]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/dm-bufio.c
mtd: gpmi: add subpage read support
[karo-tx-linux.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17
18 #define DM_MSG_PREFIX "bufio"
19
20 /*
21  * Memory management policy:
22  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *      dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS            8
29
30 #define DM_BUFIO_MEMORY_PERCENT         2
31 #define DM_BUFIO_VMALLOC_PERCENT        25
32 #define DM_BUFIO_WRITEBACK_PERCENT      75
33
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS        10
38
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS       60
43
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS            16
49
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS      20
54 #define DM_BUFIO_HASH(block) \
55         ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56          ((1 << DM_BUFIO_HASH_BITS) - 1))
57
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN      0
69 #define LIST_DIRTY      1
70 #define LIST_SIZE       2
71
72 /*
73  * Linking of buffers:
74  *      All buffers are linked to cache_hash with their hash_list field.
75  *
76  *      Clean buffers that are not being written (B_WRITING not set)
77  *      are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *      Dirty and clean buffers that are being written are linked to
80  *      lru[LIST_DIRTY] with their lru_list field. When the write
81  *      finishes, the buffer cannot be relinked immediately (because we
82  *      are in an interrupt context and relinking requires process
83  *      context), so some clean-not-writing buffers can be held on
84  *      dirty_lru too.  They are later added to lru in the process
85  *      context.
86  */
87 struct dm_bufio_client {
88         struct mutex lock;
89
90         struct list_head lru[LIST_SIZE];
91         unsigned long n_buffers[LIST_SIZE];
92
93         struct block_device *bdev;
94         unsigned block_size;
95         unsigned char sectors_per_block_bits;
96         unsigned char pages_per_block_bits;
97         unsigned char blocks_per_page_bits;
98         unsigned aux_size;
99         void (*alloc_callback)(struct dm_buffer *);
100         void (*write_callback)(struct dm_buffer *);
101
102         struct dm_io_client *dm_io;
103
104         struct list_head reserved_buffers;
105         unsigned need_reserved_buffers;
106
107         unsigned minimum_buffers;
108
109         struct hlist_head *cache_hash;
110         wait_queue_head_t free_buffer_wait;
111
112         int async_write_error;
113
114         struct list_head client_list;
115         struct shrinker shrinker;
116 };
117
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING       0
122 #define B_WRITING       1
123 #define B_DIRTY         2
124
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131         DATA_MODE_SLAB = 0,
132         DATA_MODE_GET_FREE_PAGES = 1,
133         DATA_MODE_VMALLOC = 2,
134         DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138         struct hlist_node hash_list;
139         struct list_head lru_list;
140         sector_t block;
141         void *data;
142         enum data_mode data_mode;
143         unsigned char list_mode;                /* LIST_* */
144         unsigned hold_count;
145         int read_error;
146         int write_error;
147         unsigned long state;
148         unsigned long last_accessed;
149         struct dm_bufio_client *c;
150         struct list_head write_list;
151         struct bio bio;
152         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 };
154
155 /*----------------------------------------------------------------*/
156
157 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
158 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
159
160 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
161 {
162         unsigned ret = c->blocks_per_page_bits - 1;
163
164         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
165
166         return ret;
167 }
168
169 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
170 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
171
172 #define dm_bufio_in_request()   (!!current->bio_list)
173
174 static void dm_bufio_lock(struct dm_bufio_client *c)
175 {
176         mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 }
178
179 static int dm_bufio_trylock(struct dm_bufio_client *c)
180 {
181         return mutex_trylock(&c->lock);
182 }
183
184 static void dm_bufio_unlock(struct dm_bufio_client *c)
185 {
186         mutex_unlock(&c->lock);
187 }
188
189 /*
190  * FIXME Move to sched.h?
191  */
192 #ifdef CONFIG_PREEMPT_VOLUNTARY
193 #  define dm_bufio_cond_resched()               \
194 do {                                            \
195         if (unlikely(need_resched()))           \
196                 _cond_resched();                \
197 } while (0)
198 #else
199 #  define dm_bufio_cond_resched()                do { } while (0)
200 #endif
201
202 /*----------------------------------------------------------------*/
203
204 /*
205  * Default cache size: available memory divided by the ratio.
206  */
207 static unsigned long dm_bufio_default_cache_size;
208
209 /*
210  * Total cache size set by the user.
211  */
212 static unsigned long dm_bufio_cache_size;
213
214 /*
215  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
216  * at any time.  If it disagrees, the user has changed cache size.
217  */
218 static unsigned long dm_bufio_cache_size_latch;
219
220 static DEFINE_SPINLOCK(param_spinlock);
221
222 /*
223  * Buffers are freed after this timeout
224  */
225 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
226
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232
233 /*----------------------------------------------------------------*/
234
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256 /*----------------------------------------------------------------*/
257
258 static void adjust_total_allocated(enum data_mode data_mode, long diff)
259 {
260         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
261                 &dm_bufio_allocated_kmem_cache,
262                 &dm_bufio_allocated_get_free_pages,
263                 &dm_bufio_allocated_vmalloc,
264         };
265
266         spin_lock(&param_spinlock);
267
268         *class_ptr[data_mode] += diff;
269
270         dm_bufio_current_allocated += diff;
271
272         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
273                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
274
275         spin_unlock(&param_spinlock);
276 }
277
278 /*
279  * Change the number of clients and recalculate per-client limit.
280  */
281 static void __cache_size_refresh(void)
282 {
283         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
284         BUG_ON(dm_bufio_client_count < 0);
285
286         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287
288         /*
289          * Use default if set to 0 and report the actual cache size used.
290          */
291         if (!dm_bufio_cache_size_latch) {
292                 (void)cmpxchg(&dm_bufio_cache_size, 0,
293                               dm_bufio_default_cache_size);
294                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295         }
296
297         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298                                          (dm_bufio_client_count ? : 1);
299 }
300
301 /*
302  * Allocating buffer data.
303  *
304  * Small buffers are allocated with kmem_cache, to use space optimally.
305  *
306  * For large buffers, we choose between get_free_pages and vmalloc.
307  * Each has advantages and disadvantages.
308  *
309  * __get_free_pages can randomly fail if the memory is fragmented.
310  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311  * as low as 128M) so using it for caching is not appropriate.
312  *
313  * If the allocation may fail we use __get_free_pages. Memory fragmentation
314  * won't have a fatal effect here, but it just causes flushes of some other
315  * buffers and more I/O will be performed. Don't use __get_free_pages if it
316  * always fails (i.e. order >= MAX_ORDER).
