]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/md/dm-cache-target.c
block: add a bi_error field to struct bio
[linux-beck.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #define DM_MSG_PREFIX "cache"
22
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24         "A percentage of time allocated for copying to and/or from cache");
25
26 /*----------------------------------------------------------------*/
27
28 #define IOT_RESOLUTION 4
29
30 struct io_tracker {
31         spinlock_t lock;
32
33         /*
34          * Sectors of in-flight IO.
35          */
36         sector_t in_flight;
37
38         /*
39          * The time, in jiffies, when this device became idle (if it is
40          * indeed idle).
41          */
42         unsigned long idle_time;
43         unsigned long last_update_time;
44 };
45
46 static void iot_init(struct io_tracker *iot)
47 {
48         spin_lock_init(&iot->lock);
49         iot->in_flight = 0ul;
50         iot->idle_time = 0ul;
51         iot->last_update_time = jiffies;
52 }
53
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56         if (iot->in_flight)
57                 return false;
58
59         return time_after(jiffies, iot->idle_time + jifs);
60 }
61
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64         bool r;
65         unsigned long flags;
66
67         spin_lock_irqsave(&iot->lock, flags);
68         r = __iot_idle_for(iot, jifs);
69         spin_unlock_irqrestore(&iot->lock, flags);
70
71         return r;
72 }
73
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76         unsigned long flags;
77
78         spin_lock_irqsave(&iot->lock, flags);
79         iot->in_flight += len;
80         spin_unlock_irqrestore(&iot->lock, flags);
81 }
82
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85         iot->in_flight -= len;
86         if (!iot->in_flight)
87                 iot->idle_time = jiffies;
88 }
89
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92         unsigned long flags;
93
94         spin_lock_irqsave(&iot->lock, flags);
95         __iot_io_end(iot, len);
96         spin_unlock_irqrestore(&iot->lock, flags);
97 }
98
99 /*----------------------------------------------------------------*/
100
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *            either direction
110  */
111
112 /*----------------------------------------------------------------*/
113
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120         bio_end_io_t *bi_end_io;
121         void *bi_private;
122 };
123
124 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
125                         bio_end_io_t *bi_end_io, void *bi_private)
126 {
127         h->bi_end_io = bio->bi_end_io;
128         h->bi_private = bio->bi_private;
129
130         bio->bi_end_io = bi_end_io;
131         bio->bi_private = bi_private;
132 }
133
134 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
135 {
136         bio->bi_end_io = h->bi_end_io;
137         bio->bi_private = h->bi_private;
138 }
139
140 /*----------------------------------------------------------------*/
141
142 #define MIGRATION_POOL_SIZE 128
143 #define COMMIT_PERIOD HZ
144 #define MIGRATION_COUNT_WINDOW 10
145
146 /*
147  * The block size of the device holding cache data must be
148  * between 32KB and 1GB.
149  */
150 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
151 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
152
153 enum cache_metadata_mode {
154         CM_WRITE,               /* metadata may be changed */
155         CM_READ_ONLY,           /* metadata may not be changed */
156         CM_FAIL
157 };
158
159 enum cache_io_mode {
160         /*
161          * Data is written to cached blocks only.  These blocks are marked
162          * dirty.  If you lose the cache device you will lose data.
163          * Potential performance increase for both reads and writes.
164          */
165         CM_IO_WRITEBACK,
166
167         /*
168          * Data is written to both cache and origin.  Blocks are never
169          * dirty.  Potential performance benfit for reads only.
170          */
171         CM_IO_WRITETHROUGH,
172
173         /*
174          * A degraded mode useful for various cache coherency situations
175          * (eg, rolling back snapshots).  Reads and writes always go to the
176          * origin.  If a write goes to a cached oblock, then the cache
177          * block is invalidated.
178          */
179         CM_IO_PASSTHROUGH
180 };
181
182 struct cache_features {
183         enum cache_metadata_mode mode;
184         enum cache_io_mode io_mode;
185 };
186
187 struct cache_stats {
188         atomic_t read_hit;
189         atomic_t read_miss;
190         atomic_t write_hit;
191         atomic_t write_miss;
192         atomic_t demotion;
193         atomic_t promotion;
194         atomic_t copies_avoided;
195         atomic_t cache_cell_clash;
196         atomic_t commit_count;
197         atomic_t discard_count;
198 };
199
200 /*
201  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
202  * the one-past-the-end value.
203  */
204 struct cblock_range {
205         dm_cblock_t begin;
206         dm_cblock_t end;
207 };
208
209 struct invalidation_request {
210         struct list_head list;
211         struct cblock_range *cblocks;
212
213         atomic_t complete;
214         int err;
215
216         wait_queue_head_t result_wait;
217 };
218
219 struct cache {
220         struct dm_target *ti;
221         struct dm_target_callbacks callbacks;
222
223         struct dm_cache_metadata *cmd;
224
225         /*
226          * Metadata is written to this device.
227          */
228         struct dm_dev *metadata_dev;
229
230         /*
231          * The slower of the two data devices.  Typically a spindle.
232          */
233         struct dm_dev *origin_dev;
234
235         /*
236          * The faster of the two data devices.  Typically an SSD.
237          */
238         struct dm_dev *cache_dev;
239
240         /*
241          * Size of the origin device in _complete_ blocks and native sectors.
242          */
243         dm_oblock_t origin_blocks;
244         sector_t origin_sectors;
245
246         /*
247          * Size of the cache device in blocks.
248          */
249         dm_cblock_t cache_size;
250
251         /*
252          * Fields for converting from sectors to blocks.
253          */
254         uint32_t sectors_per_block;
255         int sectors_per_block_shift;
256
257         spinlock_t lock;
258         struct list_head deferred_cells;
259         struct bio_list deferred_bios;
260         struct bio_list deferred_flush_bios;
261         struct bio_list deferred_writethrough_bios;
262         struct list_head quiesced_migrations;
263         struct list_head completed_migrations;
264         struct list_head need_commit_migrations;
265         sector_t migration_threshold;
266         wait_queue_head_t migration_wait;
267         atomic_t nr_allocated_migrations;
268
269         /*
270          * The number of in flight migrations that are performing
271          * background io. eg, promotion, writeback.
272          */
273         atomic_t nr_io_migrations;
274
275         wait_queue_head_t quiescing_wait;
276         atomic_t quiescing;
277         atomic_t quiescing_ack;
278
279         /*
280          * cache_size entries, dirty if set
281          */
282         atomic_t nr_dirty;
283         unsigned long *dirty_bitset;
284
285         /*
286          * origin_blocks entries, discarded if set.
287          */
288         dm_dblock_t discard_nr_blocks;
289         unsigned long *discard_bitset;
290         uint32_t discard_block_size; /* a power of 2 times sectors per block */
291
292         /*
293          * Rather than reconstructing the table line for the status we just
294          * save it and regurgitate.
295          */
296         unsigned nr_ctr_args;
297         const char **ctr_args;
298
299         struct dm_kcopyd_client *copier;
300         struct workqueue_struct *wq;
301         struct work_struct worker;
302
303         struct delayed_work waker;
304         unsigned long last_commit_jiffies;
305
306         struct dm_bio_prison *prison;
307         struct dm_deferred_set *all_io_ds;
308
309         mempool_t *migration_pool;
310
311         struct dm_cache_policy *policy;
312         unsigned policy_nr_args;
313
314         bool need_tick_bio:1;
315         bool sized:1;
316         bool invalidate:1;
317         bool commit_requested:1;
318         bool loaded_mappings:1;
319         bool loaded_discards:1;
320
321         /*
322          * Cache features such as write-through.
323          */
324         struct cache_features features;
325
326         struct cache_stats stats;
327
328         /*
329          * Invalidation fields.
330          */
331         spinlock_t invalidation_lock;
332         struct list_head invalidation_requests;
333
334         struct io_tracker origin_tracker;
335 };
336
337 struct per_bio_data {
338         bool tick:1;
339         unsigned req_nr:2;
340         struct dm_deferred_entry *all_io_entry;
341         struct dm_hook_info hook_info;
342         sector_t len;
343
344         /*
345          * writethrough fields.  These MUST remain at the end of this
346          * structure and the 'cache' member must be the first as it
347          * is used to determine the offset of the writethrough fields.
348          */
349         struct cache *cache;
350         dm_cblock_t cblock;
351         struct dm_bio_details bio_details;
352 };
353
354 struct dm_cache_migration {
355         struct list_head list;
356         struct cache *cache;
357
358         unsigned long start_jiffies;
359         dm_oblock_t old_oblock;
360         dm_oblock_t new_oblock;
361         dm_cblock_t cblock;
362
363         bool err:1;
364         bool discard:1;
365         bool writeback:1;
366         bool demote:1;
367         bool promote:1;
368         bool requeue_holder:1;
369         bool invalidate:1;
370
371         struct dm_bio_prison_cell *old_ocell;
372         struct dm_bio_prison_cell *new_ocell;
373 };
374
375 /*
376  * Processing a bio in the worker thread may require these memory
377  * allocations.  We prealloc to avoid deadlocks (the same worker thread
378  * frees them back to the mempool).
379  */
380 struct prealloc {
381         struct dm_cache_migration *mg;
382         struct dm_bio_prison_cell *cell1;
383         struct dm_bio_prison_cell *cell2;
384 };
385
386 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
387
388 static void wake_worker(struct cache *cache)
389 {
390         queue_work(cache->wq, &cache->worker);
391 }
392
393 /*----------------------------------------------------------------*/
394
395 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
396 {
397         /* FIXME: change to use a local slab. */
398         return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
399 }
400
401 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
402 {
403         dm_bio_prison_free_cell(cache->prison, cell);
404 }
405
406 static struct dm_cache_migration *alloc_migration(struct cache *cache)
407 {
408         struct dm_cache_migration *mg;
409
410         mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
411         if (mg) {
412                 mg->cache = cache;
413                 atomic_inc(&mg->cache->nr_allocated_migrations);
414         }
415
416         return mg;
417 }
418
419 static void free_migration(struct dm_cache_migration *mg)
420 {
421         struct cache *cache = mg->cache;
422
423         if (atomic_dec_and_test(&cache->nr_allocated_migrations))
424                 wake_up(&cache->migration_wait);
425
426         mempool_free(mg, cache->migration_pool);
427         wake_worker(cache);
428 }
429
430 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
431 {
432         if (!p->mg) {
433                 p->mg = alloc_migration(cache);
434                 if (!p->mg)
435                         return -ENOMEM;
436         }
437
438         if (!p->cell1) {
439                 p->cell1 = alloc_prison_cell(cache);
440                 if (!p->cell1)
441                         return -ENOMEM;
442         }
443
444         if (!p->cell2) {
445                 p->cell2 = alloc_prison_cell(cache);
446                 if (!p->cell2)
447                         return -ENOMEM;
448         }
449
450         return 0;
451 }
452
453 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
454 {
455         if (p->cell2)
456                 free_prison_cell(cache, p->cell2);
457
458         if (p->cell1)
459                 free_prison_cell(cache, p->cell1);
460
461         if (p->mg)
462                 free_migration(p->mg);
463 }
464
465 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
466 {
467         struct dm_cache_migration *mg = p->mg;
468
469         BUG_ON(!mg);
470         p->mg = NULL;
471
472         return mg;
473 }
474
475 /*
476  * You must have a cell within the prealloc struct to return.  If not this
477  * function will BUG() rather than returning NULL.
478  */
479 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
480 {
481         struct dm_bio_prison_cell *r = NULL;
482
483         if (p->cell1) {
484                 r = p->cell1;
485                 p->cell1 = NULL;
486
487         } else if (p->cell2) {
488                 r = p->cell2;
489                 p->cell2 = NULL;
490         } else
491                 BUG();
492
493         return r;
494 }
495
496 /*
497  * You can't have more than two cells in a prealloc struct.  BUG() will be
498  * called if you try and overfill.
499  */
500 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
501 {
502         if (!p->cell2)
503                 p->cell2 = cell;
504
505         else if (!p->cell1)
506                 p->cell1 = cell;
507
508         else
509                 BUG();
510 }
511
512 /*----------------------------------------------------------------*/
513
514 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
515 {
516         key->virtual = 0;
517         key->dev = 0;
518         key->block_begin = from_oblock(begin);
519         key->block_end = from_oblock(end);
520 }
521
522 /*
523  * The caller hands in a preallocated cell, and a free function for it.
524  * The cell will be freed if there's an error, or if it wasn't used because
525  * a cell with that key already exists.
