]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/bcache/request.c
Merge remote-tracking branch 'hid/for-next'
[karo-tx-linux.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD        95
24 #define CUTOFF_CACHE_READA      90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void check_should_skip(struct cached_dev *, struct search *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37         struct cgroup_subsys_state *css;
38         return cgroup &&
39                 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40                 ? container_of(css, struct bch_cgroup, css)
41                 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46         struct cgroup_subsys_state *css = bio->bi_css
47                 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48                 : task_subsys_state(current, bcache_subsys_id);
49
50         return css
51                 ? container_of(css, struct bch_cgroup, css)
52                 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56                         struct file *file,
57                         char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59         char tmp[1024];
60         int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61                                           cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63         if (len < 0)
64                 return len;
65
66         return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70                             const char *buf)
71 {
72         int v = bch_read_string_list(buf, bch_cache_modes);
73         if (v < 0)
74                 return v;
75
76         cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77         return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82         return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87         cgroup_to_bcache(cgrp)->verify = val;
88         return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94         return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100         return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104                                          struct cftype *cft)
105 {
106         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107         return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111                                            struct cftype *cft)
112 {
113         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114         return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118         {
119                 .name           = "cache_mode",
120                 .read           = cache_mode_read,
121                 .write_string   = cache_mode_write,
122         },
123         {
124                 .name           = "verify",
125                 .read_u64       = bch_verify_read,
126                 .write_u64      = bch_verify_write,
127         },
128         {
129                 .name           = "cache_hits",
130                 .read_u64       = bch_cache_hits_read,
131         },
132         {
133                 .name           = "cache_misses",
134                 .read_u64       = bch_cache_misses_read,
135         },
136         {
137                 .name           = "cache_bypass_hits",
138                 .read_u64       = bch_cache_bypass_hits_read,
139         },
140         {
141                 .name           = "cache_bypass_misses",
142                 .read_u64       = bch_cache_bypass_misses_read,
143         },
144         { }     /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149         cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154         struct bch_cgroup *cg;
155
156         cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157         if (!cg)
158                 return ERR_PTR(-ENOMEM);
159         init_bch_cgroup(cg);
160         return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165         struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166         free_css_id(&bcache_subsys, &cg->css);
167         kfree(cg);
168 }
169
170 struct cgroup_subsys bcache_subsys = {
171         .create         = bcachecg_create,
172         .destroy        = bcachecg_destroy,
173         .subsys_id      = bcache_subsys_id,
174         .name           = "bcache",
175         .module         = THIS_MODULE,
176 };
177 EXPORT_SYMBOL_GPL(bcache_subsys);
178 #endif
179
180 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181 {
182 #ifdef CONFIG_CGROUP_BCACHE
183         int r = bch_bio_to_cgroup(bio)->cache_mode;
184         if (r >= 0)
185                 return r;
186 #endif
187         return BDEV_CACHE_MODE(&dc->sb);
188 }
189
190 static bool verify(struct cached_dev *dc, struct bio *bio)
191 {
192 #ifdef CONFIG_CGROUP_BCACHE
193         if (bch_bio_to_cgroup(bio)->verify)
194                 return true;
195 #endif
196         return dc->verify;
197 }
198
199 static void bio_csum(struct bio *bio, struct bkey *k)
200 {
201         struct bio_vec *bv;
202         uint64_t csum = 0;
203         int i;
204
205         bio_for_each_segment(bv, bio, i) {
206                 void *d = kmap(bv->bv_page) + bv->bv_offset;
207                 csum = bch_crc64_update(csum, d, bv->bv_len);
208                 kunmap(bv->bv_page);
209         }
210
211         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212 }
213
214 /* Insert data into cache */
215
216 static void bio_invalidate(struct closure *cl)
217 {
218         struct btree_op *op = container_of(cl, struct btree_op, cl);
219         struct bio *bio = op->cache_bio;
220
221         pr_debug("invalidating %i sectors from %llu",
222                  bio_sectors(bio), (uint64_t) bio->bi_sector);
223
224         while (bio_sectors(bio)) {
225                 unsigned len = min(bio_sectors(bio), 1U << 14);
226
227                 if (bch_keylist_realloc(&op->keys, 0, op->c))
228                         goto out;
229
230                 bio->bi_sector  += len;
231                 bio->bi_size    -= len << 9;
232
233                 bch_keylist_add(&op->keys,
234                                 &KEY(op->inode, bio->bi_sector, len));
235         }
236
237         op->insert_data_done = true;
238         bio_put(bio);
239 out:
240         continue_at(cl, bch_journal, bcache_wq);
241 }
242
243 struct open_bucket {
244         struct list_head        list;
245         struct task_struct      *last;
246         unsigned                sectors_free;
247         BKEY_PADDED(key);
248 };
249
250 void bch_open_buckets_free(struct cache_set *c)
251 {
252         struct open_bucket *b;
253
254         while (!list_empty(&c->data_buckets)) {
255                 b = list_first_entry(&c->data_buckets,
256                                      struct open_bucket, list);
257                 list_del(&b->list);
258                 kfree(b);
259         }
260 }
261
262 int bch_open_buckets_alloc(struct cache_set *c)
263 {
264         int i;
265
266         spin_lock_init(&c->data_bucket_lock);
267
268         for (i = 0; i < 6; i++) {
269                 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
270                 if (!b)
271                         return -ENOMEM;
272
273                 list_add(&b->list, &c->data_buckets);
274         }
275
276         return 0;
277 }
278
279 /*
280  * We keep multiple buckets open for writes, and try to segregate different
281  * write streams for better cache utilization: first we look for a bucket where
282  * the last write to it was sequential with the current write, and failing that
283  * we look for a bucket that was last used by the same task.
