2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
24 #define DM_MSG_PREFIX "thin"
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
37 "A percentage of time allocated for copy on write");
40 * The block size of the device holding pool data must be
41 * between 64KB and 1GB.
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 * Device id is restricted to 24 bits.
49 #define MAX_DEV_ID ((1 << 24) - 1)
52 * How do we handle breaking sharing of data blocks?
53 * =================================================
55 * We use a standard copy-on-write btree to store the mappings for the
56 * devices (note I'm talking about copy-on-write of the metadata here, not
57 * the data). When you take an internal snapshot you clone the root node
58 * of the origin btree. After this there is no concept of an origin or a
59 * snapshot. They are just two device trees that happen to point to the
62 * When we get a write in we decide if it's to a shared data block using
63 * some timestamp magic. If it is, we have to break sharing.
65 * Let's say we write to a shared block in what was the origin. The
68 * i) plug io further to this physical block. (see bio_prison code).
70 * ii) quiesce any read io to that shared data block. Obviously
71 * including all devices that share this block. (see dm_deferred_set code)
73 * iii) copy the data block to a newly allocate block. This step can be
74 * missed out if the io covers the block. (schedule_copy).
76 * iv) insert the new mapping into the origin's btree
77 * (process_prepared_mapping). This act of inserting breaks some
78 * sharing of btree nodes between the two devices. Breaking sharing only
79 * effects the btree of that specific device. Btrees for the other
80 * devices that share the block never change. The btree for the origin
81 * device as it was after the last commit is untouched, ie. we're using
82 * persistent data structures in the functional programming sense.
84 * v) unplug io to this physical block, including the io that triggered
85 * the breaking of sharing.
87 * Steps (ii) and (iii) occur in parallel.
89 * The metadata _doesn't_ need to be committed before the io continues. We
90 * get away with this because the io is always written to a _new_ block.
91 * If there's a crash, then:
93 * - The origin mapping will point to the old origin block (the shared
94 * one). This will contain the data as it was before the io that triggered
95 * the breaking of sharing came in.
97 * - The snap mapping still points to the old block. As it would after
100 * The downside of this scheme is the timestamp magic isn't perfect, and
101 * will continue to think that data block in the snapshot device is shared
102 * even after the write to the origin has broken sharing. I suspect data
103 * blocks will typically be shared by many different devices, so we're
104 * breaking sharing n + 1 times, rather than n, where n is the number of
105 * devices that reference this data block. At the moment I think the
106 * benefits far, far outweigh the disadvantages.
109 /*----------------------------------------------------------------*/
114 static void build_data_key(struct dm_thin_device *td,
115 dm_block_t b, struct dm_cell_key *key)
118 key->dev = dm_thin_dev_id(td);
119 key->block_begin = b;
120 key->block_end = b + 1ULL;
123 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
124 struct dm_cell_key *key)
127 key->dev = dm_thin_dev_id(td);
128 key->block_begin = b;
129 key->block_end = b + 1ULL;
132 /*----------------------------------------------------------------*/
134 #define THROTTLE_THRESHOLD (1 * HZ)
137 struct rw_semaphore lock;
138 unsigned long threshold;
139 bool throttle_applied;
142 static void throttle_init(struct throttle *t)
144 init_rwsem(&t->lock);
145 t->throttle_applied = false;
148 static void throttle_work_start(struct throttle *t)
150 t->threshold = jiffies + THROTTLE_THRESHOLD;
153 static void throttle_work_update(struct throttle *t)
155 if (!t->throttle_applied && jiffies > t->threshold) {
156 down_write(&t->lock);
157 t->throttle_applied = true;
161 static void throttle_work_complete(struct throttle *t)
163 if (t->throttle_applied) {
164 t->throttle_applied = false;
169 static void throttle_lock(struct throttle *t)
174 static void throttle_unlock(struct throttle *t)
179 /*----------------------------------------------------------------*/
182 * A pool device ties together a metadata device and a data device. It
183 * also provides the interface for creating and destroying internal
186 struct dm_thin_new_mapping;
189 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
192 PM_WRITE, /* metadata may be changed */
193 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
194 PM_READ_ONLY, /* metadata may not be changed */
195 PM_FAIL, /* all I/O fails */
198 struct pool_features {
201 bool zero_new_blocks:1;
202 bool discard_enabled:1;
203 bool discard_passdown:1;
204 bool error_if_no_space:1;
208 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
209 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
210 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
212 #define CELL_SORT_ARRAY_SIZE 8192
215 struct list_head list;
216 struct dm_target *ti; /* Only set if a pool target is bound */
218 struct mapped_device *pool_md;
219 struct block_device *md_dev;
220 struct dm_pool_metadata *pmd;
222 dm_block_t low_water_blocks;
223 uint32_t sectors_per_block;
224 int sectors_per_block_shift;
226 struct pool_features pf;
227 bool low_water_triggered:1; /* A dm event has been sent */
230 struct dm_bio_prison *prison;
231 struct dm_kcopyd_client *copier;
233 struct workqueue_struct *wq;
234 struct throttle throttle;
235 struct work_struct worker;
236 struct delayed_work waker;
237 struct delayed_work no_space_timeout;
239 unsigned long last_commit_jiffies;
243 struct bio_list deferred_flush_bios;
244 struct list_head prepared_mappings;
245 struct list_head prepared_discards;
246 struct list_head active_thins;
248 struct dm_deferred_set *shared_read_ds;
249 struct dm_deferred_set *all_io_ds;
251 struct dm_thin_new_mapping *next_mapping;
252 mempool_t *mapping_pool;
254 process_bio_fn process_bio;
255 process_bio_fn process_discard;
257 process_cell_fn process_cell;
258 process_cell_fn process_discard_cell;
260 process_mapping_fn process_prepared_mapping;
261 process_mapping_fn process_prepared_discard;
263 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
266 static enum pool_mode get_pool_mode(struct pool *pool);
267 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
270 * Target context for a pool.
273 struct dm_target *ti;
275 struct dm_dev *data_dev;
276 struct dm_dev *metadata_dev;
277 struct dm_target_callbacks callbacks;
279 dm_block_t low_water_blocks;
280 struct pool_features requested_pf; /* Features requested during table load */
281 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
285 * Target context for a thin.
288 struct list_head list;
289 struct dm_dev *pool_dev;
290 struct dm_dev *origin_dev;
291 sector_t origin_size;
295 struct dm_thin_device *td;
296 struct mapped_device *thin_md;
300 struct list_head deferred_cells;
301 struct bio_list deferred_bio_list;
302 struct bio_list retry_on_resume_list;
303 struct rb_root sort_bio_list; /* sorted list of deferred bios */
306 * Ensures the thin is not destroyed until the worker has finished
307 * iterating the active_thins list.
310 struct completion can_destroy;
313 /*----------------------------------------------------------------*/
316 * wake_worker() is used when new work is queued and when pool_resume is
317 * ready to continue deferred IO processing.
319 static void wake_worker(struct pool *pool)
321 queue_work(pool->wq, &pool->worker);
324 /*----------------------------------------------------------------*/
326 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
327 struct dm_bio_prison_cell **cell_result)
330 struct dm_bio_prison_cell *cell_prealloc;
333 * Allocate a cell from the prison's mempool.
334 * This might block but it can't fail.
336 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
338 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
341 * We reused an old cell; we can get rid of
344 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
349 static void cell_release(struct pool *pool,
350 struct dm_bio_prison_cell *cell,
351 struct bio_list *bios)
353 dm_cell_release(pool->prison, cell, bios);
354 dm_bio_prison_free_cell(pool->prison, cell);
357 static void cell_visit_release(struct pool *pool,
358 void (*fn)(void *, struct dm_bio_prison_cell *),
360 struct dm_bio_prison_cell *cell)
362 dm_cell_visit_release(pool->prison, fn, context, cell);
363 dm_bio_prison_free_cell(pool->prison, cell);
366 static void cell_release_no_holder(struct pool *pool,
367 struct dm_bio_prison_cell *cell,
368 struct bio_list *bios)
370 dm_cell_release_no_holder(pool->prison, cell, bios);
371 dm_bio_prison_free_cell(pool->prison, cell);
374 static void cell_error_with_code(struct pool *pool,
375 struct dm_bio_prison_cell *cell, int error_code)
377 dm_cell_error(pool->prison, cell, error_code);
378 dm_bio_prison_free_cell(pool->prison, cell);
381 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
383 cell_error_with_code(pool, cell, -EIO);
386 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
388 cell_error_with_code(pool, cell, 0);
391 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
393 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
396 /*----------------------------------------------------------------*/
399 * A global list of pools that uses a struct mapped_device as a key.
401 static struct dm_thin_pool_table {
403 struct list_head pools;
404 } dm_thin_pool_table;
406 static void pool_table_init(void)
408 mutex_init(&dm_thin_pool_table.mutex);
409 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
412 static void __pool_table_insert(struct pool *pool)
414 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
415 list_add(&pool->list, &dm_thin_pool_table.pools);
418 static void __pool_table_remove(struct pool *pool)
420 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
421 list_del(&pool->list);
424 static struct pool *__pool_table_lookup(struct mapped_device *md)
426 struct pool *pool = NULL, *tmp;
428 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
430 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
431 if (tmp->pool_md == md) {
440 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
442 struct pool *pool = NULL, *tmp;
444 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
446 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
447 if (tmp->md_dev == md_dev) {
456 /*----------------------------------------------------------------*/
458 struct dm_thin_endio_hook {
460 struct dm_deferred_entry *shared_read_entry;
461 struct dm_deferred_entry *all_io_entry;
462 struct dm_thin_new_mapping *overwrite_mapping;
463 struct rb_node rb_node;
466 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
468 bio_list_merge(bios, master);
469 bio_list_init(master);
472 static void error_bio_list(struct bio_list *bios, int error)
476 while ((bio = bio_list_pop(bios)))
477 bio_endio(bio, error);
480 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
482 struct bio_list bios;
485 bio_list_init(&bios);
487 spin_lock_irqsave(&tc->lock, flags);
488 __merge_bio_list(&bios, master);
489 spin_unlock_irqrestore(&tc->lock, flags);
491 error_bio_list(&bios, error);
494 static void requeue_deferred_cells(struct thin_c *tc)
496 struct pool *pool = tc->pool;
498 struct list_head cells;
499 struct dm_bio_prison_cell *cell, *tmp;
501 INIT_LIST_HEAD(&cells);
503 spin_lock_irqsave(&tc->lock, flags);
504 list_splice_init(&tc->deferred_cells, &cells);
505 spin_unlock_irqrestore(&tc->lock, flags);
507 list_for_each_entry_safe(cell, tmp, &cells, user_list)
508 cell_requeue(pool, cell);
511 static void requeue_io(struct thin_c *tc)
513 struct bio_list bios;
516 bio_list_init(&bios);
518 spin_lock_irqsave(&tc->lock, flags);
519 __merge_bio_list(&bios, &tc->deferred_bio_list);
520 __merge_bio_list(&bios, &tc->retry_on_resume_list);
521 spin_unlock_irqrestore(&tc->lock, flags);
523 error_bio_list(&bios, DM_ENDIO_REQUEUE);
524 requeue_deferred_cells(tc);
527 static void error_retry_list(struct pool *pool)
532 list_for_each_entry_rcu(tc, &pool->active_thins, list)
533 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
538 * This section of code contains the logic for processing a thin device's IO.
