]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin-metadata.c
Merge tag 'for_linus-3.19-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/jwess...
[karo-tx-linux.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91
92 /*
93  * Little endian on-disk superblock and device details.
94  */
95 struct thin_disk_superblock {
96         __le32 csum;    /* Checksum of superblock except for this field. */
97         __le32 flags;
98         __le64 blocknr; /* This block number, dm_block_t. */
99
100         __u8 uuid[16];
101         __le64 magic;
102         __le32 version;
103         __le32 time;
104
105         __le64 trans_id;
106
107         /*
108          * Root held by userspace transactions.
109          */
110         __le64 held_root;
111
112         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115         /*
116          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117          */
118         __le64 data_mapping_root;
119
120         /*
121          * Device detail root mapping dev_id -> device_details
122          */
123         __le64 device_details_root;
124
125         __le32 data_block_size;         /* In 512-byte sectors. */
126
127         __le32 metadata_block_size;     /* In 512-byte sectors. */
128         __le64 metadata_nr_blocks;
129
130         __le32 compat_flags;
131         __le32 compat_ro_flags;
132         __le32 incompat_flags;
133 } __packed;
134
135 struct disk_device_details {
136         __le64 mapped_blocks;
137         __le64 transaction_id;          /* When created. */
138         __le32 creation_time;
139         __le32 snapshotted_time;
140 } __packed;
141
142 struct dm_pool_metadata {
143         struct hlist_node hash;
144
145         struct block_device *bdev;
146         struct dm_block_manager *bm;
147         struct dm_space_map *metadata_sm;
148         struct dm_space_map *data_sm;
149         struct dm_transaction_manager *tm;
150         struct dm_transaction_manager *nb_tm;
151
152         /*
153          * Two-level btree.
154          * First level holds thin_dev_t.
155          * Second level holds mappings.
156          */
157         struct dm_btree_info info;
158
159         /*
160          * Non-blocking version of the above.
161          */
162         struct dm_btree_info nb_info;
163
164         /*
165          * Just the top level for deleting whole devices.
166          */
167         struct dm_btree_info tl_info;
168
169         /*
170          * Just the bottom level for creating new devices.
171          */
172         struct dm_btree_info bl_info;
173
174         /*
175          * Describes the device details btree.
176          */
177         struct dm_btree_info details_info;
178
179         struct rw_semaphore root_lock;
180         uint32_t time;
181         dm_block_t root;
182         dm_block_t details_root;
183         struct list_head thin_devices;
184         uint64_t trans_id;
185         unsigned long flags;
186         sector_t data_block_size;
187         bool read_only:1;
188
189         /*
190          * Set if a transaction has to be aborted but the attempt to roll back
191          * to the previous (good) transaction failed.  The only pool metadata
192          * operation possible in this state is the closing of the device.
193          */
194         bool fail_io:1;
195
196         /*
197          * Reading the space map roots can fail, so we read it into these
198          * buffers before the superblock is locked and updated.
199          */
200         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
201         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
202 };
203
204 struct dm_thin_device {
205         struct list_head list;
206         struct dm_pool_metadata *pmd;
207         dm_thin_id id;
208
209         int open_count;
210         bool changed:1;
211         bool aborted_with_changes:1;
212         uint64_t mapped_blocks;
213         uint64_t transaction_id;
214         uint32_t creation_time;
215         uint32_t snapshotted_time;
216 };
217
218 /*----------------------------------------------------------------
219  * superblock validator
220  *--------------------------------------------------------------*/
221
222 #define SUPERBLOCK_CSUM_XOR 160774
223
224 static void sb_prepare_for_write(struct dm_block_validator *v,
225                                  struct dm_block *b,
226                                  size_t block_size)
227 {
228         struct thin_disk_superblock *disk_super = dm_block_data(b);
229
230         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
231         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
232                                                       block_size - sizeof(__le32),
233                                                       SUPERBLOCK_CSUM_XOR));
234 }
235
236 static int sb_check(struct dm_block_validator *v,
237                     struct dm_block *b,
238                     size_t block_size)
239 {
240         struct thin_disk_superblock *disk_super = dm_block_data(b);
241         __le32 csum_le;
242
243         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
244                 DMERR("sb_check failed: blocknr %llu: "
245                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
246                       (unsigned long long)dm_block_location(b));
247                 return -ENOTBLK;
248         }
249
250         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
251                 DMERR("sb_check failed: magic %llu: "
252                       "wanted %llu", le64_to_cpu(disk_super->magic),
253                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
254                 return -EILSEQ;
255         }
256
257         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
258                                              block_size - sizeof(__le32),
259                                              SUPERBLOCK_CSUM_XOR));
260         if (csum_le != disk_super->csum) {
261                 DMERR("sb_check failed: csum %u: wanted %u",
262                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
263                 return -EILSEQ;
264         }
265
266         return 0;
267 }
268
269 static struct dm_block_validator sb_validator = {
270         .name = "superblock",
271         .prepare_for_write = sb_prepare_for_write,
272         .check = sb_check
273 };
274
275 /*----------------------------------------------------------------
276  * Methods for the btree value types
277  *--------------------------------------------------------------*/
278
279 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
280 {
281         return (b << 24) | t;
282 }
283
284 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
285 {
286         *b = v >> 24;
287         *t = v & ((1 << 24) - 1);
288 }
289
290 static void data_block_inc(void *context, const void *value_le)
291 {
292         struct dm_space_map *sm = context;
293         __le64 v_le;
294         uint64_t b;
295         uint32_t t;
296
297         memcpy(&v_le, value_le, sizeof(v_le));
