]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
23
24 #define DM_MSG_PREFIX   "thin"
25
26 /*
27  * Tunable constants
28  */
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
33
34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
35
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
37                 "A percentage of time allocated for copy on write");
38
39 /*
40  * The block size of the device holding pool data must be
41  * between 64KB and 1GB.
42  */
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
45
46 /*
47  * Device id is restricted to 24 bits.
48  */
49 #define MAX_DEV_ID ((1 << 24) - 1)
50
51 /*
52  * How do we handle breaking sharing of data blocks?
53  * =================================================
54  *
55  * We use a standard copy-on-write btree to store the mappings for the
56  * devices (note I'm talking about copy-on-write of the metadata here, not
57  * the data).  When you take an internal snapshot you clone the root node
58  * of the origin btree.  After this there is no concept of an origin or a
59  * snapshot.  They are just two device trees that happen to point to the
60  * same data blocks.
61  *
62  * When we get a write in we decide if it's to a shared data block using
63  * some timestamp magic.  If it is, we have to break sharing.
64  *
65  * Let's say we write to a shared block in what was the origin.  The
66  * steps are:
67  *
68  * i) plug io further to this physical block. (see bio_prison code).
69  *
70  * ii) quiesce any read io to that shared data block.  Obviously
71  * including all devices that share this block.  (see dm_deferred_set code)
72  *
73  * iii) copy the data block to a newly allocate block.  This step can be
74  * missed out if the io covers the block. (schedule_copy).
75  *
76  * iv) insert the new mapping into the origin's btree
77  * (process_prepared_mapping).  This act of inserting breaks some
78  * sharing of btree nodes between the two devices.  Breaking sharing only
79  * effects the btree of that specific device.  Btrees for the other
80  * devices that share the block never change.  The btree for the origin
81  * device as it was after the last commit is untouched, ie. we're using
82  * persistent data structures in the functional programming sense.
83  *
84  * v) unplug io to this physical block, including the io that triggered
85  * the breaking of sharing.
86  *
87  * Steps (ii) and (iii) occur in parallel.
88  *
89  * The metadata _doesn't_ need to be committed before the io continues.  We
90  * get away with this because the io is always written to a _new_ block.
91  * If there's a crash, then:
92  *
93  * - The origin mapping will point to the old origin block (the shared
94  * one).  This will contain the data as it was before the io that triggered
95  * the breaking of sharing came in.
96  *
97  * - The snap mapping still points to the old block.  As it would after
98  * the commit.
99  *
100  * The downside of this scheme is the timestamp magic isn't perfect, and
101  * will continue to think that data block in the snapshot device is shared
102  * even after the write to the origin has broken sharing.  I suspect data
103  * blocks will typically be shared by many different devices, so we're
104  * breaking sharing n + 1 times, rather than n, where n is the number of
105  * devices that reference this data block.  At the moment I think the
106  * benefits far, far outweigh the disadvantages.
107  */
108
109 /*----------------------------------------------------------------*/
110
111 /*
112  * Key building.
113  */
114 static void build_data_key(struct dm_thin_device *td,
115                            dm_block_t b, struct dm_cell_key *key)
116 {
117         key->virtual = 0;
118         key->dev = dm_thin_dev_id(td);
119         key->block_begin = b;
120         key->block_end = b + 1ULL;
121 }
122
123 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
124                               struct dm_cell_key *key)
125 {
126         key->virtual = 1;
127         key->dev = dm_thin_dev_id(td);
128         key->block_begin = b;
129         key->block_end = b + 1ULL;
130 }
131
132 /*----------------------------------------------------------------*/
133
134 #define THROTTLE_THRESHOLD (1 * HZ)
135
136 struct throttle {
137         struct rw_semaphore lock;
138         unsigned long threshold;
139         bool throttle_applied;
140 };
141
142 static void throttle_init(struct throttle *t)
143 {
144         init_rwsem(&t->lock);
145         t->throttle_applied = false;
146 }
147
148 static void throttle_work_start(struct throttle *t)
149 {
150         t->threshold = jiffies + THROTTLE_THRESHOLD;
151 }
152
153 static void throttle_work_update(struct throttle *t)
154 {
155         if (!t->throttle_applied && jiffies > t->threshold) {
156                 down_write(&t->lock);
157                 t->throttle_applied = true;
158         }
159 }
160
161 static void throttle_work_complete(struct throttle *t)
162 {
163         if (t->throttle_applied) {
164                 t->throttle_applied = false;
165                 up_write(&t->lock);
166         }
167 }
168
169 static void throttle_lock(struct throttle *t)
170 {
171         down_read(&t->lock);
172 }
173
174 static void throttle_unlock(struct throttle *t)
175 {
176         up_read(&t->lock);
177 }
178
179 /*----------------------------------------------------------------*/
180
181 /*
182  * A pool device ties together a metadata device and a data device.  It
183  * also provides the interface for creating and destroying internal
184  * devices.
185  */
186 struct dm_thin_new_mapping;
187
188 /*
189  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
190  */
191 enum pool_mode {
192         PM_WRITE,               /* metadata may be changed */
193         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
194         PM_READ_ONLY,           /* metadata may not be changed */
195         PM_FAIL,                /* all I/O fails */
196 };
197
198 struct pool_features {
199         enum pool_mode mode;
200
201         bool zero_new_blocks:1;
202         bool discard_enabled:1;
203         bool discard_passdown:1;
204         bool error_if_no_space:1;
205 };
206
207 struct thin_c;
208 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
209 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
210 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
211
212 #define CELL_SORT_ARRAY_SIZE 8192
213
214 struct pool {
215         struct list_head list;
216         struct dm_target *ti;   /* Only set if a pool target is bound */
217
218         struct mapped_device *pool_md;
219         struct block_device *md_dev;
220         struct dm_pool_metadata *pmd;
221
222         dm_block_t low_water_blocks;
223         uint32_t sectors_per_block;
224         int sectors_per_block_shift;
225
226         struct pool_features pf;
227         bool low_water_triggered:1;     /* A dm event has been sent */
228         bool suspended:1;
229
230         struct dm_bio_prison *prison;
231         struct dm_kcopyd_client *copier;
232
233         struct workqueue_struct *wq;
234         struct throttle throttle;
235         struct work_struct worker;
236         struct delayed_work waker;
237         struct delayed_work no_space_timeout;
238
239         unsigned long last_commit_jiffies;
240         unsigned ref_count;
241
242         spinlock_t lock;
243         struct bio_list deferred_flush_bios;
244         struct list_head prepared_mappings;
245         struct list_head prepared_discards;
246         struct list_head active_thins;
247
248         struct dm_deferred_set *shared_read_ds;
249         struct dm_deferred_set *all_io_ds;
250
251         struct dm_thin_new_mapping *next_mapping;
252         mempool_t *mapping_pool;
253
254         process_bio_fn process_bio;
255         process_bio_fn process_discard;
256
257         process_cell_fn process_cell;
258         process_cell_fn process_discard_cell;
259
260         process_mapping_fn process_prepared_mapping;
261         process_mapping_fn process_prepared_discard;
262
263         struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
264 };
265
266 static enum pool_mode get_pool_mode(struct pool *pool);
267 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
268
269 /*
270  * Target context for a pool.
271  */
272 struct pool_c {
273         struct dm_target *ti;
274         struct pool *pool;
275         struct dm_dev *data_dev;
276         struct dm_dev *metadata_dev;
277         struct dm_target_callbacks callbacks;
278
279         dm_block_t low_water_blocks;
280         struct pool_features requested_pf; /* Features requested during table load */
281         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
282 };
283
284 /*
285  * Target context for a thin.
286  */
287 struct thin_c {
288         struct list_head list;
289         struct dm_dev *pool_dev;
290         struct dm_dev *origin_dev;
291         sector_t origin_size;
292         dm_thin_id dev_id;
293
294         struct pool *pool;
295         struct dm_thin_device *td;
296         struct mapped_device *thin_md;
297
298         bool requeue_mode:1;
299         spinlock_t lock;
300         struct list_head deferred_cells;
301         struct bio_list deferred_bio_list;
302         struct bio_list retry_on_resume_list;
303         struct rb_root sort_bio_list; /* sorted list of deferred bios */
304
305         /*
306          * Ensures the thin is not destroyed until the worker has finished
307          * iterating the active_thins list.
308          */
309         atomic_t refcount;
310         struct completion can_destroy;
311 };
312
313 /*----------------------------------------------------------------*/
314
315 /*
316  * wake_worker() is used when new work is queued and when pool_resume is
317  * ready to continue deferred IO processing.
318  */
319 static void wake_worker(struct pool *pool)
320 {
321         queue_work(pool->wq, &pool->worker);
322 }
323
324 /*----------------------------------------------------------------*/
325
326 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
327                       struct dm_bio_prison_cell **cell_result)
328 {
329         int r;
330         struct dm_bio_prison_cell *cell_prealloc;
331
332         /*
333          * Allocate a cell from the prison's mempool.
334          * This might block but it can't fail.
335          */
336         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
337
338         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
339         if (r)
340                 /*
341                  * We reused an old cell; we can get rid of
342                  * the new one.
343                  */
344                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
345
346         return r;
347 }
348
349 static void cell_release(struct pool *pool,
350                          struct dm_bio_prison_cell *cell,
351                          struct bio_list *bios)
352 {
353         dm_cell_release(pool->prison, cell, bios);
354         dm_bio_prison_free_cell(pool->prison, cell);
355 }
356
357 static void cell_visit_release(struct pool *pool,
358                                void (*fn)(void *, struct dm_bio_prison_cell *),
359                                void *context,
360                                struct dm_bio_prison_cell *cell)
361 {
362         dm_cell_visit_release(pool->prison, fn, context, cell);
363         dm_bio_prison_free_cell(pool->prison, cell);
364 }
365
366 static void cell_release_no_holder(struct pool *pool,
367                                    struct dm_bio_prison_cell *cell,
368                                    struct bio_list *bios)
369 {
370         dm_cell_release_no_holder(pool->prison, cell, bios);
371         dm_bio_prison_free_cell(pool->prison, cell);
372 }
373
374 static void cell_error_with_code(struct pool *pool,
375                                  struct dm_bio_prison_cell *cell, int error_code)
376 {
377         dm_cell_error(pool->prison, cell, error_code);
378         dm_bio_prison_free_cell(pool->prison, cell);
379 }
380
381 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
382 {
383         cell_error_with_code(pool, cell, -EIO);
384 }
385
386 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
387 {
388         cell_error_with_code(pool, cell, 0);
389 }
390
391 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
392 {
393         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
394 }
395
396 /*----------------------------------------------------------------*/
397
398 /*
399  * A global list of pools that uses a struct mapped_device as a key.
400  */
401 static struct dm_thin_pool_table {
402         struct mutex mutex;
403         struct list_head pools;
404 } dm_thin_pool_table;
405
406 static void pool_table_init(void)
407 {
408         mutex_init(&dm_thin_pool_table.mutex);
409         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
410 }
411
412 static void __pool_table_insert(struct pool *pool)
413 {
414         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
415         list_add(&pool->list, &dm_thin_pool_table.pools);
416 }
417
418 static void __pool_table_remove(struct pool *pool)
419 {
420         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
421         list_del(&pool->list);
422 }
423
424 static struct pool *__pool_table_lookup(struct mapped_device *md)
425 {
426         struct pool *pool = NULL, *tmp;
427
428         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
429
430         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
431                 if (tmp->pool_md == md) {
432                         pool = tmp;
433                         break;
434                 }
435         }
436
437         return pool;
438 }
439
440 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
441 {
442         struct pool *pool = NULL, *tmp;
443
444         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
445
446         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
447                 if (tmp->md_dev == md_dev) {
448                         pool = tmp;
449                         break;
450                 }
451         }
452
453         return pool;
454 }
455
456 /*----------------------------------------------------------------*/
457
458 struct dm_thin_endio_hook {
459         struct thin_c *tc;
460         struct dm_deferred_entry *shared_read_entry;
461         struct dm_deferred_entry *all_io_entry;
462         struct dm_thin_new_mapping *overwrite_mapping;
463         struct rb_node rb_node;
464 };
465
466 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
467 {
468         bio_list_merge(bios, master);
469         bio_list_init(master);
470 }
471
472 static void error_bio_list(struct bio_list *bios, int error)
473 {
474         struct bio *bio;
475
476         while ((bio = bio_list_pop(bios)))
477                 bio_endio(bio, error);
478 }
479
480 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
481 {
482         struct bio_list bios;
483         unsigned long flags;
484
485         bio_list_init(&bios);
486
487         spin_lock_irqsave(&tc->lock, flags);
488         __merge_bio_list(&bios, master);
489         spin_unlock_irqrestore(&tc->lock, flags);
490
491         error_bio_list(&bios, error);
492 }
493
494 static void requeue_deferred_cells(struct thin_c *tc)
495 {
496         struct pool *pool = tc->pool;
497         unsigned long flags;
498         struct list_head cells;
499         struct dm_bio_prison_cell *cell, *tmp;
500
501         INIT_LIST_HEAD(&cells);
502
503         spin_lock_irqsave(&tc->lock, flags);
504         list_splice_init(&tc->deferred_cells, &cells);
505         spin_unlock_irqrestore(&tc->lock, flags);
506
507         list_for_each_entry_safe(cell, tmp, &cells, user_list)
508                 cell_requeue(pool, cell);
509 }
510
511 static void requeue_io(struct thin_c *tc)
512 {
513         struct bio_list bios;
514         unsigned long flags;
515
516         bio_list_init(&bios);
517
518         spin_lock_irqsave(&tc->lock, flags);
519         __merge_bio_list(&bios, &tc->deferred_bio_list);
520         __merge_bio_list(&bios, &tc->retry_on_resume_list);
521         spin_unlock_irqrestore(&tc->lock, flags);
522
523         error_bio_list(&bios, DM_ENDIO_REQUEUE);
524         requeue_deferred_cells(tc);
525 }
526
527 static void error_retry_list(struct pool *pool)
528 {
529         struct thin_c *tc;
530
531         rcu_read_lock();
532         list_for_each_entry_rcu(tc, &pool->active_thins, list)
533                 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
534         rcu_read_unlock();
535 }
536
537 /*
538  * This section of code contains the logic for processing a thin device's IO.
539  * Much of the code depends on pool object resources (lists, workqueues, etc)
540  * but most is exclusively called from the thin target rather than the thin-pool
541  * target.
