]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/bcache/writeback.c
ARM: fix build errors caused by selection of errata 798181
[karo-tx-linux.git] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <trace/events/bcache.h>
15
16 static struct workqueue_struct *dirty_wq;
17
18 static void read_dirty(struct closure *);
19
20 struct dirty_io {
21         struct closure          cl;
22         struct cached_dev       *dc;
23         struct bio              bio;
24 };
25
26 /* Rate limiting */
27
28 static void __update_writeback_rate(struct cached_dev *dc)
29 {
30         struct cache_set *c = dc->disk.c;
31         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
32         uint64_t cache_dirty_target =
33                 div_u64(cache_sectors * dc->writeback_percent, 100);
34
35         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
36                                    c->cached_dev_sectors);
37
38         /* PD controller */
39
40         int change = 0;
41         int64_t error;
42         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
43         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
44
45         dc->disk.sectors_dirty_last = dirty;
46
47         derivative *= dc->writeback_rate_d_term;
48         derivative = clamp(derivative, -dirty, dirty);
49
50         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
51                               dc->writeback_rate_d_smooth, 0);
52
53         /* Avoid divide by zero */
54         if (!target)
55                 goto out;
56
57         error = div64_s64((dirty + derivative - target) << 8, target);
58
59         change = div_s64((dc->writeback_rate.rate * error) >> 8,
60                          dc->writeback_rate_p_term_inverse);
61
62         /* Don't increase writeback rate if the device isn't keeping up */
63         if (change > 0 &&
64             time_after64(local_clock(),
65                          dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
66                 change = 0;
67
68         dc->writeback_rate.rate =
69                 clamp_t(int64_t, dc->writeback_rate.rate + change,
70                         1, NSEC_PER_MSEC);
71 out:
72         dc->writeback_rate_derivative = derivative;
73         dc->writeback_rate_change = change;
74         dc->writeback_rate_target = target;
75
76         schedule_delayed_work(&dc->writeback_rate_update,
77                               dc->writeback_rate_update_seconds * HZ);
78 }
79
80 static void update_writeback_rate(struct work_struct *work)
81 {
82         struct cached_dev *dc = container_of(to_delayed_work(work),
83                                              struct cached_dev,
84                                              writeback_rate_update);
85
86         down_read(&dc->writeback_lock);
87
88         if (atomic_read(&dc->has_dirty) &&
89             dc->writeback_percent)
90                 __update_writeback_rate(dc);
91
92         up_read(&dc->writeback_lock);
93 }
94
95 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
96 {
97         if (atomic_read(&dc->disk.detaching) ||
98             !dc->writeback_percent)
99                 return 0;
100
101         return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
102 }
103
104 /* Background writeback */
105
106 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
107 {
108         return KEY_DIRTY(k);
109 }
110
111 static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
112 {
113         uint64_t stripe;
114         unsigned nr_sectors = KEY_SIZE(k);
115         struct cached_dev *dc = container_of(buf, struct cached_dev,
116                                              writeback_keys);
117         unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
118
119         if (!KEY_DIRTY(k))
120                 return false;
121
122         stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
123         while (1) {
124                 if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
125                     stripe_size)
126                         return false;
127
128                 if (nr_sectors <= stripe_size)
129                         return true;
130
131                 nr_sectors -= stripe_size;
132                 stripe++;
133         }
134 }
135
136 static void dirty_init(struct keybuf_key *w)
137 {
138         struct dirty_io *io = w->private;
139         struct bio *bio = &io->bio;
140
141         bio_init(bio);
142         if (!io->dc->writeback_percent)
143                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
144
145         bio->bi_size            = KEY_SIZE(&w->key) << 9;
146         bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
147         bio->bi_private         = w;
148         bio->bi_io_vec          = bio->bi_inline_vecs;
149         bch_bio_map(bio, NULL);
150 }
151
152 static void refill_dirty(struct closure *cl)
153 {
154         struct cached_dev *dc = container_of(cl, struct cached_dev,
155                                              writeback.cl);
156         struct keybuf *buf = &dc->writeback_keys;
157         bool searched_from_start = false;
158         struct bkey end = MAX_KEY;
159         SET_KEY_INODE(&end, dc->disk.id);
160
161         if (!atomic_read(&dc->disk.detaching) &&
162             !dc->writeback_running)
163                 closure_return(cl);
164
165         down_write(&dc->writeback_lock);
166
167         if (!atomic_read(&dc->has_dirty)) {
168                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
169                 bch_write_bdev_super(dc, NULL);
170
171                 up_write(&dc->writeback_lock);
172                 closure_return(cl);
173         }
174
175         if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
176                 buf->last_scanned = KEY(dc->disk.id, 0, 0);
177                 searched_from_start = true;
178         }
179
180         if (dc->partial_stripes_expensive) {
181                 uint64_t i;
182
183                 for (i = 0; i < dc->disk.nr_stripes; i++)
184                         if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
185                             1 << dc->disk.stripe_size_bits)
186                                 goto full_stripes;
187
188                 goto normal_refill;
189 full_stripes:
190                 bch_refill_keybuf(dc->disk.c, buf, &end,
191                                   dirty_full_stripe_pred);
192         } else {
193 normal_refill:
194                 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
195         }
196
