]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: change hot_remove_disk to take an rdev rather than a number.
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397
398 void mddev_resume(struct mddev *mddev)
399 {
400         mddev->suspended = 0;
401         wake_up(&mddev->sb_wait);
402         mddev->pers->quiesce(mddev, 0);
403
404         md_wakeup_thread(mddev->thread);
405         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411         return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414
415 /*
416  * Generic flush handling for md
417  */
418
419 static void md_end_flush(struct bio *bio, int err)
420 {
421         struct md_rdev *rdev = bio->bi_private;
422         struct mddev *mddev = rdev->mddev;
423
424         rdev_dec_pending(rdev, mddev);
425
426         if (atomic_dec_and_test(&mddev->flush_pending)) {
427                 /* The pre-request flush has finished */
428                 queue_work(md_wq, &mddev->flush_work);
429         }
430         bio_put(bio);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws);
434
435 static void submit_flushes(struct work_struct *ws)
436 {
437         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438         struct md_rdev *rdev;
439
440         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441         atomic_set(&mddev->flush_pending, 1);
442         rcu_read_lock();
443         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444                 if (rdev->raid_disk >= 0 &&
445                     !test_bit(Faulty, &rdev->flags)) {
446                         /* Take two references, one is dropped
447                          * when request finishes, one after
448                          * we reclaim rcu_read_lock
449                          */
450                         struct bio *bi;
451                         atomic_inc(&rdev->nr_pending);
452                         atomic_inc(&rdev->nr_pending);
453                         rcu_read_unlock();
454                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455                         bi->bi_end_io = md_end_flush;
456                         bi->bi_private = rdev;
457                         bi->bi_bdev = rdev->bdev;
458                         atomic_inc(&mddev->flush_pending);
459                         submit_bio(WRITE_FLUSH, bi);
460                         rcu_read_lock();
461                         rdev_dec_pending(rdev, mddev);
462                 }
463         rcu_read_unlock();
464         if (atomic_dec_and_test(&mddev->flush_pending))
465                 queue_work(md_wq, &mddev->flush_work);
466 }
467
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471         struct bio *bio = mddev->flush_bio;
472
473         if (bio->bi_size == 0)
474                 /* an empty barrier - all done */
475                 bio_endio(bio, 0);
476         else {
477                 bio->bi_rw &= ~REQ_FLUSH;
478                 mddev->pers->make_request(mddev, bio);
479         }
480
481         mddev->flush_bio = NULL;
482         wake_up(&mddev->sb_wait);
483 }
484
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 {
487         spin_lock_irq(&mddev->write_lock);
488         wait_event_lock_irq(mddev->sb_wait,
489                             !mddev->flush_bio,
490                             mddev->write_lock, /*nothing*/);
491         mddev->flush_bio = bio;
492         spin_unlock_irq(&mddev->write_lock);
493
494         INIT_WORK(&mddev->flush_work, submit_flushes);
495         queue_work(md_wq, &mddev->flush_work);
496 }
497 EXPORT_SYMBOL(md_flush_request);
498
499 /* Support for plugging.
500  * This mirrors the plugging support in request_queue, but does not
501  * require having a whole queue or request structures.
502  * We allocate an md_plug_cb for each md device and each thread it gets
503  * plugged on.  This links tot the private plug_handle structure in the
504  * personality data where we keep a count of the number of outstanding
505  * plugs so other code can see if a plug is active.
506  */
507 struct md_plug_cb {
508         struct blk_plug_cb cb;
509         struct mddev *mddev;
510 };
511
512 static void plugger_unplug(struct blk_plug_cb *cb)
513 {
514         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516                 md_wakeup_thread(mdcb->mddev->thread);
517         kfree(mdcb);
518 }
519
520 /* Check that an unplug wakeup will come shortly.
