]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/bcache/util.h
Merge remote-tracking branch 'wireless-next/master'
[karo-tx-linux.git] / drivers / md / bcache / util.h
1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
7 #include <linux/llist.h>
8 #include <linux/ratelimit.h>
9 #include <linux/vmalloc.h>
10 #include <linux/workqueue.h>
11
12 #include "closure.h"
13
14 #define PAGE_SECTORS            (PAGE_SIZE / 512)
15
16 struct closure;
17
18 #ifdef CONFIG_BCACHE_EDEBUG
19
20 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
21 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
22
23 #else /* EDEBUG */
24
25 #define atomic_dec_bug(v)       atomic_dec(v)
26 #define atomic_inc_bug(v, i)    atomic_inc(v)
27
28 #endif
29
30 #define BITMASK(name, type, field, offset, size)                \
31 static inline uint64_t name(const type *k)                      \
32 { return (k->field >> offset) & ~(((uint64_t) ~0) << size); }   \
33                                                                 \
34 static inline void SET_##name(type *k, uint64_t v)              \
35 {                                                               \
36         k->field &= ~(~((uint64_t) ~0 << size) << offset);      \
37         k->field |= v << offset;                                \
38 }
39
40 #define DECLARE_HEAP(type, name)                                        \
41         struct {                                                        \
42                 size_t size, used;                                      \
43                 type *data;                                             \
44         } name
45
46 #define init_heap(heap, _size, gfp)                                     \
47 ({                                                                      \
48         size_t _bytes;                                                  \
49         (heap)->used = 0;                                               \
50         (heap)->size = (_size);                                         \
51         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
52         (heap)->data = NULL;                                            \
53         if (_bytes < KMALLOC_MAX_SIZE)                                  \
54                 (heap)->data = kmalloc(_bytes, (gfp));                  \
55         if ((!(heap)->data) && ((gfp) & GFP_KERNEL))                    \
56                 (heap)->data = vmalloc(_bytes);                         \
57         (heap)->data;                                                   \
58 })
59
60 #define free_heap(heap)                                                 \
61 do {                                                                    \
62         if (is_vmalloc_addr((heap)->data))                              \
63                 vfree((heap)->data);                                    \
64         else                                                            \
65                 kfree((heap)->data);                                    \
66         (heap)->data = NULL;                                            \
67 } while (0)
68
69 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
70
71 #define heap_sift(h, i, cmp)                                            \
72 do {                                                                    \
73         size_t _r, _j = i;                                              \
74                                                                         \
75         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
76                 _r = _j * 2 + 1;                                        \
77                 if (_r + 1 < (h)->used &&                               \
78                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
79                         _r++;                                           \
80                                                                         \
81                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
82                         break;                                          \
83                 heap_swap(h, _r, _j);                                   \
84         }                                                               \
85 } while (0)
86
87 #define heap_sift_down(h, i, cmp)                                       \
88 do {                                                                    \
89         while (i) {                                                     \
90                 size_t p = (i - 1) / 2;                                 \
91                 if (cmp((h)->data[i], (h)->data[p]))                    \
92                         break;                                          \
93                 heap_swap(h, i, p);                                     \
94                 i = p;                                                  \
95         }                                                               \
96 } while (0)
97
98 #define heap_add(h, d, cmp)                                             \
99 ({                                                                      \
100         bool _r = !heap_full(h);                                        \
101         if (_r) {                                                       \
102                 size_t _i = (h)->used++;                                \
103                 (h)->data[_i] = d;                                      \
104                                                                         \
105                 heap_sift_down(h, _i, cmp);                             \
106                 heap_sift(h, _i, cmp);                                  \
107         }                                                               \
108         _r;                                                             \
109 })
110
111 #define heap_pop(h, d, cmp)                                             \
112 ({                                                                      \
113         bool _r = (h)->used;                                            \
114         if (_r) {                                                       \
115                 (d) = (h)->data[0];                                     \
116                 (h)->used--;                                            \
117                 heap_swap(h, 0, (h)->used);                             \
118                 heap_sift(h, 0, cmp);                                   \
119         }                                                               \
120         _r;                                                             \
121 })
122
123 #define heap_peek(h)    ((h)->size ? (h)->data[0] : NULL)
124
125 #define heap_full(h)    ((h)->used == (h)->size)
126
127 #define DECLARE_FIFO(type, name)                                        \
128         struct {                                                        \
129                 size_t front, back, size, mask;                         \
130                 type *data;                                             \
131         } name
132
133 #define fifo_for_each(c, fifo, iter)                                    \
134         for (iter = (fifo)->front;                                      \
135              c = (fifo)->data[iter], iter != (fifo)->back;              \
