]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/bcache/request.c
block-prep-work-for-batch-completion-fix-3
[karo-tx-linux.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13
14 #include <linux/cgroup.h>
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include "blk-cgroup.h"
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD        95
23 #define CUTOFF_CACHE_READA      90
24 #define CUTOFF_WRITEBACK        50
25 #define CUTOFF_WRITEBACK_SYNC   75
26
27 struct kmem_cache *bch_search_cache;
28
29 static void check_should_skip(struct cached_dev *, struct search *);
30
31 /* Cgroup interface */
32
33 #ifdef CONFIG_CGROUP_BCACHE
34 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
35
36 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
37 {
38         struct cgroup_subsys_state *css;
39         return cgroup &&
40                 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
41                 ? container_of(css, struct bch_cgroup, css)
42                 : &bcache_default_cgroup;
43 }
44
45 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
46 {
47         struct cgroup_subsys_state *css = bio->bi_css
48                 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
49                 : task_subsys_state(current, bcache_subsys_id);
50
51         return css
52                 ? container_of(css, struct bch_cgroup, css)
53                 : &bcache_default_cgroup;
54 }
55
56 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
57                         struct file *file,
58                         char __user *buf, size_t nbytes, loff_t *ppos)
59 {
60         char tmp[1024];
61         int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
62                                           cgroup_to_bcache(cgrp)->cache_mode + 1);
63
64         if (len < 0)
65                 return len;
66
67         return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
68 }
69
70 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
71                             const char *buf)
72 {
73         int v = bch_read_string_list(buf, bch_cache_modes);
74         if (v < 0)
75                 return v;
76
77         cgroup_to_bcache(cgrp)->cache_mode = v - 1;
78         return 0;
79 }
80
81 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
82 {
83         return cgroup_to_bcache(cgrp)->verify;
84 }
85
86 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
87 {
88         cgroup_to_bcache(cgrp)->verify = val;
89         return 0;
90 }
91
92 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
93 {
94         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
95         return atomic_read(&bcachecg->stats.cache_hits);
96 }
97
98 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
99 {
100         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
101         return atomic_read(&bcachecg->stats.cache_misses);
102 }
103
104 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
105                                          struct cftype *cft)
106 {
107         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
108         return atomic_read(&bcachecg->stats.cache_bypass_hits);
109 }
110
111 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
112                                            struct cftype *cft)
113 {
114         struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
115         return atomic_read(&bcachecg->stats.cache_bypass_misses);
116 }
117
118 static struct cftype bch_files[] = {
119         {
120                 .name           = "cache_mode",
121                 .read           = cache_mode_read,
122                 .write_string   = cache_mode_write,
123         },
124         {
125                 .name           = "verify",
126                 .read_u64       = bch_verify_read,
127                 .write_u64      = bch_verify_write,
128         },
129         {
130                 .name           = "cache_hits",
131                 .read_u64       = bch_cache_hits_read,
132         },
133         {
134                 .name           = "cache_misses",
135                 .read_u64       = bch_cache_misses_read,
136         },
137         {
138                 .name           = "cache_bypass_hits",
139                 .read_u64       = bch_cache_bypass_hits_read,
140         },
141         {
142                 .name           = "cache_bypass_misses",
143                 .read_u64       = bch_cache_bypass_misses_read,
144         },
145         { }     /* terminate */
146 };
147
148 static void init_bch_cgroup(struct bch_cgroup *cg)
149 {
150         cg->cache_mode = -1;
151 }
152
153 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
154 {
155         struct bch_cgroup *cg;
156
157         cg = kzalloc(sizeof(*cg), GFP_KERNEL);
158         if (!cg)
159                 return ERR_PTR(-ENOMEM);
160         init_bch_cgroup(cg);
161         return &cg->css;
162 }
163
164 static void bcachecg_destroy(struct cgroup *cgroup)
165 {
166         struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
167         free_css_id(&bcache_subsys, &cg->css);
168         kfree(cg);
169 }
170
171 struct cgroup_subsys bcache_subsys = {
172         .create         = bcachecg_create,
173         .destroy        = bcachecg_destroy,
174         .subsys_id      = bcache_subsys_id,
175         .name           = "bcache",
176         .module         = THIS_MODULE,
177 };
178 EXPORT_SYMBOL_GPL(bcache_subsys);
179 #endif
180
181 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
182 {
183 #ifdef CONFIG_CGROUP_BCACHE
184         int r = bch_bio_to_cgroup(bio)->cache_mode;
185         if (r >= 0)
186                 return r;
187 #endif
188         return BDEV_CACHE_MODE(&dc->sb);
189 }
190
191 static bool verify(struct cached_dev *dc, struct bio *bio)
192 {
