2 * Copyright (C) 2011-2012 Red Hat, Inc.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
98 __le64 blocknr; /* This block number, dm_block_t. */
108 * Root held by userspace transactions.
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
182 dm_block_t details_root;
183 struct list_head thin_devices;
186 sector_t data_block_size;
190 * Set if a transaction has to be aborted but the attempt to roll back
191 * to the previous (good) transaction failed. The only pool metadata
192 * operation possible in this state is the closing of the device.
197 * Reading the space map roots can fail, so we read it into these
198 * buffers before the superblock is locked and updated.
200 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
201 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
204 struct dm_thin_device {
205 struct list_head list;
206 struct dm_pool_metadata *pmd;
211 bool aborted_with_changes:1;
212 uint64_t mapped_blocks;
213 uint64_t transaction_id;
214 uint32_t creation_time;
215 uint32_t snapshotted_time;
218 /*----------------------------------------------------------------
219 * superblock validator
220 *--------------------------------------------------------------*/
222 #define SUPERBLOCK_CSUM_XOR 160774
224 static void sb_prepare_for_write(struct dm_block_validator *v,
228 struct thin_disk_superblock *disk_super = dm_block_data(b);
230 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
231 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
232 block_size - sizeof(__le32),
233 SUPERBLOCK_CSUM_XOR));
236 static int sb_check(struct dm_block_validator *v,
240 struct thin_disk_superblock *disk_super = dm_block_data(b);
243 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
244 DMERR("sb_check failed: blocknr %llu: "
245 "wanted %llu", le64_to_cpu(disk_super->blocknr),
246 (unsigned long long)dm_block_location(b));
250 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
251 DMERR("sb_check failed: magic %llu: "
252 "wanted %llu", le64_to_cpu(disk_super->magic),
253 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
257 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
258 block_size - sizeof(__le32),
259 SUPERBLOCK_CSUM_XOR));
260 if (csum_le != disk_super->csum) {
261 DMERR("sb_check failed: csum %u: wanted %u",
262 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
269 static struct dm_block_validator sb_validator = {
270 .name = "superblock",
271 .prepare_for_write = sb_prepare_for_write,
275 /*----------------------------------------------------------------
276 * Methods for the btree value types
277 *--------------------------------------------------------------*/
279 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
281 return (b << 24) | t;
284 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
287 *t = v & ((1 << 24) - 1);
290 static void data_block_inc(void *context, const void *value_le)
292 struct dm_space_map *sm = context;
297 memcpy(&v_le, value_le, sizeof(v_le));
298 unpack_block_time(le64_to_cpu(v_le), &b, &t);
299 dm_sm_inc_block(sm, b);
302 static void data_block_dec(void *context, const void *value_le)
304 struct dm_space_map *sm = context;
309 memcpy(&v_le, value_le, sizeof(v_le));
310 unpack_block_time(le64_to_cpu(v_le), &b, &t);
311 dm_sm_dec_block(sm, b);
314 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
320 memcpy(&v1_le, value1_le, sizeof(v1_le));
321 memcpy(&v2_le, value2_le, sizeof(v2_le));
322 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
323 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
328 static void subtree_inc(void *context, const void *value)
330 struct dm_btree_info *info = context;
334 memcpy(&root_le, value, sizeof(root_le));
335 root = le64_to_cpu(root_le);
336 dm_tm_inc(info->tm, root);
339 static void subtree_dec(void *context, const void *value)
341 struct dm_btree_info *info = context;
345 memcpy(&root_le, value, sizeof(root_le));
346 root = le64_to_cpu(root_le);
347 if (dm_btree_del(info, root))
348 DMERR("btree delete failed\n");
351 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
354 memcpy(&v1_le, value1_le, sizeof(v1_le));
355 memcpy(&v2_le, value2_le, sizeof(v2_le));
357 return v1_le == v2_le;
360 /*----------------------------------------------------------------*/
362 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
363 struct dm_block **sblock)
365 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366 &sb_validator, sblock);
369 static int superblock_lock(struct dm_pool_metadata *pmd,
370 struct dm_block **sblock)
372 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
373 &sb_validator, sblock);
376 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
381 __le64 *data_le, zero = cpu_to_le64(0);
382 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
385 * We can't use a validator here - it may be all zeroes.