298         unpack_block_time(le64_to_cpu(v_le), &b, &t);
299         dm_sm_inc_block(sm, b);
300 }
301
302 static void data_block_dec(void *context, const void *value_le)
303 {
304         struct dm_space_map *sm = context;
305         __le64 v_le;
306         uint64_t b;
307         uint32_t t;
308
309         memcpy(&v_le, value_le, sizeof(v_le));
310         unpack_block_time(le64_to_cpu(v_le), &b, &t);
311         dm_sm_dec_block(sm, b);
312 }
313
314 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
315 {
316         __le64 v1_le, v2_le;
317         uint64_t b1, b2;
318         uint32_t t;
319
320         memcpy(&v1_le, value1_le, sizeof(v1_le));
321         memcpy(&v2_le, value2_le, sizeof(v2_le));
322         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
323         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
324
325         return b1 == b2;
326 }
327
328 static void subtree_inc(void *context, const void *value)
329 {
330         struct dm_btree_info *info = context;
331         __le64 root_le;
332         uint64_t root;
333
334         memcpy(&root_le, value, sizeof(root_le));
335         root = le64_to_cpu(root_le);
336         dm_tm_inc(info->tm, root);
337 }
338
339 static void subtree_dec(void *context, const void *value)
340 {
341         struct dm_btree_info *info = context;
342         __le64 root_le;
343         uint64_t root;
344
345         memcpy(&root_le, value, sizeof(root_le));
346         root = le64_to_cpu(root_le);
347         if (dm_btree_del(info, root))
348                 DMERR("btree delete failed\n");
349 }
350
351 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
352 {
353         __le64 v1_le, v2_le;
354         memcpy(&v1_le, value1_le, sizeof(v1_le));
355         memcpy(&v2_le, value2_le, sizeof(v2_le));
356
357         return v1_le == v2_le;
358 }
359
360 /*----------------------------------------------------------------*/
361
362 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
363                                 struct dm_block **sblock)
364 {
365         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366                                      &sb_validator, sblock);
367 }
368
369 static int superblock_lock(struct dm_pool_metadata *pmd,
370                            struct dm_block **sblock)
371 {
372         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
373                                 &sb_validator, sblock);
374 }
375
376 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
377 {
378         int r;
379         unsigned i;
380         struct dm_block *b;
381         __le64 *data_le, zero = cpu_to_le64(0);
382         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
383
384         /*
385          * We can't use a validator here - it may be all zeroes.
386          */
387         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
388         if (r)
389                 return r;
390
391         data_le = dm_block_data(b);
392         *result = 1;
393         for (i = 0; i < block_size; i++) {
394                 if (data_le[i] != zero) {
395                         *result = 0;
396                         break;
397                 }
398         }
399
400         return dm_bm_unlock(b);
401 }
402
403 static void __setup_btree_details(struct dm_pool_metadata *pmd)
404 {
405         pmd->info.tm = pmd->tm;
406         pmd->info.levels = 2;
407         pmd->info.value_type.context = pmd->data_sm;
408         pmd->info.value_type.size = sizeof(__le64);
409         pmd->info.value_type.inc = data_block_inc;
410         pmd->info.value_type.dec = data_block_dec;
411         pmd->info.value_type.equal = data_block_equal;
412
413         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
414         pmd->nb_info.tm = pmd->nb_tm;
415
416         pmd->tl_info.tm = pmd->tm;
417         pmd->tl_info.levels = 1;
418         pmd->tl_info.value_type.context = &pmd->bl_info;
419         pmd->tl_info.value_type.size = sizeof(__le64);
420         pmd->tl_info.value_type.inc = subtree_inc;
421         pmd->tl_info.value_type.dec = subtree_dec;
422         pmd->tl_info.value_type.equal = subtree_equal;
423
424         pmd->bl_info.tm = pmd->tm;
425         pmd->bl_info.levels = 1;
426         pmd->bl_info.value_type.context = pmd->data_sm;
427         pmd->bl_info.value_type.size = sizeof(__le64);
428         pmd->bl_info.value_type.inc = data_block_inc;
429         pmd->bl_info.value_type.dec = data_block_dec;
430         pmd->bl_info.value_type.equal = data_block_equal;
431
432         pmd->details_info.tm = pmd->tm;
433         pmd->details_info.levels = 1;
434         pmd->details_info.value_type.context = NULL;
435         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
436         pmd->details_info.value_type.inc = NULL;
437         pmd->details_info.value_type.dec = NULL;
438         pmd->details_info.value_type.equal = NULL;
439 }
440
441 static int save_sm_roots(struct dm_pool_metadata *pmd)
442 {
443         int r;
444         size_t len;
445
446         r = dm_sm_root_size(pmd->metadata_sm, &len);
447         if (r < 0)
448                 return r;
449
450         r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
451         if (r < 0)
452                 return r;
453
454         r = dm_sm_root_size(pmd->data_sm, &len);
455         if (r < 0)
456                 return r;
457
458         return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
459 }
460
461 static void copy_sm_roots(struct dm_pool_metadata *pmd,
462                           struct thin_disk_superblock *disk)
463 {
464         memcpy(&disk->metadata_space_map_root,
465                &pmd->metadata_space_map_root,
466                sizeof(pmd->metadata_space_map_root));
467
468         memcpy(&disk->data_space_map_root,
469                &pmd->data_space_map_root,
470                sizeof(pmd->data_space_map_root));
471 }
472
473 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
474 {
475         int r;
476         struct dm_block *sblock;
477         struct thin_disk_superblock *disk_super;
478         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
479
480         if (bdev_size > THIN_METADATA_MAX_SECTORS)
481                 bdev_size = THIN_METADATA_MAX_SECTORS;
482
483         r = dm_sm_commit(pmd->data_sm);
484         if (r < 0)
485                 return r;
486
487         r = save_sm_roots(pmd);
488         if (r < 0)
489                 return r;
490
491         r = dm_tm_pre_commit(pmd->tm);
492         if (r < 0)
493                 return r;
494
495         r = superblock_lock_zero(pmd, &sblock);
496         if (r)
497                 return r;
498
499         disk_super = dm_block_data(sblock);
500         disk_super->flags = 0;
501         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
502         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
503         disk_super->version = cpu_to_le32(THIN_VERSION);
504         disk_super->time = 0;
505         disk_super->trans_id = 0;
506         disk_super->held_root = 0;
507
508         copy_sm_roots(pmd, disk_super);
