2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 "A percentage of time allocated for copy on write");
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 * Device id is restricted to 24 bits.
42 #define MAX_DEV_ID ((1 << 24) - 1)
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
58 * Let's say we write to a shared block in what was the origin. The
61 * i) plug io further to this physical block. (see bio_prison code).
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
80 * Steps (ii) and (iii) occur in parallel.
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
90 * - The snap mapping still points to the old block. As it would after
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
102 /*----------------------------------------------------------------*/
107 static void build_data_key(struct dm_thin_device *td,
108 dm_block_t b, struct dm_cell_key *key)
111 key->dev = dm_thin_dev_id(td);
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 struct dm_cell_key *key)
119 key->dev = dm_thin_dev_id(td);
123 /*----------------------------------------------------------------*/
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
130 struct dm_thin_new_mapping;
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
136 PM_WRITE, /* metadata may be changed */
137 PM_READ_ONLY, /* metadata may not be changed */
138 PM_FAIL, /* all I/O fails */
141 struct pool_features {
144 bool zero_new_blocks:1;
145 bool discard_enabled:1;
146 bool discard_passdown:1;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
154 struct list_head list;
155 struct dm_target *ti; /* Only set if a pool target is bound */
157 struct mapped_device *pool_md;
158 struct block_device *md_dev;
159 struct dm_pool_metadata *pmd;
161 dm_block_t low_water_blocks;
162 uint32_t sectors_per_block;
163 int sectors_per_block_shift;
165 struct pool_features pf;
166 unsigned low_water_triggered:1; /* A dm event has been sent */
167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
169 struct dm_bio_prison *prison;
170 struct dm_kcopyd_client *copier;
172 struct workqueue_struct *wq;
173 struct work_struct worker;
174 struct delayed_work waker;
176 unsigned long last_commit_jiffies;
180 struct bio_list deferred_bios;
181 struct bio_list deferred_flush_bios;
182 struct list_head prepared_mappings;
183 struct list_head prepared_discards;
185 struct bio_list retry_on_resume_list;
187 struct dm_deferred_set *shared_read_ds;
188 struct dm_deferred_set *all_io_ds;
190 struct dm_thin_new_mapping *next_mapping;
191 mempool_t *mapping_pool;
193 process_bio_fn process_bio;
194 process_bio_fn process_discard;
196 process_mapping_fn process_prepared_mapping;
197 process_mapping_fn process_prepared_discard;
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
204 * Target context for a pool.
207 struct dm_target *ti;
209 struct dm_dev *data_dev;
210 struct dm_dev *metadata_dev;
211 struct dm_target_callbacks callbacks;
213 dm_block_t low_water_blocks;
214 struct pool_features requested_pf; /* Features requested during table load */
215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
219 * Target context for a thin.
222 struct dm_dev *pool_dev;
223 struct dm_dev *origin_dev;
227 struct dm_thin_device *td;
230 /*----------------------------------------------------------------*/
233 * A global list of pools that uses a struct mapped_device as a key.
235 static struct dm_thin_pool_table {
237 struct list_head pools;
238 } dm_thin_pool_table;
240 static void pool_table_init(void)
242 mutex_init(&dm_thin_pool_table.mutex);
243 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
246 static void __pool_table_insert(struct pool *pool)
248 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
249 list_add(&pool->list, &dm_thin_pool_table.pools);
252 static void __pool_table_remove(struct pool *pool)
254 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
255 list_del(&pool->list);
258 static struct pool *__pool_table_lookup(struct mapped_device *md)
260 struct pool *pool = NULL, *tmp;
262 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
264 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
265 if (tmp->pool_md == md) {
274 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
276 struct pool *pool = NULL, *tmp;
278 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
280 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
281 if (tmp->md_dev == md_dev) {
290 /*----------------------------------------------------------------*/
292 struct dm_thin_endio_hook {
294 struct dm_deferred_entry *shared_read_entry;
295 struct dm_deferred_entry *all_io_entry;
296 struct dm_thin_new_mapping *overwrite_mapping;
299 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
302 struct bio_list bios;
304 bio_list_init(&bios);
305 bio_list_merge(&bios, master);
306 bio_list_init(master);
308 while ((bio = bio_list_pop(&bios))) {
309 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
312 bio_endio(bio, DM_ENDIO_REQUEUE);
314 bio_list_add(master, bio);
318 static void requeue_io(struct thin_c *tc)
320 struct pool *pool = tc->pool;
323 spin_lock_irqsave(&pool->lock, flags);
324 __requeue_bio_list(tc, &pool->deferred_bios);
325 __requeue_bio_list(tc, &pool->retry_on_resume_list);
326 spin_unlock_irqrestore(&pool->lock, flags);
330 * This section of code contains the logic for processing a thin device's IO.
331 * Much of the code depends on pool object resources (lists, workqueues, etc)
332 * but most is exclusively called from the thin target rather than the thin-pool
336 static bool block_size_is_power_of_two(struct pool *pool)
338 return pool->sectors_per_block_shift >= 0;
341 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
343 struct pool *pool = tc->pool;
344 sector_t block_nr = bio->bi_sector;
346 if (block_size_is_power_of_two(pool))
347 block_nr >>= pool->sectors_per_block_shift;
349 (void) sector_div(block_nr, pool->sectors_per_block);
354 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
356 struct pool *pool = tc->pool;
357 sector_t bi_sector = bio->bi_sector;
359 bio->bi_bdev = tc->pool_dev->bdev;
360 if (block_size_is_power_of_two(pool))
361 bio->bi_sector = (block << pool->sectors_per_block_shift) |
362 (bi_sector & (pool->sectors_per_block - 1));
364 bio->bi_sector = (block * pool->sectors_per_block) +
365 sector_div(bi_sector, pool->sectors_per_block);
368 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
370 bio->bi_bdev = tc->origin_dev->bdev;
373 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
375 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
376 dm_thin_changed_this_transaction(tc->td);
379 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
381 struct dm_thin_endio_hook *h;
383 if (bio->bi_rw & REQ_DISCARD)
386 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
387 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
390 static void issue(struct thin_c *tc, struct bio *bio)
392 struct pool *pool = tc->pool;
395 if (!bio_triggers_commit(tc, bio)) {
396 generic_make_request(bio);
401 * Complete bio with an error if earlier I/O caused changes to
402 * the metadata that can't be committed e.g, due to I/O errors
403 * on the metadata device.
405 if (dm_thin_aborted_changes(tc->td)) {
411 * Batch together any bios that trigger commits and then issue a
412 * single commit for them in process_deferred_bios().
414 spin_lock_irqsave(&pool->lock, flags);
415 bio_list_add(&pool->deferred_flush_bios, bio);
416 spin_unlock_irqrestore(&pool->lock, flags);
419 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
421 remap_to_origin(tc, bio);
425 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
428 remap(tc, bio, block);
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
436 static void wake_worker(struct pool *pool)
438 queue_work(pool->wq, &pool->worker);
441 /*----------------------------------------------------------------*/
444 * Bio endio functions.