387 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
391 data_le = dm_block_data(b);
393 for (i = 0; i < block_size; i++) {
394 if (data_le[i] != zero) {
400 return dm_bm_unlock(b);
403 static void __setup_btree_details(struct dm_pool_metadata *pmd)
405 pmd->info.tm = pmd->tm;
406 pmd->info.levels = 2;
407 pmd->info.value_type.context = pmd->data_sm;
408 pmd->info.value_type.size = sizeof(__le64);
409 pmd->info.value_type.inc = data_block_inc;
410 pmd->info.value_type.dec = data_block_dec;
411 pmd->info.value_type.equal = data_block_equal;
413 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
414 pmd->nb_info.tm = pmd->nb_tm;
416 pmd->tl_info.tm = pmd->tm;
417 pmd->tl_info.levels = 1;
418 pmd->tl_info.value_type.context = &pmd->bl_info;
419 pmd->tl_info.value_type.size = sizeof(__le64);
420 pmd->tl_info.value_type.inc = subtree_inc;
421 pmd->tl_info.value_type.dec = subtree_dec;
422 pmd->tl_info.value_type.equal = subtree_equal;
424 pmd->bl_info.tm = pmd->tm;
425 pmd->bl_info.levels = 1;
426 pmd->bl_info.value_type.context = pmd->data_sm;
427 pmd->bl_info.value_type.size = sizeof(__le64);
428 pmd->bl_info.value_type.inc = data_block_inc;
429 pmd->bl_info.value_type.dec = data_block_dec;
430 pmd->bl_info.value_type.equal = data_block_equal;
432 pmd->details_info.tm = pmd->tm;
433 pmd->details_info.levels = 1;
434 pmd->details_info.value_type.context = NULL;
435 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
436 pmd->details_info.value_type.inc = NULL;
437 pmd->details_info.value_type.dec = NULL;
438 pmd->details_info.value_type.equal = NULL;
441 static int save_sm_roots(struct dm_pool_metadata *pmd)
446 r = dm_sm_root_size(pmd->metadata_sm, &len);
450 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
454 r = dm_sm_root_size(pmd->data_sm, &len);
458 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
461 static void copy_sm_roots(struct dm_pool_metadata *pmd,
462 struct thin_disk_superblock *disk)
464 memcpy(&disk->metadata_space_map_root,
465 &pmd->metadata_space_map_root,
466 sizeof(pmd->metadata_space_map_root));
468 memcpy(&disk->data_space_map_root,
469 &pmd->data_space_map_root,
470 sizeof(pmd->data_space_map_root));
473 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
476 struct dm_block *sblock;
477 struct thin_disk_superblock *disk_super;
478 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
480 if (bdev_size > THIN_METADATA_MAX_SECTORS)
481 bdev_size = THIN_METADATA_MAX_SECTORS;
483 r = dm_sm_commit(pmd->data_sm);
487 r = save_sm_roots(pmd);
491 r = dm_tm_pre_commit(pmd->tm);
495 r = superblock_lock_zero(pmd, &sblock);
499 disk_super = dm_block_data(sblock);
500 disk_super->flags = 0;
501 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
502 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
503 disk_super->version = cpu_to_le32(THIN_VERSION);
504 disk_super->time = 0;
505 disk_super->trans_id = 0;
506 disk_super->held_root = 0;
508 copy_sm_roots(pmd, disk_super);
510 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
511 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
512 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
513 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
514 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
516 return dm_tm_commit(pmd->tm, sblock);
519 static int __format_metadata(struct dm_pool_metadata *pmd)
523 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
524 &pmd->tm, &pmd->metadata_sm);
526 DMERR("tm_create_with_sm failed");
530 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
531 if (IS_ERR(pmd->data_sm)) {
532 DMERR("sm_disk_create failed");
533 r = PTR_ERR(pmd->data_sm);
537 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
539 DMERR("could not create non-blocking clone tm");
541 goto bad_cleanup_data_sm;
544 __setup_btree_details(pmd);
546 r = dm_btree_empty(&pmd->info, &pmd->root);
548 goto bad_cleanup_nb_tm;
550 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
552 DMERR("couldn't create devices root");
553 goto bad_cleanup_nb_tm;
556 r = __write_initial_superblock(pmd);
558 goto bad_cleanup_nb_tm;
563 dm_tm_destroy(pmd->nb_tm);
565 dm_sm_destroy(pmd->data_sm);
567 dm_tm_destroy(pmd->tm);
568 dm_sm_destroy(pmd->metadata_sm);
573 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
574 struct dm_pool_metadata *pmd)
578 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
580 DMERR("could not access metadata due to unsupported optional features (%lx).",
581 (unsigned long)features);
586 * Check for read-only metadata to skip the following RDWR checks.