193 #ifdef CONFIG_CGROUP_BCACHE
194         if (bch_bio_to_cgroup(bio)->verify)
195                 return true;
196 #endif
197         return dc->verify;
198 }
199
200 static void bio_csum(struct bio *bio, struct bkey *k)
201 {
202         struct bio_vec *bv;
203         uint64_t csum = 0;
204         int i;
205
206         bio_for_each_segment(bv, bio, i) {
207                 void *d = kmap(bv->bv_page) + bv->bv_offset;
208                 csum = bch_crc64_update(csum, d, bv->bv_len);
209                 kunmap(bv->bv_page);
210         }
211
212         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
213 }
214
215 /* Insert data into cache */
216
217 static void bio_invalidate(struct closure *cl)
218 {
219         struct btree_op *op = container_of(cl, struct btree_op, cl);
220         struct bio *bio = op->cache_bio;
221
222         pr_debug("invalidating %i sectors from %llu",
223                  bio_sectors(bio), (uint64_t) bio->bi_sector);
224
225         while (bio_sectors(bio)) {
226                 unsigned len = min(bio_sectors(bio), 1U << 14);
227
228                 if (bch_keylist_realloc(&op->keys, 0, op->c))
229                         goto out;
230
231                 bio->bi_sector  += len;
232                 bio->bi_size    -= len << 9;
233
234                 bch_keylist_add(&op->keys,
235                                 &KEY(op->inode, bio->bi_sector, len));
236         }
237
238         op->insert_data_done = true;
239         bio_put(bio);
240 out:
241         continue_at(cl, bch_journal, bcache_wq);
242 }
243
244 struct open_bucket {
245         struct list_head        list;
246         struct task_struct      *last;
247         unsigned                sectors_free;
248         BKEY_PADDED(key);
249 };
250
251 void bch_open_buckets_free(struct cache_set *c)
252 {
253         struct open_bucket *b;
254
255         while (!list_empty(&c->data_buckets)) {
256                 b = list_first_entry(&c->data_buckets,
257                                      struct open_bucket, list);
258                 list_del(&b->list);
259                 kfree(b);
260         }
261 }
262
263 int bch_open_buckets_alloc(struct cache_set *c)
264 {
265         int i;
266
267         spin_lock_init(&c->data_bucket_lock);
268
269         for (i = 0; i < 6; i++) {
270                 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
271                 if (!b)
272                         return -ENOMEM;
273
274                 list_add(&b->list, &c->data_buckets);
275         }
276
277         return 0;
278 }
279
280 /*
281  * We keep multiple buckets open for writes, and try to segregate different
282  * write streams for better cache utilization: first we look for a bucket where
283  * the last write to it was sequential with the current write, and failing that
284  * we look for a bucket that was last used by the same task.
285  *
286  * The ideas is if you've got multiple tasks pulling data into the cache at the
287  * same time, you'll get better cache utilization if you try to segregate their
288  * data and preserve locality.
289  *
290  * For example, say you've starting Firefox at the same time you're copying a
291  * bunch of files. Firefox will likely end up being fairly hot and stay in the
292  * cache awhile, but the data you copied might not be; if you wrote all that
293  * data to the same buckets it'd get invalidated at the same time.
294  *
295  * Both of those tasks will be doing fairly random IO so we can't rely on
296  * detecting sequential IO to segregate their data, but going off of the task
297  * should be a sane heuristic.
298  */
299 static struct open_bucket *pick_data_bucket(struct cache_set *c,
300                                             const struct bkey *search,
301                                             struct task_struct *task,
302                                             struct bkey *alloc)
303 {
304         struct open_bucket *ret, *ret_task = NULL;
305
306         list_for_each_entry_reverse(ret, &c->data_buckets, list)
307                 if (!bkey_cmp(&ret->key, search))
308                         goto found;
309                 else if (ret->last == task)
310                         ret_task = ret;
311
312         ret = ret_task ?: list_first_entry(&c->data_buckets,
313                                            struct open_bucket, list);
314 found:
315         if (!ret->sectors_free && KEY_PTRS(alloc)) {
316                 ret->sectors_free = c->sb.bucket_size;
317                 bkey_copy(&ret->key, alloc);
318                 bkey_init(alloc);
319         }
320
321         if (!ret->sectors_free)
322                 ret = NULL;
323
324         return ret;
325 }
326
327 /*
328  * Allocates some space in the cache to write to, and k to point to the newly
329  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
330  * end of the newly allocated space).
331  *
332  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
333  * sectors were actually allocated.
334  *
335  * If s->writeback is true, will not fail.
336  */
337 static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
338                               struct search *s)
339 {
340         struct cache_set *c = s->op.c;
341         struct open_bucket *b;
342         BKEY_PADDED(key) alloc;
343         struct closure cl, *w = NULL;
344         unsigned i;
345
346         if (s->writeback) {
347                 closure_init_stack(&cl);
348                 w = &cl;
349         }
350
351         /*
352          * We might have to allocate a new bucket, which we can't do with a
353          * spinlock held. So if we have to allocate, we drop the lock, allocate
354          * and then retry. KEY_PTRS() indicates whether alloc points to
355          * allocated bucket(s).