526  */
527 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
528
529 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
530                             struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
531                             cell_free_fn free_fn, void *free_context,
532                             struct dm_bio_prison_cell **cell_result)
533 {
534         int r;
535         struct dm_cell_key key;
536
537         build_key(oblock_begin, oblock_end, &key);
538         r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
539         if (r)
540                 free_fn(free_context, cell_prealloc);
541
542         return r;
543 }
544
545 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
546                       struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
547                       cell_free_fn free_fn, void *free_context,
548                       struct dm_bio_prison_cell **cell_result)
549 {
550         dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
551         return bio_detain_range(cache, oblock, end, bio,
552                                 cell_prealloc, free_fn, free_context, cell_result);
553 }
554
555 static int get_cell(struct cache *cache,
556                     dm_oblock_t oblock,
557                     struct prealloc *structs,
558                     struct dm_bio_prison_cell **cell_result)
559 {
560         int r;
561         struct dm_cell_key key;
562         struct dm_bio_prison_cell *cell_prealloc;
563
564         cell_prealloc = prealloc_get_cell(structs);
565
566         build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
567         r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
568         if (r)
569                 prealloc_put_cell(structs, cell_prealloc);
570
571         return r;
572 }
573
574 /*----------------------------------------------------------------*/
575
576 static bool is_dirty(struct cache *cache, dm_cblock_t b)
577 {
578         return test_bit(from_cblock(b), cache->dirty_bitset);
579 }
580
581 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
582 {
583         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
584                 atomic_inc(&cache->nr_dirty);
585                 policy_set_dirty(cache->policy, oblock);
586         }
587 }
588
589 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
590 {
591         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
592                 policy_clear_dirty(cache->policy, oblock);
593                 if (atomic_dec_return(&cache->nr_dirty) == 0)
594                         dm_table_event(cache->ti->table);
595         }
596 }
597
598 /*----------------------------------------------------------------*/
599
600 static bool block_size_is_power_of_two(struct cache *cache)
601 {
602         return cache->sectors_per_block_shift >= 0;
603 }
604
605 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
606 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
607 __always_inline
608 #endif
609 static dm_block_t block_div(dm_block_t b, uint32_t n)
610 {
611         do_div(b, n);
612
613         return b;
614 }
615
616 static dm_block_t oblocks_per_dblock(struct cache *cache)
617 {
618         dm_block_t oblocks = cache->discard_block_size;
619
620         if (block_size_is_power_of_two(cache))
621                 oblocks >>= cache->sectors_per_block_shift;
622         else
623                 oblocks = block_div(oblocks, cache->sectors_per_block);
624
625         return oblocks;
626 }
627
628 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
629 {
630         return to_dblock(block_div(from_oblock(oblock),
631                                    oblocks_per_dblock(cache)));
632 }
633
634 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
635 {
636         return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
637 }
638
639 static void set_discard(struct cache *cache, dm_dblock_t b)
640 {
641         unsigned long flags;
642
643         BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
644         atomic_inc(&cache->stats.discard_count);
645
646         spin_lock_irqsave(&cache->lock, flags);
647         set_bit(from_dblock(b), cache->discard_bitset);
648         spin_unlock_irqrestore(&cache->lock, flags);
649 }
650
651 static void clear_discard(struct cache *cache, dm_dblock_t b)
652 {
653         unsigned long flags;
654
655         spin_lock_irqsave(&cache->lock, flags);
656         clear_bit(from_dblock(b), cache->discard_bitset);
657         spin_unlock_irqrestore(&cache->lock, flags);
658 }
659
660 static bool is_discarded(struct cache *cache, dm_dblock_t b)
661 {
662         int r;
663         unsigned long flags;
664
665         spin_lock_irqsave(&cache->lock, flags);
666         r = test_bit(from_dblock(b), cache->discard_bitset);
667         spin_unlock_irqrestore(&cache->lock, flags);
668
669         return r;
670 }
671
672 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
673 {
674         int r;
675         unsigned long flags;
676
677         spin_lock_irqsave(&cache->lock, flags);
678         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
679                      cache->discard_bitset);
680         spin_unlock_irqrestore(&cache->lock, flags);
681
682         return r;
683 }
684
685 /*----------------------------------------------------------------*/
686
687 static void load_stats(struct cache *cache)
688 {
689         struct dm_cache_statistics stats;
690
691         dm_cache_metadata_get_stats(cache->cmd, &stats);
692         atomic_set(&cache->stats.read_hit, stats.read_hits);
693         atomic_set(&cache->stats.read_miss, stats.read_misses);
694         atomic_set(&cache->stats.write_hit, stats.write_hits);
695         atomic_set(&cache->stats.write_miss, stats.write_misses);
696 }
697
698 static void save_stats(struct cache *cache)
699 {
700         struct dm_cache_statistics stats;
701
702         if (get_cache_mode(cache) >= CM_READ_ONLY)
703                 return;
704
705         stats.read_hits = atomic_read(&cache->stats.read_hit);
706         stats.read_misses = atomic_read(&cache->stats.read_miss);
707         stats.write_hits = atomic_read(&cache->stats.write_hit);
708         stats.write_misses = atomic_read(&cache->stats.write_miss);
709
710         dm_cache_metadata_set_stats(cache->cmd, &stats);
711 }
712
713 /*----------------------------------------------------------------
714  * Per bio data
715  *--------------------------------------------------------------*/
716
717 /*
718  * If using writeback, leave out struct per_bio_data's writethrough fields.
719  */
720 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
721 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
722
723 static bool writethrough_mode(struct cache_features *f)
724 {
725         return f->io_mode == CM_IO_WRITETHROUGH;
726 }
727
728 static bool writeback_mode(struct cache_features *f)
729 {
730         return f->io_mode == CM_IO_WRITEBACK;
731 }
732
733 static bool passthrough_mode(struct cache_features *f)
734 {
735         return f->io_mode == CM_IO_PASSTHROUGH;
736 }
737
738 static size_t get_per_bio_data_size(struct cache *cache)
739 {
740         return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
741 }
742
743 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
744 {
745         struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
746         BUG_ON(!pb);
747         return pb;
748 }
749
750 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
751 {
752         struct per_bio_data *pb = get_per_bio_data(bio, data_size);
753
754         pb->tick = false;
755         pb->req_nr = dm_bio_get_target_bio_nr(bio);
756         pb->all_io_entry = NULL;
757         pb->len = 0;
758
759         return pb;
760 }
761
762 /*----------------------------------------------------------------
763  * Remapping
764  *--------------------------------------------------------------*/
765 static void remap_to_origin(struct cache *cache, struct bio *bio)
766 {
767         bio->bi_bdev = cache->origin_dev->bdev;
768 }
769
770 static void remap_to_cache(struct cache *cache, struct bio *bio,
771                            dm_cblock_t cblock)
772 {
773         sector_t bi_sector = bio->bi_iter.bi_sector;
774         sector_t block = from_cblock(cblock);
775
776         bio->bi_bdev = cache->cache_dev->bdev;
777         if (!block_size_is_power_of_two(cache))
778                 bio->bi_iter.bi_sector =
779                         (block * cache->sectors_per_block) +
780                         sector_div(bi_sector, cache->sectors_per_block);
781         else
782                 bio->bi_iter.bi_sector =
783                         (block << cache->sectors_per_block_shift) |
784                         (bi_sector & (cache->sectors_per_block - 1));
785 }
786
787 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
788 {
789         unsigned long flags;
790         size_t pb_data_size = get_per_bio_data_size(cache);
791         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
792
793         spin_lock_irqsave(&cache->lock, flags);
794         if (cache->need_tick_bio &&
795             !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
796                 pb->tick = true;
797                 cache->need_tick_bio = false;
798         }
799         spin_unlock_irqrestore(&cache->lock, flags);
800 }
801
802 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
803                                   dm_oblock_t oblock)
804 {
805         check_if_tick_bio_needed(cache, bio);
806         remap_to_origin(cache, bio);
807         if (bio_data_dir(bio) == WRITE)
808                 clear_discard(cache, oblock_to_dblock(cache, oblock));
809 }
810
811 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
812                                  dm_oblock_t oblock, dm_cblock_t cblock)
813 {
814         check_if_tick_bio_needed(cache, bio);
815         remap_to_cache(cache, bio, cblock);
816         if (bio_data_dir(bio) == WRITE) {
817                 set_dirty(cache, oblock, cblock);
818                 clear_discard(cache, oblock_to_dblock(cache, oblock));
819         }
820 }
821
822 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
823 {
824         sector_t block_nr = bio->bi_iter.bi_sector;
825
826         if (!block_size_is_power_of_two(cache))
827                 (void) sector_div(block_nr, cache->sectors_per_block);
828         else
829                 block_nr >>= cache->sectors_per_block_shift;
830
831         return to_oblock(block_nr);
832 }
833
834 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
835 {
836         return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
837 }
838
839 /*
840  * You must increment the deferred set whilst the prison cell is held.  To
841  * encourage this, we ask for 'cell' to be passed in.
842  */
843 static void inc_ds(struct cache *cache, struct bio *bio,
844                    struct dm_bio_prison_cell *cell)
845 {
846         size_t pb_data_size = get_per_bio_data_size(cache);
847         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
848
849         BUG_ON(!cell);
850         BUG_ON(pb->all_io_entry);
851
852         pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
853 }
854
855 static bool accountable_bio(struct cache *cache, struct bio *bio)
856 {
857         return ((bio->bi_bdev == cache->origin_dev->bdev) &&
858                 !(bio->bi_rw & REQ_DISCARD));
859 }
860
861 static void accounted_begin(struct cache *cache, struct bio *bio)
862 {
863         size_t pb_data_size = get_per_bio_data_size(cache);
864         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
865
866         if (accountable_bio(cache, bio)) {
867                 pb->len = bio_sectors(bio);
868                 iot_io_begin(&cache->origin_tracker, pb->len);
869         }
870 }
871
872 static void accounted_complete(struct cache *cache, struct bio *bio)
873 {
874         size_t pb_data_size = get_per_bio_data_size(cache);
875         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
876
877         iot_io_end(&cache->origin_tracker, pb->len);
878 }
879
880 static void accounted_request(struct cache *cache, struct bio *bio)
881 {
882         accounted_begin(cache, bio);
883         generic_make_request(bio);
884 }
885
886 static void issue(struct cache *cache, struct bio *bio)
887 {
888         unsigned long flags;
889
890         if (!bio_triggers_commit(cache, bio)) {
891                 accounted_request(cache, bio);
892                 return;
893         }
894
895         /*
896          * Batch together any bios that trigger commits and then issue a
897          * single commit for them in do_worker().
898          */
899         spin_lock_irqsave(&cache->lock, flags);
900         cache->commit_requested = true;
901         bio_list_add(&cache->deferred_flush_bios, bio);
902         spin_unlock_irqrestore(&cache->lock, flags);
903 }
904
905 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
906 {
907         inc_ds(cache, bio, cell);
908         issue(cache, bio);
909 }
910
911 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
912 {
913         unsigned long flags;
914
915         spin_lock_irqsave(&cache->lock, flags);
916         bio_list_add(&cache->deferred_writethrough_bios, bio);
917         spin_unlock_irqrestore(&cache->lock, flags);
918
919         wake_worker(cache);
920 }
921
922 static void writethrough_endio(struct bio *bio)
923 {
924         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
925
926         dm_unhook_bio(&pb->hook_info, bio);
927
928         if (bio->bi_error) {
929                 bio_endio(bio);
930                 return;
931         }
932
933         dm_bio_restore(&pb->bio_details, bio);
934         remap_to_cache(pb->cache, bio, pb->cblock);
935
936         /*
937          * We can't issue this bio directly, since we're in interrupt
938          * context.  So it gets put on a bio list for processing by the
939          * worker thread.
940          */
941         defer_writethrough_bio(pb->cache, bio);
942 }
943
944 /*
945  * When running in writethrough mode we need to send writes to clean blocks
946  * to both the cache and origin devices.  In future we'd like to clone the
947  * bio and send them in parallel, but for now we're doing them in
948  * series as this is easier.
949  */
950 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
951                                        dm_oblock_t oblock, dm_cblock_t cblock)
952 {
953         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
954
955         pb->cache = cache;
956         pb->cblock = cblock;
957         dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
958         dm_bio_record(&pb->bio_details, bio);
959
960         remap_to_origin_clear_discard(pb->cache, bio, oblock);
961 }
962
963 /*----------------------------------------------------------------
964  * Failure modes
965  *--------------------------------------------------------------*/
966 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
967 {
968         return cache->features.mode;
969 }
970
971 static const char *cache_device_name(struct cache *cache)
972 {
973         return dm_device_name(dm_table_get_md(cache->ti->table));
974 }
975
976 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
977 {
978         const char *descs[] = {
979                 "write",
980                 "read-only",
981                 "fail"
982         };
983
984         dm_table_event(cache->ti->table);
985         DMINFO("%s: switching cache to %s mode",
986                cache_device_name(cache), descs[(int)mode]);
987 }
988
989 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
990 {
991         bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
992         enum cache_metadata_mode old_mode = get_cache_mode(cache);
993
994         if (new_mode == CM_WRITE && needs_check) {
995                 DMERR("%s: unable to switch cache to write mode until repaired.",
996                       cache_device_name(cache));
997                 if (old_mode != new_mode)
998                         new_mode = old_mode;
999                 else
1000                         new_mode = CM_READ_ONLY;
1001         }
1002
1003         /* Never move out of fail mode */
1004         if (old_mode == CM_FAIL)
1005                 new_mode = CM_FAIL;
1006
1007         switch (new_mode) {
1008         case CM_FAIL:
1009         case CM_READ_ONLY:
1010                 dm_cache_metadata_set_read_only(cache->cmd);
1011                 break;
1012
1013         case CM_WRITE:
1014                 dm_cache_metadata_set_read_write(cache->cmd);
1015                 break;
1016         }
1017
1018         cache->features.mode = new_mode;
1019
1020         if (new_mode != old_mode)
1021                 notify_mode_switch(cache, new_mode);
1022 }
1023
1024 static void abort_transaction(struct cache *cache)
1025 {
1026         const char *dev_name = cache_device_name(cache);
1027
1028         if (get_cache_mode(cache) >= CM_READ_ONLY)
1029                 return;
1030
1031         if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1032                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1033                 set_cache_mode(cache, CM_FAIL);
1034         }
1035
1036         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1037         if (dm_cache_metadata_abort(cache->cmd)) {
1038                 DMERR("%s: failed to abort metadata transaction", dev_name);
1039                 set_cache_mode(cache, CM_FAIL);
1040         }
1041 }
1042
1043 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1044 {
1045         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1046                     cache_device_name(cache), op, r);
1047         abort_transaction(cache);
1048         set_cache_mode(cache, CM_READ_ONLY);
1049 }
1050
1051 /*----------------------------------------------------------------
1052  * Migration processing
1053  *
1054  * Migration covers moving data from the origin device to the cache, or
1055  * vice versa.