284  *
285  * The ideas is if you've got multiple tasks pulling data into the cache at the
286  * same time, you'll get better cache utilization if you try to segregate their
287  * data and preserve locality.
288  *
289  * For example, say you've starting Firefox at the same time you're copying a
290  * bunch of files. Firefox will likely end up being fairly hot and stay in the
291  * cache awhile, but the data you copied might not be; if you wrote all that
292  * data to the same buckets it'd get invalidated at the same time.
293  *
294  * Both of those tasks will be doing fairly random IO so we can't rely on
295  * detecting sequential IO to segregate their data, but going off of the task
296  * should be a sane heuristic.
297  */
298 static struct open_bucket *pick_data_bucket(struct cache_set *c,
299                                             const struct bkey *search,
300                                             struct task_struct *task,
301                                             struct bkey *alloc)
302 {
303         struct open_bucket *ret, *ret_task = NULL;
304
305         list_for_each_entry_reverse(ret, &c->data_buckets, list)
306                 if (!bkey_cmp(&ret->key, search))
307                         goto found;
308                 else if (ret->last == task)
309                         ret_task = ret;
310
311         ret = ret_task ?: list_first_entry(&c->data_buckets,
312                                            struct open_bucket, list);
313 found:
314         if (!ret->sectors_free && KEY_PTRS(alloc)) {
315                 ret->sectors_free = c->sb.bucket_size;
316                 bkey_copy(&ret->key, alloc);
317                 bkey_init(alloc);
318         }
319
320         if (!ret->sectors_free)
321                 ret = NULL;
322
323         return ret;
324 }
325
326 /*
327  * Allocates some space in the cache to write to, and k to point to the newly
328  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
329  * end of the newly allocated space).
330  *
331  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
332  * sectors were actually allocated.
333  *
334  * If s->writeback is true, will not fail.
335  */
336 static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
337                               struct search *s)
338 {
339         struct cache_set *c = s->op.c;
340         struct open_bucket *b;
341         BKEY_PADDED(key) alloc;
342         struct closure cl, *w = NULL;
343         unsigned i;
344
345         if (s->writeback) {
346                 closure_init_stack(&cl);
347                 w = &cl;
348         }
349
350         /*
351          * We might have to allocate a new bucket, which we can't do with a
352          * spinlock held. So if we have to allocate, we drop the lock, allocate
353          * and then retry. KEY_PTRS() indicates whether alloc points to
354          * allocated bucket(s).
355          */
356
357         bkey_init(&alloc.key);
358         spin_lock(&c->data_bucket_lock);
359
360         while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
361                 unsigned watermark = s->op.write_prio
362                         ? WATERMARK_MOVINGGC
363                         : WATERMARK_NONE;
364
365                 spin_unlock(&c->data_bucket_lock);
366
367                 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
368                         return false;
369
370                 spin_lock(&c->data_bucket_lock);
371         }
372
373         /*
374          * If we had to allocate, we might race and not need to allocate the
375          * second time we call find_data_bucket(). If we allocated a bucket but
376          * didn't use it, drop the refcount bch_bucket_alloc_set() took:
377          */
378         if (KEY_PTRS(&alloc.key))
379                 __bkey_put(c, &alloc.key);
380
381         for (i = 0; i < KEY_PTRS(&b->key); i++)
382                 EBUG_ON(ptr_stale(c, &b->key, i));
383
384         /* Set up the pointer to the space we're allocating: */
385
386         for (i = 0; i < KEY_PTRS(&b->key); i++)
387                 k->ptr[i] = b->key.ptr[i];
388
389         sectors = min(sectors, b->sectors_free);
390
391         SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
392         SET_KEY_SIZE(k, sectors);
393         SET_KEY_PTRS(k, KEY_PTRS(&b->key));
394
395         /*
396          * Move b to the end of the lru, and keep track of what this bucket was
397          * last used for:
398          */
399         list_move_tail(&b->list, &c->data_buckets);
400         bkey_copy_key(&b->key, k);
401         b->last = s->task;
402
403         b->sectors_free -= sectors;
404
405         for (i = 0; i < KEY_PTRS(&b->key); i++) {
406                 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
407
408                 atomic_long_add(sectors,
409                                 &PTR_CACHE(c, &b->key, i)->sectors_written);
410         }
411
412         if (b->sectors_free < c->sb.block_size)
413                 b->sectors_free = 0;
414
415         /*
416          * k takes refcounts on the buckets it points to until it's inserted
417          * into the btree, but if we're done with this bucket we just transfer
418          * get_data_bucket()'s refcount.
