2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
28 #include <trace/events/block.h>
30 #define DM_MSG_PREFIX "core"
34 * ratelimit state to be used in DMXXX_LIMIT().
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 DEFAULT_RATELIMIT_INTERVAL,
38 DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
43 * Cookies are numeric values sent with CHANGE and REMOVE
44 * uevents while resuming, removing or renaming the device.
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
49 static const char *_name = DM_NAME;
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
54 static DEFINE_IDR(_minor_idr);
56 static DEFINE_SPINLOCK(_minor_lock);
58 static void do_deferred_remove(struct work_struct *w);
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 static struct workqueue_struct *deferred_remove_workqueue;
66 * One of these is allocated per bio.
69 struct mapped_device *md;
73 unsigned long start_time;
74 spinlock_t endio_lock;
75 struct dm_stats_aux stats_aux;
79 * For request-based dm.
80 * One of these is allocated per request.
82 struct dm_rq_target_io {
83 struct mapped_device *md;
85 struct request *orig, *clone;
86 struct kthread_work work;
92 * For request-based dm - the bio clones we allocate are embedded in these
95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96 * the bioset is created - this means the bio has to come at the end of the
99 struct dm_rq_clone_bio_info {
101 struct dm_rq_target_io *tio;
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
107 if (rq && rq->end_io_data)
108 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
113 #define MINOR_ALLOCED ((void *)-1)
116 * Bits for the md->flags field.
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
129 * A dummy definition to make RCU happy.
130 * struct dm_table should never be dereferenced in this file.
137 * Work processed by per-device workqueue.
139 struct mapped_device {
140 struct srcu_struct io_barrier;
141 struct mutex suspend_lock;
146 * The current mapping.
147 * Use dm_get_live_table{_fast} or take suspend_lock for
150 struct dm_table __rcu *map;
152 struct list_head table_devices;
153 struct mutex table_devices_lock;
157 struct request_queue *queue;
159 /* Protect queue and type against concurrent access. */
160 struct mutex type_lock;
162 struct target_type *immutable_target_type;
164 struct gendisk *disk;
170 * A list of ios that arrived while we were suspended.
173 wait_queue_head_t wait;
174 struct work_struct work;
175 struct bio_list deferred;
176 spinlock_t deferred_lock;
179 * Processing queue (flush)
181 struct workqueue_struct *wq;
184 * io objects are allocated from here.
195 wait_queue_head_t eventq;
197 struct list_head uevent_list;
198 spinlock_t uevent_lock; /* Protect access to uevent_list */
201 * freeze/thaw support require holding onto a super block
203 struct super_block *frozen_sb;
204 struct block_device *bdev;
206 /* forced geometry settings */
207 struct hd_geometry geometry;
209 /* kobject and completion */
210 struct dm_kobject_holder kobj_holder;
212 /* zero-length flush that will be cloned and submitted to targets */
213 struct bio flush_bio;
215 /* the number of internal suspends */
216 unsigned internal_suspend_count;
218 struct dm_stats stats;
220 struct kthread_worker kworker;
221 struct task_struct *kworker_task;
223 /* for request-based merge heuristic in dm_request_fn() */
224 unsigned seq_rq_merge_deadline_usecs;
226 sector_t last_rq_pos;
227 ktime_t last_rq_start_time;
229 /* for blk-mq request-based DM support */
230 struct blk_mq_tag_set tag_set;
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
237 static bool use_blk_mq = false;
240 bool dm_use_blk_mq(struct mapped_device *md)
242 return md->use_blk_mq;
246 * For mempools pre-allocation at the table loading time.
248 struct dm_md_mempools {
254 struct table_device {
255 struct list_head list;
257 struct dm_dev dm_dev;
260 #define RESERVED_BIO_BASED_IOS 16
261 #define RESERVED_REQUEST_BASED_IOS 256
262 #define RESERVED_MAX_IOS 1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
268 * Bio-based DM's mempools' reserved IOs set by the user.
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 * Request-based DM's mempools' reserved IOs set by the user.
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 unsigned def, unsigned max)
280 unsigned param = ACCESS_ONCE(*module_param);
281 unsigned modified_param = 0;
284 modified_param = def;
285 else if (param > max)
286 modified_param = max;
288 if (modified_param) {
289 (void)cmpxchg(module_param, param, modified_param);
290 param = modified_param;
296 unsigned dm_get_reserved_bio_based_ios(void)
298 return __dm_get_module_param(&reserved_bio_based_ios,
299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
303 unsigned dm_get_reserved_rq_based_ios(void)
305 return __dm_get_module_param(&reserved_rq_based_ios,
306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
310 static int __init local_init(void)
314 /* allocate a slab for the dm_ios */
315 _io_cache = KMEM_CACHE(dm_io, 0);
319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
321 goto out_free_io_cache;
323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 __alignof__(struct request), 0, NULL);
326 goto out_free_rq_tio_cache;
328 r = dm_uevent_init();
330 goto out_free_rq_cache;
332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 if (!deferred_remove_workqueue) {
335 goto out_uevent_exit;
339 r = register_blkdev(_major, _name);
341 goto out_free_workqueue;
349 destroy_workqueue(deferred_remove_workqueue);
353 kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 kmem_cache_destroy(_rq_tio_cache);
357 kmem_cache_destroy(_io_cache);
362 static void local_exit(void)
364 flush_scheduled_work();
365 destroy_workqueue(deferred_remove_workqueue);
367 kmem_cache_destroy(_rq_cache);
368 kmem_cache_destroy(_rq_tio_cache);
369 kmem_cache_destroy(_io_cache);
370 unregister_blkdev(_major, _name);
375 DMINFO("cleaned up");
378 static int (*_inits[])(void) __initdata = {
389 static void (*_exits[])(void) = {
400 static int __init dm_init(void)
402 const int count = ARRAY_SIZE(_inits);
406 for (i = 0; i < count; i++) {
421 static void __exit dm_exit(void)
423 int i = ARRAY_SIZE(_exits);
429 * Should be empty by this point.
431 idr_destroy(&_minor_idr);
435 * Block device functions
437 int dm_deleting_md(struct mapped_device *md)
439 return test_bit(DMF_DELETING, &md->flags);
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
444 struct mapped_device *md;
446 spin_lock(&_minor_lock);
448 md = bdev->bd_disk->private_data;
452 if (test_bit(DMF_FREEING, &md->flags) ||
453 dm_deleting_md(md)) {
459 atomic_inc(&md->open_count);
461 spin_unlock(&_minor_lock);
463 return md ? 0 : -ENXIO;
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
468 struct mapped_device *md;
470 spin_lock(&_minor_lock);
472 md = disk->private_data;
476 if (atomic_dec_and_test(&md->open_count) &&
477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482 spin_unlock(&_minor_lock);
485 int dm_open_count(struct mapped_device *md)
487 return atomic_read(&md->open_count);
491 * Guarantees nothing is using the device before it's deleted.
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 spin_lock(&_minor_lock);
499 if (dm_open_count(md)) {
502 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
506 set_bit(DMF_DELETING, &md->flags);
508 spin_unlock(&_minor_lock);
513 int dm_cancel_deferred_remove(struct mapped_device *md)
517 spin_lock(&_minor_lock);
519 if (test_bit(DMF_DELETING, &md->flags))
522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
524 spin_unlock(&_minor_lock);
529 static void do_deferred_remove(struct work_struct *w)
531 dm_deferred_remove();
534 sector_t dm_get_size(struct mapped_device *md)
536 return get_capacity(md->disk);
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
551 struct mapped_device *md = bdev->bd_disk->private_data;
553 return dm_get_geometry(md, geo);
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 unsigned int cmd, unsigned long arg)
559 struct mapped_device *md = bdev->bd_disk->private_data;
561 struct dm_table *map;
562 struct dm_target *tgt;
566 map = dm_get_live_table(md, &srcu_idx);
568 if (!map || !dm_table_get_size(map))
571 /* We only support devices that have a single target */
572 if (dm_table_get_num_targets(map) != 1)
575 tgt = dm_table_get_target(map, 0);
576 if (!tgt->type->ioctl)
579 if (dm_suspended_md(md)) {
584 r = tgt->type->ioctl(tgt, cmd, arg);
587 dm_put_live_table(md, srcu_idx);
589 if (r == -ENOTCONN) {
597 static struct dm_io *alloc_io(struct mapped_device *md)
599 return mempool_alloc(md->io_pool, GFP_NOIO);
602 static void free_io(struct mapped_device *md, struct dm_io *io)
604 mempool_free(io, md->io_pool);
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
609 bio_put(&tio->clone);
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
615 return mempool_alloc(md->io_pool, gfp_mask);
618 static void free_rq_tio(struct dm_rq_target_io *tio)
620 mempool_free(tio, tio->md->io_pool);
623 static struct request *alloc_clone_request(struct mapped_device *md,
626 return mempool_alloc(md->rq_pool, gfp_mask);
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
631 mempool_free(rq, md->rq_pool);
634 static int md_in_flight(struct mapped_device *md)
636 return atomic_read(&md->pending[READ]) +
637 atomic_read(&md->pending[WRITE]);
640 static void start_io_acct(struct dm_io *io)
642 struct mapped_device *md = io->md;
643 struct bio *bio = io->bio;
645 int rw = bio_data_dir(bio);
647 io->start_time = jiffies;
649 cpu = part_stat_lock();
650 part_round_stats(cpu, &dm_disk(md)->part0);
652 atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 atomic_inc_return(&md->pending[rw]));
655 if (unlikely(dm_stats_used(&md->stats)))
656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 bio_sectors(bio), false, 0, &io->stats_aux);
660 static void end_io_acct(struct dm_io *io)
662 struct mapped_device *md = io->md;
663 struct bio *bio = io->bio;
664 unsigned long duration = jiffies - io->start_time;
666 int rw = bio_data_dir(bio);
668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
670 if (unlikely(dm_stats_used(&md->stats)))
671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 bio_sectors(bio), true, duration, &io->stats_aux);
675 * After this is decremented the bio must not be touched if it is
678 pending = atomic_dec_return(&md->pending[rw]);
679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 pending += atomic_read(&md->pending[rw^0x1]);
682 /* nudge anyone waiting on suspend queue */
688 * Add the bio to the list of deferred io.