356          */
357
358         bkey_init(&alloc.key);
359         spin_lock(&c->data_bucket_lock);
360
361         while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
362                 unsigned watermark = s->op.write_prio
363                         ? WATERMARK_MOVINGGC
364                         : WATERMARK_NONE;
365
366                 spin_unlock(&c->data_bucket_lock);
367
368                 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
369                         return false;
370
371                 spin_lock(&c->data_bucket_lock);
372         }
373
374         /*
375          * If we had to allocate, we might race and not need to allocate the
376          * second time we call find_data_bucket(). If we allocated a bucket but
377          * didn't use it, drop the refcount bch_bucket_alloc_set() took:
378          */
379         if (KEY_PTRS(&alloc.key))
380                 __bkey_put(c, &alloc.key);
381
382         for (i = 0; i < KEY_PTRS(&b->key); i++)
383                 EBUG_ON(ptr_stale(c, &b->key, i));
384
385         /* Set up the pointer to the space we're allocating: */
386
387         for (i = 0; i < KEY_PTRS(&b->key); i++)
388                 k->ptr[i] = b->key.ptr[i];
389
390         sectors = min(sectors, b->sectors_free);
391
392         SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
393         SET_KEY_SIZE(k, sectors);
394         SET_KEY_PTRS(k, KEY_PTRS(&b->key));
395
396         /*
397          * Move b to the end of the lru, and keep track of what this bucket was
398          * last used for:
399          */
400         list_move_tail(&b->list, &c->data_buckets);
401         bkey_copy_key(&b->key, k);
402         b->last = s->task;
403
404         b->sectors_free -= sectors;
405
406         for (i = 0; i < KEY_PTRS(&b->key); i++) {
407                 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
408
409                 atomic_long_add(sectors,
410                                 &PTR_CACHE(c, &b->key, i)->sectors_written);
411         }
412
413         if (b->sectors_free < c->sb.block_size)
414                 b->sectors_free = 0;
415
416         /*
417          * k takes refcounts on the buckets it points to until it's inserted
418          * into the btree, but if we're done with this bucket we just transfer
419          * get_data_bucket()'s refcount.
420          */
421         if (b->sectors_free)
422                 for (i = 0; i < KEY_PTRS(&b->key); i++)
423                         atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
424
425         spin_unlock(&c->data_bucket_lock);
426         return true;
427 }
428
429 static void bch_insert_data_error(struct closure *cl)
430 {
431         struct btree_op *op = container_of(cl, struct btree_op, cl);
432
433         /*
434          * Our data write just errored, which means we've got a bunch of keys to
435          * insert that point to data that wasn't succesfully written.
436          *
437          * We don't have to insert those keys but we still have to invalidate
438          * that region of the cache - so, if we just strip off all the pointers
439          * from the keys we'll accomplish just that.
440          */
441
442         struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
443
444         while (src != op->keys.top) {
445                 struct bkey *n = bkey_next(src);
446
447                 SET_KEY_PTRS(src, 0);
448                 bkey_copy(dst, src);
449
450                 dst = bkey_next(dst);
451                 src = n;
452         }
453
454         op->keys.top = dst;
455
456         bch_journal(cl);
457 }
458
459 static void bch_insert_data_endio(struct bio *bio, int error,
460                                   struct batch_complete *batch)
461 {
462         struct closure *cl = bio->bi_private;
463         struct btree_op *op = container_of(cl, struct btree_op, cl);
464         struct search *s = container_of(op, struct search, op);
465
466         if (error) {
467                 /* TODO: We could try to recover from this. */
468                 if (s->writeback)
469                         s->error = error;
470                 else if (s->write)
471                         set_closure_fn(cl, bch_insert_data_error, bcache_wq);
472                 else
473                         set_closure_fn(cl, NULL, NULL);
474         }
475
476         bch_bbio_endio(op->c, bio, error, "writing data to cache");
477 }
478
479 static void bch_insert_data_loop(struct closure *cl)
480 {
481         struct btree_op *op = container_of(cl, struct btree_op, cl);
482         struct search *s = container_of(op, struct search, op);
483         struct bio *bio = op->cache_bio, *n;
484
485         if (op->skip)
486                 return bio_invalidate(cl);
487
488         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
489                 set_gc_sectors(op->c);
490                 bch_queue_gc(op->c);
491         }
492
493         do {
494                 unsigned i;
495                 struct bkey *k;
496                 struct bio_set *split = s->d
497                         ? s->d->bio_split : op->c->bio_split;
498
499                 /* 1 for the device pointer and 1 for the chksum */
500                 if (bch_keylist_realloc(&op->keys,
501                                         1 + (op->csum ? 1 : 0),
502                                         op->c))
503                         continue_at(cl, bch_journal, bcache_wq);
504
505                 k = op->keys.top;
506                 bkey_init(k);
507                 SET_KEY_INODE(k, op->inode);
508                 SET_KEY_OFFSET(k, bio->bi_sector);
509
510                 if (!bch_alloc_sectors(k, bio_sectors(bio), s))
511                         goto err;
512
513                 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
514                 if (!n) {
515                         __bkey_put(op->c, k);
516                         continue_at(cl, bch_insert_data_loop, bcache_wq);
517                 }
518
519                 n->bi_end_io    = bch_insert_data_endio;
520                 n->bi_private   = cl;
521
522                 if (s->writeback) {
523                         SET_KEY_DIRTY(k, true);
524
525                         for (i = 0; i < KEY_PTRS(k); i++)
526                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
527                                             GC_MARK_DIRTY);
528                 }
529
530                 SET_KEY_CSUM(k, op->csum);
531                 if (KEY_CSUM(k))
532                         bio_csum(n, k);
533
534                 pr_debug("%s", pkey(k));
535                 bch_keylist_push(&op->keys);
536
537                 trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev);
538                 n->bi_rw |= REQ_WRITE;
539                 bch_submit_bbio(n, op->c, k, 0);
540         } while (n != bio);
541
542         op->insert_data_done = true;
543         continue_at(cl, bch_journal, bcache_wq);
544 err:
545         /* bch_alloc_sectors() blocks if s->writeback = true */
546         BUG_ON(s->writeback);
547
548         /*
549          * But if it's not a writeback write we'd rather just bail out if
550          * there aren't any buckets ready to write to - it might take awhile and
551          * we might be starving btree writes for gc or something.