136              iter = (iter + 1) & (fifo)->mask)
137
138 #define __init_fifo(fifo, gfp)                                          \
139 ({                                                                      \
140         size_t _allocated_size, _bytes;                                 \
141         BUG_ON(!(fifo)->size);                                          \
142                                                                         \
143         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
144         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
145                                                                         \
146         (fifo)->mask = _allocated_size - 1;                             \
147         (fifo)->front = (fifo)->back = 0;                               \
148         (fifo)->data = NULL;                                            \
149                                                                         \
150         if (_bytes < KMALLOC_MAX_SIZE)                                  \
151                 (fifo)->data = kmalloc(_bytes, (gfp));                  \
152         if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))                    \
153                 (fifo)->data = vmalloc(_bytes);                         \
154         (fifo)->data;                                                   \
155 })
156
157 #define init_fifo_exact(fifo, _size, gfp)                               \
158 ({                                                                      \
159         (fifo)->size = (_size);                                         \
160         __init_fifo(fifo, gfp);                                         \
161 })
162
163 #define init_fifo(fifo, _size, gfp)                                     \
164 ({                                                                      \
165         (fifo)->size = (_size);                                         \
166         if ((fifo)->size > 4)                                           \
167                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
168         __init_fifo(fifo, gfp);                                         \
169 })
170
171 #define free_fifo(fifo)                                                 \
172 do {                                                                    \
173         if (is_vmalloc_addr((fifo)->data))                              \
174                 vfree((fifo)->data);                                    \
175         else                                                            \
176                 kfree((fifo)->data);                                    \
177         (fifo)->data = NULL;                                            \
178 } while (0)
179
180 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
181 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
182
183 #define fifo_empty(fifo)        (!fifo_used(fifo))
184 #define fifo_full(fifo)         (!fifo_free(fifo))
185
186 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
187 #define fifo_back(fifo)                                                 \
188         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
189
190 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
191
192 #define fifo_push_back(fifo, i)                                         \
193 ({                                                                      \
194         bool _r = !fifo_full((fifo));                                   \
195         if (_r) {                                                       \
196                 (fifo)->data[(fifo)->back++] = (i);                     \
197                 (fifo)->back &= (fifo)->mask;                           \
198         }                                                               \
199         _r;                                                             \
200 })
201
202 #define fifo_pop_front(fifo, i)                                         \
203 ({                                                                      \
204         bool _r = !fifo_empty((fifo));                                  \
205         if (_r) {                                                       \
206                 (i) = (fifo)->data[(fifo)->front++];                    \
207                 (fifo)->front &= (fifo)->mask;                          \
208         }                                                               \
209         _r;                                                             \
210 })
211
212 #define fifo_push_front(fifo, i)                                        \
213 ({                                                                      \
214         bool _r = !fifo_full((fifo));                                   \
215         if (_r) {                                                       \
216                 --(fifo)->front;                                        \
217                 (fifo)->front &= (fifo)->mask;                          \
218                 (fifo)->data[(fifo)->front] = (i);                      \
219         }                                                               \
220         _r;                                                             \
221 })
222
223 #define fifo_pop_back(fifo, i)                                          \
224 ({                                                                      \
225         bool _r = !fifo_empty((fifo));                                  \
226         if (_r) {                                                       \
227                 --(fifo)->back;                                         \
228                 (fifo)->back &= (fifo)->mask;                           \
229                 (i) = (fifo)->data[(fifo)->back]                        \
230         }                                                               \
231         _r;                                                             \
232 })
233
234 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
235 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
236
237 #define fifo_swap(l, r)                                                 \
238 do {                                                                    \
239         swap((l)->front, (r)->front);                                   \
240         swap((l)->back, (r)->back);                                     \
241         swap((l)->size, (r)->size);                                     \
242         swap((l)->mask, (r)->mask);                                     \
243         swap((l)->data, (r)->data);                                     \
244 } while (0)
245
246 #define fifo_move(dest, src)                                            \
247 do {                                                                    \
248         typeof(*((dest)->data)) _t;                                     \
249         while (!fifo_full(dest) &&                                      \
250                fifo_pop(src, _t))                                       \
251                 fifo_push(dest, _t);                                    \
252 } while (0)
253
254 /*
255  * Simple array based allocator - preallocates a number of elements and you can
256  * never allocate more than that, also has no locking.