446 struct dm_thin_new_mapping {
447 struct list_head list;
451 unsigned pass_discard:1;
454 dm_block_t virt_block;
455 dm_block_t data_block;
456 struct dm_bio_prison_cell *cell, *cell2;
460 * If the bio covers the whole area of a block then we can avoid
461 * zeroing or copying. Instead this bio is hooked. The bio will
462 * still be in the cell, so care has to be taken to avoid issuing
466 bio_end_io_t *saved_bi_end_io;
469 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
471 struct pool *pool = m->tc->pool;
473 if (m->quiesced && m->prepared) {
474 list_add(&m->list, &pool->prepared_mappings);
479 static void copy_complete(int read_err, unsigned long write_err, void *context)
482 struct dm_thin_new_mapping *m = context;
483 struct pool *pool = m->tc->pool;
485 m->err = read_err || write_err ? -EIO : 0;
487 spin_lock_irqsave(&pool->lock, flags);
489 __maybe_add_mapping(m);
490 spin_unlock_irqrestore(&pool->lock, flags);
493 static void overwrite_endio(struct bio *bio, int err)
496 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
497 struct dm_thin_new_mapping *m = h->overwrite_mapping;
498 struct pool *pool = m->tc->pool;
502 spin_lock_irqsave(&pool->lock, flags);
504 __maybe_add_mapping(m);
505 spin_unlock_irqrestore(&pool->lock, flags);
508 /*----------------------------------------------------------------*/
515 * Prepared mapping jobs.
519 * This sends the bios in the cell back to the deferred_bios list.
521 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
523 struct pool *pool = tc->pool;
526 spin_lock_irqsave(&pool->lock, flags);
527 dm_cell_release(cell, &pool->deferred_bios);
528 spin_unlock_irqrestore(&tc->pool->lock, flags);
534 * Same as cell_defer except it omits the original holder of the cell.
536 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
538 struct pool *pool = tc->pool;
541 spin_lock_irqsave(&pool->lock, flags);
542 dm_cell_release_no_holder(cell, &pool->deferred_bios);
543 spin_unlock_irqrestore(&pool->lock, flags);
548 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
551 m->bio->bi_end_io = m->saved_bi_end_io;
552 dm_cell_error(m->cell);
554 mempool_free(m, m->tc->pool->mapping_pool);
556 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
558 struct thin_c *tc = m->tc;
564 bio->bi_end_io = m->saved_bi_end_io;
567 dm_cell_error(m->cell);
572 * Commit the prepared block into the mapping btree.
573 * Any I/O for this block arriving after this point will get
574 * remapped to it directly.
576 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
578 DMERR_LIMIT("dm_thin_insert_block() failed");
579 dm_cell_error(m->cell);
584 * Release any bios held while the block was being provisioned.
585 * If we are processing a write bio that completely covers the block,
586 * we already processed it so can ignore it now when processing
587 * the bios in the cell.
590 cell_defer_no_holder(tc, m->cell);
593 cell_defer(tc, m->cell);
597 mempool_free(m, tc->pool->mapping_pool);
600 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
602 struct thin_c *tc = m->tc;
604 bio_io_error(m->bio);
605 cell_defer_no_holder(tc, m->cell);
606 cell_defer_no_holder(tc, m->cell2);
607 mempool_free(m, tc->pool->mapping_pool);
610 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
612 struct thin_c *tc = m->tc;
614 inc_all_io_entry(tc->pool, m->bio);
615 cell_defer_no_holder(tc, m->cell);
616 cell_defer_no_holder(tc, m->cell2);
619 remap_and_issue(tc, m->bio, m->data_block);
621 bio_endio(m->bio, 0);
623 mempool_free(m, tc->pool->mapping_pool);
626 static void process_prepared_discard(struct dm_thin_new_mapping *m)
629 struct thin_c *tc = m->tc;
631 r = dm_thin_remove_block(tc->td, m->virt_block);
633 DMERR_LIMIT("dm_thin_remove_block() failed");
635 process_prepared_discard_passdown(m);
638 static void process_prepared(struct pool *pool, struct list_head *head,
639 process_mapping_fn *fn)
642 struct list_head maps;
643 struct dm_thin_new_mapping *m, *tmp;
645 INIT_LIST_HEAD(&maps);
646 spin_lock_irqsave(&pool->lock, flags);
647 list_splice_init(head, &maps);
648 spin_unlock_irqrestore(&pool->lock, flags);
650 list_for_each_entry_safe(m, tmp, &maps, list)
657 static int io_overlaps_block(struct pool *pool, struct bio *bio)
659 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
662 static int io_overwrites_block(struct pool *pool, struct bio *bio)
664 return (bio_data_dir(bio) == WRITE) &&
665 io_overlaps_block(pool, bio);
668 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
671 *save = bio->bi_end_io;
675 static int ensure_next_mapping(struct pool *pool)
677 if (pool->next_mapping)
680 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
682 return pool->next_mapping ? 0 : -ENOMEM;
685 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
687 struct dm_thin_new_mapping *r = pool->next_mapping;
689 BUG_ON(!pool->next_mapping);
691 pool->next_mapping = NULL;
696 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
697 struct dm_dev *origin, dm_block_t data_origin,
698 dm_block_t data_dest,
699 struct dm_bio_prison_cell *cell, struct bio *bio)
702 struct pool *pool = tc->pool;
703 struct dm_thin_new_mapping *m = get_next_mapping(pool);
705 INIT_LIST_HEAD(&m->list);
709 m->virt_block = virt_block;
710 m->data_block = data_dest;
715 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
719 * IO to pool_dev remaps to the pool target's data_dev.
721 * If the whole block of data is being overwritten, we can issue the
722 * bio immediately. Otherwise we use kcopyd to clone the data first.
724 if (io_overwrites_block(pool, bio)) {
725 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
727 h->overwrite_mapping = m;
729 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
730 inc_all_io_entry(pool, bio);
731 remap_and_issue(tc, bio, data_dest);
733 struct dm_io_region from, to;
735 from.bdev = origin->bdev;
736 from.sector = data_origin * pool->sectors_per_block;
737 from.count = pool->sectors_per_block;
739 to.bdev = tc->pool_dev->bdev;
740 to.sector = data_dest * pool->sectors_per_block;
741 to.count = pool->sectors_per_block;
743 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
744 0, copy_complete, m);
746 mempool_free(m, pool->mapping_pool);
747 DMERR_LIMIT("dm_kcopyd_copy() failed");
753 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
754 dm_block_t data_origin, dm_block_t data_dest,
755 struct dm_bio_prison_cell *cell, struct bio *bio)
757 schedule_copy(tc, virt_block, tc->pool_dev,
758 data_origin, data_dest, cell, bio);
761 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
762 dm_block_t data_dest,
763 struct dm_bio_prison_cell *cell, struct bio *bio)
765 schedule_copy(tc, virt_block, tc->origin_dev,
766 virt_block, data_dest, cell, bio);
769 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
770 dm_block_t data_block, struct dm_bio_prison_cell *cell,
773 struct pool *pool = tc->pool;
774 struct dm_thin_new_mapping *m = get_next_mapping(pool);
776 INIT_LIST_HEAD(&m->list);
780 m->virt_block = virt_block;
781 m->data_block = data_block;
787 * If the whole block of data is being overwritten or we are not
788 * zeroing pre-existing data, we can issue the bio immediately.