690 static void queue_io(struct mapped_device *md, struct bio *bio)
694 spin_lock_irqsave(&md->deferred_lock, flags);
695 bio_list_add(&md->deferred, bio);
696 spin_unlock_irqrestore(&md->deferred_lock, flags);
697 queue_work(md->wq, &md->work);
701 * Everyone (including functions in this file), should use this
702 * function to access the md->map field, and make sure they call
703 * dm_put_live_table() when finished.
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
707 *srcu_idx = srcu_read_lock(&md->io_barrier);
709 return srcu_dereference(md->map, &md->io_barrier);
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
714 srcu_read_unlock(&md->io_barrier, srcu_idx);
717 void dm_sync_table(struct mapped_device *md)
719 synchronize_srcu(&md->io_barrier);
720 synchronize_rcu_expedited();
724 * A fast alternative to dm_get_live_table/dm_put_live_table.
725 * The caller must not block between these two functions.
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
730 return rcu_dereference(md->map);
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
739 * Open a table device so we can use it as a map destination.
741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
744 static char *_claim_ptr = "I belong to device-mapper";
745 struct block_device *bdev;
749 BUG_ON(td->dm_dev.bdev);
751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
753 return PTR_ERR(bdev);
755 r = bd_link_disk_holder(bdev, dm_disk(md));
757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
761 td->dm_dev.bdev = bdev;
766 * Close a table device that we've been using.
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
770 if (!td->dm_dev.bdev)
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 td->dm_dev.bdev = NULL;
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
780 struct table_device *td;
782 list_for_each_entry(td, l, list)
783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 struct dm_dev **result) {
792 struct table_device *td;
794 mutex_lock(&md->table_devices_lock);
795 td = find_table_device(&md->table_devices, dev, mode);
797 td = kmalloc(sizeof(*td), GFP_KERNEL);
799 mutex_unlock(&md->table_devices_lock);
803 td->dm_dev.mode = mode;
804 td->dm_dev.bdev = NULL;
806 if ((r = open_table_device(td, dev, md))) {
807 mutex_unlock(&md->table_devices_lock);
812 format_dev_t(td->dm_dev.name, dev);
814 atomic_set(&td->count, 0);
815 list_add(&td->list, &md->table_devices);
817 atomic_inc(&td->count);
818 mutex_unlock(&md->table_devices_lock);
820 *result = &td->dm_dev;
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
827 struct table_device *td = container_of(d, struct table_device, dm_dev);
829 mutex_lock(&md->table_devices_lock);
830 if (atomic_dec_and_test(&td->count)) {
831 close_table_device(td, md);
835 mutex_unlock(&md->table_devices_lock);
837 EXPORT_SYMBOL(dm_put_table_device);
839 static void free_table_devices(struct list_head *devices)
841 struct list_head *tmp, *next;
843 list_for_each_safe(tmp, next, devices) {
844 struct table_device *td = list_entry(tmp, struct table_device, list);
846 DMWARN("dm_destroy: %s still exists with %d references",
847 td->dm_dev.name, atomic_read(&td->count));
853 * Get the geometry associated with a dm device
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
863 * Set the geometry of a device.
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
869 if (geo->start > sz) {
870 DMWARN("Start sector is beyond the geometry limits.");
879 /*-----------------------------------------------------------------
881 * A more elegant soln is in the works that uses the queue
882 * merge fn, unfortunately there are a couple of changes to
883 * the block layer that I want to make for this. So in the
884 * interests of getting something for people to use I give
885 * you this clearly demarcated crap.
886 *---------------------------------------------------------------*/
888 static int __noflush_suspending(struct mapped_device *md)
890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 * Decrements the number of outstanding ios that a bio has been
895 * cloned into, completing the original io if necc.
897 static void dec_pending(struct dm_io *io, int error)
902 struct mapped_device *md = io->md;
904 /* Push-back supersedes any I/O errors */
905 if (unlikely(error)) {
906 spin_lock_irqsave(&io->endio_lock, flags);
907 if (!(io->error > 0 && __noflush_suspending(md)))
909 spin_unlock_irqrestore(&io->endio_lock, flags);
912 if (atomic_dec_and_test(&io->io_count)) {
913 if (io->error == DM_ENDIO_REQUEUE) {
915 * Target requested pushing back the I/O.
917 spin_lock_irqsave(&md->deferred_lock, flags);
918 if (__noflush_suspending(md))
919 bio_list_add_head(&md->deferred, io->bio);
921 /* noflush suspend was interrupted. */
923 spin_unlock_irqrestore(&md->deferred_lock, flags);
926 io_error = io->error;
931 if (io_error == DM_ENDIO_REQUEUE)
934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
936 * Preflush done for flush with data, reissue
939 bio->bi_rw &= ~REQ_FLUSH;
942 /* done with normal IO or empty flush */
943 trace_block_bio_complete(md->queue, bio, io_error);
944 bio_endio(bio, io_error);
949 static void disable_write_same(struct mapped_device *md)
951 struct queue_limits *limits = dm_get_queue_limits(md);
953 /* device doesn't really support WRITE SAME, disable it */
954 limits->max_write_same_sectors = 0;
957 static void clone_endio(struct bio *bio, int error)
960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 struct dm_io *io = tio->io;
962 struct mapped_device *md = tio->io->md;
963 dm_endio_fn endio = tio->ti->type->end_io;
965 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
969 r = endio(tio->ti, bio, error);
970 if (r < 0 || r == DM_ENDIO_REQUEUE)
972 * error and requeue request are handled
976 else if (r == DM_ENDIO_INCOMPLETE)
977 /* The target will handle the io */
980 DMWARN("unimplemented target endio return value: %d", r);
985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 disable_write_same(md);
990 dec_pending(io, error);
994 * Partial completion handling for request-based dm
996 static void end_clone_bio(struct bio *clone, int error)
998 struct dm_rq_clone_bio_info *info =
999 container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 struct dm_rq_target_io *tio = info->tio;
1001 struct bio *bio = info->orig;
1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1008 * An error has already been detected on the request.
1009 * Once error occurred, just let clone->end_io() handle
1015 * Don't notice the error to the upper layer yet.
1016 * The error handling decision is made by the target driver,
1017 * when the request is completed.
1024 * I/O for the bio successfully completed.
1025 * Notice the data completion to the upper layer.
1029 * bios are processed from the head of the list.
1030 * So the completing bio should always be rq->bio.
1031 * If it's not, something wrong is happening.
1033 if (tio->orig->bio != bio)
1034 DMERR("bio completion is going in the middle of the request");
1037 * Update the original request.
1038 * Do not use blk_end_request() here, because it may complete
1039 * the original request before the clone, and break the ordering.
1041 blk_update_request(tio->orig, 0, nr_bytes);
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1050 * Don't touch any member of the md after calling this function because
1051 * the md may be freed in dm_put() at the end of this function.
1052 * Or do dm_get() before calling this function and dm_put() later.
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1056 int nr_requests_pending;
1058 atomic_dec(&md->pending[rw]);
1060 /* nudge anyone waiting on suspend queue */
1061 nr_requests_pending = md_in_flight(md);
1062 if (!nr_requests_pending)
1066 * Run this off this callpath, as drivers could invoke end_io while
1067 * inside their request_fn (and holding the queue lock). Calling
1068 * back into ->request_fn() could deadlock attempting to grab the
1072 if (md->queue->mq_ops)
1073 blk_mq_run_hw_queues(md->queue, true);
1074 else if (!nr_requests_pending ||
1075 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 blk_run_queue_async(md->queue);
1080 * dm_put() must be at the end of this function. See the comment above
1085 static void free_rq_clone(struct request *clone)
1087 struct dm_rq_target_io *tio = clone->end_io_data;
1088 struct mapped_device *md = tio->md;
1090 blk_rq_unprep_clone(clone);
1092 if (clone->q->mq_ops)
1093 tio->ti->type->release_clone_rq(clone);
1094 else if (!md->queue->mq_ops)
1095 /* request_fn queue stacked on request_fn queue(s) */
1096 free_clone_request(md, clone);
1098 if (!md->queue->mq_ops)
1103 * Complete the clone and the original request.