419          */
420         if (b->sectors_free)
421                 for (i = 0; i < KEY_PTRS(&b->key); i++)
422                         atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
423
424         spin_unlock(&c->data_bucket_lock);
425         return true;
426 }
427
428 static void bch_insert_data_error(struct closure *cl)
429 {
430         struct btree_op *op = container_of(cl, struct btree_op, cl);
431
432         /*
433          * Our data write just errored, which means we've got a bunch of keys to
434          * insert that point to data that wasn't succesfully written.
435          *
436          * We don't have to insert those keys but we still have to invalidate
437          * that region of the cache - so, if we just strip off all the pointers
438          * from the keys we'll accomplish just that.
439          */
440
441         struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
442
443         while (src != op->keys.top) {
444                 struct bkey *n = bkey_next(src);
445
446                 SET_KEY_PTRS(src, 0);
447                 bkey_copy(dst, src);
448
449                 dst = bkey_next(dst);
450                 src = n;
451         }
452
453         op->keys.top = dst;
454
455         bch_journal(cl);
456 }
457
458 static void bch_insert_data_endio(struct bio *bio, int error)
459 {
460         struct closure *cl = bio->bi_private;
461         struct btree_op *op = container_of(cl, struct btree_op, cl);
462         struct search *s = container_of(op, struct search, op);
463
464         if (error) {
465                 /* TODO: We could try to recover from this. */
466                 if (s->writeback)
467                         s->error = error;
468                 else if (s->write)
469                         set_closure_fn(cl, bch_insert_data_error, bcache_wq);
470                 else
471                         set_closure_fn(cl, NULL, NULL);
472         }
473
474         bch_bbio_endio(op->c, bio, error, "writing data to cache");
475 }
476
477 static void bch_insert_data_loop(struct closure *cl)
478 {
479         struct btree_op *op = container_of(cl, struct btree_op, cl);
480         struct search *s = container_of(op, struct search, op);
481         struct bio *bio = op->cache_bio, *n;
482
483         if (op->skip)
484                 return bio_invalidate(cl);
485
486         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
487                 set_gc_sectors(op->c);
488                 bch_queue_gc(op->c);
489         }
490
491         /*
492          * Journal writes are marked REQ_FLUSH; if the original write was a
493          * flush, it'll wait on the journal write.
494          */
495         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
496
497         do {
498                 unsigned i;
499                 struct bkey *k;
500                 struct bio_set *split = s->d
501                         ? s->d->bio_split : op->c->bio_split;
502
503                 /* 1 for the device pointer and 1 for the chksum */
504                 if (bch_keylist_realloc(&op->keys,
505                                         1 + (op->csum ? 1 : 0),
506                                         op->c))
507                         continue_at(cl, bch_journal, bcache_wq);
508
509                 k = op->keys.top;
510                 bkey_init(k);
511                 SET_KEY_INODE(k, op->inode);
512                 SET_KEY_OFFSET(k, bio->bi_sector);
513
514                 if (!bch_alloc_sectors(k, bio_sectors(bio), s))
515                         goto err;
516
517                 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
518
519                 n->bi_end_io    = bch_insert_data_endio;
520                 n->bi_private   = cl;
521
522                 if (s->writeback) {
523                         SET_KEY_DIRTY(k, true);
524
525                         for (i = 0; i < KEY_PTRS(k); i++)
526                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
527                                             GC_MARK_DIRTY);
528                 }
529
530                 SET_KEY_CSUM(k, op->csum);
531                 if (KEY_CSUM(k))
532                         bio_csum(n, k);
533
534                 trace_bcache_cache_insert(k);
535                 bch_keylist_push(&op->keys);
536
537                 n->bi_rw |= REQ_WRITE;
538                 bch_submit_bbio(n, op->c, k, 0);
539         } while (n != bio);
540
541         op->insert_data_done = true;
542         continue_at(cl, bch_journal, bcache_wq);
543 err:
544         /* bch_alloc_sectors() blocks if s->writeback = true */
545         BUG_ON(s->writeback);
546
547         /*
548          * But if it's not a writeback write we'd rather just bail out if
549          * there aren't any buckets ready to write to - it might take awhile and
550          * we might be starving btree writes for gc or something.
551          */
552
553         if (s->write) {
554                 /*
555                  * Writethrough write: We can't complete the write until we've
556                  * updated the index. But we don't want to delay the write while
557                  * we wait for buckets to be freed up, so just invalidate the
558                  * rest of the write.
559                  */
560                 op->skip = true;
561                 return bio_invalidate(cl);
562         } else {
563                 /*
564                  * From a cache miss, we can just insert the keys for the data
565                  * we have written or bail out if we didn't do anything.