521  * If not, wakeup the md thread immediately
522  */
523 int mddev_check_plugged(struct mddev *mddev)
524 {
525         struct blk_plug *plug = current->plug;
526         struct md_plug_cb *mdcb;
527
528         if (!plug)
529                 return 0;
530
531         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532                 if (mdcb->cb.callback == plugger_unplug &&
533                     mdcb->mddev == mddev) {
534                         /* Already on the list, move to top */
535                         if (mdcb != list_first_entry(&plug->cb_list,
536                                                     struct md_plug_cb,
537                                                     cb.list))
538                                 list_move(&mdcb->cb.list, &plug->cb_list);
539                         return 1;
540                 }
541         }
542         /* Not currently on the callback list */
543         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544         if (!mdcb)
545                 return 0;
546
547         mdcb->mddev = mddev;
548         mdcb->cb.callback = plugger_unplug;
549         atomic_inc(&mddev->plug_cnt);
550         list_add(&mdcb->cb.list, &plug->cb_list);
551         return 1;
552 }
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554
555 static inline struct mddev *mddev_get(struct mddev *mddev)
556 {
557         atomic_inc(&mddev->active);
558         return mddev;
559 }
560
561 static void mddev_delayed_delete(struct work_struct *ws);
562
563 static void mddev_put(struct mddev *mddev)
564 {
565         struct bio_set *bs = NULL;
566
567         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568                 return;
569         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570             mddev->ctime == 0 && !mddev->hold_active) {
571                 /* Array is not configured at all, and not held active,
572                  * so destroy it */
573                 list_del_init(&mddev->all_mddevs);
574                 bs = mddev->bio_set;
575                 mddev->bio_set = NULL;
576                 if (mddev->gendisk) {
577                         /* We did a probe so need to clean up.  Call
578                          * queue_work inside the spinlock so that
579                          * flush_workqueue() after mddev_find will
580                          * succeed in waiting for the work to be done.
581                          */
582                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583                         queue_work(md_misc_wq, &mddev->del_work);
584                 } else
585                         kfree(mddev);
586         }
587         spin_unlock(&all_mddevs_lock);
588         if (bs)
589                 bioset_free(bs);
590 }
591
592 void mddev_init(struct mddev *mddev)
593 {
594         mutex_init(&mddev->open_mutex);
595         mutex_init(&mddev->reconfig_mutex);
596         mutex_init(&mddev->bitmap_info.mutex);
597         INIT_LIST_HEAD(&mddev->disks);
598         INIT_LIST_HEAD(&mddev->all_mddevs);
599         init_timer(&mddev->safemode_timer);
600         atomic_set(&mddev->active, 1);
601         atomic_set(&mddev->openers, 0);
602         atomic_set(&mddev->active_io, 0);
603         atomic_set(&mddev->plug_cnt, 0);
604         spin_lock_init(&mddev->write_lock);
605         atomic_set(&mddev->flush_pending, 0);
606         init_waitqueue_head(&mddev->sb_wait);
607         init_waitqueue_head(&mddev->recovery_wait);
608         mddev->reshape_position = MaxSector;
609         mddev->resync_min = 0;
610         mddev->resync_max = MaxSector;
611         mddev->level = LEVEL_NONE;
612 }
613 EXPORT_SYMBOL_GPL(mddev_init);
614
615 static struct mddev * mddev_find(dev_t unit)
616 {
617         struct mddev *mddev, *new = NULL;
618
619         if (unit && MAJOR(unit) != MD_MAJOR)
620                 unit &= ~((1<<MdpMinorShift)-1);
621
622  retry:
623         spin_lock(&all_mddevs_lock);
624
625         if (unit) {
626                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627                         if (mddev->unit == unit) {
628                                 mddev_get(mddev);
629                                 spin_unlock(&all_mddevs_lock);
630                                 kfree(new);
631                                 return mddev;
632                         }
633
634                 if (new) {
635                         list_add(&new->all_mddevs, &all_mddevs);
636                         spin_unlock(&all_mddevs_lock);
637                         new->hold_active = UNTIL_IOCTL;
638                         return new;
639                 }
640         } else if (new) {
641                 /* find an unused unit number */