317  *
318  * If the allocation shouldn't fail we use __vmalloc. This is only for the
319  * initial reserve allocation, so there's no risk of wasting all vmalloc
320  * space.
321  */
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323                                enum data_mode *data_mode)
324 {
325         unsigned noio_flag;
326         void *ptr;
327
328         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
329                 *data_mode = DATA_MODE_SLAB;
330                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331         }
332
333         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
334             gfp_mask & __GFP_NORETRY) {
335                 *data_mode = DATA_MODE_GET_FREE_PAGES;
336                 return (void *)__get_free_pages(gfp_mask,
337                                                 c->pages_per_block_bits);
338         }
339
340         *data_mode = DATA_MODE_VMALLOC;
341
342         /*
343          * __vmalloc allocates the data pages and auxiliary structures with
344          * gfp_flags that were specified, but pagetables are always allocated
345          * with GFP_KERNEL, no matter what was specified as gfp_mask.
346          *
347          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
348          * all allocations done by this process (including pagetables) are done
349          * as if GFP_NOIO was specified.
350          */
351
352         if (gfp_mask & __GFP_NORETRY)
353                 noio_flag = memalloc_noio_save();
354
355         ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
356
357         if (gfp_mask & __GFP_NORETRY)
358                 memalloc_noio_restore(noio_flag);
359
360         return ptr;
361 }
362
363 /*
364  * Free buffer's data.
365  */
366 static void free_buffer_data(struct dm_bufio_client *c,
367                              void *data, enum data_mode data_mode)
368 {
369         switch (data_mode) {
370         case DATA_MODE_SLAB:
371                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
372                 break;
373
374         case DATA_MODE_GET_FREE_PAGES:
375                 free_pages((unsigned long)data, c->pages_per_block_bits);
376                 break;
377
378         case DATA_MODE_VMALLOC:
379                 vfree(data);
380                 break;
381
382         default:
383                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
384                        data_mode);
385                 BUG();
386         }
387 }
388
389 /*
390  * Allocate buffer and its data.
391  */
392 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
393 {
394         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
395                                       gfp_mask);
396
397         if (!b)
398                 return NULL;
399
400         b->c = c;
401
402         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
403         if (!b->data) {
404                 kfree(b);
405                 return NULL;
406         }
407
408         adjust_total_allocated(b->data_mode, (long)c->block_size);
409
410         return b;
411 }
412
413 /*
414  * Free buffer and its data.
415  */
416 static void free_buffer(struct dm_buffer *b)
417 {
418         struct dm_bufio_client *c = b->c;
419
420         adjust_total_allocated(b->data_mode, -(long)c->block_size);
421
422         free_buffer_data(c, b->data, b->data_mode);
423         kfree(b);
424 }
425
426 /*
427  * Link buffer to the hash list and clean or dirty queue.
428  */
429 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
430 {
431         struct dm_bufio_client *c = b->c;
432
433         c->n_buffers[dirty]++;
434         b->block = block;
435         b->list_mode = dirty;
436         list_add(&b->lru_list, &c->lru[dirty]);
437         hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
438         b->last_accessed = jiffies;
439 }
440
441 /*
442  * Unlink buffer from the hash list and dirty or clean queue.
443  */
444 static void __unlink_buffer(struct dm_buffer *b)
445 {
446         struct dm_bufio_client *c = b->c;
447
448         BUG_ON(!c->n_buffers[b->list_mode]);
449
450         c->n_buffers[b->list_mode]--;
451         hlist_del(&b->hash_list);
452         list_del(&b->lru_list);
453 }
454
455 /*
456  * Place the buffer to the head of dirty or clean LRU queue.
457  */
458 static void __relink_lru(struct dm_buffer *b, int dirty)
459 {
460         struct dm_bufio_client *c = b->c;
461
462         BUG_ON(!c->n_buffers[b->list_mode]);
463
464         c->n_buffers[b->list_mode]--;
465         c->n_buffers[dirty]++;
466         b->list_mode = dirty;
467         list_move(&b->lru_list, &c->lru[dirty]);
468         b->last_accessed = jiffies;
469 }
470
471 /*----------------------------------------------------------------
472  * Submit I/O on the buffer.
473  *
474  * Bio interface is faster but it has some problems:
475  *      the vector list is limited (increasing this limit increases
476  *      memory-consumption per buffer, so it is not viable);
477  *
478  *      the memory must be direct-mapped, not vmalloced;
479  *
480  *      the I/O driver can reject requests spuriously if it thinks that
481  *      the requests are too big for the device or if they cross a
482  *      controller-defined memory boundary.
483  *
484  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
485  * it is not vmalloced, try using the bio interface.
486  *
487  * If the buffer is big, if it is vmalloced or if the underlying device
488  * rejects the bio because it is too large, use dm-io layer to do the I/O.
489  * The dm-io layer splits the I/O into multiple requests, avoiding the above
490  * shortcomings.
491  *--------------------------------------------------------------*/
492
493 /*
494  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
495  * that the request was handled directly with bio interface.
496  */
497 static void dmio_complete(unsigned long error, void *context)
498 {
499         struct dm_buffer *b = context;
500
501         b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
502 }
503
504 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
505                      bio_end_io_t *end_io)
506 {
507         int r;
508         struct dm_io_request io_req = {
509                 .bi_rw = rw,
510                 .notify.fn = dmio_complete,
511                 .notify.context = b,
512                 .client = b->c->dm_io,
513         };
514         struct dm_io_region region = {
515                 .bdev = b->c->bdev,
516                 .sector = block << b->c->sectors_per_block_bits,
517                 .count = b->c->block_size >> SECTOR_SHIFT,
518         };
519
520         if (b->data_mode != DATA_MODE_VMALLOC) {
521                 io_req.mem.type = DM_IO_KMEM;
522                 io_req.mem.ptr.addr = b->data;
523         } else {
524                 io_req.mem.type = DM_IO_VMA;
525                 io_req.mem.ptr.vma = b->data;
526         }
527
528         b->bio.bi_end_io = end_io;
529
530         r = dm_io(&io_req, 1, &region, NULL);
531         if (r)
532                 end_io(&b->bio, r);
533 }
534
535 static void inline_endio(struct bio *bio, int error)
536 {
537         bio_end_io_t *end_fn = bio->bi_private;
538
539         /*
540          * Reset the bio to free any attached resources
541          * (e.g. bio integrity profiles).
