]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/dm-kcopyd.c
Merge tag 'powerpc-4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[karo-tx-linux.git] / drivers / md / dm-kcopyd.c
1 /*
2  * Copyright (C) 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2006 Red Hat GmbH
4  *
5  * This file is released under the GPL.
6  *
7  * Kcopyd provides a simple interface for copying an area of one
8  * block-device to one or more other block-devices, with an asynchronous
9  * completion notification.
10  */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
28
29 #include "dm-core.h"
30
31 #define SUB_JOB_SIZE    128
32 #define SPLIT_COUNT     8
33 #define MIN_JOBS        8
34 #define RESERVE_PAGES   (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
35
36 /*-----------------------------------------------------------------
37  * Each kcopyd client has its own little pool of preallocated
38  * pages for kcopyd io.
39  *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41         struct page_list *pages;
42         unsigned nr_reserved_pages;
43         unsigned nr_free_pages;
44
45         struct dm_io_client *io_client;
46
47         wait_queue_head_t destroyq;
48         atomic_t nr_jobs;
49
50         mempool_t *job_pool;
51
52         struct workqueue_struct *kcopyd_wq;
53         struct work_struct kcopyd_work;
54
55         struct dm_kcopyd_throttle *throttle;
56
57 /*
58  * We maintain three lists of jobs:
59  *
60  * i)   jobs waiting for pages
61  * ii)  jobs that have pages, and are waiting for the io to be issued.
62  * iii) jobs that have completed.
63  *
64  * All three of these are protected by job_lock.
65  */
66         spinlock_t job_lock;
67         struct list_head complete_jobs;
68         struct list_head io_jobs;
69         struct list_head pages_jobs;
70 };
71
72 static struct page_list zero_page_list;
73
74 static DEFINE_SPINLOCK(throttle_spinlock);
75
76 /*
77  * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
78  * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
79  * by 2.
80  */
81 #define ACCOUNT_INTERVAL_SHIFT          SHIFT_HZ
82
83 /*
84  * Sleep this number of milliseconds.
85  *
86  * The value was decided experimentally.
87  * Smaller values seem to cause an increased copy rate above the limit.
88  * The reason for this is unknown but possibly due to jiffies rounding errors
89  * or read/write cache inside the disk.
90  */
91 #define SLEEP_MSEC                      100
92
93 /*
94  * Maximum number of sleep events. There is a theoretical livelock if more
95  * kcopyd clients do work simultaneously which this limit avoids.
96  */
97 #define MAX_SLEEPS                      10
98
99 static void io_job_start(struct dm_kcopyd_throttle *t)
100 {
101         unsigned throttle, now, difference;
102         int slept = 0, skew;
103
104         if (unlikely(!t))
105                 return;
106
107 try_again:
108         spin_lock_irq(&throttle_spinlock);
109
110         throttle = ACCESS_ONCE(t->throttle);
111
112         if (likely(throttle >= 100))
113                 goto skip_limit;
114
115         now = jiffies;
116         difference = now - t->last_jiffies;
117         t->last_jiffies = now;
118         if (t->num_io_jobs)
119                 t->io_period += difference;
120         t->total_period += difference;
121
122         /*
123          * Maintain sane values if we got a temporary overflow.
124          */
125         if (unlikely(t->io_period > t->total_period))
126                 t->io_period = t->total_period;
127
128         if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
129                 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
130                 t->total_period >>= shift;
131                 t->io_period >>= shift;
132         }
133
134         skew = t->io_period - throttle * t->total_period / 100;
135
136         if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
137                 slept++;
138                 spin_unlock_irq(&throttle_spinlock);
139                 msleep(SLEEP_MSEC);
140                 goto try_again;
141         }
142
143 skip_limit:
144         t->num_io_jobs++;
145
146         spin_unlock_irq(&throttle_spinlock);
147 }
148
149 static void io_job_finish(struct dm_kcopyd_throttle *t)
150 {
151         unsigned long flags;
152
153         if (unlikely(!t))
154                 return;
155
156         spin_lock_irqsave(&throttle_spinlock, flags);
157
158         t->num_io_jobs--;
159
160         if (likely(ACCESS_ONCE(t->throttle) >= 100))
161                 goto skip_limit;
162
163         if (!t->num_io_jobs) {
164                 unsigned now, difference;
165
166                 now = jiffies;
167                 difference = now - t->last_jiffies;
168                 t->last_jiffies = now;
169
170                 t->io_period += difference;
171                 t->total_period += difference;
172
173                 /*
174                  * Maintain sane values if we got a temporary overflow.