1104 * Must be called without clone's queue lock held,
1105 * see end_clone_request() for more details.
1107 static void dm_end_request(struct request *clone, int error)
1109 int rw = rq_data_dir(clone);
1110 struct dm_rq_target_io *tio = clone->end_io_data;
1111 struct mapped_device *md = tio->md;
1112 struct request *rq = tio->orig;
1114 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1115 rq->errors = clone->errors;
1116 rq->resid_len = clone->resid_len;
1120 * We are using the sense buffer of the original
1122 * So setting the length of the sense data is enough.
1124 rq->sense_len = clone->sense_len;
1127 free_rq_clone(clone);
1129 blk_end_request_all(rq, error);
1131 blk_mq_end_request(rq, error);
1132 rq_completed(md, rw, true);
1135 static void dm_unprep_request(struct request *rq)
1137 struct dm_rq_target_io *tio = tio_from_request(rq);
1138 struct request *clone = tio->clone;
1140 if (!rq->q->mq_ops) {
1142 rq->cmd_flags &= ~REQ_DONTPREP;
1146 free_rq_clone(clone);
1150 * Requeue the original request of a clone.
1152 static void old_requeue_request(struct request *rq)
1154 struct request_queue *q = rq->q;
1155 unsigned long flags;
1157 spin_lock_irqsave(q->queue_lock, flags);
1158 blk_requeue_request(q, rq);
1159 spin_unlock_irqrestore(q->queue_lock, flags);
1162 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1165 int rw = rq_data_dir(rq);
1167 dm_unprep_request(rq);
1170 old_requeue_request(rq);
1172 blk_mq_requeue_request(rq);
1173 blk_mq_kick_requeue_list(rq->q);
1176 rq_completed(md, rw, false);
1179 static void dm_requeue_unmapped_request(struct request *clone)
1181 struct dm_rq_target_io *tio = clone->end_io_data;
1183 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1186 static void old_stop_queue(struct request_queue *q)
1188 unsigned long flags;
1190 if (blk_queue_stopped(q))
1193 spin_lock_irqsave(q->queue_lock, flags);
1195 spin_unlock_irqrestore(q->queue_lock, flags);
1198 static void stop_queue(struct request_queue *q)
1203 blk_mq_stop_hw_queues(q);
1206 static void old_start_queue(struct request_queue *q)
1208 unsigned long flags;
1210 spin_lock_irqsave(q->queue_lock, flags);
1211 if (blk_queue_stopped(q))
1213 spin_unlock_irqrestore(q->queue_lock, flags);
1216 static void start_queue(struct request_queue *q)
1221 blk_mq_start_stopped_hw_queues(q, true);
1224 static void dm_done(struct request *clone, int error, bool mapped)
1227 struct dm_rq_target_io *tio = clone->end_io_data;
1228 dm_request_endio_fn rq_end_io = NULL;
1231 rq_end_io = tio->ti->type->rq_end_io;
1233 if (mapped && rq_end_io)
1234 r = rq_end_io(tio->ti, clone, error, &tio->info);
1237 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1238 !clone->q->limits.max_write_same_sectors))
1239 disable_write_same(tio->md);
1242 /* The target wants to complete the I/O */
1243 dm_end_request(clone, r);
1244 else if (r == DM_ENDIO_INCOMPLETE)
1245 /* The target will handle the I/O */
1247 else if (r == DM_ENDIO_REQUEUE)
1248 /* The target wants to requeue the I/O */
1249 dm_requeue_unmapped_request(clone);
1251 DMWARN("unimplemented target endio return value: %d", r);
1257 * Request completion handler for request-based dm
1259 static void dm_softirq_done(struct request *rq)
1262 struct dm_rq_target_io *tio = tio_from_request(rq);
1263 struct request *clone = tio->clone;
1267 rw = rq_data_dir(rq);
1268 if (!rq->q->mq_ops) {
1269 blk_end_request_all(rq, tio->error);
1270 rq_completed(tio->md, rw, false);
1273 blk_mq_end_request(rq, tio->error);
1274 rq_completed(tio->md, rw, false);
1279 if (rq->cmd_flags & REQ_FAILED)
1282 dm_done(clone, tio->error, mapped);
1286 * Complete the clone and the original request with the error status
1287 * through softirq context.
1289 static void dm_complete_request(struct request *rq, int error)
1291 struct dm_rq_target_io *tio = tio_from_request(rq);
1294 blk_complete_request(rq);
1298 * Complete the not-mapped clone and the original request with the error status
1299 * through softirq context.
1300 * Target's rq_end_io() function isn't called.
1301 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1303 static void dm_kill_unmapped_request(struct request *rq, int error)
1305 rq->cmd_flags |= REQ_FAILED;
1306 dm_complete_request(rq, error);
1310 * Called with the clone's queue lock held (for non-blk-mq)
1312 static void end_clone_request(struct request *clone, int error)
1314 struct dm_rq_target_io *tio = clone->end_io_data;
1316 if (!clone->q->mq_ops) {
1318 * For just cleaning up the information of the queue in which
1319 * the clone was dispatched.
1320 * The clone is *NOT* freed actually here because it is alloced
1321 * from dm own mempool (REQ_ALLOCED isn't set).
1323 __blk_put_request(clone->q, clone);
1327 * Actual request completion is done in a softirq context which doesn't
1328 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1329 * - another request may be submitted by the upper level driver
1330 * of the stacking during the completion
1331 * - the submission which requires queue lock may be done
1332 * against this clone's queue
1334 dm_complete_request(tio->orig, error);
1338 * Return maximum size of I/O possible at the supplied sector up to the current
1341 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1343 sector_t target_offset = dm_target_offset(ti, sector);
1345 return ti->len - target_offset;
1348 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1350 sector_t len = max_io_len_target_boundary(sector, ti);
1351 sector_t offset, max_len;
1354 * Does the target need to split even further?
1356 if (ti->max_io_len) {
1357 offset = dm_target_offset(ti, sector);
1358 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1359 max_len = sector_div(offset, ti->max_io_len);
1361 max_len = offset & (ti->max_io_len - 1);
1362 max_len = ti->max_io_len - max_len;
1371 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1373 if (len > UINT_MAX) {
1374 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1375 (unsigned long long)len, UINT_MAX);
1376 ti->error = "Maximum size of target IO is too large";
1380 ti->max_io_len = (uint32_t) len;
1384 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1387 * A target may call dm_accept_partial_bio only from the map routine. It is
1388 * allowed for all bio types except REQ_FLUSH.
1390 * dm_accept_partial_bio informs the dm that the target only wants to process
1391 * additional n_sectors sectors of the bio and the rest of the data should be
1392 * sent in a next bio.
1394 * A diagram that explains the arithmetics:
1395 * +--------------------+---------------+-------+
1397 * +--------------------+---------------+-------+
1399 * <-------------- *tio->len_ptr --------------->
1400 * <------- bi_size ------->
1403 * Region 1 was already iterated over with bio_advance or similar function.
1404 * (it may be empty if the target doesn't use bio_advance)
1405 * Region 2 is the remaining bio size that the target wants to process.
1406 * (it may be empty if region 1 is non-empty, although there is no reason
1408 * The target requires that region 3 is to be sent in the next bio.
1410 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1411 * the partially processed part (the sum of regions 1+2) must be the same for all
1412 * copies of the bio.
1414 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1416 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1417 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1418 BUG_ON(bio->bi_rw & REQ_FLUSH);
1419 BUG_ON(bi_size > *tio->len_ptr);
1420 BUG_ON(n_sectors > bi_size);
1421 *tio->len_ptr -= bi_size - n_sectors;
1422 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1424 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1426 static void __map_bio(struct dm_target_io *tio)
1430 struct mapped_device *md;
1431 struct bio *clone = &tio->clone;
1432 struct dm_target *ti = tio->ti;
1434 clone->bi_end_io = clone_endio;
1437 * Map the clone. If r == 0 we don't need to do
1438 * anything, the target has assumed ownership of
1441 atomic_inc(&tio->io->io_count);
1442 sector = clone->bi_iter.bi_sector;
1443 r = ti->type->map(ti, clone);
1444 if (r == DM_MAPIO_REMAPPED) {
1445 /* the bio has been remapped so dispatch it */
1447 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1448 tio->io->bio->bi_bdev->bd_dev, sector);
1450 generic_make_request(clone);
1451 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1452 /* error the io and bail out, or requeue it if needed */
1454 dec_pending(tio->io, r);
1457 DMWARN("unimplemented target map return value: %d", r);
1463 struct mapped_device *md;
1464 struct dm_table *map;
1468 unsigned sector_count;
1471 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1473 bio->bi_iter.bi_sector = sector;
1474 bio->bi_iter.bi_size = to_bytes(len);
1478 * Creates a bio that consists of range of complete bvecs.