566                  */
567                 op->insert_data_done = true;
568                 bio_put(bio);
569
570                 if (!bch_keylist_empty(&op->keys))
571                         continue_at(cl, bch_journal, bcache_wq);
572                 else
573                         closure_return(cl);
574         }
575 }
576
577 /**
578  * bch_insert_data - stick some data in the cache
579  *
580  * This is the starting point for any data to end up in a cache device; it could
581  * be from a normal write, or a writeback write, or a write to a flash only
582  * volume - it's also used by the moving garbage collector to compact data in
583  * mostly empty buckets.
584  *
585  * It first writes the data to the cache, creating a list of keys to be inserted
586  * (if the data had to be fragmented there will be multiple keys); after the
587  * data is written it calls bch_journal, and after the keys have been added to
588  * the next journal write they're inserted into the btree.
589  *
590  * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
591  * and op->inode is used for the key inode.
592  *
593  * If op->skip is true, instead of inserting the data it invalidates the region
594  * of the cache represented by op->cache_bio and op->inode.
595  */
596 void bch_insert_data(struct closure *cl)
597 {
598         struct btree_op *op = container_of(cl, struct btree_op, cl);
599
600         bch_keylist_init(&op->keys);
601         bio_get(op->cache_bio);
602         bch_insert_data_loop(cl);
603 }
604
605 void bch_btree_insert_async(struct closure *cl)
606 {
607         struct btree_op *op = container_of(cl, struct btree_op, cl);
608         struct search *s = container_of(op, struct search, op);
609
610         if (bch_btree_insert(op, op->c)) {
611                 s->error                = -ENOMEM;
612                 op->insert_data_done    = true;
613         }
614
615         if (op->insert_data_done) {
616                 bch_keylist_free(&op->keys);
617                 closure_return(cl);
618         } else
619                 continue_at(cl, bch_insert_data_loop, bcache_wq);
620 }
621
622 /* Common code for the make_request functions */
623
624 static void request_endio(struct bio *bio, int error)
625 {
626         struct closure *cl = bio->bi_private;
627
628         if (error) {
629                 struct search *s = container_of(cl, struct search, cl);
630                 s->error = error;
631                 /* Only cache read errors are recoverable */
632                 s->recoverable = false;
633         }
634
635         bio_put(bio);
636         closure_put(cl);
637 }
638
639 void bch_cache_read_endio(struct bio *bio, int error)
640 {
641         struct bbio *b = container_of(bio, struct bbio, bio);
642         struct closure *cl = bio->bi_private;
643         struct search *s = container_of(cl, struct search, cl);
644
645         /*
646          * If the bucket was reused while our bio was in flight, we might have
647          * read the wrong data. Set s->error but not error so it doesn't get
648          * counted against the cache device, but we'll still reread the data
649          * from the backing device.
650          */
651
652         if (error)
653                 s->error = error;
654         else if (ptr_stale(s->op.c, &b->key, 0)) {
655                 atomic_long_inc(&s->op.c->cache_read_races);
656                 s->error = -EINTR;
657         }
658
659         bch_bbio_endio(s->op.c, bio, error, "reading from cache");
660 }
661
662 static void bio_complete(struct search *s)
663 {
664         if (s->orig_bio) {
665                 int cpu, rw = bio_data_dir(s->orig_bio);
666                 unsigned long duration = jiffies - s->start_time;
667
668                 cpu = part_stat_lock();
669                 part_round_stats(cpu, &s->d->disk->part0);
670                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
671                 part_stat_unlock();
672
673                 trace_bcache_request_end(s, s->orig_bio);
674                 bio_endio(s->orig_bio, s->error);
675                 s->orig_bio = NULL;
676         }
677 }
678
679 static void do_bio_hook(struct search *s)
680 {
681         struct bio *bio = &s->bio.bio;
682         memcpy(bio, s->orig_bio, sizeof(struct bio));
683
684         bio->bi_end_io          = request_endio;
685         bio->bi_private         = &s->cl;
686         atomic_set(&bio->bi_cnt, 3);
687 }
688
689 static void search_free(struct closure *cl)
690 {
691         struct search *s = container_of(cl, struct search, cl);
692         bio_complete(s);
693
694         if (s->op.cache_bio)
695                 bio_put(s->op.cache_bio);
696
697         if (s->unaligned_bvec)
698                 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
699
700         closure_debug_destroy(cl);
701         mempool_free(s, s->d->c->search);
702 }
703
704 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
705 {
706         struct bio_vec *bv;
707         struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
708         memset(s, 0, offsetof(struct search, op.keys));
709
710         __closure_init(&s->cl, NULL);
711
712         s->op.inode             = d->id;
713         s->op.c                 = d->c;
714         s->d                    = d;
715         s->op.lock              = -1;
716         s->task                 = current;
717         s->orig_bio             = bio;
718         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
719         s->op.flush_journal     = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
720         s->op.skip              = (bio->bi_rw & REQ_DISCARD) != 0;