642                 static int next_minor = 512;
643                 int start = next_minor;
644                 int is_free = 0;
645                 int dev = 0;
646                 while (!is_free) {
647                         dev = MKDEV(MD_MAJOR, next_minor);
648                         next_minor++;
649                         if (next_minor > MINORMASK)
650                                 next_minor = 0;
651                         if (next_minor == start) {
652                                 /* Oh dear, all in use. */
653                                 spin_unlock(&all_mddevs_lock);
654                                 kfree(new);
655                                 return NULL;
656                         }
657                                 
658                         is_free = 1;
659                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660                                 if (mddev->unit == dev) {
661                                         is_free = 0;
662                                         break;
663                                 }
664                 }
665                 new->unit = dev;
666                 new->md_minor = MINOR(dev);
667                 new->hold_active = UNTIL_STOP;
668                 list_add(&new->all_mddevs, &all_mddevs);
669                 spin_unlock(&all_mddevs_lock);
670                 return new;
671         }
672         spin_unlock(&all_mddevs_lock);
673
674         new = kzalloc(sizeof(*new), GFP_KERNEL);
675         if (!new)
676                 return NULL;
677
678         new->unit = unit;
679         if (MAJOR(unit) == MD_MAJOR)
680                 new->md_minor = MINOR(unit);
681         else
682                 new->md_minor = MINOR(unit) >> MdpMinorShift;
683
684         mddev_init(new);
685
686         goto retry;
687 }
688
689 static inline int mddev_lock(struct mddev * mddev)
690 {
691         return mutex_lock_interruptible(&mddev->reconfig_mutex);
692 }
693
694 static inline int mddev_is_locked(struct mddev *mddev)
695 {
696         return mutex_is_locked(&mddev->reconfig_mutex);
697 }
698
699 static inline int mddev_trylock(struct mddev * mddev)
700 {
701         return mutex_trylock(&mddev->reconfig_mutex);
702 }
703
704 static struct attribute_group md_redundancy_group;
705
706 static void mddev_unlock(struct mddev * mddev)
707 {
708         if (mddev->to_remove) {
709                 /* These cannot be removed under reconfig_mutex as
710                  * an access to the files will try to take reconfig_mutex
711                  * while holding the file unremovable, which leads to
712                  * a deadlock.
713                  * So hold set sysfs_active while the remove in happeing,
714                  * and anything else which might set ->to_remove or my
715                  * otherwise change the sysfs namespace will fail with
716                  * -EBUSY if sysfs_active is still set.
717                  * We set sysfs_active under reconfig_mutex and elsewhere
718                  * test it under the same mutex to ensure its correct value
719                  * is seen.
720                  */
721                 struct attribute_group *to_remove = mddev->to_remove;
722                 mddev->to_remove = NULL;
723                 mddev->sysfs_active = 1;
724                 mutex_unlock(&mddev->reconfig_mutex);
725
726                 if (mddev->kobj.sd) {
727                         if (to_remove != &md_redundancy_group)
728                                 sysfs_remove_group(&mddev->kobj, to_remove);
729                         if (mddev->pers == NULL ||
730                             mddev->pers->sync_request == NULL) {
731                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732                                 if (mddev->sysfs_action)
733                                         sysfs_put(mddev->sysfs_action);
734                                 mddev->sysfs_action = NULL;
735                         }
736                 }
737                 mddev->sysfs_active = 0;
738         } else
739                 mutex_unlock(&mddev->reconfig_mutex);
740
741         /* As we've dropped the mutex we need a spinlock to
742          * make sure the thread doesn't disappear
743          */
744         spin_lock(&pers_lock);
745         md_wakeup_thread(mddev->thread);
746         spin_unlock(&pers_lock);
747 }
748
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 {
751         struct md_rdev *rdev;
752
753         list_for_each_entry(rdev, &mddev->disks, same_set)
754                 if (rdev->desc_nr == nr)
755                         return rdev;
756
757         return NULL;
758 }
759
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 {
762         struct md_rdev *rdev;
763