539 * Much of the code depends on pool object resources (lists, workqueues, etc)
540 * but most is exclusively called from the thin target rather than the thin-pool
544 static bool block_size_is_power_of_two(struct pool *pool)
546 return pool->sectors_per_block_shift >= 0;
549 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
551 struct pool *pool = tc->pool;
552 sector_t block_nr = bio->bi_iter.bi_sector;
554 if (block_size_is_power_of_two(pool))
555 block_nr >>= pool->sectors_per_block_shift;
557 (void) sector_div(block_nr, pool->sectors_per_block);
562 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
564 struct pool *pool = tc->pool;
565 sector_t bi_sector = bio->bi_iter.bi_sector;
567 bio->bi_bdev = tc->pool_dev->bdev;
568 if (block_size_is_power_of_two(pool))
569 bio->bi_iter.bi_sector =
570 (block << pool->sectors_per_block_shift) |
571 (bi_sector & (pool->sectors_per_block - 1));
573 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
574 sector_div(bi_sector, pool->sectors_per_block);
577 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
579 bio->bi_bdev = tc->origin_dev->bdev;
582 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
584 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
585 dm_thin_changed_this_transaction(tc->td);
588 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
590 struct dm_thin_endio_hook *h;
592 if (bio->bi_rw & REQ_DISCARD)
595 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
596 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
599 static void issue(struct thin_c *tc, struct bio *bio)
601 struct pool *pool = tc->pool;
604 if (!bio_triggers_commit(tc, bio)) {
605 generic_make_request(bio);
610 * Complete bio with an error if earlier I/O caused changes to
611 * the metadata that can't be committed e.g, due to I/O errors
612 * on the metadata device.
614 if (dm_thin_aborted_changes(tc->td)) {
620 * Batch together any bios that trigger commits and then issue a
621 * single commit for them in process_deferred_bios().
623 spin_lock_irqsave(&pool->lock, flags);
624 bio_list_add(&pool->deferred_flush_bios, bio);
625 spin_unlock_irqrestore(&pool->lock, flags);
628 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
630 remap_to_origin(tc, bio);
634 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
637 remap(tc, bio, block);
641 /*----------------------------------------------------------------*/
644 * Bio endio functions.
646 struct dm_thin_new_mapping {
647 struct list_head list;
650 bool definitely_not_shared:1;
653 * Track quiescing, copying and zeroing preparation actions. When this
654 * counter hits zero the block is prepared and can be inserted into the
657 atomic_t prepare_actions;
661 dm_block_t virt_block;
662 dm_block_t data_block;
663 struct dm_bio_prison_cell *cell, *cell2;
666 * If the bio covers the whole area of a block then we can avoid
667 * zeroing or copying. Instead this bio is hooked. The bio will
668 * still be in the cell, so care has to be taken to avoid issuing
672 bio_end_io_t *saved_bi_end_io;
675 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
677 struct pool *pool = m->tc->pool;
679 if (atomic_dec_and_test(&m->prepare_actions)) {
680 list_add_tail(&m->list, &pool->prepared_mappings);
685 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
688 struct pool *pool = m->tc->pool;
690 spin_lock_irqsave(&pool->lock, flags);
691 __complete_mapping_preparation(m);
692 spin_unlock_irqrestore(&pool->lock, flags);
695 static void copy_complete(int read_err, unsigned long write_err, void *context)
697 struct dm_thin_new_mapping *m = context;
699 m->err = read_err || write_err ? -EIO : 0;
700 complete_mapping_preparation(m);
703 static void overwrite_endio(struct bio *bio, int err)
705 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
706 struct dm_thin_new_mapping *m = h->overwrite_mapping;
709 complete_mapping_preparation(m);
712 /*----------------------------------------------------------------*/
719 * Prepared mapping jobs.
723 * This sends the bios in the cell, except the original holder, back
724 * to the deferred_bios list.
726 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
728 struct pool *pool = tc->pool;
731 spin_lock_irqsave(&tc->lock, flags);
732 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
733 spin_unlock_irqrestore(&tc->lock, flags);
738 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
742 struct bio_list defer_bios;
743 struct bio_list issue_bios;
746 static void __inc_remap_and_issue_cell(void *context,
747 struct dm_bio_prison_cell *cell)
749 struct remap_info *info = context;
752 while ((bio = bio_list_pop(&cell->bios))) {
753 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
754 bio_list_add(&info->defer_bios, bio);
756 inc_all_io_entry(info->tc->pool, bio);
759 * We can't issue the bios with the bio prison lock
760 * held, so we add them to a list to issue on
761 * return from this function.
763 bio_list_add(&info->issue_bios, bio);
768 static void inc_remap_and_issue_cell(struct thin_c *tc,
769 struct dm_bio_prison_cell *cell,
773 struct remap_info info;
776 bio_list_init(&info.defer_bios);
777 bio_list_init(&info.issue_bios);
780 * We have to be careful to inc any bios we're about to issue
781 * before the cell is released, and avoid a race with new bios
782 * being added to the cell.
784 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
787 while ((bio = bio_list_pop(&info.defer_bios)))
788 thin_defer_bio(tc, bio);
790 while ((bio = bio_list_pop(&info.issue_bios)))
791 remap_and_issue(info.tc, bio, block);
794 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
797 m->bio->bi_end_io = m->saved_bi_end_io;
798 atomic_inc(&m->bio->bi_remaining);
800 cell_error(m->tc->pool, m->cell);
802 mempool_free(m, m->tc->pool->mapping_pool);
805 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
807 struct thin_c *tc = m->tc;
808 struct pool *pool = tc->pool;
814 bio->bi_end_io = m->saved_bi_end_io;
815 atomic_inc(&bio->bi_remaining);
819 cell_error(pool, m->cell);
824 * Commit the prepared block into the mapping btree.
825 * Any I/O for this block arriving after this point will get
826 * remapped to it directly.
828 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
830 metadata_operation_failed(pool, "dm_thin_insert_block", r);
831 cell_error(pool, m->cell);
836 * Release any bios held while the block was being provisioned.
837 * If we are processing a write bio that completely covers the block,
838 * we already processed it so can ignore it now when processing
839 * the bios in the cell.
842 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
845 inc_all_io_entry(tc->pool, m->cell->holder);
846 remap_and_issue(tc, m->cell->holder, m->data_block);
847 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
852 mempool_free(m, pool->mapping_pool);
855 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
857 struct thin_c *tc = m->tc;
859 bio_io_error(m->bio);
860 cell_defer_no_holder(tc, m->cell);
861 cell_defer_no_holder(tc, m->cell2);
862 mempool_free(m, tc->pool->mapping_pool);
865 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
867 struct thin_c *tc = m->tc;
869 inc_all_io_entry(tc->pool, m->bio);
870 cell_defer_no_holder(tc, m->cell);
871 cell_defer_no_holder(tc, m->cell2);
874 if (m->definitely_not_shared)
875 remap_and_issue(tc, m->bio, m->data_block);
878 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
879 bio_endio(m->bio, 0);
881 remap_and_issue(tc, m->bio, m->data_block);
884 bio_endio(m->bio, 0);
886 mempool_free(m, tc->pool->mapping_pool);
889 static void process_prepared_discard(struct dm_thin_new_mapping *m)
892 struct thin_c *tc = m->tc;
894 r = dm_thin_remove_block(tc->td, m->virt_block);
896 DMERR_LIMIT("dm_thin_remove_block() failed");
898 process_prepared_discard_passdown(m);
901 static void process_prepared(struct pool *pool, struct list_head *head,
902 process_mapping_fn *fn)
905 struct list_head maps;
906 struct dm_thin_new_mapping *m, *tmp;
908 INIT_LIST_HEAD(&maps);
909 spin_lock_irqsave(&pool->lock, flags);
910 list_splice_init(head, &maps);
911 spin_unlock_irqrestore(&pool->lock, flags);
913 list_for_each_entry_safe(m, tmp, &maps, list)
920 static int io_overlaps_block(struct pool *pool, struct bio *bio)
922 return bio->bi_iter.bi_size ==
923 (pool->sectors_per_block << SECTOR_SHIFT);
926 static int io_overwrites_block(struct pool *pool, struct bio *bio)
928 return (bio_data_dir(bio) == WRITE) &&
929 io_overlaps_block(pool, bio);
932 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
935 *save = bio->bi_end_io;
939 static int ensure_next_mapping(struct pool *pool)
941 if (pool->next_mapping)
944 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
946 return pool->next_mapping ? 0 : -ENOMEM;
949 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
951 struct dm_thin_new_mapping *m = pool->next_mapping;
953 BUG_ON(!pool->next_mapping);
955 memset(m, 0, sizeof(struct dm_thin_new_mapping));
956 INIT_LIST_HEAD(&m->list);
959 pool->next_mapping = NULL;
964 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
965 sector_t begin, sector_t end)
968 struct dm_io_region to;
970 to.bdev = tc->pool_dev->bdev;
972 to.count = end - begin;
974 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
976 DMERR_LIMIT("dm_kcopyd_zero() failed");
977 copy_complete(1, 1, m);
981 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
982 dm_block_t data_block,
983 struct dm_thin_new_mapping *m)
985 struct pool *pool = tc->pool;
986 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
988 h->overwrite_mapping = m;
990 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991 inc_all_io_entry(pool, bio);
992 remap_and_issue(tc, bio, data_block);
996 * A partial copy also needs to zero the uncopied region.
998 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
999 struct dm_dev *origin, dm_block_t data_origin,
1000 dm_block_t data_dest,
1001 struct dm_bio_prison_cell *cell, struct bio *bio,
1005 struct pool *pool = tc->pool;
1006 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1009 m->virt_block = virt_block;
1010 m->data_block = data_dest;
1014 * quiesce action + copy action + an extra reference held for the
1015 * duration of this function (we may need to inc later for a
1018 atomic_set(&m->prepare_actions, 3);
1020 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1021 complete_mapping_preparation(m); /* already quiesced */
1024 * IO to pool_dev remaps to the pool target's data_dev.
1026 * If the whole block of data is being overwritten, we can issue the
1027 * bio immediately. Otherwise we use kcopyd to clone the data first.
1029 if (io_overwrites_block(pool, bio))
1030 remap_and_issue_overwrite(tc, bio, data_dest, m);
1032 struct dm_io_region from, to;
1034 from.bdev = origin->bdev;
1035 from.sector = data_origin * pool->sectors_per_block;
1038 to.bdev = tc->pool_dev->bdev;
1039 to.sector = data_dest * pool->sectors_per_block;
1042 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1043 0, copy_complete, m);
1045 DMERR_LIMIT("dm_kcopyd_copy() failed");
1046 copy_complete(1, 1, m);
1049 * We allow the zero to be issued, to simplify the
1050 * error path. Otherwise we'd need to start
1051 * worrying about decrementing the prepare_actions
1057 * Do we need to zero a tail region?