789 * Otherwise we use kcopyd to zero the data first.
791 if (!pool->pf.zero_new_blocks)
792 process_prepared_mapping(m);
794 else if (io_overwrites_block(pool, bio)) {
795 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
797 h->overwrite_mapping = m;
799 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
800 inc_all_io_entry(pool, bio);
801 remap_and_issue(tc, bio, data_block);
804 struct dm_io_region to;
806 to.bdev = tc->pool_dev->bdev;
807 to.sector = data_block * pool->sectors_per_block;
808 to.count = pool->sectors_per_block;
810 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
812 mempool_free(m, pool->mapping_pool);
813 DMERR_LIMIT("dm_kcopyd_zero() failed");
819 static int commit(struct pool *pool)
823 r = dm_pool_commit_metadata(pool->pmd);
825 DMERR_LIMIT("commit failed: error = %d", r);
831 * A non-zero return indicates read_only or fail_io mode.
832 * Many callers don't care about the return value.
834 static int commit_or_fallback(struct pool *pool)
838 if (get_pool_mode(pool) != PM_WRITE)
843 set_pool_mode(pool, PM_READ_ONLY);
848 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
851 dm_block_t free_blocks;
853 struct pool *pool = tc->pool;
855 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
859 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
860 DMWARN("%s: reached low water mark, sending event.",
861 dm_device_name(pool->pool_md));
862 spin_lock_irqsave(&pool->lock, flags);
863 pool->low_water_triggered = 1;
864 spin_unlock_irqrestore(&pool->lock, flags);
865 dm_table_event(pool->ti->table);
869 if (pool->no_free_space)
873 * Try to commit to see if that will free up some
876 (void) commit_or_fallback(pool);
878 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
883 * If we still have no space we set a flag to avoid
884 * doing all this checking and return -ENOSPC.
887 DMWARN("%s: no free space available.",
888 dm_device_name(pool->pool_md));
889 spin_lock_irqsave(&pool->lock, flags);
890 pool->no_free_space = 1;
891 spin_unlock_irqrestore(&pool->lock, flags);
897 r = dm_pool_alloc_data_block(pool->pmd, result);
905 * If we have run out of space, queue bios until the device is
906 * resumed, presumably after having been reloaded with more space.
908 static void retry_on_resume(struct bio *bio)
910 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
911 struct thin_c *tc = h->tc;
912 struct pool *pool = tc->pool;
915 spin_lock_irqsave(&pool->lock, flags);
916 bio_list_add(&pool->retry_on_resume_list, bio);
917 spin_unlock_irqrestore(&pool->lock, flags);
920 static void no_space(struct dm_bio_prison_cell *cell)
923 struct bio_list bios;
925 bio_list_init(&bios);
926 dm_cell_release(cell, &bios);
928 while ((bio = bio_list_pop(&bios)))
929 retry_on_resume(bio);
932 static void process_discard(struct thin_c *tc, struct bio *bio)
936 struct pool *pool = tc->pool;
937 struct dm_bio_prison_cell *cell, *cell2;
938 struct dm_cell_key key, key2;
939 dm_block_t block = get_bio_block(tc, bio);
940 struct dm_thin_lookup_result lookup_result;
941 struct dm_thin_new_mapping *m;
943 build_virtual_key(tc->td, block, &key);
944 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
947 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
951 * Check nobody is fiddling with this pool block. This can
952 * happen if someone's in the process of breaking sharing
955 build_data_key(tc->td, lookup_result.block, &key2);
956 if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
957 cell_defer_no_holder(tc, cell);
961 if (io_overlaps_block(pool, bio)) {
963 * IO may still be going to the destination block. We must
964 * quiesce before we can do the removal.
966 m = get_next_mapping(pool);
968 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
969 m->virt_block = block;
970 m->data_block = lookup_result.block;
976 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
977 spin_lock_irqsave(&pool->lock, flags);
978 list_add(&m->list, &pool->prepared_discards);
979 spin_unlock_irqrestore(&pool->lock, flags);
983 inc_all_io_entry(pool, bio);
984 cell_defer_no_holder(tc, cell);
985 cell_defer_no_holder(tc, cell2);
988 * The DM core makes sure that the discard doesn't span
989 * a block boundary. So we submit the discard of a
990 * partial block appropriately.
992 if ((!lookup_result.shared) && pool->pf.discard_passdown)
993 remap_and_issue(tc, bio, lookup_result.block);
1001 * It isn't provisioned, just forget it.
1003 cell_defer_no_holder(tc, cell);
1008 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1010 cell_defer_no_holder(tc, cell);
1016 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1017 struct dm_cell_key *key,
1018 struct dm_thin_lookup_result *lookup_result,
1019 struct dm_bio_prison_cell *cell)
1022 dm_block_t data_block;
1024 r = alloc_data_block(tc, &data_block);
1027 schedule_internal_copy(tc, block, lookup_result->block,
1028 data_block, cell, bio);
1036 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1038 dm_cell_error(cell);
1043 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1045 struct dm_thin_lookup_result *lookup_result)
1047 struct dm_bio_prison_cell *cell;
1048 struct pool *pool = tc->pool;
1049 struct dm_cell_key key;
1052 * If cell is already occupied, then sharing is already in the process
1053 * of being broken so we have nothing further to do here.
1055 build_data_key(tc->td, lookup_result->block, &key);
1056 if (dm_bio_detain(pool->prison, &key, bio, &cell))
1059 if (bio_data_dir(bio) == WRITE && bio->bi_size)
1060 break_sharing(tc, bio, block, &key, lookup_result, cell);
1062 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1064 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1065 inc_all_io_entry(pool, bio);
1066 cell_defer_no_holder(tc, cell);
1068 remap_and_issue(tc, bio, lookup_result->block);
1072 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1073 struct dm_bio_prison_cell *cell)
1076 dm_block_t data_block;
1079 * Remap empty bios (flushes) immediately, without provisioning.
1081 if (!bio->bi_size) {
1082 inc_all_io_entry(tc->pool, bio);
1083 cell_defer_no_holder(tc, cell);
1085 remap_and_issue(tc, bio, 0);
1090 * Fill read bios with zeroes and complete them immediately.
1092 if (bio_data_dir(bio) == READ) {
1094 cell_defer_no_holder(tc, cell);
1099 r = alloc_data_block(tc, &data_block);
1103 schedule_external_copy(tc, block, data_block, cell, bio);
1105 schedule_zero(tc, block, data_block, cell, bio);
1113 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1115 set_pool_mode(tc->pool, PM_READ_ONLY);
1116 dm_cell_error(cell);
1121 static void process_bio(struct thin_c *tc, struct bio *bio)
1124 dm_block_t block = get_bio_block(tc, bio);
1125 struct dm_bio_prison_cell *cell;
1126 struct dm_cell_key key;
1127 struct dm_thin_lookup_result lookup_result;
1130 * If cell is already occupied, then the block is already
1131 * being provisioned so we have nothing further to do here.