175                  */
176                 if (unlikely(t->io_period > t->total_period))
177                         t->io_period = t->total_period;
178         }
179
180 skip_limit:
181         spin_unlock_irqrestore(&throttle_spinlock, flags);
182 }
183
184
185 static void wake(struct dm_kcopyd_client *kc)
186 {
187         queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
188 }
189
190 /*
191  * Obtain one page for the use of kcopyd.
192  */
193 static struct page_list *alloc_pl(gfp_t gfp)
194 {
195         struct page_list *pl;
196
197         pl = kmalloc(sizeof(*pl), gfp);
198         if (!pl)
199                 return NULL;
200
201         pl->page = alloc_page(gfp);
202         if (!pl->page) {
203                 kfree(pl);
204                 return NULL;
205         }
206
207         return pl;
208 }
209
210 static void free_pl(struct page_list *pl)
211 {
212         __free_page(pl->page);
213         kfree(pl);
214 }
215
216 /*
217  * Add the provided pages to a client's free page list, releasing
218  * back to the system any beyond the reserved_pages limit.
219  */
220 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
221 {
222         struct page_list *next;
223
224         do {
225                 next = pl->next;
226
227                 if (kc->nr_free_pages >= kc->nr_reserved_pages)
228                         free_pl(pl);
229                 else {
230                         pl->next = kc->pages;
231                         kc->pages = pl;
232                         kc->nr_free_pages++;
233                 }
234
235                 pl = next;
236         } while (pl);
237 }
238
239 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
240                             unsigned int nr, struct page_list **pages)
241 {
242         struct page_list *pl;
243
244         *pages = NULL;
245
246         do {
247                 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
248                 if (unlikely(!pl)) {
249                         /* Use reserved pages */
250                         pl = kc->pages;
251                         if (unlikely(!pl))
252                                 goto out_of_memory;
253                         kc->pages = pl->next;
254                         kc->nr_free_pages--;
255                 }
256                 pl->next = *pages;
257                 *pages = pl;
258         } while (--nr);
259
260         return 0;
261
262 out_of_memory:
263         if (*pages)
264                 kcopyd_put_pages(kc, *pages);
265         return -ENOMEM;
266 }
267
268 /*
269  * These three functions resize the page pool.
270  */
271 static void drop_pages(struct page_list *pl)
272 {
273         struct page_list *next;
274
275         while (pl) {
276                 next = pl->next;
277                 free_pl(pl);
278                 pl = next;
279         }
280 }
281
282 /*
283  * Allocate and reserve nr_pages for the use of a specific client.
284  */
285 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
286 {
287         unsigned i;
288         struct page_list *pl = NULL, *next;
289
290         for (i = 0; i < nr_pages; i++) {
291                 next = alloc_pl(GFP_KERNEL);
292                 if (!next) {
293                         if (pl)
294                                 drop_pages(pl);
295                         return -ENOMEM;
296                 }
297                 next->next = pl;
298                 pl = next;
299         }
300
301         kc->nr_reserved_pages += nr_pages;
302         kcopyd_put_pages(kc, pl);
303
304         return 0;
305 }
306
307 static void client_free_pages(struct dm_kcopyd_client *kc)
308 {
309         BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
310         drop_pages(kc->pages);
311         kc->pages = NULL;
312         kc->nr_free_pages = kc->nr_reserved_pages = 0;
313 }
314
315 /*-----------------------------------------------------------------
316  * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
317  * for this reason we use a mempool to prevent the client from
318  * ever having to do io (which could cause a deadlock).
319  *---------------------------------------------------------------*/
320 struct kcopyd_job {
321         struct dm_kcopyd_client *kc;
322         struct list_head list;
323         unsigned long flags;
324
325         /*
326          * Error state of the job.
327          */
328         int read_err;
329         unsigned long write_err;
330
331         /*
332          * Either READ or WRITE
333          */
334         int rw;
335         struct dm_io_region source;
336
337         /*
338          * The destinations for the transfer.