1059 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1060 atomic_inc(&m->prepare_actions);
1062 data_dest * pool->sectors_per_block + len,
1063 (data_dest + 1) * pool->sectors_per_block);
1067 complete_mapping_preparation(m); /* drop our ref */
1070 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1071 dm_block_t data_origin, dm_block_t data_dest,
1072 struct dm_bio_prison_cell *cell, struct bio *bio)
1074 schedule_copy(tc, virt_block, tc->pool_dev,
1075 data_origin, data_dest, cell, bio,
1076 tc->pool->sectors_per_block);
1079 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1080 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1083 struct pool *pool = tc->pool;
1084 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1086 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1088 m->virt_block = virt_block;
1089 m->data_block = data_block;
1093 * If the whole block of data is being overwritten or we are not
1094 * zeroing pre-existing data, we can issue the bio immediately.
1095 * Otherwise we use kcopyd to zero the data first.
1097 if (!pool->pf.zero_new_blocks)
1098 process_prepared_mapping(m);
1100 else if (io_overwrites_block(pool, bio))
1101 remap_and_issue_overwrite(tc, bio, data_block, m);
1105 data_block * pool->sectors_per_block,
1106 (data_block + 1) * pool->sectors_per_block);
1109 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1110 dm_block_t data_dest,
1111 struct dm_bio_prison_cell *cell, struct bio *bio)
1113 struct pool *pool = tc->pool;
1114 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1115 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1117 if (virt_block_end <= tc->origin_size)
1118 schedule_copy(tc, virt_block, tc->origin_dev,
1119 virt_block, data_dest, cell, bio,
1120 pool->sectors_per_block);
1122 else if (virt_block_begin < tc->origin_size)
1123 schedule_copy(tc, virt_block, tc->origin_dev,
1124 virt_block, data_dest, cell, bio,
1125 tc->origin_size - virt_block_begin);
1128 schedule_zero(tc, virt_block, data_dest, cell, bio);
1131 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1133 static void check_for_space(struct pool *pool)
1138 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1141 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1146 set_pool_mode(pool, PM_WRITE);
1150 * A non-zero return indicates read_only or fail_io mode.
1151 * Many callers don't care about the return value.
1153 static int commit(struct pool *pool)
1157 if (get_pool_mode(pool) >= PM_READ_ONLY)
1160 r = dm_pool_commit_metadata(pool->pmd);
1162 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1164 check_for_space(pool);
1169 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1171 unsigned long flags;
1173 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1174 DMWARN("%s: reached low water mark for data device: sending event.",
1175 dm_device_name(pool->pool_md));
1176 spin_lock_irqsave(&pool->lock, flags);
1177 pool->low_water_triggered = true;
1178 spin_unlock_irqrestore(&pool->lock, flags);
1179 dm_table_event(pool->ti->table);
1183 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1186 dm_block_t free_blocks;
1187 struct pool *pool = tc->pool;
1189 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1192 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1194 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1198 check_low_water_mark(pool, free_blocks);
1202 * Try to commit to see if that will free up some
1209 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1211 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1216 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1221 r = dm_pool_alloc_data_block(pool->pmd, result);
1223 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1231 * If we have run out of space, queue bios until the device is
1232 * resumed, presumably after having been reloaded with more space.
1234 static void retry_on_resume(struct bio *bio)
1236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237 struct thin_c *tc = h->tc;
1238 unsigned long flags;
1240 spin_lock_irqsave(&tc->lock, flags);
1241 bio_list_add(&tc->retry_on_resume_list, bio);
1242 spin_unlock_irqrestore(&tc->lock, flags);
1245 static int should_error_unserviceable_bio(struct pool *pool)
1247 enum pool_mode m = get_pool_mode(pool);
1251 /* Shouldn't get here */
1252 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1255 case PM_OUT_OF_DATA_SPACE:
1256 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1262 /* Shouldn't get here */
1263 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1268 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1270 int error = should_error_unserviceable_bio(pool);
1273 bio_endio(bio, error);
1275 retry_on_resume(bio);
1278 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1281 struct bio_list bios;
1284 error = should_error_unserviceable_bio(pool);
1286 cell_error_with_code(pool, cell, error);
1290 bio_list_init(&bios);
1291 cell_release(pool, cell, &bios);
1293 while ((bio = bio_list_pop(&bios)))
1294 retry_on_resume(bio);
1297 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1300 struct bio *bio = cell->holder;
1301 struct pool *pool = tc->pool;
1302 struct dm_bio_prison_cell *cell2;
1303 struct dm_cell_key key2;
1304 dm_block_t block = get_bio_block(tc, bio);
1305 struct dm_thin_lookup_result lookup_result;
1306 struct dm_thin_new_mapping *m;
1308 if (tc->requeue_mode) {
1309 cell_requeue(pool, cell);
1313 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1317 * Check nobody is fiddling with this pool block. This can
1318 * happen if someone's in the process of breaking sharing
1321 build_data_key(tc->td, lookup_result.block, &key2);
1322 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1323 cell_defer_no_holder(tc, cell);
1327 if (io_overlaps_block(pool, bio)) {
1329 * IO may still be going to the destination block. We must
1330 * quiesce before we can do the removal.
1332 m = get_next_mapping(pool);
1334 m->pass_discard = pool->pf.discard_passdown;
1335 m->definitely_not_shared = !lookup_result.shared;
1336 m->virt_block = block;
1337 m->data_block = lookup_result.block;
1342 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1343 pool->process_prepared_discard(m);
1346 inc_all_io_entry(pool, bio);
1347 cell_defer_no_holder(tc, cell);
1348 cell_defer_no_holder(tc, cell2);
1351 * The DM core makes sure that the discard doesn't span
1352 * a block boundary. So we submit the discard of a
1353 * partial block appropriately.
1355 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1356 remap_and_issue(tc, bio, lookup_result.block);
1364 * It isn't provisioned, just forget it.
1366 cell_defer_no_holder(tc, cell);
1371 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1373 cell_defer_no_holder(tc, cell);
1379 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1381 struct dm_bio_prison_cell *cell;
1382 struct dm_cell_key key;
1383 dm_block_t block = get_bio_block(tc, bio);
1385 build_virtual_key(tc->td, block, &key);
1386 if (bio_detain(tc->pool, &key, bio, &cell))
1389 process_discard_cell(tc, cell);
1392 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1393 struct dm_cell_key *key,
1394 struct dm_thin_lookup_result *lookup_result,
1395 struct dm_bio_prison_cell *cell)
1398 dm_block_t data_block;
1399 struct pool *pool = tc->pool;
1401 r = alloc_data_block(tc, &data_block);
1404 schedule_internal_copy(tc, block, lookup_result->block,
1405 data_block, cell, bio);
1409 retry_bios_on_resume(pool, cell);
1413 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1415 cell_error(pool, cell);
1420 static void __remap_and_issue_shared_cell(void *context,
1421 struct dm_bio_prison_cell *cell)
1423 struct remap_info *info = context;
1426 while ((bio = bio_list_pop(&cell->bios))) {
1427 if ((bio_data_dir(bio) == WRITE) ||
1428 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1429 bio_list_add(&info->defer_bios, bio);
1431 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1433 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1434 inc_all_io_entry(info->tc->pool, bio);
1435 bio_list_add(&info->issue_bios, bio);
1440 static void remap_and_issue_shared_cell(struct thin_c *tc,
1441 struct dm_bio_prison_cell *cell,
1445 struct remap_info info;
1448 bio_list_init(&info.defer_bios);
1449 bio_list_init(&info.issue_bios);
1451 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1454 while ((bio = bio_list_pop(&info.defer_bios)))
1455 thin_defer_bio(tc, bio);
1457 while ((bio = bio_list_pop(&info.issue_bios)))
1458 remap_and_issue(tc, bio, block);
1461 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1463 struct dm_thin_lookup_result *lookup_result,
1464 struct dm_bio_prison_cell *virt_cell)
1466 struct dm_bio_prison_cell *data_cell;
1467 struct pool *pool = tc->pool;
1468 struct dm_cell_key key;
1471 * If cell is already occupied, then sharing is already in the process
1472 * of being broken so we have nothing further to do here.
1474 build_data_key(tc->td, lookup_result->block, &key);
1475 if (bio_detain(pool, &key, bio, &data_cell)) {
1476 cell_defer_no_holder(tc, virt_cell);
1480 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1481 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1482 cell_defer_no_holder(tc, virt_cell);
1484 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1486 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1487 inc_all_io_entry(pool, bio);
1488 remap_and_issue(tc, bio, lookup_result->block);
1490 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1491 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1495 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1496 struct dm_bio_prison_cell *cell)
1499 dm_block_t data_block;
1500 struct pool *pool = tc->pool;
1503 * Remap empty bios (flushes) immediately, without provisioning.
1505 if (!bio->bi_iter.bi_size) {
1506 inc_all_io_entry(pool, bio);
1507 cell_defer_no_holder(tc, cell);
1509 remap_and_issue(tc, bio, 0);
1514 * Fill read bios with zeroes and complete them immediately.
1516 if (bio_data_dir(bio) == READ) {
1518 cell_defer_no_holder(tc, cell);
1523 r = alloc_data_block(tc, &data_block);
1527 schedule_external_copy(tc, block, data_block, cell, bio);
1529 schedule_zero(tc, block, data_block, cell, bio);
1533 retry_bios_on_resume(pool, cell);
1537 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1539 cell_error(pool, cell);
1544 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1547 struct pool *pool = tc->pool;
1548 struct bio *bio = cell->holder;
1549 dm_block_t block = get_bio_block(tc, bio);
1550 struct dm_thin_lookup_result lookup_result;
1552 if (tc->requeue_mode) {
1553 cell_requeue(pool, cell);
1557 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1560 if (lookup_result.shared)
1561 process_shared_bio(tc, bio, block, &lookup_result, cell);
1563 inc_all_io_entry(pool, bio);
1564 remap_and_issue(tc, bio, lookup_result.block);
1565 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1570 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1571 inc_all_io_entry(pool, bio);
1572 cell_defer_no_holder(tc, cell);
1574 if (bio_end_sector(bio) <= tc->origin_size)
1575 remap_to_origin_and_issue(tc, bio);
1577 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1579 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1580 remap_to_origin_and_issue(tc, bio);
1587 provision_block(tc, bio, block, cell);
1591 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1593 cell_defer_no_holder(tc, cell);
1599 static void process_bio(struct thin_c *tc, struct bio *bio)
1601 struct pool *pool = tc->pool;
1602 dm_block_t block = get_bio_block(tc, bio);
1603 struct dm_bio_prison_cell *cell;
1604 struct dm_cell_key key;
1607 * If cell is already occupied, then the block is already
1608 * being provisioned so we have nothing further to do here.