1133 build_virtual_key(tc->td, block, &key);
1134 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell))
1137 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1140 if (lookup_result.shared) {
1141 process_shared_bio(tc, bio, block, &lookup_result);
1142 cell_defer_no_holder(tc, cell);
1144 inc_all_io_entry(tc->pool, bio);
1145 cell_defer_no_holder(tc, cell);
1147 remap_and_issue(tc, bio, lookup_result.block);
1152 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1153 inc_all_io_entry(tc->pool, bio);
1154 cell_defer_no_holder(tc, cell);
1156 remap_to_origin_and_issue(tc, bio);
1158 provision_block(tc, bio, block, cell);
1162 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1164 cell_defer_no_holder(tc, cell);
1170 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1173 int rw = bio_data_dir(bio);
1174 dm_block_t block = get_bio_block(tc, bio);
1175 struct dm_thin_lookup_result lookup_result;
1177 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1180 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1183 inc_all_io_entry(tc->pool, bio);
1184 remap_and_issue(tc, bio, lookup_result.block);
1194 if (tc->origin_dev) {
1195 inc_all_io_entry(tc->pool, bio);
1196 remap_to_origin_and_issue(tc, bio);
1205 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1212 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1217 static int need_commit_due_to_time(struct pool *pool)
1219 return jiffies < pool->last_commit_jiffies ||
1220 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1223 static void process_deferred_bios(struct pool *pool)
1225 unsigned long flags;
1227 struct bio_list bios;
1229 bio_list_init(&bios);
1231 spin_lock_irqsave(&pool->lock, flags);
1232 bio_list_merge(&bios, &pool->deferred_bios);
1233 bio_list_init(&pool->deferred_bios);
1234 spin_unlock_irqrestore(&pool->lock, flags);
1236 while ((bio = bio_list_pop(&bios))) {
1237 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1238 struct thin_c *tc = h->tc;
1241 * If we've got no free new_mapping structs, and processing
1242 * this bio might require one, we pause until there are some
1243 * prepared mappings to process.
1245 if (ensure_next_mapping(pool)) {
1246 spin_lock_irqsave(&pool->lock, flags);
1247 bio_list_merge(&pool->deferred_bios, &bios);
1248 spin_unlock_irqrestore(&pool->lock, flags);
1253 if (bio->bi_rw & REQ_DISCARD)
1254 pool->process_discard(tc, bio);
1256 pool->process_bio(tc, bio);
1260 * If there are any deferred flush bios, we must commit
1261 * the metadata before issuing them.
1263 bio_list_init(&bios);
1264 spin_lock_irqsave(&pool->lock, flags);
1265 bio_list_merge(&bios, &pool->deferred_flush_bios);
1266 bio_list_init(&pool->deferred_flush_bios);
1267 spin_unlock_irqrestore(&pool->lock, flags);
1269 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1272 if (commit_or_fallback(pool)) {
1273 while ((bio = bio_list_pop(&bios)))
1277 pool->last_commit_jiffies = jiffies;
1279 while ((bio = bio_list_pop(&bios)))
1280 generic_make_request(bio);
1283 static void do_worker(struct work_struct *ws)
1285 struct pool *pool = container_of(ws, struct pool, worker);
1287 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1288 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1289 process_deferred_bios(pool);
1293 * We want to commit periodically so that not too much
1294 * unwritten data builds up.
1296 static void do_waker(struct work_struct *ws)
1298 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1300 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1303 /*----------------------------------------------------------------*/
1305 static enum pool_mode get_pool_mode(struct pool *pool)
1307 return pool->pf.mode;
1310 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1314 pool->pf.mode = mode;
1318 DMERR("switching pool to failure mode");
1319 pool->process_bio = process_bio_fail;
1320 pool->process_discard = process_bio_fail;
1321 pool->process_prepared_mapping = process_prepared_mapping_fail;
1322 pool->process_prepared_discard = process_prepared_discard_fail;
1326 DMERR("switching pool to read-only mode");
1327 r = dm_pool_abort_metadata(pool->pmd);
1329 DMERR("aborting transaction failed");
1330 set_pool_mode(pool, PM_FAIL);
1332 dm_pool_metadata_read_only(pool->pmd);
1333 pool->process_bio = process_bio_read_only;
1334 pool->process_discard = process_discard;
1335 pool->process_prepared_mapping = process_prepared_mapping_fail;
1336 pool->process_prepared_discard = process_prepared_discard_passdown;
1341 pool->process_bio = process_bio;
1342 pool->process_discard = process_discard;
1343 pool->process_prepared_mapping = process_prepared_mapping;
1344 pool->process_prepared_discard = process_prepared_discard;
1349 /*----------------------------------------------------------------*/
1352 * Mapping functions.
1356 * Called only while mapping a thin bio to hand it over to the workqueue.
1358 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1360 unsigned long flags;
1361 struct pool *pool = tc->pool;
1363 spin_lock_irqsave(&pool->lock, flags);
1364 bio_list_add(&pool->deferred_bios, bio);
1365 spin_unlock_irqrestore(&pool->lock, flags);
1370 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1372 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1375 h->shared_read_entry = NULL;
1376 h->all_io_entry = NULL;
1377 h->overwrite_mapping = NULL;
1381 * Non-blocking function called from the thin target's map function.
1383 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1386 struct thin_c *tc = ti->private;
1387 dm_block_t block = get_bio_block(tc, bio);
1388 struct dm_thin_device *td = tc->td;
1389 struct dm_thin_lookup_result result;
1390 struct dm_bio_prison_cell *cell1, *cell2;
1391 struct dm_cell_key key;
1393 thin_hook_bio(tc, bio);
1395 if (get_pool_mode(tc->pool) == PM_FAIL) {
1397 return DM_MAPIO_SUBMITTED;
1400 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1401 thin_defer_bio(tc, bio);
1402 return DM_MAPIO_SUBMITTED;
1405 r = dm_thin_find_block(td, block, 0, &result);
1408 * Note that we defer readahead too.
1412 if (unlikely(result.shared)) {
1414 * We have a race condition here between the
1415 * result.shared value returned by the lookup and
1416 * snapshot creation, which may cause new
1419 * To avoid this always quiesce the origin before
1420 * taking the snap. You want to do this anyway to
1421 * ensure a consistent application view
1424 * More distant ancestors are irrelevant. The
1425 * shared flag will be set in their case.
1427 thin_defer_bio(tc, bio);
1428 return DM_MAPIO_SUBMITTED;
1431 build_virtual_key(tc->td, block, &key);
1432 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1))
1433 return DM_MAPIO_SUBMITTED;
1435 build_data_key(tc->td, result.block, &key);
1436 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) {
1437 cell_defer_no_holder(tc, cell1);
1438 return DM_MAPIO_SUBMITTED;
1441 inc_all_io_entry(tc->pool, bio);
1442 cell_defer_no_holder(tc, cell2);
1443 cell_defer_no_holder(tc, cell1);
1445 remap(tc, bio, result.block);
1446 return DM_MAPIO_REMAPPED;
1449 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1451 * This block isn't provisioned, and we have no way
1452 * of doing so. Just error it.