721         s->recoverable          = 1;
722         s->start_time           = jiffies;
723         do_bio_hook(s);
724
725         if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
726                 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
727                 memcpy(bv, bio_iovec(bio),
728                        sizeof(struct bio_vec) * bio_segments(bio));
729
730                 s->bio.bio.bi_io_vec    = bv;
731                 s->unaligned_bvec       = 1;
732         }
733
734         return s;
735 }
736
737 static void btree_read_async(struct closure *cl)
738 {
739         struct btree_op *op = container_of(cl, struct btree_op, cl);
740
741         int ret = btree_root(search_recurse, op->c, op);
742
743         if (ret == -EAGAIN)
744                 continue_at(cl, btree_read_async, bcache_wq);
745
746         closure_return(cl);
747 }
748
749 /* Cached devices */
750
751 static void cached_dev_bio_complete(struct closure *cl)
752 {
753         struct search *s = container_of(cl, struct search, cl);
754         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
755
756         search_free(cl);
757         cached_dev_put(dc);
758 }
759
760 /* Process reads */
761
762 static void cached_dev_read_complete(struct closure *cl)
763 {
764         struct search *s = container_of(cl, struct search, cl);
765
766         if (s->op.insert_collision)
767                 bch_mark_cache_miss_collision(s);
768
769         if (s->op.cache_bio) {
770                 int i;
771                 struct bio_vec *bv;
772
773                 __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
774                         __free_page(bv->bv_page);
775         }
776
777         cached_dev_bio_complete(cl);
778 }
779
780 static void request_read_error(struct closure *cl)
781 {
782         struct search *s = container_of(cl, struct search, cl);
783         struct bio_vec *bv;
784         int i;
785
786         if (s->recoverable) {
787                 /* Retry from the backing device: */
788                 trace_bcache_read_retry(s->orig_bio);
789
790                 s->error = 0;
791                 bv = s->bio.bio.bi_io_vec;
792                 do_bio_hook(s);
793                 s->bio.bio.bi_io_vec = bv;
794
795                 if (!s->unaligned_bvec)
796                         bio_for_each_segment(bv, s->orig_bio, i)
797                                 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
798                 else
799                         memcpy(s->bio.bio.bi_io_vec,
800                                bio_iovec(s->orig_bio),
801                                sizeof(struct bio_vec) *
802                                bio_segments(s->orig_bio));
803
804                 /* XXX: invalidate cache */
805
806                 closure_bio_submit(&s->bio.bio, &s->cl, s->d);
807         }
808
809         continue_at(cl, cached_dev_read_complete, NULL);
810 }
811
812 static void request_read_done(struct closure *cl)
813 {
814         struct search *s = container_of(cl, struct search, cl);
815         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
816
817         /*
818          * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
819          * contains data ready to be inserted into the cache.
820          *
821          * First, we copy the data we just read from cache_bio's bounce buffers
822          * to the buffers the original bio pointed to:
823          */
824
825         if (s->op.cache_bio) {
826                 bio_reset(s->op.cache_bio);
827                 s->op.cache_bio->bi_sector      = s->cache_miss->bi_sector;
828                 s->op.cache_bio->bi_bdev        = s->cache_miss->bi_bdev;
829                 s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
830                 bch_bio_map(s->op.cache_bio, NULL);
831
832                 bio_copy_data(s->cache_miss, s->op.cache_bio);
833
834                 bio_put(s->cache_miss);
835                 s->cache_miss = NULL;
836         }
837
838         if (verify(dc, &s->bio.bio) && s->recoverable)
839                 bch_data_verify(s);
840
841         bio_complete(s);
842
843         if (s->op.cache_bio &&
844             !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
845                 s->op.type = BTREE_REPLACE;
846                 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
847         }
848
849         continue_at(cl, cached_dev_read_complete, NULL);
850 }
851
852 static void request_read_done_bh(struct closure *cl)
853 {
854         struct search *s = container_of(cl, struct search, cl);
855         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
856
857         bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
858         trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.skip);
859
860         if (s->error)
861                 continue_at_nobarrier(cl, request_read_error, bcache_wq);
862         else if (s->op.cache_bio || verify(dc, &s->bio.bio))
863                 continue_at_nobarrier(cl, request_read_done, bcache_wq);
864         else
865                 continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
866 }
867
868 static int cached_dev_cache_miss(struct btree *b, struct search *s,
869                                  struct bio *bio, unsigned sectors)
870 {
871         int ret = 0;
872         unsigned reada;
873         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
874         struct bio *miss;
875
876         miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
877         if (miss == bio)
878                 s->op.lookup_done = true;
879
880         miss->bi_end_io         = request_endio;