764         list_for_each_entry(rdev, &mddev->disks, same_set)
765                 if (rdev->bdev->bd_dev == dev)
766                         return rdev;
767
768         return NULL;
769 }
770
771 static struct md_personality *find_pers(int level, char *clevel)
772 {
773         struct md_personality *pers;
774         list_for_each_entry(pers, &pers_list, list) {
775                 if (level != LEVEL_NONE && pers->level == level)
776                         return pers;
777                 if (strcmp(pers->name, clevel)==0)
778                         return pers;
779         }
780         return NULL;
781 }
782
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 {
786         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787         return MD_NEW_SIZE_SECTORS(num_sectors);
788 }
789
790 static int alloc_disk_sb(struct md_rdev * rdev)
791 {
792         if (rdev->sb_page)
793                 MD_BUG();
794
795         rdev->sb_page = alloc_page(GFP_KERNEL);
796         if (!rdev->sb_page) {
797                 printk(KERN_ALERT "md: out of memory.\n");
798                 return -ENOMEM;
799         }
800
801         return 0;
802 }
803
804 static void free_disk_sb(struct md_rdev * rdev)
805 {
806         if (rdev->sb_page) {
807                 put_page(rdev->sb_page);
808                 rdev->sb_loaded = 0;
809                 rdev->sb_page = NULL;
810                 rdev->sb_start = 0;
811                 rdev->sectors = 0;
812         }
813         if (rdev->bb_page) {
814                 put_page(rdev->bb_page);
815                 rdev->bb_page = NULL;
816         }
817 }
818
819
820 static void super_written(struct bio *bio, int error)
821 {
822         struct md_rdev *rdev = bio->bi_private;
823         struct mddev *mddev = rdev->mddev;
824
825         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826                 printk("md: super_written gets error=%d, uptodate=%d\n",
827                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829                 md_error(mddev, rdev);
830         }
831
832         if (atomic_dec_and_test(&mddev->pending_writes))
833                 wake_up(&mddev->sb_wait);
834         bio_put(bio);
835 }
836
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838                    sector_t sector, int size, struct page *page)
839 {
840         /* write first size bytes of page to sector of rdev
841          * Increment mddev->pending_writes before returning
842          * and decrement it on completion, waking up sb_wait
843          * if zero is reached.
844          * If an error occurred, call md_error
845          */
846         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847
848         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849         bio->bi_sector = sector;
850         bio_add_page(bio, page, size, 0);
851         bio->bi_private = rdev;
852         bio->bi_end_io = super_written;
853
854         atomic_inc(&mddev->pending_writes);
855         submit_bio(WRITE_FLUSH_FUA, bio);
856 }
857
858 void md_super_wait(struct mddev *mddev)
859 {
860         /* wait for all superblock writes that were scheduled to complete */
861         DEFINE_WAIT(wq);
862         for(;;) {
863                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864                 if (atomic_read(&mddev->pending_writes)==0)
865                         break;
866                 schedule();
867         }
868         finish_wait(&mddev->sb_wait, &wq);
869 }
870
871 static void bi_complete(struct bio *bio, int error)
872 {
873         complete((struct completion*)bio->bi_private);
874 }
875
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877                  struct page *page, int rw, bool metadata_op)
878 {
879         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880         struct completion event;
881         int ret;
882
883         rw |= REQ_SYNC;
884
885         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886                 rdev->meta_bdev : rdev->bdev;
887         if (metadata_op)
888                 bio->bi_sector = sector + rdev->sb_start;
889         else
890                 bio->bi_sector = sector + rdev->data_offset;
891         bio_add_page(bio, page, size, 0);
892         init_completion(&event);
893         bio->bi_private = &event;
894         bio->bi_end_io = bi_complete;
895         submit_bio(rw, bio);
896         wait_for_completion(&event);
897
898         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899         bio_put(bio);
900         return ret;
901 }
902 EXPORT_SYMBOL_GPL(sync_page_io);
903
904 static int read_disk_sb(struct md_rdev * rdev, int size)
905 {
906         char b[BDEVNAME_SIZE];
907         if (!rdev->sb_page) {
908                 MD_BUG();