1455 return DM_MAPIO_SUBMITTED;
1461 * In future, the failed dm_thin_find_block above could
1462 * provide the hint to load the metadata into cache.
1464 thin_defer_bio(tc, bio);
1465 return DM_MAPIO_SUBMITTED;
1469 * Must always call bio_io_error on failure.
1470 * dm_thin_find_block can fail with -EINVAL if the
1471 * pool is switched to fail-io mode.
1474 return DM_MAPIO_SUBMITTED;
1478 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1481 unsigned long flags;
1482 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1484 spin_lock_irqsave(&pt->pool->lock, flags);
1485 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1486 spin_unlock_irqrestore(&pt->pool->lock, flags);
1489 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1490 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1496 static void __requeue_bios(struct pool *pool)
1498 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1499 bio_list_init(&pool->retry_on_resume_list);
1502 /*----------------------------------------------------------------
1503 * Binding of control targets to a pool object
1504 *--------------------------------------------------------------*/
1505 static bool data_dev_supports_discard(struct pool_c *pt)
1507 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1509 return q && blk_queue_discard(q);
1513 * If discard_passdown was enabled verify that the data device
1514 * supports discards. Disable discard_passdown if not.
1516 static void disable_passdown_if_not_supported(struct pool_c *pt)
1518 struct pool *pool = pt->pool;
1519 struct block_device *data_bdev = pt->data_dev->bdev;
1520 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1521 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1522 const char *reason = NULL;
1523 char buf[BDEVNAME_SIZE];
1525 if (!pt->adjusted_pf.discard_passdown)
1528 if (!data_dev_supports_discard(pt))
1529 reason = "discard unsupported";
1531 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1532 reason = "max discard sectors smaller than a block";
1534 else if (data_limits->discard_granularity > block_size)
1535 reason = "discard granularity larger than a block";
1537 else if (block_size & (data_limits->discard_granularity - 1))
1538 reason = "discard granularity not a factor of block size";
1541 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1542 pt->adjusted_pf.discard_passdown = false;
1546 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1548 struct pool_c *pt = ti->private;
1551 * We want to make sure that degraded pools are never upgraded.
1553 enum pool_mode old_mode = pool->pf.mode;
1554 enum pool_mode new_mode = pt->adjusted_pf.mode;
1556 if (old_mode > new_mode)
1557 new_mode = old_mode;
1560 pool->low_water_blocks = pt->low_water_blocks;
1561 pool->pf = pt->adjusted_pf;
1563 set_pool_mode(pool, new_mode);
1568 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1574 /*----------------------------------------------------------------
1576 *--------------------------------------------------------------*/
1577 /* Initialize pool features. */
1578 static void pool_features_init(struct pool_features *pf)
1580 pf->mode = PM_WRITE;
1581 pf->zero_new_blocks = true;
1582 pf->discard_enabled = true;
1583 pf->discard_passdown = true;
1586 static void __pool_destroy(struct pool *pool)
1588 __pool_table_remove(pool);
1590 if (dm_pool_metadata_close(pool->pmd) < 0)
1591 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1593 dm_bio_prison_destroy(pool->prison);
1594 dm_kcopyd_client_destroy(pool->copier);
1597 destroy_workqueue(pool->wq);
1599 if (pool->next_mapping)
1600 mempool_free(pool->next_mapping, pool->mapping_pool);
1601 mempool_destroy(pool->mapping_pool);
1602 dm_deferred_set_destroy(pool->shared_read_ds);
1603 dm_deferred_set_destroy(pool->all_io_ds);
1607 static struct kmem_cache *_new_mapping_cache;
1609 static struct pool *pool_create(struct mapped_device *pool_md,
1610 struct block_device *metadata_dev,
1611 unsigned long block_size,
1612 int read_only, char **error)
1617 struct dm_pool_metadata *pmd;
1618 bool format_device = read_only ? false : true;
1620 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1622 *error = "Error creating metadata object";
1623 return (struct pool *)pmd;
1626 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1628 *error = "Error allocating memory for pool";
1629 err_p = ERR_PTR(-ENOMEM);
1634 pool->sectors_per_block = block_size;
1635 if (block_size & (block_size - 1))
1636 pool->sectors_per_block_shift = -1;
1638 pool->sectors_per_block_shift = __ffs(block_size);
1639 pool->low_water_blocks = 0;
1640 pool_features_init(&pool->pf);
1641 pool->prison = dm_bio_prison_create(PRISON_CELLS);
1642 if (!pool->prison) {
1643 *error = "Error creating pool's bio prison";
1644 err_p = ERR_PTR(-ENOMEM);
1648 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1649 if (IS_ERR(pool->copier)) {
1650 r = PTR_ERR(pool->copier);
1651 *error = "Error creating pool's kcopyd client";
1653 goto bad_kcopyd_client;
1657 * Create singlethreaded workqueue that will service all devices
1658 * that use this metadata.
1660 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1662 *error = "Error creating pool's workqueue";
1663 err_p = ERR_PTR(-ENOMEM);
1667 INIT_WORK(&pool->worker, do_worker);
1668 INIT_DELAYED_WORK(&pool->waker, do_waker);
1669 spin_lock_init(&pool->lock);
1670 bio_list_init(&pool->deferred_bios);
1671 bio_list_init(&pool->deferred_flush_bios);
1672 INIT_LIST_HEAD(&pool->prepared_mappings);
1673 INIT_LIST_HEAD(&pool->prepared_discards);
1674 pool->low_water_triggered = 0;
1675 pool->no_free_space = 0;
1676 bio_list_init(&pool->retry_on_resume_list);
1678 pool->shared_read_ds = dm_deferred_set_create();
1679 if (!pool->shared_read_ds) {
1680 *error = "Error creating pool's shared read deferred set";
1681 err_p = ERR_PTR(-ENOMEM);
1682 goto bad_shared_read_ds;
1685 pool->all_io_ds = dm_deferred_set_create();
1686 if (!pool->all_io_ds) {
1687 *error = "Error creating pool's all io deferred set";
1688 err_p = ERR_PTR(-ENOMEM);
1692 pool->next_mapping = NULL;
1693 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1694 _new_mapping_cache);
1695 if (!pool->mapping_pool) {
1696 *error = "Error creating pool's mapping mempool";
1697 err_p = ERR_PTR(-ENOMEM);
1698 goto bad_mapping_pool;
1701 pool->ref_count = 1;
1702 pool->last_commit_jiffies = jiffies;
1703 pool->pool_md = pool_md;
1704 pool->md_dev = metadata_dev;
1705 __pool_table_insert(pool);
1710 dm_deferred_set_destroy(pool->all_io_ds);
1712 dm_deferred_set_destroy(pool->shared_read_ds);
1714 destroy_workqueue(pool->wq);
1716 dm_kcopyd_client_destroy(pool->copier);
1718 dm_bio_prison_destroy(pool->prison);
1722 if (dm_pool_metadata_close(pmd))
1723 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1728 static void __pool_inc(struct pool *pool)
1730 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1734 static void __pool_dec(struct pool *pool)
1736 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1737 BUG_ON(!pool->ref_count);
1738 if (!--pool->ref_count)
1739 __pool_destroy(pool);
1742 static struct pool *__pool_find(struct mapped_device *pool_md,
1743 struct block_device *metadata_dev,
1744 unsigned long block_size, int read_only,
1745 char **error, int *created)
1747 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1750 if (pool->pool_md != pool_md) {
1751 *error = "metadata device already in use by a pool";
1752 return ERR_PTR(-EBUSY);
1757 pool = __pool_table_lookup(pool_md);
1759 if (pool->md_dev != metadata_dev) {
1760 *error = "different pool cannot replace a pool";
1761 return ERR_PTR(-EINVAL);
1766 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1774 /*----------------------------------------------------------------
1775 * Pool target methods
1776 *--------------------------------------------------------------*/
1777 static void pool_dtr(struct dm_target *ti)
1779 struct pool_c *pt = ti->private;
1781 mutex_lock(&dm_thin_pool_table.mutex);
1783 unbind_control_target(pt->pool, ti);
1784 __pool_dec(pt->pool);
1785 dm_put_device(ti, pt->metadata_dev);
1786 dm_put_device(ti, pt->data_dev);
1789 mutex_unlock(&dm_thin_pool_table.mutex);
1792 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1793 struct dm_target *ti)
1797 const char *arg_name;
1799 static struct dm_arg _args[] = {
1800 {0, 3, "Invalid number of pool feature arguments"},
1804 * No feature arguments supplied.