881         miss->bi_private        = &s->cl;
882
883         if (s->cache_miss || s->op.skip)
884                 goto out_submit;
885
886         if (miss != bio ||
887             (bio->bi_rw & REQ_RAHEAD) ||
888             (bio->bi_rw & REQ_META) ||
889             s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
890                 reada = 0;
891         else {
892                 reada = min(dc->readahead >> 9,
893                             sectors - bio_sectors(miss));
894
895                 if (bio_end_sector(miss) + reada > bdev_sectors(miss->bi_bdev))
896                         reada = bdev_sectors(miss->bi_bdev) -
897                                 bio_end_sector(miss);
898         }
899
900         s->cache_bio_sectors = bio_sectors(miss) + reada;
901         s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
902                         DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
903                         dc->disk.bio_split);
904
905         if (!s->op.cache_bio)
906                 goto out_submit;
907
908         s->op.cache_bio->bi_sector      = miss->bi_sector;
909         s->op.cache_bio->bi_bdev        = miss->bi_bdev;
910         s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
911
912         s->op.cache_bio->bi_end_io      = request_endio;
913         s->op.cache_bio->bi_private     = &s->cl;
914
915         /* btree_search_recurse()'s btree iterator is no good anymore */
916         ret = -EINTR;
917         if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
918                 goto out_put;
919
920         bch_bio_map(s->op.cache_bio, NULL);
921         if (bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
922                 goto out_put;
923
924         s->cache_miss = miss;
925         bio_get(s->op.cache_bio);
926
927         closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
928
929         return ret;
930 out_put:
931         bio_put(s->op.cache_bio);
932         s->op.cache_bio = NULL;
933 out_submit:
934         closure_bio_submit(miss, &s->cl, s->d);
935         return ret;
936 }
937
938 static void request_read(struct cached_dev *dc, struct search *s)
939 {
940         struct closure *cl = &s->cl;
941
942         check_should_skip(dc, s);
943         closure_call(&s->op.cl, btree_read_async, NULL, cl);
944
945         continue_at(cl, request_read_done_bh, NULL);
946 }
947
948 /* Process writes */
949
950 static void cached_dev_write_complete(struct closure *cl)
951 {
952         struct search *s = container_of(cl, struct search, cl);
953         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
954
955         up_read_non_owner(&dc->writeback_lock);
956         cached_dev_bio_complete(cl);
957 }
958
959 static void request_write(struct cached_dev *dc, struct search *s)
960 {
961         struct closure *cl = &s->cl;
962         struct bio *bio = &s->bio.bio;
963         struct bkey start, end;
964         start = KEY(dc->disk.id, bio->bi_sector, 0);
965         end = KEY(dc->disk.id, bio_end_sector(bio), 0);
966
967         bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
968
969         check_should_skip(dc, s);
970         down_read_non_owner(&dc->writeback_lock);
971
972         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
973                 s->op.skip      = false;
974                 s->writeback    = true;
975         }
976
977         if (bio->bi_rw & REQ_DISCARD)
978                 goto skip;
979
980         if (should_writeback(dc, s->orig_bio,
981                              cache_mode(dc, bio),
982                              s->op.skip)) {
983                 s->op.skip = false;
984                 s->writeback = true;
985         }
986
987         if (s->op.skip)
988                 goto skip;
989
990         trace_bcache_write(s->orig_bio, s->writeback, s->op.skip);
991
992         if (!s->writeback) {
993                 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
994                                                    dc->disk.bio_split);
995
996                 closure_bio_submit(bio, cl, s->d);
997         } else {
998                 bch_writeback_add(dc);
999                 s->op.cache_bio = bio;
1000
1001                 if (bio->bi_rw & REQ_FLUSH) {
1002                         /* Also need to send a flush to the backing device */
1003                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1004                                                              dc->disk.bio_split);
1005
1006                         flush->bi_rw    = WRITE_FLUSH;
1007                         flush->bi_bdev  = bio->bi_bdev;
1008                         flush->bi_end_io = request_endio;
1009                         flush->bi_private = cl;
1010
1011                         closure_bio_submit(flush, cl, s->d);
1012                 }
1013         }
1014 out:
1015         closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1016         continue_at(cl, cached_dev_write_complete, NULL);
1017 skip:
1018         s->op.skip = true;
1019         s->op.cache_bio = s->orig_bio;
1020         bio_get(s->op.cache_bio);
1021
1022         if ((bio->bi_rw & REQ_DISCARD) &&
1023             !blk_queue_discard(bdev_get_queue(dc->bdev)))
1024                 goto out;
1025
1026         closure_bio_submit(bio, cl, s->d);
1027         goto out;
1028 }
1029
1030 static void request_nodata(struct cached_dev *dc, struct search *s)
1031 {
1032         struct closure *cl = &s->cl;
1033         struct bio *bio = &s->bio.bio;
1034
1035         if (bio->bi_rw & REQ_DISCARD) {
1036                 request_write(dc, s);
1037                 return;
1038         }
1039
1040         if (s->op.flush_journal)