1610 build_virtual_key(tc->td, block, &key);
1611 if (bio_detain(pool, &key, bio, &cell))
1614 process_cell(tc, cell);
1617 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1618 struct dm_bio_prison_cell *cell)
1621 int rw = bio_data_dir(bio);
1622 dm_block_t block = get_bio_block(tc, bio);
1623 struct dm_thin_lookup_result lookup_result;
1625 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1628 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1629 handle_unserviceable_bio(tc->pool, bio);
1631 cell_defer_no_holder(tc, cell);
1633 inc_all_io_entry(tc->pool, bio);
1634 remap_and_issue(tc, bio, lookup_result.block);
1636 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1642 cell_defer_no_holder(tc, cell);
1644 handle_unserviceable_bio(tc->pool, bio);
1648 if (tc->origin_dev) {
1649 inc_all_io_entry(tc->pool, bio);
1650 remap_to_origin_and_issue(tc, bio);
1659 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1662 cell_defer_no_holder(tc, cell);
1668 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1670 __process_bio_read_only(tc, bio, NULL);
1673 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1675 __process_bio_read_only(tc, cell->holder, cell);
1678 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1683 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1688 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1690 cell_success(tc->pool, cell);
1693 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1695 cell_error(tc->pool, cell);
1699 * FIXME: should we also commit due to size of transaction, measured in
1702 static int need_commit_due_to_time(struct pool *pool)
1704 return !time_in_range(jiffies, pool->last_commit_jiffies,
1705 pool->last_commit_jiffies + COMMIT_PERIOD);
1708 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1709 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1711 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1713 struct rb_node **rbp, *parent;
1714 struct dm_thin_endio_hook *pbd;
1715 sector_t bi_sector = bio->bi_iter.bi_sector;
1717 rbp = &tc->sort_bio_list.rb_node;
1721 pbd = thin_pbd(parent);
1723 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1724 rbp = &(*rbp)->rb_left;
1726 rbp = &(*rbp)->rb_right;
1729 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730 rb_link_node(&pbd->rb_node, parent, rbp);
1731 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1734 static void __extract_sorted_bios(struct thin_c *tc)
1736 struct rb_node *node;
1737 struct dm_thin_endio_hook *pbd;
1740 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1741 pbd = thin_pbd(node);
1742 bio = thin_bio(pbd);
1744 bio_list_add(&tc->deferred_bio_list, bio);
1745 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1748 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1751 static void __sort_thin_deferred_bios(struct thin_c *tc)
1754 struct bio_list bios;
1756 bio_list_init(&bios);
1757 bio_list_merge(&bios, &tc->deferred_bio_list);
1758 bio_list_init(&tc->deferred_bio_list);
1760 /* Sort deferred_bio_list using rb-tree */
1761 while ((bio = bio_list_pop(&bios)))
1762 __thin_bio_rb_add(tc, bio);
1765 * Transfer the sorted bios in sort_bio_list back to
1766 * deferred_bio_list to allow lockless submission of
1769 __extract_sorted_bios(tc);
1772 static void process_thin_deferred_bios(struct thin_c *tc)
1774 struct pool *pool = tc->pool;
1775 unsigned long flags;
1777 struct bio_list bios;
1778 struct blk_plug plug;
1781 if (tc->requeue_mode) {
1782 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1786 bio_list_init(&bios);
1788 spin_lock_irqsave(&tc->lock, flags);
1790 if (bio_list_empty(&tc->deferred_bio_list)) {
1791 spin_unlock_irqrestore(&tc->lock, flags);
1795 __sort_thin_deferred_bios(tc);
1797 bio_list_merge(&bios, &tc->deferred_bio_list);
1798 bio_list_init(&tc->deferred_bio_list);
1800 spin_unlock_irqrestore(&tc->lock, flags);
1802 blk_start_plug(&plug);
1803 while ((bio = bio_list_pop(&bios))) {
1805 * If we've got no free new_mapping structs, and processing
1806 * this bio might require one, we pause until there are some
1807 * prepared mappings to process.
1809 if (ensure_next_mapping(pool)) {
1810 spin_lock_irqsave(&tc->lock, flags);
1811 bio_list_add(&tc->deferred_bio_list, bio);
1812 bio_list_merge(&tc->deferred_bio_list, &bios);
1813 spin_unlock_irqrestore(&tc->lock, flags);
1817 if (bio->bi_rw & REQ_DISCARD)
1818 pool->process_discard(tc, bio);
1820 pool->process_bio(tc, bio);
1822 if ((count++ & 127) == 0) {
1823 throttle_work_update(&pool->throttle);
1824 dm_pool_issue_prefetches(pool->pmd);
1827 blk_finish_plug(&plug);
1830 static int cmp_cells(const void *lhs, const void *rhs)
1832 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1833 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1835 BUG_ON(!lhs_cell->holder);
1836 BUG_ON(!rhs_cell->holder);
1838 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1841 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1847 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1850 struct dm_bio_prison_cell *cell, *tmp;
1852 list_for_each_entry_safe(cell, tmp, cells, user_list) {
1853 if (count >= CELL_SORT_ARRAY_SIZE)
1856 pool->cell_sort_array[count++] = cell;
1857 list_del(&cell->user_list);
1860 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1865 static void process_thin_deferred_cells(struct thin_c *tc)
1867 struct pool *pool = tc->pool;
1868 unsigned long flags;
1869 struct list_head cells;
1870 struct dm_bio_prison_cell *cell;
1871 unsigned i, j, count;
1873 INIT_LIST_HEAD(&cells);
1875 spin_lock_irqsave(&tc->lock, flags);
1876 list_splice_init(&tc->deferred_cells, &cells);
1877 spin_unlock_irqrestore(&tc->lock, flags);
1879 if (list_empty(&cells))
1883 count = sort_cells(tc->pool, &cells);
1885 for (i = 0; i < count; i++) {
1886 cell = pool->cell_sort_array[i];
1887 BUG_ON(!cell->holder);
1890 * If we've got no free new_mapping structs, and processing
1891 * this bio might require one, we pause until there are some
1892 * prepared mappings to process.
1894 if (ensure_next_mapping(pool)) {
1895 for (j = i; j < count; j++)
1896 list_add(&pool->cell_sort_array[j]->user_list, &cells);
1898 spin_lock_irqsave(&tc->lock, flags);
1899 list_splice(&cells, &tc->deferred_cells);
1900 spin_unlock_irqrestore(&tc->lock, flags);
1904 if (cell->holder->bi_rw & REQ_DISCARD)
1905 pool->process_discard_cell(tc, cell);
1907 pool->process_cell(tc, cell);
1909 } while (!list_empty(&cells));
1912 static void thin_get(struct thin_c *tc);
1913 static void thin_put(struct thin_c *tc);
1916 * We can't hold rcu_read_lock() around code that can block. So we
1917 * find a thin with the rcu lock held; bump a refcount; then drop
1920 static struct thin_c *get_first_thin(struct pool *pool)
1922 struct thin_c *tc = NULL;
1925 if (!list_empty(&pool->active_thins)) {
1926 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1934 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1936 struct thin_c *old_tc = tc;
1939 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1951 static void process_deferred_bios(struct pool *pool)
1953 unsigned long flags;
1955 struct bio_list bios;
1958 tc = get_first_thin(pool);
1960 process_thin_deferred_cells(tc);
1961 process_thin_deferred_bios(tc);
1962 tc = get_next_thin(pool, tc);
1966 * If there are any deferred flush bios, we must commit
1967 * the metadata before issuing them.
1969 bio_list_init(&bios);
1970 spin_lock_irqsave(&pool->lock, flags);
1971 bio_list_merge(&bios, &pool->deferred_flush_bios);
1972 bio_list_init(&pool->deferred_flush_bios);
1973 spin_unlock_irqrestore(&pool->lock, flags);
1975 if (bio_list_empty(&bios) &&
1976 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1980 while ((bio = bio_list_pop(&bios)))
1984 pool->last_commit_jiffies = jiffies;
1986 while ((bio = bio_list_pop(&bios)))
1987 generic_make_request(bio);
1990 static void do_worker(struct work_struct *ws)
1992 struct pool *pool = container_of(ws, struct pool, worker);
1994 throttle_work_start(&pool->throttle);
1995 dm_pool_issue_prefetches(pool->pmd);
1996 throttle_work_update(&pool->throttle);
1997 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1998 throttle_work_update(&pool->throttle);
1999 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2000 throttle_work_update(&pool->throttle);
2001 process_deferred_bios(pool);
2002 throttle_work_complete(&pool->throttle);
2006 * We want to commit periodically so that not too much
2007 * unwritten data builds up.
2009 static void do_waker(struct work_struct *ws)
2011 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2013 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2017 * We're holding onto IO to allow userland time to react. After the
2018 * timeout either the pool will have been resized (and thus back in
2019 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2021 static void do_no_space_timeout(struct work_struct *ws)
2023 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2026 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2027 set_pool_mode(pool, PM_READ_ONLY);
2030 /*----------------------------------------------------------------*/
2033 struct work_struct worker;
2034 struct completion complete;
2037 static struct pool_work *to_pool_work(struct work_struct *ws)
2039 return container_of(ws, struct pool_work, worker);
2042 static void pool_work_complete(struct pool_work *pw)
2044 complete(&pw->complete);
2047 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2048 void (*fn)(struct work_struct *))
2050 INIT_WORK_ONSTACK(&pw->worker, fn);
2051 init_completion(&pw->complete);
2052 queue_work(pool->wq, &pw->worker);
2053 wait_for_completion(&pw->complete);
2056 /*----------------------------------------------------------------*/
2058 struct noflush_work {
2059 struct pool_work pw;
2063 static struct noflush_work *to_noflush(struct work_struct *ws)
2065 return container_of(to_pool_work(ws), struct noflush_work, pw);
2068 static void do_noflush_start(struct work_struct *ws)
2070 struct noflush_work *w = to_noflush(ws);
2071 w->tc->requeue_mode = true;
2073 pool_work_complete(&w->pw);
2076 static void do_noflush_stop(struct work_struct *ws)
2078 struct noflush_work *w = to_noflush(ws);
2079 w->tc->requeue_mode = false;
2080 pool_work_complete(&w->pw);
2083 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2085 struct noflush_work w;
2088 pool_work_wait(&w.pw, tc->pool, fn);
2091 /*----------------------------------------------------------------*/
2093 static enum pool_mode get_pool_mode(struct pool *pool)
2095 return pool->pf.mode;
2098 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2100 dm_table_event(pool->ti->table);
2101 DMINFO("%s: switching pool to %s mode",
2102 dm_device_name(pool->pool_md), new_mode);
2105 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2107 struct pool_c *pt = pool->ti->private;
2108 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2109 enum pool_mode old_mode = get_pool_mode(pool);
2110 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2113 * Never allow the pool to transition to PM_WRITE mode if user
2114 * intervention is required to verify metadata and data consistency.
