]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/dm-verity-target.c
Merge tag 'platform-drivers-x86-v4.12-2' of git://git.infradead.org/linux-platform...
[karo-tx-linux.git] / drivers / md / dm-verity-target.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_ENV_LENGTH            42
26 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
31
32 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
35
36 #define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
37
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41
42 struct dm_verity_prefetch_work {
43         struct work_struct work;
44         struct dm_verity *v;
45         sector_t block;
46         unsigned n_blocks;
47 };
48
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62         int hash_verified;
63 };
64
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71
72         aux->hash_verified = 0;
73 }
74
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80         return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90                                          int level)
91 {
92         return block >> (level * v->hash_per_block_bits);
93 }
94
95 /*
96  * Callback function for asynchrnous crypto API completion notification
97  */
98 static void verity_op_done(struct crypto_async_request *base, int err)
99 {
100         struct verity_result *res = (struct verity_result *)base->data;
101
102         if (err == -EINPROGRESS)
103                 return;
104
105         res->err = err;
106         complete(&res->completion);
107 }
108
109 /*
110  * Wait for async crypto API callback
111  */
112 static inline int verity_complete_op(struct verity_result *res, int ret)
113 {
114         switch (ret) {
115         case 0:
116                 break;
117
118         case -EINPROGRESS:
119         case -EBUSY:
120                 ret = wait_for_completion_interruptible(&res->completion);
121                 if (!ret)
122                         ret = res->err;
123                 reinit_completion(&res->completion);
124                 break;
125
126         default:
127                 DMERR("verity_wait_hash: crypto op submission failed: %d", ret);
128         }
129
130         if (unlikely(ret < 0))
131                 DMERR("verity_wait_hash: crypto op failed: %d", ret);
132
133         return ret;
134 }
135
136 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
137                                 const u8 *data, size_t len,
138                                 struct verity_result *res)
139 {
140         struct scatterlist sg;
141
142         sg_init_one(&sg, data, len);
143         ahash_request_set_crypt(req, &sg, NULL, len);
144
145         return verity_complete_op(res, crypto_ahash_update(req));
146 }
147
148 /*
149  * Wrapper for crypto_ahash_init, which handles verity salting.
150  */
151 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
152                                 struct verity_result *res)
153 {
154         int r;
155
156         ahash_request_set_tfm(req, v->tfm);
157         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
158                                         CRYPTO_TFM_REQ_MAY_BACKLOG,
159                                         verity_op_done, (void *)res);
160         init_completion(&res->completion);
161
162         r = verity_complete_op(res, crypto_ahash_init(req));
163
164         if (unlikely(r < 0)) {
165                 DMERR("crypto_ahash_init failed: %d", r);
166                 return r;
167         }
168
169         if (likely(v->salt_size && (v->version >= 1)))
170                 r = verity_hash_update(v, req, v->salt, v->salt_size, res);
171
172         return r;
173 }
174
175 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
176                              u8 *digest, struct verity_result *res)
177 {
178         int r;
179
180         if (unlikely(v->salt_size && (!v->version))) {
181                 r = verity_hash_update(v, req, v->salt, v->salt_size, res);
182
183                 if (r < 0) {
184                         DMERR("verity_hash_final failed updating salt: %d", r);
185                         goto out;
186                 }
187         }
188
189         ahash_request_set_crypt(req, NULL, digest, 0);
190         r = verity_complete_op(res, crypto_ahash_final(req));
191 out:
192         return r;
193 }
194
195 int verity_hash(struct dm_verity *v, struct ahash_request *req,
196                 const u8 *data, size_t len, u8 *digest)
197 {
198         int r;
199         struct verity_result res;
200
201         r = verity_hash_init(v, req, &res);
202         if (unlikely(r < 0))
203                 goto out;
204
205         r = verity_hash_update(v, req, data, len, &res);
206         if (unlikely(r < 0))
207                 goto out;
208
209         r = verity_hash_final(v, req, digest, &res);
210
211 out:
212         return r;
213 }
214
215 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
216                                  sector_t *hash_block, unsigned *offset)
217 {
218         sector_t position = verity_position_at_level(v, block, level);
219         unsigned idx;
220
221         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
222
223         if (!offset)
224                 return;
225
226         idx = position & ((1 << v->hash_per_block_bits) - 1);
227         if (!v->version)
228                 *offset = idx * v->digest_size;
229         else
230                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
231 }
232
233 /*
234  * Handle verification errors.