1056  *--------------------------------------------------------------*/
1057 static void inc_io_migrations(struct cache *cache)
1058 {
1059         atomic_inc(&cache->nr_io_migrations);
1060 }
1061
1062 static void dec_io_migrations(struct cache *cache)
1063 {
1064         atomic_dec(&cache->nr_io_migrations);
1065 }
1066
1067 static void __cell_release(struct cache *cache, struct dm_bio_prison_cell *cell,
1068                            bool holder, struct bio_list *bios)
1069 {
1070         (holder ? dm_cell_release : dm_cell_release_no_holder)
1071                 (cache->prison, cell, bios);
1072         free_prison_cell(cache, cell);
1073 }
1074
1075 static bool discard_or_flush(struct bio *bio)
1076 {
1077         return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1078 }
1079
1080 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1081 {
1082         if (discard_or_flush(cell->holder))
1083                 /*
1084                  * We have to handle these bios
1085                  * individually.
1086                  */
1087                 __cell_release(cache, cell, true, &cache->deferred_bios);
1088
1089         else
1090                 list_add_tail(&cell->user_list, &cache->deferred_cells);
1091 }
1092
1093 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1094 {
1095         unsigned long flags;
1096
1097         if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1098                 /*
1099                  * There was no prisoner to promote to holder, the
1100                  * cell has been released.
1101                  */
1102                 free_prison_cell(cache, cell);
1103                 return;
1104         }
1105
1106         spin_lock_irqsave(&cache->lock, flags);
1107         __cell_defer(cache, cell);
1108         spin_unlock_irqrestore(&cache->lock, flags);
1109
1110         wake_worker(cache);
1111 }
1112
1113 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1114 {
1115         dm_cell_error(cache->prison, cell, err);
1116         dm_bio_prison_free_cell(cache->prison, cell);
1117 }
1118
1119 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1120 {
1121         cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1122 }
1123
1124 static void free_io_migration(struct dm_cache_migration *mg)
1125 {
1126         dec_io_migrations(mg->cache);
1127         free_migration(mg);
1128 }
1129
1130 static void migration_failure(struct dm_cache_migration *mg)
1131 {
1132         struct cache *cache = mg->cache;
1133         const char *dev_name = cache_device_name(cache);
1134
1135         if (mg->writeback) {
1136                 DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1137                 set_dirty(cache, mg->old_oblock, mg->cblock);
1138                 cell_defer(cache, mg->old_ocell, false);
1139
1140         } else if (mg->demote) {
1141                 DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1142                 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1143
1144                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1145                 if (mg->promote)
1146                         cell_defer(cache, mg->new_ocell, true);
1147         } else {
1148                 DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1149                 policy_remove_mapping(cache->policy, mg->new_oblock);
1150                 cell_defer(cache, mg->new_ocell, true);
1151         }
1152
1153         free_io_migration(mg);
1154 }
1155
1156 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1157 {
1158         int r;
1159         unsigned long flags;
1160         struct cache *cache = mg->cache;
1161
1162         if (mg->writeback) {
1163                 clear_dirty(cache, mg->old_oblock, mg->cblock);
1164                 cell_defer(cache, mg->old_ocell, false);
1165                 free_io_migration(mg);
1166                 return;
1167
1168         } else if (mg->demote) {
1169                 r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1170                 if (r) {
1171                         DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1172                                     cache_device_name(cache));
1173                         metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1174                         policy_force_mapping(cache->policy, mg->new_oblock,
1175                                              mg->old_oblock);
1176                         if (mg->promote)
1177                                 cell_defer(cache, mg->new_ocell, true);
1178                         free_io_migration(mg);
1179                         return;
1180                 }
1181         } else {
1182                 r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1183                 if (r) {
1184                         DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1185                                     cache_device_name(cache));
1186                         metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1187                         policy_remove_mapping(cache->policy, mg->new_oblock);
1188                         free_io_migration(mg);
1189                         return;
1190                 }
1191         }
1192
1193         spin_lock_irqsave(&cache->lock, flags);
1194         list_add_tail(&mg->list, &cache->need_commit_migrations);
1195         cache->commit_requested = true;
1196         spin_unlock_irqrestore(&cache->lock, flags);
1197 }
1198
1199 static void migration_success_post_commit(struct dm_cache_migration *mg)
1200 {
1201         unsigned long flags;
1202         struct cache *cache = mg->cache;
1203
1204         if (mg->writeback) {
1205                 DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1206                              cache_device_name(cache));
1207                 return;
1208
1209         } else if (mg->demote) {
1210                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1211
1212                 if (mg->promote) {
1213                         mg->demote = false;
1214
1215                         spin_lock_irqsave(&cache->lock, flags);
1216                         list_add_tail(&mg->list, &cache->quiesced_migrations);
1217                         spin_unlock_irqrestore(&cache->lock, flags);
1218
1219                 } else {
1220                         if (mg->invalidate)
1221                                 policy_remove_mapping(cache->policy, mg->old_oblock);
1222                         free_io_migration(mg);
1223                 }
1224
1225         } else {
1226                 if (mg->requeue_holder) {
1227                         clear_dirty(cache, mg->new_oblock, mg->cblock);
1228                         cell_defer(cache, mg->new_ocell, true);
1229                 } else {
1230                         /*
1231                          * The block was promoted via an overwrite, so it's dirty.
1232                          */
1233                         set_dirty(cache, mg->new_oblock, mg->cblock);
1234                         bio_endio(mg->new_ocell->holder);
1235                         cell_defer(cache, mg->new_ocell, false);
1236                 }
1237                 free_io_migration(mg);
1238         }
1239 }
1240
1241 static void copy_complete(int read_err, unsigned long write_err, void *context)
1242 {
1243         unsigned long flags;
1244         struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1245         struct cache *cache = mg->cache;
1246
1247         if (read_err || write_err)
1248                 mg->err = true;
1249
1250         spin_lock_irqsave(&cache->lock, flags);
1251         list_add_tail(&mg->list, &cache->completed_migrations);
1252         spin_unlock_irqrestore(&cache->lock, flags);
1253
1254         wake_worker(cache);
1255 }
1256
1257 static void issue_copy(struct dm_cache_migration *mg)
1258 {
1259         int r;
1260         struct dm_io_region o_region, c_region;
1261         struct cache *cache = mg->cache;
1262         sector_t cblock = from_cblock(mg->cblock);
1263
1264         o_region.bdev = cache->origin_dev->bdev;
1265         o_region.count = cache->sectors_per_block;
1266
1267         c_region.bdev = cache->cache_dev->bdev;
1268         c_region.sector = cblock * cache->sectors_per_block;
1269         c_region.count = cache->sectors_per_block;
1270
1271         if (mg->writeback || mg->demote) {
1272                 /* demote */
1273                 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1274                 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1275         } else {
1276                 /* promote */
1277                 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1278                 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1279         }
1280
1281         if (r < 0) {
1282                 DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1283                 migration_failure(mg);
1284         }
1285 }
1286
1287 static void overwrite_endio(struct bio *bio)
1288 {
1289         struct dm_cache_migration *mg = bio->bi_private;
1290         struct cache *cache = mg->cache;
1291         size_t pb_data_size = get_per_bio_data_size(cache);
1292         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1293         unsigned long flags;
1294
1295         dm_unhook_bio(&pb->hook_info, bio);
1296
1297         if (bio->bi_error)
1298                 mg->err = true;
1299
1300         mg->requeue_holder = false;
1301
1302         spin_lock_irqsave(&cache->lock, flags);
1303         list_add_tail(&mg->list, &cache->completed_migrations);
1304         spin_unlock_irqrestore(&cache->lock, flags);
1305
1306         wake_worker(cache);
1307 }
1308
1309 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1310 {
1311         size_t pb_data_size = get_per_bio_data_size(mg->cache);
1312         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1313
1314         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1315         remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1316
1317         /*
1318          * No need to inc_ds() here, since the cell will be held for the
1319          * duration of the io.
1320          */
1321         accounted_request(mg->cache, bio);
1322 }
1323
1324 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1325 {
1326         return (bio_data_dir(bio) == WRITE) &&
1327                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1328 }
1329
1330 static void avoid_copy(struct dm_cache_migration *mg)
1331 {
1332         atomic_inc(&mg->cache->stats.copies_avoided);
1333         migration_success_pre_commit(mg);
1334 }
1335
1336 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1337                                      dm_dblock_t *b, dm_dblock_t *e)
1338 {
1339         sector_t sb = bio->bi_iter.bi_sector;
1340         sector_t se = bio_end_sector(bio);
1341
1342         *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1343
1344         if (se - sb < cache->discard_block_size)
1345                 *e = *b;
1346         else
1347                 *e = to_dblock(block_div(se, cache->discard_block_size));
1348 }
1349
1350 static void issue_discard(struct dm_cache_migration *mg)
1351 {
1352         dm_dblock_t b, e;
1353         struct bio *bio = mg->new_ocell->holder;
1354
1355         calc_discard_block_range(mg->cache, bio, &b, &e);
1356         while (b != e) {
1357                 set_discard(mg->cache, b);
1358                 b = to_dblock(from_dblock(b) + 1);
1359         }
1360
1361         bio_endio(bio);
1362         cell_defer(mg->cache, mg->new_ocell, false);
1363         free_migration(mg);
1364 }
1365
1366 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1367 {
1368         bool avoid;
1369         struct cache *cache = mg->cache;
1370
1371         if (mg->discard) {
1372                 issue_discard(mg);
1373                 return;
1374         }
1375
1376         if (mg->writeback || mg->demote)
1377                 avoid = !is_dirty(cache, mg->cblock) ||
1378                         is_discarded_oblock(cache, mg->old_oblock);
1379         else {
1380                 struct bio *bio = mg->new_ocell->holder;
1381
1382                 avoid = is_discarded_oblock(cache, mg->new_oblock);
1383
1384                 if (writeback_mode(&cache->features) &&
1385                     !avoid && bio_writes_complete_block(cache, bio)) {
1386                         issue_overwrite(mg, bio);
1387                         return;
1388                 }
1389         }
1390
1391         avoid ? avoid_copy(mg) : issue_copy(mg);
1392 }
1393
1394 static void complete_migration(struct dm_cache_migration *mg)
1395 {
1396         if (mg->err)
1397                 migration_failure(mg);
1398         else
1399                 migration_success_pre_commit(mg);
1400 }
1401
1402 static void process_migrations(struct cache *cache, struct list_head *head,
1403                                void (*fn)(struct dm_cache_migration *))
1404 {
1405         unsigned long flags;
1406         struct list_head list;
1407         struct dm_cache_migration *mg, *tmp;
1408
1409         INIT_LIST_HEAD(&list);
1410         spin_lock_irqsave(&cache->lock, flags);
1411         list_splice_init(head, &list);
1412         spin_unlock_irqrestore(&cache->lock, flags);
1413
1414         list_for_each_entry_safe(mg, tmp, &list, list)
1415                 fn(mg);
1416 }
1417
1418 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1419 {
1420         list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1421 }
1422
1423 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1424 {
1425         unsigned long flags;
1426         struct cache *cache = mg->cache;
1427
1428         spin_lock_irqsave(&cache->lock, flags);
1429         __queue_quiesced_migration(mg);
1430         spin_unlock_irqrestore(&cache->lock, flags);
1431
1432         wake_worker(cache);
1433 }
1434
1435 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1436 {
1437         unsigned long flags;
1438         struct dm_cache_migration *mg, *tmp;
1439
1440         spin_lock_irqsave(&cache->lock, flags);
1441         list_for_each_entry_safe(mg, tmp, work, list)
1442                 __queue_quiesced_migration(mg);
1443         spin_unlock_irqrestore(&cache->lock, flags);
1444
1445         wake_worker(cache);
1446 }
1447
1448 static void check_for_quiesced_migrations(struct cache *cache,
1449                                           struct per_bio_data *pb)
1450 {
1451         struct list_head work;
1452
1453         if (!pb->all_io_entry)
1454                 return;
1455
1456         INIT_LIST_HEAD(&work);
1457         dm_deferred_entry_dec(pb->all_io_entry, &work);
1458
1459         if (!list_empty(&work))
1460                 queue_quiesced_migrations(cache, &work);
1461 }
1462
1463 static void quiesce_migration(struct dm_cache_migration *mg)
1464 {
1465         if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1466                 queue_quiesced_migration(mg);
1467 }
1468
1469 static void promote(struct cache *cache, struct prealloc *structs,
1470                     dm_oblock_t oblock, dm_cblock_t cblock,
1471                     struct dm_bio_prison_cell *cell)
1472 {
1473         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1474
1475         mg->err = false;
1476         mg->discard = false;
1477         mg->writeback = false;
1478         mg->demote = false;
1479         mg->promote = true;
1480         mg->requeue_holder = true;
1481         mg->invalidate = false;
1482         mg->cache = cache;
1483         mg->new_oblock = oblock;
1484         mg->cblock = cblock;
1485         mg->old_ocell = NULL;
1486         mg->new_ocell = cell;
1487         mg->start_jiffies = jiffies;
1488
1489         inc_io_migrations(cache);
1490         quiesce_migration(mg);
1491 }
1492
1493 static void writeback(struct cache *cache, struct prealloc *structs,
1494                       dm_oblock_t oblock, dm_cblock_t cblock,
1495                       struct dm_bio_prison_cell *cell)
1496 {
1497         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1498
1499         mg->err = false;
1500         mg->discard = false;
1501         mg->writeback = true;
1502         mg->demote = false;
1503         mg->promote = false;
1504         mg->requeue_holder = true;
1505         mg->invalidate = false;
1506         mg->cache = cache;
1507         mg->old_oblock = oblock;
1508         mg->cblock = cblock;
1509         mg->old_ocell = cell;
1510         mg->new_ocell = NULL;
1511         mg->start_jiffies = jiffies;
1512
1513         inc_io_migrations(cache);
1514         quiesce_migration(mg);
1515 }
1516
1517 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1518                                 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1519                                 dm_cblock_t cblock,
1520                                 struct dm_bio_prison_cell *old_ocell,
1521                                 struct dm_bio_prison_cell *new_ocell)
1522 {
1523         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1524
1525         mg->err = false;
1526         mg->discard = false;
1527         mg->writeback = false;
1528         mg->demote = true;
1529         mg->promote = true;
1530         mg->requeue_holder = true;
1531         mg->invalidate = false;
1532         mg->cache = cache;
1533         mg->old_oblock = old_oblock;
1534         mg->new_oblock = new_oblock;
1535         mg->cblock = cblock;
1536         mg->old_ocell = old_ocell;
1537         mg->new_ocell = new_ocell;
1538         mg->start_jiffies = jiffies;
1539
1540         inc_io_migrations(cache);
1541         quiesce_migration(mg);
1542 }
1543
1544 /*
1545  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1546  * block are thrown away.