1809 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1813 while (argc && !r) {
1814 arg_name = dm_shift_arg(as);
1817 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1818 pf->zero_new_blocks = false;
1820 else if (!strcasecmp(arg_name, "ignore_discard"))
1821 pf->discard_enabled = false;
1823 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1824 pf->discard_passdown = false;
1826 else if (!strcasecmp(arg_name, "read_only"))
1827 pf->mode = PM_READ_ONLY;
1830 ti->error = "Unrecognised pool feature requested";
1840 * thin-pool <metadata dev> <data dev>
1841 * <data block size (sectors)>
1842 * <low water mark (blocks)>
1843 * [<#feature args> [<arg>]*]
1845 * Optional feature arguments are:
1846 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1847 * ignore_discard: disable discard
1848 * no_discard_passdown: don't pass discards down to the data device
1850 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1852 int r, pool_created = 0;
1855 struct pool_features pf;
1856 struct dm_arg_set as;
1857 struct dm_dev *data_dev;
1858 unsigned long block_size;
1859 dm_block_t low_water_blocks;
1860 struct dm_dev *metadata_dev;
1861 sector_t metadata_dev_size;
1862 char b[BDEVNAME_SIZE];
1865 * FIXME Remove validation from scope of lock.
1867 mutex_lock(&dm_thin_pool_table.mutex);
1870 ti->error = "Invalid argument count";
1877 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1879 ti->error = "Error opening metadata block device";
1883 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1884 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1885 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1886 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1888 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1890 ti->error = "Error getting data device";
1894 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1895 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1896 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1897 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1898 ti->error = "Invalid block size";
1903 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1904 ti->error = "Invalid low water mark";
1910 * Set default pool features.
1912 pool_features_init(&pf);
1914 dm_consume_args(&as, 4);
1915 r = parse_pool_features(&as, &pf, ti);
1919 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1925 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1926 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
1933 * 'pool_created' reflects whether this is the first table load.
1934 * Top level discard support is not allowed to be changed after
1935 * initial load. This would require a pool reload to trigger thin
1938 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
1939 ti->error = "Discard support cannot be disabled once enabled";
1941 goto out_flags_changed;
1946 pt->metadata_dev = metadata_dev;
1947 pt->data_dev = data_dev;
1948 pt->low_water_blocks = low_water_blocks;
1949 pt->adjusted_pf = pt->requested_pf = pf;
1950 ti->num_flush_bios = 1;
1953 * Only need to enable discards if the pool should pass
1954 * them down to the data device. The thin device's discard
1955 * processing will cause mappings to be removed from the btree.
1957 if (pf.discard_enabled && pf.discard_passdown) {
1958 ti->num_discard_bios = 1;
1961 * Setting 'discards_supported' circumvents the normal
1962 * stacking of discard limits (this keeps the pool and
1963 * thin devices' discard limits consistent).
1965 ti->discards_supported = true;
1966 ti->discard_zeroes_data_unsupported = true;
1970 pt->callbacks.congested_fn = pool_is_congested;
1971 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
1973 mutex_unlock(&dm_thin_pool_table.mutex);
1982 dm_put_device(ti, data_dev);
1984 dm_put_device(ti, metadata_dev);
1986 mutex_unlock(&dm_thin_pool_table.mutex);
1991 static int pool_map(struct dm_target *ti, struct bio *bio)
1994 struct pool_c *pt = ti->private;
1995 struct pool *pool = pt->pool;
1996 unsigned long flags;
1999 * As this is a singleton target, ti->begin is always zero.
2001 spin_lock_irqsave(&pool->lock, flags);
2002 bio->bi_bdev = pt->data_dev->bdev;
2003 r = DM_MAPIO_REMAPPED;
2004 spin_unlock_irqrestore(&pool->lock, flags);
2010 * Retrieves the number of blocks of the data device from
2011 * the superblock and compares it to the actual device size,
2012 * thus resizing the data device in case it has grown.
2014 * This both copes with opening preallocated data devices in the ctr
2015 * being followed by a resume
2017 * calling the resume method individually after userspace has
2018 * grown the data device in reaction to a table event.
2020 static int pool_preresume(struct dm_target *ti)
2023 struct pool_c *pt = ti->private;
2024 struct pool *pool = pt->pool;
2025 sector_t data_size = ti->len;
2026 dm_block_t sb_data_size;
2029 * Take control of the pool object.