542          */
543         bio_reset(bio);
544
545         end_fn(bio, error);
546 }
547
548 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
549                            bio_end_io_t *end_io)
550 {
551         char *ptr;
552         int len;
553
554         bio_init(&b->bio);
555         b->bio.bi_io_vec = b->bio_vec;
556         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
557         b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
558         b->bio.bi_bdev = b->c->bdev;
559         b->bio.bi_end_io = inline_endio;
560         /*
561          * Use of .bi_private isn't a problem here because
562          * the dm_buffer's inline bio is local to bufio.
563          */
564         b->bio.bi_private = end_io;
565
566         /*
567          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
568          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
569          */
570         ptr = b->data;
571         len = b->c->block_size;
572
573         if (len >= PAGE_SIZE)
574                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
575         else
576                 BUG_ON((unsigned long)ptr & (len - 1));
577
578         do {
579                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
580                                   len < PAGE_SIZE ? len : PAGE_SIZE,
581                                   virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
582                         BUG_ON(b->c->block_size <= PAGE_SIZE);
583                         use_dmio(b, rw, block, end_io);
584                         return;
585                 }
586
587                 len -= PAGE_SIZE;
588                 ptr += PAGE_SIZE;
589         } while (len > 0);
590
591         submit_bio(rw, &b->bio);
592 }
593
594 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
595                       bio_end_io_t *end_io)
596 {
597         if (rw == WRITE && b->c->write_callback)
598                 b->c->write_callback(b);
599
600         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
601             b->data_mode != DATA_MODE_VMALLOC)
602                 use_inline_bio(b, rw, block, end_io);
603         else
604                 use_dmio(b, rw, block, end_io);
605 }
606
607 /*----------------------------------------------------------------
608  * Writing dirty buffers
609  *--------------------------------------------------------------*/
610
611 /*
612  * The endio routine for write.
613  *
614  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
615  * it.
616  */
617 static void write_endio(struct bio *bio, int error)
618 {
619         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
620
621         b->write_error = error;
622         if (unlikely(error)) {
623                 struct dm_bufio_client *c = b->c;
624                 (void)cmpxchg(&c->async_write_error, 0, error);
625         }
626
627         BUG_ON(!test_bit(B_WRITING, &b->state));
628
629         smp_mb__before_clear_bit();
630         clear_bit(B_WRITING, &b->state);
631         smp_mb__after_clear_bit();
632
633         wake_up_bit(&b->state, B_WRITING);
634 }
635
636 /*
637  * This function is called when wait_on_bit is actually waiting.
638  */
639 static int do_io_schedule(void *word)
640 {
641         io_schedule();
642
643         return 0;
644 }
645
646 /*
647  * Initiate a write on a dirty buffer, but don't wait for it.
648  *
649  * - If the buffer is not dirty, exit.
650  * - If there some previous write going on, wait for it to finish (we can't
651  *   have two writes on the same buffer simultaneously).
652  * - Submit our write and don't wait on it. We set B_WRITING indicating
653  *   that there is a write in progress.
654  */
655 static void __write_dirty_buffer(struct dm_buffer *b,
656                                  struct list_head *write_list)
657 {
658         if (!test_bit(B_DIRTY, &b->state))
659                 return;
660
661         clear_bit(B_DIRTY, &b->state);
662         wait_on_bit_lock(&b->state, B_WRITING,
663                          do_io_schedule, TASK_UNINTERRUPTIBLE);
664
665         if (!write_list)
666                 submit_io(b, WRITE, b->block, write_endio);
667         else
668                 list_add_tail(&b->write_list, write_list);
669 }
670
671 static void __flush_write_list(struct list_head *write_list)
672 {
673         struct blk_plug plug;
674         blk_start_plug(&plug);
675         while (!list_empty(write_list)) {
676                 struct dm_buffer *b =
677                         list_entry(write_list->next, struct dm_buffer, write_list);
678                 list_del(&b->write_list);
679                 submit_io(b, WRITE, b->block, write_endio);
680                 dm_bufio_cond_resched();
681         }
682         blk_finish_plug(&plug);
683 }
684
685 /*
686  * Wait until any activity on the buffer finishes.  Possibly write the
687  * buffer if it is dirty.  When this function finishes, there is no I/O
688  * running on the buffer and the buffer is not dirty.
689  */
690 static void __make_buffer_clean(struct dm_buffer *b)
691 {
692         BUG_ON(b->hold_count);
693
694         if (!b->state)  /* fast case */
695                 return;
696
697         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
698         __write_dirty_buffer(b, NULL);
699         wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
700 }
701
702 /*
703  * Find some buffer that is not held by anybody, clean it, unlink it and
704  * return it.
705  */
706 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
707 {
708         struct dm_buffer *b;
709
710         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
711                 BUG_ON(test_bit(B_WRITING, &b->state));
712                 BUG_ON(test_bit(B_DIRTY, &b->state));
713
714                 if (!b->hold_count) {
715                         __make_buffer_clean(b);
716                         __unlink_buffer(b);
717                         return b;
718                 }
719                 dm_bufio_cond_resched();
720         }
721
722         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
723                 BUG_ON(test_bit(B_READING, &b->state));
724
725                 if (!b->hold_count) {
726                         __make_buffer_clean(b);
727                         __unlink_buffer(b);
728                         return b;
729                 }
730                 dm_bufio_cond_resched();
731         }
732
733         return NULL;
734 }
735
736 /*
737  * Wait until some other threads free some buffer or release hold count on
738  * some buffer.
739  *
740  * This function is entered with c->lock held, drops it and regains it
741  * before exiting.
742  */
743 static void __wait_for_free_buffer(struct dm_bufio_client *c)
744 {
745         DECLARE_WAITQUEUE(wait, current);
746
747         add_wait_queue(&c->free_buffer_wait, &wait);
748         set_task_state(current, TASK_UNINTERRUPTIBLE);
749         dm_bufio_unlock(c);
750
751         io_schedule();
752
753         set_task_state(current, TASK_RUNNING);
754         remove_wait_queue(&c->free_buffer_wait, &wait);
755
756         dm_bufio_lock(c);
757 }
758
759 enum new_flag {
760         NF_FRESH = 0,
761         NF_READ = 1,
762         NF_GET = 2,
763         NF_PREFETCH = 3
764 };
765
766 /*
767  * Allocate a new buffer. If the allocation is not possible, wait until
768  * some other thread frees a buffer.