2116 if (new_mode == PM_WRITE && needs_check) {
2117 DMERR("%s: unable to switch pool to write mode until repaired.",
2118 dm_device_name(pool->pool_md));
2119 if (old_mode != new_mode)
2120 new_mode = old_mode;
2122 new_mode = PM_READ_ONLY;
2125 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2126 * not going to recover without a thin_repair. So we never let the
2127 * pool move out of the old mode.
2129 if (old_mode == PM_FAIL)
2130 new_mode = old_mode;
2134 if (old_mode != new_mode)
2135 notify_of_pool_mode_change(pool, "failure");
2136 dm_pool_metadata_read_only(pool->pmd);
2137 pool->process_bio = process_bio_fail;
2138 pool->process_discard = process_bio_fail;
2139 pool->process_cell = process_cell_fail;
2140 pool->process_discard_cell = process_cell_fail;
2141 pool->process_prepared_mapping = process_prepared_mapping_fail;
2142 pool->process_prepared_discard = process_prepared_discard_fail;
2144 error_retry_list(pool);
2148 if (old_mode != new_mode)
2149 notify_of_pool_mode_change(pool, "read-only");
2150 dm_pool_metadata_read_only(pool->pmd);
2151 pool->process_bio = process_bio_read_only;
2152 pool->process_discard = process_bio_success;
2153 pool->process_cell = process_cell_read_only;
2154 pool->process_discard_cell = process_cell_success;
2155 pool->process_prepared_mapping = process_prepared_mapping_fail;
2156 pool->process_prepared_discard = process_prepared_discard_passdown;
2158 error_retry_list(pool);
2161 case PM_OUT_OF_DATA_SPACE:
2163 * Ideally we'd never hit this state; the low water mark
2164 * would trigger userland to extend the pool before we
2165 * completely run out of data space. However, many small
2166 * IOs to unprovisioned space can consume data space at an
2167 * alarming rate. Adjust your low water mark if you're
2168 * frequently seeing this mode.
2170 if (old_mode != new_mode)
2171 notify_of_pool_mode_change(pool, "out-of-data-space");
2172 pool->process_bio = process_bio_read_only;
2173 pool->process_discard = process_discard_bio;
2174 pool->process_cell = process_cell_read_only;
2175 pool->process_discard_cell = process_discard_cell;
2176 pool->process_prepared_mapping = process_prepared_mapping;
2177 pool->process_prepared_discard = process_prepared_discard;
2179 if (!pool->pf.error_if_no_space && no_space_timeout)
2180 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2184 if (old_mode != new_mode)
2185 notify_of_pool_mode_change(pool, "write");
2186 dm_pool_metadata_read_write(pool->pmd);
2187 pool->process_bio = process_bio;
2188 pool->process_discard = process_discard_bio;
2189 pool->process_cell = process_cell;
2190 pool->process_discard_cell = process_discard_cell;
2191 pool->process_prepared_mapping = process_prepared_mapping;
2192 pool->process_prepared_discard = process_prepared_discard;
2196 pool->pf.mode = new_mode;
2198 * The pool mode may have changed, sync it so bind_control_target()
2199 * doesn't cause an unexpected mode transition on resume.
2201 pt->adjusted_pf.mode = new_mode;
2204 static void abort_transaction(struct pool *pool)
2206 const char *dev_name = dm_device_name(pool->pool_md);
2208 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2209 if (dm_pool_abort_metadata(pool->pmd)) {
2210 DMERR("%s: failed to abort metadata transaction", dev_name);
2211 set_pool_mode(pool, PM_FAIL);
2214 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2215 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2216 set_pool_mode(pool, PM_FAIL);
2220 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2222 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2223 dm_device_name(pool->pool_md), op, r);
2225 abort_transaction(pool);
2226 set_pool_mode(pool, PM_READ_ONLY);
2229 /*----------------------------------------------------------------*/
2232 * Mapping functions.
2236 * Called only while mapping a thin bio to hand it over to the workqueue.
2238 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2240 unsigned long flags;
2241 struct pool *pool = tc->pool;
2243 spin_lock_irqsave(&tc->lock, flags);
2244 bio_list_add(&tc->deferred_bio_list, bio);
2245 spin_unlock_irqrestore(&tc->lock, flags);
2250 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2252 struct pool *pool = tc->pool;
2254 throttle_lock(&pool->throttle);
2255 thin_defer_bio(tc, bio);
2256 throttle_unlock(&pool->throttle);
2259 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2261 unsigned long flags;
2262 struct pool *pool = tc->pool;
2264 throttle_lock(&pool->throttle);
2265 spin_lock_irqsave(&tc->lock, flags);
2266 list_add_tail(&cell->user_list, &tc->deferred_cells);
2267 spin_unlock_irqrestore(&tc->lock, flags);
2268 throttle_unlock(&pool->throttle);
2273 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2275 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2278 h->shared_read_entry = NULL;
2279 h->all_io_entry = NULL;
2280 h->overwrite_mapping = NULL;
2284 * Non-blocking function called from the thin target's map function.
2286 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2289 struct thin_c *tc = ti->private;
2290 dm_block_t block = get_bio_block(tc, bio);
2291 struct dm_thin_device *td = tc->td;
2292 struct dm_thin_lookup_result result;
2293 struct dm_bio_prison_cell *virt_cell, *data_cell;
2294 struct dm_cell_key key;
2296 thin_hook_bio(tc, bio);
2298 if (tc->requeue_mode) {
2299 bio_endio(bio, DM_ENDIO_REQUEUE);
2300 return DM_MAPIO_SUBMITTED;
2303 if (get_pool_mode(tc->pool) == PM_FAIL) {
2305 return DM_MAPIO_SUBMITTED;
2308 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2309 thin_defer_bio_with_throttle(tc, bio);
2310 return DM_MAPIO_SUBMITTED;
2314 * We must hold the virtual cell before doing the lookup, otherwise
2315 * there's a race with discard.
2317 build_virtual_key(tc->td, block, &key);
2318 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2319 return DM_MAPIO_SUBMITTED;
2321 r = dm_thin_find_block(td, block, 0, &result);
2324 * Note that we defer readahead too.
2328 if (unlikely(result.shared)) {
2330 * We have a race condition here between the
2331 * result.shared value returned by the lookup and
2332 * snapshot creation, which may cause new
2335 * To avoid this always quiesce the origin before
2336 * taking the snap. You want to do this anyway to
2337 * ensure a consistent application view
2340 * More distant ancestors are irrelevant. The
2341 * shared flag will be set in their case.
2343 thin_defer_cell(tc, virt_cell);
2344 return DM_MAPIO_SUBMITTED;
2347 build_data_key(tc->td, result.block, &key);
2348 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2349 cell_defer_no_holder(tc, virt_cell);
2350 return DM_MAPIO_SUBMITTED;
2353 inc_all_io_entry(tc->pool, bio);
2354 cell_defer_no_holder(tc, data_cell);
2355 cell_defer_no_holder(tc, virt_cell);
2357 remap(tc, bio, result.block);
2358 return DM_MAPIO_REMAPPED;
2362 thin_defer_cell(tc, virt_cell);
2363 return DM_MAPIO_SUBMITTED;
2367 * Must always call bio_io_error on failure.
2368 * dm_thin_find_block can fail with -EINVAL if the
2369 * pool is switched to fail-io mode.
2372 cell_defer_no_holder(tc, virt_cell);
2373 return DM_MAPIO_SUBMITTED;
2377 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2379 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2380 struct request_queue *q;
2382 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2385 q = bdev_get_queue(pt->data_dev->bdev);
2386 return bdi_congested(&q->backing_dev_info, bdi_bits);
2389 static void requeue_bios(struct pool *pool)
2391 unsigned long flags;
2395 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2396 spin_lock_irqsave(&tc->lock, flags);
2397 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2398 bio_list_init(&tc->retry_on_resume_list);
2399 spin_unlock_irqrestore(&tc->lock, flags);
2404 /*----------------------------------------------------------------
2405 * Binding of control targets to a pool object
2406 *--------------------------------------------------------------*/
2407 static bool data_dev_supports_discard(struct pool_c *pt)
2409 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2411 return q && blk_queue_discard(q);
2414 static bool is_factor(sector_t block_size, uint32_t n)
2416 return !sector_div(block_size, n);
2420 * If discard_passdown was enabled verify that the data device
2421 * supports discards. Disable discard_passdown if not.
2423 static void disable_passdown_if_not_supported(struct pool_c *pt)
2425 struct pool *pool = pt->pool;
2426 struct block_device *data_bdev = pt->data_dev->bdev;
2427 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2428 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2429 const char *reason = NULL;
2430 char buf[BDEVNAME_SIZE];
2432 if (!pt->adjusted_pf.discard_passdown)
2435 if (!data_dev_supports_discard(pt))
2436 reason = "discard unsupported";
2438 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2439 reason = "max discard sectors smaller than a block";
2441 else if (data_limits->discard_granularity > block_size)
2442 reason = "discard granularity larger than a block";
2444 else if (!is_factor(block_size, data_limits->discard_granularity))
2445 reason = "discard granularity not a factor of block size";
2448 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2449 pt->adjusted_pf.discard_passdown = false;
2453 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2455 struct pool_c *pt = ti->private;
2458 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2460 enum pool_mode old_mode = get_pool_mode(pool);
2461 enum pool_mode new_mode = pt->adjusted_pf.mode;
2464 * Don't change the pool's mode until set_pool_mode() below.
2465 * Otherwise the pool's process_* function pointers may
2466 * not match the desired pool mode.
2468 pt->adjusted_pf.mode = old_mode;
2471 pool->pf = pt->adjusted_pf;
2472 pool->low_water_blocks = pt->low_water_blocks;
2474 set_pool_mode(pool, new_mode);
2479 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2485 /*----------------------------------------------------------------
2487 *--------------------------------------------------------------*/
2488 /* Initialize pool features. */
2489 static void pool_features_init(struct pool_features *pf)
2491 pf->mode = PM_WRITE;
2492 pf->zero_new_blocks = true;
2493 pf->discard_enabled = true;
2494 pf->discard_passdown = true;
2495 pf->error_if_no_space = false;
2498 static void __pool_destroy(struct pool *pool)
2500 __pool_table_remove(pool);
2502 if (dm_pool_metadata_close(pool->pmd) < 0)
2503 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2505 dm_bio_prison_destroy(pool->prison);
2506 dm_kcopyd_client_destroy(pool->copier);
2509 destroy_workqueue(pool->wq);
2511 if (pool->next_mapping)
2512 mempool_free(pool->next_mapping, pool->mapping_pool);
2513 mempool_destroy(pool->mapping_pool);
2514 dm_deferred_set_destroy(pool->shared_read_ds);
2515 dm_deferred_set_destroy(pool->all_io_ds);
2519 static struct kmem_cache *_new_mapping_cache;
2521 static struct pool *pool_create(struct mapped_device *pool_md,
2522 struct block_device *metadata_dev,
2523 unsigned long block_size,
2524 int read_only, char **error)
2529 struct dm_pool_metadata *pmd;
2530 bool format_device = read_only ? false : true;
2532 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2534 *error = "Error creating metadata object";
2535 return (struct pool *)pmd;
2538 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2540 *error = "Error allocating memory for pool";
2541 err_p = ERR_PTR(-ENOMEM);
2546 pool->sectors_per_block = block_size;
2547 if (block_size & (block_size - 1))
2548 pool->sectors_per_block_shift = -1;
2550 pool->sectors_per_block_shift = __ffs(block_size);
2551 pool->low_water_blocks = 0;
2552 pool_features_init(&pool->pf);
2553 pool->prison = dm_bio_prison_create();
2554 if (!pool->prison) {
2555 *error = "Error creating pool's bio prison";
2556 err_p = ERR_PTR(-ENOMEM);
2560 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561 if (IS_ERR(pool->copier)) {
2562 r = PTR_ERR(pool->copier);
2563 *error = "Error creating pool's kcopyd client";
2565 goto bad_kcopyd_client;
2569 * Create singlethreaded workqueue that will service all devices
2570 * that use this metadata.