909                 return -EINVAL;
910         }
911         if (rdev->sb_loaded)
912                 return 0;
913
914
915         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916                 goto fail;
917         rdev->sb_loaded = 1;
918         return 0;
919
920 fail:
921         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922                 bdevname(rdev->bdev,b));
923         return -EINVAL;
924 }
925
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 {
928         return  sb1->set_uuid0 == sb2->set_uuid0 &&
929                 sb1->set_uuid1 == sb2->set_uuid1 &&
930                 sb1->set_uuid2 == sb2->set_uuid2 &&
931                 sb1->set_uuid3 == sb2->set_uuid3;
932 }
933
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936         int ret;
937         mdp_super_t *tmp1, *tmp2;
938
939         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941
942         if (!tmp1 || !tmp2) {
943                 ret = 0;
944                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945                 goto abort;
946         }
947
948         *tmp1 = *sb1;
949         *tmp2 = *sb2;
950
951         /*
952          * nr_disks is not constant
953          */
954         tmp1->nr_disks = 0;
955         tmp2->nr_disks = 0;
956
957         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959         kfree(tmp1);
960         kfree(tmp2);
961         return ret;
962 }
963
964
965 static u32 md_csum_fold(u32 csum)
966 {
967         csum = (csum & 0xffff) + (csum >> 16);
968         return (csum & 0xffff) + (csum >> 16);
969 }
970
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 {
973         u64 newcsum = 0;
974         u32 *sb32 = (u32*)sb;
975         int i;
976         unsigned int disk_csum, csum;
977
978         disk_csum = sb->sb_csum;
979         sb->sb_csum = 0;
980
981         for (i = 0; i < MD_SB_BYTES/4 ; i++)
982                 newcsum += sb32[i];
983         csum = (newcsum & 0xffffffff) + (newcsum>>32);
984
985
986 #ifdef CONFIG_ALPHA
987         /* This used to use csum_partial, which was wrong for several
988          * reasons including that different results are returned on
989          * different architectures.  It isn't critical that we get exactly
990          * the same return value as before (we always csum_fold before
991          * testing, and that removes any differences).  However as we
992          * know that csum_partial always returned a 16bit value on
993          * alphas, do a fold to maximise conformity to previous behaviour.
994          */
995         sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997         sb->sb_csum = disk_csum;
998 #endif
999         return csum;
1000 }
1001
1002
1003 /*
1004  * Handle superblock details.
1005  * We want to be able to handle multiple superblock formats
1006  * so we have a common interface to them all, and an array of
1007  * different handlers.
1008  * We rely on user-space to write the initial superblock, and support
1009  * reading and updating of superblocks.
1010  * Interface methods are:
1011  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012  *      loads and validates a superblock on dev.
1013  *      if refdev != NULL, compare superblocks on both devices
1014  *    Return:
1015  *      0 - dev has a superblock that is compatible with refdev
1016  *      1 - dev has a superblock that is compatible and newer than refdev
1017  *          so dev should be used as the refdev in future
1018  *     -EINVAL superblock incompatible or invalid
1019  *     -othererror e.g. -EIO
1020  *
1021  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022  *      Verify that dev is acceptable into mddev.
1023  *       The first time, mddev->raid_disks will be 0, and data from
1024  *       dev should be merged in.  Subsequent calls check that dev
1025  *       is new enough.  Return 0 or -EINVAL
1026  *
1027  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028  *     Update the superblock for rdev with data in mddev
1029  *     This does not write to disc.
1030  *
1031  */
1032
1033 struct super_type  {
1034         char                *name;
1035         struct module       *owner;
1036         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037                                           int minor_version);
1038         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1041                                                 sector_t num_sectors);
1042 };
1043
1044 /*
1045  * Check that the given mddev has no bitmap.
1046  *
1047  * This function is called from the run method of all personalities that do not
1048  * support bitmaps. It prints an error message and returns non-zero if mddev
1049  * has a bitmap. Otherwise, it returns 0.
