca->need_save_prio > 64))
432                         bch_prio_write(ca);
433         }
434 }
435
436 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
437 {
438         long r = -1;
439 again:
440         wake_up_process(ca->alloc_thread);
441
442         if (fifo_used(&ca->free) > ca->watermark[watermark] &&
443             fifo_pop(&ca->free, r)) {
444                 struct bucket *b = ca->buckets + r;
445 #ifdef CONFIG_BCACHE_EDEBUG
446                 size_t iter;
447                 long i;
448
449                 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
450                         BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
451
452                 fifo_for_each(i, &ca->free, iter)
453                         BUG_ON(i == r);
454                 fifo_for_each(i, &ca->free_inc, iter)
455                         BUG_ON(i == r);
456                 fifo_for_each(i, &ca->unused, iter)
457                         BUG_ON(i == r);
458 #endif
459                 BUG_ON(atomic_read(&b->pin) != 1);
460
461                 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
462
463                 if (watermark <= WATERMARK_METADATA) {
464                         SET_GC_MARK(b, GC_MARK_METADATA);
465                         b->prio = BTREE_PRIO;
466                 } else {
467                         SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
468                         b->prio = INITIAL_PRIO;
469                 }
470
471                 return r;
472         }
473
474         trace_bcache_alloc_fail(ca);
475
476         if (cl) {
477                 closure_wait(&ca->set->bucket_wait, cl);
478
479                 if (closure_blocking(cl)) {
480                         mutex_unlock(&ca->set->bucket_lock);
481                         closure_sync(cl);
482                         mutex_lock(&ca->set->bucket_lock);
483                         goto again;
484                 }
485         }
486
487         return -1;
488 }
489
490 void bch_bucket_free(struct cache_set *c, struct bkey *k)
491 {
492         unsigned i;
493
494         for (i = 0; i < KEY_PTRS(k); i++) {
495                 struct bucket *b = PTR_BUCKET(c, k, i);
496
497                 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
498                 SET_GC_SECTORS_USED(b, 0);
499                 bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
500         }
501 }
502
503 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
504                            struct bkey *k, int n, struct closure *cl)
505 {
506         int i;
507
508         lockdep_assert_held(&c->bucket_lock);
509         BUG_ON(!n || n > c->caches_loaded || n > 8);
510
511         bkey_init(k);
512
513         /* sort by free space/prio of oldest data in caches */
514
515         for (i = 0; i < n; i++) {
516                 struct cache *ca = c->cache_by_alloc[i];
517                 long b = bch_bucket_alloc(ca, watermark, cl);
518
519                 if (b == -1)
520                         goto err;
521
522                 k->ptr[i] = PTR(ca->buckets[b].gen,
523                                 bucket_to_sector(c, b),
524                                 ca->sb.nr_this_dev);
525
526                 SET_KEY_PTRS(k, i + 1);
527         }
528
529         return 0;
530 err:
531         bch_bucket_free(c, k);
532         __bkey_put(c, k);
533         return -1;
534 }
535
536 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
537                          struct bkey *k, int n, struct closure *cl)
538 {
539         int ret;
540         mutex_lock(&c->bucket_lock);
541         ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
542         mutex_unlock(&c->bucket_lock);
543         return ret;
544 }
545
546 /* Init */
547
548 int bch_cache_allocator_start(struct cache *ca)
549 {
550         struct task_struct *k = kthread_run(bch_allocator_thread,
551                                             ca, "bcache_allocator");
552         if (IS_ERR(k))
553                 return PTR_ERR(k);
554
555         ca->alloc_thread = k;
556         return 0;
557 }
558
559 void bch_cache_allocator_exit(struct cache *ca)
560 {
561         struct discard *d;
562
563         while (!list_empty(&ca->discards)) {
564                 d = list_first_entry(&ca->discards, struct discard, list);
565                 cancel_work_sync(&d->work);
566                 list_del(&d->list);
567                 kfree(d);
568         }
569 }
570
571 int bch_cache_allocator_init(struct cache *ca)
572 {
573         unsigned i;
574
575         /*
576          * Reserve:
577          * Prio/gen writes first
578          * Then 8 for btree allocations
579          * Then half for the moving garbage collector
580          */
581
582         ca->watermark[WATERMARK_PRIO] = 0;
583
584         ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
585
586         ca->watermark[WATERMARK_MOVINGGC] = 8 +
587                 ca->watermark[WATERMARK_METADATA];
588
589         ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
590                 ca->watermark[WATERMARK_MOVINGGC];
591
592         for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
593                 struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
594                 if (!d)
595                         return -ENOMEM;
596
597                 d->ca = ca;
598                 INIT_WORK(&d->work, discard_finish);
599                 list_add(&d->list, &ca->discards);
600         }
601
602         return 0;
603 }