769  *
770  * May drop the lock and regain it.
771  */
772 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
773 {
774         struct dm_buffer *b;
775
776         /*
777          * dm-bufio is resistant to allocation failures (it just keeps
778          * one buffer reserved in cases all the allocations fail).
779          * So set flags to not try too hard:
780          *      GFP_NOIO: don't recurse into the I/O layer
781          *      __GFP_NORETRY: don't retry and rather return failure
782          *      __GFP_NOMEMALLOC: don't use emergency reserves
783          *      __GFP_NOWARN: don't print a warning in case of failure
784          *
785          * For debugging, if we set the cache size to 1, no new buffers will
786          * be allocated.
787          */
788         while (1) {
789                 if (dm_bufio_cache_size_latch != 1) {
790                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
791                         if (b)
792                                 return b;
793                 }
794
795                 if (nf == NF_PREFETCH)
796                         return NULL;
797
798                 if (!list_empty(&c->reserved_buffers)) {
799                         b = list_entry(c->reserved_buffers.next,
800                                        struct dm_buffer, lru_list);
801                         list_del(&b->lru_list);
802                         c->need_reserved_buffers++;
803
804                         return b;
805                 }
806
807                 b = __get_unclaimed_buffer(c);
808                 if (b)
809                         return b;
810
811                 __wait_for_free_buffer(c);
812         }
813 }
814
815 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
816 {
817         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
818
819         if (!b)
820                 return NULL;
821
822         if (c->alloc_callback)
823                 c->alloc_callback(b);
824
825         return b;
826 }
827
828 /*
829  * Free a buffer and wake other threads waiting for free buffers.
830  */
831 static void __free_buffer_wake(struct dm_buffer *b)
832 {
833         struct dm_bufio_client *c = b->c;
834
835         if (!c->need_reserved_buffers)
836                 free_buffer(b);
837         else {
838                 list_add(&b->lru_list, &c->reserved_buffers);
839                 c->need_reserved_buffers--;
840         }
841
842         wake_up(&c->free_buffer_wait);
843 }
844
845 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
846                                         struct list_head *write_list)
847 {
848         struct dm_buffer *b, *tmp;
849
850         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
851                 BUG_ON(test_bit(B_READING, &b->state));
852
853                 if (!test_bit(B_DIRTY, &b->state) &&
854                     !test_bit(B_WRITING, &b->state)) {
855                         __relink_lru(b, LIST_CLEAN);
856                         continue;
857                 }
858
859                 if (no_wait && test_bit(B_WRITING, &b->state))
860                         return;
861
862                 __write_dirty_buffer(b, write_list);
863                 dm_bufio_cond_resched();
864         }
865 }
866
867 /*
868  * Get writeback threshold and buffer limit for a given client.
869  */
870 static void __get_memory_limit(struct dm_bufio_client *c,
871                                unsigned long *threshold_buffers,
872                                unsigned long *limit_buffers)
873 {
874         unsigned long buffers;
875
876         if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
877                 mutex_lock(&dm_bufio_clients_lock);
878                 __cache_size_refresh();
879                 mutex_unlock(&dm_bufio_clients_lock);
880         }
881
882         buffers = dm_bufio_cache_size_per_client >>
883                   (c->sectors_per_block_bits + SECTOR_SHIFT);
884
885         if (buffers < c->minimum_buffers)
886                 buffers = c->minimum_buffers;
887
888         *limit_buffers = buffers;
889         *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
890 }
891
892 /*
893  * Check if we're over watermark.
894  * If we are over threshold_buffers, start freeing buffers.
895  * If we're over "limit_buffers", block until we get under the limit.
896  */
897 static void __check_watermark(struct dm_bufio_client *c,
898                               struct list_head *write_list)
899 {
900         unsigned long threshold_buffers, limit_buffers;
901
902         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
903
904         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
905                limit_buffers) {
906
907                 struct dm_buffer *b = __get_unclaimed_buffer(c);
908
909                 if (!b)
910                         return;
911
912                 __free_buffer_wake(b);
913                 dm_bufio_cond_resched();
914         }
915
916         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
917                 __write_dirty_buffers_async(c, 1, write_list);
918 }
919
920 /*
921  * Find a buffer in the hash.
922  */
923 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
924 {
925         struct dm_buffer *b;
926
927         hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
928                              hash_list) {
929                 dm_bufio_cond_resched();
930                 if (b->block == block)
931                         return b;
932         }
933
934         return NULL;
935 }
936
937 /*----------------------------------------------------------------
938  * Getting a buffer
939  *--------------------------------------------------------------*/
940
941 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
942                                      enum new_flag nf, int *need_submit,
943                                      struct list_head *write_list)
944 {
945         struct dm_buffer *b, *new_b = NULL;
946
947         *need_submit = 0;
948
949         b = __find(c, block);
950         if (b)
951                 goto found_buffer;
952
953         if (nf == NF_GET)
954                 return NULL;
955
956         new_b = __alloc_buffer_wait(c, nf);
957         if (!new_b)
958                 return NULL;
959
960         /*
961          * We've had a period where the mutex was unlocked, so need to
962          * recheck the hash table.
963          */
964         b = __find(c, block);
965         if (b) {
966                 __free_buffer_wake(new_b);
967                 goto found_buffer;
968         }
969
970         __check_watermark(c, write_list);
971
972         b = new_b;
973         b->hold_count = 1;
974         b->read_error = 0;
975         b->write_error = 0;
976         __link_buffer(b, block, LIST_CLEAN);
977
978         if (nf == NF_FRESH) {
979                 b->state = 0;
980                 return b;
981         }
982
983         b->state = 1 << B_READING;
984         *need_submit = 1;
985
986         return b;
987
988 found_buffer:
989         if (nf == NF_PREFETCH)
990                 return NULL;
991         /*
992          * Note: it is essential that we don't wait for the buffer to be
993          * read if dm_bufio_get function is used. Both dm_bufio_get and
994          * dm_bufio_prefetch can be used in the driver request routine.
995          * If the user called both dm_bufio_prefetch and dm_bufio_get on
996          * the same buffer, it would deadlock if we waited.
997          */
998         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
999                 return NULL;
1000
1001         b->hold_count++;
1002         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1003                      test_bit(B_WRITING, &b->state));
1004         return b;
1005 }
1006
1007 /*
1008  * The endio routine for reading: set the error, clear the bit and wake up
1009  * anyone waiting on the buffer.