339          */
340         unsigned int num_dests;
341         struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
342
343         struct page_list *pages;
344
345         /*
346          * Set this to ensure you are notified when the job has
347          * completed.  'context' is for callback to use.
348          */
349         dm_kcopyd_notify_fn fn;
350         void *context;
351
352         /*
353          * These fields are only used if the job has been split
354          * into more manageable parts.
355          */
356         struct mutex lock;
357         atomic_t sub_jobs;
358         sector_t progress;
359         sector_t write_offset;
360
361         struct kcopyd_job *master_job;
362 };
363
364 static struct kmem_cache *_job_cache;
365
366 int __init dm_kcopyd_init(void)
367 {
368         _job_cache = kmem_cache_create("kcopyd_job",
369                                 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
370                                 __alignof__(struct kcopyd_job), 0, NULL);
371         if (!_job_cache)
372                 return -ENOMEM;
373
374         zero_page_list.next = &zero_page_list;
375         zero_page_list.page = ZERO_PAGE(0);
376
377         return 0;
378 }
379
380 void dm_kcopyd_exit(void)
381 {
382         kmem_cache_destroy(_job_cache);
383         _job_cache = NULL;
384 }
385
386 /*
387  * Functions to push and pop a job onto the head of a given job
388  * list.
389  */
390 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
391                                      struct dm_kcopyd_client *kc)
392 {
393         struct kcopyd_job *job;
394
395         /*
396          * For I/O jobs, pop any read, any write without sequential write
397          * constraint and sequential writes that are at the right position.
398          */
399         list_for_each_entry(job, jobs, list) {
400                 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
401                         list_del(&job->list);
402                         return job;
403                 }
404
405                 if (job->write_offset == job->master_job->write_offset) {
406                         job->master_job->write_offset += job->source.count;
407                         list_del(&job->list);
408                         return job;
409                 }
410         }
411
412         return NULL;
413 }
414
415 static struct kcopyd_job *pop(struct list_head *jobs,
416                               struct dm_kcopyd_client *kc)
417 {
418         struct kcopyd_job *job = NULL;
419         unsigned long flags;
420
421         spin_lock_irqsave(&kc->job_lock, flags);
422
423         if (!list_empty(jobs)) {
424                 if (jobs == &kc->io_jobs)
425                         job = pop_io_job(jobs, kc);
426                 else {
427                         job = list_entry(jobs->next, struct kcopyd_job, list);
428                         list_del(&job->list);
429                 }
430         }
431         spin_unlock_irqrestore(&kc->job_lock, flags);
432
433         return job;
434 }
435
436 static void push(struct list_head *jobs, struct kcopyd_job *job)
437 {
438         unsigned long flags;
439         struct dm_kcopyd_client *kc = job->kc;
440
441         spin_lock_irqsave(&kc->job_lock, flags);
442         list_add_tail(&job->list, jobs);
443         spin_unlock_irqrestore(&kc->job_lock, flags);
444 }
445
446
447 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
448 {
449         unsigned long flags;
450         struct dm_kcopyd_client *kc = job->kc;
451
452         spin_lock_irqsave(&kc->job_lock, flags);
453         list_add(&job->list, jobs);
454         spin_unlock_irqrestore(&kc->job_lock, flags);
455 }
456
457 /*
458  * These three functions process 1 item from the corresponding
459  * job list.
460  *
461  * They return:
462  * < 0: error
463  *   0: success
464  * > 0: can't process yet.
465  */
466 static int run_complete_job(struct kcopyd_job *job)
467 {
468         void *context = job->context;
469         int read_err = job->read_err;
470         unsigned long write_err = job->write_err;
471         dm_kcopyd_notify_fn fn = job->fn;
472         struct dm_kcopyd_client *kc = job->kc;
473
474         if (job->pages && job->pages != &zero_page_list)
475                 kcopyd_put_pages(kc, job->pages);
476         /*
477          * If this is the master job, the sub jobs have already
478          * completed so we can free everything.