552          */
553
554         if (s->write) {
555                 /*
556                  * Writethrough write: We can't complete the write until we've
557                  * updated the index. But we don't want to delay the write while
558                  * we wait for buckets to be freed up, so just invalidate the
559                  * rest of the write.
560                  */
561                 op->skip = true;
562                 return bio_invalidate(cl);
563         } else {
564                 /*
565                  * From a cache miss, we can just insert the keys for the data
566                  * we have written or bail out if we didn't do anything.
567                  */
568                 op->insert_data_done = true;
569                 bio_put(bio);
570
571                 if (!bch_keylist_empty(&op->keys))
572                         continue_at(cl, bch_journal, bcache_wq);
573                 else
574                         closure_return(cl);
575         }
576 }
577
578 /**
579  * bch_insert_data - stick some data in the cache
580  *
581  * This is the starting point for any data to end up in a cache device; it could
582  * be from a normal write, or a writeback write, or a write to a flash only
583  * volume - it's also used by the moving garbage collector to compact data in
584  * mostly empty buckets.
585  *
586  * It first writes the data to the cache, creating a list of keys to be inserted
587  * (if the data had to be fragmented there will be multiple keys); after the
588  * data is written it calls bch_journal, and after the keys have been added to
589  * the next journal write they're inserted into the btree.
590  *
591  * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
592  * and op->inode is used for the key inode.
593  *
594  * If op->skip is true, instead of inserting the data it invalidates the region
595  * of the cache represented by op->cache_bio and op->inode.
596  */
597 void bch_insert_data(struct closure *cl)
598 {
599         struct btree_op *op = container_of(cl, struct btree_op, cl);
600
601         bch_keylist_init(&op->keys);
602         bio_get(op->cache_bio);
603         bch_insert_data_loop(cl);
604 }
605
606 void bch_btree_insert_async(struct closure *cl)
607 {
608         struct btree_op *op = container_of(cl, struct btree_op, cl);
609         struct search *s = container_of(op, struct search, op);
610
611         if (bch_btree_insert(op, op->c)) {
612                 s->error                = -ENOMEM;
613                 op->insert_data_done    = true;
614         }
615
616         if (op->insert_data_done) {
617                 bch_keylist_free(&op->keys);
618                 closure_return(cl);
619         } else
620                 continue_at(cl, bch_insert_data_loop, bcache_wq);
621 }
622
623 /* Common code for the make_request functions */
624
625 static void request_endio(struct bio *bio, int error,
626                           struct batch_complete *batch)
627 {
628         struct closure *cl = bio->bi_private;
629
630         if (error) {
631                 struct search *s = container_of(cl, struct search, cl);
632                 s->error = error;
633                 /* Only cache read errors are recoverable */
634                 s->recoverable = false;
635         }
636
637         bio_put(bio);
638         closure_put(cl);
639 }
640
641 void bch_cache_read_endio(struct bio *bio, int error,
642                           struct batch_complete *batch)
643 {
644         struct bbio *b = container_of(bio, struct bbio, bio);
645         struct closure *cl = bio->bi_private;
646         struct search *s = container_of(cl, struct search, cl);
647
648         /*
649          * If the bucket was reused while our bio was in flight, we might have
650          * read the wrong data. Set s->error but not error so it doesn't get
651          * counted against the cache device, but we'll still reread the data
652          * from the backing device.
653          */
654
655         if (error)
656                 s->error = error;
657         else if (ptr_stale(s->op.c, &b->key, 0)) {
658                 atomic_long_inc(&s->op.c->cache_read_races);
659                 s->error = -EINTR;
660         }
661
662         bch_bbio_endio(s->op.c, bio, error, "reading from cache");
663 }
664
665 static void bio_complete(struct search *s)
666 {
667         if (s->orig_bio) {
668                 int cpu, rw = bio_data_dir(s->orig_bio);
669                 unsigned long duration = jiffies - s->start_time;
670
671                 cpu = part_stat_lock();
672                 part_round_stats(cpu, &s->d->disk->part0);
673                 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
674                 part_stat_unlock();
675
676                 trace_bcache_request_end(s, s->orig_bio);
677                 bio_endio(s->orig_bio, s->error);
678                 s->orig_bio = NULL;
679         }
680 }
681
682 static void do_bio_hook(struct search *s)
683 {
684         struct bio *bio = &s->bio.bio;
685         memcpy(bio, s->orig_bio, sizeof(struct bio));
686
687         bio->bi_end_io          = request_endio;
688         bio->bi_private         = &s->cl;
689         atomic_set(&bio->bi_cnt, 3);
690 }
691
692 static void search_free(struct closure *cl)
693 {
694         struct search *s = container_of(cl, struct search, cl);
695         bio_complete(s);
696
697         if (s->op.cache_bio)
698                 bio_put(s->op.cache_bio);
699
700         if (s->unaligned_bvec)
701                 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
702
703         closure_debug_destroy(cl);
704         mempool_free(s, s->d->c->search);
705 }
706
707 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
708 {
709         struct bio_vec *bv;
710         struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
711         memset(s, 0, offsetof(struct search, op.keys));
712
713         __closure_init(&s->cl, NULL);
714
715         s->op.inode             = d->id;
716         s->op.c                 = d->c;
717         s->d                    = d;
718         s->op.lock              = -1;
719         s->task                 = current;