542  */
543
544 static bool block_size_is_power_of_two(struct pool *pool)
545 {
546         return pool->sectors_per_block_shift >= 0;
547 }
548
549 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
550 {
551         struct pool *pool = tc->pool;
552         sector_t block_nr = bio->bi_iter.bi_sector;
553
554         if (block_size_is_power_of_two(pool))
555                 block_nr >>= pool->sectors_per_block_shift;
556         else
557                 (void) sector_div(block_nr, pool->sectors_per_block);
558
559         return block_nr;
560 }
561
562 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
563 {
564         struct pool *pool = tc->pool;
565         sector_t bi_sector = bio->bi_iter.bi_sector;
566
567         bio->bi_bdev = tc->pool_dev->bdev;
568         if (block_size_is_power_of_two(pool))
569                 bio->bi_iter.bi_sector =
570                         (block << pool->sectors_per_block_shift) |
571                         (bi_sector & (pool->sectors_per_block - 1));
572         else
573                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
574                                  sector_div(bi_sector, pool->sectors_per_block);
575 }
576
577 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
578 {
579         bio->bi_bdev = tc->origin_dev->bdev;
580 }
581
582 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
583 {
584         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
585                 dm_thin_changed_this_transaction(tc->td);
586 }
587
588 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
589 {
590         struct dm_thin_endio_hook *h;
591
592         if (bio->bi_rw & REQ_DISCARD)
593                 return;
594
595         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
596         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
597 }
598
599 static void issue(struct thin_c *tc, struct bio *bio)
600 {
601         struct pool *pool = tc->pool;
602         unsigned long flags;
603
604         if (!bio_triggers_commit(tc, bio)) {
605                 generic_make_request(bio);
606                 return;
607         }
608
609         /*
610          * Complete bio with an error if earlier I/O caused changes to
611          * the metadata that can't be committed e.g, due to I/O errors
612          * on the metadata device.
613          */
614         if (dm_thin_aborted_changes(tc->td)) {
615                 bio_io_error(bio);
616                 return;
617         }
618
619         /*
620          * Batch together any bios that trigger commits and then issue a
621          * single commit for them in process_deferred_bios().
622          */
623         spin_lock_irqsave(&pool->lock, flags);
624         bio_list_add(&pool->deferred_flush_bios, bio);
625         spin_unlock_irqrestore(&pool->lock, flags);
626 }
627
628 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
629 {
630         remap_to_origin(tc, bio);
631         issue(tc, bio);
632 }
633
634 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
635                             dm_block_t block)
636 {
637         remap(tc, bio, block);
638         issue(tc, bio);
639 }
640
641 /*----------------------------------------------------------------*/
642
643 /*
644  * Bio endio functions.
645  */
646 struct dm_thin_new_mapping {
647         struct list_head list;
648
649         bool pass_discard:1;
650         bool definitely_not_shared:1;
651
652         /*
653          * Track quiescing, copying and zeroing preparation actions.  When this
654          * counter hits zero the block is prepared and can be inserted into the
655          * btree.
656          */
657         atomic_t prepare_actions;
658
659         int err;
660         struct thin_c *tc;
661         dm_block_t virt_block;
662         dm_block_t data_block;
663         struct dm_bio_prison_cell *cell, *cell2;
664
665         /*
666          * If the bio covers the whole area of a block then we can avoid
667          * zeroing or copying.  Instead this bio is hooked.  The bio will
668          * still be in the cell, so care has to be taken to avoid issuing
669          * the bio twice.
670          */
671         struct bio *bio;
672         bio_end_io_t *saved_bi_end_io;
673 };
674
675 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
676 {
677         struct pool *pool = m->tc->pool;
678
679         if (atomic_dec_and_test(&m->prepare_actions)) {
680                 list_add_tail(&m->list, &pool->prepared_mappings);
681                 wake_worker(pool);
682         }
683 }
684
685 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
686 {
687         unsigned long flags;
688         struct pool *pool = m->tc->pool;
689
690         spin_lock_irqsave(&pool->lock, flags);
691         __complete_mapping_preparation(m);
692         spin_unlock_irqrestore(&pool->lock, flags);
693 }
694
695 static void copy_complete(int read_err, unsigned long write_err, void *context)
696 {
697         struct dm_thin_new_mapping *m = context;
698
699         m->err = read_err || write_err ? -EIO : 0;
700         complete_mapping_preparation(m);
701 }
702
703 static void overwrite_endio(struct bio *bio, int err)
704 {
705         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
706         struct dm_thin_new_mapping *m = h->overwrite_mapping;
707
708         m->err = err;
709         complete_mapping_preparation(m);
710 }
711
712 /*----------------------------------------------------------------*/
713
714 /*
715  * Workqueue.
716  */
717
718 /*
719  * Prepared mapping jobs.
720  */
721
722 /*
723  * This sends the bios in the cell, except the original holder, back
724  * to the deferred_bios list.
725  */
726 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
727 {
728         struct pool *pool = tc->pool;
729         unsigned long flags;
730
731         spin_lock_irqsave(&tc->lock, flags);
732         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
733         spin_unlock_irqrestore(&tc->lock, flags);
734
735         wake_worker(pool);
736 }
737
738 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
739
740 struct remap_info {
741         struct thin_c *tc;
742         struct bio_list defer_bios;
743         struct bio_list issue_bios;
744 };
745
746 static void __inc_remap_and_issue_cell(void *context,
747                                        struct dm_bio_prison_cell *cell)
748 {
749         struct remap_info *info = context;
750         struct bio *bio;
751
752         while ((bio = bio_list_pop(&cell->bios))) {
753                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
754                         bio_list_add(&info->defer_bios, bio);
755                 else {
756                         inc_all_io_entry(info->tc->pool, bio);
757
758                         /*
759                          * We can't issue the bios with the bio prison lock
760                          * held, so we add them to a list to issue on
761                          * return from this function.
762                          */
763                         bio_list_add(&info->issue_bios, bio);
764                 }
765         }
766 }
767
768 static void inc_remap_and_issue_cell(struct thin_c *tc,
769                                      struct dm_bio_prison_cell *cell,
770                                      dm_block_t block)
771 {
772         struct bio *bio;
773         struct remap_info info;
774
775         info.tc = tc;
776         bio_list_init(&info.defer_bios);
777         bio_list_init(&info.issue_bios);
778
779         /*
780          * We have to be careful to inc any bios we're about to issue
781          * before the cell is released, and avoid a race with new bios
782          * being added to the cell.
783          */
784         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
785                            &info, cell);
786
787         while ((bio = bio_list_pop(&info.defer_bios)))
788                 thin_defer_bio(tc, bio);
789
790         while ((bio = bio_list_pop(&info.issue_bios)))
791                 remap_and_issue(info.tc, bio, block);
792 }
793
794 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
795 {
796         if (m->bio) {
797                 m->bio->bi_end_io = m->saved_bi_end_io;
798                 atomic_inc(&m->bio->bi_remaining);
799         }
800         cell_error(m->tc->pool, m->cell);
801         list_del(&m->list);
802         mempool_free(m, m->tc->pool->mapping_pool);
803 }
804
805 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
806 {
807         struct thin_c *tc = m->tc;
808         struct pool *pool = tc->pool;
809         struct bio *bio;
810         int r;
811
812         bio = m->bio;
813         if (bio) {
814                 bio->bi_end_io = m->saved_bi_end_io;
815                 atomic_inc(&bio->bi_remaining);
816         }
817
818         if (m->err) {
819                 cell_error(pool, m->cell);
820                 goto out;
821         }
822
823         /*
824          * Commit the prepared block into the mapping btree.
825          * Any I/O for this block arriving after this point will get
826          * remapped to it directly.
827          */
828         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
829         if (r) {
830                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
831                 cell_error(pool, m->cell);
832                 goto out;
833         }
834
835         /*
836          * Release any bios held while the block was being provisioned.
837          * If we are processing a write bio that completely covers the block,
838          * we already processed it so can ignore it now when processing
839          * the bios in the cell.
840          */
841         if (bio) {
842                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
843                 bio_endio(bio, 0);
844         } else {
845                 inc_all_io_entry(tc->pool, m->cell->holder);
846                 remap_and_issue(tc, m->cell->holder, m->data_block);
847                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
848         }
849
850 out:
851         list_del(&m->list);
852         mempool_free(m, pool->mapping_pool);
853 }
854
855 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
856 {
857         struct thin_c *tc = m->tc;
858
859         bio_io_error(m->bio);
860         cell_defer_no_holder(tc, m->cell);
861         cell_defer_no_holder(tc, m->cell2);
862         mempool_free(m, tc->pool->mapping_pool);
863 }
864
865 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
866 {
867         struct thin_c *tc = m->tc;
868
869         inc_all_io_entry(tc->pool, m->bio);
870         cell_defer_no_holder(tc, m->cell);
871         cell_defer_no_holder(tc, m->cell2);
872
873         if (m->pass_discard)
874                 if (m->definitely_not_shared)
875                         remap_and_issue(tc, m->bio, m->data_block);
876                 else {
877                         bool used = false;
878                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
879                                 bio_endio(m->bio, 0);
880                         else
881                                 remap_and_issue(tc, m->bio, m->data_block);
882                 }
883         else
884                 bio_endio(m->bio, 0);
885
886         mempool_free(m, tc->pool->mapping_pool);
887 }
888
889 static void process_prepared_discard(struct dm_thin_new_mapping *m)
890 {
891         int r;
892         struct thin_c *tc = m->tc;
893
894         r = dm_thin_remove_block(tc->td, m->virt_block);
895         if (r)
896                 DMERR_LIMIT("dm_thin_remove_block() failed");
897
898         process_prepared_discard_passdown(m);
899 }
900
901 static void process_prepared(struct pool *pool, struct list_head *head,
902                              process_mapping_fn *fn)
903 {
904         unsigned long flags;
905         struct list_head maps;
906         struct dm_thin_new_mapping *m, *tmp;
907
908         INIT_LIST_HEAD(&maps);
909         spin_lock_irqsave(&pool->lock, flags);
910         list_splice_init(head, &maps);
911         spin_unlock_irqrestore(&pool->lock, flags);
912
913         list_for_each_entry_safe(m, tmp, &maps, list)
914                 (*fn)(m);
915 }
916
917 /*
918  * Deferred bio jobs.
919  */
920 static int io_overlaps_block(struct pool *pool, struct bio *bio)
921 {
922         return bio->bi_iter.bi_size ==
923                 (pool->sectors_per_block << SECTOR_SHIFT);
924 }
925
926 static int io_overwrites_block(struct pool *pool, struct bio *bio)
927 {
928         return (bio_data_dir(bio) == WRITE) &&
929                 io_overlaps_block(pool, bio);
930 }
931
932 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
933                                bio_end_io_t *fn)
934 {
935         *save = bio->bi_end_io;
936         bio->bi_end_io = fn;
937 }
938
939 static int ensure_next_mapping(struct pool *pool)
940 {
941         if (pool->next_mapping)
942                 return 0;
943
944         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
945
946         return pool->next_mapping ? 0 : -ENOMEM;
947 }
948
949 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
950 {
951         struct dm_thin_new_mapping *m = pool->next_mapping;
952
953         BUG_ON(!pool->next_mapping);
954
955         memset(m, 0, sizeof(struct dm_thin_new_mapping));
956         INIT_LIST_HEAD(&m->list);
957         m->bio = NULL;
958
959         pool->next_mapping = NULL;
960
961         return m;
962 }
963
964 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
965                     sector_t begin, sector_t end)
966 {
967         int r;
968         struct dm_io_region to;
969
970         to.bdev = tc->pool_dev->bdev;
971         to.sector = begin;
972         to.count = end - begin;
973
974         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
975         if (r < 0) {
976                 DMERR_LIMIT("dm_kcopyd_zero() failed");
977                 copy_complete(1, 1, m);
978         }
979 }
980
981 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
982                                       dm_block_t data_block,
983                                       struct dm_thin_new_mapping *m)
984 {
985         struct pool *pool = tc->pool;
986         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
987
988         h->overwrite_mapping = m;
989         m->bio = bio;
990         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991         inc_all_io_entry(pool, bio);
992         remap_and_issue(tc, bio, data_block);
993 }
994
995 /*
996  * A partial copy also needs to zero the uncopied region.
997  */
998 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
999                           struct dm_dev *origin, dm_block_t data_origin,
1000                           dm_block_t data_dest,
1001                           struct dm_bio_prison_cell *cell, struct bio *bio,
1002                           sector_t len)
1003 {
1004         int r;
1005         struct pool *pool = tc->pool;
1006         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1007
1008         m->tc = tc;
1009         m->virt_block = virt_block;
1010         m->data_block = data_dest;
1011         m->cell = cell;
1012
1013         /*
1014          * quiesce action + copy action + an extra reference held for the
1015          * duration of this function (we may need to inc later for a
1016          * partial zero).
1017          */
1018         atomic_set(&m->prepare_actions, 3);
1019
1020         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1021                 complete_mapping_preparation(m); /* already quiesced */
1022
1023         /*
1024          * IO to pool_dev remaps to the pool target's data_dev.
1025          *
1026          * If the whole block of data is being overwritten, we can issue the
1027          * bio immediately. Otherwise we use kcopyd to clone the data first.
1028          */
1029         if (io_overwrites_block(pool, bio))
1030                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1031         else {
1032                 struct dm_io_region from, to;
1033
1034                 from.bdev = origin->bdev;
1035                 from.sector = data_origin * pool->sectors_per_block;
1036                 from.count = len;
1037
1038                 to.bdev = tc->pool_dev->bdev;
1039                 to.sector = data_dest * pool->sectors_per_block;
1040                 to.count = len;
1041
1042                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1043                                    0, copy_complete, m);
1044                 if (r < 0) {
1045                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1046                         copy_complete(1, 1, m);
1047
1048                         /*
1049                          * We allow the zero to be issued, to simplify the
1050                          * error path.  Otherwise we'd need to start
1051                          * worrying about decrementing the prepare_actions
1052                          * counter.
1053                          */
1054                 }
1055
1056                 /*
1057                  * Do we need to zero a tail region?
1058                  */
1059                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1060                         atomic_inc(&m->prepare_actions);
1061                         ll_zero(tc, m,
1062                                 data_dest * pool->sectors_per_block + len,
1063                                 (data_dest + 1) * pool->sectors_per_block);
1064                 }
1065         }
1066
1067         complete_mapping_preparation(m); /* drop our ref */
1068 }
1069
1070 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1071                                    dm_block_t data_origin, dm_block_t data_dest,
1072                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1073 {
1074         schedule_copy(tc, virt_block, tc->pool_dev,
1075                       data_origin, data_dest, cell, bio,
1076                       tc->pool->sectors_per_block);
1077 }
1078
1079 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1080                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1081                           struct bio *bio)
1082 {
1083         struct pool *pool = tc->pool;
1084         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1085
1086         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1087         m->tc = tc;
1088         m->virt_block = virt_block;
1089         m->data_block = data_block;
1090         m->cell = cell;
1091
1092         /*
1093          * If the whole block of data is being overwritten or we are not
1094          * zeroing pre-existing data, we can issue the bio immediately.