1480 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1481 sector_t sector, unsigned len)
1483 struct bio *clone = &tio->clone;
1485 __bio_clone_fast(clone, bio);
1487 if (bio_integrity(bio))
1488 bio_integrity_clone(clone, bio, GFP_NOIO);
1490 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1491 clone->bi_iter.bi_size = to_bytes(len);
1493 if (bio_integrity(bio))
1494 bio_integrity_trim(clone, 0, len);
1497 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1498 struct dm_target *ti,
1499 unsigned target_bio_nr)
1501 struct dm_target_io *tio;
1504 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1505 tio = container_of(clone, struct dm_target_io, clone);
1509 tio->target_bio_nr = target_bio_nr;
1514 static void __clone_and_map_simple_bio(struct clone_info *ci,
1515 struct dm_target *ti,
1516 unsigned target_bio_nr, unsigned *len)
1518 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1519 struct bio *clone = &tio->clone;
1523 __bio_clone_fast(clone, ci->bio);
1525 bio_setup_sector(clone, ci->sector, *len);
1530 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1531 unsigned num_bios, unsigned *len)
1533 unsigned target_bio_nr;
1535 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1536 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1539 static int __send_empty_flush(struct clone_info *ci)
1541 unsigned target_nr = 0;
1542 struct dm_target *ti;
1544 BUG_ON(bio_has_data(ci->bio));
1545 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1546 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1551 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1552 sector_t sector, unsigned *len)
1554 struct bio *bio = ci->bio;
1555 struct dm_target_io *tio;
1556 unsigned target_bio_nr;
1557 unsigned num_target_bios = 1;
1560 * Does the target want to receive duplicate copies of the bio?
1562 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1563 num_target_bios = ti->num_write_bios(ti, bio);
1565 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1566 tio = alloc_tio(ci, ti, target_bio_nr);
1568 clone_bio(tio, bio, sector, *len);
1573 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1575 static unsigned get_num_discard_bios(struct dm_target *ti)
1577 return ti->num_discard_bios;
1580 static unsigned get_num_write_same_bios(struct dm_target *ti)
1582 return ti->num_write_same_bios;
1585 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1587 static bool is_split_required_for_discard(struct dm_target *ti)
1589 return ti->split_discard_bios;
1592 static int __send_changing_extent_only(struct clone_info *ci,
1593 get_num_bios_fn get_num_bios,
1594 is_split_required_fn is_split_required)
1596 struct dm_target *ti;
1601 ti = dm_table_find_target(ci->map, ci->sector);
1602 if (!dm_target_is_valid(ti))
1606 * Even though the device advertised support for this type of
1607 * request, that does not mean every target supports it, and
1608 * reconfiguration might also have changed that since the
1609 * check was performed.
1611 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1615 if (is_split_required && !is_split_required(ti))
1616 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1618 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1620 __send_duplicate_bios(ci, ti, num_bios, &len);
1623 } while (ci->sector_count -= len);
1628 static int __send_discard(struct clone_info *ci)
1630 return __send_changing_extent_only(ci, get_num_discard_bios,
1631 is_split_required_for_discard);
1634 static int __send_write_same(struct clone_info *ci)
1636 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1640 * Select the correct strategy for processing a non-flush bio.
1642 static int __split_and_process_non_flush(struct clone_info *ci)
1644 struct bio *bio = ci->bio;
1645 struct dm_target *ti;
1648 if (unlikely(bio->bi_rw & REQ_DISCARD))
1649 return __send_discard(ci);
1650 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1651 return __send_write_same(ci);
1653 ti = dm_table_find_target(ci->map, ci->sector);
1654 if (!dm_target_is_valid(ti))
1657 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1659 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1662 ci->sector_count -= len;
1668 * Entry point to split a bio into clones and submit them to the targets.
1670 static void __split_and_process_bio(struct mapped_device *md,
1671 struct dm_table *map, struct bio *bio)
1673 struct clone_info ci;
1676 if (unlikely(!map)) {
1683 ci.io = alloc_io(md);
1685 atomic_set(&ci.io->io_count, 1);
1688 spin_lock_init(&ci.io->endio_lock);
1689 ci.sector = bio->bi_iter.bi_sector;
1691 start_io_acct(ci.io);
1693 if (bio->bi_rw & REQ_FLUSH) {
1694 ci.bio = &ci.md->flush_bio;
1695 ci.sector_count = 0;
1696 error = __send_empty_flush(&ci);
1697 /* dec_pending submits any data associated with flush */
1700 ci.sector_count = bio_sectors(bio);
1701 while (ci.sector_count && !error)
1702 error = __split_and_process_non_flush(&ci);
1705 /* drop the extra reference count */
1706 dec_pending(ci.io, error);
1708 /*-----------------------------------------------------------------
1710 *---------------------------------------------------------------*/
1712 static int dm_merge_bvec(struct request_queue *q,
1713 struct bvec_merge_data *bvm,
1714 struct bio_vec *biovec)
1716 struct mapped_device *md = q->queuedata;
1717 struct dm_table *map = dm_get_live_table_fast(md);
1718 struct dm_target *ti;
1719 sector_t max_sectors;
1725 ti = dm_table_find_target(map, bvm->bi_sector);
1726 if (!dm_target_is_valid(ti))
1730 * Find maximum amount of I/O that won't need splitting
1732 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1733 (sector_t) queue_max_sectors(q));
1734 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1735 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1739 * merge_bvec_fn() returns number of bytes
1740 * it can accept at this offset
1741 * max is precomputed maximal io size
1743 if (max_size && ti->type->merge)
1744 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1746 * If the target doesn't support merge method and some of the devices
1747 * provided their merge_bvec method (we know this by looking for the
1748 * max_hw_sectors that dm_set_device_limits may set), then we can't
1749 * allow bios with multiple vector entries. So always set max_size
1750 * to 0, and the code below allows just one page.
1752 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1756 dm_put_live_table_fast(md);
1758 * Always allow an entire first page
1760 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1761 max_size = biovec->bv_len;
1767 * The request function that just remaps the bio built up by
1770 static void dm_make_request(struct request_queue *q, struct bio *bio)
1772 int rw = bio_data_dir(bio);
1773 struct mapped_device *md = q->queuedata;
1775 struct dm_table *map;
1777 map = dm_get_live_table(md, &srcu_idx);
1779 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1781 /* if we're suspended, we have to queue this io for later */
1782 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1783 dm_put_live_table(md, srcu_idx);
1785 if (bio_rw(bio) != READA)
1792 __split_and_process_bio(md, map, bio);
1793 dm_put_live_table(md, srcu_idx);
1797 int dm_request_based(struct mapped_device *md)
1799 return blk_queue_stackable(md->queue);
1802 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1806 if (blk_queue_io_stat(clone->q))
1807 clone->cmd_flags |= REQ_IO_STAT;
1809 clone->start_time = jiffies;
1810 r = blk_insert_cloned_request(clone->q, clone);
1812 /* must complete clone in terms of original request */
1813 dm_complete_request(rq, r);
1816 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1819 struct dm_rq_target_io *tio = data;
1820 struct dm_rq_clone_bio_info *info =
1821 container_of(bio, struct dm_rq_clone_bio_info, clone);
1823 info->orig = bio_orig;
1825 bio->bi_end_io = end_clone_bio;
1830 static int setup_clone(struct request *clone, struct request *rq,
1831 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1835 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1836 dm_rq_bio_constructor, tio);
1840 clone->cmd = rq->cmd;
1841 clone->cmd_len = rq->cmd_len;
1842 clone->sense = rq->sense;
1843 clone->end_io = end_clone_request;
1844 clone->end_io_data = tio;
1851 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1852 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1855 * Do not allocate a clone if tio->clone was already set
1856 * (see: dm_mq_queue_rq).
1858 bool alloc_clone = !tio->clone;
1859 struct request *clone;
1862 clone = alloc_clone_request(md, gfp_mask);
1868 blk_rq_init(NULL, clone);
1869 if (setup_clone(clone, rq, tio, gfp_mask)) {
1872 free_clone_request(md, clone);
1879 static void map_tio_request(struct kthread_work *work);
1881 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1882 struct mapped_device *md)
1889 memset(&tio->info, 0, sizeof(tio->info));
1890 if (md->kworker_task)
1891 init_kthread_work(&tio->work, map_tio_request);
1894 static struct dm_rq_target_io *prep_tio(struct request *rq,
1895 struct mapped_device *md, gfp_t gfp_mask)
1897 struct dm_rq_target_io *tio;
1899 struct dm_table *table;
1901 tio = alloc_rq_tio(md, gfp_mask);
1905 init_tio(tio, rq, md);
1907 table = dm_get_live_table(md, &srcu_idx);
1908 if (!dm_table_mq_request_based(table)) {
1909 if (!clone_rq(rq, md, tio, gfp_mask)) {
1910 dm_put_live_table(md, srcu_idx);
1915 dm_put_live_table(md, srcu_idx);
1921 * Called with the queue lock held.