1010  */
1011 static void read_endio(struct bio *bio, int error)
1012 {
1013         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1014
1015         b->read_error = error;
1016
1017         BUG_ON(!test_bit(B_READING, &b->state));
1018
1019         smp_mb__before_clear_bit();
1020         clear_bit(B_READING, &b->state);
1021         smp_mb__after_clear_bit();
1022
1023         wake_up_bit(&b->state, B_READING);
1024 }
1025
1026 /*
1027  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1028  * functions is similar except that dm_bufio_new doesn't read the
1029  * buffer from the disk (assuming that the caller overwrites all the data
1030  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1031  */
1032 static void *new_read(struct dm_bufio_client *c, sector_t block,
1033                       enum new_flag nf, struct dm_buffer **bp)
1034 {
1035         int need_submit;
1036         struct dm_buffer *b;
1037
1038         LIST_HEAD(write_list);
1039
1040         dm_bufio_lock(c);
1041         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1042         dm_bufio_unlock(c);
1043
1044         __flush_write_list(&write_list);
1045
1046         if (!b)
1047                 return b;
1048
1049         if (need_submit)
1050                 submit_io(b, READ, b->block, read_endio);
1051
1052         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1053
1054         if (b->read_error) {
1055                 int error = b->read_error;
1056
1057                 dm_bufio_release(b);
1058
1059                 return ERR_PTR(error);
1060         }
1061
1062         *bp = b;
1063
1064         return b->data;
1065 }
1066
1067 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1068                    struct dm_buffer **bp)
1069 {
1070         return new_read(c, block, NF_GET, bp);
1071 }
1072 EXPORT_SYMBOL_GPL(dm_bufio_get);
1073
1074 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1075                     struct dm_buffer **bp)
1076 {
1077         BUG_ON(dm_bufio_in_request());
1078
1079         return new_read(c, block, NF_READ, bp);
1080 }
1081 EXPORT_SYMBOL_GPL(dm_bufio_read);
1082
1083 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1084                    struct dm_buffer **bp)
1085 {
1086         BUG_ON(dm_bufio_in_request());
1087
1088         return new_read(c, block, NF_FRESH, bp);
1089 }
1090 EXPORT_SYMBOL_GPL(dm_bufio_new);
1091
1092 void dm_bufio_prefetch(struct dm_bufio_client *c,
1093                        sector_t block, unsigned n_blocks)
1094 {
1095         struct blk_plug plug;
1096
1097         LIST_HEAD(write_list);
1098
1099         BUG_ON(dm_bufio_in_request());
1100
1101         blk_start_plug(&plug);
1102         dm_bufio_lock(c);
1103
1104         for (; n_blocks--; block++) {
1105                 int need_submit;
1106                 struct dm_buffer *b;
1107                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1108                                 &write_list);
1109                 if (unlikely(!list_empty(&write_list))) {
1110                         dm_bufio_unlock(c);
1111                         blk_finish_plug(&plug);
1112                         __flush_write_list(&write_list);
1113                         blk_start_plug(&plug);
1114                         dm_bufio_lock(c);
1115                 }
1116                 if (unlikely(b != NULL)) {
1117                         dm_bufio_unlock(c);
1118
1119                         if (need_submit)
1120                                 submit_io(b, READ, b->block, read_endio);
1121                         dm_bufio_release(b);
1122
1123                         dm_bufio_cond_resched();
1124
1125                         if (!n_blocks)
1126                                 goto flush_plug;
1127                         dm_bufio_lock(c);
1128                 }
1129         }
1130
1131         dm_bufio_unlock(c);
1132
1133 flush_plug:
1134         blk_finish_plug(&plug);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1137
1138 void dm_bufio_release(struct dm_buffer *b)
1139 {
1140         struct dm_bufio_client *c = b->c;
1141
1142         dm_bufio_lock(c);
1143
1144         BUG_ON(!b->hold_count);
1145
1146         b->hold_count--;
1147         if (!b->hold_count) {
1148                 wake_up(&c->free_buffer_wait);
1149
1150                 /*
1151                  * If there were errors on the buffer, and the buffer is not
1152                  * to be written, free the buffer. There is no point in caching
1153                  * invalid buffer.
1154                  */
1155                 if ((b->read_error || b->write_error) &&
1156                     !test_bit(B_READING, &b->state) &&
1157                     !test_bit(B_WRITING, &b->state) &&
1158                     !test_bit(B_DIRTY, &b->state)) {
1159                         __unlink_buffer(b);
1160                         __free_buffer_wake(b);
1161                 }
1162         }
1163
1164         dm_bufio_unlock(c);
1165 }
1166 EXPORT_SYMBOL_GPL(dm_bufio_release);
1167
1168 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1169 {
1170         struct dm_bufio_client *c = b->c;
1171
1172         dm_bufio_lock(c);
1173
1174         BUG_ON(test_bit(B_READING, &b->state));
1175
1176         if (!test_and_set_bit(B_DIRTY, &b->state))
1177                 __relink_lru(b, LIST_DIRTY);
1178
1179         dm_bufio_unlock(c);
1180 }
1181 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1182
1183 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1184 {
1185         LIST_HEAD(write_list);
1186
1187         BUG_ON(dm_bufio_in_request());
1188
1189         dm_bufio_lock(c);
1190         __write_dirty_buffers_async(c, 0, &write_list);
1191         dm_bufio_unlock(c);
1192         __flush_write_list(&write_list);
1193 }
1194 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1195
1196 /*
1197  * For performance, it is essential that the buffers are written asynchronously
1198  * and simultaneously (so that the block layer can merge the writes) and then
1199  * waited upon.
1200  *
1201  * Finally, we flush hardware disk cache.