1095          * Otherwise we use kcopyd to zero the data first.
1096          */
1097         if (!pool->pf.zero_new_blocks)
1098                 process_prepared_mapping(m);
1099
1100         else if (io_overwrites_block(pool, bio))
1101                 remap_and_issue_overwrite(tc, bio, data_block, m);
1102
1103         else
1104                 ll_zero(tc, m,
1105                         data_block * pool->sectors_per_block,
1106                         (data_block + 1) * pool->sectors_per_block);
1107 }
1108
1109 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1110                                    dm_block_t data_dest,
1111                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1112 {
1113         struct pool *pool = tc->pool;
1114         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1115         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1116
1117         if (virt_block_end <= tc->origin_size)
1118                 schedule_copy(tc, virt_block, tc->origin_dev,
1119                               virt_block, data_dest, cell, bio,
1120                               pool->sectors_per_block);
1121
1122         else if (virt_block_begin < tc->origin_size)
1123                 schedule_copy(tc, virt_block, tc->origin_dev,
1124                               virt_block, data_dest, cell, bio,
1125                               tc->origin_size - virt_block_begin);
1126
1127         else
1128                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1129 }
1130
1131 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1132
1133 static void check_for_space(struct pool *pool)
1134 {
1135         int r;
1136         dm_block_t nr_free;
1137
1138         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1139                 return;
1140
1141         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1142         if (r)
1143                 return;
1144
1145         if (nr_free)
1146                 set_pool_mode(pool, PM_WRITE);
1147 }
1148
1149 /*
1150  * A non-zero return indicates read_only or fail_io mode.
1151  * Many callers don't care about the return value.
1152  */
1153 static int commit(struct pool *pool)
1154 {
1155         int r;
1156
1157         if (get_pool_mode(pool) >= PM_READ_ONLY)
1158                 return -EINVAL;
1159
1160         r = dm_pool_commit_metadata(pool->pmd);
1161         if (r)
1162                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1163         else
1164                 check_for_space(pool);
1165
1166         return r;
1167 }
1168
1169 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1170 {
1171         unsigned long flags;
1172
1173         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1174                 DMWARN("%s: reached low water mark for data device: sending event.",
1175                        dm_device_name(pool->pool_md));
1176                 spin_lock_irqsave(&pool->lock, flags);
1177                 pool->low_water_triggered = true;
1178                 spin_unlock_irqrestore(&pool->lock, flags);
1179                 dm_table_event(pool->ti->table);
1180         }
1181 }
1182
1183 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1184 {
1185         int r;
1186         dm_block_t free_blocks;
1187         struct pool *pool = tc->pool;
1188
1189         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1190                 return -EINVAL;
1191
1192         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1193         if (r) {
1194                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1195                 return r;
1196         }
1197
1198         check_low_water_mark(pool, free_blocks);
1199
1200         if (!free_blocks) {
1201                 /*
1202                  * Try to commit to see if that will free up some
1203                  * more space.
1204                  */
1205                 r = commit(pool);
1206                 if (r)
1207                         return r;
1208
1209                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1210                 if (r) {
1211                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1212                         return r;
1213                 }
1214
1215                 if (!free_blocks) {
1216                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1217                         return -ENOSPC;
1218                 }
1219         }
1220
1221         r = dm_pool_alloc_data_block(pool->pmd, result);
1222         if (r) {
1223                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1224                 return r;
1225         }
1226
1227         return 0;
1228 }
1229
1230 /*
1231  * If we have run out of space, queue bios until the device is
1232  * resumed, presumably after having been reloaded with more space.
1233  */
1234 static void retry_on_resume(struct bio *bio)
1235 {
1236         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237         struct thin_c *tc = h->tc;
1238         unsigned long flags;
1239
1240         spin_lock_irqsave(&tc->lock, flags);
1241         bio_list_add(&tc->retry_on_resume_list, bio);
1242         spin_unlock_irqrestore(&tc->lock, flags);
1243 }
1244
1245 static int should_error_unserviceable_bio(struct pool *pool)
1246 {
1247         enum pool_mode m = get_pool_mode(pool);
1248
1249         switch (m) {
1250         case PM_WRITE:
1251                 /* Shouldn't get here */
1252                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1253                 return -EIO;
1254
1255         case PM_OUT_OF_DATA_SPACE:
1256                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1257
1258         case PM_READ_ONLY:
1259         case PM_FAIL:
1260                 return -EIO;
1261         default:
1262                 /* Shouldn't get here */
1263                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1264                 return -EIO;
1265         }
1266 }
1267
1268 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1269 {
1270         int error = should_error_unserviceable_bio(pool);
1271
1272         if (error)
1273                 bio_endio(bio, error);
1274         else
1275                 retry_on_resume(bio);
1276 }
1277
1278 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1279 {
1280         struct bio *bio;
1281         struct bio_list bios;
1282         int error;
1283
1284         error = should_error_unserviceable_bio(pool);
1285         if (error) {
1286                 cell_error_with_code(pool, cell, error);
1287                 return;
1288         }
1289
1290         bio_list_init(&bios);
1291         cell_release(pool, cell, &bios);
1292
1293         while ((bio = bio_list_pop(&bios)))
1294                 retry_on_resume(bio);
1295 }
1296
1297 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1298 {
1299         int r;
1300         struct bio *bio = cell->holder;
1301         struct pool *pool = tc->pool;
1302         struct dm_bio_prison_cell *cell2;
1303         struct dm_cell_key key2;
1304         dm_block_t block = get_bio_block(tc, bio);
1305         struct dm_thin_lookup_result lookup_result;
1306         struct dm_thin_new_mapping *m;
1307
1308         if (tc->requeue_mode) {
1309                 cell_requeue(pool, cell);
1310                 return;
1311         }
1312
1313         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1314         switch (r) {
1315         case 0:
1316                 /*
1317                  * Check nobody is fiddling with this pool block.  This can
1318                  * happen if someone's in the process of breaking sharing
1319                  * on this block.
1320                  */
1321                 build_data_key(tc->td, lookup_result.block, &key2);
1322                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1323                         cell_defer_no_holder(tc, cell);
1324                         break;
1325                 }
1326
1327                 if (io_overlaps_block(pool, bio)) {
1328                         /*
1329                          * IO may still be going to the destination block.  We must
1330                          * quiesce before we can do the removal.
1331                          */
1332                         m = get_next_mapping(pool);
1333                         m->tc = tc;
1334                         m->pass_discard = pool->pf.discard_passdown;
1335                         m->definitely_not_shared = !lookup_result.shared;
1336                         m->virt_block = block;
1337                         m->data_block = lookup_result.block;
1338                         m->cell = cell;
1339                         m->cell2 = cell2;
1340                         m->bio = bio;
1341
1342                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1343                                 pool->process_prepared_discard(m);
1344
1345                 } else {
1346                         inc_all_io_entry(pool, bio);
1347                         cell_defer_no_holder(tc, cell);
1348                         cell_defer_no_holder(tc, cell2);
1349
1350                         /*
1351                          * The DM core makes sure that the discard doesn't span
1352                          * a block boundary.  So we submit the discard of a
1353                          * partial block appropriately.
1354                          */
1355                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1356                                 remap_and_issue(tc, bio, lookup_result.block);
1357                         else
1358                                 bio_endio(bio, 0);
1359                 }
1360                 break;
1361
1362         case -ENODATA:
1363                 /*
1364                  * It isn't provisioned, just forget it.
1365                  */
1366                 cell_defer_no_holder(tc, cell);
1367                 bio_endio(bio, 0);
1368                 break;
1369
1370         default:
1371                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1372                             __func__, r);
1373                 cell_defer_no_holder(tc, cell);
1374                 bio_io_error(bio);
1375                 break;
1376         }
1377 }
1378
1379 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1380 {
1381         struct dm_bio_prison_cell *cell;
1382         struct dm_cell_key key;
1383         dm_block_t block = get_bio_block(tc, bio);
1384
1385         build_virtual_key(tc->td, block, &key);
1386         if (bio_detain(tc->pool, &key, bio, &cell))
1387                 return;
1388
1389         process_discard_cell(tc, cell);
1390 }
1391
1392 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1393                           struct dm_cell_key *key,
1394                           struct dm_thin_lookup_result *lookup_result,
1395                           struct dm_bio_prison_cell *cell)
1396 {
1397         int r;
1398         dm_block_t data_block;
1399         struct pool *pool = tc->pool;
1400
1401         r = alloc_data_block(tc, &data_block);
1402         switch (r) {
1403         case 0:
1404                 schedule_internal_copy(tc, block, lookup_result->block,
1405                                        data_block, cell, bio);
1406                 break;
1407
1408         case -ENOSPC:
1409                 retry_bios_on_resume(pool, cell);
1410                 break;
1411
1412         default:
1413                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1414                             __func__, r);
1415                 cell_error(pool, cell);
1416                 break;
1417         }
1418 }
1419
1420 static void __remap_and_issue_shared_cell(void *context,
1421                                           struct dm_bio_prison_cell *cell)
1422 {
1423         struct remap_info *info = context;
1424         struct bio *bio;
1425
1426         while ((bio = bio_list_pop(&cell->bios))) {
1427                 if ((bio_data_dir(bio) == WRITE) ||
1428                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1429                         bio_list_add(&info->defer_bios, bio);
1430                 else {
1431                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1432
1433                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1434                         inc_all_io_entry(info->tc->pool, bio);
1435                         bio_list_add(&info->issue_bios, bio);
1436                 }
1437         }
1438 }
1439
1440 static void remap_and_issue_shared_cell(struct thin_c *tc,
1441                                         struct dm_bio_prison_cell *cell,
1442                                         dm_block_t block)
1443 {
1444         struct bio *bio;
1445         struct remap_info info;
1446
1447         info.tc = tc;
1448         bio_list_init(&info.defer_bios);
1449         bio_list_init(&info.issue_bios);
1450
1451         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1452                            &info, cell);
1453
1454         while ((bio = bio_list_pop(&info.defer_bios)))
1455                 thin_defer_bio(tc, bio);
1456
1457         while ((bio = bio_list_pop(&info.issue_bios)))
1458                 remap_and_issue(tc, bio, block);
1459 }
1460
1461 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1462                                dm_block_t block,
1463                                struct dm_thin_lookup_result *lookup_result,
1464                                struct dm_bio_prison_cell *virt_cell)
1465 {
1466         struct dm_bio_prison_cell *data_cell;
1467         struct pool *pool = tc->pool;
1468         struct dm_cell_key key;
1469
1470         /*
1471          * If cell is already occupied, then sharing is already in the process
1472          * of being broken so we have nothing further to do here.
1473          */
1474         build_data_key(tc->td, lookup_result->block, &key);
1475         if (bio_detain(pool, &key, bio, &data_cell)) {
1476                 cell_defer_no_holder(tc, virt_cell);
1477                 return;
1478         }
1479
1480         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1481                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1482                 cell_defer_no_holder(tc, virt_cell);
1483         } else {
1484                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1485
1486                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1487                 inc_all_io_entry(pool, bio);
1488                 remap_and_issue(tc, bio, lookup_result->block);
1489
1490                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1491                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1492         }
1493 }
1494
1495 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1496                             struct dm_bio_prison_cell *cell)
1497 {
1498         int r;
1499         dm_block_t data_block;
1500         struct pool *pool = tc->pool;
1501
1502         /*
1503          * Remap empty bios (flushes) immediately, without provisioning.
1504          */
1505         if (!bio->bi_iter.bi_size) {
1506                 inc_all_io_entry(pool, bio);
1507                 cell_defer_no_holder(tc, cell);
1508
1509                 remap_and_issue(tc, bio, 0);
1510                 return;
1511         }
1512
1513         /*
1514          * Fill read bios with zeroes and complete them immediately.
1515          */
1516         if (bio_data_dir(bio) == READ) {
1517                 zero_fill_bio(bio);
1518                 cell_defer_no_holder(tc, cell);
1519                 bio_endio(bio, 0);
1520                 return;
1521         }
1522
1523         r = alloc_data_block(tc, &data_block);
1524         switch (r) {
1525         case 0:
1526                 if (tc->origin_dev)
1527                         schedule_external_copy(tc, block, data_block, cell, bio);
1528                 else
1529                         schedule_zero(tc, block, data_block, cell, bio);
1530                 break;
1531
1532         case -ENOSPC:
1533                 retry_bios_on_resume(pool, cell);
1534                 break;
1535
1536         default:
1537                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1538                             __func__, r);
1539                 cell_error(pool, cell);
1540                 break;
1541         }
1542 }
1543
1544 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1545 {
1546         int r;
1547         struct pool *pool = tc->pool;
1548         struct bio *bio = cell->holder;
1549         dm_block_t block = get_bio_block(tc, bio);
1550         struct dm_thin_lookup_result lookup_result;
1551
1552         if (tc->requeue_mode) {
1553                 cell_requeue(pool, cell);
1554                 return;
1555         }
1556
1557         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1558         switch (r) {
1559         case 0:
1560                 if (lookup_result.shared)
1561                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1562                 else {
1563                         inc_all_io_entry(pool, bio);
1564                         remap_and_issue(tc, bio, lookup_result.block);
1565                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1566                 }
1567                 break;
1568
1569         case -ENODATA:
1570                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1571                         inc_all_io_entry(pool, bio);
1572                         cell_defer_no_holder(tc, cell);
1573
1574                         if (bio_end_sector(bio) <= tc->origin_size)
1575                                 remap_to_origin_and_issue(tc, bio);
1576
1577                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1578                                 zero_fill_bio(bio);
1579                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1580                                 remap_to_origin_and_issue(tc, bio);
1581
1582                         } else {
1583                                 zero_fill_bio(bio);
1584                                 bio_endio(bio, 0);
1585                         }
1586                 } else
1587                         provision_block(tc, bio, block, cell);
1588                 break;
1589
1590         default:
1591                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1592                             __func__, r);
1593                 cell_defer_no_holder(tc, cell);
1594                 bio_io_error(bio);
1595                 break;
1596         }
1597 }
1598
1599 static void process_bio(struct thin_c *tc, struct bio *bio)
1600 {
1601         struct pool *pool = tc->pool;
1602         dm_block_t block = get_bio_block(tc, bio);
1603         struct dm_bio_prison_cell *cell;
1604         struct dm_cell_key key;
1605
1606         /*
1607          * If cell is already occupied, then the block is already
1608          * being provisioned so we have nothing further to do here.