1923 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1925 struct mapped_device *md = q->queuedata;
1926 struct dm_rq_target_io *tio;
1928 if (unlikely(rq->special)) {
1929 DMWARN("Already has something in rq->special.");
1930 return BLKPREP_KILL;
1933 tio = prep_tio(rq, md, GFP_ATOMIC);
1935 return BLKPREP_DEFER;
1938 rq->cmd_flags |= REQ_DONTPREP;
1945 * 0 : the request has been processed
1946 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1947 * < 0 : the request was completed due to failure
1949 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1950 struct mapped_device *md)
1953 struct dm_target *ti = tio->ti;
1954 struct request *clone = NULL;
1958 r = ti->type->map_rq(ti, clone, &tio->info);
1960 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1962 /* The target wants to complete the I/O */
1963 dm_kill_unmapped_request(rq, r);
1967 return DM_MAPIO_REQUEUE;
1968 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1970 ti->type->release_clone_rq(clone);
1971 return DM_MAPIO_REQUEUE;
1976 case DM_MAPIO_SUBMITTED:
1977 /* The target has taken the I/O to submit by itself later */
1979 case DM_MAPIO_REMAPPED:
1980 /* The target has remapped the I/O so dispatch it */
1981 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1983 dm_dispatch_clone_request(clone, rq);
1985 case DM_MAPIO_REQUEUE:
1986 /* The target wants to requeue the I/O */
1987 dm_requeue_unmapped_request(clone);
1991 DMWARN("unimplemented target map return value: %d", r);
1995 /* The target wants to complete the I/O */
1996 dm_kill_unmapped_request(rq, r);
2003 static void map_tio_request(struct kthread_work *work)
2005 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2006 struct request *rq = tio->orig;
2007 struct mapped_device *md = tio->md;
2009 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2010 dm_requeue_unmapped_original_request(md, rq);
2013 static void dm_start_request(struct mapped_device *md, struct request *orig)
2015 if (!orig->q->mq_ops)
2016 blk_start_request(orig);
2018 blk_mq_start_request(orig);
2019 atomic_inc(&md->pending[rq_data_dir(orig)]);
2021 if (md->seq_rq_merge_deadline_usecs) {
2022 md->last_rq_pos = rq_end_sector(orig);
2023 md->last_rq_rw = rq_data_dir(orig);
2024 md->last_rq_start_time = ktime_get();
2028 * Hold the md reference here for the in-flight I/O.
2029 * We can't rely on the reference count by device opener,
2030 * because the device may be closed during the request completion
2031 * when all bios are completed.
2032 * See the comment in rq_completed() too.
2037 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2039 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2041 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2044 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2045 const char *buf, size_t count)
2049 if (!dm_request_based(md) || md->use_blk_mq)
2052 if (kstrtouint(buf, 10, &deadline))
2055 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2056 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2058 md->seq_rq_merge_deadline_usecs = deadline;
2063 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2065 ktime_t kt_deadline;
2067 if (!md->seq_rq_merge_deadline_usecs)
2070 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2071 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2073 return !ktime_after(ktime_get(), kt_deadline);
2077 * q->request_fn for request-based dm.
2078 * Called with the queue lock held.
2080 static void dm_request_fn(struct request_queue *q)
2082 struct mapped_device *md = q->queuedata;
2084 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2085 struct dm_target *ti;
2087 struct dm_rq_target_io *tio;
2091 * For suspend, check blk_queue_stopped() and increment
2092 * ->pending within a single queue_lock not to increment the
2093 * number of in-flight I/Os after the queue is stopped in
2096 while (!blk_queue_stopped(q)) {
2097 rq = blk_peek_request(q);
2101 /* always use block 0 to find the target for flushes for now */
2103 if (!(rq->cmd_flags & REQ_FLUSH))
2104 pos = blk_rq_pos(rq);
2106 ti = dm_table_find_target(map, pos);
2107 if (!dm_target_is_valid(ti)) {
2109 * Must perform setup, that rq_completed() requires,
2110 * before calling dm_kill_unmapped_request
2112 DMERR_LIMIT("request attempted access beyond the end of device");
2113 dm_start_request(md, rq);
2114 dm_kill_unmapped_request(rq, -EIO);
2118 if (dm_request_peeked_before_merge_deadline(md) &&
2119 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2120 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2123 if (ti->type->busy && ti->type->busy(ti))
2126 dm_start_request(md, rq);
2128 tio = tio_from_request(rq);
2129 /* Establish tio->ti before queuing work (map_tio_request) */
2131 queue_kthread_work(&md->kworker, &tio->work);
2132 BUG_ON(!irqs_disabled());
2138 blk_delay_queue(q, HZ / 100);
2140 dm_put_live_table(md, srcu_idx);
2143 static int dm_any_congested(void *congested_data, int bdi_bits)
2146 struct mapped_device *md = congested_data;
2147 struct dm_table *map;
2149 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2150 map = dm_get_live_table_fast(md);
2153 * Request-based dm cares about only own queue for
2154 * the query about congestion status of request_queue
2156 if (dm_request_based(md))
2157 r = md->queue->backing_dev_info.state &
2160 r = dm_table_any_congested(map, bdi_bits);
2162 dm_put_live_table_fast(md);
2168 /*-----------------------------------------------------------------
2169 * An IDR is used to keep track of allocated minor numbers.
2170 *---------------------------------------------------------------*/
2171 static void free_minor(int minor)
2173 spin_lock(&_minor_lock);
2174 idr_remove(&_minor_idr, minor);
2175 spin_unlock(&_minor_lock);
2179 * See if the device with a specific minor # is free.
2181 static int specific_minor(int minor)
2185 if (minor >= (1 << MINORBITS))
2188 idr_preload(GFP_KERNEL);
2189 spin_lock(&_minor_lock);
2191 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2193 spin_unlock(&_minor_lock);
2196 return r == -ENOSPC ? -EBUSY : r;
2200 static int next_free_minor(int *minor)
2204 idr_preload(GFP_KERNEL);
2205 spin_lock(&_minor_lock);
2207 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2209 spin_unlock(&_minor_lock);
2217 static const struct block_device_operations dm_blk_dops;
2219 static void dm_wq_work(struct work_struct *work);
2221 static void dm_init_md_queue(struct mapped_device *md)
2224 * Request-based dm devices cannot be stacked on top of bio-based dm
2225 * devices. The type of this dm device may not have been decided yet.
2226 * The type is decided at the first table loading time.
2227 * To prevent problematic device stacking, clear the queue flag
2228 * for request stacking support until then.
2230 * This queue is new, so no concurrency on the queue_flags.
2232 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2235 static void dm_init_old_md_queue(struct mapped_device *md)
2237 md->use_blk_mq = false;
2238 dm_init_md_queue(md);
2241 * Initialize aspects of queue that aren't relevant for blk-mq
2243 md->queue->queuedata = md;
2244 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2245 md->queue->backing_dev_info.congested_data = md;
2247 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2251 * Allocate and initialise a blank device with a given minor.