235  */
236 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
237                              unsigned long long block)
238 {
239         char verity_env[DM_VERITY_ENV_LENGTH];
240         char *envp[] = { verity_env, NULL };
241         const char *type_str = "";
242         struct mapped_device *md = dm_table_get_md(v->ti->table);
243
244         /* Corruption should be visible in device status in all modes */
245         v->hash_failed = 1;
246
247         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
248                 goto out;
249
250         v->corrupted_errs++;
251
252         switch (type) {
253         case DM_VERITY_BLOCK_TYPE_DATA:
254                 type_str = "data";
255                 break;
256         case DM_VERITY_BLOCK_TYPE_METADATA:
257                 type_str = "metadata";
258                 break;
259         default:
260                 BUG();
261         }
262
263         DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
264                 block);
265
266         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
267                 DMERR("%s: reached maximum errors", v->data_dev->name);
268
269         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
270                 DM_VERITY_ENV_VAR_NAME, type, block);
271
272         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
273
274 out:
275         if (v->mode == DM_VERITY_MODE_LOGGING)
276                 return 0;
277
278         if (v->mode == DM_VERITY_MODE_RESTART)
279                 kernel_restart("dm-verity device corrupted");
280
281         return 1;
282 }
283
284 /*
285  * Verify hash of a metadata block pertaining to the specified data block
286  * ("block" argument) at a specified level ("level" argument).
287  *
288  * On successful return, verity_io_want_digest(v, io) contains the hash value
289  * for a lower tree level or for the data block (if we're at the lowest level).
290  *
291  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
292  * If "skip_unverified" is false, unverified buffer is hashed and verified
293  * against current value of verity_io_want_digest(v, io).
294  */
295 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
296                                sector_t block, int level, bool skip_unverified,
297                                u8 *want_digest)
298 {
299         struct dm_buffer *buf;
300         struct buffer_aux *aux;
301         u8 *data;
302         int r;
303         sector_t hash_block;
304         unsigned offset;
305
306         verity_hash_at_level(v, block, level, &hash_block, &offset);
307
308         data = dm_bufio_read(v->bufio, hash_block, &buf);
309         if (IS_ERR(data))
310                 return PTR_ERR(data);
311
312         aux = dm_bufio_get_aux_data(buf);
313
314         if (!aux->hash_verified) {
315                 if (skip_unverified) {
316                         r = 1;
317                         goto release_ret_r;
318                 }
319
320                 r = verity_hash(v, verity_io_hash_req(v, io),
321                                 data, 1 << v->hash_dev_block_bits,
322                                 verity_io_real_digest(v, io));
323                 if (unlikely(r < 0))
324                         goto release_ret_r;
325
326                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
327                                   v->digest_size) == 0))
328                         aux->hash_verified = 1;
329                 else if (verity_fec_decode(v, io,
330                                            DM_VERITY_BLOCK_TYPE_METADATA,
331                                            hash_block, data, NULL) == 0)
332                         aux->hash_verified = 1;
333                 else if (verity_handle_err(v,
334                                            DM_VERITY_BLOCK_TYPE_METADATA,
335                                            hash_block)) {
336                         r = -EIO;
337                         goto release_ret_r;
338                 }
339         }
340
341         data += offset;
342         memcpy(want_digest, data, v->digest_size);
343         r = 0;
344
345 release_ret_r:
346         dm_bufio_release(buf);
347         return r;
348 }
349
350 /*
351  * Find a hash for a given block, write it to digest and verify the integrity
352  * of the hash tree if necessary.
353  */
354 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
355                           sector_t block, u8 *digest, bool *is_zero)
356 {
357         int r = 0, i;
358
359         if (likely(v->levels)) {
360                 /*
361                  * First, we try to get the requested hash for
362                  * the current block. If the hash block itself is
363                  * verified, zero is returned. If it isn't, this
364                  * function returns 1 and we fall back to whole
365                  * chain verification.