1609          */
1610         build_virtual_key(tc->td, block, &key);
1611         if (bio_detain(pool, &key, bio, &cell))
1612                 return;
1613
1614         process_cell(tc, cell);
1615 }
1616
1617 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1618                                     struct dm_bio_prison_cell *cell)
1619 {
1620         int r;
1621         int rw = bio_data_dir(bio);
1622         dm_block_t block = get_bio_block(tc, bio);
1623         struct dm_thin_lookup_result lookup_result;
1624
1625         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1626         switch (r) {
1627         case 0:
1628                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1629                         handle_unserviceable_bio(tc->pool, bio);
1630                         if (cell)
1631                                 cell_defer_no_holder(tc, cell);
1632                 } else {
1633                         inc_all_io_entry(tc->pool, bio);
1634                         remap_and_issue(tc, bio, lookup_result.block);
1635                         if (cell)
1636                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1637                 }
1638                 break;
1639
1640         case -ENODATA:
1641                 if (cell)
1642                         cell_defer_no_holder(tc, cell);
1643                 if (rw != READ) {
1644                         handle_unserviceable_bio(tc->pool, bio);
1645                         break;
1646                 }
1647
1648                 if (tc->origin_dev) {
1649                         inc_all_io_entry(tc->pool, bio);
1650                         remap_to_origin_and_issue(tc, bio);
1651                         break;
1652                 }
1653
1654                 zero_fill_bio(bio);
1655                 bio_endio(bio, 0);
1656                 break;
1657
1658         default:
1659                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1660                             __func__, r);
1661                 if (cell)
1662                         cell_defer_no_holder(tc, cell);
1663                 bio_io_error(bio);
1664                 break;
1665         }
1666 }
1667
1668 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1669 {
1670         __process_bio_read_only(tc, bio, NULL);
1671 }
1672
1673 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1674 {
1675         __process_bio_read_only(tc, cell->holder, cell);
1676 }
1677
1678 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1679 {
1680         bio_endio(bio, 0);
1681 }
1682
1683 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1684 {
1685         bio_io_error(bio);
1686 }
1687
1688 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1689 {
1690         cell_success(tc->pool, cell);
1691 }
1692
1693 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1694 {
1695         cell_error(tc->pool, cell);
1696 }
1697
1698 /*
1699  * FIXME: should we also commit due to size of transaction, measured in
1700  * metadata blocks?
1701  */
1702 static int need_commit_due_to_time(struct pool *pool)
1703 {
1704         return !time_in_range(jiffies, pool->last_commit_jiffies,
1705                               pool->last_commit_jiffies + COMMIT_PERIOD);
1706 }
1707
1708 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1709 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1710
1711 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1712 {
1713         struct rb_node **rbp, *parent;
1714         struct dm_thin_endio_hook *pbd;
1715         sector_t bi_sector = bio->bi_iter.bi_sector;
1716
1717         rbp = &tc->sort_bio_list.rb_node;
1718         parent = NULL;
1719         while (*rbp) {
1720                 parent = *rbp;
1721                 pbd = thin_pbd(parent);
1722
1723                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1724                         rbp = &(*rbp)->rb_left;
1725                 else
1726                         rbp = &(*rbp)->rb_right;
1727         }
1728
1729         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730         rb_link_node(&pbd->rb_node, parent, rbp);
1731         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1732 }
1733
1734 static void __extract_sorted_bios(struct thin_c *tc)
1735 {
1736         struct rb_node *node;
1737         struct dm_thin_endio_hook *pbd;
1738         struct bio *bio;
1739
1740         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1741                 pbd = thin_pbd(node);
1742                 bio = thin_bio(pbd);
1743
1744                 bio_list_add(&tc->deferred_bio_list, bio);
1745                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1746         }
1747
1748         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1749 }
1750
1751 static void __sort_thin_deferred_bios(struct thin_c *tc)
1752 {
1753         struct bio *bio;
1754         struct bio_list bios;
1755
1756         bio_list_init(&bios);
1757         bio_list_merge(&bios, &tc->deferred_bio_list);
1758         bio_list_init(&tc->deferred_bio_list);
1759
1760         /* Sort deferred_bio_list using rb-tree */
1761         while ((bio = bio_list_pop(&bios)))
1762                 __thin_bio_rb_add(tc, bio);
1763
1764         /*
1765          * Transfer the sorted bios in sort_bio_list back to
1766          * deferred_bio_list to allow lockless submission of
1767          * all bios.
1768          */
1769         __extract_sorted_bios(tc);
1770 }
1771
1772 static void process_thin_deferred_bios(struct thin_c *tc)
1773 {
1774         struct pool *pool = tc->pool;
1775         unsigned long flags;
1776         struct bio *bio;
1777         struct bio_list bios;
1778         struct blk_plug plug;
1779         unsigned count = 0;
1780
1781         if (tc->requeue_mode) {
1782                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1783                 return;
1784         }
1785
1786         bio_list_init(&bios);
1787
1788         spin_lock_irqsave(&tc->lock, flags);
1789
1790         if (bio_list_empty(&tc->deferred_bio_list)) {
1791                 spin_unlock_irqrestore(&tc->lock, flags);
1792                 return;
1793         }
1794
1795         __sort_thin_deferred_bios(tc);
1796
1797         bio_list_merge(&bios, &tc->deferred_bio_list);
1798         bio_list_init(&tc->deferred_bio_list);
1799
1800         spin_unlock_irqrestore(&tc->lock, flags);
1801
1802         blk_start_plug(&plug);
1803         while ((bio = bio_list_pop(&bios))) {
1804                 /*
1805                  * If we've got no free new_mapping structs, and processing
1806                  * this bio might require one, we pause until there are some
1807                  * prepared mappings to process.
1808                  */
1809                 if (ensure_next_mapping(pool)) {
1810                         spin_lock_irqsave(&tc->lock, flags);
1811                         bio_list_add(&tc->deferred_bio_list, bio);
1812                         bio_list_merge(&tc->deferred_bio_list, &bios);
1813                         spin_unlock_irqrestore(&tc->lock, flags);
1814                         break;
1815                 }
1816
1817                 if (bio->bi_rw & REQ_DISCARD)
1818                         pool->process_discard(tc, bio);
1819                 else
1820                         pool->process_bio(tc, bio);
1821
1822                 if ((count++ & 127) == 0) {
1823                         throttle_work_update(&pool->throttle);
1824                         dm_pool_issue_prefetches(pool->pmd);
1825                 }
1826         }
1827         blk_finish_plug(&plug);
1828 }
1829
1830 static int cmp_cells(const void *lhs, const void *rhs)
1831 {
1832         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1833         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1834
1835         BUG_ON(!lhs_cell->holder);
1836         BUG_ON(!rhs_cell->holder);
1837
1838         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1839                 return -1;
1840
1841         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1842                 return 1;
1843
1844         return 0;
1845 }
1846
1847 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1848 {
1849         unsigned count = 0;
1850         struct dm_bio_prison_cell *cell, *tmp;
1851
1852         list_for_each_entry_safe(cell, tmp, cells, user_list) {
1853                 if (count >= CELL_SORT_ARRAY_SIZE)
1854                         break;
1855
1856                 pool->cell_sort_array[count++] = cell;
1857                 list_del(&cell->user_list);
1858         }
1859
1860         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1861
1862         return count;
1863 }
1864
1865 static void process_thin_deferred_cells(struct thin_c *tc)
1866 {
1867         struct pool *pool = tc->pool;
1868         unsigned long flags;
1869         struct list_head cells;
1870         struct dm_bio_prison_cell *cell;
1871         unsigned i, j, count;
1872
1873         INIT_LIST_HEAD(&cells);
1874
1875         spin_lock_irqsave(&tc->lock, flags);
1876         list_splice_init(&tc->deferred_cells, &cells);
1877         spin_unlock_irqrestore(&tc->lock, flags);
1878
1879         if (list_empty(&cells))
1880                 return;
1881
1882         do {
1883                 count = sort_cells(tc->pool, &cells);
1884
1885                 for (i = 0; i < count; i++) {
1886                         cell = pool->cell_sort_array[i];
1887                         BUG_ON(!cell->holder);
1888
1889                         /*
1890                          * If we've got no free new_mapping structs, and processing
1891                          * this bio might require one, we pause until there are some
1892                          * prepared mappings to process.
1893                          */
1894                         if (ensure_next_mapping(pool)) {
1895                                 for (j = i; j < count; j++)
1896                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
1897
1898                                 spin_lock_irqsave(&tc->lock, flags);
1899                                 list_splice(&cells, &tc->deferred_cells);
1900                                 spin_unlock_irqrestore(&tc->lock, flags);
1901                                 return;
1902                         }
1903
1904                         if (cell->holder->bi_rw & REQ_DISCARD)
1905                                 pool->process_discard_cell(tc, cell);
1906                         else
1907                                 pool->process_cell(tc, cell);
1908                 }
1909         } while (!list_empty(&cells));
1910 }
1911
1912 static void thin_get(struct thin_c *tc);
1913 static void thin_put(struct thin_c *tc);
1914
1915 /*
1916  * We can't hold rcu_read_lock() around code that can block.  So we
1917  * find a thin with the rcu lock held; bump a refcount; then drop
1918  * the lock.
1919  */
1920 static struct thin_c *get_first_thin(struct pool *pool)
1921 {
1922         struct thin_c *tc = NULL;
1923
1924         rcu_read_lock();
1925         if (!list_empty(&pool->active_thins)) {
1926                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1927                 thin_get(tc);
1928         }
1929         rcu_read_unlock();
1930
1931         return tc;
1932 }
1933
1934 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1935 {
1936         struct thin_c *old_tc = tc;
1937
1938         rcu_read_lock();
1939         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1940                 thin_get(tc);
1941                 thin_put(old_tc);
1942                 rcu_read_unlock();
1943                 return tc;
1944         }
1945         thin_put(old_tc);
1946         rcu_read_unlock();
1947
1948         return NULL;
1949 }
1950
1951 static void process_deferred_bios(struct pool *pool)
1952 {
1953         unsigned long flags;
1954         struct bio *bio;
1955         struct bio_list bios;
1956         struct thin_c *tc;
1957
1958         tc = get_first_thin(pool);
1959         while (tc) {
1960                 process_thin_deferred_cells(tc);
1961                 process_thin_deferred_bios(tc);
1962                 tc = get_next_thin(pool, tc);
1963         }
1964
1965         /*
1966          * If there are any deferred flush bios, we must commit
1967          * the metadata before issuing them.
1968          */
1969         bio_list_init(&bios);
1970         spin_lock_irqsave(&pool->lock, flags);
1971         bio_list_merge(&bios, &pool->deferred_flush_bios);
1972         bio_list_init(&pool->deferred_flush_bios);
1973         spin_unlock_irqrestore(&pool->lock, flags);
1974
1975         if (bio_list_empty(&bios) &&
1976             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1977                 return;
1978
1979         if (commit(pool)) {
1980                 while ((bio = bio_list_pop(&bios)))
1981                         bio_io_error(bio);
1982                 return;
1983         }
1984         pool->last_commit_jiffies = jiffies;
1985
1986         while ((bio = bio_list_pop(&bios)))
1987                 generic_make_request(bio);
1988 }
1989
1990 static void do_worker(struct work_struct *ws)
1991 {
1992         struct pool *pool = container_of(ws, struct pool, worker);
1993
1994         throttle_work_start(&pool->throttle);
1995         dm_pool_issue_prefetches(pool->pmd);
1996         throttle_work_update(&pool->throttle);
1997         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1998         throttle_work_update(&pool->throttle);
1999         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2000         throttle_work_update(&pool->throttle);
2001         process_deferred_bios(pool);
2002         throttle_work_complete(&pool->throttle);
2003 }
2004
2005 /*
2006  * We want to commit periodically so that not too much
2007  * unwritten data builds up.
2008  */
2009 static void do_waker(struct work_struct *ws)
2010 {
2011         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2012         wake_worker(pool);
2013         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2014 }
2015
2016 /*
2017  * We're holding onto IO to allow userland time to react.  After the
2018  * timeout either the pool will have been resized (and thus back in
2019  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2020  */
2021 static void do_no_space_timeout(struct work_struct *ws)
2022 {
2023         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2024                                          no_space_timeout);
2025
2026         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2027                 set_pool_mode(pool, PM_READ_ONLY);
2028 }
2029
2030 /*----------------------------------------------------------------*/
2031
2032 struct pool_work {
2033         struct work_struct worker;
2034         struct completion complete;
2035 };
2036
2037 static struct pool_work *to_pool_work(struct work_struct *ws)
2038 {
2039         return container_of(ws, struct pool_work, worker);
2040 }
2041
2042 static void pool_work_complete(struct pool_work *pw)
2043 {
2044         complete(&pw->complete);
2045 }
2046
2047 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2048                            void (*fn)(struct work_struct *))
2049 {
2050         INIT_WORK_ONSTACK(&pw->worker, fn);
2051         init_completion(&pw->complete);
2052         queue_work(pool->wq, &pw->worker);
2053         wait_for_completion(&pw->complete);
2054 }
2055
2056 /*----------------------------------------------------------------*/
2057
2058 struct noflush_work {
2059         struct pool_work pw;
2060         struct thin_c *tc;
2061 };
2062
2063 static struct noflush_work *to_noflush(struct work_struct *ws)
2064 {
2065         return container_of(to_pool_work(ws), struct noflush_work, pw);
2066 }
2067
2068 static void do_noflush_start(struct work_struct *ws)
2069 {
2070         struct noflush_work *w = to_noflush(ws);
2071         w->tc->requeue_mode = true;
2072         requeue_io(w->tc);
2073         pool_work_complete(&w->pw);
2074 }
2075
2076 static void do_noflush_stop(struct work_struct *ws)
2077 {
2078         struct noflush_work *w = to_noflush(ws);
2079         w->tc->requeue_mode = false;
2080         pool_work_complete(&w->pw);
2081 }
2082
2083 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2084 {
2085         struct noflush_work w;
2086
2087         w.tc = tc;
2088         pool_work_wait(&w.pw, tc->pool, fn);
2089 }
2090
2091 /*----------------------------------------------------------------*/
2092
2093 static enum pool_mode get_pool_mode(struct pool *pool)
2094 {
2095         return pool->pf.mode;
2096 }
2097
2098 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2099 {
2100         dm_table_event(pool->ti->table);
2101         DMINFO("%s: switching pool to %s mode",
2102                dm_device_name(pool->pool_md), new_mode);
2103 }
2104
2105 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2106 {
2107         struct pool_c *pt = pool->ti->private;
2108         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2109         enum pool_mode old_mode = get_pool_mode(pool);
2110         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2111
2112         /*
2113          * Never allow the pool to transition to PM_WRITE mode if user
2114          * intervention is required to verify metadata and data consistency.