1050  *
1051  */
1052 int md_check_no_bitmap(struct mddev *mddev)
1053 {
1054         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055                 return 0;
1056         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057                 mdname(mddev), mddev->pers->name);
1058         return 1;
1059 }
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1061
1062 /*
1063  * load_super for 0.90.0 
1064  */
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 {
1067         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068         mdp_super_t *sb;
1069         int ret;
1070
1071         /*
1072          * Calculate the position of the superblock (512byte sectors),
1073          * it's at the end of the disk.
1074          *
1075          * It also happens to be a multiple of 4Kb.
1076          */
1077         rdev->sb_start = calc_dev_sboffset(rdev);
1078
1079         ret = read_disk_sb(rdev, MD_SB_BYTES);
1080         if (ret) return ret;
1081
1082         ret = -EINVAL;
1083
1084         bdevname(rdev->bdev, b);
1085         sb = page_address(rdev->sb_page);
1086
1087         if (sb->md_magic != MD_SB_MAGIC) {
1088                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089                        b);
1090                 goto abort;
1091         }
1092
1093         if (sb->major_version != 0 ||
1094             sb->minor_version < 90 ||
1095             sb->minor_version > 91) {
1096                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097                         sb->major_version, sb->minor_version,
1098                         b);
1099                 goto abort;
1100         }
1101
1102         if (sb->raid_disks <= 0)
1103                 goto abort;
1104
1105         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107                         b);
1108                 goto abort;
1109         }
1110
1111         rdev->preferred_minor = sb->md_minor;
1112         rdev->data_offset = 0;
1113         rdev->sb_size = MD_SB_BYTES;
1114         rdev->badblocks.shift = -1;
1115
1116         if (sb->level == LEVEL_MULTIPATH)
1117                 rdev->desc_nr = -1;
1118         else
1119                 rdev->desc_nr = sb->this_disk.number;
1120
1121         if (!refdev) {
1122                 ret = 1;
1123         } else {
1124                 __u64 ev1, ev2;
1125                 mdp_super_t *refsb = page_address(refdev->sb_page);
1126                 if (!uuid_equal(refsb, sb)) {
1127                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128                                 b, bdevname(refdev->bdev,b2));
1129                         goto abort;
1130                 }
1131                 if (!sb_equal(refsb, sb)) {
1132                         printk(KERN_WARNING "md: %s has same UUID"
1133                                " but different superblock to %s\n",
1134                                b, bdevname(refdev->bdev, b2));
1135                         goto abort;
1136                 }
1137                 ev1 = md_event(sb);
1138                 ev2 = md_event(refsb);
1139                 if (ev1 > ev2)
1140                         ret = 1;
1141                 else 
1142                         ret = 0;
1143         }
1144         rdev->sectors = rdev->sb_start;
1145         /* Limit to 4TB as metadata cannot record more than that */
1146         if (rdev->sectors >= (2ULL << 32))
1147                 rdev->sectors = (2ULL << 32) - 2;
1148
1149         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150                 /* "this cannot possibly happen" ... */
1151                 ret = -EINVAL;
1152
1153  abort:
1154         return ret;
1155 }
1156
1157 /*
1158  * validate_super for 0.90.0
1159  */
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162         mdp_disk_t *desc;
1163         mdp_super_t *sb = page_address(rdev->sb_page);
1164         __u64 ev1 = md_event(sb);
1165
1166         rdev->raid_disk = -1;
1167         clear_bit(Faulty, &rdev->flags);
1168         clear_bit(In_sync, &rdev->flags);
1169         clear_bit(WriteMostly, &rdev->flags);
1170
1171         if (mddev->raid_disks == 0) {
1172                 mddev->major_version = 0;
1173                 mddev->minor_version = sb->minor_version;
1174                 mddev->patch_version = sb->patch_version;
1175                 mddev->external = 0;
1176                 mddev->chunk_sectors = sb->chunk_size >> 9;
1177                 mddev->ctime = sb->ctime;
1178                 mddev->utime = sb->utime;
1179                 mddev->level = sb->level;
1180                 mddev->clevel[0] = 0;
1181                 mddev->layout = sb->layout;
1182                 mddev->raid_disks = sb->raid_disks;
1183                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184                 mddev->events = ev1;
1185                 mddev->bitmap_info.offset = 0;