509
510         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
511         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
512         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
513         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
514         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
515
516         return dm_tm_commit(pmd->tm, sblock);
517 }
518
519 static int __format_metadata(struct dm_pool_metadata *pmd)
520 {
521         int r;
522
523         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
524                                  &pmd->tm, &pmd->metadata_sm);
525         if (r < 0) {
526                 DMERR("tm_create_with_sm failed");
527                 return r;
528         }
529
530         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
531         if (IS_ERR(pmd->data_sm)) {
532                 DMERR("sm_disk_create failed");
533                 r = PTR_ERR(pmd->data_sm);
534                 goto bad_cleanup_tm;
535         }
536
537         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
538         if (!pmd->nb_tm) {
539                 DMERR("could not create non-blocking clone tm");
540                 r = -ENOMEM;
541                 goto bad_cleanup_data_sm;
542         }
543
544         __setup_btree_details(pmd);
545
546         r = dm_btree_empty(&pmd->info, &pmd->root);
547         if (r < 0)
548                 goto bad_cleanup_nb_tm;
549
550         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
551         if (r < 0) {
552                 DMERR("couldn't create devices root");
553                 goto bad_cleanup_nb_tm;
554         }
555
556         r = __write_initial_superblock(pmd);
557         if (r)
558                 goto bad_cleanup_nb_tm;
559
560         return 0;
561
562 bad_cleanup_nb_tm:
563         dm_tm_destroy(pmd->nb_tm);
564 bad_cleanup_data_sm:
565         dm_sm_destroy(pmd->data_sm);
566 bad_cleanup_tm:
567         dm_tm_destroy(pmd->tm);
568         dm_sm_destroy(pmd->metadata_sm);
569
570         return r;
571 }
572
573 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
574                                      struct dm_pool_metadata *pmd)
575 {
576         uint32_t features;
577
578         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
579         if (features) {
580                 DMERR("could not access metadata due to unsupported optional features (%lx).",
581                       (unsigned long)features);
582                 return -EINVAL;
583         }
584
585         /*
586          * Check for read-only metadata to skip the following RDWR checks.
587          */
588         if (get_disk_ro(pmd->bdev->bd_disk))
589                 return 0;
590
591         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
592         if (features) {
593                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
594                       (unsigned long)features);
595                 return -EINVAL;
596         }
597
598         return 0;
599 }
600
601 static int __open_metadata(struct dm_pool_metadata *pmd)
602 {
603         int r;
604         struct dm_block *sblock;
605         struct thin_disk_superblock *disk_super;
606
607         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
608                             &sb_validator, &sblock);
609         if (r < 0) {
610                 DMERR("couldn't read superblock");
611                 return r;
612         }
613
614         disk_super = dm_block_data(sblock);
615
616         /* Verify the data block size hasn't changed */
617         if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
618                 DMERR("changing the data block size (from %u to %llu) is not supported",
619                       le32_to_cpu(disk_super->data_block_size),
620                       (unsigned long long)pmd->data_block_size);
621                 r = -EINVAL;
622                 goto bad_unlock_sblock;
623         }
624
625         r = __check_incompat_features(disk_super, pmd);
626         if (r < 0)
627                 goto bad_unlock_sblock;
628
629         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
630                                disk_super->metadata_space_map_root,
631                                sizeof(disk_super->metadata_space_map_root),
632                                &pmd->tm, &pmd->metadata_sm);
633         if (r < 0) {
634                 DMERR("tm_open_with_sm failed");
635                 goto bad_unlock_sblock;
636         }
637
638         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
639                                        sizeof(disk_super->data_space_map_root));
640         if (IS_ERR(pmd->data_sm)) {
641                 DMERR("sm_disk_open failed");
642                 r = PTR_ERR(pmd->data_sm);
643                 goto bad_cleanup_tm;
644         }
645
646         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
647         if (!pmd->nb_tm) {
648                 DMERR("could not create non-blocking clone tm");
649                 r = -ENOMEM;
650                 goto bad_cleanup_data_sm;
651         }
652
653         __setup_btree_details(pmd);
654         return dm_bm_unlock(sblock);
655
656 bad_cleanup_data_sm:
657         dm_sm_destroy(pmd->data_sm);
658 bad_cleanup_tm:
659         dm_tm_destroy(pmd->tm);
660         dm_sm_destroy(pmd->metadata_sm);
661 bad_unlock_sblock:
662         dm_bm_unlock(sblock);
663
664         return r;
665 }
666
667 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
668 {
669         int r, unformatted;
670
671         r = __superblock_all_zeroes(pmd->bm, &unformatted);
672         if (r)
673                 return r;
674
675         if (unformatted)
676                 return format_device ? __format_metadata(pmd) : -EPERM;
677
678         return __open_metadata(pmd);
679 }
680
681 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
682 {
683         int r;
684
685         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
686                                           THIN_METADATA_CACHE_SIZE,
687                                           THIN_MAX_CONCURRENT_LOCKS);
688         if (IS_ERR(pmd->bm)) {
689                 DMERR("could not create block manager");
690                 return PTR_ERR(pmd->bm);
691         }
692
693         r = __open_or_format_metadata(pmd, format_device);
694         if (r)
695                 dm_block_manager_destroy(pmd->bm);
696
697         return r;
698 }
699
700 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
701 {
702         dm_sm_destroy(pmd->data_sm);
703         dm_sm_destroy(pmd->metadata_sm);
704         dm_tm_destroy(pmd->nb_tm);
705         dm_tm_destroy(pmd->tm);
706         dm_block_manager_destroy(pmd->bm);
707 }
708
709 static int __begin_transaction(struct dm_pool_metadata *pmd)
710 {
711         int r;
712         struct thin_disk_superblock *disk_super;
713         struct dm_block *sblock;
714
715         /*
716          * We re-read the superblock every time.  Shouldn't need to do this
717          * really.