479          */
480         if (job->master_job == job)
481                 mempool_free(job, kc->job_pool);
482         fn(read_err, write_err, context);
483
484         if (atomic_dec_and_test(&kc->nr_jobs))
485                 wake_up(&kc->destroyq);
486
487         return 0;
488 }
489
490 static void complete_io(unsigned long error, void *context)
491 {
492         struct kcopyd_job *job = (struct kcopyd_job *) context;
493         struct dm_kcopyd_client *kc = job->kc;
494
495         io_job_finish(kc->throttle);
496
497         if (error) {
498                 if (op_is_write(job->rw))
499                         job->write_err |= error;
500                 else
501                         job->read_err = 1;
502
503                 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
504                         push(&kc->complete_jobs, job);
505                         wake(kc);
506                         return;
507                 }
508         }
509
510         if (op_is_write(job->rw))
511                 push(&kc->complete_jobs, job);
512
513         else {
514                 job->rw = WRITE;
515                 push(&kc->io_jobs, job);
516         }
517
518         wake(kc);
519 }
520
521 /*
522  * Request io on as many buffer heads as we can currently get for
523  * a particular job.
524  */
525 static int run_io_job(struct kcopyd_job *job)
526 {
527         int r;
528         struct dm_io_request io_req = {
529                 .bi_op = job->rw,
530                 .bi_op_flags = 0,
531                 .mem.type = DM_IO_PAGE_LIST,
532                 .mem.ptr.pl = job->pages,
533                 .mem.offset = 0,
534                 .notify.fn = complete_io,
535                 .notify.context = job,
536                 .client = job->kc->io_client,
537         };
538
539         /*
540          * If we need to write sequentially and some reads or writes failed,
541          * no point in continuing.
542          */
543         if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
544             job->master_job->write_err)
545                 return -EIO;
546
547         io_job_start(job->kc->throttle);
548
549         if (job->rw == READ)
550                 r = dm_io(&io_req, 1, &job->source, NULL);
551         else
552                 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
553
554         return r;
555 }
556
557 static int run_pages_job(struct kcopyd_job *job)
558 {
559         int r;
560         unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
561
562         r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
563         if (!r) {
564                 /* this job is ready for io */
565                 push(&job->kc->io_jobs, job);
566                 return 0;
567         }
568
569         if (r == -ENOMEM)
570                 /* can't complete now */
571                 return 1;
572
573         return r;
574 }
575
576 /*
577  * Run through a list for as long as possible.  Returns the count
578  * of successful jobs.
579  */
580 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
581                         int (*fn) (struct kcopyd_job *))
582 {
583         struct kcopyd_job *job;
584         int r, count = 0;
585
586         while ((job = pop(jobs, kc))) {
587
588                 r = fn(job);
589
590                 if (r < 0) {
591                         /* error this rogue job */
592                         if (op_is_write(job->rw))
593                                 job->write_err = (unsigned long) -1L;
594                         else
595                                 job->read_err = 1;
596                         push(&kc->complete_jobs, job);
597                         break;
598                 }
599
600                 if (r > 0) {
601                         /*
602                          * We couldn't service this job ATM, so
603                          * push this job back onto the list.
604                          */
605                         push_head(jobs, job);
606                         break;
607                 }
608
609                 count++;
610         }
611
612         return count;
613 }
614
615 /*
616  * kcopyd does this every time it's woken up.
617  */
618 static void do_work(struct work_struct *work)
619 {
620         struct dm_kcopyd_client *kc = container_of(work,
621                                         struct dm_kcopyd_client, kcopyd_work);
622         struct blk_plug plug;
623
624         /*
625          * The order that these are called is *very* important.
626          * complete jobs can free some pages for pages jobs.
627          * Pages jobs when successful will jump onto the io jobs
628          * list.  io jobs call wake when they complete and it all
629          * starts again.
630          */
631         blk_start_plug(&plug);
632         process_jobs(&kc->complete_jobs, kc, run_complete_job);
633         process_jobs(&kc->pages_jobs, kc, run_pages_job);
634         process_jobs(&kc->io_jobs, kc, run_io_job);
635         blk_finish_plug(&plug);
636 }
637
638 /*
639  * If we are copying a small region we just dispatch a single job
640  * to do the copy, otherwise the io has to be split up into many
641  * jobs.