2115          */
2116         if (new_mode == PM_WRITE && needs_check) {
2117                 DMERR("%s: unable to switch pool to write mode until repaired.",
2118                       dm_device_name(pool->pool_md));
2119                 if (old_mode != new_mode)
2120                         new_mode = old_mode;
2121                 else
2122                         new_mode = PM_READ_ONLY;
2123         }
2124         /*
2125          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2126          * not going to recover without a thin_repair.  So we never let the
2127          * pool move out of the old mode.
2128          */
2129         if (old_mode == PM_FAIL)
2130                 new_mode = old_mode;
2131
2132         switch (new_mode) {
2133         case PM_FAIL:
2134                 if (old_mode != new_mode)
2135                         notify_of_pool_mode_change(pool, "failure");
2136                 dm_pool_metadata_read_only(pool->pmd);
2137                 pool->process_bio = process_bio_fail;
2138                 pool->process_discard = process_bio_fail;
2139                 pool->process_cell = process_cell_fail;
2140                 pool->process_discard_cell = process_cell_fail;
2141                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2142                 pool->process_prepared_discard = process_prepared_discard_fail;
2143
2144                 error_retry_list(pool);
2145                 break;
2146
2147         case PM_READ_ONLY:
2148                 if (old_mode != new_mode)
2149                         notify_of_pool_mode_change(pool, "read-only");
2150                 dm_pool_metadata_read_only(pool->pmd);
2151                 pool->process_bio = process_bio_read_only;
2152                 pool->process_discard = process_bio_success;
2153                 pool->process_cell = process_cell_read_only;
2154                 pool->process_discard_cell = process_cell_success;
2155                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2156                 pool->process_prepared_discard = process_prepared_discard_passdown;
2157
2158                 error_retry_list(pool);
2159                 break;
2160
2161         case PM_OUT_OF_DATA_SPACE:
2162                 /*
2163                  * Ideally we'd never hit this state; the low water mark
2164                  * would trigger userland to extend the pool before we
2165                  * completely run out of data space.  However, many small
2166                  * IOs to unprovisioned space can consume data space at an
2167                  * alarming rate.  Adjust your low water mark if you're
2168                  * frequently seeing this mode.
2169                  */
2170                 if (old_mode != new_mode)
2171                         notify_of_pool_mode_change(pool, "out-of-data-space");
2172                 pool->process_bio = process_bio_read_only;
2173                 pool->process_discard = process_discard_bio;
2174                 pool->process_cell = process_cell_read_only;
2175                 pool->process_discard_cell = process_discard_cell;
2176                 pool->process_prepared_mapping = process_prepared_mapping;
2177                 pool->process_prepared_discard = process_prepared_discard;
2178
2179                 if (!pool->pf.error_if_no_space && no_space_timeout)
2180                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2181                 break;
2182
2183         case PM_WRITE:
2184                 if (old_mode != new_mode)
2185                         notify_of_pool_mode_change(pool, "write");
2186                 dm_pool_metadata_read_write(pool->pmd);
2187                 pool->process_bio = process_bio;
2188                 pool->process_discard = process_discard_bio;
2189                 pool->process_cell = process_cell;
2190                 pool->process_discard_cell = process_discard_cell;
2191                 pool->process_prepared_mapping = process_prepared_mapping;
2192                 pool->process_prepared_discard = process_prepared_discard;
2193                 break;
2194         }
2195
2196         pool->pf.mode = new_mode;
2197         /*
2198          * The pool mode may have changed, sync it so bind_control_target()
2199          * doesn't cause an unexpected mode transition on resume.
2200          */
2201         pt->adjusted_pf.mode = new_mode;
2202 }
2203
2204 static void abort_transaction(struct pool *pool)
2205 {
2206         const char *dev_name = dm_device_name(pool->pool_md);
2207
2208         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2209         if (dm_pool_abort_metadata(pool->pmd)) {
2210                 DMERR("%s: failed to abort metadata transaction", dev_name);
2211                 set_pool_mode(pool, PM_FAIL);
2212         }
2213
2214         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2215                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2216                 set_pool_mode(pool, PM_FAIL);
2217         }
2218 }
2219
2220 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2221 {
2222         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2223                     dm_device_name(pool->pool_md), op, r);
2224
2225         abort_transaction(pool);
2226         set_pool_mode(pool, PM_READ_ONLY);
2227 }
2228
2229 /*----------------------------------------------------------------*/
2230
2231 /*
2232  * Mapping functions.
2233  */
2234
2235 /*
2236  * Called only while mapping a thin bio to hand it over to the workqueue.
2237  */
2238 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2239 {
2240         unsigned long flags;
2241         struct pool *pool = tc->pool;
2242
2243         spin_lock_irqsave(&tc->lock, flags);
2244         bio_list_add(&tc->deferred_bio_list, bio);
2245         spin_unlock_irqrestore(&tc->lock, flags);
2246
2247         wake_worker(pool);
2248 }
2249
2250 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2251 {
2252         struct pool *pool = tc->pool;
2253
2254         throttle_lock(&pool->throttle);
2255         thin_defer_bio(tc, bio);
2256         throttle_unlock(&pool->throttle);
2257 }
2258
2259 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2260 {
2261         unsigned long flags;
2262         struct pool *pool = tc->pool;
2263
2264         throttle_lock(&pool->throttle);
2265         spin_lock_irqsave(&tc->lock, flags);
2266         list_add_tail(&cell->user_list, &tc->deferred_cells);
2267         spin_unlock_irqrestore(&tc->lock, flags);
2268         throttle_unlock(&pool->throttle);
2269
2270         wake_worker(pool);
2271 }
2272
2273 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2274 {
2275         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2276
2277         h->tc = tc;
2278         h->shared_read_entry = NULL;
2279         h->all_io_entry = NULL;
2280         h->overwrite_mapping = NULL;
2281 }
2282
2283 /*
2284  * Non-blocking function called from the thin target's map function.
2285  */
2286 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2287 {
2288         int r;
2289         struct thin_c *tc = ti->private;
2290         dm_block_t block = get_bio_block(tc, bio);
2291         struct dm_thin_device *td = tc->td;
2292         struct dm_thin_lookup_result result;
2293         struct dm_bio_prison_cell *virt_cell, *data_cell;
2294         struct dm_cell_key key;
2295
2296         thin_hook_bio(tc, bio);
2297
2298         if (tc->requeue_mode) {
2299                 bio_endio(bio, DM_ENDIO_REQUEUE);
2300                 return DM_MAPIO_SUBMITTED;
2301         }
2302
2303         if (get_pool_mode(tc->pool) == PM_FAIL) {
2304                 bio_io_error(bio);
2305                 return DM_MAPIO_SUBMITTED;
2306         }
2307
2308         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2309                 thin_defer_bio_with_throttle(tc, bio);
2310                 return DM_MAPIO_SUBMITTED;
2311         }
2312
2313         /*
2314          * We must hold the virtual cell before doing the lookup, otherwise
2315          * there's a race with discard.
2316          */
2317         build_virtual_key(tc->td, block, &key);
2318         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2319                 return DM_MAPIO_SUBMITTED;
2320
2321         r = dm_thin_find_block(td, block, 0, &result);
2322
2323         /*
2324          * Note that we defer readahead too.
2325          */
2326         switch (r) {
2327         case 0:
2328                 if (unlikely(result.shared)) {
2329                         /*
2330                          * We have a race condition here between the
2331                          * result.shared value returned by the lookup and
2332                          * snapshot creation, which may cause new
2333                          * sharing.
2334                          *
2335                          * To avoid this always quiesce the origin before
2336                          * taking the snap.  You want to do this anyway to
2337                          * ensure a consistent application view
2338                          * (i.e. lockfs).
2339                          *
2340                          * More distant ancestors are irrelevant. The
2341                          * shared flag will be set in their case.
2342                          */
2343                         thin_defer_cell(tc, virt_cell);
2344                         return DM_MAPIO_SUBMITTED;
2345                 }
2346
2347                 build_data_key(tc->td, result.block, &key);
2348                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2349                         cell_defer_no_holder(tc, virt_cell);
2350                         return DM_MAPIO_SUBMITTED;
2351                 }
2352
2353                 inc_all_io_entry(tc->pool, bio);
2354                 cell_defer_no_holder(tc, data_cell);
2355                 cell_defer_no_holder(tc, virt_cell);
2356
2357                 remap(tc, bio, result.block);
2358                 return DM_MAPIO_REMAPPED;
2359
2360         case -ENODATA:
2361         case -EWOULDBLOCK:
2362                 thin_defer_cell(tc, virt_cell);
2363                 return DM_MAPIO_SUBMITTED;
2364
2365         default:
2366                 /*
2367                  * Must always call bio_io_error on failure.
2368                  * dm_thin_find_block can fail with -EINVAL if the
2369                  * pool is switched to fail-io mode.
2370                  */
2371                 bio_io_error(bio);
2372                 cell_defer_no_holder(tc, virt_cell);
2373                 return DM_MAPIO_SUBMITTED;
2374         }
2375 }
2376
2377 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2378 {
2379         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2380         struct request_queue *q;
2381
2382         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2383                 return 1;
2384
2385         q = bdev_get_queue(pt->data_dev->bdev);
2386         return bdi_congested(&q->backing_dev_info, bdi_bits);
2387 }
2388
2389 static void requeue_bios(struct pool *pool)
2390 {
2391         unsigned long flags;
2392         struct thin_c *tc;
2393
2394         rcu_read_lock();
2395         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2396                 spin_lock_irqsave(&tc->lock, flags);
2397                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2398                 bio_list_init(&tc->retry_on_resume_list);
2399                 spin_unlock_irqrestore(&tc->lock, flags);
2400         }
2401         rcu_read_unlock();
2402 }
2403
2404 /*----------------------------------------------------------------
2405  * Binding of control targets to a pool object
2406  *--------------------------------------------------------------*/
2407 static bool data_dev_supports_discard(struct pool_c *pt)
2408 {
2409         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2410
2411         return q && blk_queue_discard(q);
2412 }
2413
2414 static bool is_factor(sector_t block_size, uint32_t n)
2415 {
2416         return !sector_div(block_size, n);
2417 }
2418
2419 /*
2420  * If discard_passdown was enabled verify that the data device
2421  * supports discards.  Disable discard_passdown if not.
2422  */
2423 static void disable_passdown_if_not_supported(struct pool_c *pt)
2424 {
2425         struct pool *pool = pt->pool;
2426         struct block_device *data_bdev = pt->data_dev->bdev;
2427         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2428         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2429         const char *reason = NULL;
2430         char buf[BDEVNAME_SIZE];
2431
2432         if (!pt->adjusted_pf.discard_passdown)
2433                 return;
2434
2435         if (!data_dev_supports_discard(pt))
2436                 reason = "discard unsupported";
2437
2438         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2439                 reason = "max discard sectors smaller than a block";
2440
2441         else if (data_limits->discard_granularity > block_size)
2442                 reason = "discard granularity larger than a block";
2443
2444         else if (!is_factor(block_size, data_limits->discard_granularity))
2445                 reason = "discard granularity not a factor of block size";
2446
2447         if (reason) {
2448                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2449                 pt->adjusted_pf.discard_passdown = false;
2450         }
2451 }
2452
2453 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2454 {
2455         struct pool_c *pt = ti->private;
2456
2457         /*
2458          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2459          */
2460         enum pool_mode old_mode = get_pool_mode(pool);
2461         enum pool_mode new_mode = pt->adjusted_pf.mode;
2462
2463         /*
2464          * Don't change the pool's mode until set_pool_mode() below.
2465          * Otherwise the pool's process_* function pointers may
2466          * not match the desired pool mode.
2467          */
2468         pt->adjusted_pf.mode = old_mode;
2469
2470         pool->ti = ti;
2471         pool->pf = pt->adjusted_pf;
2472         pool->low_water_blocks = pt->low_water_blocks;
2473
2474         set_pool_mode(pool, new_mode);
2475
2476         return 0;
2477 }
2478
2479 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2480 {
2481         if (pool->ti == ti)
2482                 pool->ti = NULL;
2483 }
2484
2485 /*----------------------------------------------------------------
2486  * Pool creation
2487  *--------------------------------------------------------------*/
2488 /* Initialize pool features. */
2489 static void pool_features_init(struct pool_features *pf)
2490 {
2491         pf->mode = PM_WRITE;
2492         pf->zero_new_blocks = true;
2493         pf->discard_enabled = true;
2494         pf->discard_passdown = true;
2495         pf->error_if_no_space = false;
2496 }
2497
2498 static void __pool_destroy(struct pool *pool)
2499 {
2500         __pool_table_remove(pool);
2501
2502         if (dm_pool_metadata_close(pool->pmd) < 0)
2503                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2504
2505         dm_bio_prison_destroy(pool->prison);
2506         dm_kcopyd_client_destroy(pool->copier);
2507
2508         if (pool->wq)
2509                 destroy_workqueue(pool->wq);
2510
2511         if (pool->next_mapping)
2512                 mempool_free(pool->next_mapping, pool->mapping_pool);
2513         mempool_destroy(pool->mapping_pool);
2514         dm_deferred_set_destroy(pool->shared_read_ds);
2515         dm_deferred_set_destroy(pool->all_io_ds);
2516         kfree(pool);
2517 }
2518
2519 static struct kmem_cache *_new_mapping_cache;
2520
2521 static struct pool *pool_create(struct mapped_device *pool_md,
2522                                 struct block_device *metadata_dev,
2523                                 unsigned long block_size,
2524                                 int read_only, char **error)
2525 {
2526         int r;
2527         void *err_p;
2528         struct pool *pool;
2529         struct dm_pool_metadata *pmd;
2530         bool format_device = read_only ? false : true;
2531
2532         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2533         if (IS_ERR(pmd)) {
2534                 *error = "Error creating metadata object";
2535                 return (struct pool *)pmd;
2536         }
2537
2538         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2539         if (!pool) {
2540                 *error = "Error allocating memory for pool";
2541                 err_p = ERR_PTR(-ENOMEM);
2542                 goto bad_pool;
2543         }
2544
2545         pool->pmd = pmd;
2546         pool->sectors_per_block = block_size;
2547         if (block_size & (block_size - 1))
2548                 pool->sectors_per_block_shift = -1;
2549         else
2550                 pool->sectors_per_block_shift = __ffs(block_size);
2551         pool->low_water_blocks = 0;
2552         pool_features_init(&pool->pf);
2553         pool->prison = dm_bio_prison_create();
2554         if (!pool->prison) {
2555                 *error = "Error creating pool's bio prison";
2556                 err_p = ERR_PTR(-ENOMEM);
2557                 goto bad_prison;
2558         }
2559
2560         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561         if (IS_ERR(pool->copier)) {
2562                 r = PTR_ERR(pool->copier);
2563                 *error = "Error creating pool's kcopyd client";
2564                 err_p = ERR_PTR(r);
2565                 goto bad_kcopyd_client;
2566         }
2567
2568         /*
2569          * Create singlethreaded workqueue that will service all devices
2570          * that use this metadata.