197         if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
198                 /* Searched the entire btree  - delay awhile */
199
200                 if (RB_EMPTY_ROOT(&buf->keys)) {
201                         atomic_set(&dc->has_dirty, 0);
202                         cached_dev_put(dc);
203                 }
204
205                 if (!atomic_read(&dc->disk.detaching))
206                         closure_delay(&dc->writeback, dc->writeback_delay * HZ);
207         }
208
209         up_write(&dc->writeback_lock);
210
211         ratelimit_reset(&dc->writeback_rate);
212
213         /* Punt to workqueue only so we don't recurse and blow the stack */
214         continue_at(cl, read_dirty, dirty_wq);
215 }
216
217 void bch_writeback_queue(struct cached_dev *dc)
218 {
219         if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
220                 if (!atomic_read(&dc->disk.detaching))
221                         closure_delay(&dc->writeback, dc->writeback_delay * HZ);
222
223                 continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
224         }
225 }
226
227 void bch_writeback_add(struct cached_dev *dc)
228 {
229         if (!atomic_read(&dc->has_dirty) &&
230             !atomic_xchg(&dc->has_dirty, 1)) {
231                 atomic_inc(&dc->count);
232
233                 if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
234                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
235                         /* XXX: should do this synchronously */
236                         bch_write_bdev_super(dc, NULL);
237                 }
238
239                 bch_writeback_queue(dc);
240
241                 if (dc->writeback_percent)
242                         schedule_delayed_work(&dc->writeback_rate_update,
243                                       dc->writeback_rate_update_seconds * HZ);
244         }
245 }
246
247 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
248                                   uint64_t offset, int nr_sectors)
249 {
250         struct bcache_device *d = c->devices[inode];
251         unsigned stripe_size, stripe_offset;
252         uint64_t stripe;
253
254         if (!d)
255                 return;
256
257         stripe_size = 1 << d->stripe_size_bits;
258         stripe = offset >> d->stripe_size_bits;
259         stripe_offset = offset & (stripe_size - 1);
260
261         while (nr_sectors) {
262                 int s = min_t(unsigned, abs(nr_sectors),
263                               stripe_size - stripe_offset);
264
265                 if (nr_sectors < 0)
266                         s = -s;
267
268                 atomic_add(s, d->stripe_sectors_dirty + stripe);
269                 nr_sectors -= s;
270                 stripe_offset = 0;
271                 stripe++;
272         }
273 }
274
275 /* Background writeback - IO loop */
276
277 static void dirty_io_destructor(struct closure *cl)
278 {
279         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
280         kfree(io);
281 }
282
283 static void write_dirty_finish(struct closure *cl)
284 {
285         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
286         struct keybuf_key *w = io->bio.bi_private;
287         struct cached_dev *dc = io->dc;
288         struct bio_vec *bv;
289         int i;
290
291         bio_for_each_segment_all(bv, &io->bio, i)
292                 __free_page(bv->bv_page);
293
294         /* This is kind of a dumb way of signalling errors. */
295         if (KEY_DIRTY(&w->key)) {
296                 unsigned i;
297                 struct btree_op op;
298                 bch_btree_op_init_stack(&op);
299
300                 op.type = BTREE_REPLACE;
301                 bkey_copy(&op.replace, &w->key);
302
303                 SET_KEY_DIRTY(&w->key, false);
304                 bch_keylist_add(&op.keys, &w->key);
305
306                 for (i = 0; i < KEY_PTRS(&w->key); i++)
307                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
308
309                 bch_btree_insert(&op, dc->disk.c);
310                 closure_sync(&op.cl);
311
312                 if (op.insert_collision)
313                         trace_bcache_writeback_collision(&w->key);
314
315                 atomic_long_inc(op.insert_collision
316                                 ? &dc->disk.c->writeback_keys_failed
317                                 : &dc->disk.c->writeback_keys_done);
318         }
319
320         bch_keybuf_del(&dc->writeback_keys, w);
321         atomic_dec_bug(&dc->in_flight);
322
323         closure_wake_up(&dc->writeback_wait);
324
325         closure_return_with_destructor(cl, dirty_io_destructor);
326 }
327
328 static void dirty_endio(struct bio *bio, int error)
329 {
330         struct keybuf_key *w = bio->bi_private;
331         struct dirty_io *io = w->private;
332
333         if (error)
334                 SET_KEY_DIRTY(&w->key, false);
335
336         closure_put(&io->cl);
337 }
338
339 static void write_dirty(struct closure *cl)
340 {
341         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
342         struct keybuf_key *w = io->bio.bi_private;
343
344         dirty_init(w);
345         io->bio.bi_rw           = WRITE;
346         io->bio.bi_sector       = KEY_START(&w->key);
347         io->bio.bi_bdev         = io->dc->bdev;
348         io->bio.bi_end_io       = dirty_endio;
349
350         closure_bio_submit(&io->bio, cl, &io->dc->disk);
351
352         continue_at(cl, write_dirty_finish, dirty_wq);
353 }
354
355 static void read_dirty_endio(struct bio *bio, int error)
356 {
357         struct keybuf_key *w = bio->bi_private;
358         struct dirty_io *io = w->private;
359
360         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
361                             error, "reading dirty data from cache");
362
363         dirty_endio(bio, error);
364 }
365
366 static void read_dirty_submit(struct closure *cl)
367 {
368         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
369
370         closure_bio_submit(&io->bio, cl, &io->dc->disk);
371
372         continue_at(cl, write_dirty, dirty_wq);
373 }
374
375 static void read_dirty(struct closure *cl)
376 {
377         struct cached_dev *dc = container_of(cl, struct cached_dev,
378                                              writeback.cl);
379         unsigned delay = writeback_delay(dc, 0);
380         struct keybuf_key *w;
381         struct dirty_io *io;
382
383         /*
384          * XXX: if we error, background writeback just spins. Should use some
385          * mempools.