718          */
719         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
720                             &sb_validator, &sblock);
721         if (r)
722                 return r;
723
724         disk_super = dm_block_data(sblock);
725         pmd->time = le32_to_cpu(disk_super->time);
726         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
727         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
728         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
729         pmd->flags = le32_to_cpu(disk_super->flags);
730         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
731
732         dm_bm_unlock(sblock);
733         return 0;
734 }
735
736 static int __write_changed_details(struct dm_pool_metadata *pmd)
737 {
738         int r;
739         struct dm_thin_device *td, *tmp;
740         struct disk_device_details details;
741         uint64_t key;
742
743         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
744                 if (!td->changed)
745                         continue;
746
747                 key = td->id;
748
749                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
750                 details.transaction_id = cpu_to_le64(td->transaction_id);
751                 details.creation_time = cpu_to_le32(td->creation_time);
752                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
753                 __dm_bless_for_disk(&details);
754
755                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
756                                     &key, &details, &pmd->details_root);
757                 if (r)
758                         return r;
759
760                 if (td->open_count)
761                         td->changed = 0;
762                 else {
763                         list_del(&td->list);
764                         kfree(td);
765                 }
766         }
767
768         return 0;
769 }
770
771 static int __commit_transaction(struct dm_pool_metadata *pmd)
772 {
773         int r;
774         size_t metadata_len, data_len;
775         struct thin_disk_superblock *disk_super;
776         struct dm_block *sblock;
777
778         /*
779          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
780          */
781         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
782
783         r = __write_changed_details(pmd);
784         if (r < 0)
785                 return r;
786
787         r = dm_sm_commit(pmd->data_sm);
788         if (r < 0)
789                 return r;
790
791         r = dm_tm_pre_commit(pmd->tm);
792         if (r < 0)
793                 return r;
794
795         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
796         if (r < 0)
797                 return r;
798
799         r = dm_sm_root_size(pmd->data_sm, &data_len);
800         if (r < 0)
801                 return r;
802
803         r = save_sm_roots(pmd);
804         if (r < 0)
805                 return r;
806
807         r = superblock_lock(pmd, &sblock);
808         if (r)
809                 return r;
810
811         disk_super = dm_block_data(sblock);
812         disk_super->time = cpu_to_le32(pmd->time);
813         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
814         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
815         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
816         disk_super->flags = cpu_to_le32(pmd->flags);
817
818         copy_sm_roots(pmd, disk_super);
819
820         return dm_tm_commit(pmd->tm, sblock);
821 }
822
823 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
824                                                sector_t data_block_size,
825                                                bool format_device)
826 {
827         int r;
828         struct dm_pool_metadata *pmd;
829
830         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
831         if (!pmd) {
832                 DMERR("could not allocate metadata struct");
833                 return ERR_PTR(-ENOMEM);
834         }
835
836         init_rwsem(&pmd->root_lock);
837         pmd->time = 0;
838         INIT_LIST_HEAD(&pmd->thin_devices);
839         pmd->read_only = false;
840         pmd->fail_io = false;
841         pmd->bdev = bdev;
842         pmd->data_block_size = data_block_size;
843
844         r = __create_persistent_data_objects(pmd, format_device);
845         if (r) {
846                 kfree(pmd);
847                 return ERR_PTR(r);
848         }
849
850         r = __begin_transaction(pmd);
851         if (r < 0) {
852                 if (dm_pool_metadata_close(pmd) < 0)
853                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
854                 return ERR_PTR(r);
855         }
856
857         return pmd;
858 }
859
860 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
861 {
862         int r;
863         unsigned open_devices = 0;
864         struct dm_thin_device *td, *tmp;
865
866         down_read(&pmd->root_lock);
867         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
868                 if (td->open_count)
869                         open_devices++;
870                 else {
871                         list_del(&td->list);
872                         kfree(td);
873                 }
874         }
875         up_read(&pmd->root_lock);
876
877         if (open_devices) {
878                 DMERR("attempt to close pmd when %u device(s) are still open",
879                        open_devices);
880                 return -EBUSY;
881         }
882
883         if (!pmd->read_only && !pmd->fail_io) {
884                 r = __commit_transaction(pmd);
885                 if (r < 0)
886                         DMWARN("%s: __commit_transaction() failed, error = %d",
887                                __func__, r);
888         }
889
890         if (!pmd->fail_io)
891                 __destroy_persistent_data_objects(pmd);
892
893         kfree(pmd);
894         return 0;
895 }
896
897 /*
898  * __open_device: Returns @td corresponding to device with id @dev,
899  * creating it if @create is set and incrementing @td->open_count.
900  * On failure, @td is undefined.
901  */
902 static int __open_device(struct dm_pool_metadata *pmd,
903                          dm_thin_id dev, int create,
904                          struct dm_thin_device **td)
905 {
906         int r, changed = 0;
907         struct dm_thin_device *td2;
908         uint64_t key = dev;
909         struct disk_device_details details_le;
910
911         /*
912          * If the device is already open, return it.