2571          */
2572         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2573         if (!pool->wq) {
2574                 *error = "Error creating pool's workqueue";
2575                 err_p = ERR_PTR(-ENOMEM);
2576                 goto bad_wq;
2577         }
2578
2579         throttle_init(&pool->throttle);
2580         INIT_WORK(&pool->worker, do_worker);
2581         INIT_DELAYED_WORK(&pool->waker, do_waker);
2582         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2583         spin_lock_init(&pool->lock);
2584         bio_list_init(&pool->deferred_flush_bios);
2585         INIT_LIST_HEAD(&pool->prepared_mappings);
2586         INIT_LIST_HEAD(&pool->prepared_discards);
2587         INIT_LIST_HEAD(&pool->active_thins);
2588         pool->low_water_triggered = false;
2589         pool->suspended = true;
2590
2591         pool->shared_read_ds = dm_deferred_set_create();
2592         if (!pool->shared_read_ds) {
2593                 *error = "Error creating pool's shared read deferred set";
2594                 err_p = ERR_PTR(-ENOMEM);
2595                 goto bad_shared_read_ds;
2596         }
2597
2598         pool->all_io_ds = dm_deferred_set_create();
2599         if (!pool->all_io_ds) {
2600                 *error = "Error creating pool's all io deferred set";
2601                 err_p = ERR_PTR(-ENOMEM);
2602                 goto bad_all_io_ds;
2603         }
2604
2605         pool->next_mapping = NULL;
2606         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2607                                                       _new_mapping_cache);
2608         if (!pool->mapping_pool) {
2609                 *error = "Error creating pool's mapping mempool";
2610                 err_p = ERR_PTR(-ENOMEM);
2611                 goto bad_mapping_pool;
2612         }
2613
2614         pool->ref_count = 1;
2615         pool->last_commit_jiffies = jiffies;
2616         pool->pool_md = pool_md;
2617         pool->md_dev = metadata_dev;
2618         __pool_table_insert(pool);
2619
2620         return pool;
2621
2622 bad_mapping_pool:
2623         dm_deferred_set_destroy(pool->all_io_ds);
2624 bad_all_io_ds:
2625         dm_deferred_set_destroy(pool->shared_read_ds);
2626 bad_shared_read_ds:
2627         destroy_workqueue(pool->wq);
2628 bad_wq:
2629         dm_kcopyd_client_destroy(pool->copier);
2630 bad_kcopyd_client:
2631         dm_bio_prison_destroy(pool->prison);
2632 bad_prison:
2633         kfree(pool);
2634 bad_pool:
2635         if (dm_pool_metadata_close(pmd))
2636                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2637
2638         return err_p;
2639 }
2640
2641 static void __pool_inc(struct pool *pool)
2642 {
2643         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2644         pool->ref_count++;
2645 }
2646
2647 static void __pool_dec(struct pool *pool)
2648 {
2649         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2650         BUG_ON(!pool->ref_count);
2651         if (!--pool->ref_count)
2652                 __pool_destroy(pool);
2653 }
2654
2655 static struct pool *__pool_find(struct mapped_device *pool_md,
2656                                 struct block_device *metadata_dev,
2657                                 unsigned long block_size, int read_only,
2658                                 char **error, int *created)
2659 {
2660         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2661
2662         if (pool) {
2663                 if (pool->pool_md != pool_md) {
2664                         *error = "metadata device already in use by a pool";
2665                         return ERR_PTR(-EBUSY);
2666                 }
2667                 __pool_inc(pool);
2668
2669         } else {
2670                 pool = __pool_table_lookup(pool_md);
2671                 if (pool) {
2672                         if (pool->md_dev != metadata_dev) {
2673                                 *error = "different pool cannot replace a pool";
2674                                 return ERR_PTR(-EINVAL);
2675                         }
2676                         __pool_inc(pool);
2677
2678                 } else {
2679                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2680                         *created = 1;
2681                 }
2682         }
2683
2684         return pool;
2685 }
2686
2687 /*----------------------------------------------------------------
2688  * Pool target methods
2689  *--------------------------------------------------------------*/
2690 static void pool_dtr(struct dm_target *ti)
2691 {
2692         struct pool_c *pt = ti->private;
2693
2694         mutex_lock(&dm_thin_pool_table.mutex);
2695
2696         unbind_control_target(pt->pool, ti);
2697         __pool_dec(pt->pool);
2698         dm_put_device(ti, pt->metadata_dev);
2699         dm_put_device(ti, pt->data_dev);
2700         kfree(pt);
2701
2702         mutex_unlock(&dm_thin_pool_table.mutex);
2703 }
2704
2705 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2706                                struct dm_target *ti)
2707 {
2708         int r;
2709         unsigned argc;
2710         const char *arg_name;
2711
2712         static struct dm_arg _args[] = {
2713                 {0, 4, "Invalid number of pool feature arguments"},
2714         };
2715
2716         /*
2717          * No feature arguments supplied.
2718          */
2719         if (!as->argc)
2720                 return 0;
2721
2722         r = dm_read_arg_group(_args, as, &argc, &ti->error);
2723         if (r)
2724                 return -EINVAL;
2725
2726         while (argc && !r) {
2727                 arg_name = dm_shift_arg(as);
2728                 argc--;
2729
2730                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2731                         pf->zero_new_blocks = false;
2732
2733                 else if (!strcasecmp(arg_name, "ignore_discard"))
2734                         pf->discard_enabled = false;
2735
2736                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2737                         pf->discard_passdown = false;
2738
2739                 else if (!strcasecmp(arg_name, "read_only"))
2740                         pf->mode = PM_READ_ONLY;
2741
2742                 else if (!strcasecmp(arg_name, "error_if_no_space"))
2743                         pf->error_if_no_space = true;
2744
2745                 else {
2746                         ti->error = "Unrecognised pool feature requested";
2747                         r = -EINVAL;
2748                         break;
2749                 }
2750         }
2751
2752         return r;
2753 }
2754
2755 static void metadata_low_callback(void *context)
2756 {
2757         struct pool *pool = context;
2758
2759         DMWARN("%s: reached low water mark for metadata device: sending event.",
2760                dm_device_name(pool->pool_md));
2761
2762         dm_table_event(pool->ti->table);
2763 }
2764
2765 static sector_t get_dev_size(struct block_device *bdev)
2766 {
2767         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2768 }
2769
2770 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2771 {
2772         sector_t metadata_dev_size = get_dev_size(bdev);
2773         char buffer[BDEVNAME_SIZE];
2774
2775         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2776                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2777                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2778 }
2779
2780 static sector_t get_metadata_dev_size(struct block_device *bdev)
2781 {
2782         sector_t metadata_dev_size = get_dev_size(bdev);
2783
2784         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2785                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2786
2787         return metadata_dev_size;
2788 }
2789
2790 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2791 {
2792         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2793
2794         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2795
2796         return metadata_dev_size;
2797 }
2798
2799 /*
2800  * When a metadata threshold is crossed a dm event is triggered, and
2801  * userland should respond by growing the metadata device.  We could let
2802  * userland set the threshold, like we do with the data threshold, but I'm
2803  * not sure they know enough to do this well.
2804  */
2805 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2806 {
2807         /*
2808          * 4M is ample for all ops with the possible exception of thin
2809          * device deletion which is harmless if it fails (just retry the
2810          * delete after you've grown the device).
2811          */
2812         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2813         return min((dm_block_t)1024ULL /* 4M */, quarter);
2814 }
2815
2816 /*
2817  * thin-pool <metadata dev> <data dev>
2818  *           <data block size (sectors)>
2819  *           <low water mark (blocks)>
2820  *           [<#feature args> [<arg>]*]
2821  *
2822  * Optional feature arguments are:
2823  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2824  *           ignore_discard: disable discard
2825  *           no_discard_passdown: don't pass discards down to the data device
2826  *           read_only: Don't allow any changes to be made to the pool metadata.
2827  *           error_if_no_space: error IOs, instead of queueing, if no space.
2828  */
2829 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2830 {
2831         int r, pool_created = 0;
2832         struct pool_c *pt;
2833         struct pool *pool;
2834         struct pool_features pf;
2835         struct dm_arg_set as;
2836         struct dm_dev *data_dev;
2837         unsigned long block_size;
2838         dm_block_t low_water_blocks;
2839         struct dm_dev *metadata_dev;
2840         fmode_t metadata_mode;
2841
2842         /*
2843          * FIXME Remove validation from scope of lock.
2844          */
2845         mutex_lock(&dm_thin_pool_table.mutex);
2846
2847         if (argc < 4) {
2848                 ti->error = "Invalid argument count";
2849                 r = -EINVAL;
2850                 goto out_unlock;
2851         }
2852
2853         as.argc = argc;
2854         as.argv = argv;
2855
2856         /*
2857          * Set default pool features.
2858          */
2859         pool_features_init(&pf);
2860
2861         dm_consume_args(&as, 4);
2862         r = parse_pool_features(&as, &pf, ti);
2863         if (r)
2864                 goto out_unlock;
2865
2866         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2867         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2868         if (r) {
2869                 ti->error = "Error opening metadata block device";
2870                 goto out_unlock;
2871         }
2872         warn_if_metadata_device_too_big(metadata_dev->bdev);
2873
2874         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2875         if (r) {
2876                 ti->error = "Error getting data device";
2877                 goto out_metadata;
2878         }
2879
2880         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2881             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2882             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2883             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2884                 ti->error = "Invalid block size";
2885                 r = -EINVAL;
2886                 goto out;
2887         }
2888
2889         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2890                 ti->error = "Invalid low water mark";
2891                 r = -EINVAL;
2892                 goto out;
2893         }
2894
2895         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2896         if (!pt) {
2897                 r = -ENOMEM;
2898                 goto out;
2899         }
2900
2901         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2902                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2903         if (IS_ERR(pool)) {
2904                 r = PTR_ERR(pool);
2905                 goto out_free_pt;
2906         }
2907
2908         /*
2909          * 'pool_created' reflects whether this is the first table load.
2910          * Top level discard support is not allowed to be changed after
2911          * initial load.  This would require a pool reload to trigger thin
2912          * device changes.
2913          */
2914         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2915                 ti->error = "Discard support cannot be disabled once enabled";
2916                 r = -EINVAL;
2917                 goto out_flags_changed;
2918         }
2919
2920         pt->pool = pool;
2921         pt->ti = ti;
2922         pt->metadata_dev = metadata_dev;
2923         pt->data_dev = data_dev;
2924         pt->low_water_blocks = low_water_blocks;
2925         pt->adjusted_pf = pt->requested_pf = pf;
2926         ti->num_flush_bios = 1;
2927
2928         /*
2929          * Only need to enable discards if the pool should pass
2930          * them down to the data device.  The thin device's discard
2931          * processing will cause mappings to be removed from the btree.
2932          */
2933         ti->discard_zeroes_data_unsupported = true;
2934         if (pf.discard_enabled && pf.discard_passdown) {
2935                 ti->num_discard_bios = 1;
2936
2937                 /*
2938                  * Setting 'discards_supported' circumvents the normal
2939                  * stacking of discard limits (this keeps the pool and
2940                  * thin devices' discard limits consistent).
2941                  */
2942                 ti->discards_supported = true;
2943         }
2944         ti->private = pt;
2945
2946         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2947                                                 calc_metadata_threshold(pt),
2948                                                 metadata_low_callback,
2949                                                 pool);
2950         if (r)
2951                 goto out_free_pt;
2952
2953         pt->callbacks.congested_fn = pool_is_congested;
2954         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2955
2956         mutex_unlock(&dm_thin_pool_table.mutex);
2957
2958         return 0;
2959
2960 out_flags_changed:
2961         __pool_dec(pool);
2962 out_free_pt:
2963         kfree(pt);
2964 out:
2965         dm_put_device(ti, data_dev);
2966 out_metadata:
2967         dm_put_device(ti, metadata_dev);
2968 out_unlock:
2969         mutex_unlock(&dm_thin_pool_table.mutex);
2970
2971         return r;
2972 }
2973
2974 static int pool_map(struct dm_target *ti, struct bio *bio)
2975 {
2976         int r;
2977         struct pool_c *pt = ti->private;
2978         struct pool *pool = pt->pool;
2979         unsigned long flags;
2980
2981         /*
2982          * As this is a singleton target, ti->begin is always zero.
2983          */
2984         spin_lock_irqsave(&pool->lock, flags);
2985         bio->bi_bdev = pt->data_dev->bdev;
2986         r = DM_MAPIO_REMAPPED;
2987         spin_unlock_irqrestore(&pool->lock, flags);
2988
2989         return r;
2990 }
2991
2992 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2993 {
2994         int r;
2995         struct pool_c *pt = ti->private;
2996         struct pool *pool = pt->pool;
2997         sector_t data_size = ti->len;
2998         dm_block_t sb_data_size;
2999
3000         *need_commit = false;
3001
3002         (void) sector_div(data_size, pool->sectors_per_block);
3003
3004         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3005         if (r) {
3006                 DMERR("%s: failed to retrieve data device size",
3007                       dm_device_name(pool->pool_md));
3008                 return r;
3009         }
3010
3011         if (data_size < sb_data_size) {
3012                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3013                       dm_device_name(pool->pool_md),
3014                       (unsigned long long)data_size, sb_data_size);
3015                 return -EINVAL;
3016
3017         } else if (data_size > sb_data_size) {
3018                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3019                         DMERR("%s: unable to grow the data device until repaired.",
3020                               dm_device_name(pool->pool_md));
3021                         return 0;
3022                 }
3023
3024                 if (sb_data_size)
3025                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3026                                dm_device_name(pool->pool_md),
3027                                sb_data_size, (unsigned long long)data_size);
3028                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3029                 if (r) {
3030                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3031                         return r;
3032                 }
3033
3034                 *need_commit = true;
3035         }
3036
3037         return 0;
3038 }
3039
3040 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3041 {
3042         int r;
3043         struct pool_c *pt = ti->private;
3044         struct pool *pool = pt->pool;
3045         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3046
3047         *need_commit = false;
3048
3049         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3050
3051         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3052         if (r) {
3053                 DMERR("%s: failed to retrieve metadata device size",
3054                       dm_device_name(pool->pool_md));
3055                 return r;
3056         }
3057
3058         if (metadata_dev_size < sb_metadata_dev_size) {
3059                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3060                       dm_device_name(pool->pool_md),
3061                       metadata_dev_size, sb_metadata_dev_size);
3062                 return -EINVAL;
3063
3064         } else if (metadata_dev_size > sb_metadata_dev_size) {
3065                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3066                         DMERR("%s: unable to grow the metadata device until repaired.",
3067                               dm_device_name(pool->pool_md));
3068                         return 0;
3069                 }
3070
3071                 warn_if_metadata_device_too_big(pool->md_dev);
3072                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3073                        dm_device_name(pool->pool_md),
3074                        sb_metadata_dev_size, metadata_dev_size);
3075                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3076                 if (r) {
3077                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3078                         return r;
3079                 }
3080
3081                 *need_commit = true;
3082         }
3083
3084         return 0;
3085 }
3086
3087 /*
3088  * Retrieves the number of blocks of the data device from
3089  * the superblock and compares it to the actual device size,
3090  * thus resizing the data device in case it has grown.