1041                 bch_journal_meta(s->op.c, cl);
1042
1043         closure_bio_submit(bio, cl, s->d);
1044
1045         continue_at(cl, cached_dev_bio_complete, NULL);
1046 }
1047
1048 /* Cached devices - read & write stuff */
1049
1050 unsigned bch_get_congested(struct cache_set *c)
1051 {
1052         int i;
1053         long rand;
1054
1055         if (!c->congested_read_threshold_us &&
1056             !c->congested_write_threshold_us)
1057                 return 0;
1058
1059         i = (local_clock_us() - c->congested_last_us) / 1024;
1060         if (i < 0)
1061                 return 0;
1062
1063         i += atomic_read(&c->congested);
1064         if (i >= 0)
1065                 return 0;
1066
1067         i += CONGESTED_MAX;
1068
1069         if (i > 0)
1070                 i = fract_exp_two(i, 6);
1071
1072         rand = get_random_int();
1073         i -= bitmap_weight(&rand, BITS_PER_LONG);
1074
1075         return i > 0 ? i : 1;
1076 }
1077
1078 static void add_sequential(struct task_struct *t)
1079 {
1080         ewma_add(t->sequential_io_avg,
1081                  t->sequential_io, 8, 0);
1082
1083         t->sequential_io = 0;
1084 }
1085
1086 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
1087 {
1088         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
1089 }
1090
1091 static void check_should_skip(struct cached_dev *dc, struct search *s)
1092 {
1093         struct cache_set *c = s->op.c;
1094         struct bio *bio = &s->bio.bio;
1095         unsigned mode = cache_mode(dc, bio);
1096         unsigned sectors, congested = bch_get_congested(c);
1097
1098         if (atomic_read(&dc->disk.detaching) ||
1099             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
1100             (bio->bi_rw & REQ_DISCARD))
1101                 goto skip;
1102
1103         if (mode == CACHE_MODE_NONE ||
1104             (mode == CACHE_MODE_WRITEAROUND &&
1105              (bio->bi_rw & REQ_WRITE)))
1106                 goto skip;
1107
1108         if (bio->bi_sector   & (c->sb.block_size - 1) ||
1109             bio_sectors(bio) & (c->sb.block_size - 1)) {
1110                 pr_debug("skipping unaligned io");
1111                 goto skip;
1112         }
1113
1114         if (!congested && !dc->sequential_cutoff)
1115                 goto rescale;
1116
1117         if (!congested &&
1118             mode == CACHE_MODE_WRITEBACK &&
1119             (bio->bi_rw & REQ_WRITE) &&
1120             (bio->bi_rw & REQ_SYNC))
1121                 goto rescale;
1122
1123         if (dc->sequential_merge) {
1124                 struct io *i;
1125
1126                 spin_lock(&dc->io_lock);
1127
1128                 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
1129                         if (i->last == bio->bi_sector &&
1130                             time_before(jiffies, i->jiffies))
1131                                 goto found;
1132
1133                 i = list_first_entry(&dc->io_lru, struct io, lru);
1134
1135                 add_sequential(s->task);
1136                 i->sequential = 0;
1137 found:
1138                 if (i->sequential + bio->bi_size > i->sequential)
1139                         i->sequential   += bio->bi_size;
1140
1141                 i->last                  = bio_end_sector(bio);
1142                 i->jiffies               = jiffies + msecs_to_jiffies(5000);
1143                 s->task->sequential_io   = i->sequential;
1144
1145                 hlist_del(&i->hash);
1146                 hlist_add_head(&i->hash, iohash(dc, i->last));
1147                 list_move_tail(&i->lru, &dc->io_lru);
1148
1149                 spin_unlock(&dc->io_lock);
1150         } else {
1151                 s->task->sequential_io = bio->bi_size;
1152
1153                 add_sequential(s->task);
1154         }
1155
1156         sectors = max(s->task->sequential_io,
1157                       s->task->sequential_io_avg) >> 9;
1158
1159         if (dc->sequential_cutoff &&
1160             sectors >= dc->sequential_cutoff >> 9) {
1161                 trace_bcache_bypass_sequential(s->orig_bio);
1162                 goto skip;
1163         }
1164
1165         if (congested && sectors >= congested) {
1166                 trace_bcache_bypass_congested(s->orig_bio);
1167                 goto skip;
1168         }
1169
1170 rescale:
1171         bch_rescale_priorities(c, bio_sectors(bio));
1172         return;
1173 skip:
1174         bch_mark_sectors_bypassed(s, bio_sectors(bio));
1175         s->op.skip = true;
1176 }
1177
1178 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1179 {
1180         struct search *s;
1181         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1182         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1183         int cpu, rw = bio_data_dir(bio);
1184
1185         cpu = part_stat_lock();
1186         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1187         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1188         part_stat_unlock();
1189
1190         bio->bi_bdev = dc->bdev;
1191         bio->bi_sector += dc->sb.data_offset;
1192
1193         if (cached_dev_get(dc)) {
1194                 s = search_alloc(bio, d);
1195                 trace_bcache_request_start(s, bio);
1196
1197                 if (!bio_has_data(bio))
1198                         request_nodata(dc, s);
1199                 else if (rw)
1200                         request_write(dc, s);
1201                 else
1202                         request_read(dc, s);
1203         } else {
1204                 if ((bio->bi_rw & REQ_DISCARD) &&