588 if (get_disk_ro(pmd->bdev->bd_disk))
591 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
593 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
594 (unsigned long)features);
601 static int __open_metadata(struct dm_pool_metadata *pmd)
604 struct dm_block *sblock;
605 struct thin_disk_superblock *disk_super;
607 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
608 &sb_validator, &sblock);
610 DMERR("couldn't read superblock");
614 disk_super = dm_block_data(sblock);
616 /* Verify the data block size hasn't changed */
617 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
618 DMERR("changing the data block size (from %u to %llu) is not supported",
619 le32_to_cpu(disk_super->data_block_size),
620 (unsigned long long)pmd->data_block_size);
622 goto bad_unlock_sblock;
625 r = __check_incompat_features(disk_super, pmd);
627 goto bad_unlock_sblock;
629 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
630 disk_super->metadata_space_map_root,
631 sizeof(disk_super->metadata_space_map_root),
632 &pmd->tm, &pmd->metadata_sm);
634 DMERR("tm_open_with_sm failed");
635 goto bad_unlock_sblock;
638 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
639 sizeof(disk_super->data_space_map_root));
640 if (IS_ERR(pmd->data_sm)) {
641 DMERR("sm_disk_open failed");
642 r = PTR_ERR(pmd->data_sm);
646 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
648 DMERR("could not create non-blocking clone tm");
650 goto bad_cleanup_data_sm;
653 __setup_btree_details(pmd);
654 return dm_bm_unlock(sblock);
657 dm_sm_destroy(pmd->data_sm);
659 dm_tm_destroy(pmd->tm);
660 dm_sm_destroy(pmd->metadata_sm);
662 dm_bm_unlock(sblock);
667 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
671 r = __superblock_all_zeroes(pmd->bm, &unformatted);
676 return format_device ? __format_metadata(pmd) : -EPERM;
678 return __open_metadata(pmd);
681 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
685 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
686 THIN_METADATA_CACHE_SIZE,
687 THIN_MAX_CONCURRENT_LOCKS);
688 if (IS_ERR(pmd->bm)) {
689 DMERR("could not create block manager");
690 return PTR_ERR(pmd->bm);
693 r = __open_or_format_metadata(pmd, format_device);
695 dm_block_manager_destroy(pmd->bm);
700 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
702 dm_sm_destroy(pmd->data_sm);
703 dm_sm_destroy(pmd->metadata_sm);
704 dm_tm_destroy(pmd->nb_tm);
705 dm_tm_destroy(pmd->tm);
706 dm_block_manager_destroy(pmd->bm);
709 static int __begin_transaction(struct dm_pool_metadata *pmd)
712 struct thin_disk_superblock *disk_super;
713 struct dm_block *sblock;
716 * We re-read the superblock every time. Shouldn't need to do this
719 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
720 &sb_validator, &sblock);
724 disk_super = dm_block_data(sblock);
725 pmd->time = le32_to_cpu(disk_super->time);
726 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
727 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
728 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
729 pmd->flags = le32_to_cpu(disk_super->flags);
730 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
732 dm_bm_unlock(sblock);
736 static int __write_changed_details(struct dm_pool_metadata *pmd)
739 struct dm_thin_device *td, *tmp;
740 struct disk_device_details details;
743 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
749 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
750 details.transaction_id = cpu_to_le64(td->transaction_id);
751 details.creation_time = cpu_to_le32(td->creation_time);
752 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
753 __dm_bless_for_disk(&details);
755 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
756 &key, &details, &pmd->details_root);