913          */
914         list_for_each_entry(td2, &pmd->thin_devices, list)
915                 if (td2->id == dev) {
916                         /*
917                          * May not create an already-open device.
918                          */
919                         if (create)
920                                 return -EEXIST;
921
922                         td2->open_count++;
923                         *td = td2;
924                         return 0;
925                 }
926
927         /*
928          * Check the device exists.
929          */
930         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
931                             &key, &details_le);
932         if (r) {
933                 if (r != -ENODATA || !create)
934                         return r;
935
936                 /*
937                  * Create new device.
938                  */
939                 changed = 1;
940                 details_le.mapped_blocks = 0;
941                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
942                 details_le.creation_time = cpu_to_le32(pmd->time);
943                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
944         }
945
946         *td = kmalloc(sizeof(**td), GFP_NOIO);
947         if (!*td)
948                 return -ENOMEM;
949
950         (*td)->pmd = pmd;
951         (*td)->id = dev;
952         (*td)->open_count = 1;
953         (*td)->changed = changed;
954         (*td)->aborted_with_changes = false;
955         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
956         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
957         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
958         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
959
960         list_add(&(*td)->list, &pmd->thin_devices);
961
962         return 0;
963 }
964
965 static void __close_device(struct dm_thin_device *td)
966 {
967         --td->open_count;
968 }
969
970 static int __create_thin(struct dm_pool_metadata *pmd,
971                          dm_thin_id dev)
972 {
973         int r;
974         dm_block_t dev_root;
975         uint64_t key = dev;
976         struct disk_device_details details_le;
977         struct dm_thin_device *td;
978         __le64 value;
979
980         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
981                             &key, &details_le);
982         if (!r)
983                 return -EEXIST;
984
985         /*
986          * Create an empty btree for the mappings.
987          */
988         r = dm_btree_empty(&pmd->bl_info, &dev_root);
989         if (r)
990                 return r;
991
992         /*
993          * Insert it into the main mapping tree.
994          */
995         value = cpu_to_le64(dev_root);
996         __dm_bless_for_disk(&value);
997         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
998         if (r) {
999                 dm_btree_del(&pmd->bl_info, dev_root);
1000                 return r;
1001         }
1002
1003         r = __open_device(pmd, dev, 1, &td);
1004         if (r) {
1005                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1006                 dm_btree_del(&pmd->bl_info, dev_root);
1007                 return r;
1008         }
1009         __close_device(td);
1010
1011         return r;
1012 }
1013
1014 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1015 {
1016         int r = -EINVAL;
1017
1018         down_write(&pmd->root_lock);
1019         if (!pmd->fail_io)
1020                 r = __create_thin(pmd, dev);
1021         up_write(&pmd->root_lock);
1022
1023         return r;
1024 }
1025
1026 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1027                                   struct dm_thin_device *snap,
1028                                   dm_thin_id origin, uint32_t time)
1029 {
1030         int r;
1031         struct dm_thin_device *td;
1032
1033         r = __open_device(pmd, origin, 0, &td);
1034         if (r)
1035                 return r;
1036
1037         td->changed = 1;
1038         td->snapshotted_time = time;
1039
1040         snap->mapped_blocks = td->mapped_blocks;
1041         snap->snapshotted_time = time;
1042         __close_device(td);
1043
1044         return 0;
1045 }
1046
1047 static int __create_snap(struct dm_pool_metadata *pmd,
1048                          dm_thin_id dev, dm_thin_id origin)
1049 {
1050         int r;
1051         dm_block_t origin_root;
1052         uint64_t key = origin, dev_key = dev;
1053         struct dm_thin_device *td;
1054         struct disk_device_details details_le;
1055         __le64 value;
1056
1057         /* check this device is unused */
1058         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1059                             &dev_key, &details_le);
1060         if (!r)
1061                 return -EEXIST;
1062
1063         /* find the mapping tree for the origin */
1064         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1065         if (r)
1066                 return r;
1067         origin_root = le64_to_cpu(value);
1068
1069         /* clone the origin, an inc will do */
1070         dm_tm_inc(pmd->tm, origin_root);
1071
1072         /* insert into the main mapping tree */
1073         value = cpu_to_le64(origin_root);
1074         __dm_bless_for_disk(&value);
1075         key = dev;
1076         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1077         if (r) {
1078                 dm_tm_dec(pmd->tm, origin_root);
1079                 return r;
1080         }
1081
1082         pmd->time++;
1083
1084         r = __open_device(pmd, dev, 1, &td);
1085         if (r)
1086                 goto bad;
1087
1088         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1089         __close_device(td);
1090
1091         if (r)
1092                 goto bad;
1093
1094         return 0;
1095
1096 bad:
1097         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1098         dm_btree_remove(&pmd->details_info, pmd->details_root,
1099                         &key, &pmd->details_root);
1100         return r;
1101 }
1102
1103 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1104                                  dm_thin_id dev,
1105                                  dm_thin_id origin)
1106 {
1107         int r = -EINVAL;
1108
1109         down_write(&pmd->root_lock);
1110         if (!pmd->fail_io)
1111                 r = __create_snap(pmd, dev, origin);
1112         up_write(&pmd->root_lock);
1113
1114         return r;
1115 }
1116
1117 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1118 {
1119         int r;
1120         uint64_t key = dev;
1121         struct dm_thin_device *td;
1122
1123         /* TODO: failure should mark the transaction invalid */
1124         r = __open_device(pmd, dev, 0, &td);
1125         if (r)
1126                 return r;
1127
1128         if (td->open_count > 1) {
1129                 __close_device(td);
1130                 return -EBUSY;
1131         }
1132
1133         list_del(&td->list);
1134         kfree(td);
1135         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1136                             &key, &pmd->details_root);
1137         if (r)
1138                 return r;
1139
1140         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1141         if (r)
1142                 return r;
1143
1144         return 0;
1145 }
1146
1147 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1148                                dm_thin_id dev)
1149 {
1150         int r = -EINVAL;
1151
1152         down_write(&pmd->root_lock);
1153         if (!pmd->fail_io)
1154                 r = __delete_device(pmd, dev);
1155         up_write(&pmd->root_lock);
1156
1157         return r;
1158 }
1159
1160 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1161                                         uint64_t current_id,
1162                                         uint64_t new_id)
1163 {
1164         int r = -EINVAL;
1165
1166         down_write(&pmd->root_lock);
1167
1168         if (pmd->fail_io)
1169                 goto out;
1170
1171         if (pmd->trans_id != current_id) {
1172                 DMERR("mismatched transaction id");
1173                 goto out;
1174         }
1175
1176         pmd->trans_id = new_id;
1177         r = 0;
1178
1179 out:
1180         up_write(&pmd->root_lock);
1181
1182         return r;
1183 }
1184
1185 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1186                                         uint64_t *result)
1187 {
1188         int r = -EINVAL;
1189
1190         down_read(&pmd->root_lock);
1191         if (!pmd->fail_io) {
1192                 *result = pmd->trans_id;
1193                 r = 0;
1194         }
1195         up_read(&pmd->root_lock);
1196
1197         return r;
1198 }
1199
1200 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1201 {
1202         int r, inc;
1203         struct thin_disk_superblock *disk_super;
1204         struct dm_block *copy, *sblock;
1205         dm_block_t held_root;
1206
1207         /*
1208          * Copy the superblock.