2572 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2574 *error = "Error creating pool's workqueue";
2575 err_p = ERR_PTR(-ENOMEM);
2579 throttle_init(&pool->throttle);
2580 INIT_WORK(&pool->worker, do_worker);
2581 INIT_DELAYED_WORK(&pool->waker, do_waker);
2582 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2583 spin_lock_init(&pool->lock);
2584 bio_list_init(&pool->deferred_flush_bios);
2585 INIT_LIST_HEAD(&pool->prepared_mappings);
2586 INIT_LIST_HEAD(&pool->prepared_discards);
2587 INIT_LIST_HEAD(&pool->active_thins);
2588 pool->low_water_triggered = false;
2589 pool->suspended = true;
2591 pool->shared_read_ds = dm_deferred_set_create();
2592 if (!pool->shared_read_ds) {
2593 *error = "Error creating pool's shared read deferred set";
2594 err_p = ERR_PTR(-ENOMEM);
2595 goto bad_shared_read_ds;
2598 pool->all_io_ds = dm_deferred_set_create();
2599 if (!pool->all_io_ds) {
2600 *error = "Error creating pool's all io deferred set";
2601 err_p = ERR_PTR(-ENOMEM);
2605 pool->next_mapping = NULL;
2606 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2607 _new_mapping_cache);
2608 if (!pool->mapping_pool) {
2609 *error = "Error creating pool's mapping mempool";
2610 err_p = ERR_PTR(-ENOMEM);
2611 goto bad_mapping_pool;
2614 pool->ref_count = 1;
2615 pool->last_commit_jiffies = jiffies;
2616 pool->pool_md = pool_md;
2617 pool->md_dev = metadata_dev;
2618 __pool_table_insert(pool);
2623 dm_deferred_set_destroy(pool->all_io_ds);
2625 dm_deferred_set_destroy(pool->shared_read_ds);
2627 destroy_workqueue(pool->wq);
2629 dm_kcopyd_client_destroy(pool->copier);
2631 dm_bio_prison_destroy(pool->prison);
2635 if (dm_pool_metadata_close(pmd))
2636 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2641 static void __pool_inc(struct pool *pool)
2643 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2647 static void __pool_dec(struct pool *pool)
2649 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2650 BUG_ON(!pool->ref_count);
2651 if (!--pool->ref_count)
2652 __pool_destroy(pool);
2655 static struct pool *__pool_find(struct mapped_device *pool_md,
2656 struct block_device *metadata_dev,
2657 unsigned long block_size, int read_only,
2658 char **error, int *created)
2660 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2663 if (pool->pool_md != pool_md) {
2664 *error = "metadata device already in use by a pool";
2665 return ERR_PTR(-EBUSY);
2670 pool = __pool_table_lookup(pool_md);
2672 if (pool->md_dev != metadata_dev) {
2673 *error = "different pool cannot replace a pool";
2674 return ERR_PTR(-EINVAL);
2679 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2687 /*----------------------------------------------------------------
2688 * Pool target methods
2689 *--------------------------------------------------------------*/
2690 static void pool_dtr(struct dm_target *ti)
2692 struct pool_c *pt = ti->private;
2694 mutex_lock(&dm_thin_pool_table.mutex);
2696 unbind_control_target(pt->pool, ti);
2697 __pool_dec(pt->pool);
2698 dm_put_device(ti, pt->metadata_dev);
2699 dm_put_device(ti, pt->data_dev);
2702 mutex_unlock(&dm_thin_pool_table.mutex);
2705 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2706 struct dm_target *ti)
2710 const char *arg_name;
2712 static struct dm_arg _args[] = {
2713 {0, 4, "Invalid number of pool feature arguments"},
2717 * No feature arguments supplied.
2722 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2726 while (argc && !r) {
2727 arg_name = dm_shift_arg(as);
2730 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2731 pf->zero_new_blocks = false;
2733 else if (!strcasecmp(arg_name, "ignore_discard"))
2734 pf->discard_enabled = false;
2736 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2737 pf->discard_passdown = false;
2739 else if (!strcasecmp(arg_name, "read_only"))
2740 pf->mode = PM_READ_ONLY;
2742 else if (!strcasecmp(arg_name, "error_if_no_space"))
2743 pf->error_if_no_space = true;
2746 ti->error = "Unrecognised pool feature requested";
2755 static void metadata_low_callback(void *context)
2757 struct pool *pool = context;
2759 DMWARN("%s: reached low water mark for metadata device: sending event.",
2760 dm_device_name(pool->pool_md));
2762 dm_table_event(pool->ti->table);
2765 static sector_t get_dev_size(struct block_device *bdev)
2767 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2770 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2772 sector_t metadata_dev_size = get_dev_size(bdev);
2773 char buffer[BDEVNAME_SIZE];
2775 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2776 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2777 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2780 static sector_t get_metadata_dev_size(struct block_device *bdev)
2782 sector_t metadata_dev_size = get_dev_size(bdev);
2784 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2785 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2787 return metadata_dev_size;
2790 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2792 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2794 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2796 return metadata_dev_size;
2800 * When a metadata threshold is crossed a dm event is triggered, and
2801 * userland should respond by growing the metadata device. We could let
2802 * userland set the threshold, like we do with the data threshold, but I'm
2803 * not sure they know enough to do this well.
2805 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2808 * 4M is ample for all ops with the possible exception of thin
2809 * device deletion which is harmless if it fails (just retry the
2810 * delete after you've grown the device).
2812 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2813 return min((dm_block_t)1024ULL /* 4M */, quarter);
2817 * thin-pool <metadata dev> <data dev>
2818 * <data block size (sectors)>
2819 * <low water mark (blocks)>
2820 * [<#feature args> [<arg>]*]
2822 * Optional feature arguments are:
2823 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2824 * ignore_discard: disable discard
2825 * no_discard_passdown: don't pass discards down to the data device
2826 * read_only: Don't allow any changes to be made to the pool metadata.
2827 * error_if_no_space: error IOs, instead of queueing, if no space.
2829 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2831 int r, pool_created = 0;
2834 struct pool_features pf;
2835 struct dm_arg_set as;
2836 struct dm_dev *data_dev;
2837 unsigned long block_size;
2838 dm_block_t low_water_blocks;
2839 struct dm_dev *metadata_dev;
2840 fmode_t metadata_mode;
2843 * FIXME Remove validation from scope of lock.
2845 mutex_lock(&dm_thin_pool_table.mutex);
2848 ti->error = "Invalid argument count";
2857 * Set default pool features.
2859 pool_features_init(&pf);
2861 dm_consume_args(&as, 4);
2862 r = parse_pool_features(&as, &pf, ti);
2866 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2867 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2869 ti->error = "Error opening metadata block device";
2872 warn_if_metadata_device_too_big(metadata_dev->bdev);
2874 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2876 ti->error = "Error getting data device";
2880 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2881 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2882 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2883 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2884 ti->error = "Invalid block size";
2889 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2890 ti->error = "Invalid low water mark";
2895 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2901 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2902 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2909 * 'pool_created' reflects whether this is the first table load.
2910 * Top level discard support is not allowed to be changed after
2911 * initial load. This would require a pool reload to trigger thin
2914 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2915 ti->error = "Discard support cannot be disabled once enabled";
2917 goto out_flags_changed;
2922 pt->metadata_dev = metadata_dev;
2923 pt->data_dev = data_dev;
2924 pt->low_water_blocks = low_water_blocks;
2925 pt->adjusted_pf = pt->requested_pf = pf;
2926 ti->num_flush_bios = 1;
2929 * Only need to enable discards if the pool should pass
2930 * them down to the data device. The thin device's discard
2931 * processing will cause mappings to be removed from the btree.
2933 ti->discard_zeroes_data_unsupported = true;
2934 if (pf.discard_enabled && pf.discard_passdown) {
2935 ti->num_discard_bios = 1;
2938 * Setting 'discards_supported' circumvents the normal
2939 * stacking of discard limits (this keeps the pool and
2940 * thin devices' discard limits consistent).
2942 ti->discards_supported = true;
2946 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2947 calc_metadata_threshold(pt),
2948 metadata_low_callback,
2953 pt->callbacks.congested_fn = pool_is_congested;
2954 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2956 mutex_unlock(&dm_thin_pool_table.mutex);
2965 dm_put_device(ti, data_dev);
2967 dm_put_device(ti, metadata_dev);
2969 mutex_unlock(&dm_thin_pool_table.mutex);
2974 static int pool_map(struct dm_target *ti, struct bio *bio)
2977 struct pool_c *pt = ti->private;
2978 struct pool *pool = pt->pool;
2979 unsigned long flags;
2982 * As this is a singleton target, ti->begin is always zero.
2984 spin_lock_irqsave(&pool->lock, flags);
2985 bio->bi_bdev = pt->data_dev->bdev;
2986 r = DM_MAPIO_REMAPPED;
2987 spin_unlock_irqrestore(&pool->lock, flags);
2992 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2995 struct pool_c *pt = ti->private;
2996 struct pool *pool = pt->pool;
2997 sector_t data_size = ti->len;
2998 dm_block_t sb_data_size;
3000 *need_commit = false;
3002 (void) sector_div(data_size, pool->sectors_per_block);
3004 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3006 DMERR("%s: failed to retrieve data device size",
3007 dm_device_name(pool->pool_md));
3011 if (data_size < sb_data_size) {
3012 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3013 dm_device_name(pool->pool_md),
3014 (unsigned long long)data_size, sb_data_size);
3017 } else if (data_size > sb_data_size) {
3018 if (dm_pool_metadata_needs_check(pool->pmd)) {
3019 DMERR("%s: unable to grow the data device until repaired.",
3020 dm_device_name(pool->pool_md));
3025 DMINFO("%s: growing the data device from %llu to %llu blocks",
3026 dm_device_name(pool->pool_md),
3027 sb_data_size, (unsigned long long)data_size);
3028 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3030 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3034 *need_commit = true;
3040 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3043 struct pool_c *pt = ti->private;
3044 struct pool *pool = pt->pool;
3045 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3047 *need_commit = false;
3049 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3051 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3053 DMERR("%s: failed to retrieve metadata device size",
3054 dm_device_name(pool->pool_md));
3058 if (metadata_dev_size < sb_metadata_dev_size) {
3059 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3060 dm_device_name(pool->pool_md),
3061 metadata_dev_size, sb_metadata_dev_size);
3064 } else if (metadata_dev_size > sb_metadata_dev_size) {
3065 if (dm_pool_metadata_needs_check(pool->pmd)) {
3066 DMERR("%s: unable to grow the metadata device until repaired.",
3067 dm_device_name(pool->pool_md));
3071 warn_if_metadata_device_too_big(pool->md_dev);
3072 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3073 dm_device_name(pool->pool_md),
3074 sb_metadata_dev_size, metadata_dev_size);
3075 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3077 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3081 *need_commit = true;
3088 * Retrieves the number of blocks of the data device from
3089 * the superblock and compares it to the actual device size,
3090 * thus resizing the data device in case it has grown.