2253 static struct mapped_device *alloc_dev(int minor)
2256 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2260 DMWARN("unable to allocate device, out of memory.");
2264 if (!try_module_get(THIS_MODULE))
2265 goto bad_module_get;
2267 /* get a minor number for the dev */
2268 if (minor == DM_ANY_MINOR)
2269 r = next_free_minor(&minor);
2271 r = specific_minor(minor);
2275 r = init_srcu_struct(&md->io_barrier);
2277 goto bad_io_barrier;
2279 md->use_blk_mq = use_blk_mq;
2280 md->type = DM_TYPE_NONE;
2281 mutex_init(&md->suspend_lock);
2282 mutex_init(&md->type_lock);
2283 mutex_init(&md->table_devices_lock);
2284 spin_lock_init(&md->deferred_lock);
2285 atomic_set(&md->holders, 1);
2286 atomic_set(&md->open_count, 0);
2287 atomic_set(&md->event_nr, 0);
2288 atomic_set(&md->uevent_seq, 0);
2289 INIT_LIST_HEAD(&md->uevent_list);
2290 INIT_LIST_HEAD(&md->table_devices);
2291 spin_lock_init(&md->uevent_lock);
2293 md->queue = blk_alloc_queue(GFP_KERNEL);
2297 dm_init_md_queue(md);
2299 md->disk = alloc_disk(1);
2303 atomic_set(&md->pending[0], 0);
2304 atomic_set(&md->pending[1], 0);
2305 init_waitqueue_head(&md->wait);
2306 INIT_WORK(&md->work, dm_wq_work);
2307 init_waitqueue_head(&md->eventq);
2308 init_completion(&md->kobj_holder.completion);
2309 md->kworker_task = NULL;
2311 md->disk->major = _major;
2312 md->disk->first_minor = minor;
2313 md->disk->fops = &dm_blk_dops;
2314 md->disk->queue = md->queue;
2315 md->disk->private_data = md;
2316 sprintf(md->disk->disk_name, "dm-%d", minor);
2318 format_dev_t(md->name, MKDEV(_major, minor));
2320 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2324 md->bdev = bdget_disk(md->disk, 0);
2328 bio_init(&md->flush_bio);
2329 md->flush_bio.bi_bdev = md->bdev;
2330 md->flush_bio.bi_rw = WRITE_FLUSH;
2332 dm_stats_init(&md->stats);
2334 /* Populate the mapping, nobody knows we exist yet */
2335 spin_lock(&_minor_lock);
2336 old_md = idr_replace(&_minor_idr, md, minor);
2337 spin_unlock(&_minor_lock);
2339 BUG_ON(old_md != MINOR_ALLOCED);
2344 destroy_workqueue(md->wq);
2346 del_gendisk(md->disk);
2349 blk_cleanup_queue(md->queue);
2351 cleanup_srcu_struct(&md->io_barrier);
2355 module_put(THIS_MODULE);
2361 static void unlock_fs(struct mapped_device *md);
2363 static void free_dev(struct mapped_device *md)
2365 int minor = MINOR(disk_devt(md->disk));
2368 destroy_workqueue(md->wq);
2370 if (md->kworker_task)
2371 kthread_stop(md->kworker_task);
2373 mempool_destroy(md->io_pool);
2375 mempool_destroy(md->rq_pool);
2377 bioset_free(md->bs);
2379 cleanup_srcu_struct(&md->io_barrier);
2380 free_table_devices(&md->table_devices);
2381 dm_stats_cleanup(&md->stats);
2383 spin_lock(&_minor_lock);
2384 md->disk->private_data = NULL;
2385 spin_unlock(&_minor_lock);
2386 if (blk_get_integrity(md->disk))
2387 blk_integrity_unregister(md->disk);
2388 del_gendisk(md->disk);
2390 blk_cleanup_queue(md->queue);
2392 blk_mq_free_tag_set(&md->tag_set);
2396 module_put(THIS_MODULE);
2400 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2402 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2405 /* The md already has necessary mempools. */
2406 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2408 * Reload bioset because front_pad may have changed
2409 * because a different table was loaded.
2411 bioset_free(md->bs);
2416 * There's no need to reload with request-based dm
2417 * because the size of front_pad doesn't change.
2418 * Note for future: If you are to reload bioset,
2419 * prep-ed requests in the queue may refer
2420 * to bio from the old bioset, so you must walk
2421 * through the queue to unprep.
2426 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2428 md->io_pool = p->io_pool;
2430 md->rq_pool = p->rq_pool;
2436 /* mempool bind completed, no longer need any mempools in the table */
2437 dm_table_free_md_mempools(t);
2441 * Bind a table to the device.
2443 static void event_callback(void *context)
2445 unsigned long flags;
2447 struct mapped_device *md = (struct mapped_device *) context;
2449 spin_lock_irqsave(&md->uevent_lock, flags);
2450 list_splice_init(&md->uevent_list, &uevents);
2451 spin_unlock_irqrestore(&md->uevent_lock, flags);
2453 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2455 atomic_inc(&md->event_nr);
2456 wake_up(&md->eventq);
2460 * Protected by md->suspend_lock obtained by dm_swap_table().
2462 static void __set_size(struct mapped_device *md, sector_t size)
2464 set_capacity(md->disk, size);
2466 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2470 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2472 * If this function returns 0, then the device is either a non-dm
2473 * device without a merge_bvec_fn, or it is a dm device that is
2474 * able to split any bios it receives that are too big.
2476 int dm_queue_merge_is_compulsory(struct request_queue *q)
2478 struct mapped_device *dev_md;
2480 if (!q->merge_bvec_fn)
2483 if (q->make_request_fn == dm_make_request) {
2484 dev_md = q->queuedata;
2485 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2492 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2493 struct dm_dev *dev, sector_t start,
2494 sector_t len, void *data)
2496 struct block_device *bdev = dev->bdev;
2497 struct request_queue *q = bdev_get_queue(bdev);
2499 return dm_queue_merge_is_compulsory(q);
2503 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2504 * on the properties of the underlying devices.
2506 static int dm_table_merge_is_optional(struct dm_table *table)
2509 struct dm_target *ti;
2511 while (i < dm_table_get_num_targets(table)) {
2512 ti = dm_table_get_target(table, i++);
2514 if (ti->type->iterate_devices &&
2515 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2523 * Returns old map, which caller must destroy.
2525 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2526 struct queue_limits *limits)
2528 struct dm_table *old_map;
2529 struct request_queue *q = md->queue;
2531 int merge_is_optional;
2533 size = dm_table_get_size(t);
2536 * Wipe any geometry if the size of the table changed.
2538 if (size != dm_get_size(md))
2539 memset(&md->geometry, 0, sizeof(md->geometry));
2541 __set_size(md, size);
2543 dm_table_event_callback(t, event_callback, md);
2546 * The queue hasn't been stopped yet, if the old table type wasn't
2547 * for request-based during suspension. So stop it to prevent
2548 * I/O mapping before resume.
2549 * This must be done before setting the queue restrictions,
2550 * because request-based dm may be run just after the setting.
2552 if (dm_table_request_based(t))
2555 __bind_mempools(md, t);
2557 merge_is_optional = dm_table_merge_is_optional(t);
2559 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2560 rcu_assign_pointer(md->map, t);
2561 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2563 dm_table_set_restrictions(t, q, limits);
2564 if (merge_is_optional)
2565 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2567 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2575 * Returns unbound table for the caller to free.
2577 static struct dm_table *__unbind(struct mapped_device *md)
2579 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2584 dm_table_event_callback(map, NULL, NULL);
2585 RCU_INIT_POINTER(md->map, NULL);
2592 * Constructor for a new device.
2594 int dm_create(int minor, struct mapped_device **result)
2596 struct mapped_device *md;
2598 md = alloc_dev(minor);
2609 * Functions to manage md->type.
2610 * All are required to hold md->type_lock.
2612 void dm_lock_md_type(struct mapped_device *md)
2614 mutex_lock(&md->type_lock);
2617 void dm_unlock_md_type(struct mapped_device *md)
2619 mutex_unlock(&md->type_lock);
2622 void dm_set_md_type(struct mapped_device *md, unsigned type)
2624 BUG_ON(!mutex_is_locked(&md->type_lock));
2628 unsigned dm_get_md_type(struct mapped_device *md)
2630 BUG_ON(!mutex_is_locked(&md->type_lock));
2634 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2636 return md->immutable_target_type;
2640 * The queue_limits are only valid as long as you have a reference
2643 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2645 BUG_ON(!atomic_read(&md->holders));
2646 return &md->queue->limits;
2648 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2650 static void init_rq_based_worker_thread(struct mapped_device *md)
2652 /* Initialize the request-based DM worker thread */
2653 init_kthread_worker(&md->kworker);
2654 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2655 "kdmwork-%s", dm_device_name(md));
2659 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2661 static int dm_init_request_based_queue(struct mapped_device *md)
2663 struct request_queue *q = NULL;
2665 if (md->queue->elevator)
2668 /* Fully initialize the queue */
2669 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2673 /* disable dm_request_fn's merge heuristic by default */
2674 md->seq_rq_merge_deadline_usecs = 0;
2677 dm_init_old_md_queue(md);
2678 blk_queue_softirq_done(md->queue, dm_softirq_done);
2679 blk_queue_prep_rq(md->queue, dm_prep_fn);
2681 init_rq_based_worker_thread(md);
2683 elv_register_queue(md->queue);
2688 static int dm_mq_init_request(void *data, struct request *rq,
2689 unsigned int hctx_idx, unsigned int request_idx,
2690 unsigned int numa_node)
2692 struct mapped_device *md = data;
2693 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2696 * Must initialize md member of tio, otherwise it won't
2697 * be available in dm_mq_queue_rq.
2704 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2705 const struct blk_mq_queue_data *bd)
2707 struct request *rq = bd->rq;
2708 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2709 struct mapped_device *md = tio->md;
2711 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2712 struct dm_target *ti;
2715 /* always use block 0 to find the target for flushes for now */
2717 if (!(rq->cmd_flags & REQ_FLUSH))
2718 pos = blk_rq_pos(rq);
2720 ti = dm_table_find_target(map, pos);
2721 if (!dm_target_is_valid(ti)) {
2722 dm_put_live_table(md, srcu_idx);
2723 DMERR_LIMIT("request attempted access beyond the end of device");
2725 * Must perform setup, that rq_completed() requires,
2726 * before returning BLK_MQ_RQ_QUEUE_ERROR
2728 dm_start_request(md, rq);
2729 return BLK_MQ_RQ_QUEUE_ERROR;
2731 dm_put_live_table(md, srcu_idx);
2733 if (ti->type->busy && ti->type->busy(ti))
2734 return BLK_MQ_RQ_QUEUE_BUSY;
2736 dm_start_request(md, rq);
2738 /* Init tio using md established in .init_request */
2739 init_tio(tio, rq, md);
2742 * Establish tio->ti before queuing work (map_tio_request)
2743 * or making direct call to map_request().