3091  *
3092  * This both copes with opening preallocated data devices in the ctr
3093  * being followed by a resume
3094  * -and-
3095  * calling the resume method individually after userspace has
3096  * grown the data device in reaction to a table event.
3097  */
3098 static int pool_preresume(struct dm_target *ti)
3099 {
3100         int r;
3101         bool need_commit1, need_commit2;
3102         struct pool_c *pt = ti->private;
3103         struct pool *pool = pt->pool;
3104
3105         /*
3106          * Take control of the pool object.
3107          */
3108         r = bind_control_target(pool, ti);
3109         if (r)
3110                 return r;
3111
3112         r = maybe_resize_data_dev(ti, &need_commit1);
3113         if (r)
3114                 return r;
3115
3116         r = maybe_resize_metadata_dev(ti, &need_commit2);
3117         if (r)
3118                 return r;
3119
3120         if (need_commit1 || need_commit2)
3121                 (void) commit(pool);
3122
3123         return 0;
3124 }
3125
3126 static void pool_suspend_active_thins(struct pool *pool)
3127 {
3128         struct thin_c *tc;
3129
3130         /* Suspend all active thin devices */
3131         tc = get_first_thin(pool);
3132         while (tc) {
3133                 dm_internal_suspend_noflush(tc->thin_md);
3134                 tc = get_next_thin(pool, tc);
3135         }
3136 }
3137
3138 static void pool_resume_active_thins(struct pool *pool)
3139 {
3140         struct thin_c *tc;
3141
3142         /* Resume all active thin devices */
3143         tc = get_first_thin(pool);
3144         while (tc) {
3145                 dm_internal_resume(tc->thin_md);
3146                 tc = get_next_thin(pool, tc);
3147         }
3148 }
3149
3150 static void pool_resume(struct dm_target *ti)
3151 {
3152         struct pool_c *pt = ti->private;
3153         struct pool *pool = pt->pool;
3154         unsigned long flags;
3155
3156         /*
3157          * Must requeue active_thins' bios and then resume
3158          * active_thins _before_ clearing 'suspend' flag.
3159          */
3160         requeue_bios(pool);
3161         pool_resume_active_thins(pool);
3162
3163         spin_lock_irqsave(&pool->lock, flags);
3164         pool->low_water_triggered = false;
3165         pool->suspended = false;
3166         spin_unlock_irqrestore(&pool->lock, flags);
3167
3168         do_waker(&pool->waker.work);
3169 }
3170
3171 static void pool_presuspend(struct dm_target *ti)
3172 {
3173         struct pool_c *pt = ti->private;
3174         struct pool *pool = pt->pool;
3175         unsigned long flags;
3176
3177         spin_lock_irqsave(&pool->lock, flags);
3178         pool->suspended = true;
3179         spin_unlock_irqrestore(&pool->lock, flags);
3180
3181         pool_suspend_active_thins(pool);
3182 }
3183
3184 static void pool_presuspend_undo(struct dm_target *ti)
3185 {
3186         struct pool_c *pt = ti->private;
3187         struct pool *pool = pt->pool;
3188         unsigned long flags;
3189
3190         pool_resume_active_thins(pool);
3191
3192         spin_lock_irqsave(&pool->lock, flags);
3193         pool->suspended = false;
3194         spin_unlock_irqrestore(&pool->lock, flags);
3195 }
3196
3197 static void pool_postsuspend(struct dm_target *ti)
3198 {
3199         struct pool_c *pt = ti->private;
3200         struct pool *pool = pt->pool;
3201
3202         cancel_delayed_work(&pool->waker);
3203         cancel_delayed_work(&pool->no_space_timeout);
3204         flush_workqueue(pool->wq);
3205         (void) commit(pool);
3206 }
3207
3208 static int check_arg_count(unsigned argc, unsigned args_required)
3209 {
3210         if (argc != args_required) {
3211                 DMWARN("Message received with %u arguments instead of %u.",
3212                        argc, args_required);
3213                 return -EINVAL;
3214         }
3215
3216         return 0;
3217 }
3218
3219 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3220 {
3221         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3222             *dev_id <= MAX_DEV_ID)
3223                 return 0;
3224
3225         if (warning)
3226                 DMWARN("Message received with invalid device id: %s", arg);
3227
3228         return -EINVAL;
3229 }
3230
3231 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3232 {
3233         dm_thin_id dev_id;
3234         int r;
3235
3236         r = check_arg_count(argc, 2);
3237         if (r)
3238                 return r;
3239
3240         r = read_dev_id(argv[1], &dev_id, 1);
3241         if (r)
3242                 return r;
3243
3244         r = dm_pool_create_thin(pool->pmd, dev_id);
3245         if (r) {
3246                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3247                        argv[1]);
3248                 return r;
3249         }
3250
3251         return 0;
3252 }
3253
3254 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3255 {
3256         dm_thin_id dev_id;
3257         dm_thin_id origin_dev_id;
3258         int r;
3259
3260         r = check_arg_count(argc, 3);
3261         if (r)
3262                 return r;
3263
3264         r = read_dev_id(argv[1], &dev_id, 1);
3265         if (r)
3266                 return r;
3267
3268         r = read_dev_id(argv[2], &origin_dev_id, 1);
3269         if (r)
3270                 return r;
3271
3272         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3273         if (r) {
3274                 DMWARN("Creation of new snapshot %s of device %s failed.",
3275                        argv[1], argv[2]);
3276                 return r;
3277         }
3278
3279         return 0;
3280 }
3281
3282 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3283 {
3284         dm_thin_id dev_id;
3285         int r;
3286
3287         r = check_arg_count(argc, 2);
3288         if (r)
3289                 return r;
3290
3291         r = read_dev_id(argv[1], &dev_id, 1);
3292         if (r)
3293                 return r;
3294
3295         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3296         if (r)
3297                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3298
3299         return r;
3300 }
3301
3302 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3303 {
3304         dm_thin_id old_id, new_id;
3305         int r;
3306
3307         r = check_arg_count(argc, 3);
3308         if (r)
3309                 return r;
3310
3311         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3312                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3313                 return -EINVAL;
3314         }
3315
3316         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3317                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3318                 return -EINVAL;
3319         }
3320
3321         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3322         if (r) {
3323                 DMWARN("Failed to change transaction id from %s to %s.",
3324                        argv[1], argv[2]);
3325                 return r;
3326         }
3327
3328         return 0;
3329 }
3330
3331 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3332 {
3333         int r;
3334
3335         r = check_arg_count(argc, 1);
3336         if (r)
3337                 return r;
3338
3339         (void) commit(pool);
3340
3341         r = dm_pool_reserve_metadata_snap(pool->pmd);
3342         if (r)
3343                 DMWARN("reserve_metadata_snap message failed.");
3344
3345         return r;
3346 }
3347
3348 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3349 {
3350         int r;
3351
3352         r = check_arg_count(argc, 1);
3353         if (r)
3354                 return r;
3355
3356         r = dm_pool_release_metadata_snap(pool->pmd);
3357         if (r)
3358                 DMWARN("release_metadata_snap message failed.");
3359
3360         return r;
3361 }
3362
3363 /*
3364  * Messages supported:
3365  *   create_thin        <dev_id>
3366  *   create_snap        <dev_id> <origin_id>
3367  *   delete             <dev_id>
3368  *   set_transaction_id <current_trans_id> <new_trans_id>
3369  *   reserve_metadata_snap
3370  *   release_metadata_snap
3371  */
3372 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3373 {
3374         int r = -EINVAL;
3375         struct pool_c *pt = ti->private;
3376         struct pool *pool = pt->pool;
3377
3378         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3379                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3380                       dm_device_name(pool->pool_md));
3381                 return -EINVAL;
3382         }
3383
3384         if (!strcasecmp(argv[0], "create_thin"))
3385                 r = process_create_thin_mesg(argc, argv, pool);
3386
3387         else if (!strcasecmp(argv[0], "create_snap"))
3388                 r = process_create_snap_mesg(argc, argv, pool);
3389
3390         else if (!strcasecmp(argv[0], "delete"))
3391                 r = process_delete_mesg(argc, argv, pool);
3392
3393         else if (!strcasecmp(argv[0], "set_transaction_id"))
3394                 r = process_set_transaction_id_mesg(argc, argv, pool);
3395
3396         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3397                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3398
3399         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3400                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3401
3402         else
3403                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3404
3405         if (!r)
3406                 (void) commit(pool);
3407
3408         return r;
3409 }
3410
3411 static void emit_flags(struct pool_features *pf, char *result,
3412                        unsigned sz, unsigned maxlen)
3413 {
3414         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3415                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3416                 pf->error_if_no_space;
3417         DMEMIT("%u ", count);
3418
3419         if (!pf->zero_new_blocks)
3420                 DMEMIT("skip_block_zeroing ");
3421
3422         if (!pf->discard_enabled)
3423                 DMEMIT("ignore_discard ");
3424
3425         if (!pf->discard_passdown)
3426                 DMEMIT("no_discard_passdown ");
3427
3428         if (pf->mode == PM_READ_ONLY)
3429                 DMEMIT("read_only ");
3430
3431         if (pf->error_if_no_space)
3432                 DMEMIT("error_if_no_space ");
3433 }
3434
3435 /*
3436  * Status line is:
3437  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3438  *    <used data sectors>/<total data sectors> <held metadata root>
3439  */
3440 static void pool_status(struct dm_target *ti, status_type_t type,
3441                         unsigned status_flags, char *result, unsigned maxlen)
3442 {
3443         int r;
3444         unsigned sz = 0;
3445         uint64_t transaction_id;
3446         dm_block_t nr_free_blocks_data;
3447         dm_block_t nr_free_blocks_metadata;
3448         dm_block_t nr_blocks_data;
3449         dm_block_t nr_blocks_metadata;
3450         dm_block_t held_root;
3451         char buf[BDEVNAME_SIZE];
3452         char buf2[BDEVNAME_SIZE];
3453         struct pool_c *pt = ti->private;
3454         struct pool *pool = pt->pool;
3455
3456         switch (type) {
3457         case STATUSTYPE_INFO:
3458                 if (get_pool_mode(pool) == PM_FAIL) {
3459                         DMEMIT("Fail");
3460                         break;
3461                 }
3462
3463                 /* Commit to ensure statistics aren't out-of-date */
3464                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3465                         (void) commit(pool);
3466
3467                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3468                 if (r) {
3469                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3470                               dm_device_name(pool->pool_md), r);
3471                         goto err;
3472                 }
3473
3474                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3475                 if (r) {
3476                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3477                               dm_device_name(pool->pool_md), r);
3478                         goto err;
3479                 }
3480
3481                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3482                 if (r) {
3483                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3484                               dm_device_name(pool->pool_md), r);
3485                         goto err;
3486                 }
3487
3488                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3489                 if (r) {
3490                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3491                               dm_device_name(pool->pool_md), r);
3492                         goto err;
3493                 }
3494
3495                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3496                 if (r) {
3497                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3498                               dm_device_name(pool->pool_md), r);
3499                         goto err;
3500                 }
3501
3502                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3503                 if (r) {
3504                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3505                               dm_device_name(pool->pool_md), r);
3506                         goto err;
3507                 }
3508
3509                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3510                        (unsigned long long)transaction_id,
3511                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3512                        (unsigned long long)nr_blocks_metadata,
3513                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3514                        (unsigned long long)nr_blocks_data);
3515
3516                 if (held_root)
3517                         DMEMIT("%llu ", held_root);
3518                 else
3519                         DMEMIT("- ");
3520
3521                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3522                         DMEMIT("out_of_data_space ");
3523                 else if (pool->pf.mode == PM_READ_ONLY)
3524                         DMEMIT("ro ");
3525                 else
3526                         DMEMIT("rw ");
3527
3528                 if (!pool->pf.discard_enabled)
3529                         DMEMIT("ignore_discard ");
3530                 else if (pool->pf.discard_passdown)
3531                         DMEMIT("discard_passdown ");
3532                 else
3533                         DMEMIT("no_discard_passdown ");
3534
3535                 if (pool->pf.error_if_no_space)
3536                         DMEMIT("error_if_no_space ");
3537                 else
3538                         DMEMIT("queue_if_no_space ");
3539
3540                 break;
3541
3542         case STATUSTYPE_TABLE:
3543                 DMEMIT("%s %s %lu %llu ",
3544                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3545                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3546                        (unsigned long)pool->sectors_per_block,
3547                        (unsigned long long)pt->low_water_blocks);
3548                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3549                 break;
3550         }
3551         return;
3552
3553 err:
3554         DMEMIT("Error");
3555 }
3556
3557 static int pool_iterate_devices(struct dm_target *ti,
3558                                 iterate_devices_callout_fn fn, void *data)
3559 {
3560         struct pool_c *pt = ti->private;
3561
3562         return fn(ti, pt->data_dev, 0, ti->len, data);
3563 }
3564
3565 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3566                       struct bio_vec *biovec, int max_size)
3567 {
3568         struct pool_c *pt = ti->private;
3569         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3570
3571         if (!q->merge_bvec_fn)
3572                 return max_size;
3573
3574         bvm->bi_bdev = pt->data_dev->bdev;
3575
3576         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3577 }
3578
3579 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3580 {
3581         struct pool *pool = pt->pool;
3582         struct queue_limits *data_limits;
3583
3584         limits->max_discard_sectors = pool->sectors_per_block;
3585
3586         /*
3587          * discard_granularity is just a hint, and not enforced.
3588          */
3589         if (pt->adjusted_pf.discard_passdown) {
3590                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3591                 limits->discard_granularity = max(data_limits->discard_granularity,
3592                                                   pool->sectors_per_block << SECTOR_SHIFT);
3593         } else
3594                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3595 }
3596
3597 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3598 {
3599         struct pool_c *pt = ti->private;
3600         struct pool *pool = pt->pool;
3601         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3602
3603         /*
3604          * If max_sectors is smaller than pool->sectors_per_block adjust it
3605          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3606          * This is especially beneficial when the pool's data device is a RAID
3607          * device that has a full stripe width that matches pool->sectors_per_block
3608          * -- because even though partial RAID stripe-sized IOs will be issued to a
3609          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3610          *    boundary.. which avoids additional partial RAID stripe writes cascading
3611          */
3612         if (limits->max_sectors < pool->sectors_per_block) {
3613                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3614                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3615                                 limits->max_sectors--;
3616                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3617                 }
3618         }
3619
3620         /*
3621          * If the system-determined stacked limits are compatible with the
3622          * pool's blocksize (io_opt is a factor) do not override them.