720         s->orig_bio             = bio;
721         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
722         s->op.flush_journal     = (bio->bi_rw & REQ_FLUSH) != 0;
723         s->op.skip              = (bio->bi_rw & REQ_DISCARD) != 0;
724         s->recoverable          = 1;
725         s->start_time           = jiffies;
726         do_bio_hook(s);
727
728         if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
729                 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
730                 memcpy(bv, bio_iovec(bio),
731                        sizeof(struct bio_vec) * bio_segments(bio));
732
733                 s->bio.bio.bi_io_vec    = bv;
734                 s->unaligned_bvec       = 1;
735         }
736
737         return s;
738 }
739
740 static void btree_read_async(struct closure *cl)
741 {
742         struct btree_op *op = container_of(cl, struct btree_op, cl);
743
744         int ret = btree_root(search_recurse, op->c, op);
745
746         if (ret == -EAGAIN)
747                 continue_at(cl, btree_read_async, bcache_wq);
748
749         closure_return(cl);
750 }
751
752 /* Cached devices */
753
754 static void cached_dev_bio_complete(struct closure *cl)
755 {
756         struct search *s = container_of(cl, struct search, cl);
757         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
758
759         search_free(cl);
760         cached_dev_put(dc);
761 }
762
763 /* Process reads */
764
765 static void cached_dev_read_complete(struct closure *cl)
766 {
767         struct search *s = container_of(cl, struct search, cl);
768
769         if (s->op.insert_collision)
770                 bch_mark_cache_miss_collision(s);
771
772         if (s->op.cache_bio) {
773                 int i;
774                 struct bio_vec *bv;
775
776                 __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
777                         __free_page(bv->bv_page);
778         }
779
780         cached_dev_bio_complete(cl);
781 }
782
783 static void request_read_error(struct closure *cl)
784 {
785         struct search *s = container_of(cl, struct search, cl);
786         struct bio_vec *bv;
787         int i;
788
789         if (s->recoverable) {
790                 /* The cache read failed, but we can retry from the backing
791                  * device.
792                  */
793                 pr_debug("recovering at sector %llu",
794                          (uint64_t) s->orig_bio->bi_sector);
795
796                 s->error = 0;
797                 bv = s->bio.bio.bi_io_vec;
798                 do_bio_hook(s);
799                 s->bio.bio.bi_io_vec = bv;
800
801                 if (!s->unaligned_bvec)
802                         bio_for_each_segment(bv, s->orig_bio, i)
803                                 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
804                 else
805                         memcpy(s->bio.bio.bi_io_vec,
806                                bio_iovec(s->orig_bio),
807                                sizeof(struct bio_vec) *
808                                bio_segments(s->orig_bio));
809
810                 /* XXX: invalidate cache */
811
812                 trace_bcache_read_retry(&s->bio.bio);
813                 closure_bio_submit(&s->bio.bio, &s->cl, s->d);
814         }
815
816         continue_at(cl, cached_dev_read_complete, NULL);
817 }
818
819 static void request_read_done(struct closure *cl)
820 {
821         struct search *s = container_of(cl, struct search, cl);
822         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
823
824         /*
825          * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
826          * contains data ready to be inserted into the cache.
827          *
828          * First, we copy the data we just read from cache_bio's bounce buffers
829          * to the buffers the original bio pointed to:
830          */
831
832         if (s->op.cache_bio) {
833                 struct bio_vec *src, *dst;
834                 unsigned src_offset, dst_offset, bytes;
835                 void *dst_ptr;
836
837                 bio_reset(s->op.cache_bio);
838                 s->op.cache_bio->bi_sector      = s->cache_miss->bi_sector;
839                 s->op.cache_bio->bi_bdev        = s->cache_miss->bi_bdev;
840                 s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
841                 bch_bio_map(s->op.cache_bio, NULL);
842
843                 src = bio_iovec(s->op.cache_bio);
844                 dst = bio_iovec(s->cache_miss);
845                 src_offset = src->bv_offset;
846                 dst_offset = dst->bv_offset;
847                 dst_ptr = kmap(dst->bv_page);
848
849                 while (1) {
850                         if (dst_offset == dst->bv_offset + dst->bv_len) {
851                                 kunmap(dst->bv_page);
852                                 dst++;
853                                 if (dst == bio_iovec_idx(s->cache_miss,
854                                                 s->cache_miss->bi_vcnt))
855                                         break;
856
857                                 dst_offset = dst->bv_offset;
858                                 dst_ptr = kmap(dst->bv_page);
859                         }
860
861                         if (src_offset == src->bv_offset + src->bv_len) {
862                                 src++;
863                                 if (src == bio_iovec_idx(s->op.cache_bio,
864                                                  s->op.cache_bio->bi_vcnt))
865                                         BUG();
866
867                                 src_offset = src->bv_offset;
868                         }
869
870                         bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
871                                     src->bv_offset + src->bv_len - src_offset);
872
873                         memcpy(dst_ptr + dst_offset,
874                                page_address(src->bv_page) + src_offset,
875                                bytes);
876
877                         src_offset      += bytes;
878                         dst_offset      += bytes;