2747 /* Clone the request if underlying devices aren't blk-mq */
2748 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2749 /* clone request is allocated at the end of the pdu */
2750 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2751 if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2752 return BLK_MQ_RQ_QUEUE_BUSY;
2753 queue_kthread_work(&md->kworker, &tio->work);
2755 /* Direct call is fine since .queue_rq allows allocations */
2756 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2757 dm_requeue_unmapped_original_request(md, rq);
2760 return BLK_MQ_RQ_QUEUE_OK;
2763 static struct blk_mq_ops dm_mq_ops = {
2764 .queue_rq = dm_mq_queue_rq,
2765 .map_queue = blk_mq_map_queue,
2766 .complete = dm_softirq_done,
2767 .init_request = dm_mq_init_request,
2770 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2772 unsigned md_type = dm_get_md_type(md);
2773 struct request_queue *q;
2776 memset(&md->tag_set, 0, sizeof(md->tag_set));
2777 md->tag_set.ops = &dm_mq_ops;
2778 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2779 md->tag_set.numa_node = NUMA_NO_NODE;
2780 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2781 md->tag_set.nr_hw_queues = 1;
2782 if (md_type == DM_TYPE_REQUEST_BASED) {
2783 /* make the memory for non-blk-mq clone part of the pdu */
2784 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2786 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2787 md->tag_set.driver_data = md;
2789 err = blk_mq_alloc_tag_set(&md->tag_set);
2793 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2799 dm_init_md_queue(md);
2801 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2802 blk_mq_register_disk(md->disk);
2804 if (md_type == DM_TYPE_REQUEST_BASED)
2805 init_rq_based_worker_thread(md);
2810 blk_mq_free_tag_set(&md->tag_set);
2814 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2816 if (type == DM_TYPE_BIO_BASED)
2819 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2823 * Setup the DM device's queue based on md's type
2825 int dm_setup_md_queue(struct mapped_device *md)
2828 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2831 case DM_TYPE_REQUEST_BASED:
2832 r = dm_init_request_based_queue(md);
2834 DMWARN("Cannot initialize queue for request-based mapped device");
2838 case DM_TYPE_MQ_REQUEST_BASED:
2839 r = dm_init_request_based_blk_mq_queue(md);
2841 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2845 case DM_TYPE_BIO_BASED:
2846 dm_init_old_md_queue(md);
2847 blk_queue_make_request(md->queue, dm_make_request);
2848 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2855 struct mapped_device *dm_get_md(dev_t dev)
2857 struct mapped_device *md;
2858 unsigned minor = MINOR(dev);
2860 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2863 spin_lock(&_minor_lock);
2865 md = idr_find(&_minor_idr, minor);
2867 if ((md == MINOR_ALLOCED ||
2868 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2869 dm_deleting_md(md) ||
2870 test_bit(DMF_FREEING, &md->flags))) {
2878 spin_unlock(&_minor_lock);
2882 EXPORT_SYMBOL_GPL(dm_get_md);
2884 void *dm_get_mdptr(struct mapped_device *md)
2886 return md->interface_ptr;
2889 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2891 md->interface_ptr = ptr;
2894 void dm_get(struct mapped_device *md)
2896 atomic_inc(&md->holders);
2897 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2900 int dm_hold(struct mapped_device *md)
2902 spin_lock(&_minor_lock);
2903 if (test_bit(DMF_FREEING, &md->flags)) {
2904 spin_unlock(&_minor_lock);
2908 spin_unlock(&_minor_lock);
2911 EXPORT_SYMBOL_GPL(dm_hold);
2913 const char *dm_device_name(struct mapped_device *md)
2917 EXPORT_SYMBOL_GPL(dm_device_name);
2919 static void __dm_destroy(struct mapped_device *md, bool wait)
2921 struct dm_table *map;
2926 map = dm_get_live_table(md, &srcu_idx);
2928 spin_lock(&_minor_lock);
2929 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2930 set_bit(DMF_FREEING, &md->flags);
2931 spin_unlock(&_minor_lock);
2933 if (dm_request_based(md) && md->kworker_task)
2934 flush_kthread_worker(&md->kworker);
2937 * Take suspend_lock so that presuspend and postsuspend methods
2938 * do not race with internal suspend.
2940 mutex_lock(&md->suspend_lock);
2941 if (!dm_suspended_md(md)) {
2942 dm_table_presuspend_targets(map);
2943 dm_table_postsuspend_targets(map);
2945 mutex_unlock(&md->suspend_lock);
2947 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948 dm_put_live_table(md, srcu_idx);
2951 * Rare, but there may be I/O requests still going to complete,
2952 * for example. Wait for all references to disappear.
2953 * No one should increment the reference count of the mapped_device,
2954 * after the mapped_device state becomes DMF_FREEING.
2957 while (atomic_read(&md->holders))
2959 else if (atomic_read(&md->holders))
2960 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2961 dm_device_name(md), atomic_read(&md->holders));
2964 dm_table_destroy(__unbind(md));
2968 void dm_destroy(struct mapped_device *md)
2970 __dm_destroy(md, true);
2973 void dm_destroy_immediate(struct mapped_device *md)
2975 __dm_destroy(md, false);
2978 void dm_put(struct mapped_device *md)
2980 atomic_dec(&md->holders);
2982 EXPORT_SYMBOL_GPL(dm_put);
2984 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2987 DECLARE_WAITQUEUE(wait, current);
2989 add_wait_queue(&md->wait, &wait);
2992 set_current_state(interruptible);
2994 if (!md_in_flight(md))
2997 if (interruptible == TASK_INTERRUPTIBLE &&
2998 signal_pending(current)) {
3005 set_current_state(TASK_RUNNING);
3007 remove_wait_queue(&md->wait, &wait);
3013 * Process the deferred bios
3015 static void dm_wq_work(struct work_struct *work)
3017 struct mapped_device *md = container_of(work, struct mapped_device,
3021 struct dm_table *map;
3023 map = dm_get_live_table(md, &srcu_idx);
3025 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3026 spin_lock_irq(&md->deferred_lock);
3027 c = bio_list_pop(&md->deferred);
3028 spin_unlock_irq(&md->deferred_lock);
3033 if (dm_request_based(md))
3034 generic_make_request(c);
3036 __split_and_process_bio(md, map, c);
3039 dm_put_live_table(md, srcu_idx);
3042 static void dm_queue_flush(struct mapped_device *md)
3044 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3045 smp_mb__after_atomic();
3046 queue_work(md->wq, &md->work);
3050 * Swap in a new table, returning the old one for the caller to destroy.
3052 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3055 struct queue_limits limits;
3058 mutex_lock(&md->suspend_lock);
3060 /* device must be suspended */
3061 if (!dm_suspended_md(md))
3065 * If the new table has no data devices, retain the existing limits.
3066 * This helps multipath with queue_if_no_path if all paths disappear,
3067 * then new I/O is queued based on these limits, and then some paths
3070 if (dm_table_has_no_data_devices(table)) {
3071 live_map = dm_get_live_table_fast(md);
3073 limits = md->queue->limits;
3074 dm_put_live_table_fast(md);
3078 r = dm_calculate_queue_limits(table, &limits);
3085 map = __bind(md, table, &limits);
3088 mutex_unlock(&md->suspend_lock);
3093 * Functions to lock and unlock any filesystem running on the
3096 static int lock_fs(struct mapped_device *md)
3100 WARN_ON(md->frozen_sb);
3102 md->frozen_sb = freeze_bdev(md->bdev);
3103 if (IS_ERR(md->frozen_sb)) {
3104 r = PTR_ERR(md->frozen_sb);
3105 md->frozen_sb = NULL;
3109 set_bit(DMF_FROZEN, &md->flags);
3114 static void unlock_fs(struct mapped_device *md)
3116 if (!test_bit(DMF_FROZEN, &md->flags))
3119 thaw_bdev(md->bdev, md->frozen_sb);
3120 md->frozen_sb = NULL;
3121 clear_bit(DMF_FROZEN, &md->flags);
3125 * If __dm_suspend returns 0, the device is completely quiescent
3126 * now. There is no request-processing activity. All new requests
3127 * are being added to md->deferred list.
3129 * Caller must hold md->suspend_lock
3131 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3132 unsigned suspend_flags, int interruptible)
3134 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3135 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3139 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3140 * This flag is cleared before dm_suspend returns.
3143 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3146 * This gets reverted if there's an error later and the targets
3147 * provide the .presuspend_undo hook.
3149 dm_table_presuspend_targets(map);
3152 * Flush I/O to the device.
3153 * Any I/O submitted after lock_fs() may not be flushed.
3154 * noflush takes precedence over do_lockfs.
3155 * (lock_fs() flushes I/Os and waits for them to complete.)