366                  */
367                 r = verity_verify_level(v, io, block, 0, true, digest);
368                 if (likely(r <= 0))
369                         goto out;
370         }
371
372         memcpy(digest, v->root_digest, v->digest_size);
373
374         for (i = v->levels - 1; i >= 0; i--) {
375                 r = verity_verify_level(v, io, block, i, false, digest);
376                 if (unlikely(r))
377                         goto out;
378         }
379 out:
380         if (!r && v->zero_digest)
381                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
382         else
383                 *is_zero = false;
384
385         return r;
386 }
387
388 /*
389  * Calculates the digest for the given bio
390  */
391 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
392                         struct bvec_iter *iter, struct verity_result *res)
393 {
394         unsigned int todo = 1 << v->data_dev_block_bits;
395         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
396         struct scatterlist sg;
397         struct ahash_request *req = verity_io_hash_req(v, io);
398
399         do {
400                 int r;
401                 unsigned int len;
402                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
403
404                 sg_init_table(&sg, 1);
405
406                 len = bv.bv_len;
407
408                 if (likely(len >= todo))
409                         len = todo;
410                 /*
411                  * Operating on a single page at a time looks suboptimal
412                  * until you consider the typical block size is 4,096B.
413                  * Going through this loops twice should be very rare.
414                  */
415                 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
416                 ahash_request_set_crypt(req, &sg, NULL, len);
417                 r = verity_complete_op(res, crypto_ahash_update(req));
418
419                 if (unlikely(r < 0)) {
420                         DMERR("verity_for_io_block crypto op failed: %d", r);
421                         return r;
422                 }
423
424                 bio_advance_iter(bio, iter, len);
425                 todo -= len;
426         } while (todo);
427
428         return 0;
429 }
430
431 /*
432  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
433  * starting from iter.
434  */
435 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
436                         struct bvec_iter *iter,
437                         int (*process)(struct dm_verity *v,
438                                        struct dm_verity_io *io, u8 *data,
439                                        size_t len))
440 {
441         unsigned todo = 1 << v->data_dev_block_bits;
442         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
443
444         do {
445                 int r;
446                 u8 *page;
447                 unsigned len;
448                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
449
450                 page = kmap_atomic(bv.bv_page);
451                 len = bv.bv_len;
452
453                 if (likely(len >= todo))
454                         len = todo;
455
456                 r = process(v, io, page + bv.bv_offset, len);
457                 kunmap_atomic(page);
458
459                 if (r < 0)
460                         return r;
461
462                 bio_advance_iter(bio, iter, len);
463                 todo -= len;
464         } while (todo);
465
466         return 0;
467 }
468
469 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
470                           u8 *data, size_t len)
471 {
472         memset(data, 0, len);
473         return 0;
474 }
475
476 /*
477  * Verify one "dm_verity_io" structure.
478  */
479 static int verity_verify_io(struct dm_verity_io *io)
480 {
481         bool is_zero;
482         struct dm_verity *v = io->v;
483         struct bvec_iter start;
484         unsigned b;
485         struct verity_result res;
486
487         for (b = 0; b < io->n_blocks; b++) {
488                 int r;
489                 struct ahash_request *req = verity_io_hash_req(v, io);
490
491                 r = verity_hash_for_block(v, io, io->block + b,
492                                           verity_io_want_digest(v, io),
493                                           &is_zero);
494                 if (unlikely(r < 0))
495                         return r;
496
497                 if (is_zero) {
498                         /*
499                          * If we expect a zero block, don't validate, just
500                          * return zeros.
501                          */
502                         r = verity_for_bv_block(v, io, &io->iter,
503                                                 verity_bv_zero);
504                         if (unlikely(r < 0))
505                                 return r;
506
507                         continue;
508                 }
509
510                 r = verity_hash_init(v, req, &res);
511                 if (unlikely(r < 0))
512                         return r;
513
514                 start = io->iter;
515                 r = verity_for_io_block(v, io, &io->iter, &res);
516                 if (unlikely(r < 0))
517                         return r;
518
519                 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
520                                         &res);
521                 if (unlikely(r < 0))
522                         return r;
523
524                 if (likely(memcmp(verity_io_real_digest(v, io),
525                                   verity_io_want_digest(v, io), v->digest_size) == 0))
526                         continue;
527                 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
528                                            io->block + b, NULL, &start) == 0)
529                         continue;
530                 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
531                                            io->block + b))
532                         return -EIO;
533         }
534
535         return 0;
536 }
537
538 /*
539  * End one "io" structure with a given error.