879                 }
880
881                 bio_put(s->cache_miss);
882                 s->cache_miss = NULL;
883         }
884
885         if (verify(dc, &s->bio.bio) && s->recoverable)
886                 bch_data_verify(s);
887
888         bio_complete(s);
889
890         if (s->op.cache_bio &&
891             !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
892                 s->op.type = BTREE_REPLACE;
893                 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
894         }
895
896         continue_at(cl, cached_dev_read_complete, NULL);
897 }
898
899 static void request_read_done_bh(struct closure *cl)
900 {
901         struct search *s = container_of(cl, struct search, cl);
902         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
903
904         bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
905
906         if (s->error)
907                 continue_at_nobarrier(cl, request_read_error, bcache_wq);
908         else if (s->op.cache_bio || verify(dc, &s->bio.bio))
909                 continue_at_nobarrier(cl, request_read_done, bcache_wq);
910         else
911                 continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
912 }
913
914 static int cached_dev_cache_miss(struct btree *b, struct search *s,
915                                  struct bio *bio, unsigned sectors)
916 {
917         int ret = 0;
918         unsigned reada;
919         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
920         struct bio *miss;
921
922         miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
923         if (!miss)
924                 return -EAGAIN;
925
926         if (miss == bio)
927                 s->op.lookup_done = true;
928
929         miss->bi_end_io         = request_endio;
930         miss->bi_private        = &s->cl;
931
932         if (s->cache_miss || s->op.skip)
933                 goto out_submit;
934
935         if (miss != bio ||
936             (bio->bi_rw & REQ_RAHEAD) ||
937             (bio->bi_rw & REQ_META) ||
938             s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
939                 reada = 0;
940         else {
941                 reada = min(dc->readahead >> 9,
942                             sectors - bio_sectors(miss));
943
944                 if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
945                         reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
946         }
947
948         s->cache_bio_sectors = bio_sectors(miss) + reada;
949         s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
950                         DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
951                         dc->disk.bio_split);
952
953         if (!s->op.cache_bio)
954                 goto out_submit;
955
956         s->op.cache_bio->bi_sector      = miss->bi_sector;
957         s->op.cache_bio->bi_bdev        = miss->bi_bdev;
958         s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
959
960         s->op.cache_bio->bi_end_io      = request_endio;
961         s->op.cache_bio->bi_private     = &s->cl;
962
963         /* btree_search_recurse()'s btree iterator is no good anymore */
964         ret = -EINTR;
965         if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
966                 goto out_put;
967
968         bch_bio_map(s->op.cache_bio, NULL);
969         if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
970                 goto out_put;
971
972         s->cache_miss = miss;
973         bio_get(s->op.cache_bio);
974
975         trace_bcache_cache_miss(s->orig_bio);
976         closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
977
978         return ret;
979 out_put:
980         bio_put(s->op.cache_bio);
981         s->op.cache_bio = NULL;
982 out_submit:
983         closure_bio_submit(miss, &s->cl, s->d);
984         return ret;
985 }
986
987 static void request_read(struct cached_dev *dc, struct search *s)
988 {
989         struct closure *cl = &s->cl;
990
991         check_should_skip(dc, s);
992         closure_call(&s->op.cl, btree_read_async, NULL, cl);
993
994         continue_at(cl, request_read_done_bh, NULL);
995 }
996
997 /* Process writes */
998
999 static void cached_dev_write_complete(struct closure *cl)
1000 {
1001         struct search *s = container_of(cl, struct search, cl);
1002         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1003
1004         up_read_non_owner(&dc->writeback_lock);
1005         cached_dev_bio_complete(cl);
1006 }
1007
1008 static bool should_writeback(struct cached_dev *dc, struct bio *bio)
1009 {
1010         unsigned threshold = (bio->bi_rw & REQ_SYNC)
1011                 ? CUTOFF_WRITEBACK_SYNC
1012                 : CUTOFF_WRITEBACK;
1013
1014         return !atomic_read(&dc->disk.detaching) &&
1015                 cache_mode(dc, bio) == CACHE_MODE_WRITEBACK &&
1016                 dc->disk.c->gc_stats.in_use < threshold;
1017 }
1018
1019 static void request_write(struct cached_dev *dc, struct search *s)
1020 {
1021         struct closure *cl = &s->cl;
1022         struct bio *bio = &s->bio.bio;
1023         struct bkey start, end;
1024         start = KEY(dc->disk.id, bio->bi_sector, 0);
1025         end = KEY(dc->disk.id, bio_end(bio), 0);
1026
1027         bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
1028
1029         check_should_skip(dc, s);
1030         down_read_non_owner(&dc->writeback_lock);
1031
1032         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1033                 s->op.skip      = false;
1034                 s->writeback    = true;
1035         }
1036
1037         if (bio->bi_rw & REQ_DISCARD)
1038                 goto skip;
1039
1040         if (s->op.skip)
1041                 goto skip;
1042
1043         if (should_writeback(dc, s->orig_bio))
1044                 s->writeback = true;
1045
1046         if (!s->writeback) {
1047                 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1048                                                    dc->disk.bio_split);
1049
1050                 trace_bcache_writethrough(s->orig_bio);
1051                 closure_bio_submit(bio, cl, s->d);