771 static int __commit_transaction(struct dm_pool_metadata *pmd)
774 size_t metadata_len, data_len;
775 struct thin_disk_superblock *disk_super;
776 struct dm_block *sblock;
779 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
781 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
783 r = __write_changed_details(pmd);
787 r = dm_sm_commit(pmd->data_sm);
791 r = dm_tm_pre_commit(pmd->tm);
795 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
799 r = dm_sm_root_size(pmd->data_sm, &data_len);
803 r = save_sm_roots(pmd);
807 r = superblock_lock(pmd, &sblock);
811 disk_super = dm_block_data(sblock);
812 disk_super->time = cpu_to_le32(pmd->time);
813 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
814 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
815 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
816 disk_super->flags = cpu_to_le32(pmd->flags);
818 copy_sm_roots(pmd, disk_super);
820 return dm_tm_commit(pmd->tm, sblock);
823 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
824 sector_t data_block_size,
828 struct dm_pool_metadata *pmd;
830 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
832 DMERR("could not allocate metadata struct");
833 return ERR_PTR(-ENOMEM);
836 init_rwsem(&pmd->root_lock);
838 INIT_LIST_HEAD(&pmd->thin_devices);
839 pmd->read_only = false;
840 pmd->fail_io = false;
842 pmd->data_block_size = data_block_size;
844 r = __create_persistent_data_objects(pmd, format_device);
850 r = __begin_transaction(pmd);
852 if (dm_pool_metadata_close(pmd) < 0)
853 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
860 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
863 unsigned open_devices = 0;
864 struct dm_thin_device *td, *tmp;
866 down_read(&pmd->root_lock);
867 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
875 up_read(&pmd->root_lock);
878 DMERR("attempt to close pmd when %u device(s) are still open",
883 if (!pmd->read_only && !pmd->fail_io) {
884 r = __commit_transaction(pmd);
886 DMWARN("%s: __commit_transaction() failed, error = %d",
891 __destroy_persistent_data_objects(pmd);
898 * __open_device: Returns @td corresponding to device with id @dev,
899 * creating it if @create is set and incrementing @td->open_count.
900 * On failure, @td is undefined.
902 static int __open_device(struct dm_pool_metadata *pmd,
903 dm_thin_id dev, int create,
904 struct dm_thin_device **td)
907 struct dm_thin_device *td2;
909 struct disk_device_details details_le;
912 * If the device is already open, return it.
914 list_for_each_entry(td2, &pmd->thin_devices, list)
915 if (td2->id == dev) {
917 * May not create an already-open device.
928 * Check the device exists.
930 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
933 if (r != -ENODATA || !create)
940 details_le.mapped_blocks = 0;
941 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
942 details_le.creation_time = cpu_to_le32(pmd->time);
943 details_le.snapshotted_time = cpu_to_le32(pmd->time);
946 *td = kmalloc(sizeof(**td), GFP_NOIO);
952 (*td)->open_count = 1;
953 (*td)->changed = changed;
954 (*td)->aborted_with_changes = false;
955 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
956 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
957 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
958 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
960 list_add(&(*td)->list, &pmd->thin_devices);
965 static void __close_device(struct dm_thin_device *td)
970 static int __create_thin(struct dm_pool_metadata *pmd,
976 struct disk_device_details details_le;
977 struct dm_thin_device *td;
980 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
986 * Create an empty btree for the mappings.
988 r = dm_btree_empty(&pmd->bl_info, &dev_root);
993 * Insert it into the main mapping tree.