540  */
541 static void verity_finish_io(struct dm_verity_io *io, int error)
542 {
543         struct dm_verity *v = io->v;
544         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
545
546         bio->bi_end_io = io->orig_bi_end_io;
547         bio->bi_error = error;
548
549         verity_fec_finish_io(io);
550
551         bio_endio(bio);
552 }
553
554 static void verity_work(struct work_struct *w)
555 {
556         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
557
558         verity_finish_io(io, verity_verify_io(io));
559 }
560
561 static void verity_end_io(struct bio *bio)
562 {
563         struct dm_verity_io *io = bio->bi_private;
564
565         if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
566                 verity_finish_io(io, bio->bi_error);
567                 return;
568         }
569
570         INIT_WORK(&io->work, verity_work);
571         queue_work(io->v->verify_wq, &io->work);
572 }
573
574 /*
575  * Prefetch buffers for the specified io.
576  * The root buffer is not prefetched, it is assumed that it will be cached
577  * all the time.
578  */
579 static void verity_prefetch_io(struct work_struct *work)
580 {
581         struct dm_verity_prefetch_work *pw =
582                 container_of(work, struct dm_verity_prefetch_work, work);
583         struct dm_verity *v = pw->v;
584         int i;
585
586         for (i = v->levels - 2; i >= 0; i--) {
587                 sector_t hash_block_start;
588                 sector_t hash_block_end;
589                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
590                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
591                 if (!i) {
592                         unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
593
594                         cluster >>= v->data_dev_block_bits;
595                         if (unlikely(!cluster))
596                                 goto no_prefetch_cluster;
597
598                         if (unlikely(cluster & (cluster - 1)))
599                                 cluster = 1 << __fls(cluster);
600
601                         hash_block_start &= ~(sector_t)(cluster - 1);
602                         hash_block_end |= cluster - 1;
603                         if (unlikely(hash_block_end >= v->hash_blocks))
604                                 hash_block_end = v->hash_blocks - 1;
605                 }
606 no_prefetch_cluster:
607                 dm_bufio_prefetch(v->bufio, hash_block_start,
608                                   hash_block_end - hash_block_start + 1);
609         }
610
611         kfree(pw);
612 }
613
614 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
615 {
616         struct dm_verity_prefetch_work *pw;
617
618         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
619                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
620
621         if (!pw)
622                 return;
623
624         INIT_WORK(&pw->work, verity_prefetch_io);
625         pw->v = v;
626         pw->block = io->block;
627         pw->n_blocks = io->n_blocks;
628         queue_work(v->verify_wq, &pw->work);
629 }
630
631 /*
632  * Bio map function. It allocates dm_verity_io structure and bio vector and
633  * fills them. Then it issues prefetches and the I/O.
634  */
635 static int verity_map(struct dm_target *ti, struct bio *bio)
636 {
637         struct dm_verity *v = ti->private;
638         struct dm_verity_io *io;
639
640         bio->bi_bdev = v->data_dev->bdev;
641         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
642
643         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
644             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
645                 DMERR_LIMIT("unaligned io");
646                 return -EIO;
647         }
648
649         if (bio_end_sector(bio) >>
650             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
651                 DMERR_LIMIT("io out of range");
652                 return -EIO;
653         }
654
655         if (bio_data_dir(bio) == WRITE)
656                 return -EIO;
657
658         io = dm_per_bio_data(bio, ti->per_io_data_size);
659         io->v = v;
660         io->orig_bi_end_io = bio->bi_end_io;
661         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
662         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
663
664         bio->bi_end_io = verity_end_io;
665         bio->bi_private = io;
666         io->iter = bio->bi_iter;
667
668         verity_fec_init_io(io);
669
670         verity_submit_prefetch(v, io);
671
672         generic_make_request(bio);
673
674         return DM_MAPIO_SUBMITTED;
675 }
676
677 /*
678  * Status: V (valid) or C (corruption found)
679  */
680 static void verity_status(struct dm_target *ti, status_type_t type,
681                           unsigned status_flags, char *result, unsigned maxlen)
682 {
683         struct dm_verity *v = ti->private;
684         unsigned args = 0;
685         unsigned sz = 0;
686         unsigned x;
687
688         switch (type) {
689         case STATUSTYPE_INFO:
690                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
691                 break;
692         case STATUSTYPE_TABLE:
693                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
694                         v->version,
695                         v->data_dev->name,
696                         v->hash_dev->name,
697                         1 << v->data_dev_block_bits,
698                         1 << v->hash_dev_block_bits,
699                         (unsigned long long)v->data_blocks,
700                         (unsigned long long)v->hash_start,
701                         v->alg_name
702                         );
703                 for (x = 0; x < v->digest_size; x++)
704                         DMEMIT("%02x", v->root_digest[x]);
705                 DMEMIT(" ");
706                 if (!v->salt_size)
707                         DMEMIT("-");