2031 r = bind_control_target(pool, ti);
2035 (void) sector_div(data_size, pool->sectors_per_block);
2037 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2039 DMERR("failed to retrieve data device size");
2043 if (data_size < sb_data_size) {
2044 DMERR("pool target too small, is %llu blocks (expected %llu)",
2045 (unsigned long long)data_size, sb_data_size);
2048 } else if (data_size > sb_data_size) {
2049 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2051 DMERR("failed to resize data device");
2052 /* FIXME Stricter than necessary: Rollback transaction instead here */
2053 set_pool_mode(pool, PM_READ_ONLY);
2057 (void) commit_or_fallback(pool);
2063 static void pool_resume(struct dm_target *ti)
2065 struct pool_c *pt = ti->private;
2066 struct pool *pool = pt->pool;
2067 unsigned long flags;
2069 spin_lock_irqsave(&pool->lock, flags);
2070 pool->low_water_triggered = 0;
2071 pool->no_free_space = 0;
2072 __requeue_bios(pool);
2073 spin_unlock_irqrestore(&pool->lock, flags);
2075 do_waker(&pool->waker.work);
2078 static void pool_postsuspend(struct dm_target *ti)
2080 struct pool_c *pt = ti->private;
2081 struct pool *pool = pt->pool;
2083 cancel_delayed_work(&pool->waker);
2084 flush_workqueue(pool->wq);
2085 (void) commit_or_fallback(pool);
2088 static int check_arg_count(unsigned argc, unsigned args_required)
2090 if (argc != args_required) {
2091 DMWARN("Message received with %u arguments instead of %u.",
2092 argc, args_required);
2099 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2101 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2102 *dev_id <= MAX_DEV_ID)
2106 DMWARN("Message received with invalid device id: %s", arg);
2111 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2116 r = check_arg_count(argc, 2);
2120 r = read_dev_id(argv[1], &dev_id, 1);
2124 r = dm_pool_create_thin(pool->pmd, dev_id);
2126 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2134 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2137 dm_thin_id origin_dev_id;
2140 r = check_arg_count(argc, 3);
2144 r = read_dev_id(argv[1], &dev_id, 1);
2148 r = read_dev_id(argv[2], &origin_dev_id, 1);
2152 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2154 DMWARN("Creation of new snapshot %s of device %s failed.",
2162 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2167 r = check_arg_count(argc, 2);
2171 r = read_dev_id(argv[1], &dev_id, 1);
2175 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2177 DMWARN("Deletion of thin device %s failed.", argv[1]);
2182 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2184 dm_thin_id old_id, new_id;
2187 r = check_arg_count(argc, 3);
2191 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2192 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2196 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2197 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2201 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2203 DMWARN("Failed to change transaction id from %s to %s.",
2211 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2215 r = check_arg_count(argc, 1);
2219 (void) commit_or_fallback(pool);
2221 r = dm_pool_reserve_metadata_snap(pool->pmd);
2223 DMWARN("reserve_metadata_snap message failed.");
2228 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2232 r = check_arg_count(argc, 1);
2236 r = dm_pool_release_metadata_snap(pool->pmd);
2238 DMWARN("release_metadata_snap message failed.");
2244 * Messages supported:
2245 * create_thin <dev_id>
2246 * create_snap <dev_id> <origin_id>
2248 * trim <dev_id> <new_size_in_sectors>
2249 * set_transaction_id <current_trans_id> <new_trans_id>
2250 * reserve_metadata_snap
2251 * release_metadata_snap
2253 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2256 struct pool_c *pt = ti->private;
2257 struct pool *pool = pt->pool;
2259 if (!strcasecmp(argv[0], "create_thin"))
2260 r = process_create_thin_mesg(argc, argv, pool);
2262 else if (!strcasecmp(argv[0], "create_snap"))
2263 r = process_create_snap_mesg(argc, argv, pool);
2265 else if (!strcasecmp(argv[0], "delete"))
2266 r = process_delete_mesg(argc, argv, pool);
2268 else if (!strcasecmp(argv[0], "set_transaction_id"))
2269 r = process_set_transaction_id_mesg(argc, argv, pool);
2271 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2272 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2274 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2275 r = process_release_metadata_snap_mesg(argc, argv, pool);
2278 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2281 (void) commit_or_fallback(pool);
2286 static void emit_flags(struct pool_features *pf, char *result,
2287 unsigned sz, unsigned maxlen)
2289 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2290 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2291 DMEMIT("%u ", count);
2293 if (!pf->zero_new_blocks)
2294 DMEMIT("skip_block_zeroing ");
2296 if (!pf->discard_enabled)
2297 DMEMIT("ignore_discard ");
2299 if (!pf->discard_passdown)
2300 DMEMIT("no_discard_passdown ");
2302 if (pf->mode == PM_READ_ONLY)
2303 DMEMIT("read_only ");
2308 * <transaction id> <used metadata sectors>/<total metadata sectors>
2309 * <used data sectors>/<total data sectors> <held metadata root>
2311 static void pool_status(struct dm_target *ti, status_type_t type,
2312 unsigned status_flags, char *result, unsigned maxlen)
2316 uint64_t transaction_id;
2317 dm_block_t nr_free_blocks_data;
2318 dm_block_t nr_free_blocks_metadata;
2319 dm_block_t nr_blocks_data;
2320 dm_block_t nr_blocks_metadata;
2321 dm_block_t held_root;
2322 char buf[BDEVNAME_SIZE];
2323 char buf2[BDEVNAME_SIZE];
2324 struct pool_c *pt = ti->private;
2325 struct pool *pool = pt->pool;
2328 case STATUSTYPE_INFO:
2329 if (get_pool_mode(pool) == PM_FAIL) {
2334 /* Commit to ensure statistics aren't out-of-date */
2335 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2336 (void) commit_or_fallback(pool);
2338 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2340 DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2344 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2346 DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2350 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2352 DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2356 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2358 DMERR("dm_pool_get_free_block_count returned %d", r);
2362 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2364 DMERR("dm_pool_get_data_dev_size returned %d", r);
2368 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2370 DMERR("dm_pool_get_metadata_snap returned %d", r);
2374 DMEMIT("%llu %llu/%llu %llu/%llu ",
2375 (unsigned long long)transaction_id,
2376 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2377 (unsigned long long)nr_blocks_metadata,
2378 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2379 (unsigned long long)nr_blocks_data);
2382 DMEMIT("%llu ", held_root);
2386 if (pool->pf.mode == PM_READ_ONLY)
2391 if (!pool->pf.discard_enabled)
2392 DMEMIT("ignore_discard");
2393 else if (pool->pf.discard_passdown)
2394 DMEMIT("discard_passdown");
2396 DMEMIT("no_discard_passdown");
2400 case STATUSTYPE_TABLE:
2401 DMEMIT("%s %s %lu %llu ",
2402 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2403 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2404 (unsigned long)pool->sectors_per_block,
2405 (unsigned long long)pt->low_water_blocks);
2406 emit_flags(&pt->requested_pf, result, sz, maxlen);
2415 static int pool_iterate_devices(struct dm_target *ti,
2416 iterate_devices_callout_fn fn, void *data)
2418 struct pool_c *pt = ti->private;
2420 return fn(ti, pt->data_dev, 0, ti->len, data);
2423 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2424 struct bio_vec *biovec, int max_size)
2426 struct pool_c *pt = ti->private;
2427 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2429 if (!q->merge_bvec_fn)
2432 bvm->bi_bdev = pt->data_dev->bdev;
2434 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2437 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2439 struct pool *pool = pt->pool;
2440 struct queue_limits *data_limits;
2442 limits->max_discard_sectors = pool->sectors_per_block;
2445 * discard_granularity is just a hint, and not enforced.
2447 if (pt->adjusted_pf.discard_passdown) {
2448 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2449 limits->discard_granularity = data_limits->discard_granularity;
2451 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2454 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2456 struct pool_c *pt = ti->private;
2457 struct pool *pool = pt->pool;
2459 blk_limits_io_min(limits, 0);
2460 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2463 * pt->adjusted_pf is a staging area for the actual features to use.
2464 * They get transferred to the live pool in bind_control_target()
2465 * called from pool_preresume().
