]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/md/dm-service-time.c
ACPI / PM: Introduce function for refcounting device power resources
[mv-sheeva.git] / drivers / md / dm-service-time.c
1 /*
2  * Copyright (C) 2007-2009 NEC Corporation.  All Rights Reserved.
3  *
4  * Module Author: Kiyoshi Ueda
5  *
6  * This file is released under the GPL.
7  *
8  * Throughput oriented path selector.
9  */
10
11 #include "dm.h"
12 #include "dm-path-selector.h"
13
14 #include <linux/slab.h>
15
16 #define DM_MSG_PREFIX   "multipath service-time"
17 #define ST_MIN_IO       1
18 #define ST_MAX_RELATIVE_THROUGHPUT      100
19 #define ST_MAX_RELATIVE_THROUGHPUT_SHIFT        7
20 #define ST_MAX_INFLIGHT_SIZE    ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
21 #define ST_VERSION      "0.2.0"
22
23 struct selector {
24         struct list_head valid_paths;
25         struct list_head failed_paths;
26 };
27
28 struct path_info {
29         struct list_head list;
30         struct dm_path *path;
31         unsigned repeat_count;
32         unsigned relative_throughput;
33         atomic_t in_flight_size;        /* Total size of in-flight I/Os */
34 };
35
36 static struct selector *alloc_selector(void)
37 {
38         struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
39
40         if (s) {
41                 INIT_LIST_HEAD(&s->valid_paths);
42                 INIT_LIST_HEAD(&s->failed_paths);
43         }
44
45         return s;
46 }
47
48 static int st_create(struct path_selector *ps, unsigned argc, char **argv)
49 {
50         struct selector *s = alloc_selector();
51
52         if (!s)
53                 return -ENOMEM;
54
55         ps->context = s;
56         return 0;
57 }
58
59 static void free_paths(struct list_head *paths)
60 {
61         struct path_info *pi, *next;
62
63         list_for_each_entry_safe(pi, next, paths, list) {
64                 list_del(&pi->list);
65                 kfree(pi);
66         }
67 }
68
69 static void st_destroy(struct path_selector *ps)
70 {
71         struct selector *s = ps->context;
72
73         free_paths(&s->valid_paths);
74         free_paths(&s->failed_paths);
75         kfree(s);
76         ps->context = NULL;
77 }
78
79 static int st_status(struct path_selector *ps, struct dm_path *path,
80                      status_type_t type, char *result, unsigned maxlen)
81 {
82         unsigned sz = 0;
83         struct path_info *pi;
84
85         if (!path)
86                 DMEMIT("0 ");
87         else {
88                 pi = path->pscontext;
89
90                 switch (type) {
91                 case STATUSTYPE_INFO:
92                         DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
93                                pi->relative_throughput);
94                         break;
95                 case STATUSTYPE_TABLE:
96                         DMEMIT("%u %u ", pi->repeat_count,
97                                pi->relative_throughput);
98                         break;
99                 }
100         }
101
102         return sz;
103 }
104
105 static int st_add_path(struct path_selector *ps, struct dm_path *path,
106                        int argc, char **argv, char **error)
107 {
108         struct selector *s = ps->context;
109         struct path_info *pi;
110         unsigned repeat_count = ST_MIN_IO;
111         unsigned relative_throughput = 1;
112
113         /*
114          * Arguments: [<repeat_count> [<relative_throughput>]]
115          *      <repeat_count>: The number of I/Os before switching path.
116          *                      If not given, default (ST_MIN_IO) is used.
117          *      <relative_throughput>: The relative throughput value of
118          *                      the path among all paths in the path-group.
119          *                      The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
120          *                      If not given, minimum value '1' is used.
121          *                      If '0' is given, the path isn't selected while
122          *                      other paths having a positive value are
123          *                      available.
124          */
125         if (argc > 2) {
126                 *error = "service-time ps: incorrect number of arguments";
127                 return -EINVAL;
128         }
129
130         if (argc && (sscanf(argv[0], "%u", &repeat_count) != 1)) {
131                 *error = "service-time ps: invalid repeat count";
132                 return -EINVAL;
133         }
134
135         if ((argc == 2) &&
136             (sscanf(argv[1], "%u", &relative_throughput) != 1 ||
137              relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
138                 *error = "service-time ps: invalid relative_throughput value";
139                 return -EINVAL;
140         }
141
142         /* allocate the path */
143         pi = kmalloc(sizeof(*pi), GFP_KERNEL);
144         if (!pi) {
145                 *error = "service-time ps: Error allocating path context";
146                 return -ENOMEM;
147         }
148
149         pi->path = path;
150         pi->repeat_count = repeat_count;
151         pi->relative_throughput = relative_throughput;
152         atomic_set(&pi->in_flight_size, 0);
153
154         path->pscontext = pi;
155
156         list_add_tail(&pi->list, &s->valid_paths);
157
158         return 0;
159 }
160
161 static void st_fail_path(struct path_selector *ps, struct dm_path *path)
162 {
163         struct selector *s = ps->context;
164         struct path_info *pi = path->pscontext;
165
166         list_move(&pi->list, &s->failed_paths);
167 }
168
169 static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
170 {
171         struct selector *s = ps->context;
172         struct path_info *pi = path->pscontext;
173
174         list_move_tail(&pi->list, &s->valid_paths);
175
176         return 0;
177 }
178
179 /*
180  * Compare the estimated service time of 2 paths, pi1 and pi2,
181  * for the incoming I/O.