995 value = cpu_to_le64(dev_root);
996 __dm_bless_for_disk(&value);
997 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
999 dm_btree_del(&pmd->bl_info, dev_root);
1003 r = __open_device(pmd, dev, 1, &td);
1005 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1006 dm_btree_del(&pmd->bl_info, dev_root);
1014 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1018 down_write(&pmd->root_lock);
1020 r = __create_thin(pmd, dev);
1021 up_write(&pmd->root_lock);
1026 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1027 struct dm_thin_device *snap,
1028 dm_thin_id origin, uint32_t time)
1031 struct dm_thin_device *td;
1033 r = __open_device(pmd, origin, 0, &td);
1038 td->snapshotted_time = time;
1040 snap->mapped_blocks = td->mapped_blocks;
1041 snap->snapshotted_time = time;
1047 static int __create_snap(struct dm_pool_metadata *pmd,
1048 dm_thin_id dev, dm_thin_id origin)
1051 dm_block_t origin_root;
1052 uint64_t key = origin, dev_key = dev;
1053 struct dm_thin_device *td;
1054 struct disk_device_details details_le;
1057 /* check this device is unused */
1058 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1059 &dev_key, &details_le);
1063 /* find the mapping tree for the origin */
1064 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1067 origin_root = le64_to_cpu(value);
1069 /* clone the origin, an inc will do */
1070 dm_tm_inc(pmd->tm, origin_root);
1072 /* insert into the main mapping tree */
1073 value = cpu_to_le64(origin_root);
1074 __dm_bless_for_disk(&value);
1076 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1078 dm_tm_dec(pmd->tm, origin_root);
1084 r = __open_device(pmd, dev, 1, &td);
1088 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1097 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1098 dm_btree_remove(&pmd->details_info, pmd->details_root,
1099 &key, &pmd->details_root);
1103 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1109 down_write(&pmd->root_lock);
1111 r = __create_snap(pmd, dev, origin);
1112 up_write(&pmd->root_lock);
1117 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1121 struct dm_thin_device *td;
1123 /* TODO: failure should mark the transaction invalid */
1124 r = __open_device(pmd, dev, 0, &td);
1128 if (td->open_count > 1) {
1133 list_del(&td->list);
1135 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1136 &key, &pmd->details_root);
1140 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1147 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1152 down_write(&pmd->root_lock);
1154 r = __delete_device(pmd, dev);
1155 up_write(&pmd->root_lock);
1160 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1161 uint64_t current_id,
1166 down_write(&pmd->root_lock);
1171 if (pmd->trans_id != current_id) {
1172 DMERR("mismatched transaction id");
1176 pmd->trans_id = new_id;
1180 up_write(&pmd->root_lock);
1185 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1190 down_read(&pmd->root_lock);
1191 if (!pmd->fail_io) {
1192 *result = pmd->trans_id;
1195 up_read(&pmd->root_lock);
1200 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1203 struct thin_disk_superblock *disk_super;
1204 struct dm_block *copy, *sblock;
1205 dm_block_t held_root;
1208 * Copy the superblock.
1210 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1211 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1212 &sb_validator, ©, &inc);
1218 held_root = dm_block_location(copy);
1219 disk_super = dm_block_data(copy);
1221 if (le64_to_cpu(disk_super->held_root)) {
1222 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1224 dm_tm_dec(pmd->tm, held_root);
1225 dm_tm_unlock(pmd->tm, copy);
1230 * Wipe the spacemap since we're not publishing this.
1232 memset(&disk_super->data_space_map_root, 0,
1233 sizeof(disk_super->data_space_map_root));
1234 memset(&disk_super->metadata_space_map_root, 0,
1235 sizeof(disk_super->metadata_space_map_root));
1238 * Increment the data structures that need to be preserved.
1240 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1241 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1242 dm_tm_unlock(pmd->tm, copy);
1245 * Write the held root into the superblock.