3092 * This both copes with opening preallocated data devices in the ctr
3093 * being followed by a resume
3095 * calling the resume method individually after userspace has
3096 * grown the data device in reaction to a table event.
3098 static int pool_preresume(struct dm_target *ti)
3101 bool need_commit1, need_commit2;
3102 struct pool_c *pt = ti->private;
3103 struct pool *pool = pt->pool;
3106 * Take control of the pool object.
3108 r = bind_control_target(pool, ti);
3112 r = maybe_resize_data_dev(ti, &need_commit1);
3116 r = maybe_resize_metadata_dev(ti, &need_commit2);
3120 if (need_commit1 || need_commit2)
3121 (void) commit(pool);
3126 static void pool_suspend_active_thins(struct pool *pool)
3130 /* Suspend all active thin devices */
3131 tc = get_first_thin(pool);
3133 dm_internal_suspend_noflush(tc->thin_md);
3134 tc = get_next_thin(pool, tc);
3138 static void pool_resume_active_thins(struct pool *pool)
3142 /* Resume all active thin devices */
3143 tc = get_first_thin(pool);
3145 dm_internal_resume(tc->thin_md);
3146 tc = get_next_thin(pool, tc);
3150 static void pool_resume(struct dm_target *ti)
3152 struct pool_c *pt = ti->private;
3153 struct pool *pool = pt->pool;
3154 unsigned long flags;
3157 * Must requeue active_thins' bios and then resume
3158 * active_thins _before_ clearing 'suspend' flag.
3161 pool_resume_active_thins(pool);
3163 spin_lock_irqsave(&pool->lock, flags);
3164 pool->low_water_triggered = false;
3165 pool->suspended = false;
3166 spin_unlock_irqrestore(&pool->lock, flags);
3168 do_waker(&pool->waker.work);
3171 static void pool_presuspend(struct dm_target *ti)
3173 struct pool_c *pt = ti->private;
3174 struct pool *pool = pt->pool;
3175 unsigned long flags;
3177 spin_lock_irqsave(&pool->lock, flags);
3178 pool->suspended = true;
3179 spin_unlock_irqrestore(&pool->lock, flags);
3181 pool_suspend_active_thins(pool);
3184 static void pool_presuspend_undo(struct dm_target *ti)
3186 struct pool_c *pt = ti->private;
3187 struct pool *pool = pt->pool;
3188 unsigned long flags;
3190 pool_resume_active_thins(pool);
3192 spin_lock_irqsave(&pool->lock, flags);
3193 pool->suspended = false;
3194 spin_unlock_irqrestore(&pool->lock, flags);
3197 static void pool_postsuspend(struct dm_target *ti)
3199 struct pool_c *pt = ti->private;
3200 struct pool *pool = pt->pool;
3202 cancel_delayed_work(&pool->waker);
3203 cancel_delayed_work(&pool->no_space_timeout);
3204 flush_workqueue(pool->wq);
3205 (void) commit(pool);
3208 static int check_arg_count(unsigned argc, unsigned args_required)
3210 if (argc != args_required) {
3211 DMWARN("Message received with %u arguments instead of %u.",
3212 argc, args_required);
3219 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3221 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3222 *dev_id <= MAX_DEV_ID)
3226 DMWARN("Message received with invalid device id: %s", arg);
3231 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3236 r = check_arg_count(argc, 2);
3240 r = read_dev_id(argv[1], &dev_id, 1);
3244 r = dm_pool_create_thin(pool->pmd, dev_id);
3246 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3254 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3257 dm_thin_id origin_dev_id;
3260 r = check_arg_count(argc, 3);
3264 r = read_dev_id(argv[1], &dev_id, 1);
3268 r = read_dev_id(argv[2], &origin_dev_id, 1);
3272 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3274 DMWARN("Creation of new snapshot %s of device %s failed.",
3282 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3287 r = check_arg_count(argc, 2);
3291 r = read_dev_id(argv[1], &dev_id, 1);
3295 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3297 DMWARN("Deletion of thin device %s failed.", argv[1]);
3302 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3304 dm_thin_id old_id, new_id;
3307 r = check_arg_count(argc, 3);
3311 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3312 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3316 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3317 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3321 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3323 DMWARN("Failed to change transaction id from %s to %s.",
3331 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3335 r = check_arg_count(argc, 1);
3339 (void) commit(pool);
3341 r = dm_pool_reserve_metadata_snap(pool->pmd);
3343 DMWARN("reserve_metadata_snap message failed.");
3348 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3352 r = check_arg_count(argc, 1);
3356 r = dm_pool_release_metadata_snap(pool->pmd);
3358 DMWARN("release_metadata_snap message failed.");
3364 * Messages supported:
3365 * create_thin <dev_id>
3366 * create_snap <dev_id> <origin_id>
3368 * set_transaction_id <current_trans_id> <new_trans_id>
3369 * reserve_metadata_snap
3370 * release_metadata_snap
3372 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3375 struct pool_c *pt = ti->private;
3376 struct pool *pool = pt->pool;
3378 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3379 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3380 dm_device_name(pool->pool_md));
3384 if (!strcasecmp(argv[0], "create_thin"))
3385 r = process_create_thin_mesg(argc, argv, pool);
3387 else if (!strcasecmp(argv[0], "create_snap"))
3388 r = process_create_snap_mesg(argc, argv, pool);
3390 else if (!strcasecmp(argv[0], "delete"))
3391 r = process_delete_mesg(argc, argv, pool);
3393 else if (!strcasecmp(argv[0], "set_transaction_id"))
3394 r = process_set_transaction_id_mesg(argc, argv, pool);
3396 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3397 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3399 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3400 r = process_release_metadata_snap_mesg(argc, argv, pool);
3403 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3406 (void) commit(pool);
3411 static void emit_flags(struct pool_features *pf, char *result,
3412 unsigned sz, unsigned maxlen)
3414 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3415 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3416 pf->error_if_no_space;
3417 DMEMIT("%u ", count);
3419 if (!pf->zero_new_blocks)
3420 DMEMIT("skip_block_zeroing ");
3422 if (!pf->discard_enabled)
3423 DMEMIT("ignore_discard ");
3425 if (!pf->discard_passdown)
3426 DMEMIT("no_discard_passdown ");
3428 if (pf->mode == PM_READ_ONLY)
3429 DMEMIT("read_only ");
3431 if (pf->error_if_no_space)
3432 DMEMIT("error_if_no_space ");
3437 * <transaction id> <used metadata sectors>/<total metadata sectors>
3438 * <used data sectors>/<total data sectors> <held metadata root>
3440 static void pool_status(struct dm_target *ti, status_type_t type,
3441 unsigned status_flags, char *result, unsigned maxlen)
3445 uint64_t transaction_id;
3446 dm_block_t nr_free_blocks_data;
3447 dm_block_t nr_free_blocks_metadata;
3448 dm_block_t nr_blocks_data;
3449 dm_block_t nr_blocks_metadata;
3450 dm_block_t held_root;
3451 char buf[BDEVNAME_SIZE];
3452 char buf2[BDEVNAME_SIZE];
3453 struct pool_c *pt = ti->private;
3454 struct pool *pool = pt->pool;
3457 case STATUSTYPE_INFO:
3458 if (get_pool_mode(pool) == PM_FAIL) {
3463 /* Commit to ensure statistics aren't out-of-date */
3464 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3465 (void) commit(pool);
3467 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3469 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3470 dm_device_name(pool->pool_md), r);
3474 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3476 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3477 dm_device_name(pool->pool_md), r);
3481 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3483 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3484 dm_device_name(pool->pool_md), r);
3488 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3490 DMERR("%s: dm_pool_get_free_block_count returned %d",
3491 dm_device_name(pool->pool_md), r);
3495 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3497 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3498 dm_device_name(pool->pool_md), r);
3502 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3504 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3505 dm_device_name(pool->pool_md), r);
3509 DMEMIT("%llu %llu/%llu %llu/%llu ",
3510 (unsigned long long)transaction_id,
3511 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3512 (unsigned long long)nr_blocks_metadata,
3513 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3514 (unsigned long long)nr_blocks_data);
3517 DMEMIT("%llu ", held_root);
3521 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3522 DMEMIT("out_of_data_space ");
3523 else if (pool->pf.mode == PM_READ_ONLY)
3528 if (!pool->pf.discard_enabled)
3529 DMEMIT("ignore_discard ");
3530 else if (pool->pf.discard_passdown)
3531 DMEMIT("discard_passdown ");
3533 DMEMIT("no_discard_passdown ");
3535 if (pool->pf.error_if_no_space)
3536 DMEMIT("error_if_no_space ");
3538 DMEMIT("queue_if_no_space ");
3542 case STATUSTYPE_TABLE:
3543 DMEMIT("%s %s %lu %llu ",
3544 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3545 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3546 (unsigned long)pool->sectors_per_block,
3547 (unsigned long long)pt->low_water_blocks);
3548 emit_flags(&pt->requested_pf, result, sz, maxlen);
3557 static int pool_iterate_devices(struct dm_target *ti,
3558 iterate_devices_callout_fn fn, void *data)
3560 struct pool_c *pt = ti->private;
3562 return fn(ti, pt->data_dev, 0, ti->len, data);
3565 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3566 struct bio_vec *biovec, int max_size)
3568 struct pool_c *pt = ti->private;
3569 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3571 if (!q->merge_bvec_fn)
3574 bvm->bi_bdev = pt->data_dev->bdev;
3576 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3579 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3581 struct pool *pool = pt->pool;
3582 struct queue_limits *data_limits;
3584 limits->max_discard_sectors = pool->sectors_per_block;
3587 * discard_granularity is just a hint, and not enforced.