257  *
258  * Handy because if you know you only need a fixed number of elements you don't
259  * have to worry about memory allocation failure, and sometimes a mempool isn't
260  * what you want.
261  *
262  * We treat the free elements as entries in a singly linked list, and the
263  * freelist as a stack - allocating and freeing push and pop off the freelist.
264  */
265
266 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
267         struct {                                                        \
268                 type    *freelist;                                      \
269                 type    data[size];                                     \
270         } name
271
272 #define array_alloc(array)                                              \
273 ({                                                                      \
274         typeof((array)->freelist) _ret = (array)->freelist;             \
275                                                                         \
276         if (_ret)                                                       \
277                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
278                                                                         \
279         _ret;                                                           \
280 })
281
282 #define array_free(array, ptr)                                          \
283 do {                                                                    \
284         typeof((array)->freelist) _ptr = ptr;                           \
285                                                                         \
286         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
287         (array)->freelist = _ptr;                                       \
288 } while (0)
289
290 #define array_allocator_init(array)                                     \
291 do {                                                                    \
292         typeof((array)->freelist) _i;                                   \
293                                                                         \
294         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
295         (array)->freelist = NULL;                                       \
296                                                                         \
297         for (_i = (array)->data;                                        \
298              _i < (array)->data + ARRAY_SIZE((array)->data);            \
299              _i++)                                                      \
300                 array_free(array, _i);                                  \
301 } while (0)
302
303 #define array_freelist_empty(array)     ((array)->freelist == NULL)
304
305 #define ANYSINT_MAX(t)                                                  \
306         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
307
308 int bch_strtoint_h(const char *, int *);
309 int bch_strtouint_h(const char *, unsigned int *);
310 int bch_strtoll_h(const char *, long long *);
311 int bch_strtoull_h(const char *, unsigned long long *);
312
313 static inline int bch_strtol_h(const char *cp, long *res)
314 {
315 #if BITS_PER_LONG == 32
316         return bch_strtoint_h(cp, (int *) res);
317 #else
318         return bch_strtoll_h(cp, (long long *) res);
319 #endif
320 }
321
322 static inline int bch_strtoul_h(const char *cp, long *res)
323 {
324 #if BITS_PER_LONG == 32
325         return bch_strtouint_h(cp, (unsigned int *) res);
326 #else
327         return bch_strtoull_h(cp, (unsigned long long *) res);
328 #endif
329 }
330
331 #define strtoi_h(cp, res)                                               \
332         (__builtin_types_compatible_p(typeof(*res), int)                \
333         ? bch_strtoint_h(cp, (void *) res)                              \
334         : __builtin_types_compatible_p(typeof(*res), long)              \
335         ? bch_strtol_h(cp, (void *) res)                                \
336         : __builtin_types_compatible_p(typeof(*res), long long)         \
337         ? bch_strtoll_h(cp, (void *) res)                               \
338         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
339         ? bch_strtouint_h(cp, (void *) res)                             \
340         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
341         ? bch_strtoul_h(cp, (void *) res)                               \
342         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
343         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
344
345 #define strtoul_safe(cp, var)                                           \
346 ({                                                                      \
347         unsigned long _v;                                               \
348         int _r = kstrtoul(cp, 10, &_v);                                 \
349         if (!_r)                                                        \
350                 var = _v;                                               \
351         _r;                                                             \
352 })
353
354 #define strtoul_safe_clamp(cp, var, min, max)                           \
355 ({                                                                      \
356         unsigned long _v;                                               \
357         int _r = kstrtoul(cp, 10, &_v);                                 \
358         if (!_r)                                                        \
359                 var = clamp_t(typeof(var), _v, min, max);               \
360         _r;                                                             \
361 })
362
363 #define snprint(buf, size, var)                                         \
364         snprintf(buf, size,                                             \
365                 __builtin_types_compatible_p(typeof(var), int)          \
366                      ? "%i\n" :                                         \
367                 __builtin_types_compatible_p(typeof(var), unsigned)     \