1247 r = superblock_lock(pmd, &sblock);
1249 dm_tm_dec(pmd->tm, held_root);
1253 disk_super = dm_block_data(sblock);
1254 disk_super->held_root = cpu_to_le64(held_root);
1255 dm_bm_unlock(sblock);
1259 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1263 down_write(&pmd->root_lock);
1265 r = __reserve_metadata_snap(pmd);
1266 up_write(&pmd->root_lock);
1271 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1274 struct thin_disk_superblock *disk_super;
1275 struct dm_block *sblock, *copy;
1276 dm_block_t held_root;
1278 r = superblock_lock(pmd, &sblock);
1282 disk_super = dm_block_data(sblock);
1283 held_root = le64_to_cpu(disk_super->held_root);
1284 disk_super->held_root = cpu_to_le64(0);
1286 dm_bm_unlock(sblock);
1289 DMWARN("No pool metadata snapshot found: nothing to release.");
1293 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©);
1297 disk_super = dm_block_data(copy);
1298 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1299 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1300 dm_sm_dec_block(pmd->metadata_sm, held_root);
1302 return dm_tm_unlock(pmd->tm, copy);
1305 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1309 down_write(&pmd->root_lock);
1311 r = __release_metadata_snap(pmd);
1312 up_write(&pmd->root_lock);
1317 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1321 struct thin_disk_superblock *disk_super;
1322 struct dm_block *sblock;
1324 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1325 &sb_validator, &sblock);
1329 disk_super = dm_block_data(sblock);
1330 *result = le64_to_cpu(disk_super->held_root);
1332 return dm_bm_unlock(sblock);
1335 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1340 down_read(&pmd->root_lock);
1342 r = __get_metadata_snap(pmd, result);
1343 up_read(&pmd->root_lock);
1348 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1349 struct dm_thin_device **td)
1353 down_write(&pmd->root_lock);
1355 r = __open_device(pmd, dev, 0, td);
1356 up_write(&pmd->root_lock);
1361 int dm_pool_close_thin_device(struct dm_thin_device *td)
1363 down_write(&td->pmd->root_lock);
1365 up_write(&td->pmd->root_lock);
1370 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1376 * Check whether @time (of block creation) is older than @td's last snapshot.
1377 * If so then the associated block is shared with the last snapshot device.
1378 * Any block on a device created *after* the device last got snapshotted is
1379 * necessarily not shared.
1381 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1383 return td->snapshotted_time > time;
1386 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1387 int can_issue_io, struct dm_thin_lookup_result *result)
1391 struct dm_pool_metadata *pmd = td->pmd;
1392 dm_block_t keys[2] = { td->id, block };
1393 struct dm_btree_info *info;
1398 down_read(&pmd->root_lock);
1403 info = &pmd->nb_info;
1405 r = dm_btree_lookup(info, pmd->root, keys, &value);
1407 uint64_t block_time = 0;
1408 dm_block_t exception_block;
1409 uint32_t exception_time;
1411 block_time = le64_to_cpu(value);
1412 unpack_block_time(block_time, &exception_block,
1414 result->block = exception_block;
1415 result->shared = __snapshotted_since(td, exception_time);
1418 up_read(&pmd->root_lock);
1422 static int __insert(struct dm_thin_device *td, dm_block_t block,
1423 dm_block_t data_block)
1427 struct dm_pool_metadata *pmd = td->pmd;
1428 dm_block_t keys[2] = { td->id, block };
1430 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1431 __dm_bless_for_disk(&value);
1433 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1434 &pmd->root, &inserted);
1440 td->mapped_blocks++;
1445 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1446 dm_block_t data_block)
1450 down_write(&td->pmd->root_lock);
1451 if (!td->pmd->fail_io)
1452 r = __insert(td, block, data_block);
1453 up_write(&td->pmd->root_lock);
1458 static int __remove(struct dm_thin_device *td, dm_block_t block)
1461 struct dm_pool_metadata *pmd = td->pmd;
1462 dm_block_t keys[2] = { td->id, block };
1464 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1468 td->mapped_blocks--;
1474 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1478 down_write(&td->pmd->root_lock);
1479 if (!td->pmd->fail_io)
1480 r = __remove(td, block);
1481 up_write(&td->pmd->root_lock);
1486 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1491 down_read(&pmd->root_lock);
1492 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1494 *result = (ref_count != 0);
1495 up_read(&pmd->root_lock);
1500 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1504 down_read(&td->pmd->root_lock);
1506 up_read(&td->pmd->root_lock);
1511 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1514 struct dm_thin_device *td, *tmp;
1516 down_read(&pmd->root_lock);
1517 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1523 up_read(&pmd->root_lock);
1528 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1532 down_read(&td->pmd->root_lock);
1533 r = td->aborted_with_changes;
1534 up_read(&td->pmd->root_lock);
1539 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1543 down_write(&pmd->root_lock);
1545 r = dm_sm_new_block(pmd->data_sm, result);
1546 up_write(&pmd->root_lock);
1551 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1555 down_write(&pmd->root_lock);
1559 r = __commit_transaction(pmd);
1564 * Open the next transaction.