1547  */
1548 static void invalidate(struct cache *cache, struct prealloc *structs,
1549                        dm_oblock_t oblock, dm_cblock_t cblock,
1550                        struct dm_bio_prison_cell *cell)
1551 {
1552         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1553
1554         mg->err = false;
1555         mg->discard = false;
1556         mg->writeback = false;
1557         mg->demote = true;
1558         mg->promote = false;
1559         mg->requeue_holder = true;
1560         mg->invalidate = true;
1561         mg->cache = cache;
1562         mg->old_oblock = oblock;
1563         mg->cblock = cblock;
1564         mg->old_ocell = cell;
1565         mg->new_ocell = NULL;
1566         mg->start_jiffies = jiffies;
1567
1568         inc_io_migrations(cache);
1569         quiesce_migration(mg);
1570 }
1571
1572 static void discard(struct cache *cache, struct prealloc *structs,
1573                     struct dm_bio_prison_cell *cell)
1574 {
1575         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1576
1577         mg->err = false;
1578         mg->discard = true;
1579         mg->writeback = false;
1580         mg->demote = false;
1581         mg->promote = false;
1582         mg->requeue_holder = false;
1583         mg->invalidate = false;
1584         mg->cache = cache;
1585         mg->old_ocell = NULL;
1586         mg->new_ocell = cell;
1587         mg->start_jiffies = jiffies;
1588
1589         quiesce_migration(mg);
1590 }
1591
1592 /*----------------------------------------------------------------
1593  * bio processing
1594  *--------------------------------------------------------------*/
1595 static void defer_bio(struct cache *cache, struct bio *bio)
1596 {
1597         unsigned long flags;
1598
1599         spin_lock_irqsave(&cache->lock, flags);
1600         bio_list_add(&cache->deferred_bios, bio);
1601         spin_unlock_irqrestore(&cache->lock, flags);
1602
1603         wake_worker(cache);
1604 }
1605
1606 static void process_flush_bio(struct cache *cache, struct bio *bio)
1607 {
1608         size_t pb_data_size = get_per_bio_data_size(cache);
1609         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1610
1611         BUG_ON(bio->bi_iter.bi_size);
1612         if (!pb->req_nr)
1613                 remap_to_origin(cache, bio);
1614         else
1615                 remap_to_cache(cache, bio, 0);
1616
1617         /*
1618          * REQ_FLUSH is not directed at any particular block so we don't
1619          * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1620          * by dm-core.
1621          */
1622         issue(cache, bio);
1623 }
1624
1625 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1626                                 struct bio *bio)
1627 {
1628         int r;
1629         dm_dblock_t b, e;
1630         struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1631
1632         calc_discard_block_range(cache, bio, &b, &e);
1633         if (b == e) {
1634                 bio_endio(bio);
1635                 return;
1636         }
1637
1638         cell_prealloc = prealloc_get_cell(structs);
1639         r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1640                              (cell_free_fn) prealloc_put_cell,
1641                              structs, &new_ocell);
1642         if (r > 0)
1643                 return;
1644
1645         discard(cache, structs, new_ocell);
1646 }
1647
1648 static bool spare_migration_bandwidth(struct cache *cache)
1649 {
1650         sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651                 cache->sectors_per_block;
1652         return current_volume < cache->migration_threshold;
1653 }
1654
1655 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656 {
1657         atomic_inc(bio_data_dir(bio) == READ ?
1658                    &cache->stats.read_hit : &cache->stats.write_hit);
1659 }
1660
1661 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662 {
1663         atomic_inc(bio_data_dir(bio) == READ ?
1664                    &cache->stats.read_miss : &cache->stats.write_miss);
1665 }
1666
1667 /*----------------------------------------------------------------*/
1668
1669 struct inc_detail {
1670         struct cache *cache;
1671         struct bio_list bios_for_issue;
1672         struct bio_list unhandled_bios;
1673         bool any_writes;
1674 };
1675
1676 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1677 {
1678         struct bio *bio;
1679         struct inc_detail *detail = context;
1680         struct cache *cache = detail->cache;
1681
1682         inc_ds(cache, cell->holder, cell);
1683         if (bio_data_dir(cell->holder) == WRITE)
1684                 detail->any_writes = true;
1685
1686         while ((bio = bio_list_pop(&cell->bios))) {
1687                 if (discard_or_flush(bio)) {
1688                         bio_list_add(&detail->unhandled_bios, bio);
1689                         continue;
1690                 }
1691
1692                 if (bio_data_dir(bio) == WRITE)
1693                         detail->any_writes = true;
1694
1695                 bio_list_add(&detail->bios_for_issue, bio);
1696                 inc_ds(cache, bio, cell);
1697         }
1698 }
1699
1700 // FIXME: refactor these two
1701 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1702                                                struct dm_bio_prison_cell *cell,
1703                                                dm_oblock_t oblock, bool issue_holder)
1704 {
1705         struct bio *bio;
1706         unsigned long flags;
1707         struct inc_detail detail;
1708
1709         detail.cache = cache;
1710         bio_list_init(&detail.bios_for_issue);
1711         bio_list_init(&detail.unhandled_bios);
1712         detail.any_writes = false;
1713
1714         spin_lock_irqsave(&cache->lock, flags);
1715         dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1716         bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1717         spin_unlock_irqrestore(&cache->lock, flags);
1718
1719         remap_to_origin(cache, cell->holder);
1720         if (issue_holder)
1721                 issue(cache, cell->holder);
1722         else
1723                 accounted_begin(cache, cell->holder);
1724
1725         if (detail.any_writes)
1726                 clear_discard(cache, oblock_to_dblock(cache, oblock));
1727
1728         while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1729                 remap_to_origin(cache, bio);
1730                 issue(cache, bio);
1731         }
1732 }
1733
1734 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1735                                       dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1736 {
1737         struct bio *bio;
1738         unsigned long flags;
1739         struct inc_detail detail;
1740
1741         detail.cache = cache;
1742         bio_list_init(&detail.bios_for_issue);
1743         bio_list_init(&detail.unhandled_bios);
1744         detail.any_writes = false;
1745
1746         spin_lock_irqsave(&cache->lock, flags);
1747         dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1748         bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1749         spin_unlock_irqrestore(&cache->lock, flags);
1750
1751         remap_to_cache(cache, cell->holder, cblock);
1752         if (issue_holder)
1753                 issue(cache, cell->holder);
1754         else
1755                 accounted_begin(cache, cell->holder);
1756
1757         if (detail.any_writes) {
1758                 set_dirty(cache, oblock, cblock);
1759                 clear_discard(cache, oblock_to_dblock(cache, oblock));
1760         }
1761
1762         while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1763                 remap_to_cache(cache, bio, cblock);
1764                 issue(cache, bio);
1765         }
1766 }
1767
1768 /*----------------------------------------------------------------*/
1769
1770 struct old_oblock_lock {
1771         struct policy_locker locker;
1772         struct cache *cache;
1773         struct prealloc *structs;
1774         struct dm_bio_prison_cell *cell;
1775 };
1776
1777 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1778 {
1779         /* This should never be called */
1780         BUG();
1781         return 0;
1782 }
1783
1784 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1785 {
1786         struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1787         struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1788
1789         return bio_detain(l->cache, b, NULL, cell_prealloc,
1790                           (cell_free_fn) prealloc_put_cell,
1791                           l->structs, &l->cell);
1792 }
1793
1794 static void process_cell(struct cache *cache, struct prealloc *structs,
1795                          struct dm_bio_prison_cell *new_ocell)
1796 {
1797         int r;
1798         bool release_cell = true;
1799         struct bio *bio = new_ocell->holder;
1800         dm_oblock_t block = get_bio_block(cache, bio);
1801         struct policy_result lookup_result;
1802         bool passthrough = passthrough_mode(&cache->features);
1803         bool fast_promotion, can_migrate;
1804         struct old_oblock_lock ool;
1805
1806         fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1807         can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1808
1809         ool.locker.fn = cell_locker;
1810         ool.cache = cache;
1811         ool.structs = structs;
1812         ool.cell = NULL;
1813         r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1814                        bio, &ool.locker, &lookup_result);
1815
1816         if (r == -EWOULDBLOCK)
1817                 /* migration has been denied */
1818                 lookup_result.op = POLICY_MISS;
1819
1820         switch (lookup_result.op) {
1821         case POLICY_HIT:
1822                 if (passthrough) {
1823                         inc_miss_counter(cache, bio);
1824
1825                         /*
1826                          * Passthrough always maps to the origin,
1827                          * invalidating any cache blocks that are written
1828                          * to.
1829                          */
1830
1831                         if (bio_data_dir(bio) == WRITE) {
1832                                 atomic_inc(&cache->stats.demotion);
1833                                 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1834                                 release_cell = false;
1835
1836                         } else {
1837                                 /* FIXME: factor out issue_origin() */
1838                                 remap_to_origin_clear_discard(cache, bio, block);
1839                                 inc_and_issue(cache, bio, new_ocell);
1840                         }
1841                 } else {
1842                         inc_hit_counter(cache, bio);
1843
1844                         if (bio_data_dir(bio) == WRITE &&
1845                             writethrough_mode(&cache->features) &&
1846                             !is_dirty(cache, lookup_result.cblock)) {
1847                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1848                                 inc_and_issue(cache, bio, new_ocell);
1849
1850                         } else {
1851                                 remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1852                                 release_cell = false;
1853                         }
1854                 }
1855
1856                 break;
1857
1858         case POLICY_MISS:
1859                 inc_miss_counter(cache, bio);
1860                 remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1861                 release_cell = false;
1862                 break;
1863
1864         case POLICY_NEW:
1865                 atomic_inc(&cache->stats.promotion);
1866                 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1867                 release_cell = false;
1868                 break;
1869
1870         case POLICY_REPLACE:
1871                 atomic_inc(&cache->stats.demotion);
1872                 atomic_inc(&cache->stats.promotion);
1873                 demote_then_promote(cache, structs, lookup_result.old_oblock,
1874                                     block, lookup_result.cblock,
1875                                     ool.cell, new_ocell);
1876                 release_cell = false;
1877                 break;
1878
1879         default:
1880                 DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1881                             cache_device_name(cache), __func__,
1882                             (unsigned) lookup_result.op);
1883                 bio_io_error(bio);
1884         }
1885
1886         if (release_cell)
1887                 cell_defer(cache, new_ocell, false);
1888 }
1889
1890 static void process_bio(struct cache *cache, struct prealloc *structs,
1891                         struct bio *bio)
1892 {
1893         int r;
1894         dm_oblock_t block = get_bio_block(cache, bio);
1895         struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1896
1897         /*
1898          * Check to see if that block is currently migrating.
1899          */
1900         cell_prealloc = prealloc_get_cell(structs);
1901         r = bio_detain(cache, block, bio, cell_prealloc,
1902                        (cell_free_fn) prealloc_put_cell,
1903                        structs, &new_ocell);
1904         if (r > 0)
1905                 return;
1906
1907         process_cell(cache, structs, new_ocell);
1908 }
1909
1910 static int need_commit_due_to_time(struct cache *cache)
1911 {
1912         return jiffies < cache->last_commit_jiffies ||
1913                jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1914 }
1915
1916 /*
1917  * A non-zero return indicates read_only or fail_io mode.
1918  */
1919 static int commit(struct cache *cache, bool clean_shutdown)
1920 {
1921         int r;
1922
1923         if (get_cache_mode(cache) >= CM_READ_ONLY)
1924                 return -EINVAL;
1925
1926         atomic_inc(&cache->stats.commit_count);
1927         r = dm_cache_commit(cache->cmd, clean_shutdown);
1928         if (r)
1929                 metadata_operation_failed(cache, "dm_cache_commit", r);
1930
1931         return r;
1932 }
1933
1934 static int commit_if_needed(struct cache *cache)
1935 {
1936         int r = 0;
1937
1938         if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1939             dm_cache_changed_this_transaction(cache->cmd)) {
1940                 r = commit(cache, false);
1941                 cache->commit_requested = false;
1942                 cache->last_commit_jiffies = jiffies;
1943         }
1944
1945         return r;
1946 }
1947
1948 static void process_deferred_bios(struct cache *cache)
1949 {
1950         unsigned long flags;
1951         struct bio_list bios;
1952         struct bio *bio;
1953         struct prealloc structs;
1954
1955         memset(&structs, 0, sizeof(structs));
1956         bio_list_init(&bios);
1957
1958         spin_lock_irqsave(&cache->lock, flags);
1959         bio_list_merge(&bios, &cache->deferred_bios);
1960         bio_list_init(&cache->deferred_bios);
1961         spin_unlock_irqrestore(&cache->lock, flags);
1962
1963         while (!bio_list_empty(&bios)) {
1964                 /*
1965                  * If we've got no free migration structs, and processing
1966                  * this bio might require one, we pause until there are some
1967                  * prepared mappings to process.