386          */
387
388         while (1) {
389                 w = bch_keybuf_next(&dc->writeback_keys);
390                 if (!w)
391                         break;
392
393                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
394
395                 if (delay > 0 &&
396                     (KEY_START(&w->key) != dc->last_read ||
397                      jiffies_to_msecs(delay) > 50)) {
398                         w->private = NULL;
399
400                         closure_delay(&dc->writeback, delay);
401                         continue_at(cl, read_dirty, dirty_wq);
402                 }
403
404                 dc->last_read   = KEY_OFFSET(&w->key);
405
406                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
407                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
408                              GFP_KERNEL);
409                 if (!io)
410                         goto err;
411
412                 w->private      = io;
413                 io->dc          = dc;
414
415                 dirty_init(w);
416                 io->bio.bi_sector       = PTR_OFFSET(&w->key, 0);
417                 io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
418                                                     &w->key, 0)->bdev;
419                 io->bio.bi_rw           = READ;
420                 io->bio.bi_end_io       = read_dirty_endio;
421
422                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
423                         goto err_free;
424
425                 trace_bcache_writeback(&w->key);
426
427                 closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
428
429                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
430
431                 atomic_inc(&dc->in_flight);
432
433                 if (!closure_wait_event(&dc->writeback_wait, cl,
434                                         atomic_read(&dc->in_flight) < 64))
435                         continue_at(cl, read_dirty, dirty_wq);
436         }
437
438         if (0) {
439 err_free:
440                 kfree(w->private);
441 err:
442                 bch_keybuf_del(&dc->writeback_keys, w);
443         }
444
445         refill_dirty(cl);
446 }
447
448 /* Init */
449
450 static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
451                                         struct cached_dev *dc)
452 {
453         struct bkey *k;
454         struct btree_iter iter;
455
456         bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
457         while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
458                 if (!b->level) {
459                         if (KEY_INODE(k) > dc->disk.id)
460                                 break;
461
462                         if (KEY_DIRTY(k))
463                                 bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
464                                                              KEY_START(k),
465                                                              KEY_SIZE(k));
466                 } else {
467                         btree(sectors_dirty_init, k, b, op, dc);
468                         if (KEY_INODE(k) > dc->disk.id)
469                                 break;
470
471                         cond_resched();
472                 }
473
474         return 0;
475 }
476
477 void bch_sectors_dirty_init(struct cached_dev *dc)
478 {
479         struct btree_op op;
480
481         bch_btree_op_init_stack(&op);
482         btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
483 }
484
485 void bch_cached_dev_writeback_init(struct cached_dev *dc)
486 {
487         closure_init_unlocked(&dc->writeback);
488         init_rwsem(&dc->writeback_lock);
489
490         bch_keybuf_init(&dc->writeback_keys);
491
492         dc->writeback_metadata          = true;
493         dc->writeback_running           = true;
494         dc->writeback_percent           = 10;
495         dc->writeback_delay             = 30;
496         dc->writeback_rate.rate         = 1024;
497
498         dc->writeback_rate_update_seconds = 30;
499         dc->writeback_rate_d_term       = 16;
500         dc->writeback_rate_p_term_inverse = 64;
501         dc->writeback_rate_d_smooth     = 8;
502
503         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
504         schedule_delayed_work(&dc->writeback_rate_update,
505                               dc->writeback_rate_update_seconds * HZ);
506 }
507
508 void bch_writeback_exit(void)
509 {
510         if (dirty_wq)
511                 destroy_workqueue(dirty_wq);
512 }
513
514 int __init bch_writeback_init(void)
515 {
516         dirty_wq = create_singlethread_workqueue("bcache_writeback");
517         if (!dirty_wq)
518                 return -ENOMEM;
519
520         return 0;
521 }