1209          */
1210         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1211         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1212                                &sb_validator, &copy, &inc);
1213         if (r)
1214                 return r;
1215
1216         BUG_ON(!inc);
1217
1218         held_root = dm_block_location(copy);
1219         disk_super = dm_block_data(copy);
1220
1221         if (le64_to_cpu(disk_super->held_root)) {
1222                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1223
1224                 dm_tm_dec(pmd->tm, held_root);
1225                 dm_tm_unlock(pmd->tm, copy);
1226                 return -EBUSY;
1227         }
1228
1229         /*
1230          * Wipe the spacemap since we're not publishing this.
1231          */
1232         memset(&disk_super->data_space_map_root, 0,
1233                sizeof(disk_super->data_space_map_root));
1234         memset(&disk_super->metadata_space_map_root, 0,
1235                sizeof(disk_super->metadata_space_map_root));
1236
1237         /*
1238          * Increment the data structures that need to be preserved.
1239          */
1240         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1241         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1242         dm_tm_unlock(pmd->tm, copy);
1243
1244         /*
1245          * Write the held root into the superblock.
1246          */
1247         r = superblock_lock(pmd, &sblock);
1248         if (r) {
1249                 dm_tm_dec(pmd->tm, held_root);
1250                 return r;
1251         }
1252
1253         disk_super = dm_block_data(sblock);
1254         disk_super->held_root = cpu_to_le64(held_root);
1255         dm_bm_unlock(sblock);
1256         return 0;
1257 }
1258
1259 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1260 {
1261         int r = -EINVAL;
1262
1263         down_write(&pmd->root_lock);
1264         if (!pmd->fail_io)
1265                 r = __reserve_metadata_snap(pmd);
1266         up_write(&pmd->root_lock);
1267
1268         return r;
1269 }
1270
1271 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1272 {
1273         int r;
1274         struct thin_disk_superblock *disk_super;
1275         struct dm_block *sblock, *copy;
1276         dm_block_t held_root;
1277
1278         r = superblock_lock(pmd, &sblock);
1279         if (r)
1280                 return r;
1281
1282         disk_super = dm_block_data(sblock);
1283         held_root = le64_to_cpu(disk_super->held_root);
1284         disk_super->held_root = cpu_to_le64(0);
1285
1286         dm_bm_unlock(sblock);
1287
1288         if (!held_root) {
1289                 DMWARN("No pool metadata snapshot found: nothing to release.");
1290                 return -EINVAL;
1291         }
1292
1293         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1294         if (r)
1295                 return r;
1296
1297         disk_super = dm_block_data(copy);
1298         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1299         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1300         dm_sm_dec_block(pmd->metadata_sm, held_root);
1301
1302         return dm_tm_unlock(pmd->tm, copy);
1303 }
1304
1305 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1306 {
1307         int r = -EINVAL;
1308
1309         down_write(&pmd->root_lock);
1310         if (!pmd->fail_io)
1311                 r = __release_metadata_snap(pmd);
1312         up_write(&pmd->root_lock);
1313
1314         return r;
1315 }
1316
1317 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1318                                dm_block_t *result)
1319 {
1320         int r;
1321         struct thin_disk_superblock *disk_super;
1322         struct dm_block *sblock;
1323
1324         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1325                             &sb_validator, &sblock);
1326         if (r)
1327                 return r;
1328
1329         disk_super = dm_block_data(sblock);
1330         *result = le64_to_cpu(disk_super->held_root);
1331
1332         return dm_bm_unlock(sblock);
1333 }
1334
1335 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1336                               dm_block_t *result)
1337 {
1338         int r = -EINVAL;
1339
1340         down_read(&pmd->root_lock);
1341         if (!pmd->fail_io)
1342                 r = __get_metadata_snap(pmd, result);
1343         up_read(&pmd->root_lock);
1344
1345         return r;
1346 }
1347
1348 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1349                              struct dm_thin_device **td)
1350 {
1351         int r = -EINVAL;
1352
1353         down_write(&pmd->root_lock);
1354         if (!pmd->fail_io)
1355                 r = __open_device(pmd, dev, 0, td);
1356         up_write(&pmd->root_lock);
1357
1358         return r;
1359 }
1360
1361 int dm_pool_close_thin_device(struct dm_thin_device *td)
1362 {
1363         down_write(&td->pmd->root_lock);
1364         __close_device(td);
1365         up_write(&td->pmd->root_lock);
1366
1367         return 0;
1368 }
1369
1370 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1371 {
1372         return td->id;
1373 }
1374
1375 /*
1376  * Check whether @time (of block creation) is older than @td's last snapshot.