368                      ? "%u\n" :                                         \
369                 __builtin_types_compatible_p(typeof(var), long)         \
370                      ? "%li\n" :                                        \
371                 __builtin_types_compatible_p(typeof(var), unsigned long)\
372                      ? "%lu\n" :                                        \
373                 __builtin_types_compatible_p(typeof(var), int64_t)      \
374                      ? "%lli\n" :                                       \
375                 __builtin_types_compatible_p(typeof(var), uint64_t)     \
376                      ? "%llu\n" :                                       \
377                 __builtin_types_compatible_p(typeof(var), const char *) \
378                      ? "%s\n" : "%i\n", var)
379
380 ssize_t bch_hprint(char *buf, int64_t v);
381
382 bool bch_is_zero(const char *p, size_t n);
383 int bch_parse_uuid(const char *s, char *uuid);
384
385 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
386                             size_t selected);
387
388 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
389
390 struct time_stats {
391         /*
392          * all fields are in nanoseconds, averages are ewmas stored left shifted
393          * by 8
394          */
395         uint64_t        max_duration;
396         uint64_t        average_duration;
397         uint64_t        average_frequency;
398         uint64_t        last;
399 };
400
401 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
402
403 #define NSEC_PER_ns                     1L
404 #define NSEC_PER_us                     NSEC_PER_USEC
405 #define NSEC_PER_ms                     NSEC_PER_MSEC
406 #define NSEC_PER_sec                    NSEC_PER_SEC
407
408 #define __print_time_stat(stats, name, stat, units)                     \
409         sysfs_print(name ## _ ## stat ## _ ## units,                    \
410                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
411
412 #define sysfs_print_time_stats(stats, name,                             \
413                                frequency_units,                         \
414                                duration_units)                          \
415 do {                                                                    \
416         __print_time_stat(stats, name,                                  \
417                           average_frequency,    frequency_units);       \
418         __print_time_stat(stats, name,                                  \
419                           average_duration,     duration_units);        \
420         __print_time_stat(stats, name,                                  \
421                           max_duration,         duration_units);        \
422                                                                         \
423         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
424                     ? div_s64(local_clock() - (stats)->last,            \
425                               NSEC_PER_ ## frequency_units)             \
426                     : -1LL);                                            \
427 } while (0)
428
429 #define sysfs_time_stats_attribute(name,                                \
430                                    frequency_units,                     \
431                                    duration_units)                      \
432 read_attribute(name ## _average_frequency_ ## frequency_units);         \
433 read_attribute(name ## _average_duration_ ## duration_units);           \
434 read_attribute(name ## _max_duration_ ## duration_units);               \
435 read_attribute(name ## _last_ ## frequency_units)
436
437 #define sysfs_time_stats_attribute_list(name,                           \
438                                         frequency_units,                \
439                                         duration_units)                 \
440 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
441 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
442 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
443 &sysfs_ ## name ## _last_ ## frequency_units,
444
445 #define ewma_add(ewma, val, weight, factor)                             \
446 ({                                                                      \
447         (ewma) *= (weight) - 1;                                         \
448         (ewma) += (val) << factor;                                      \
449         (ewma) /= (weight);                                             \
450         (ewma) >> factor;                                               \
451 })
452
453 struct bch_ratelimit {
454         /* Next time we want to do some work, in nanoseconds */
455         uint64_t                next;
456
457         /*
458          * Rate at which we want to do work, in units per nanosecond
459          * The units here correspond to the units passed to bch_next_delay()
460          */
461         unsigned                rate;
462 };
463
464 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
465 {
466         d->next = local_clock();
467 }
468
469 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
470
471 #define __DIV_SAFE(n, d, zero)                                          \
472 ({                                                                      \
473         typeof(n) _n = (n);                                             \
474         typeof(d) _d = (d);                                             \
475         _d ? _n / _d : zero;                                            \
476 })
477
478 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
479
480 #define container_of_or_null(ptr, type, member)                         \
481 ({                                                                      \
482         typeof(ptr) _ptr = ptr;                                         \
483         _ptr ? container_of(_ptr, type, member) : NULL;                 \
484 })