1202  */
1203 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1204 {
1205         int a, f;
1206         unsigned long buffers_processed = 0;
1207         struct dm_buffer *b, *tmp;
1208
1209         LIST_HEAD(write_list);
1210
1211         dm_bufio_lock(c);
1212         __write_dirty_buffers_async(c, 0, &write_list);
1213         dm_bufio_unlock(c);
1214         __flush_write_list(&write_list);
1215         dm_bufio_lock(c);
1216
1217 again:
1218         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1219                 int dropped_lock = 0;
1220
1221                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1222                         buffers_processed++;
1223
1224                 BUG_ON(test_bit(B_READING, &b->state));
1225
1226                 if (test_bit(B_WRITING, &b->state)) {
1227                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1228                                 dropped_lock = 1;
1229                                 b->hold_count++;
1230                                 dm_bufio_unlock(c);
1231                                 wait_on_bit(&b->state, B_WRITING,
1232                                             do_io_schedule,
1233                                             TASK_UNINTERRUPTIBLE);
1234                                 dm_bufio_lock(c);
1235                                 b->hold_count--;
1236                         } else
1237                                 wait_on_bit(&b->state, B_WRITING,
1238                                             do_io_schedule,
1239                                             TASK_UNINTERRUPTIBLE);
1240                 }
1241
1242                 if (!test_bit(B_DIRTY, &b->state) &&
1243                     !test_bit(B_WRITING, &b->state))
1244                         __relink_lru(b, LIST_CLEAN);
1245
1246                 dm_bufio_cond_resched();
1247
1248                 /*
1249                  * If we dropped the lock, the list is no longer consistent,
1250                  * so we must restart the search.
1251                  *
1252                  * In the most common case, the buffer just processed is
1253                  * relinked to the clean list, so we won't loop scanning the
1254                  * same buffer again and again.
1255                  *
1256                  * This may livelock if there is another thread simultaneously
1257                  * dirtying buffers, so we count the number of buffers walked
1258                  * and if it exceeds the total number of buffers, it means that
1259                  * someone is doing some writes simultaneously with us.  In
1260                  * this case, stop, dropping the lock.
1261                  */
1262                 if (dropped_lock)
1263                         goto again;
1264         }
1265         wake_up(&c->free_buffer_wait);
1266         dm_bufio_unlock(c);
1267
1268         a = xchg(&c->async_write_error, 0);
1269         f = dm_bufio_issue_flush(c);
1270         if (a)
1271                 return a;
1272
1273         return f;
1274 }
1275 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1276
1277 /*
1278  * Use dm-io to send and empty barrier flush the device.
1279  */
1280 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1281 {
1282         struct dm_io_request io_req = {
1283                 .bi_rw = WRITE_FLUSH,
1284                 .mem.type = DM_IO_KMEM,
1285                 .mem.ptr.addr = NULL,
1286                 .client = c->dm_io,
1287         };
1288         struct dm_io_region io_reg = {
1289                 .bdev = c->bdev,
1290                 .sector = 0,
1291                 .count = 0,
1292         };
1293
1294         BUG_ON(dm_bufio_in_request());
1295
1296         return dm_io(&io_req, 1, &io_reg, NULL);
1297 }
1298 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1299
1300 /*
1301  * We first delete any other buffer that may be at that new location.
1302  *
1303  * Then, we write the buffer to the original location if it was dirty.
1304  *
1305  * Then, if we are the only one who is holding the buffer, relink the buffer
1306  * in the hash queue for the new location.
1307  *
1308  * If there was someone else holding the buffer, we write it to the new
1309  * location but not relink it, because that other user needs to have the buffer
1310  * at the same place.
1311  */
1312 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1313 {
1314         struct dm_bufio_client *c = b->c;
1315         struct dm_buffer *new;
1316
1317         BUG_ON(dm_bufio_in_request());
1318
1319         dm_bufio_lock(c);
1320
1321 retry:
1322         new = __find(c, new_block);
1323         if (new) {
1324                 if (new->hold_count) {
1325                         __wait_for_free_buffer(c);
1326                         goto retry;
1327                 }
1328
1329                 /*
1330                  * FIXME: Is there any point waiting for a write that's going
1331                  * to be overwritten in a bit?
1332                  */
1333                 __make_buffer_clean(new);
1334                 __unlink_buffer(new);
1335                 __free_buffer_wake(new);
1336         }
1337
1338         BUG_ON(!b->hold_count);
1339         BUG_ON(test_bit(B_READING, &b->state));
1340
1341         __write_dirty_buffer(b, NULL);
1342         if (b->hold_count == 1) {
1343                 wait_on_bit(&b->state, B_WRITING,
1344                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1345                 set_bit(B_DIRTY, &b->state);
1346                 __unlink_buffer(b);
1347                 __link_buffer(b, new_block, LIST_DIRTY);
1348         } else {
1349                 sector_t old_block;
1350                 wait_on_bit_lock(&b->state, B_WRITING,
1351                                  do_io_schedule, TASK_UNINTERRUPTIBLE);
1352                 /*
1353                  * Relink buffer to "new_block" so that write_callback
1354                  * sees "new_block" as a block number.
1355                  * After the write, link the buffer back to old_block.
1356                  * All this must be done in bufio lock, so that block number
1357                  * change isn't visible to other threads.
1358                  */
1359                 old_block = b->block;
1360                 __unlink_buffer(b);
1361                 __link_buffer(b, new_block, b->list_mode);
1362                 submit_io(b, WRITE, new_block, write_endio);
1363                 wait_on_bit(&b->state, B_WRITING,
1364                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1365                 __unlink_buffer(b);
1366                 __link_buffer(b, old_block, b->list_mode);
1367         }
1368
1369         dm_bufio_unlock(c);
1370         dm_bufio_release(b);
1371 }
1372 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1373
1374 /*
1375  * Free the given buffer.
1376  *
1377  * This is just a hint, if the buffer is in use or dirty, this function
1378  * does nothing.
1379  */
1380 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1381 {
1382         struct dm_buffer *b;
1383
1384         dm_bufio_lock(c);
1385
1386         b = __find(c, block);
1387         if (b && likely(!b->hold_count) && likely(!b->state)) {
1388                 __unlink_buffer(b);
1389                 __free_buffer_wake(b);
1390         }
1391
1392         dm_bufio_unlock(c);
1393 }
1394 EXPORT_SYMBOL(dm_bufio_forget);
1395
1396 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1397 {
1398         c->minimum_buffers = n;
1399 }
1400 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1401
1402 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1403 {
1404         return c->block_size;
1405 }
1406 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1407
1408 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1409 {
1410         return i_size_read(c->bdev->bd_inode) >>
1411                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1412 }
1413 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1414
1415 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1416 {
1417         return b->block;
1418 }
1419 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1420
1421 void *dm_bufio_get_block_data(struct dm_buffer *b)
1422 {
1423         return b->data;
1424 }
1425 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1426
1427 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1428 {
1429         return b + 1;
1430 }
1431 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1432
1433 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1434 {
1435         return b->c;
1436 }
1437 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1438
1439 static void drop_buffers(struct dm_bufio_client *c)
1440 {
1441         struct dm_buffer *b;
1442         int i;
1443
1444         BUG_ON(dm_bufio_in_request());
1445
1446         /*
1447          * An optimization so that the buffers are not written one-by-one.