708                 else
709                         for (x = 0; x < v->salt_size; x++)
710                                 DMEMIT("%02x", v->salt[x]);
711                 if (v->mode != DM_VERITY_MODE_EIO)
712                         args++;
713                 if (verity_fec_is_enabled(v))
714                         args += DM_VERITY_OPTS_FEC;
715                 if (v->zero_digest)
716                         args++;
717                 if (!args)
718                         return;
719                 DMEMIT(" %u", args);
720                 if (v->mode != DM_VERITY_MODE_EIO) {
721                         DMEMIT(" ");
722                         switch (v->mode) {
723                         case DM_VERITY_MODE_LOGGING:
724                                 DMEMIT(DM_VERITY_OPT_LOGGING);
725                                 break;
726                         case DM_VERITY_MODE_RESTART:
727                                 DMEMIT(DM_VERITY_OPT_RESTART);
728                                 break;
729                         default:
730                                 BUG();
731                         }
732                 }
733                 if (v->zero_digest)
734                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
735                 sz = verity_fec_status_table(v, sz, result, maxlen);
736                 break;
737         }
738 }
739
740 static int verity_prepare_ioctl(struct dm_target *ti,
741                 struct block_device **bdev, fmode_t *mode)
742 {
743         struct dm_verity *v = ti->private;
744
745         *bdev = v->data_dev->bdev;
746
747         if (v->data_start ||
748             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
749                 return 1;
750         return 0;
751 }
752
753 static int verity_iterate_devices(struct dm_target *ti,
754                                   iterate_devices_callout_fn fn, void *data)
755 {
756         struct dm_verity *v = ti->private;
757
758         return fn(ti, v->data_dev, v->data_start, ti->len, data);
759 }
760
761 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
762 {
763         struct dm_verity *v = ti->private;
764
765         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
766                 limits->logical_block_size = 1 << v->data_dev_block_bits;
767
768         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
769                 limits->physical_block_size = 1 << v->data_dev_block_bits;
770
771         blk_limits_io_min(limits, limits->logical_block_size);
772 }
773
774 static void verity_dtr(struct dm_target *ti)
775 {
776         struct dm_verity *v = ti->private;
777
778         if (v->verify_wq)
779                 destroy_workqueue(v->verify_wq);
780
781         if (v->bufio)
782                 dm_bufio_client_destroy(v->bufio);
783
784         kfree(v->salt);
785         kfree(v->root_digest);
786         kfree(v->zero_digest);
787
788         if (v->tfm)
789                 crypto_free_ahash(v->tfm);
790
791         kfree(v->alg_name);
792
793         if (v->hash_dev)
794                 dm_put_device(ti, v->hash_dev);
795
796         if (v->data_dev)
797                 dm_put_device(ti, v->data_dev);
798
799         verity_fec_dtr(v);
800
801         kfree(v);
802 }
803
804 static int verity_alloc_zero_digest(struct dm_verity *v)
805 {
806         int r = -ENOMEM;
807         struct ahash_request *req;
808         u8 *zero_data;
809
810         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
811
812         if (!v->zero_digest)
813                 return r;
814
815         req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
816
817         if (!req)
818                 return r; /* verity_dtr will free zero_digest */
819
820         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
821
822         if (!zero_data)
823                 goto out;
824
825         r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
826                         v->zero_digest);
827
828 out:
829         kfree(req);
830         kfree(zero_data);
831
832         return r;
833 }
834
835 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
836 {
837         int r;
838         unsigned argc;
839         struct dm_target *ti = v->ti;
840         const char *arg_name;
841
842         static struct dm_arg _args[] = {
843                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
844         };
845
846         r = dm_read_arg_group(_args, as, &argc, &ti->error);
847         if (r)
848                 return -EINVAL;
849
850         if (!argc)
851                 return 0;
852
853         do {
854                 arg_name = dm_shift_arg(as);
855                 argc--;
856
857                 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
858                         v->mode = DM_VERITY_MODE_LOGGING;
859                         continue;
860
861                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
862                         v->mode = DM_VERITY_MODE_RESTART;
863                         continue;
864
865                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
866                         r = verity_alloc_zero_digest(v);
867                         if (r) {
868                                 ti->error = "Cannot allocate zero digest";
869                                 return r;
870                         }
871                         continue;
872
873                 } else if (verity_is_fec_opt_arg(arg_name)) {
874                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
875                         if (r)
876                                 return r;
877                         continue;
878                 }
879
880                 ti->error = "Unrecognized verity feature request";
881                 return -EINVAL;
882         } while (argc && !r);
883
884         return r;
885 }
886
887 /*
888  * Target parameters:
889  *      <version>       The current format is version 1.