3623          */
3624         if (io_opt_sectors < pool->sectors_per_block ||
3625             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3626                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3627                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3628                 else
3629                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3630                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3631         }
3632
3633         /*
3634          * pt->adjusted_pf is a staging area for the actual features to use.
3635          * They get transferred to the live pool in bind_control_target()
3636          * called from pool_preresume().
3637          */
3638         if (!pt->adjusted_pf.discard_enabled) {
3639                 /*
3640                  * Must explicitly disallow stacking discard limits otherwise the
3641                  * block layer will stack them if pool's data device has support.
3642                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3643                  * user to see that, so make sure to set all discard limits to 0.
3644                  */
3645                 limits->discard_granularity = 0;
3646                 return;
3647         }
3648
3649         disable_passdown_if_not_supported(pt);
3650
3651         set_discard_limits(pt, limits);
3652 }
3653
3654 static struct target_type pool_target = {
3655         .name = "thin-pool",
3656         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3657                     DM_TARGET_IMMUTABLE,
3658         .version = {1, 14, 0},
3659         .module = THIS_MODULE,
3660         .ctr = pool_ctr,
3661         .dtr = pool_dtr,
3662         .map = pool_map,
3663         .presuspend = pool_presuspend,
3664         .presuspend_undo = pool_presuspend_undo,
3665         .postsuspend = pool_postsuspend,
3666         .preresume = pool_preresume,
3667         .resume = pool_resume,
3668         .message = pool_message,
3669         .status = pool_status,
3670         .merge = pool_merge,
3671         .iterate_devices = pool_iterate_devices,
3672         .io_hints = pool_io_hints,
3673 };
3674
3675 /*----------------------------------------------------------------
3676  * Thin target methods
3677  *--------------------------------------------------------------*/
3678 static void thin_get(struct thin_c *tc)
3679 {
3680         atomic_inc(&tc->refcount);
3681 }
3682
3683 static void thin_put(struct thin_c *tc)
3684 {
3685         if (atomic_dec_and_test(&tc->refcount))
3686                 complete(&tc->can_destroy);
3687 }
3688
3689 static void thin_dtr(struct dm_target *ti)
3690 {
3691         struct thin_c *tc = ti->private;
3692         unsigned long flags;
3693
3694         spin_lock_irqsave(&tc->pool->lock, flags);
3695         list_del_rcu(&tc->list);
3696         spin_unlock_irqrestore(&tc->pool->lock, flags);
3697         synchronize_rcu();
3698
3699         thin_put(tc);
3700         wait_for_completion(&tc->can_destroy);
3701
3702         mutex_lock(&dm_thin_pool_table.mutex);
3703
3704         __pool_dec(tc->pool);
3705         dm_pool_close_thin_device(tc->td);
3706         dm_put_device(ti, tc->pool_dev);
3707         if (tc->origin_dev)
3708                 dm_put_device(ti, tc->origin_dev);
3709         kfree(tc);
3710
3711         mutex_unlock(&dm_thin_pool_table.mutex);
3712 }
3713
3714 /*
3715  * Thin target parameters:
3716  *
3717  * <pool_dev> <dev_id> [origin_dev]
3718  *
3719  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3720  * dev_id: the internal device identifier
3721  * origin_dev: a device external to the pool that should act as the origin
3722  *
3723  * If the pool device has discards disabled, they get disabled for the thin
3724  * device as well.
3725  */
3726 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3727 {
3728         int r;
3729         struct thin_c *tc;
3730         struct dm_dev *pool_dev, *origin_dev;
3731         struct mapped_device *pool_md;
3732         unsigned long flags;
3733
3734         mutex_lock(&dm_thin_pool_table.mutex);
3735
3736         if (argc != 2 && argc != 3) {
3737                 ti->error = "Invalid argument count";
3738                 r = -EINVAL;
3739                 goto out_unlock;
3740         }
3741
3742         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3743         if (!tc) {
3744                 ti->error = "Out of memory";
3745                 r = -ENOMEM;
3746                 goto out_unlock;
3747         }
3748         tc->thin_md = dm_table_get_md(ti->table);
3749         spin_lock_init(&tc->lock);
3750         INIT_LIST_HEAD(&tc->deferred_cells);
3751         bio_list_init(&tc->deferred_bio_list);
3752         bio_list_init(&tc->retry_on_resume_list);
3753         tc->sort_bio_list = RB_ROOT;
3754
3755         if (argc == 3) {
3756                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3757                 if (r) {
3758                         ti->error = "Error opening origin device";
3759                         goto bad_origin_dev;
3760                 }
3761                 tc->origin_dev = origin_dev;
3762         }
3763
3764         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3765         if (r) {
3766                 ti->error = "Error opening pool device";
3767                 goto bad_pool_dev;
3768         }
3769         tc->pool_dev = pool_dev;
3770
3771         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3772                 ti->error = "Invalid device id";
3773                 r = -EINVAL;
3774                 goto bad_common;
3775         }
3776
3777         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3778         if (!pool_md) {
3779                 ti->error = "Couldn't get pool mapped device";
3780                 r = -EINVAL;
3781                 goto bad_common;
3782         }
3783
3784         tc->pool = __pool_table_lookup(pool_md);
3785         if (!tc->pool) {
3786                 ti->error = "Couldn't find pool object";
3787                 r = -EINVAL;
3788                 goto bad_pool_lookup;
3789         }
3790         __pool_inc(tc->pool);
3791
3792         if (get_pool_mode(tc->pool) == PM_FAIL) {
3793                 ti->error = "Couldn't open thin device, Pool is in fail mode";
3794                 r = -EINVAL;
3795                 goto bad_pool;
3796         }
3797
3798         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3799         if (r) {
3800                 ti->error = "Couldn't open thin internal device";
3801                 goto bad_pool;
3802         }
3803
3804         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3805         if (r)
3806                 goto bad;
3807
3808         ti->num_flush_bios = 1;
3809         ti->flush_supported = true;
3810         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3811
3812         /* In case the pool supports discards, pass them on. */
3813         ti->discard_zeroes_data_unsupported = true;
3814         if (tc->pool->pf.discard_enabled) {
3815                 ti->discards_supported = true;
3816                 ti->num_discard_bios = 1;
3817                 /* Discard bios must be split on a block boundary */
3818                 ti->split_discard_bios = true;
3819         }
3820
3821         mutex_unlock(&dm_thin_pool_table.mutex);
3822
3823         spin_lock_irqsave(&tc->pool->lock, flags);
3824         if (tc->pool->suspended) {
3825                 spin_unlock_irqrestore(&tc->pool->lock, flags);
3826                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3827                 ti->error = "Unable to activate thin device while pool is suspended";
3828                 r = -EINVAL;
3829                 goto bad;
3830         }
3831         atomic_set(&tc->refcount, 1);
3832         init_completion(&tc->can_destroy);
3833         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3834         spin_unlock_irqrestore(&tc->pool->lock, flags);
3835         /*
3836          * This synchronize_rcu() call is needed here otherwise we risk a
3837          * wake_worker() call finding no bios to process (because the newly
3838          * added tc isn't yet visible).  So this reduces latency since we
3839          * aren't then dependent on the periodic commit to wake_worker().
3840          */
3841         synchronize_rcu();
3842
3843         dm_put(pool_md);
3844
3845         return 0;
3846
3847 bad:
3848         dm_pool_close_thin_device(tc->td);
3849 bad_pool:
3850         __pool_dec(tc->pool);
3851 bad_pool_lookup:
3852         dm_put(pool_md);
3853 bad_common:
3854         dm_put_device(ti, tc->pool_dev);
3855 bad_pool_dev:
3856         if (tc->origin_dev)
3857                 dm_put_device(ti, tc->origin_dev);
3858 bad_origin_dev:
3859         kfree(tc);
3860 out_unlock:
3861         mutex_unlock(&dm_thin_pool_table.mutex);
3862
3863         return r;
3864 }
3865
3866 static int thin_map(struct dm_target *ti, struct bio *bio)
3867 {
3868         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3869
3870         return thin_bio_map(ti, bio);
3871 }
3872
3873 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3874 {
3875         unsigned long flags;
3876         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3877         struct list_head work;
3878         struct dm_thin_new_mapping *m, *tmp;
3879         struct pool *pool = h->tc->pool;
3880
3881         if (h->shared_read_entry) {
3882                 INIT_LIST_HEAD(&work);
3883                 dm_deferred_entry_dec(h->shared_read_entry, &work);
3884
3885                 spin_lock_irqsave(&pool->lock, flags);
3886                 list_for_each_entry_safe(m, tmp, &work, list) {
3887                         list_del(&m->list);
3888                         __complete_mapping_preparation(m);
3889                 }
3890                 spin_unlock_irqrestore(&pool->lock, flags);
3891         }
3892
3893         if (h->all_io_entry) {
3894                 INIT_LIST_HEAD(&work);
3895                 dm_deferred_entry_dec(h->all_io_entry, &work);
3896                 if (!list_empty(&work)) {
3897                         spin_lock_irqsave(&pool->lock, flags);
3898                         list_for_each_entry_safe(m, tmp, &work, list)
3899                                 list_add_tail(&m->list, &pool->prepared_discards);
3900                         spin_unlock_irqrestore(&pool->lock, flags);
3901                         wake_worker(pool);
3902                 }
3903         }
3904
3905         return 0;
3906 }
3907
3908 static void thin_presuspend(struct dm_target *ti)
3909 {
3910         struct thin_c *tc = ti->private;
3911
3912         if (dm_noflush_suspending(ti))
3913                 noflush_work(tc, do_noflush_start);
3914 }
3915
3916 static void thin_postsuspend(struct dm_target *ti)
3917 {
3918         struct thin_c *tc = ti->private;
3919
3920         /*
3921          * The dm_noflush_suspending flag has been cleared by now, so
3922          * unfortunately we must always run this.
3923          */
3924         noflush_work(tc, do_noflush_stop);
3925 }
3926
3927 static int thin_preresume(struct dm_target *ti)
3928 {
3929         struct thin_c *tc = ti->private;
3930
3931         if (tc->origin_dev)
3932                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3933
3934         return 0;
3935 }
3936
3937 /*
3938  * <nr mapped sectors> <highest mapped sector>
3939  */
3940 static void thin_status(struct dm_target *ti, status_type_t type,
3941                         unsigned status_flags, char *result, unsigned maxlen)
3942 {
3943         int r;
3944         ssize_t sz = 0;
3945         dm_block_t mapped, highest;
3946         char buf[BDEVNAME_SIZE];
3947         struct thin_c *tc = ti->private;
3948
3949         if (get_pool_mode(tc->pool) == PM_FAIL) {
3950                 DMEMIT("Fail");
3951                 return;
3952         }
3953
3954         if (!tc->td)
3955                 DMEMIT("-");
3956         else {
3957                 switch (type) {
3958                 case STATUSTYPE_INFO:
3959                         r = dm_thin_get_mapped_count(tc->td, &mapped);
3960                         if (r) {
3961                                 DMERR("dm_thin_get_mapped_count returned %d", r);
3962                                 goto err;
3963                         }
3964
3965                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3966                         if (r < 0) {
3967                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3968                                 goto err;
3969                         }
3970
3971                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3972                         if (r)
3973                                 DMEMIT("%llu", ((highest + 1) *
3974                                                 tc->pool->sectors_per_block) - 1);
3975                         else
3976                                 DMEMIT("-");
3977                         break;
3978
3979                 case STATUSTYPE_TABLE:
3980                         DMEMIT("%s %lu",
3981                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3982                                (unsigned long) tc->dev_id);
3983                         if (tc->origin_dev)
3984                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3985                         break;
3986                 }
3987         }
3988
3989         return;
3990
3991 err:
3992         DMEMIT("Error");
3993 }
3994
3995 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3996                       struct bio_vec *biovec, int max_size)
3997 {
3998         struct thin_c *tc = ti->private;
3999         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4000
4001         if (!q->merge_bvec_fn)
4002                 return max_size;
4003
4004         bvm->bi_bdev = tc->pool_dev->bdev;
4005         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4006
4007         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4008 }
4009
4010 static int thin_iterate_devices(struct dm_target *ti,
4011                                 iterate_devices_callout_fn fn, void *data)
4012 {
4013         sector_t blocks;
4014         struct thin_c *tc = ti->private;
4015         struct pool *pool = tc->pool;
4016
4017         /*
4018          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4019          * we follow a more convoluted path through to the pool's target.
4020          */
4021         if (!pool->ti)
4022                 return 0;       /* nothing is bound */
4023
4024         blocks = pool->ti->len;
4025         (void) sector_div(blocks, pool->sectors_per_block);
4026         if (blocks)
4027                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4028
4029         return 0;
4030 }
4031
4032 static struct target_type thin_target = {
4033         .name = "thin",
4034         .version = {1, 14, 0},
4035         .module = THIS_MODULE,
4036         .ctr = thin_ctr,
4037         .dtr = thin_dtr,
4038         .map = thin_map,
4039         .end_io = thin_endio,
4040         .preresume = thin_preresume,
4041         .presuspend = thin_presuspend,
4042         .postsuspend = thin_postsuspend,
4043         .status = thin_status,
4044         .merge = thin_merge,
4045         .iterate_devices = thin_iterate_devices,
4046 };
4047
4048 /*----------------------------------------------------------------*/
4049
4050 static int __init dm_thin_init(void)
4051 {
4052         int r;
4053
4054         pool_table_init();
4055
4056         r = dm_register_target(&thin_target);
4057         if (r)
4058                 return r;
4059
4060         r = dm_register_target(&pool_target);
4061         if (r)
4062                 goto bad_pool_target;
4063
4064         r = -ENOMEM;
4065
4066         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4067         if (!_new_mapping_cache)
4068                 goto bad_new_mapping_cache;
4069
4070         return 0;
4071
4072 bad_new_mapping_cache:
4073         dm_unregister_target(&pool_target);
4074 bad_pool_target:
4075         dm_unregister_target(&thin_target);
4076
4077         return r;
4078 }
4079
4080 static void dm_thin_exit(void)
4081 {
4082         dm_unregister_target(&thin_target);
4083         dm_unregister_target(&pool_target);
4084
4085         kmem_cache_destroy(_new_mapping_cache);
4086 }
4087
4088 module_init(dm_thin_init);
4089 module_exit(dm_thin_exit);
4090
4091 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4092 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4093
4094 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4095 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4096 MODULE_LICENSE("GPL");