1448          */
1449         dm_bufio_write_dirty_buffers_async(c);
1450
1451         dm_bufio_lock(c);
1452
1453         while ((b = __get_unclaimed_buffer(c)))
1454                 __free_buffer_wake(b);
1455
1456         for (i = 0; i < LIST_SIZE; i++)
1457                 list_for_each_entry(b, &c->lru[i], lru_list)
1458                         DMERR("leaked buffer %llx, hold count %u, list %d",
1459                               (unsigned long long)b->block, b->hold_count, i);
1460
1461         for (i = 0; i < LIST_SIZE; i++)
1462                 BUG_ON(!list_empty(&c->lru[i]));
1463
1464         dm_bufio_unlock(c);
1465 }
1466
1467 /*
1468  * Test if the buffer is unused and too old, and commit it.
1469  * And if GFP_NOFS is used, we must not do any I/O because we hold
1470  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1471  * rerouted to different bufio client.
1472  */
1473 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1474                                 unsigned long max_jiffies)
1475 {
1476         if (jiffies - b->last_accessed < max_jiffies)
1477                 return 0;
1478
1479         if (!(gfp & __GFP_FS)) {
1480                 if (test_bit(B_READING, &b->state) ||
1481                     test_bit(B_WRITING, &b->state) ||
1482                     test_bit(B_DIRTY, &b->state))
1483                         return 0;
1484         }
1485
1486         if (b->hold_count)
1487                 return 0;
1488
1489         __make_buffer_clean(b);
1490         __unlink_buffer(b);
1491         __free_buffer_wake(b);
1492
1493         return 1;
1494 }
1495
1496 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1497                    gfp_t gfp_mask)
1498 {
1499         int l;
1500         struct dm_buffer *b, *tmp;
1501         long freed = 0;
1502
1503         for (l = 0; l < LIST_SIZE; l++) {
1504                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1505                         freed += __cleanup_old_buffer(b, gfp_mask, 0);
1506                         if (!--nr_to_scan)
1507                                 return freed;
1508                         dm_bufio_cond_resched();
1509                 }
1510         }
1511         return freed;
1512 }
1513
1514 static unsigned long
1515 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1516 {
1517         struct dm_bufio_client *c;
1518         unsigned long freed;
1519
1520         c = container_of(shrink, struct dm_bufio_client, shrinker);
1521         if (sc->gfp_mask & __GFP_FS)
1522                 dm_bufio_lock(c);
1523         else if (!dm_bufio_trylock(c))
1524                 return SHRINK_STOP;
1525
1526         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1527         dm_bufio_unlock(c);
1528         return freed;
1529 }
1530
1531 static unsigned long
1532 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1533 {
1534         struct dm_bufio_client *c;
1535         unsigned long count;
1536
1537         c = container_of(shrink, struct dm_bufio_client, shrinker);
1538         if (sc->gfp_mask & __GFP_FS)
1539                 dm_bufio_lock(c);
1540         else if (!dm_bufio_trylock(c))
1541                 return 0;
1542
1543         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1544         dm_bufio_unlock(c);
1545         return count;
1546 }
1547
1548 /*
1549  * Create the buffering interface
1550  */
1551 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1552                                                unsigned reserved_buffers, unsigned aux_size,
1553                                                void (*alloc_callback)(struct dm_buffer *),
1554                                                void (*write_callback)(struct dm_buffer *))
1555 {
1556         int r;
1557         struct dm_bufio_client *c;
1558         unsigned i;
1559
1560         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1561                (block_size & (block_size - 1)));
1562
1563         c = kzalloc(sizeof(*c), GFP_KERNEL);
1564         if (!c) {
1565                 r = -ENOMEM;
1566                 goto bad_client;
1567         }
1568         c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1569         if (!c->cache_hash) {
1570                 r = -ENOMEM;
1571                 goto bad_hash;
1572         }
1573
1574         c->bdev = bdev;
1575         c->block_size = block_size;
1576         c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1577         c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1578                                   ffs(block_size) - 1 - PAGE_SHIFT : 0;
1579         c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1580                                   PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1581
1582         c->aux_size = aux_size;
1583         c->alloc_callback = alloc_callback;
1584         c->write_callback = write_callback;
1585
1586         for (i = 0; i < LIST_SIZE; i++) {
1587                 INIT_LIST_HEAD(&c->lru[i]);
1588                 c->n_buffers[i] = 0;
1589         }
1590
1591         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1592                 INIT_HLIST_HEAD(&c->cache_hash[i]);
1593
1594         mutex_init(&c->lock);
1595         INIT_LIST_HEAD(&c->reserved_buffers);
1596         c->need_reserved_buffers = reserved_buffers;
1597
1598         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1599
1600         init_waitqueue_head(&c->free_buffer_wait);
1601         c->async_write_error = 0;
1602
1603         c->dm_io = dm_io_client_create();
1604         if (IS_ERR(c->dm_io)) {
1605                 r = PTR_ERR(c->dm_io);
1606                 goto bad_dm_io;
1607         }
1608
1609         mutex_lock(&dm_bufio_clients_lock);
1610         if (c->blocks_per_page_bits) {
1611                 if (!DM_BUFIO_CACHE_NAME(c)) {
1612                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1613                         if (!DM_BUFIO_CACHE_NAME(c)) {
1614                                 r = -ENOMEM;
1615                                 mutex_unlock(&dm_bufio_clients_lock);
1616                                 goto bad_cache;
1617                         }
1618                 }
1619
1620                 if (!DM_BUFIO_CACHE(c)) {
1621                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1622                                                               c->block_size,
1623                                                               c->block_size, 0, NULL);
1624                         if (!DM_BUFIO_CACHE(c)) {
1625                                 r = -ENOMEM;
1626                                 mutex_unlock(&dm_bufio_clients_lock);
1627                                 goto bad_cache;
1628                         }
1629                 }
1630         }
1631         mutex_unlock(&dm_bufio_clients_lock);
1632
1633         while (c->need_reserved_buffers) {
1634                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1635
1636                 if (!b) {
1637                         r = -ENOMEM;
1638                         goto bad_buffer;
1639                 }
1640                 __free_buffer_wake(b);
1641         }
1642
1643         mutex_lock(&dm_bufio_clients_lock);
1644         dm_bufio_client_count++;
1645         list_add(&c->client_list, &dm_bufio_all_clients);
1646         __cache_size_refresh();
1647         mutex_unlock(&dm_bufio_clients_lock);
1648
1649         c->shrinker.count_objects = dm_bufio_shrink_count;
1650         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1651         c->shrinker.seeks = 1;
1652         c->shrinker.batch = 0;
1653         register_shrinker(&c->shrinker);
1654
1655         return c;
1656
1657 bad_buffer:
1658 bad_cache:
1659         while (!list_empty(&c->reserved_buffers)) {
1660                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1661                                                  struct dm_buffer, lru_list);
1662                 list_del(&b->lru_list);
1663                 free_buffer(b);
1664         }
1665         dm_io_client_destroy(c->dm_io);
1666 bad_dm_io:
1667         vfree(c->cache_hash);
1668 bad_hash:
1669         kfree(c);
1670 bad_client:
1671         return ERR_PTR(r);
1672 }
1673 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1674
1675 /*
1676  * Free the buffering interface.