890  *                      Vsn 0 is compatible with original Chromium OS releases.
891  *      <data device>
892  *      <hash device>
893  *      <data block size>
894  *      <hash block size>
895  *      <the number of data blocks>
896  *      <hash start block>
897  *      <algorithm>
898  *      <digest>
899  *      <salt>          Hex string or "-" if no salt.
900  */
901 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
902 {
903         struct dm_verity *v;
904         struct dm_arg_set as;
905         unsigned int num;
906         unsigned long long num_ll;
907         int r;
908         int i;
909         sector_t hash_position;
910         char dummy;
911
912         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
913         if (!v) {
914                 ti->error = "Cannot allocate verity structure";
915                 return -ENOMEM;
916         }
917         ti->private = v;
918         v->ti = ti;
919
920         r = verity_fec_ctr_alloc(v);
921         if (r)
922                 goto bad;
923
924         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
925                 ti->error = "Device must be readonly";
926                 r = -EINVAL;
927                 goto bad;
928         }
929
930         if (argc < 10) {
931                 ti->error = "Not enough arguments";
932                 r = -EINVAL;
933                 goto bad;
934         }
935
936         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
937             num > 1) {
938                 ti->error = "Invalid version";
939                 r = -EINVAL;
940                 goto bad;
941         }
942         v->version = num;
943
944         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
945         if (r) {
946                 ti->error = "Data device lookup failed";
947                 goto bad;
948         }
949
950         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
951         if (r) {
952                 ti->error = "Hash device lookup failed";
953                 goto bad;
954         }
955
956         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
957             !num || (num & (num - 1)) ||
958             num < bdev_logical_block_size(v->data_dev->bdev) ||
959             num > PAGE_SIZE) {
960                 ti->error = "Invalid data device block size";
961                 r = -EINVAL;
962                 goto bad;
963         }
964         v->data_dev_block_bits = __ffs(num);
965
966         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
967             !num || (num & (num - 1)) ||
968             num < bdev_logical_block_size(v->hash_dev->bdev) ||
969             num > INT_MAX) {
970                 ti->error = "Invalid hash device block size";
971                 r = -EINVAL;
972                 goto bad;
973         }
974         v->hash_dev_block_bits = __ffs(num);
975
976         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
977             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
978             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
979                 ti->error = "Invalid data blocks";
980                 r = -EINVAL;
981                 goto bad;
982         }
983         v->data_blocks = num_ll;
984
985         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
986                 ti->error = "Data device is too small";
987                 r = -EINVAL;
988                 goto bad;
989         }
990
991         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
992             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
993             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
994                 ti->error = "Invalid hash start";
995                 r = -EINVAL;
996                 goto bad;
997         }
998         v->hash_start = num_ll;
999
1000         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1001         if (!v->alg_name) {
1002                 ti->error = "Cannot allocate algorithm name";
1003                 r = -ENOMEM;
1004                 goto bad;
1005         }
1006
1007         v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1008         if (IS_ERR(v->tfm)) {
1009                 ti->error = "Cannot initialize hash function";
1010                 r = PTR_ERR(v->tfm);
1011                 v->tfm = NULL;
1012                 goto bad;
1013         }
1014         v->digest_size = crypto_ahash_digestsize(v->tfm);
1015         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1016                 ti->error = "Digest size too big";
1017                 r = -EINVAL;
1018                 goto bad;
1019         }
1020         v->ahash_reqsize = sizeof(struct ahash_request) +
1021                 crypto_ahash_reqsize(v->tfm);
1022
1023         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1024         if (!v->root_digest) {
1025                 ti->error = "Cannot allocate root digest";
1026                 r = -ENOMEM;
1027                 goto bad;
1028         }
1029         if (strlen(argv[8]) != v->digest_size * 2 ||
1030             hex2bin(v->root_digest, argv[8], v->digest_size)) {