182  *
183  * Returns:
184  * < 0 : pi1 is better
185  * 0   : no difference between pi1 and pi2
186  * > 0 : pi2 is better
187  *
188  * Description:
189  * Basically, the service time is estimated by:
190  *     ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
191  * To reduce the calculation, some optimizations are made.
192  * (See comments inline)
193  */
194 static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
195                            size_t incoming)
196 {
197         size_t sz1, sz2, st1, st2;
198
199         sz1 = atomic_read(&pi1->in_flight_size);
200         sz2 = atomic_read(&pi2->in_flight_size);
201
202         /*
203          * Case 1: Both have same throughput value. Choose less loaded path.
204          */
205         if (pi1->relative_throughput == pi2->relative_throughput)
206                 return sz1 - sz2;
207
208         /*
209          * Case 2a: Both have same load. Choose higher throughput path.
210          * Case 2b: One path has no throughput value. Choose the other one.
211          */
212         if (sz1 == sz2 ||
213             !pi1->relative_throughput || !pi2->relative_throughput)
214                 return pi2->relative_throughput - pi1->relative_throughput;
215
216         /*
217          * Case 3: Calculate service time. Choose faster path.
218          *         Service time using pi1:
219          *             st1 = (sz1 + incoming) / pi1->relative_throughput
220          *         Service time using pi2:
221          *             st2 = (sz2 + incoming) / pi2->relative_throughput
222          *
223          *         To avoid the division, transform the expression to use
224          *         multiplication.
225          *         Because ->relative_throughput > 0 here, if st1 < st2,
226          *         the expressions below are the same meaning:
227          *             (sz1 + incoming) / pi1->relative_throughput <
228          *                 (sz2 + incoming) / pi2->relative_throughput
229          *             (sz1 + incoming) * pi2->relative_throughput <
230          *                 (sz2 + incoming) * pi1->relative_throughput
231          *         So use the later one.
232          */
233         sz1 += incoming;
234         sz2 += incoming;
235         if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
236                      sz2 >= ST_MAX_INFLIGHT_SIZE)) {
237                 /*
238                  * Size may be too big for multiplying pi->relative_throughput
239                  * and overflow.
240                  * To avoid the overflow and mis-selection, shift down both.
241                  */
242                 sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
243                 sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
244         }
245         st1 = sz1 * pi2->relative_throughput;
246         st2 = sz2 * pi1->relative_throughput;
247         if (st1 != st2)
248                 return st1 - st2;
249
250         /*
251          * Case 4: Service time is equal. Choose higher throughput path.
252          */
253         return pi2->relative_throughput - pi1->relative_throughput;
254 }
255
256 static struct dm_path *st_select_path(struct path_selector *ps,
257                                       unsigned *repeat_count, size_t nr_bytes)
258 {
259         struct selector *s = ps->context;
260         struct path_info *pi = NULL, *best = NULL;
261
262         if (list_empty(&s->valid_paths))
263                 return NULL;
264
265         /* Change preferred (first in list) path to evenly balance. */
266         list_move_tail(s->valid_paths.next, &s->valid_paths);
267
268         list_for_each_entry(pi, &s->valid_paths, list)
269                 if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
270                         best = pi;
271
272         if (!best)
273                 return NULL;
274
275         *repeat_count = best->repeat_count;
276
277         return best->path;
278 }
279
280 static int st_start_io(struct path_selector *ps, struct dm_path *path,
281                        size_t nr_bytes)
282 {
283         struct path_info *pi = path->pscontext;
284
285         atomic_add(nr_bytes, &pi->in_flight_size);
286
287         return 0;
288 }
289
290 static int st_end_io(struct path_selector *ps, struct dm_path *path,
291                      size_t nr_bytes)
292 {
293         struct path_info *pi = path->pscontext;
294
295         atomic_sub(nr_bytes, &pi->in_flight_size);
296
297         return 0;
298 }
299
300 static struct path_selector_type st_ps = {
301         .name           = "service-time",
302         .module         = THIS_MODULE,
303         .table_args     = 2,
304         .info_args      = 2,
305         .create         = st_create,
306         .destroy        = st_destroy,
307         .status         = st_status,
308         .add_path       = st_add_path,
309         .fail_path      = st_fail_path,
310         .reinstate_path = st_reinstate_path,
311         .select_path    = st_select_path,
312         .start_io       = st_start_io,
313         .end_io         = st_end_io,
314 };
315
316 static int __init dm_st_init(void)
317 {
318         int r = dm_register_path_selector(&st_ps);
319
320         if (r < 0)
321                 DMERR("register failed %d", r);
322
323         DMINFO("version " ST_VERSION " loaded");
324
325         return r;
326 }
327
328 static void __exit dm_st_exit(void)
329 {
330         int r = dm_unregister_path_selector(&st_ps);
331
332         if (r < 0)
333                 DMERR("unregister failed %d", r);
334 }
335
336 module_init(dm_st_init);
337 module_exit(dm_st_exit);
338
339 MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
340 MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
341 MODULE_LICENSE("GPL");