642  */
643 static void dispatch_job(struct kcopyd_job *job)
644 {
645         struct dm_kcopyd_client *kc = job->kc;
646         atomic_inc(&kc->nr_jobs);
647         if (unlikely(!job->source.count))
648                 push(&kc->complete_jobs, job);
649         else if (job->pages == &zero_page_list)
650                 push(&kc->io_jobs, job);
651         else
652                 push(&kc->pages_jobs, job);
653         wake(kc);
654 }
655
656 static void segment_complete(int read_err, unsigned long write_err,
657                              void *context)
658 {
659         /* FIXME: tidy this function */
660         sector_t progress = 0;
661         sector_t count = 0;
662         struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
663         struct kcopyd_job *job = sub_job->master_job;
664         struct dm_kcopyd_client *kc = job->kc;
665
666         mutex_lock(&job->lock);
667
668         /* update the error */
669         if (read_err)
670                 job->read_err = 1;
671
672         if (write_err)
673                 job->write_err |= write_err;
674
675         /*
676          * Only dispatch more work if there hasn't been an error.
677          */
678         if ((!job->read_err && !job->write_err) ||
679             test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
680                 /* get the next chunk of work */
681                 progress = job->progress;
682                 count = job->source.count - progress;
683                 if (count) {
684                         if (count > SUB_JOB_SIZE)
685                                 count = SUB_JOB_SIZE;
686
687                         job->progress += count;
688                 }
689         }
690         mutex_unlock(&job->lock);
691
692         if (count) {
693                 int i;
694
695                 *sub_job = *job;
696                 sub_job->write_offset = progress;
697                 sub_job->source.sector += progress;
698                 sub_job->source.count = count;
699
700                 for (i = 0; i < job->num_dests; i++) {
701                         sub_job->dests[i].sector += progress;
702                         sub_job->dests[i].count = count;
703                 }
704
705                 sub_job->fn = segment_complete;
706                 sub_job->context = sub_job;
707                 dispatch_job(sub_job);
708
709         } else if (atomic_dec_and_test(&job->sub_jobs)) {
710
711                 /*
712                  * Queue the completion callback to the kcopyd thread.
713                  *
714                  * Some callers assume that all the completions are called
715                  * from a single thread and don't race with each other.
716                  *
717                  * We must not call the callback directly here because this
718                  * code may not be executing in the thread.
719                  */
720                 push(&kc->complete_jobs, job);
721                 wake(kc);
722         }
723 }
724
725 /*
726  * Create some sub jobs to share the work between them.
727  */
728 static void split_job(struct kcopyd_job *master_job)
729 {
730         int i;
731
732         atomic_inc(&master_job->kc->nr_jobs);
733
734         atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
735         for (i = 0; i < SPLIT_COUNT; i++) {
736                 master_job[i + 1].master_job = master_job;
737                 segment_complete(0, 0u, &master_job[i + 1]);
738         }
739 }
740
741 int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
742                    unsigned int num_dests, struct dm_io_region *dests,
743                    unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
744 {
745         struct kcopyd_job *job;
746         int i;
747
748         /*
749          * Allocate an array of jobs consisting of one master job
750          * followed by SPLIT_COUNT sub jobs.
751          */
752         job = mempool_alloc(kc->job_pool, GFP_NOIO);
753
754         /*
755          * set up for the read.
756          */
757         job->kc = kc;
758         job->flags = flags;
759         job->read_err = 0;
760         job->write_err = 0;
761
762         job->num_dests = num_dests;
763         memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
764
765         /*
766          * If one of the destination is a host-managed zoned block device,
767          * we need to write sequentially. If one of the destination is a
768          * host-aware device, then leave it to the caller to choose what to do.
769          */
770         if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
771                 for (i = 0; i < job->num_dests; i++) {
772                         if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
773                                 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
774                                 break;
775                         }
776                 }
777         }
778
779         /*
780          * If we need to write sequentially, errors cannot be ignored.
781          */
782         if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
783             test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
784                 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
785
786         if (from) {
787                 job->source = *from;
788                 job->pages = NULL;
789                 job->rw = READ;
790         } else {
791                 memset(&job->source, 0, sizeof job->source);
792                 job->source.count = job->dests[0].count;
793                 job->pages = &zero_page_list;
794
795                 /*
796                  * Use WRITE ZEROES to optimize zeroing if all dests support it.