1968                  */
1969                 if (prealloc_data_structs(cache, &structs)) {
1970                         spin_lock_irqsave(&cache->lock, flags);
1971                         bio_list_merge(&cache->deferred_bios, &bios);
1972                         spin_unlock_irqrestore(&cache->lock, flags);
1973                         break;
1974                 }
1975
1976                 bio = bio_list_pop(&bios);
1977
1978                 if (bio->bi_rw & REQ_FLUSH)
1979                         process_flush_bio(cache, bio);
1980                 else if (bio->bi_rw & REQ_DISCARD)
1981                         process_discard_bio(cache, &structs, bio);
1982                 else
1983                         process_bio(cache, &structs, bio);
1984         }
1985
1986         prealloc_free_structs(cache, &structs);
1987 }
1988
1989 static void process_deferred_cells(struct cache *cache)
1990 {
1991         unsigned long flags;
1992         struct dm_bio_prison_cell *cell, *tmp;
1993         struct list_head cells;
1994         struct prealloc structs;
1995
1996         memset(&structs, 0, sizeof(structs));
1997
1998         INIT_LIST_HEAD(&cells);
1999
2000         spin_lock_irqsave(&cache->lock, flags);
2001         list_splice_init(&cache->deferred_cells, &cells);
2002         spin_unlock_irqrestore(&cache->lock, flags);
2003
2004         list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2005                 /*
2006                  * If we've got no free migration structs, and processing
2007                  * this bio might require one, we pause until there are some
2008                  * prepared mappings to process.
2009                  */
2010                 if (prealloc_data_structs(cache, &structs)) {
2011                         spin_lock_irqsave(&cache->lock, flags);
2012                         list_splice(&cells, &cache->deferred_cells);
2013                         spin_unlock_irqrestore(&cache->lock, flags);
2014                         break;
2015                 }
2016
2017                 process_cell(cache, &structs, cell);
2018         }
2019
2020         prealloc_free_structs(cache, &structs);
2021 }
2022
2023 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2024 {
2025         unsigned long flags;
2026         struct bio_list bios;
2027         struct bio *bio;
2028
2029         bio_list_init(&bios);
2030
2031         spin_lock_irqsave(&cache->lock, flags);
2032         bio_list_merge(&bios, &cache->deferred_flush_bios);
2033         bio_list_init(&cache->deferred_flush_bios);
2034         spin_unlock_irqrestore(&cache->lock, flags);
2035
2036         /*
2037          * These bios have already been through inc_ds()
2038          */
2039         while ((bio = bio_list_pop(&bios)))
2040                 submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2041 }
2042
2043 static void process_deferred_writethrough_bios(struct cache *cache)
2044 {
2045         unsigned long flags;
2046         struct bio_list bios;
2047         struct bio *bio;
2048
2049         bio_list_init(&bios);
2050
2051         spin_lock_irqsave(&cache->lock, flags);
2052         bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2053         bio_list_init(&cache->deferred_writethrough_bios);
2054         spin_unlock_irqrestore(&cache->lock, flags);
2055
2056         /*
2057          * These bios have already been through inc_ds()
2058          */
2059         while ((bio = bio_list_pop(&bios)))
2060                 accounted_request(cache, bio);
2061 }
2062
2063 static void writeback_some_dirty_blocks(struct cache *cache)
2064 {
2065         int r = 0;
2066         dm_oblock_t oblock;
2067         dm_cblock_t cblock;
2068         struct prealloc structs;
2069         struct dm_bio_prison_cell *old_ocell;
2070         bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2071
2072         memset(&structs, 0, sizeof(structs));
2073
2074         while (spare_migration_bandwidth(cache)) {
2075                 if (prealloc_data_structs(cache, &structs))
2076                         break;
2077
2078                 r = policy_writeback_work(cache->policy, &oblock, &cblock, busy);
2079                 if (r)
2080                         break;
2081
2082                 r = get_cell(cache, oblock, &structs, &old_ocell);
2083                 if (r) {
2084                         policy_set_dirty(cache->policy, oblock);
2085                         break;
2086                 }
2087
2088                 writeback(cache, &structs, oblock, cblock, old_ocell);
2089         }
2090
2091         prealloc_free_structs(cache, &structs);
2092 }
2093
2094 /*----------------------------------------------------------------
2095  * Invalidations.
2096  * Dropping something from the cache *without* writing back.
2097  *--------------------------------------------------------------*/
2098
2099 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2100 {
2101         int r = 0;
2102         uint64_t begin = from_cblock(req->cblocks->begin);
2103         uint64_t end = from_cblock(req->cblocks->end);
2104
2105         while (begin != end) {
2106                 r = policy_remove_cblock(cache->policy, to_cblock(begin));
2107                 if (!r) {
2108                         r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2109                         if (r) {
2110                                 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2111                                 break;
2112                         }
2113
2114                 } else if (r == -ENODATA) {
2115                         /* harmless, already unmapped */
2116                         r = 0;
2117
2118                 } else {
2119                         DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2120                         break;
2121                 }
2122
2123                 begin++;
2124         }
2125
2126         cache->commit_requested = true;
2127
2128         req->err = r;
2129         atomic_set(&req->complete, 1);
2130
2131         wake_up(&req->result_wait);
2132 }
2133
2134 static void process_invalidation_requests(struct cache *cache)
2135 {
2136         struct list_head list;
2137         struct invalidation_request *req, *tmp;
2138
2139         INIT_LIST_HEAD(&list);
2140         spin_lock(&cache->invalidation_lock);
2141         list_splice_init(&cache->invalidation_requests, &list);
2142         spin_unlock(&cache->invalidation_lock);
2143
2144         list_for_each_entry_safe (req, tmp, &list, list)
2145                 process_invalidation_request(cache, req);
2146 }
2147
2148 /*----------------------------------------------------------------
2149  * Main worker loop
2150  *--------------------------------------------------------------*/
2151 static bool is_quiescing(struct cache *cache)
2152 {
2153         return atomic_read(&cache->quiescing);
2154 }
2155
2156 static void ack_quiescing(struct cache *cache)
2157 {
2158         if (is_quiescing(cache)) {
2159                 atomic_inc(&cache->quiescing_ack);
2160                 wake_up(&cache->quiescing_wait);
2161         }
2162 }
2163
2164 static void wait_for_quiescing_ack(struct cache *cache)
2165 {
2166         wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2167 }
2168
2169 static void start_quiescing(struct cache *cache)
2170 {
2171         atomic_inc(&cache->quiescing);
2172         wait_for_quiescing_ack(cache);
2173 }
2174
2175 static void stop_quiescing(struct cache *cache)
2176 {
2177         atomic_set(&cache->quiescing, 0);
2178         atomic_set(&cache->quiescing_ack, 0);
2179 }
2180
2181 static void wait_for_migrations(struct cache *cache)
2182 {
2183         wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2184 }
2185
2186 static void stop_worker(struct cache *cache)
2187 {
2188         cancel_delayed_work(&cache->waker);
2189         flush_workqueue(cache->wq);
2190 }
2191
2192 static void requeue_deferred_cells(struct cache *cache)
2193 {
2194         unsigned long flags;
2195         struct list_head cells;
2196         struct dm_bio_prison_cell *cell, *tmp;
2197
2198         INIT_LIST_HEAD(&cells);
2199         spin_lock_irqsave(&cache->lock, flags);
2200         list_splice_init(&cache->deferred_cells, &cells);
2201         spin_unlock_irqrestore(&cache->lock, flags);
2202
2203         list_for_each_entry_safe(cell, tmp, &cells, user_list)
2204                 cell_requeue(cache, cell);
2205 }
2206
2207 static void requeue_deferred_bios(struct cache *cache)
2208 {
2209         struct bio *bio;
2210         struct bio_list bios;
2211
2212         bio_list_init(&bios);
2213         bio_list_merge(&bios, &cache->deferred_bios);
2214         bio_list_init(&cache->deferred_bios);
2215
2216         while ((bio = bio_list_pop(&bios))) {
2217                 bio->bi_error = DM_ENDIO_REQUEUE;
2218                 bio_endio(bio);
2219         }
2220 }
2221
2222 static int more_work(struct cache *cache)
2223 {
2224         if (is_quiescing(cache))
2225                 return !list_empty(&cache->quiesced_migrations) ||
2226                         !list_empty(&cache->completed_migrations) ||
2227                         !list_empty(&cache->need_commit_migrations);
2228         else
2229                 return !bio_list_empty(&cache->deferred_bios) ||
2230                         !list_empty(&cache->deferred_cells) ||
2231                         !bio_list_empty(&cache->deferred_flush_bios) ||
2232                         !bio_list_empty(&cache->deferred_writethrough_bios) ||
2233                         !list_empty(&cache->quiesced_migrations) ||
2234                         !list_empty(&cache->completed_migrations) ||
2235                         !list_empty(&cache->need_commit_migrations) ||
2236                         cache->invalidate;
2237 }
2238
2239 static void do_worker(struct work_struct *ws)
2240 {
2241         struct cache *cache = container_of(ws, struct cache, worker);
2242
2243         do {
2244                 if (!is_quiescing(cache)) {
2245                         writeback_some_dirty_blocks(cache);
2246                         process_deferred_writethrough_bios(cache);
2247                         process_deferred_bios(cache);
2248                         process_deferred_cells(cache);
2249                         process_invalidation_requests(cache);
2250                 }
2251
2252                 process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2253                 process_migrations(cache, &cache->completed_migrations, complete_migration);
2254
2255                 if (commit_if_needed(cache)) {
2256                         process_deferred_flush_bios(cache, false);
2257                         process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2258                 } else {
2259                         process_deferred_flush_bios(cache, true);
2260                         process_migrations(cache, &cache->need_commit_migrations,
2261                                            migration_success_post_commit);
2262                 }
2263
2264                 ack_quiescing(cache);
2265
2266         } while (more_work(cache));
2267 }
2268
2269 /*
2270  * We want to commit periodically so that not too much
2271  * unwritten metadata builds up.
2272  */
2273 static void do_waker(struct work_struct *ws)
2274 {
2275         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2276         policy_tick(cache->policy, true);
2277         wake_worker(cache);
2278         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2279 }
2280
2281 /*----------------------------------------------------------------*/
2282
2283 static int is_congested(struct dm_dev *dev, int bdi_bits)
2284 {
2285         struct request_queue *q = bdev_get_queue(dev->bdev);
2286         return bdi_congested(&q->backing_dev_info, bdi_bits);
2287 }
2288
2289 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2290 {
2291         struct cache *cache = container_of(cb, struct cache, callbacks);
2292
2293         return is_congested(cache->origin_dev, bdi_bits) ||
2294                 is_congested(cache->cache_dev, bdi_bits);
2295 }
2296
2297 /*----------------------------------------------------------------
2298  * Target methods
2299  *--------------------------------------------------------------*/
2300
2301 /*
2302  * This function gets called on the error paths of the constructor, so we
2303  * have to cope with a partially initialised struct.
2304  */
2305 static void destroy(struct cache *cache)
2306 {
2307         unsigned i;
2308
2309         if (cache->migration_pool)
2310                 mempool_destroy(cache->migration_pool);
2311
2312         if (cache->all_io_ds)
2313                 dm_deferred_set_destroy(cache->all_io_ds);
2314
2315         if (cache->prison)
2316                 dm_bio_prison_destroy(cache->prison);
2317
2318         if (cache->wq)
2319                 destroy_workqueue(cache->wq);
2320
2321         if (cache->dirty_bitset)
2322                 free_bitset(cache->dirty_bitset);
2323
2324         if (cache->discard_bitset)
2325                 free_bitset(cache->discard_bitset);
2326
2327         if (cache->copier)
2328                 dm_kcopyd_client_destroy(cache->copier);
2329
2330         if (cache->cmd)
2331                 dm_cache_metadata_close(cache->cmd);
2332
2333         if (cache->metadata_dev)
2334                 dm_put_device(cache->ti, cache->metadata_dev);
2335
2336         if (cache->origin_dev)
2337                 dm_put_device(cache->ti, cache->origin_dev);
2338
2339         if (cache->cache_dev)
2340                 dm_put_device(cache->ti, cache->cache_dev);
2341
2342         if (cache->policy)
2343                 dm_cache_policy_destroy(cache->policy);
2344
2345         for (i = 0; i < cache->nr_ctr_args ; i++)
2346                 kfree(cache->ctr_args[i]);
2347         kfree(cache->ctr_args);
2348
2349         kfree(cache);
2350 }
2351
2352 static void cache_dtr(struct dm_target *ti)
2353 {
2354         struct cache *cache = ti->private;
2355
2356         destroy(cache);
2357 }
2358
2359 static sector_t get_dev_size(struct dm_dev *dev)
2360 {
2361         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2362 }
2363
2364 /*----------------------------------------------------------------*/
2365
2366 /*
2367  * Construct a cache device mapping.
2368  *
2369  * cache <metadata dev> <cache dev> <origin dev> <block size>
2370  *       <#feature args> [<feature arg>]*
2371  *       <policy> <#policy args> [<policy arg>]*
2372  *
2373  * metadata dev    : fast device holding the persistent metadata
2374  * cache dev       : fast device holding cached data blocks
2375  * origin dev      : slow device holding original data blocks
2376  * block size      : cache unit size in sectors
2377  *
2378  * #feature args   : number of feature arguments passed
2379  * feature args    : writethrough.  (The default is writeback.)
2380  *
2381  * policy          : the replacement policy to use
2382  * #policy args    : an even number of policy arguments corresponding
2383  *                   to key/value pairs passed to the policy
2384  * policy args     : key/value pairs passed to the policy
2385  *                   E.g. 'sequential_threshold 1024'
2386  *                   See cache-policies.txt for details.
2387  *
2388  * Optional feature arguments are:
2389  *   writethrough  : write through caching that prohibits cache block
2390  *                   content from being different from origin block content.
2391  *                   Without this argument, the default behaviour is to write
2392  *                   back cache block contents later for performance reasons,
2393  *                   so they may differ from the corresponding origin blocks.