1205                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1206                         bio_endio(bio, 0);
1207                 else
1208                         bch_generic_make_request(bio, &d->bio_split_hook);
1209         }
1210 }
1211
1212 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1213                             unsigned int cmd, unsigned long arg)
1214 {
1215         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1216         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1217 }
1218
1219 static int cached_dev_congested(void *data, int bits)
1220 {
1221         struct bcache_device *d = data;
1222         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1223         struct request_queue *q = bdev_get_queue(dc->bdev);
1224         int ret = 0;
1225
1226         if (bdi_congested(&q->backing_dev_info, bits))
1227                 return 1;
1228
1229         if (cached_dev_get(dc)) {
1230                 unsigned i;
1231                 struct cache *ca;
1232
1233                 for_each_cache(ca, d->c, i) {
1234                         q = bdev_get_queue(ca->bdev);
1235                         ret |= bdi_congested(&q->backing_dev_info, bits);
1236                 }
1237
1238                 cached_dev_put(dc);
1239         }
1240
1241         return ret;
1242 }
1243
1244 void bch_cached_dev_request_init(struct cached_dev *dc)
1245 {
1246         struct gendisk *g = dc->disk.disk;
1247
1248         g->queue->make_request_fn               = cached_dev_make_request;
1249         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1250         dc->disk.cache_miss                     = cached_dev_cache_miss;
1251         dc->disk.ioctl                          = cached_dev_ioctl;
1252 }
1253
1254 /* Flash backed devices */
1255
1256 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1257                                 struct bio *bio, unsigned sectors)
1258 {
1259         struct bio_vec *bv;
1260         int i;
1261
1262         /* Zero fill bio */
1263
1264         bio_for_each_segment(bv, bio, i) {
1265                 unsigned j = min(bv->bv_len >> 9, sectors);
1266
1267                 void *p = kmap(bv->bv_page);
1268                 memset(p + bv->bv_offset, 0, j << 9);
1269                 kunmap(bv->bv_page);
1270
1271                 sectors -= j;
1272         }
1273
1274         bio_advance(bio, min(sectors << 9, bio->bi_size));
1275
1276         if (!bio->bi_size)
1277                 s->op.lookup_done = true;
1278
1279         return 0;
1280 }
1281
1282 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1283 {
1284         struct search *s;
1285         struct closure *cl;
1286         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1287         int cpu, rw = bio_data_dir(bio);
1288
1289         cpu = part_stat_lock();
1290         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1291         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1292         part_stat_unlock();
1293
1294         s = search_alloc(bio, d);
1295         cl = &s->cl;
1296         bio = &s->bio.bio;
1297
1298         trace_bcache_request_start(s, bio);
1299
1300         if (bio_has_data(bio) && !rw) {
1301                 closure_call(&s->op.cl, btree_read_async, NULL, cl);
1302         } else if (bio_has_data(bio) || s->op.skip) {
1303                 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
1304                                         &KEY(d->id, bio->bi_sector, 0),
1305                                         &KEY(d->id, bio_end_sector(bio), 0));
1306
1307                 s->writeback    = true;
1308                 s->op.cache_bio = bio;
1309
1310                 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1311         } else {
1312                 /* No data - probably a cache flush */
1313                 if (s->op.flush_journal)
1314                         bch_journal_meta(s->op.c, cl);
1315         }
1316
1317         continue_at(cl, search_free, NULL);
1318 }
1319
1320 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1321                            unsigned int cmd, unsigned long arg)
1322 {
1323         return -ENOTTY;
1324 }
1325
1326 static int flash_dev_congested(void *data, int bits)
1327 {
1328         struct bcache_device *d = data;
1329         struct request_queue *q;
1330         struct cache *ca;
1331         unsigned i;
1332         int ret = 0;
1333
1334         for_each_cache(ca, d->c, i) {
1335                 q = bdev_get_queue(ca->bdev);
1336                 ret |= bdi_congested(&q->backing_dev_info, bits);
1337         }
1338
1339         return ret;
1340 }
1341
1342 void bch_flash_dev_request_init(struct bcache_device *d)
1343 {
1344         struct gendisk *g = d->disk;
1345
1346         g->queue->make_request_fn               = flash_dev_make_request;
1347         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1348         d->cache_miss                           = flash_dev_cache_miss;
1349         d->ioctl                                = flash_dev_ioctl;
1350 }
1351
1352 void bch_request_exit(void)
1353 {
1354 #ifdef CONFIG_CGROUP_BCACHE
1355         cgroup_unload_subsys(&bcache_subsys);
1356 #endif
1357         if (bch_search_cache)
1358                 kmem_cache_destroy(bch_search_cache);
1359 }
1360
1361 int __init bch_request_init(void)
1362 {
1363         bch_search_cache = KMEM_CACHE(search, 0);
1364         if (!bch_search_cache)
1365                 return -ENOMEM;
1366
1367 #ifdef CONFIG_CGROUP_BCACHE
1368         cgroup_load_subsys(&bcache_subsys);
1369         init_bch_cgroup(&bcache_default_cgroup);
1370
1371         cgroup_add_cftypes(&bcache_subsys, bch_files);
1372 #endif
1373         return 0;
1374 }