3157 if (!noflush && do_lockfs) {
3160 dm_table_presuspend_undo_targets(map);
3166 * Here we must make sure that no processes are submitting requests
3167 * to target drivers i.e. no one may be executing
3168 * __split_and_process_bio. This is called from dm_request and
3171 * To get all processes out of __split_and_process_bio in dm_request,
3172 * we take the write lock. To prevent any process from reentering
3173 * __split_and_process_bio from dm_request and quiesce the thread
3174 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3175 * flush_workqueue(md->wq).
3177 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179 synchronize_srcu(&md->io_barrier);
3182 * Stop md->queue before flushing md->wq in case request-based
3183 * dm defers requests to md->wq from md->queue.
3185 if (dm_request_based(md)) {
3186 stop_queue(md->queue);
3187 if (md->kworker_task)
3188 flush_kthread_worker(&md->kworker);
3191 flush_workqueue(md->wq);
3194 * At this point no more requests are entering target request routines.
3195 * We call dm_wait_for_completion to wait for all existing requests
3198 r = dm_wait_for_completion(md, interruptible);
3201 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203 synchronize_srcu(&md->io_barrier);
3205 /* were we interrupted ? */
3209 if (dm_request_based(md))
3210 start_queue(md->queue);
3213 dm_table_presuspend_undo_targets(map);
3214 /* pushback list is already flushed, so skip flush */
3221 * We need to be able to change a mapping table under a mounted
3222 * filesystem. For example we might want to move some data in
3223 * the background. Before the table can be swapped with
3224 * dm_bind_table, dm_suspend must be called to flush any in
3225 * flight bios and ensure that any further io gets deferred.
3228 * Suspend mechanism in request-based dm.
3230 * 1. Flush all I/Os by lock_fs() if needed.
3231 * 2. Stop dispatching any I/O by stopping the request_queue.
3232 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 * To abort suspend, start the request_queue.
3236 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238 struct dm_table *map = NULL;
3242 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244 if (dm_suspended_md(md)) {
3249 if (dm_suspended_internally_md(md)) {
3250 /* already internally suspended, wait for internal resume */
3251 mutex_unlock(&md->suspend_lock);
3252 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3258 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3264 set_bit(DMF_SUSPENDED, &md->flags);
3266 dm_table_postsuspend_targets(map);
3269 mutex_unlock(&md->suspend_lock);
3273 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3276 int r = dm_table_resume_targets(map);
3284 * Flushing deferred I/Os must be done after targets are resumed
3285 * so that mapping of targets can work correctly.
3286 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288 if (dm_request_based(md))
3289 start_queue(md->queue);
3296 int dm_resume(struct mapped_device *md)
3299 struct dm_table *map = NULL;
3302 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304 if (!dm_suspended_md(md))
3307 if (dm_suspended_internally_md(md)) {
3308 /* already internally suspended, wait for internal resume */
3309 mutex_unlock(&md->suspend_lock);
3310 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3316 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3317 if (!map || !dm_table_get_size(map))
3320 r = __dm_resume(md, map);
3324 clear_bit(DMF_SUSPENDED, &md->flags);
3328 mutex_unlock(&md->suspend_lock);
3334 * Internal suspend/resume works like userspace-driven suspend. It waits
3335 * until all bios finish and prevents issuing new bios to the target drivers.
3336 * It may be used only from the kernel.
3339 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341 struct dm_table *map = NULL;
3343 if (md->internal_suspend_count++)
3344 return; /* nested internal suspend */
3346 if (dm_suspended_md(md)) {
3347 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3348 return; /* nest suspend */
3351 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3354 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3355 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3356 * would require changing .presuspend to return an error -- avoid this
3357 * until there is a need for more elaborate variants of internal suspend.
3359 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363 dm_table_postsuspend_targets(map);
3366 static void __dm_internal_resume(struct mapped_device *md)
3368 BUG_ON(!md->internal_suspend_count);
3370 if (--md->internal_suspend_count)
3371 return; /* resume from nested internal suspend */
3373 if (dm_suspended_md(md))
3374 goto done; /* resume from nested suspend */
3377 * NOTE: existing callers don't need to call dm_table_resume_targets
3378 * (which may fail -- so best to avoid it for now by passing NULL map)
3380 (void) __dm_resume(md, NULL);
3383 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3384 smp_mb__after_atomic();
3385 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3388 void dm_internal_suspend_noflush(struct mapped_device *md)
3390 mutex_lock(&md->suspend_lock);
3391 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3392 mutex_unlock(&md->suspend_lock);
3394 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396 void dm_internal_resume(struct mapped_device *md)
3398 mutex_lock(&md->suspend_lock);
3399 __dm_internal_resume(md);
3400 mutex_unlock(&md->suspend_lock);
3402 EXPORT_SYMBOL_GPL(dm_internal_resume);
3405 * Fast variants of internal suspend/resume hold md->suspend_lock,
3406 * which prevents interaction with userspace-driven suspend.
3409 void dm_internal_suspend_fast(struct mapped_device *md)
3411 mutex_lock(&md->suspend_lock);
3412 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3415 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3416 synchronize_srcu(&md->io_barrier);
3417 flush_workqueue(md->wq);
3418 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422 void dm_internal_resume_fast(struct mapped_device *md)
3424 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3430 mutex_unlock(&md->suspend_lock);
3432 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434 /*-----------------------------------------------------------------
3435 * Event notification.
3436 *---------------------------------------------------------------*/
3437 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3440 char udev_cookie[DM_COOKIE_LENGTH];
3441 char *envp[] = { udev_cookie, NULL };
3444 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3447 DM_COOKIE_ENV_VAR_NAME, cookie);
3448 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3453 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455 return atomic_add_return(1, &md->uevent_seq);
3458 uint32_t dm_get_event_nr(struct mapped_device *md)
3460 return atomic_read(&md->event_nr);
3463 int dm_wait_event(struct mapped_device *md, int event_nr)
3465 return wait_event_interruptible(md->eventq,
3466 (event_nr != atomic_read(&md->event_nr)));
3469 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471 unsigned long flags;
3473 spin_lock_irqsave(&md->uevent_lock, flags);
3474 list_add(elist, &md->uevent_list);
3475 spin_unlock_irqrestore(&md->uevent_lock, flags);
3479 * The gendisk is only valid as long as you have a reference
3482 struct gendisk *dm_disk(struct mapped_device *md)
3486 EXPORT_SYMBOL_GPL(dm_disk);
3488 struct kobject *dm_kobject(struct mapped_device *md)
3490 return &md->kobj_holder.kobj;
3493 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495 struct mapped_device *md;
3497 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499 if (test_bit(DMF_FREEING, &md->flags) ||
3507 int dm_suspended_md(struct mapped_device *md)
3509 return test_bit(DMF_SUSPENDED, &md->flags);
3512 int dm_suspended_internally_md(struct mapped_device *md)
3514 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3517 int dm_test_deferred_remove_flag(struct mapped_device *md)
3519 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3522 int dm_suspended(struct dm_target *ti)
3524 return dm_suspended_md(dm_table_get_md(ti->table));
3526 EXPORT_SYMBOL_GPL(dm_suspended);
3528 int dm_noflush_suspending(struct dm_target *ti)
3530 return __noflush_suspending(dm_table_get_md(ti->table));
3532 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3535 unsigned integrity, unsigned per_bio_data_size)
3537 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3538 struct kmem_cache *cachep = NULL;
3539 unsigned int pool_size = 0;
3540 unsigned int front_pad;
3545 type = filter_md_type(type, md);
3548 case DM_TYPE_BIO_BASED:
3550 pool_size = dm_get_reserved_bio_based_ios();
3551 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553 case DM_TYPE_REQUEST_BASED:
3554 cachep = _rq_tio_cache;
3555 pool_size = dm_get_reserved_rq_based_ios();
3556 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3557 if (!pools->rq_pool)
3559 /* fall through to setup remaining rq-based pools */
3560 case DM_TYPE_MQ_REQUEST_BASED:
3562 pool_size = dm_get_reserved_rq_based_ios();
3563 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3564 /* per_bio_data_size is not used. See __bind_mempools(). */
3565 WARN_ON(per_bio_data_size != 0);
3572 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573 if (!pools->io_pool)
3577 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3581 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3587 dm_free_md_mempools(pools);
3592 void dm_free_md_mempools(struct dm_md_mempools *pools)
3598 mempool_destroy(pools->io_pool);
3601 mempool_destroy(pools->rq_pool);
3604 bioset_free(pools->bs);
3609 static const struct block_device_operations dm_blk_dops = {
3610 .open = dm_blk_open,
3611 .release = dm_blk_close,
3612 .ioctl = dm_blk_ioctl,
3613 .getgeo = dm_blk_getgeo,
3614 .owner = THIS_MODULE
3620 module_init(dm_init);
3621 module_exit(dm_exit);
3623 module_param(major, uint, 0);
3624 MODULE_PARM_DESC(major, "The major number of the device mapper");
3626 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3627 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3629 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3630 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3632 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3633 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3635 MODULE_DESCRIPTION(DM_NAME " driver");
3636 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3637 MODULE_LICENSE("GPL");