797                  */
798                 job->rw = REQ_OP_WRITE_ZEROES;
799                 for (i = 0; i < job->num_dests; i++)
800                         if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
801                                 job->rw = WRITE;
802                                 break;
803                         }
804         }
805
806         job->fn = fn;
807         job->context = context;
808         job->master_job = job;
809         job->write_offset = 0;
810
811         if (job->source.count <= SUB_JOB_SIZE)
812                 dispatch_job(job);
813         else {
814                 mutex_init(&job->lock);
815                 job->progress = 0;
816                 split_job(job);
817         }
818
819         return 0;
820 }
821 EXPORT_SYMBOL(dm_kcopyd_copy);
822
823 int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
824                    unsigned num_dests, struct dm_io_region *dests,
825                    unsigned flags, dm_kcopyd_notify_fn fn, void *context)
826 {
827         return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
828 }
829 EXPORT_SYMBOL(dm_kcopyd_zero);
830
831 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
832                                  dm_kcopyd_notify_fn fn, void *context)
833 {
834         struct kcopyd_job *job;
835
836         job = mempool_alloc(kc->job_pool, GFP_NOIO);
837
838         memset(job, 0, sizeof(struct kcopyd_job));
839         job->kc = kc;
840         job->fn = fn;
841         job->context = context;
842         job->master_job = job;
843
844         atomic_inc(&kc->nr_jobs);
845
846         return job;
847 }
848 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
849
850 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
851 {
852         struct kcopyd_job *job = j;
853         struct dm_kcopyd_client *kc = job->kc;
854
855         job->read_err = read_err;
856         job->write_err = write_err;
857
858         push(&kc->complete_jobs, job);
859         wake(kc);
860 }
861 EXPORT_SYMBOL(dm_kcopyd_do_callback);
862
863 /*
864  * Cancels a kcopyd job, eg. someone might be deactivating a
865  * mirror.
866  */
867 #if 0
868 int kcopyd_cancel(struct kcopyd_job *job, int block)
869 {
870         /* FIXME: finish */
871         return -1;
872 }
873 #endif  /*  0  */
874
875 /*-----------------------------------------------------------------
876  * Client setup
877  *---------------------------------------------------------------*/
878 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
879 {
880         int r = -ENOMEM;
881         struct dm_kcopyd_client *kc;
882
883         kc = kmalloc(sizeof(*kc), GFP_KERNEL);
884         if (!kc)
885                 return ERR_PTR(-ENOMEM);
886
887         spin_lock_init(&kc->job_lock);
888         INIT_LIST_HEAD(&kc->complete_jobs);
889         INIT_LIST_HEAD(&kc->io_jobs);
890         INIT_LIST_HEAD(&kc->pages_jobs);
891         kc->throttle = throttle;
892
893         kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
894         if (!kc->job_pool)
895                 goto bad_slab;
896
897         INIT_WORK(&kc->kcopyd_work, do_work);
898         kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
899         if (!kc->kcopyd_wq)
900                 goto bad_workqueue;
901
902         kc->pages = NULL;
903         kc->nr_reserved_pages = kc->nr_free_pages = 0;
904         r = client_reserve_pages(kc, RESERVE_PAGES);
905         if (r)
906                 goto bad_client_pages;
907
908         kc->io_client = dm_io_client_create();
909         if (IS_ERR(kc->io_client)) {
910                 r = PTR_ERR(kc->io_client);
911                 goto bad_io_client;
912         }
913
914         init_waitqueue_head(&kc->destroyq);
915         atomic_set(&kc->nr_jobs, 0);
916
917         return kc;
918
919 bad_io_client:
920         client_free_pages(kc);
921 bad_client_pages:
922         destroy_workqueue(kc->kcopyd_wq);
923 bad_workqueue:
924         mempool_destroy(kc->job_pool);
925 bad_slab:
926         kfree(kc);
927
928         return ERR_PTR(r);
929 }
930 EXPORT_SYMBOL(dm_kcopyd_client_create);
931
932 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
933 {
934         /* Wait for completion of all jobs submitted by this client. */
935         wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
936
937         BUG_ON(!list_empty(&kc->complete_jobs));
938         BUG_ON(!list_empty(&kc->io_jobs));
939         BUG_ON(!list_empty(&kc->pages_jobs));
940         destroy_workqueue(kc->kcopyd_wq);
941         dm_io_client_destroy(kc->io_client);
942         client_free_pages(kc);
943         mempool_destroy(kc->job_pool);
944         kfree(kc);
945 }
946 EXPORT_SYMBOL(dm_kcopyd_client_destroy);