1052         } else {
1053                 s->op.cache_bio = bio;
1054                 trace_bcache_writeback(s->orig_bio);
1055                 bch_writeback_add(dc, bio_sectors(bio));
1056         }
1057 out:
1058         closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1059         continue_at(cl, cached_dev_write_complete, NULL);
1060 skip:
1061         s->op.skip = true;
1062         s->op.cache_bio = s->orig_bio;
1063         bio_get(s->op.cache_bio);
1064         trace_bcache_write_skip(s->orig_bio);
1065
1066         if ((bio->bi_rw & REQ_DISCARD) &&
1067             !blk_queue_discard(bdev_get_queue(dc->bdev)))
1068                 goto out;
1069
1070         closure_bio_submit(bio, cl, s->d);
1071         goto out;
1072 }
1073
1074 static void request_nodata(struct cached_dev *dc, struct search *s)
1075 {
1076         struct closure *cl = &s->cl;
1077         struct bio *bio = &s->bio.bio;
1078
1079         if (bio->bi_rw & REQ_DISCARD) {
1080                 request_write(dc, s);
1081                 return;
1082         }
1083
1084         if (s->op.flush_journal)
1085                 bch_journal_meta(s->op.c, cl);
1086
1087         closure_bio_submit(bio, cl, s->d);
1088
1089         continue_at(cl, cached_dev_bio_complete, NULL);
1090 }
1091
1092 /* Cached devices - read & write stuff */
1093
1094 int bch_get_congested(struct cache_set *c)
1095 {
1096         int i;
1097
1098         if (!c->congested_read_threshold_us &&
1099             !c->congested_write_threshold_us)
1100                 return 0;
1101
1102         i = (local_clock_us() - c->congested_last_us) / 1024;
1103         if (i < 0)
1104                 return 0;
1105
1106         i += atomic_read(&c->congested);
1107         if (i >= 0)
1108                 return 0;
1109
1110         i += CONGESTED_MAX;
1111
1112         return i <= 0 ? 1 : fract_exp_two(i, 6);
1113 }
1114
1115 static void add_sequential(struct task_struct *t)
1116 {
1117         ewma_add(t->sequential_io_avg,
1118                  t->sequential_io, 8, 0);
1119
1120         t->sequential_io = 0;
1121 }
1122
1123 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
1124 {
1125         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
1126 }
1127
1128 static void check_should_skip(struct cached_dev *dc, struct search *s)
1129 {
1130         struct cache_set *c = s->op.c;
1131         struct bio *bio = &s->bio.bio;
1132
1133         long rand;
1134         int cutoff = bch_get_congested(c);
1135         unsigned mode = cache_mode(dc, bio);
1136
1137         if (atomic_read(&dc->disk.detaching) ||
1138             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
1139             (bio->bi_rw & REQ_DISCARD))
1140                 goto skip;
1141
1142         if (mode == CACHE_MODE_NONE ||
1143             (mode == CACHE_MODE_WRITEAROUND &&
1144              (bio->bi_rw & REQ_WRITE)))
1145                 goto skip;
1146
1147         if (bio->bi_sector   & (c->sb.block_size - 1) ||
1148             bio_sectors(bio) & (c->sb.block_size - 1)) {
1149                 pr_debug("skipping unaligned io");
1150                 goto skip;
1151         }
1152
1153         if (!cutoff) {
1154                 cutoff = dc->sequential_cutoff >> 9;
1155
1156                 if (!cutoff)
1157                         goto rescale;
1158
1159                 if (mode == CACHE_MODE_WRITEBACK &&
1160                     (bio->bi_rw & REQ_WRITE) &&
1161                     (bio->bi_rw & REQ_SYNC))
1162                         goto rescale;
1163         }
1164
1165         if (dc->sequential_merge) {
1166                 struct io *i;
1167
1168                 spin_lock(&dc->io_lock);
1169
1170                 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
1171                         if (i->last == bio->bi_sector &&
1172                             time_before(jiffies, i->jiffies))
1173                                 goto found;
1174
1175                 i = list_first_entry(&dc->io_lru, struct io, lru);
1176
1177                 add_sequential(s->task);
1178                 i->sequential = 0;
1179 found:
1180                 if (i->sequential + bio->bi_size > i->sequential)
1181                         i->sequential   += bio->bi_size;
1182
1183                 i->last                  = bio_end(bio);
1184                 i->jiffies               = jiffies + msecs_to_jiffies(5000);
1185                 s->task->sequential_io   = i->sequential;
1186
1187                 hlist_del(&i->hash);
1188                 hlist_add_head(&i->hash, iohash(dc, i->last));
1189                 list_move_tail(&i->lru, &dc->io_lru);
1190
1191                 spin_unlock(&dc->io_lock);
1192         } else {
1193                 s->task->sequential_io = bio->bi_size;
1194
1195                 add_sequential(s->task);
1196         }
1197
1198         rand = get_random_int();
1199         cutoff -= bitmap_weight(&rand, BITS_PER_LONG);
1200
1201         if (cutoff <= (int) (max(s->task->sequential_io,
1202                                  s->task->sequential_io_avg) >> 9))
1203                 goto skip;
1204
1205 rescale:
1206         bch_rescale_priorities(c, bio_sectors(bio));
1207         return;
1208 skip:
1209         bch_mark_sectors_bypassed(s, bio_sectors(bio));
1210         s->op.skip = true;
1211 }
1212
1213 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1214 {
1215         struct search *s;
1216         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1217         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1218         int cpu, rw = bio_data_dir(bio);
1219
1220         cpu = part_stat_lock();
1221         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1222         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1223         part_stat_unlock();
1224
1225         bio->bi_bdev = dc->bdev;
1226         bio->bi_sector += dc->sb.data_offset;
1227
1228         if (cached_dev_get(dc)) {
1229                 s = search_alloc(bio, d);
1230                 trace_bcache_request_start(s, bio);
1231
1232                 if (!bio_has_data(bio))
1233                         request_nodata(dc, s);
1234                 else if (rw)