3589 if (pt->adjusted_pf.discard_passdown) {
3590 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3591 limits->discard_granularity = max(data_limits->discard_granularity,
3592 pool->sectors_per_block << SECTOR_SHIFT);
3594 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3597 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3599 struct pool_c *pt = ti->private;
3600 struct pool *pool = pt->pool;
3601 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3604 * If max_sectors is smaller than pool->sectors_per_block adjust it
3605 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3606 * This is especially beneficial when the pool's data device is a RAID
3607 * device that has a full stripe width that matches pool->sectors_per_block
3608 * -- because even though partial RAID stripe-sized IOs will be issued to a
3609 * single RAID stripe; when aggregated they will end on a full RAID stripe
3610 * boundary.. which avoids additional partial RAID stripe writes cascading
3612 if (limits->max_sectors < pool->sectors_per_block) {
3613 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3614 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3615 limits->max_sectors--;
3616 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3621 * If the system-determined stacked limits are compatible with the
3622 * pool's blocksize (io_opt is a factor) do not override them.
3624 if (io_opt_sectors < pool->sectors_per_block ||
3625 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3626 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3627 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3629 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3630 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3634 * pt->adjusted_pf is a staging area for the actual features to use.
3635 * They get transferred to the live pool in bind_control_target()
3636 * called from pool_preresume().
3638 if (!pt->adjusted_pf.discard_enabled) {
3640 * Must explicitly disallow stacking discard limits otherwise the
3641 * block layer will stack them if pool's data device has support.
3642 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3643 * user to see that, so make sure to set all discard limits to 0.
3645 limits->discard_granularity = 0;
3649 disable_passdown_if_not_supported(pt);
3651 set_discard_limits(pt, limits);
3654 static struct target_type pool_target = {
3655 .name = "thin-pool",
3656 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3657 DM_TARGET_IMMUTABLE,
3658 .version = {1, 14, 0},
3659 .module = THIS_MODULE,
3663 .presuspend = pool_presuspend,
3664 .presuspend_undo = pool_presuspend_undo,
3665 .postsuspend = pool_postsuspend,
3666 .preresume = pool_preresume,
3667 .resume = pool_resume,
3668 .message = pool_message,
3669 .status = pool_status,
3670 .merge = pool_merge,
3671 .iterate_devices = pool_iterate_devices,
3672 .io_hints = pool_io_hints,
3675 /*----------------------------------------------------------------
3676 * Thin target methods
3677 *--------------------------------------------------------------*/
3678 static void thin_get(struct thin_c *tc)
3680 atomic_inc(&tc->refcount);
3683 static void thin_put(struct thin_c *tc)
3685 if (atomic_dec_and_test(&tc->refcount))
3686 complete(&tc->can_destroy);
3689 static void thin_dtr(struct dm_target *ti)
3691 struct thin_c *tc = ti->private;
3692 unsigned long flags;
3694 spin_lock_irqsave(&tc->pool->lock, flags);
3695 list_del_rcu(&tc->list);
3696 spin_unlock_irqrestore(&tc->pool->lock, flags);
3700 wait_for_completion(&tc->can_destroy);
3702 mutex_lock(&dm_thin_pool_table.mutex);
3704 __pool_dec(tc->pool);
3705 dm_pool_close_thin_device(tc->td);
3706 dm_put_device(ti, tc->pool_dev);
3708 dm_put_device(ti, tc->origin_dev);
3711 mutex_unlock(&dm_thin_pool_table.mutex);
3715 * Thin target parameters:
3717 * <pool_dev> <dev_id> [origin_dev]
3719 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3720 * dev_id: the internal device identifier
3721 * origin_dev: a device external to the pool that should act as the origin
3723 * If the pool device has discards disabled, they get disabled for the thin
3726 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3730 struct dm_dev *pool_dev, *origin_dev;
3731 struct mapped_device *pool_md;
3732 unsigned long flags;
3734 mutex_lock(&dm_thin_pool_table.mutex);
3736 if (argc != 2 && argc != 3) {
3737 ti->error = "Invalid argument count";
3742 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3744 ti->error = "Out of memory";
3748 tc->thin_md = dm_table_get_md(ti->table);
3749 spin_lock_init(&tc->lock);
3750 INIT_LIST_HEAD(&tc->deferred_cells);
3751 bio_list_init(&tc->deferred_bio_list);
3752 bio_list_init(&tc->retry_on_resume_list);
3753 tc->sort_bio_list = RB_ROOT;
3756 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3758 ti->error = "Error opening origin device";
3759 goto bad_origin_dev;
3761 tc->origin_dev = origin_dev;
3764 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3766 ti->error = "Error opening pool device";
3769 tc->pool_dev = pool_dev;
3771 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3772 ti->error = "Invalid device id";
3777 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3779 ti->error = "Couldn't get pool mapped device";
3784 tc->pool = __pool_table_lookup(pool_md);
3786 ti->error = "Couldn't find pool object";
3788 goto bad_pool_lookup;
3790 __pool_inc(tc->pool);
3792 if (get_pool_mode(tc->pool) == PM_FAIL) {
3793 ti->error = "Couldn't open thin device, Pool is in fail mode";
3798 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3800 ti->error = "Couldn't open thin internal device";
3804 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3808 ti->num_flush_bios = 1;
3809 ti->flush_supported = true;
3810 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3812 /* In case the pool supports discards, pass them on. */
3813 ti->discard_zeroes_data_unsupported = true;
3814 if (tc->pool->pf.discard_enabled) {
3815 ti->discards_supported = true;
3816 ti->num_discard_bios = 1;
3817 /* Discard bios must be split on a block boundary */
3818 ti->split_discard_bios = true;
3821 mutex_unlock(&dm_thin_pool_table.mutex);
3823 spin_lock_irqsave(&tc->pool->lock, flags);
3824 if (tc->pool->suspended) {
3825 spin_unlock_irqrestore(&tc->pool->lock, flags);
3826 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3827 ti->error = "Unable to activate thin device while pool is suspended";
3831 atomic_set(&tc->refcount, 1);
3832 init_completion(&tc->can_destroy);
3833 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3834 spin_unlock_irqrestore(&tc->pool->lock, flags);
3836 * This synchronize_rcu() call is needed here otherwise we risk a
3837 * wake_worker() call finding no bios to process (because the newly
3838 * added tc isn't yet visible). So this reduces latency since we
3839 * aren't then dependent on the periodic commit to wake_worker().
3848 dm_pool_close_thin_device(tc->td);
3850 __pool_dec(tc->pool);
3854 dm_put_device(ti, tc->pool_dev);
3857 dm_put_device(ti, tc->origin_dev);
3861 mutex_unlock(&dm_thin_pool_table.mutex);
3866 static int thin_map(struct dm_target *ti, struct bio *bio)
3868 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3870 return thin_bio_map(ti, bio);
3873 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3875 unsigned long flags;
3876 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3877 struct list_head work;
3878 struct dm_thin_new_mapping *m, *tmp;
3879 struct pool *pool = h->tc->pool;
3881 if (h->shared_read_entry) {
3882 INIT_LIST_HEAD(&work);
3883 dm_deferred_entry_dec(h->shared_read_entry, &work);
3885 spin_lock_irqsave(&pool->lock, flags);
3886 list_for_each_entry_safe(m, tmp, &work, list) {
3888 __complete_mapping_preparation(m);
3890 spin_unlock_irqrestore(&pool->lock, flags);
3893 if (h->all_io_entry) {
3894 INIT_LIST_HEAD(&work);
3895 dm_deferred_entry_dec(h->all_io_entry, &work);
3896 if (!list_empty(&work)) {
3897 spin_lock_irqsave(&pool->lock, flags);
3898 list_for_each_entry_safe(m, tmp, &work, list)
3899 list_add_tail(&m->list, &pool->prepared_discards);
3900 spin_unlock_irqrestore(&pool->lock, flags);
3908 static void thin_presuspend(struct dm_target *ti)
3910 struct thin_c *tc = ti->private;
3912 if (dm_noflush_suspending(ti))
3913 noflush_work(tc, do_noflush_start);
3916 static void thin_postsuspend(struct dm_target *ti)
3918 struct thin_c *tc = ti->private;
3921 * The dm_noflush_suspending flag has been cleared by now, so
3922 * unfortunately we must always run this.
3924 noflush_work(tc, do_noflush_stop);
3927 static int thin_preresume(struct dm_target *ti)
3929 struct thin_c *tc = ti->private;
3932 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3938 * <nr mapped sectors> <highest mapped sector>
3940 static void thin_status(struct dm_target *ti, status_type_t type,
3941 unsigned status_flags, char *result, unsigned maxlen)
3945 dm_block_t mapped, highest;
3946 char buf[BDEVNAME_SIZE];
3947 struct thin_c *tc = ti->private;
3949 if (get_pool_mode(tc->pool) == PM_FAIL) {
3958 case STATUSTYPE_INFO:
3959 r = dm_thin_get_mapped_count(tc->td, &mapped);
3961 DMERR("dm_thin_get_mapped_count returned %d", r);
3965 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3967 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3971 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3973 DMEMIT("%llu", ((highest + 1) *
3974 tc->pool->sectors_per_block) - 1);
3979 case STATUSTYPE_TABLE:
3981 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3982 (unsigned long) tc->dev_id);
3984 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3995 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3996 struct bio_vec *biovec, int max_size)
3998 struct thin_c *tc = ti->private;
3999 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4001 if (!q->merge_bvec_fn)
4004 bvm->bi_bdev = tc->pool_dev->bdev;
4005 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4007 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4010 static int thin_iterate_devices(struct dm_target *ti,
4011 iterate_devices_callout_fn fn, void *data)
4014 struct thin_c *tc = ti->private;
4015 struct pool *pool = tc->pool;
4018 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4019 * we follow a more convoluted path through to the pool's target.
4022 return 0; /* nothing is bound */
4024 blocks = pool->ti->len;
4025 (void) sector_div(blocks, pool->sectors_per_block);
4027 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4032 static struct target_type thin_target = {
4034 .version = {1, 14, 0},
4035 .module = THIS_MODULE,
4039 .end_io = thin_endio,
4040 .preresume = thin_preresume,
4041 .presuspend = thin_presuspend,
4042 .postsuspend = thin_postsuspend,
4043 .status = thin_status,
4044 .merge = thin_merge,
4045 .iterate_devices = thin_iterate_devices,
4048 /*----------------------------------------------------------------*/
4050 static int __init dm_thin_init(void)
4056 r = dm_register_target(&thin_target);
4060 r = dm_register_target(&pool_target);
4062 goto bad_pool_target;
4066 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4067 if (!_new_mapping_cache)
4068 goto bad_new_mapping_cache;
4072 bad_new_mapping_cache:
4073 dm_unregister_target(&pool_target);
4075 dm_unregister_target(&thin_target);
4080 static void dm_thin_exit(void)
4082 dm_unregister_target(&thin_target);
4083 dm_unregister_target(&pool_target);
4085 kmem_cache_destroy(_new_mapping_cache);
4088 module_init(dm_thin_init);
4089 module_exit(dm_thin_exit);
4091 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4092 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4094 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4095 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4096 MODULE_LICENSE("GPL");