1031                 ti->error = "Invalid root digest";
1032                 r = -EINVAL;
1033                 goto bad;
1034         }
1035
1036         if (strcmp(argv[9], "-")) {
1037                 v->salt_size = strlen(argv[9]) / 2;
1038                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1039                 if (!v->salt) {
1040                         ti->error = "Cannot allocate salt";
1041                         r = -ENOMEM;
1042                         goto bad;
1043                 }
1044                 if (strlen(argv[9]) != v->salt_size * 2 ||
1045                     hex2bin(v->salt, argv[9], v->salt_size)) {
1046                         ti->error = "Invalid salt";
1047                         r = -EINVAL;
1048                         goto bad;
1049                 }
1050         }
1051
1052         argv += 10;
1053         argc -= 10;
1054
1055         /* Optional parameters */
1056         if (argc) {
1057                 as.argc = argc;
1058                 as.argv = argv;
1059
1060                 r = verity_parse_opt_args(&as, v);
1061                 if (r < 0)
1062                         goto bad;
1063         }
1064
1065         v->hash_per_block_bits =
1066                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1067
1068         v->levels = 0;
1069         if (v->data_blocks)
1070                 while (v->hash_per_block_bits * v->levels < 64 &&
1071                        (unsigned long long)(v->data_blocks - 1) >>
1072                        (v->hash_per_block_bits * v->levels))
1073                         v->levels++;
1074
1075         if (v->levels > DM_VERITY_MAX_LEVELS) {
1076                 ti->error = "Too many tree levels";
1077                 r = -E2BIG;
1078                 goto bad;
1079         }
1080
1081         hash_position = v->hash_start;
1082         for (i = v->levels - 1; i >= 0; i--) {
1083                 sector_t s;
1084                 v->hash_level_block[i] = hash_position;
1085                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1086                                         >> ((i + 1) * v->hash_per_block_bits);
1087                 if (hash_position + s < hash_position) {
1088                         ti->error = "Hash device offset overflow";
1089                         r = -E2BIG;
1090                         goto bad;
1091                 }
1092                 hash_position += s;
1093         }
1094         v->hash_blocks = hash_position;
1095
1096         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1097                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1098                 dm_bufio_alloc_callback, NULL);
1099         if (IS_ERR(v->bufio)) {
1100                 ti->error = "Cannot initialize dm-bufio";
1101                 r = PTR_ERR(v->bufio);
1102                 v->bufio = NULL;
1103                 goto bad;
1104         }
1105
1106         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1107                 ti->error = "Hash device is too small";
1108                 r = -E2BIG;
1109                 goto bad;
1110         }
1111
1112         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1113         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1114         if (!v->verify_wq) {
1115                 ti->error = "Cannot allocate workqueue";
1116                 r = -ENOMEM;
1117                 goto bad;
1118         }
1119
1120         ti->per_io_data_size = sizeof(struct dm_verity_io) +
1121                                 v->ahash_reqsize + v->digest_size * 2;
1122
1123         r = verity_fec_ctr(v);
1124         if (r)
1125                 goto bad;
1126
1127         ti->per_io_data_size = roundup(ti->per_io_data_size,
1128                                        __alignof__(struct dm_verity_io));
1129
1130         return 0;
1131
1132 bad:
1133         verity_dtr(ti);
1134
1135         return r;
1136 }
1137
1138 static struct target_type verity_target = {
1139         .name           = "verity",
1140         .version        = {1, 3, 0},
1141         .module         = THIS_MODULE,
1142         .ctr            = verity_ctr,
1143         .dtr            = verity_dtr,
1144         .map            = verity_map,
1145         .status         = verity_status,
1146         .prepare_ioctl  = verity_prepare_ioctl,
1147         .iterate_devices = verity_iterate_devices,
1148         .io_hints       = verity_io_hints,
1149 };
1150
1151 static int __init dm_verity_init(void)
1152 {
1153         int r;
1154
1155         r = dm_register_target(&verity_target);
1156         if (r < 0)
1157                 DMERR("register failed %d", r);
1158
1159         return r;
1160 }
1161
1162 static void __exit dm_verity_exit(void)
1163 {
1164         dm_unregister_target(&verity_target);
1165 }
1166
1167 module_init(dm_verity_init);
1168 module_exit(dm_verity_exit);
1169
1170 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1171 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1172 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1173 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1174 MODULE_LICENSE("GPL");