1235                         request_write(dc, s);
1236                 else
1237                         request_read(dc, s);
1238         } else {
1239                 if ((bio->bi_rw & REQ_DISCARD) &&
1240                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
1241                         bio_endio(bio, 0);
1242                 else
1243                         bch_generic_make_request(bio, &d->bio_split_hook);
1244         }
1245 }
1246
1247 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1248                             unsigned int cmd, unsigned long arg)
1249 {
1250         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1251         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1252 }
1253
1254 static int cached_dev_congested(void *data, int bits)
1255 {
1256         struct bcache_device *d = data;
1257         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1258         struct request_queue *q = bdev_get_queue(dc->bdev);
1259         int ret = 0;
1260
1261         if (bdi_congested(&q->backing_dev_info, bits))
1262                 return 1;
1263
1264         if (cached_dev_get(dc)) {
1265                 unsigned i;
1266                 struct cache *ca;
1267
1268                 for_each_cache(ca, d->c, i) {
1269                         q = bdev_get_queue(ca->bdev);
1270                         ret |= bdi_congested(&q->backing_dev_info, bits);
1271                 }
1272
1273                 cached_dev_put(dc);
1274         }
1275
1276         return ret;
1277 }
1278
1279 void bch_cached_dev_request_init(struct cached_dev *dc)
1280 {
1281         struct gendisk *g = dc->disk.disk;
1282
1283         g->queue->make_request_fn               = cached_dev_make_request;
1284         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1285         dc->disk.cache_miss                     = cached_dev_cache_miss;
1286         dc->disk.ioctl                          = cached_dev_ioctl;
1287 }
1288
1289 /* Flash backed devices */
1290
1291 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1292                                 struct bio *bio, unsigned sectors)
1293 {
1294         /* Zero fill bio */
1295
1296         while (bio->bi_idx != bio->bi_vcnt) {
1297                 struct bio_vec *bv = bio_iovec(bio);
1298                 unsigned j = min(bv->bv_len >> 9, sectors);
1299
1300                 void *p = kmap(bv->bv_page);
1301                 memset(p + bv->bv_offset, 0, j << 9);
1302                 kunmap(bv->bv_page);
1303
1304                 bv->bv_len      -= j << 9;
1305                 bv->bv_offset   += j << 9;
1306
1307                 if (bv->bv_len)
1308                         return 0;
1309
1310                 bio->bi_sector  += j;
1311                 bio->bi_size    -= j << 9;
1312
1313                 bio->bi_idx++;
1314                 sectors         -= j;
1315         }
1316
1317         s->op.lookup_done = true;
1318
1319         return 0;
1320 }
1321
1322 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1323 {
1324         struct search *s;
1325         struct closure *cl;
1326         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1327         int cpu, rw = bio_data_dir(bio);
1328
1329         cpu = part_stat_lock();
1330         part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1331         part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1332         part_stat_unlock();
1333
1334         s = search_alloc(bio, d);
1335         cl = &s->cl;
1336         bio = &s->bio.bio;
1337
1338         trace_bcache_request_start(s, bio);
1339
1340         if (bio_has_data(bio) && !rw) {
1341                 closure_call(&s->op.cl, btree_read_async, NULL, cl);
1342         } else if (bio_has_data(bio) || s->op.skip) {
1343                 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
1344                                              &KEY(d->id, bio->bi_sector, 0),
1345                                              &KEY(d->id, bio_end(bio), 0));
1346
1347                 s->writeback    = true;
1348                 s->op.cache_bio = bio;
1349
1350                 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1351         } else {
1352                 /* No data - probably a cache flush */
1353                 if (s->op.flush_journal)
1354                         bch_journal_meta(s->op.c, cl);
1355         }
1356
1357         continue_at(cl, search_free, NULL);
1358 }
1359
1360 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1361                            unsigned int cmd, unsigned long arg)
1362 {
1363         return -ENOTTY;
1364 }
1365
1366 static int flash_dev_congested(void *data, int bits)
1367 {
1368         struct bcache_device *d = data;
1369         struct request_queue *q;
1370         struct cache *ca;
1371         unsigned i;
1372         int ret = 0;
1373
1374         for_each_cache(ca, d->c, i) {
1375                 q = bdev_get_queue(ca->bdev);
1376                 ret |= bdi_congested(&q->backing_dev_info, bits);
1377         }
1378
1379         return ret;
1380 }
1381
1382 void bch_flash_dev_request_init(struct bcache_device *d)
1383 {
1384         struct gendisk *g = d->disk;
1385
1386         g->queue->make_request_fn               = flash_dev_make_request;
1387         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1388         d->cache_miss                           = flash_dev_cache_miss;
1389         d->ioctl                                = flash_dev_ioctl;
1390 }
1391
1392 void bch_request_exit(void)
1393 {
1394 #ifdef CONFIG_CGROUP_BCACHE
1395         cgroup_unload_subsys(&bcache_subsys);
1396 #endif
1397         if (bch_search_cache)
1398                 kmem_cache_destroy(bch_search_cache);
1399 }
1400
1401 int __init bch_request_init(void)
1402 {
1403         bch_search_cache = KMEM_CACHE(search, 0);
1404         if (!bch_search_cache)
1405                 return -ENOMEM;
1406
1407 #ifdef CONFIG_CGROUP_BCACHE
1408         cgroup_load_subsys(&bcache_subsys);
1409         init_bch_cgroup(&bcache_default_cgroup);
1410
1411         cgroup_add_cftypes(&bcache_subsys, bch_files);
1412 #endif
1413         return 0;
1414 }