2394  */
2395 struct cache_args {
2396         struct dm_target *ti;
2397
2398         struct dm_dev *metadata_dev;
2399
2400         struct dm_dev *cache_dev;
2401         sector_t cache_sectors;
2402
2403         struct dm_dev *origin_dev;
2404         sector_t origin_sectors;
2405
2406         uint32_t block_size;
2407
2408         const char *policy_name;
2409         int policy_argc;
2410         const char **policy_argv;
2411
2412         struct cache_features features;
2413 };
2414
2415 static void destroy_cache_args(struct cache_args *ca)
2416 {
2417         if (ca->metadata_dev)
2418                 dm_put_device(ca->ti, ca->metadata_dev);
2419
2420         if (ca->cache_dev)
2421                 dm_put_device(ca->ti, ca->cache_dev);
2422
2423         if (ca->origin_dev)
2424                 dm_put_device(ca->ti, ca->origin_dev);
2425
2426         kfree(ca);
2427 }
2428
2429 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2430 {
2431         if (!as->argc) {
2432                 *error = "Insufficient args";
2433                 return false;
2434         }
2435
2436         return true;
2437 }
2438
2439 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2440                               char **error)
2441 {
2442         int r;
2443         sector_t metadata_dev_size;
2444         char b[BDEVNAME_SIZE];
2445
2446         if (!at_least_one_arg(as, error))
2447                 return -EINVAL;
2448
2449         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2450                           &ca->metadata_dev);
2451         if (r) {
2452                 *error = "Error opening metadata device";
2453                 return r;
2454         }
2455
2456         metadata_dev_size = get_dev_size(ca->metadata_dev);
2457         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2458                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2459                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2460
2461         return 0;
2462 }
2463
2464 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2465                            char **error)
2466 {
2467         int r;
2468
2469         if (!at_least_one_arg(as, error))
2470                 return -EINVAL;
2471
2472         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2473                           &ca->cache_dev);
2474         if (r) {
2475                 *error = "Error opening cache device";
2476                 return r;
2477         }
2478         ca->cache_sectors = get_dev_size(ca->cache_dev);
2479
2480         return 0;
2481 }
2482
2483 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2484                             char **error)
2485 {
2486         int r;
2487
2488         if (!at_least_one_arg(as, error))
2489                 return -EINVAL;
2490
2491         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2492                           &ca->origin_dev);
2493         if (r) {
2494                 *error = "Error opening origin device";
2495                 return r;
2496         }
2497
2498         ca->origin_sectors = get_dev_size(ca->origin_dev);
2499         if (ca->ti->len > ca->origin_sectors) {
2500                 *error = "Device size larger than cached device";
2501                 return -EINVAL;
2502         }
2503
2504         return 0;
2505 }
2506
2507 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2508                             char **error)
2509 {
2510         unsigned long block_size;
2511
2512         if (!at_least_one_arg(as, error))
2513                 return -EINVAL;
2514
2515         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2516             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2517             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2518             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2519                 *error = "Invalid data block size";
2520                 return -EINVAL;
2521         }
2522
2523         if (block_size > ca->cache_sectors) {
2524                 *error = "Data block size is larger than the cache device";
2525                 return -EINVAL;
2526         }
2527
2528         ca->block_size = block_size;
2529
2530         return 0;
2531 }
2532
2533 static void init_features(struct cache_features *cf)
2534 {
2535         cf->mode = CM_WRITE;
2536         cf->io_mode = CM_IO_WRITEBACK;
2537 }
2538
2539 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2540                           char **error)
2541 {
2542         static struct dm_arg _args[] = {
2543                 {0, 1, "Invalid number of cache feature arguments"},
2544         };
2545
2546         int r;
2547         unsigned argc;
2548         const char *arg;
2549         struct cache_features *cf = &ca->features;
2550
2551         init_features(cf);
2552
2553         r = dm_read_arg_group(_args, as, &argc, error);
2554         if (r)
2555                 return -EINVAL;
2556
2557         while (argc--) {
2558                 arg = dm_shift_arg(as);
2559
2560                 if (!strcasecmp(arg, "writeback"))
2561                         cf->io_mode = CM_IO_WRITEBACK;
2562
2563                 else if (!strcasecmp(arg, "writethrough"))
2564                         cf->io_mode = CM_IO_WRITETHROUGH;
2565
2566                 else if (!strcasecmp(arg, "passthrough"))
2567                         cf->io_mode = CM_IO_PASSTHROUGH;
2568
2569                 else {
2570                         *error = "Unrecognised cache feature requested";
2571                         return -EINVAL;
2572                 }
2573         }
2574
2575         return 0;
2576 }
2577
2578 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2579                         char **error)
2580 {
2581         static struct dm_arg _args[] = {
2582                 {0, 1024, "Invalid number of policy arguments"},
2583         };
2584
2585         int r;
2586
2587         if (!at_least_one_arg(as, error))
2588                 return -EINVAL;
2589
2590         ca->policy_name = dm_shift_arg(as);
2591
2592         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2593         if (r)
2594                 return -EINVAL;
2595
2596         ca->policy_argv = (const char **)as->argv;
2597         dm_consume_args(as, ca->policy_argc);
2598
2599         return 0;
2600 }
2601
2602 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2603                             char **error)
2604 {
2605         int r;
2606         struct dm_arg_set as;
2607
2608         as.argc = argc;
2609         as.argv = argv;
2610
2611         r = parse_metadata_dev(ca, &as, error);
2612         if (r)
2613                 return r;
2614
2615         r = parse_cache_dev(ca, &as, error);
2616         if (r)
2617                 return r;
2618
2619         r = parse_origin_dev(ca, &as, error);
2620         if (r)
2621                 return r;
2622
2623         r = parse_block_size(ca, &as, error);
2624         if (r)
2625                 return r;
2626
2627         r = parse_features(ca, &as, error);
2628         if (r)
2629                 return r;
2630
2631         r = parse_policy(ca, &as, error);
2632         if (r)
2633                 return r;
2634
2635         return 0;
2636 }
2637
2638 /*----------------------------------------------------------------*/
2639
2640 static struct kmem_cache *migration_cache;
2641
2642 #define NOT_CORE_OPTION 1
2643
2644 static int process_config_option(struct cache *cache, const char *key, const char *value)
2645 {
2646         unsigned long tmp;
2647
2648         if (!strcasecmp(key, "migration_threshold")) {
2649                 if (kstrtoul(value, 10, &tmp))
2650                         return -EINVAL;
2651
2652                 cache->migration_threshold = tmp;
2653                 return 0;
2654         }
2655
2656         return NOT_CORE_OPTION;
2657 }
2658
2659 static int set_config_value(struct cache *cache, const char *key, const char *value)
2660 {
2661         int r = process_config_option(cache, key, value);
2662
2663         if (r == NOT_CORE_OPTION)
2664                 r = policy_set_config_value(cache->policy, key, value);
2665
2666         if (r)
2667                 DMWARN("bad config value for %s: %s", key, value);
2668
2669         return r;
2670 }
2671
2672 static int set_config_values(struct cache *cache, int argc, const char **argv)
2673 {
2674         int r = 0;
2675
2676         if (argc & 1) {
2677                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2678                 return -EINVAL;
2679         }
2680
2681         while (argc) {
2682                 r = set_config_value(cache, argv[0], argv[1]);
2683                 if (r)
2684                         break;
2685
2686                 argc -= 2;
2687                 argv += 2;
2688         }
2689
2690         return r;
2691 }
2692
2693 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2694                                char **error)
2695 {
2696         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2697                                                            cache->cache_size,
2698                                                            cache->origin_sectors,
2699                                                            cache->sectors_per_block);
2700         if (IS_ERR(p)) {
2701                 *error = "Error creating cache's policy";
2702                 return PTR_ERR(p);
2703         }
2704         cache->policy = p;
2705
2706         return 0;
2707 }
2708
2709 /*
2710  * We want the discard block size to be at least the size of the cache
2711  * block size and have no more than 2^14 discard blocks across the origin.
2712  */
2713 #define MAX_DISCARD_BLOCKS (1 << 14)
2714
2715 static bool too_many_discard_blocks(sector_t discard_block_size,
2716                                     sector_t origin_size)
2717 {
2718         (void) sector_div(origin_size, discard_block_size);
2719
2720         return origin_size > MAX_DISCARD_BLOCKS;
2721 }
2722
2723 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2724                                              sector_t origin_size)
2725 {
2726         sector_t discard_block_size = cache_block_size;
2727
2728         if (origin_size)
2729                 while (too_many_discard_blocks(discard_block_size, origin_size))
2730                         discard_block_size *= 2;
2731
2732         return discard_block_size;
2733 }
2734
2735 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2736 {
2737         dm_block_t nr_blocks = from_cblock(size);
2738
2739         if (nr_blocks > (1 << 20) && cache->cache_size != size)
2740                 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2741                              "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2742                              "Please consider increasing the cache block size to reduce the overall cache block count.",
2743                              (unsigned long long) nr_blocks);
2744
2745         cache->cache_size = size;
2746 }
2747
2748 #define DEFAULT_MIGRATION_THRESHOLD 2048
2749
2750 static int cache_create(struct cache_args *ca, struct cache **result)
2751 {
2752         int r = 0;
2753         char **error = &ca->ti->error;
2754         struct cache *cache;
2755         struct dm_target *ti = ca->ti;
2756         dm_block_t origin_blocks;
2757         struct dm_cache_metadata *cmd;
2758         bool may_format = ca->features.mode == CM_WRITE;
2759
2760         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2761         if (!cache)
2762                 return -ENOMEM;
2763
2764         cache->ti = ca->ti;
2765         ti->private = cache;
2766         ti->num_flush_bios = 2;
2767         ti->flush_supported = true;
2768
2769         ti->num_discard_bios = 1;
2770         ti->discards_supported = true;
2771         ti->discard_zeroes_data_unsupported = true;
2772         ti->split_discard_bios = false;
2773
2774         cache->features = ca->features;
2775         ti->per_bio_data_size = get_per_bio_data_size(cache);
2776
2777         cache->callbacks.congested_fn = cache_is_congested;
2778         dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2779
2780         cache->metadata_dev = ca->metadata_dev;
2781         cache->origin_dev = ca->origin_dev;
2782         cache->cache_dev = ca->cache_dev;
2783
2784         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2785
2786         /* FIXME: factor out this whole section */
2787         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2788         origin_blocks = block_div(origin_blocks, ca->block_size);
2789         cache->origin_blocks = to_oblock(origin_blocks);
2790
2791         cache->sectors_per_block = ca->block_size;
2792         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2793                 r = -EINVAL;
2794                 goto bad;
2795         }
2796
2797         if (ca->block_size & (ca->block_size - 1)) {
2798                 dm_block_t cache_size = ca->cache_sectors;
2799
2800                 cache->sectors_per_block_shift = -1;
2801                 cache_size = block_div(cache_size, ca->block_size);
2802                 set_cache_size(cache, to_cblock(cache_size));
2803         } else {
2804                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2805                 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2806         }
2807
2808         r = create_cache_policy(cache, ca, error);
2809         if (r)
2810                 goto bad;
2811
2812         cache->policy_nr_args = ca->policy_argc;
2813         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2814
2815         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2816         if (r) {
2817                 *error = "Error setting cache policy's config values";
2818                 goto bad;
2819         }
2820
2821         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2822                                      ca->block_size, may_format,
2823                                      dm_cache_policy_get_hint_size(cache->policy));
2824         if (IS_ERR(cmd)) {
2825                 *error = "Error creating metadata object";
2826                 r = PTR_ERR(cmd);
2827                 goto bad;
2828         }
2829         cache->cmd = cmd;
2830         set_cache_mode(cache, CM_WRITE);
2831         if (get_cache_mode(cache) != CM_WRITE) {
2832                 *error = "Unable to get write access to metadata, please check/repair metadata.";
2833                 r = -EINVAL;
2834                 goto bad;
2835         }
2836
2837         if (passthrough_mode(&cache->features)) {
2838                 bool all_clean;
2839
2840                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2841                 if (r) {
2842                         *error = "dm_cache_metadata_all_clean() failed";
2843                         goto bad;
2844                 }
2845
2846                 if (!all_clean) {
2847                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2848                         r = -EINVAL;
2849                         goto bad;
2850                 }
2851         }
2852
2853         spin_lock_init(&cache->lock);
2854         INIT_LIST_HEAD(&cache->deferred_cells);
2855         bio_list_init(&cache->deferred_bios);
2856         bio_list_init(&cache->deferred_flush_bios);
2857         bio_list_init(&cache->deferred_writethrough_bios);
2858         INIT_LIST_HEAD(&cache->quiesced_migrations);
2859         INIT_LIST_HEAD(&cache->completed_migrations);
2860         INIT_LIST_HEAD(&cache->need_commit_migrations);
2861         atomic_set(&cache->nr_allocated_migrations, 0);
2862         atomic_set(&cache->nr_io_migrations, 0);
2863         init_waitqueue_head(&cache->migration_wait);
2864
2865         init_waitqueue_head(&cache->quiescing_wait);
2866         atomic_set(&cache->quiescing, 0);
2867         atomic_set(&cache->quiescing_ack, 0);
2868
2869         r = -ENOMEM;
2870         atomic_set(&cache->nr_dirty, 0);
2871         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2872         if (!cache->dirty_bitset) {
2873                 *error = "could not allocate dirty bitset";
2874                 goto bad;
2875         }
2876         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2877
2878         cache->discard_block_size =
2879                 calculate_discard_block_size(cache->sectors_per_block,
2880                                              cache->origin_sectors);
2881         cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2882                                                               cache->discard_block_size));
2883         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2884         if (!cache->discard_bitset) {
2885                 *error = "could not allocate discard bitset";
2886                 goto bad;
2887         }
2888         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2889
2890         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2891         if (IS_ERR(cache->copier)) {
2892                 *error = "could not create kcopyd client";
2893                 r = PTR_ERR(cache->copier);
2894                 goto bad;
2895         }
2896
2897         cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898         if (!cache->wq) {
2899                 *error = "could not create workqueue for metadata object";
2900                 goto bad;
2901         }
2902         INIT_WORK(&cache->worker, do_worker);
2903         INIT_DELAYED_WORK(&cache->waker, do_waker);
2904         cache->last_commit_jiffies = jiffies;
2905
2906         cache->prison = dm_bio_prison_create();
2907         if (!cache->prison) {
2908                 *error = "could not create bio prison";
2909                 goto bad;
2910         }
2911
2912         cache->all_io_ds = dm_deferred_set_create();
2913         if (!cache->all_io_ds) {
2914                 *error = "could not create all_io deferred set";
2915                 goto bad;
2916         }
2917
2918         cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2919                                                          migration_cache);
2920         if (!cache->migration_pool) {
2921                 *error = "Error creating cache's migration mempool";
2922                 goto bad;
2923         }
2924
2925         cache->need_tick_bio = true;
2926         cache->sized = false;
2927         cache->invalidate = false;
2928         cache->commit_requested = false;
2929         cache->loaded_mappings = false;
2930         cache->loaded_discards = false;
2931
2932         load_stats(cache);
2933
2934         atomic_set(&cache->stats.demotion, 0);
2935         atomic_set(&cache->stats.promotion, 0);
2936         atomic_set(&cache->stats.copies_avoided, 0);
2937         atomic_set(&cache->stats.cache_cell_clash, 0);
2938         atomic_set(&cache->stats.commit_count, 0);
2939         atomic_set(&cache->stats.discard_count, 0);
2940
2941         spin_lock_init(&cache->invalidation_lock);
2942         INIT_LIST_HEAD(&cache->invalidation_requests);
2943
2944         iot_init(&cache->origin_tracker);
2945
2946         *result = cache;
2947         return 0;
2948
2949 bad:
2950         destroy(cache);
2951         return r;
2952 }
2953
2954 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2955 {
2956         unsigned i;
2957         const char **copy;
2958
2959         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2960         if (!copy)
2961                 return -ENOMEM;
2962         for (i = 0; i < argc; i++) {
2963                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2964                 if (!copy[i]) {
2965                         while (i--)
2966                                 kfree(copy[i]);
2967                         kfree(copy);
2968                         return -ENOMEM;
2969                 }
2970         }
2971
2972         cache->nr_ctr_args = argc;
2973         cache->ctr_args = copy;
2974
2975         return 0;
2976 }
2977
2978 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2979 {
2980         int r = -EINVAL;
2981         struct cache_args *ca;
2982         struct cache *cache = NULL;
2983
2984         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2985         if (!ca) {
2986                 ti->error = "Error allocating memory for cache";
2987                 return -ENOMEM;
2988         }
2989         ca->ti = ti;
2990
2991         r = parse_cache_args(ca, argc, argv, &ti->error);
2992         if (r)
2993                 goto out;
2994
2995         r = cache_create(ca, &cache);
2996         if (r)
2997                 goto out;
2998
2999         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3000         if (r) {
3001                 destroy(cache);
3002                 goto out;
3003         }
3004
3005         ti->private = cache;
3006
3007 out:
3008         destroy_cache_args(ca);
3009         return r;
3010 }
3011
3012 /*----------------------------------------------------------------*/
3013
3014 static int cache_map(struct dm_target *ti, struct bio *bio)
3015 {
3016         struct cache *cache = ti->private;
3017
3018         int r;
3019         struct dm_bio_prison_cell *cell = NULL;
3020         dm_oblock_t block = get_bio_block(cache, bio);
3021         size_t pb_data_size = get_per_bio_data_size(cache);
3022         bool can_migrate = false;
3023         bool fast_promotion;
3024         struct policy_result lookup_result;
3025         struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3026         struct old_oblock_lock ool;
3027
3028         ool.locker.fn = null_locker;
3029
3030         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3031                 /*
3032                  * This can only occur if the io goes to a partial block at
3033                  * the end of the origin device.  We don't cache these.