1377  * If so then the associated block is shared with the last snapshot device.
1378  * Any block on a device created *after* the device last got snapshotted is
1379  * necessarily not shared.
1380  */
1381 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1382 {
1383         return td->snapshotted_time > time;
1384 }
1385
1386 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1387                        int can_issue_io, struct dm_thin_lookup_result *result)
1388 {
1389         int r;
1390         __le64 value;
1391         struct dm_pool_metadata *pmd = td->pmd;
1392         dm_block_t keys[2] = { td->id, block };
1393         struct dm_btree_info *info;
1394
1395         if (pmd->fail_io)
1396                 return -EINVAL;
1397
1398         down_read(&pmd->root_lock);
1399
1400         if (can_issue_io) {
1401                 info = &pmd->info;
1402         } else
1403                 info = &pmd->nb_info;
1404
1405         r = dm_btree_lookup(info, pmd->root, keys, &value);
1406         if (!r) {
1407                 uint64_t block_time = 0;
1408                 dm_block_t exception_block;
1409                 uint32_t exception_time;
1410
1411                 block_time = le64_to_cpu(value);
1412                 unpack_block_time(block_time, &exception_block,
1413                                   &exception_time);
1414                 result->block = exception_block;
1415                 result->shared = __snapshotted_since(td, exception_time);
1416         }
1417
1418         up_read(&pmd->root_lock);
1419         return r;
1420 }
1421
1422 static int __insert(struct dm_thin_device *td, dm_block_t block,
1423                     dm_block_t data_block)
1424 {
1425         int r, inserted;
1426         __le64 value;
1427         struct dm_pool_metadata *pmd = td->pmd;
1428         dm_block_t keys[2] = { td->id, block };
1429
1430         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1431         __dm_bless_for_disk(&value);
1432
1433         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1434                                    &pmd->root, &inserted);
1435         if (r)
1436                 return r;
1437
1438         td->changed = 1;
1439         if (inserted)
1440                 td->mapped_blocks++;
1441
1442         return 0;
1443 }
1444
1445 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1446                          dm_block_t data_block)
1447 {
1448         int r = -EINVAL;
1449
1450         down_write(&td->pmd->root_lock);
1451         if (!td->pmd->fail_io)
1452                 r = __insert(td, block, data_block);
1453         up_write(&td->pmd->root_lock);
1454
1455         return r;
1456 }
1457
1458 static int __remove(struct dm_thin_device *td, dm_block_t block)
1459 {
1460         int r;
1461         struct dm_pool_metadata *pmd = td->pmd;
1462         dm_block_t keys[2] = { td->id, block };
1463
1464         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1465         if (r)
1466                 return r;
1467
1468         td->mapped_blocks--;
1469         td->changed = 1;
1470
1471         return 0;
1472 }
1473
1474 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1475 {
1476         int r = -EINVAL;
1477
1478         down_write(&td->pmd->root_lock);
1479         if (!td->pmd->fail_io)
1480                 r = __remove(td, block);
1481         up_write(&td->pmd->root_lock);
1482
1483         return r;
1484 }
1485
1486 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1487 {
1488         int r;
1489         uint32_t ref_count;
1490
1491         down_read(&pmd->root_lock);
1492         r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1493         if (!r)
1494                 *result = (ref_count != 0);
1495         up_read(&pmd->root_lock);
1496
1497         return r;
1498 }
1499
1500 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1501 {
1502         int r;
1503
1504         down_read(&td->pmd->root_lock);
1505         r = td->changed;
1506         up_read(&td->pmd->root_lock);
1507
1508         return r;
1509 }
1510
1511 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1512 {
1513         bool r = false;
1514         struct dm_thin_device *td, *tmp;
1515
1516         down_read(&pmd->root_lock);
1517         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1518                 if (td->changed) {
1519                         r = td->changed;
1520                         break;
1521                 }
1522         }
1523         up_read(&pmd->root_lock);
1524
1525         return r;
1526 }
1527
1528 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1529 {
1530         bool r;
1531
1532         down_read(&td->pmd->root_lock);
1533         r = td->aborted_with_changes;
1534         up_read(&td->pmd->root_lock);
1535
1536         return r;
1537 }
1538
1539 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1540 {
1541         int r = -EINVAL;
1542
1543         down_write(&pmd->root_lock);
1544         if (!pmd->fail_io)
1545                 r = dm_sm_new_block(pmd->data_sm, result);
1546         up_write(&pmd->root_lock);
1547
1548         return r;
1549 }
1550
1551 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1552 {
1553         int r = -EINVAL;
1554
1555         down_write(&pmd->root_lock);
1556         if (pmd->fail_io)
1557                 goto out;
1558
1559         r = __commit_transaction(pmd);
1560         if (r <= 0)
1561                 goto out;
1562
1563         /*
1564          * Open the next transaction.