2467 if (!pt->adjusted_pf.discard_enabled)
2470 disable_passdown_if_not_supported(pt);
2472 set_discard_limits(pt, limits);
2475 static struct target_type pool_target = {
2476 .name = "thin-pool",
2477 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2478 DM_TARGET_IMMUTABLE,
2479 .version = {1, 6, 1},
2480 .module = THIS_MODULE,
2484 .postsuspend = pool_postsuspend,
2485 .preresume = pool_preresume,
2486 .resume = pool_resume,
2487 .message = pool_message,
2488 .status = pool_status,
2489 .merge = pool_merge,
2490 .iterate_devices = pool_iterate_devices,
2491 .io_hints = pool_io_hints,
2494 /*----------------------------------------------------------------
2495 * Thin target methods
2496 *--------------------------------------------------------------*/
2497 static void thin_dtr(struct dm_target *ti)
2499 struct thin_c *tc = ti->private;
2501 mutex_lock(&dm_thin_pool_table.mutex);
2503 __pool_dec(tc->pool);
2504 dm_pool_close_thin_device(tc->td);
2505 dm_put_device(ti, tc->pool_dev);
2507 dm_put_device(ti, tc->origin_dev);
2510 mutex_unlock(&dm_thin_pool_table.mutex);
2514 * Thin target parameters:
2516 * <pool_dev> <dev_id> [origin_dev]
2518 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2519 * dev_id: the internal device identifier
2520 * origin_dev: a device external to the pool that should act as the origin
2522 * If the pool device has discards disabled, they get disabled for the thin
2525 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2529 struct dm_dev *pool_dev, *origin_dev;
2530 struct mapped_device *pool_md;
2532 mutex_lock(&dm_thin_pool_table.mutex);
2534 if (argc != 2 && argc != 3) {
2535 ti->error = "Invalid argument count";
2540 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2542 ti->error = "Out of memory";
2548 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2550 ti->error = "Error opening origin device";
2551 goto bad_origin_dev;
2553 tc->origin_dev = origin_dev;
2556 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2558 ti->error = "Error opening pool device";
2561 tc->pool_dev = pool_dev;
2563 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2564 ti->error = "Invalid device id";
2569 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2571 ti->error = "Couldn't get pool mapped device";
2576 tc->pool = __pool_table_lookup(pool_md);
2578 ti->error = "Couldn't find pool object";
2580 goto bad_pool_lookup;
2582 __pool_inc(tc->pool);
2584 if (get_pool_mode(tc->pool) == PM_FAIL) {
2585 ti->error = "Couldn't open thin device, Pool is in fail mode";
2589 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2591 ti->error = "Couldn't open thin internal device";
2595 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2599 ti->num_flush_bios = 1;
2600 ti->flush_supported = true;
2601 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2603 /* In case the pool supports discards, pass them on. */
2604 if (tc->pool->pf.discard_enabled) {
2605 ti->discards_supported = true;
2606 ti->num_discard_bios = 1;
2607 ti->discard_zeroes_data_unsupported = true;
2608 /* Discard bios must be split on a block boundary */
2609 ti->split_discard_bios = true;
2614 mutex_unlock(&dm_thin_pool_table.mutex);
2619 __pool_dec(tc->pool);
2623 dm_put_device(ti, tc->pool_dev);
2626 dm_put_device(ti, tc->origin_dev);
2630 mutex_unlock(&dm_thin_pool_table.mutex);
2635 static int thin_map(struct dm_target *ti, struct bio *bio)
2637 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2639 return thin_bio_map(ti, bio);
2642 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2644 unsigned long flags;
2645 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2646 struct list_head work;
2647 struct dm_thin_new_mapping *m, *tmp;
2648 struct pool *pool = h->tc->pool;
2650 if (h->shared_read_entry) {
2651 INIT_LIST_HEAD(&work);
2652 dm_deferred_entry_dec(h->shared_read_entry, &work);
2654 spin_lock_irqsave(&pool->lock, flags);
2655 list_for_each_entry_safe(m, tmp, &work, list) {
2658 __maybe_add_mapping(m);
2660 spin_unlock_irqrestore(&pool->lock, flags);
2663 if (h->all_io_entry) {
2664 INIT_LIST_HEAD(&work);
2665 dm_deferred_entry_dec(h->all_io_entry, &work);
2666 if (!list_empty(&work)) {
2667 spin_lock_irqsave(&pool->lock, flags);
2668 list_for_each_entry_safe(m, tmp, &work, list)
2669 list_add(&m->list, &pool->prepared_discards);
2670 spin_unlock_irqrestore(&pool->lock, flags);
2678 static void thin_postsuspend(struct dm_target *ti)
2680 if (dm_noflush_suspending(ti))
2681 requeue_io((struct thin_c *)ti->private);
2685 * <nr mapped sectors> <highest mapped sector>
2687 static void thin_status(struct dm_target *ti, status_type_t type,
2688 unsigned status_flags, char *result, unsigned maxlen)
2692 dm_block_t mapped, highest;
2693 char buf[BDEVNAME_SIZE];
2694 struct thin_c *tc = ti->private;
2696 if (get_pool_mode(tc->pool) == PM_FAIL) {
2705 case STATUSTYPE_INFO:
2706 r = dm_thin_get_mapped_count(tc->td, &mapped);
2708 DMERR("dm_thin_get_mapped_count returned %d", r);
2712 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2714 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2718 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2720 DMEMIT("%llu", ((highest + 1) *
2721 tc->pool->sectors_per_block) - 1);
2726 case STATUSTYPE_TABLE:
2728 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2729 (unsigned long) tc->dev_id);
2731 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2742 static int thin_iterate_devices(struct dm_target *ti,
2743 iterate_devices_callout_fn fn, void *data)
2746 struct thin_c *tc = ti->private;
2747 struct pool *pool = tc->pool;
2750 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2751 * we follow a more convoluted path through to the pool's target.
2754 return 0; /* nothing is bound */
2756 blocks = pool->ti->len;
2757 (void) sector_div(blocks, pool->sectors_per_block);
2759 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2764 static struct target_type thin_target = {
2766 .version = {1, 7, 1},
2767 .module = THIS_MODULE,
2771 .end_io = thin_endio,
2772 .postsuspend = thin_postsuspend,
2773 .status = thin_status,
2774 .iterate_devices = thin_iterate_devices,
2777 /*----------------------------------------------------------------*/
2779 static int __init dm_thin_init(void)
2785 r = dm_register_target(&thin_target);
2789 r = dm_register_target(&pool_target);
2791 goto bad_pool_target;
2795 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2796 if (!_new_mapping_cache)
2797 goto bad_new_mapping_cache;
2801 bad_new_mapping_cache:
2802 dm_unregister_target(&pool_target);
2804 dm_unregister_target(&thin_target);
2809 static void dm_thin_exit(void)
2811 dm_unregister_target(&thin_target);
2812 dm_unregister_target(&pool_target);
2814 kmem_cache_destroy(_new_mapping_cache);
2817 module_init(dm_thin_init);
2818 module_exit(dm_thin_exit);
2820 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2821 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2822 MODULE_LICENSE("GPL");