3034                  * Just remap to the origin and carry on.
3035                  */
3036                 remap_to_origin(cache, bio);
3037                 accounted_begin(cache, bio);
3038                 return DM_MAPIO_REMAPPED;
3039         }
3040
3041         if (discard_or_flush(bio)) {
3042                 defer_bio(cache, bio);
3043                 return DM_MAPIO_SUBMITTED;
3044         }
3045
3046         /*
3047          * Check to see if that block is currently migrating.
3048          */
3049         cell = alloc_prison_cell(cache);
3050         if (!cell) {
3051                 defer_bio(cache, bio);
3052                 return DM_MAPIO_SUBMITTED;
3053         }
3054
3055         r = bio_detain(cache, block, bio, cell,
3056                        (cell_free_fn) free_prison_cell,
3057                        cache, &cell);
3058         if (r) {
3059                 if (r < 0)
3060                         defer_bio(cache, bio);
3061
3062                 return DM_MAPIO_SUBMITTED;
3063         }
3064
3065         fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3066
3067         r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3068                        bio, &ool.locker, &lookup_result);
3069         if (r == -EWOULDBLOCK) {
3070                 cell_defer(cache, cell, true);
3071                 return DM_MAPIO_SUBMITTED;
3072
3073         } else if (r) {
3074                 DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3075                             cache_device_name(cache), r);
3076                 cell_defer(cache, cell, false);
3077                 bio_io_error(bio);
3078                 return DM_MAPIO_SUBMITTED;
3079         }
3080
3081         r = DM_MAPIO_REMAPPED;
3082         switch (lookup_result.op) {
3083         case POLICY_HIT:
3084                 if (passthrough_mode(&cache->features)) {
3085                         if (bio_data_dir(bio) == WRITE) {
3086                                 /*
3087                                  * We need to invalidate this block, so
3088                                  * defer for the worker thread.
3089                                  */
3090                                 cell_defer(cache, cell, true);
3091                                 r = DM_MAPIO_SUBMITTED;
3092
3093                         } else {
3094                                 inc_miss_counter(cache, bio);
3095                                 remap_to_origin_clear_discard(cache, bio, block);
3096                                 accounted_begin(cache, bio);
3097                                 inc_ds(cache, bio, cell);
3098                                 // FIXME: we want to remap hits or misses straight
3099                                 // away rather than passing over to the worker.
3100                                 cell_defer(cache, cell, false);
3101                         }
3102
3103                 } else {
3104                         inc_hit_counter(cache, bio);
3105                         if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3106                             !is_dirty(cache, lookup_result.cblock)) {
3107                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3108                                 accounted_begin(cache, bio);
3109                                 inc_ds(cache, bio, cell);
3110                                 cell_defer(cache, cell, false);
3111
3112                         } else
3113                                 remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3114                 }
3115                 break;
3116
3117         case POLICY_MISS:
3118                 inc_miss_counter(cache, bio);
3119                 if (pb->req_nr != 0) {
3120                         /*
3121                          * This is a duplicate writethrough io that is no
3122                          * longer needed because the block has been demoted.
3123                          */
3124                         bio_endio(bio);
3125                         // FIXME: remap everything as a miss
3126                         cell_defer(cache, cell, false);
3127                         r = DM_MAPIO_SUBMITTED;
3128
3129                 } else
3130                         remap_cell_to_origin_clear_discard(cache, cell, block, false);
3131                 break;
3132
3133         default:
3134                 DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3135                             cache_device_name(cache), __func__,
3136                             (unsigned) lookup_result.op);
3137                 cell_defer(cache, cell, false);
3138                 bio_io_error(bio);
3139                 r = DM_MAPIO_SUBMITTED;
3140         }
3141
3142         return r;
3143 }
3144
3145 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3146 {
3147         struct cache *cache = ti->private;
3148         unsigned long flags;
3149         size_t pb_data_size = get_per_bio_data_size(cache);
3150         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3151
3152         if (pb->tick) {
3153                 policy_tick(cache->policy, false);
3154
3155                 spin_lock_irqsave(&cache->lock, flags);
3156                 cache->need_tick_bio = true;
3157                 spin_unlock_irqrestore(&cache->lock, flags);
3158         }
3159
3160         check_for_quiesced_migrations(cache, pb);
3161         accounted_complete(cache, bio);
3162
3163         return 0;
3164 }
3165
3166 static int write_dirty_bitset(struct cache *cache)
3167 {
3168         unsigned i, r;
3169
3170         if (get_cache_mode(cache) >= CM_READ_ONLY)
3171                 return -EINVAL;
3172
3173         for (i = 0; i < from_cblock(cache->cache_size); i++) {
3174                 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3175                                        is_dirty(cache, to_cblock(i)));
3176                 if (r) {
3177                         metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3178                         return r;
3179                 }
3180         }
3181
3182         return 0;
3183 }
3184
3185 static int write_discard_bitset(struct cache *cache)
3186 {
3187         unsigned i, r;
3188
3189         if (get_cache_mode(cache) >= CM_READ_ONLY)
3190                 return -EINVAL;
3191
3192         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3193                                            cache->discard_nr_blocks);
3194         if (r) {
3195                 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3196                 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3197                 return r;
3198         }
3199
3200         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3201                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3202                                          is_discarded(cache, to_dblock(i)));
3203                 if (r) {
3204                         metadata_operation_failed(cache, "dm_cache_set_discard", r);
3205                         return r;
3206                 }
3207         }
3208
3209         return 0;
3210 }
3211
3212 static int write_hints(struct cache *cache)
3213 {
3214         int r;
3215
3216         if (get_cache_mode(cache) >= CM_READ_ONLY)
3217                 return -EINVAL;
3218
3219         r = dm_cache_write_hints(cache->cmd, cache->policy);
3220         if (r) {
3221                 metadata_operation_failed(cache, "dm_cache_write_hints", r);
3222                 return r;
3223         }
3224
3225         return 0;
3226 }
3227
3228 /*
3229  * returns true on success
3230  */
3231 static bool sync_metadata(struct cache *cache)
3232 {
3233         int r1, r2, r3, r4;
3234
3235         r1 = write_dirty_bitset(cache);
3236         if (r1)
3237                 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3238
3239         r2 = write_discard_bitset(cache);
3240         if (r2)
3241                 DMERR("%s: could not write discard bitset", cache_device_name(cache));
3242
3243         save_stats(cache);
3244
3245         r3 = write_hints(cache);
3246         if (r3)
3247                 DMERR("%s: could not write hints", cache_device_name(cache));
3248
3249         /*
3250          * If writing the above metadata failed, we still commit, but don't
3251          * set the clean shutdown flag.  This will effectively force every
3252          * dirty bit to be set on reload.
3253          */
3254         r4 = commit(cache, !r1 && !r2 && !r3);
3255         if (r4)
3256                 DMERR("%s: could not write cache metadata", cache_device_name(cache));
3257
3258         return !r1 && !r2 && !r3 && !r4;
3259 }
3260
3261 static void cache_postsuspend(struct dm_target *ti)
3262 {
3263         struct cache *cache = ti->private;
3264
3265         start_quiescing(cache);
3266         wait_for_migrations(cache);
3267         stop_worker(cache);
3268         requeue_deferred_bios(cache);
3269         requeue_deferred_cells(cache);
3270         stop_quiescing(cache);
3271
3272         if (get_cache_mode(cache) == CM_WRITE)
3273                 (void) sync_metadata(cache);
3274 }
3275
3276 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3277                         bool dirty, uint32_t hint, bool hint_valid)
3278 {
3279         int r;
3280         struct cache *cache = context;
3281
3282         r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3283         if (r)
3284                 return r;
3285
3286         if (dirty)
3287                 set_dirty(cache, oblock, cblock);
3288         else
3289                 clear_dirty(cache, oblock, cblock);
3290
3291         return 0;
3292 }
3293
3294 /*
3295  * The discard block size in the on disk metadata is not
3296  * neccessarily the same as we're currently using.  So we have to
3297  * be careful to only set the discarded attribute if we know it
3298  * covers a complete block of the new size.
3299  */
3300 struct discard_load_info {
3301         struct cache *cache;
3302
3303         /*
3304          * These blocks are sized using the on disk dblock size, rather
3305          * than the current one.
3306          */
3307         dm_block_t block_size;
3308         dm_block_t discard_begin, discard_end;
3309 };
3310
3311 static void discard_load_info_init(struct cache *cache,
3312                                    struct discard_load_info *li)
3313 {
3314         li->cache = cache;
3315         li->discard_begin = li->discard_end = 0;
3316 }
3317
3318 static void set_discard_range(struct discard_load_info *li)
3319 {
3320         sector_t b, e;
3321
3322         if (li->discard_begin == li->discard_end)
3323                 return;
3324
3325         /*
3326          * Convert to sectors.
3327          */
3328         b = li->discard_begin * li->block_size;
3329         e = li->discard_end * li->block_size;
3330
3331         /*
3332          * Then convert back to the current dblock size.
3333          */
3334         b = dm_sector_div_up(b, li->cache->discard_block_size);
3335         sector_div(e, li->cache->discard_block_size);
3336
3337         /*
3338          * The origin may have shrunk, so we need to check we're still in
3339          * bounds.
3340          */
3341         if (e > from_dblock(li->cache->discard_nr_blocks))
3342                 e = from_dblock(li->cache->discard_nr_blocks);
3343
3344         for (; b < e; b++)
3345                 set_discard(li->cache, to_dblock(b));
3346 }
3347
3348 static int load_discard(void *context, sector_t discard_block_size,
3349                         dm_dblock_t dblock, bool discard)
3350 {
3351         struct discard_load_info *li = context;
3352
3353         li->block_size = discard_block_size;
3354
3355         if (discard) {
3356                 if (from_dblock(dblock) == li->discard_end)
3357                         /*
3358                          * We're already in a discard range, just extend it.
3359                          */
3360                         li->discard_end = li->discard_end + 1ULL;
3361
3362                 else {
3363                         /*
3364                          * Emit the old range and start a new one.
3365                          */
3366                         set_discard_range(li);
3367                         li->discard_begin = from_dblock(dblock);
3368                         li->discard_end = li->discard_begin + 1ULL;
3369                 }
3370         } else {
3371                 set_discard_range(li);
3372                 li->discard_begin = li->discard_end = 0;
3373         }
3374
3375         return 0;
3376 }
3377
3378 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3379 {
3380         sector_t size = get_dev_size(cache->cache_dev);
3381         (void) sector_div(size, cache->sectors_per_block);
3382         return to_cblock(size);
3383 }
3384
3385 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3386 {
3387         if (from_cblock(new_size) > from_cblock(cache->cache_size))
3388                 return true;
3389
3390         /*
3391          * We can't drop a dirty block when shrinking the cache.