485
486 #define RB_INSERT(root, new, member, cmp)                               \
487 ({                                                                      \
488         __label__ dup;                                                  \
489         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
490         typeof(new) this;                                               \
491         int res, ret = -1;                                              \
492                                                                         \
493         while (*n) {                                                    \
494                 parent = *n;                                            \
495                 this = container_of(*n, typeof(*(new)), member);        \
496                 res = cmp(new, this);                                   \
497                 if (!res)                                               \
498                         goto dup;                                       \
499                 n = res < 0                                             \
500                         ? &(*n)->rb_left                                \
501                         : &(*n)->rb_right;                              \
502         }                                                               \
503                                                                         \
504         rb_link_node(&(new)->member, parent, n);                        \
505         rb_insert_color(&(new)->member, root);                          \
506         ret = 0;                                                        \
507 dup:                                                                    \
508         ret;                                                            \
509 })
510
511 #define RB_SEARCH(root, search, member, cmp)                            \
512 ({                                                                      \
513         struct rb_node *n = (root)->rb_node;                            \
514         typeof(&(search)) this, ret = NULL;                             \
515         int res;                                                        \
516                                                                         \
517         while (n) {                                                     \
518                 this = container_of(n, typeof(search), member);         \
519                 res = cmp(&(search), this);                             \
520                 if (!res) {                                             \
521                         ret = this;                                     \
522                         break;                                          \
523                 }                                                       \
524                 n = res < 0                                             \
525                         ? n->rb_left                                    \
526                         : n->rb_right;                                  \
527         }                                                               \
528         ret;                                                            \
529 })
530
531 #define RB_GREATER(root, search, member, cmp)                           \
532 ({                                                                      \
533         struct rb_node *n = (root)->rb_node;                            \
534         typeof(&(search)) this, ret = NULL;                             \
535         int res;                                                        \
536                                                                         \
537         while (n) {                                                     \
538                 this = container_of(n, typeof(search), member);         \
539                 res = cmp(&(search), this);                             \
540                 if (res < 0) {                                          \
541                         ret = this;                                     \
542                         n = n->rb_left;                                 \
543                 } else                                                  \
544                         n = n->rb_right;                                \
545         }                                                               \
546         ret;                                                            \
547 })
548
549 #define RB_FIRST(root, type, member)                                    \
550         container_of_or_null(rb_first(root), type, member)
551
552 #define RB_LAST(root, type, member)                                     \
553         container_of_or_null(rb_last(root), type, member)
554
555 #define RB_NEXT(ptr, member)                                            \
556         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
557
558 #define RB_PREV(ptr, member)                                            \
559         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
560
561 /* Does linear interpolation between powers of two */
562 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
563 {
564         unsigned fract = x & ~(~0 << fract_bits);
565
566         x >>= fract_bits;
567         x   = 1 << x;
568         x  += (x * fract) >> fract_bits;
569
570         return x;
571 }
572
573 void bch_bio_map(struct bio *bio, void *base);
574
575 static inline sector_t bdev_sectors(struct block_device *bdev)
576 {
577         return bdev->bd_inode->i_size >> 9;
578 }
579
580 #define closure_bio_submit(bio, cl, dev)                                \
581 do {                                                                    \
582         closure_get(cl);                                                \
583         bch_generic_make_request(bio, &(dev)->bio_split_hook);          \
584 } while (0)
585
586 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
587 uint64_t bch_crc64(const void *, size_t);
588
589 #endif /* _BCACHE_UTIL_H */