1566 r = __begin_transaction(pmd);
1568 up_write(&pmd->root_lock);
1572 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1574 struct dm_thin_device *td;
1576 list_for_each_entry(td, &pmd->thin_devices, list)
1577 td->aborted_with_changes = td->changed;
1580 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1584 down_write(&pmd->root_lock);
1588 __set_abort_with_changes_flags(pmd);
1589 __destroy_persistent_data_objects(pmd);
1590 r = __create_persistent_data_objects(pmd, false);
1592 pmd->fail_io = true;
1595 up_write(&pmd->root_lock);
1600 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1604 down_read(&pmd->root_lock);
1606 r = dm_sm_get_nr_free(pmd->data_sm, result);
1607 up_read(&pmd->root_lock);
1612 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1617 down_read(&pmd->root_lock);
1619 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1620 up_read(&pmd->root_lock);
1625 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1630 down_read(&pmd->root_lock);
1632 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1633 up_read(&pmd->root_lock);
1638 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1640 down_read(&pmd->root_lock);
1641 *result = pmd->data_block_size;
1642 up_read(&pmd->root_lock);
1647 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1651 down_read(&pmd->root_lock);
1653 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1654 up_read(&pmd->root_lock);
1659 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1662 struct dm_pool_metadata *pmd = td->pmd;
1664 down_read(&pmd->root_lock);
1665 if (!pmd->fail_io) {
1666 *result = td->mapped_blocks;
1669 up_read(&pmd->root_lock);
1674 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1678 dm_block_t thin_root;
1679 struct dm_pool_metadata *pmd = td->pmd;
1681 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1685 thin_root = le64_to_cpu(value_le);
1687 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1690 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1694 struct dm_pool_metadata *pmd = td->pmd;
1696 down_read(&pmd->root_lock);
1698 r = __highest_block(td, result);
1699 up_read(&pmd->root_lock);
1704 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1707 dm_block_t old_count;
1709 r = dm_sm_get_nr_blocks(sm, &old_count);
1713 if (new_count == old_count)
1716 if (new_count < old_count) {
1717 DMERR("cannot reduce size of space map");
1721 return dm_sm_extend(sm, new_count - old_count);
1724 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1728 down_write(&pmd->root_lock);
1730 r = __resize_space_map(pmd->data_sm, new_count);
1731 up_write(&pmd->root_lock);
1736 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1740 down_write(&pmd->root_lock);
1742 r = __resize_space_map(pmd->metadata_sm, new_count);
1743 up_write(&pmd->root_lock);
1748 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1750 down_write(&pmd->root_lock);
1751 pmd->read_only = true;
1752 dm_bm_set_read_only(pmd->bm);
1753 up_write(&pmd->root_lock);
1756 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1758 down_write(&pmd->root_lock);
1759 pmd->read_only = false;
1760 dm_bm_set_read_write(pmd->bm);
1761 up_write(&pmd->root_lock);
1764 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1765 dm_block_t threshold,
1766 dm_sm_threshold_fn fn,
1771 down_write(&pmd->root_lock);
1772 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1773 up_write(&pmd->root_lock);
1778 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1781 struct dm_block *sblock;
1782 struct thin_disk_superblock *disk_super;
1784 down_write(&pmd->root_lock);
1785 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1787 r = superblock_lock(pmd, &sblock);
1789 DMERR("couldn't read superblock");
1793 disk_super = dm_block_data(sblock);
1794 disk_super->flags = cpu_to_le32(pmd->flags);
1796 dm_bm_unlock(sblock);
1798 up_write(&pmd->root_lock);
1802 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1806 down_read(&pmd->root_lock);
1807 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1808 up_read(&pmd->root_lock);
1813 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
1815 dm_tm_issue_prefetches(pmd->tm);