3392          */
3393         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3394                 new_size = to_cblock(from_cblock(new_size) + 1);
3395                 if (is_dirty(cache, new_size)) {
3396                         DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3397                               cache_device_name(cache),
3398                               (unsigned long long) from_cblock(new_size));
3399                         return false;
3400                 }
3401         }
3402
3403         return true;
3404 }
3405
3406 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3407 {
3408         int r;
3409
3410         r = dm_cache_resize(cache->cmd, new_size);
3411         if (r) {
3412                 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3413                 metadata_operation_failed(cache, "dm_cache_resize", r);
3414                 return r;
3415         }
3416
3417         set_cache_size(cache, new_size);
3418
3419         return 0;
3420 }
3421
3422 static int cache_preresume(struct dm_target *ti)
3423 {
3424         int r = 0;
3425         struct cache *cache = ti->private;
3426         dm_cblock_t csize = get_cache_dev_size(cache);
3427
3428         /*
3429          * Check to see if the cache has resized.
3430          */
3431         if (!cache->sized) {
3432                 r = resize_cache_dev(cache, csize);
3433                 if (r)
3434                         return r;
3435
3436                 cache->sized = true;
3437
3438         } else if (csize != cache->cache_size) {
3439                 if (!can_resize(cache, csize))
3440                         return -EINVAL;
3441
3442                 r = resize_cache_dev(cache, csize);
3443                 if (r)
3444                         return r;
3445         }
3446
3447         if (!cache->loaded_mappings) {
3448                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3449                                            load_mapping, cache);
3450                 if (r) {
3451                         DMERR("%s: could not load cache mappings", cache_device_name(cache));
3452                         metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3453                         return r;
3454                 }
3455
3456                 cache->loaded_mappings = true;
3457         }
3458
3459         if (!cache->loaded_discards) {
3460                 struct discard_load_info li;
3461
3462                 /*
3463                  * The discard bitset could have been resized, or the
3464                  * discard block size changed.  To be safe we start by
3465                  * setting every dblock to not discarded.
3466                  */
3467                 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3468
3469                 discard_load_info_init(cache, &li);
3470                 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3471                 if (r) {
3472                         DMERR("%s: could not load origin discards", cache_device_name(cache));
3473                         metadata_operation_failed(cache, "dm_cache_load_discards", r);
3474                         return r;
3475                 }
3476                 set_discard_range(&li);
3477
3478                 cache->loaded_discards = true;
3479         }
3480
3481         return r;
3482 }
3483
3484 static void cache_resume(struct dm_target *ti)
3485 {
3486         struct cache *cache = ti->private;
3487
3488         cache->need_tick_bio = true;
3489         do_waker(&cache->waker.work);
3490 }
3491
3492 /*
3493  * Status format:
3494  *
3495  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3496  * <cache block size> <#used cache blocks>/<#total cache blocks>
3497  * <#read hits> <#read misses> <#write hits> <#write misses>
3498  * <#demotions> <#promotions> <#dirty>
3499  * <#features> <features>*
3500  * <#core args> <core args>
3501  * <policy name> <#policy args> <policy args>* <cache metadata mode>
3502  */
3503 static void cache_status(struct dm_target *ti, status_type_t type,
3504                          unsigned status_flags, char *result, unsigned maxlen)
3505 {
3506         int r = 0;
3507         unsigned i;
3508         ssize_t sz = 0;
3509         dm_block_t nr_free_blocks_metadata = 0;
3510         dm_block_t nr_blocks_metadata = 0;
3511         char buf[BDEVNAME_SIZE];
3512         struct cache *cache = ti->private;
3513         dm_cblock_t residency;
3514
3515         switch (type) {
3516         case STATUSTYPE_INFO:
3517                 if (get_cache_mode(cache) == CM_FAIL) {
3518                         DMEMIT("Fail");
3519                         break;
3520                 }
3521
3522                 /* Commit to ensure statistics aren't out-of-date */
3523                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3524                         (void) commit(cache, false);
3525
3526                 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3527                 if (r) {
3528                         DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3529                               cache_device_name(cache), r);
3530                         goto err;
3531                 }
3532
3533                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3534                 if (r) {
3535                         DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3536                               cache_device_name(cache), r);
3537                         goto err;
3538                 }
3539
3540                 residency = policy_residency(cache->policy);
3541
3542                 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3543                        (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3544                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3545                        (unsigned long long)nr_blocks_metadata,
3546                        cache->sectors_per_block,
3547                        (unsigned long long) from_cblock(residency),
3548                        (unsigned long long) from_cblock(cache->cache_size),
3549                        (unsigned) atomic_read(&cache->stats.read_hit),
3550                        (unsigned) atomic_read(&cache->stats.read_miss),
3551                        (unsigned) atomic_read(&cache->stats.write_hit),
3552                        (unsigned) atomic_read(&cache->stats.write_miss),
3553                        (unsigned) atomic_read(&cache->stats.demotion),
3554                        (unsigned) atomic_read(&cache->stats.promotion),
3555                        (unsigned long) atomic_read(&cache->nr_dirty));
3556
3557                 if (writethrough_mode(&cache->features))
3558                         DMEMIT("1 writethrough ");
3559
3560                 else if (passthrough_mode(&cache->features))
3561                         DMEMIT("1 passthrough ");
3562
3563                 else if (writeback_mode(&cache->features))
3564                         DMEMIT("1 writeback ");
3565
3566                 else {
3567                         DMERR("%s: internal error: unknown io mode: %d",
3568                               cache_device_name(cache), (int) cache->features.io_mode);
3569                         goto err;
3570                 }
3571
3572                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3573
3574                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3575                 if (sz < maxlen) {
3576                         r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3577                         if (r)
3578                                 DMERR("%s: policy_emit_config_values returned %d",
3579                                       cache_device_name(cache), r);
3580                 }
3581
3582                 if (get_cache_mode(cache) == CM_READ_ONLY)
3583                         DMEMIT("ro ");
3584                 else
3585                         DMEMIT("rw ");
3586
3587                 break;
3588
3589         case STATUSTYPE_TABLE:
3590                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3591                 DMEMIT("%s ", buf);
3592                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3593                 DMEMIT("%s ", buf);
3594                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3595                 DMEMIT("%s", buf);
3596
3597                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3598                         DMEMIT(" %s", cache->ctr_args[i]);
3599                 if (cache->nr_ctr_args)
3600                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3601         }
3602
3603         return;
3604
3605 err:
3606         DMEMIT("Error");
3607 }
3608
3609 /*
3610  * A cache block range can take two forms:
3611  *
3612  * i) A single cblock, eg. '3456'
3613  * ii) A begin and end cblock with dots between, eg. 123-234
3614  */
3615 static int parse_cblock_range(struct cache *cache, const char *str,
3616                               struct cblock_range *result)
3617 {
3618         char dummy;
3619         uint64_t b, e;
3620         int r;
3621
3622         /*
3623          * Try and parse form (ii) first.
3624          */
3625         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3626         if (r < 0)
3627                 return r;
3628
3629         if (r == 2) {
3630                 result->begin = to_cblock(b);
3631                 result->end = to_cblock(e);
3632                 return 0;
3633         }
3634
3635         /*
3636          * That didn't work, try form (i).
3637          */
3638         r = sscanf(str, "%llu%c", &b, &dummy);
3639         if (r < 0)
3640                 return r;
3641
3642         if (r == 1) {
3643                 result->begin = to_cblock(b);
3644                 result->end = to_cblock(from_cblock(result->begin) + 1u);
3645                 return 0;
3646         }
3647
3648         DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3649         return -EINVAL;
3650 }
3651
3652 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3653 {
3654         uint64_t b = from_cblock(range->begin);
3655         uint64_t e = from_cblock(range->end);
3656         uint64_t n = from_cblock(cache->cache_size);
3657
3658         if (b >= n) {
3659                 DMERR("%s: begin cblock out of range: %llu >= %llu",
3660                       cache_device_name(cache), b, n);
3661                 return -EINVAL;
3662         }
3663
3664         if (e > n) {
3665                 DMERR("%s: end cblock out of range: %llu > %llu",
3666                       cache_device_name(cache), e, n);
3667                 return -EINVAL;
3668         }
3669
3670         if (b >= e) {
3671                 DMERR("%s: invalid cblock range: %llu >= %llu",
3672                       cache_device_name(cache), b, e);
3673                 return -EINVAL;
3674         }
3675
3676         return 0;
3677 }
3678
3679 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3680 {
3681         struct invalidation_request req;
3682
3683         INIT_LIST_HEAD(&req.list);
3684         req.cblocks = range;
3685         atomic_set(&req.complete, 0);
3686         req.err = 0;
3687         init_waitqueue_head(&req.result_wait);
3688
3689         spin_lock(&cache->invalidation_lock);
3690         list_add(&req.list, &cache->invalidation_requests);
3691         spin_unlock(&cache->invalidation_lock);
3692         wake_worker(cache);
3693
3694         wait_event(req.result_wait, atomic_read(&req.complete));
3695         return req.err;
3696 }
3697
3698 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3699                                               const char **cblock_ranges)
3700 {
3701         int r = 0;
3702         unsigned i;
3703         struct cblock_range range;
3704
3705         if (!passthrough_mode(&cache->features)) {
3706                 DMERR("%s: cache has to be in passthrough mode for invalidation",
3707                       cache_device_name(cache));
3708                 return -EPERM;
3709         }
3710
3711         for (i = 0; i < count; i++) {
3712                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3713                 if (r)
3714                         break;
3715
3716                 r = validate_cblock_range(cache, &range);
3717                 if (r)
3718                         break;
3719
3720                 /*
3721                  * Pass begin and end origin blocks to the worker and wake it.
3722                  */
3723                 r = request_invalidation(cache, &range);
3724                 if (r)
3725                         break;
3726         }
3727
3728         return r;
3729 }
3730
3731 /*
3732  * Supports
3733  *      "<key> <value>"
3734  * and
3735  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3736  *
3737  * The key migration_threshold is supported by the cache target core.
3738  */
3739 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3740 {
3741         struct cache *cache = ti->private;
3742
3743         if (!argc)
3744                 return -EINVAL;
3745
3746         if (get_cache_mode(cache) >= CM_READ_ONLY) {
3747                 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3748                       cache_device_name(cache));
3749                 return -EOPNOTSUPP;
3750         }
3751
3752         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3753                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3754
3755         if (argc != 2)
3756                 return -EINVAL;
3757
3758         return set_config_value(cache, argv[0], argv[1]);
3759 }
3760
3761 static int cache_iterate_devices(struct dm_target *ti,
3762                                  iterate_devices_callout_fn fn, void *data)
3763 {
3764         int r = 0;
3765         struct cache *cache = ti->private;
3766
3767         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3768         if (!r)
3769                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3770
3771         return r;
3772 }
3773
3774 /*
3775  * We assume I/O is going to the origin (which is the volume
3776  * more likely to have restrictions e.g. by being striped).
3777  * (Looking up the exact location of the data would be expensive
3778  * and could always be out of date by the time the bio is submitted.)
3779  */
3780 static int cache_bvec_merge(struct dm_target *ti,
3781                             struct bvec_merge_data *bvm,
3782                             struct bio_vec *biovec, int max_size)
3783 {
3784         struct cache *cache = ti->private;
3785         struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3786
3787         if (!q->merge_bvec_fn)
3788                 return max_size;
3789
3790         bvm->bi_bdev = cache->origin_dev->bdev;
3791         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3792 }
3793
3794 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3795 {
3796         /*
3797          * FIXME: these limits may be incompatible with the cache device
3798          */
3799         limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3800                                             cache->origin_sectors);
3801         limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3802 }
3803
3804 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3805 {
3806         struct cache *cache = ti->private;
3807         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3808
3809         /*
3810          * If the system-determined stacked limits are compatible with the
3811          * cache's blocksize (io_opt is a factor) do not override them.
3812          */
3813         if (io_opt_sectors < cache->sectors_per_block ||
3814             do_div(io_opt_sectors, cache->sectors_per_block)) {
3815                 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3816                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3817         }
3818         set_discard_limits(cache, limits);
3819 }
3820
3821 /*----------------------------------------------------------------*/
3822
3823 static struct target_type cache_target = {
3824         .name = "cache",
3825         .version = {1, 7, 0},
3826         .module = THIS_MODULE,
3827         .ctr = cache_ctr,
3828         .dtr = cache_dtr,
3829         .map = cache_map,
3830         .end_io = cache_end_io,
3831         .postsuspend = cache_postsuspend,
3832         .preresume = cache_preresume,
3833         .resume = cache_resume,
3834         .status = cache_status,
3835         .message = cache_message,
3836         .iterate_devices = cache_iterate_devices,
3837         .merge = cache_bvec_merge,
3838         .io_hints = cache_io_hints,
3839 };
3840
3841 static int __init dm_cache_init(void)
3842 {
3843         int r;
3844
3845         r = dm_register_target(&cache_target);
3846         if (r) {
3847                 DMERR("cache target registration failed: %d", r);
3848                 return r;
3849         }
3850
3851         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3852         if (!migration_cache) {
3853                 dm_unregister_target(&cache_target);
3854                 return -ENOMEM;
3855         }
3856
3857         return 0;
3858 }
3859
3860 static void __exit dm_cache_exit(void)
3861 {
3862         dm_unregister_target(&cache_target);
3863         kmem_cache_destroy(migration_cache);
3864 }
3865
3866 module_init(dm_cache_init);
3867 module_exit(dm_cache_exit);
3868
3869 MODULE_DESCRIPTION(DM_NAME " cache target");
3870 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3871 MODULE_LICENSE("GPL");