1565          */
1566         r = __begin_transaction(pmd);
1567 out:
1568         up_write(&pmd->root_lock);
1569         return r;
1570 }
1571
1572 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1573 {
1574         struct dm_thin_device *td;
1575
1576         list_for_each_entry(td, &pmd->thin_devices, list)
1577                 td->aborted_with_changes = td->changed;
1578 }
1579
1580 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1581 {
1582         int r = -EINVAL;
1583
1584         down_write(&pmd->root_lock);
1585         if (pmd->fail_io)
1586                 goto out;
1587
1588         __set_abort_with_changes_flags(pmd);
1589         __destroy_persistent_data_objects(pmd);
1590         r = __create_persistent_data_objects(pmd, false);
1591         if (r)
1592                 pmd->fail_io = true;
1593
1594 out:
1595         up_write(&pmd->root_lock);
1596
1597         return r;
1598 }
1599
1600 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1601 {
1602         int r = -EINVAL;
1603
1604         down_read(&pmd->root_lock);
1605         if (!pmd->fail_io)
1606                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1607         up_read(&pmd->root_lock);
1608
1609         return r;
1610 }
1611
1612 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1613                                           dm_block_t *result)
1614 {
1615         int r = -EINVAL;
1616
1617         down_read(&pmd->root_lock);
1618         if (!pmd->fail_io)
1619                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1620         up_read(&pmd->root_lock);
1621
1622         return r;
1623 }
1624
1625 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1626                                   dm_block_t *result)
1627 {
1628         int r = -EINVAL;
1629
1630         down_read(&pmd->root_lock);
1631         if (!pmd->fail_io)
1632                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1633         up_read(&pmd->root_lock);
1634
1635         return r;
1636 }
1637
1638 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1639 {
1640         down_read(&pmd->root_lock);
1641         *result = pmd->data_block_size;
1642         up_read(&pmd->root_lock);
1643
1644         return 0;
1645 }
1646
1647 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1648 {
1649         int r = -EINVAL;
1650
1651         down_read(&pmd->root_lock);
1652         if (!pmd->fail_io)
1653                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1654         up_read(&pmd->root_lock);
1655
1656         return r;
1657 }
1658
1659 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1660 {
1661         int r = -EINVAL;
1662         struct dm_pool_metadata *pmd = td->pmd;
1663
1664         down_read(&pmd->root_lock);
1665         if (!pmd->fail_io) {
1666                 *result = td->mapped_blocks;
1667                 r = 0;
1668         }
1669         up_read(&pmd->root_lock);
1670
1671         return r;
1672 }
1673
1674 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1675 {
1676         int r;
1677         __le64 value_le;
1678         dm_block_t thin_root;
1679         struct dm_pool_metadata *pmd = td->pmd;
1680
1681         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1682         if (r)
1683                 return r;
1684
1685         thin_root = le64_to_cpu(value_le);
1686
1687         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1688 }
1689
1690 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1691                                      dm_block_t *result)
1692 {
1693         int r = -EINVAL;
1694         struct dm_pool_metadata *pmd = td->pmd;
1695
1696         down_read(&pmd->root_lock);
1697         if (!pmd->fail_io)
1698                 r = __highest_block(td, result);
1699         up_read(&pmd->root_lock);
1700
1701         return r;
1702 }
1703
1704 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1705 {
1706         int r;
1707         dm_block_t old_count;
1708
1709         r = dm_sm_get_nr_blocks(sm, &old_count);
1710         if (r)
1711                 return r;
1712
1713         if (new_count == old_count)
1714                 return 0;
1715
1716         if (new_count < old_count) {
1717                 DMERR("cannot reduce size of space map");
1718                 return -EINVAL;
1719         }
1720
1721         return dm_sm_extend(sm, new_count - old_count);
1722 }
1723
1724 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1725 {
1726         int r = -EINVAL;
1727
1728         down_write(&pmd->root_lock);
1729         if (!pmd->fail_io)
1730                 r = __resize_space_map(pmd->data_sm, new_count);
1731         up_write(&pmd->root_lock);
1732
1733         return r;
1734 }
1735
1736 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1737 {
1738         int r = -EINVAL;
1739
1740         down_write(&pmd->root_lock);
1741         if (!pmd->fail_io)
1742                 r = __resize_space_map(pmd->metadata_sm, new_count);
1743         up_write(&pmd->root_lock);
1744
1745         return r;
1746 }
1747
1748 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1749 {
1750         down_write(&pmd->root_lock);
1751         pmd->read_only = true;
1752         dm_bm_set_read_only(pmd->bm);
1753         up_write(&pmd->root_lock);
1754 }
1755
1756 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1757 {
1758         down_write(&pmd->root_lock);
1759         pmd->read_only = false;
1760         dm_bm_set_read_write(pmd->bm);
1761         up_write(&pmd->root_lock);
1762 }
1763
1764 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1765                                         dm_block_t threshold,
1766                                         dm_sm_threshold_fn fn,
1767                                         void *context)
1768 {
1769         int r;
1770
1771         down_write(&pmd->root_lock);
1772         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1773         up_write(&pmd->root_lock);
1774
1775         return r;
1776 }
1777
1778 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1779 {
1780         int r;
1781         struct dm_block *sblock;
1782         struct thin_disk_superblock *disk_super;
1783
1784         down_write(&pmd->root_lock);
1785         pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1786
1787         r = superblock_lock(pmd, &sblock);
1788         if (r) {
1789                 DMERR("couldn't read superblock");
1790                 goto out;
1791         }
1792
1793         disk_super = dm_block_data(sblock);
1794         disk_super->flags = cpu_to_le32(pmd->flags);
1795
1796         dm_bm_unlock(sblock);
1797 out:
1798         up_write(&pmd->root_lock);
1799         return r;
1800 }
1801
1802 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1803 {
1804         bool needs_check;
1805
1806         down_read(&pmd->root_lock);
1807         needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1808         up_read(&pmd->root_lock);
1809
1810         return needs_check;
1811 }
1812
1813 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
1814 {
1815         dm_tm_issue_prefetches(pmd->tm);
1816 }