1677  * It is required that there are no references on any buffers.
1678  */
1679 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1680 {
1681         unsigned i;
1682
1683         drop_buffers(c);
1684
1685         unregister_shrinker(&c->shrinker);
1686
1687         mutex_lock(&dm_bufio_clients_lock);
1688
1689         list_del(&c->client_list);
1690         dm_bufio_client_count--;
1691         __cache_size_refresh();
1692
1693         mutex_unlock(&dm_bufio_clients_lock);
1694
1695         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1696                 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1697
1698         BUG_ON(c->need_reserved_buffers);
1699
1700         while (!list_empty(&c->reserved_buffers)) {
1701                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1702                                                  struct dm_buffer, lru_list);
1703                 list_del(&b->lru_list);
1704                 free_buffer(b);
1705         }
1706
1707         for (i = 0; i < LIST_SIZE; i++)
1708                 if (c->n_buffers[i])
1709                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1710
1711         for (i = 0; i < LIST_SIZE; i++)
1712                 BUG_ON(c->n_buffers[i]);
1713
1714         dm_io_client_destroy(c->dm_io);
1715         vfree(c->cache_hash);
1716         kfree(c);
1717 }
1718 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1719
1720 static void cleanup_old_buffers(void)
1721 {
1722         unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1723         struct dm_bufio_client *c;
1724
1725         if (max_age > ULONG_MAX / HZ)
1726                 max_age = ULONG_MAX / HZ;
1727
1728         mutex_lock(&dm_bufio_clients_lock);
1729         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1730                 if (!dm_bufio_trylock(c))
1731                         continue;
1732
1733                 while (!list_empty(&c->lru[LIST_CLEAN])) {
1734                         struct dm_buffer *b;
1735                         b = list_entry(c->lru[LIST_CLEAN].prev,
1736                                        struct dm_buffer, lru_list);
1737                         if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1738                                 break;
1739                         dm_bufio_cond_resched();
1740                 }
1741
1742                 dm_bufio_unlock(c);
1743                 dm_bufio_cond_resched();
1744         }
1745         mutex_unlock(&dm_bufio_clients_lock);
1746 }
1747
1748 static struct workqueue_struct *dm_bufio_wq;
1749 static struct delayed_work dm_bufio_work;
1750
1751 static void work_fn(struct work_struct *w)
1752 {
1753         cleanup_old_buffers();
1754
1755         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1756                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1757 }
1758
1759 /*----------------------------------------------------------------
1760  * Module setup
1761  *--------------------------------------------------------------*/
1762
1763 /*
1764  * This is called only once for the whole dm_bufio module.
1765  * It initializes memory limit.
1766  */
1767 static int __init dm_bufio_init(void)
1768 {
1769         __u64 mem;
1770
1771         dm_bufio_allocated_kmem_cache = 0;
1772         dm_bufio_allocated_get_free_pages = 0;
1773         dm_bufio_allocated_vmalloc = 0;
1774         dm_bufio_current_allocated = 0;
1775
1776         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1777         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1778
1779         mem = (__u64)((totalram_pages - totalhigh_pages) *
1780                       DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1781
1782         if (mem > ULONG_MAX)
1783                 mem = ULONG_MAX;
1784
1785 #ifdef CONFIG_MMU
1786         /*
1787          * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1788          * in fs/proc/internal.h
1789          */
1790         if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1791                 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1792 #endif
1793
1794         dm_bufio_default_cache_size = mem;
1795
1796         mutex_lock(&dm_bufio_clients_lock);
1797         __cache_size_refresh();
1798         mutex_unlock(&dm_bufio_clients_lock);
1799
1800         dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1801         if (!dm_bufio_wq)
1802                 return -ENOMEM;
1803
1804         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1805         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1806                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1807
1808         return 0;
1809 }
1810
1811 /*
1812  * This is called once when unloading the dm_bufio module.
1813  */
1814 static void __exit dm_bufio_exit(void)
1815 {
1816         int bug = 0;
1817         int i;
1818
1819         cancel_delayed_work_sync(&dm_bufio_work);
1820         destroy_workqueue(dm_bufio_wq);
1821
1822         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1823                 struct kmem_cache *kc = dm_bufio_caches[i];
1824
1825                 if (kc)
1826                         kmem_cache_destroy(kc);
1827         }
1828
1829         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1830                 kfree(dm_bufio_cache_names[i]);
1831
1832         if (dm_bufio_client_count) {
1833                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1834                         __func__, dm_bufio_client_count);
1835                 bug = 1;
1836         }
1837
1838         if (dm_bufio_current_allocated) {
1839                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1840                         __func__, dm_bufio_current_allocated);
1841                 bug = 1;
1842         }
1843
1844         if (dm_bufio_allocated_get_free_pages) {
1845                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1846                        __func__, dm_bufio_allocated_get_free_pages);
1847                 bug = 1;
1848         }
1849
1850         if (dm_bufio_allocated_vmalloc) {
1851                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1852                        __func__, dm_bufio_allocated_vmalloc);
1853                 bug = 1;
1854         }
1855
1856         if (bug)
1857                 BUG();
1858 }
1859
1860 module_init(dm_bufio_init)
1861 module_exit(dm_bufio_exit)
1862
1863 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1864 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1865
1866 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1867 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1868
1869 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1870 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1871
1872 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1873 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1874
1875 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1876 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1877
1878 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1879 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1880
1881 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1882 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1883
1884 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1885 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1886 MODULE_LICENSE("GPL");