1186                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187
1188                 if (mddev->minor_version >= 91) {
1189                         mddev->reshape_position = sb->reshape_position;
1190                         mddev->delta_disks = sb->delta_disks;
1191                         mddev->new_level = sb->new_level;
1192                         mddev->new_layout = sb->new_layout;
1193                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194                 } else {
1195                         mddev->reshape_position = MaxSector;
1196                         mddev->delta_disks = 0;
1197                         mddev->new_level = mddev->level;
1198                         mddev->new_layout = mddev->layout;
1199                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1200                 }
1201
1202                 if (sb->state & (1<<MD_SB_CLEAN))
1203                         mddev->recovery_cp = MaxSector;
1204                 else {
1205                         if (sb->events_hi == sb->cp_events_hi && 
1206                                 sb->events_lo == sb->cp_events_lo) {
1207                                 mddev->recovery_cp = sb->recovery_cp;
1208                         } else
1209                                 mddev->recovery_cp = 0;
1210                 }
1211
1212                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216
1217                 mddev->max_disks = MD_SB_DISKS;
1218
1219                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220                     mddev->bitmap_info.file == NULL)
1221                         mddev->bitmap_info.offset =
1222                                 mddev->bitmap_info.default_offset;
1223
1224         } else if (mddev->pers == NULL) {
1225                 /* Insist on good event counter while assembling, except
1226                  * for spares (which don't need an event count) */
1227                 ++ev1;
1228                 if (sb->disks[rdev->desc_nr].state & (
1229                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230                         if (ev1 < mddev->events) 
1231                                 return -EINVAL;
1232         } else if (mddev->bitmap) {
1233                 /* if adding to array with a bitmap, then we can accept an
1234                  * older device ... but not too old.
1235                  */
1236                 if (ev1 < mddev->bitmap->events_cleared)
1237                         return 0;
1238         } else {
1239                 if (ev1 < mddev->events)
1240                         /* just a hot-add of a new device, leave raid_disk at -1 */
1241                         return 0;
1242         }
1243
1244         if (mddev->level != LEVEL_MULTIPATH) {
1245                 desc = sb->disks + rdev->desc_nr;
1246
1247                 if (desc->state & (1<<MD_DISK_FAULTY))
1248                         set_bit(Faulty, &rdev->flags);
1249                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250                             desc->raid_disk < mddev->raid_disks */) {
1251                         set_bit(In_sync, &rdev->flags);
1252                         rdev->raid_disk = desc->raid_disk;
1253                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254                         /* active but not in sync implies recovery up to
1255                          * reshape position.  We don't know exactly where
1256                          * that is, so set to zero for now */
1257                         if (mddev->minor_version >= 91) {
1258                                 rdev->recovery_offset = 0;
1259                                 rdev->raid_disk = desc->raid_disk;
1260                         }
1261                 }
1262                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263                         set_bit(WriteMostly, &rdev->flags);
1264         } else /* MULTIPATH are always insync */
1265                 set_bit(In_sync, &rdev->flags);
1266         return 0;
1267 }
1268
1269 /*
1270  * sync_super for 0.90.0
1271  */
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 {
1274         mdp_super_t *sb;
1275         struct md_rdev *rdev2;
1276         int next_spare = mddev->raid_disks;
1277
1278
1279         /* make rdev->sb match mddev data..
1280          *
1281          * 1/ zero out disks
1282          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283          * 3/ any empty disks < next_spare become removed
1284          *
1285          * disks[0] gets initialised to REMOVED because
1286          * we cannot be sure from other fields if it has
1287          * been initialised or not.
1288          */
1289         int i;
1290         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291
1292         rdev->sb_size = MD_SB_BYTES;
1293
1294         sb = page_address(rdev->sb_page);
1295
1296         memset(sb, 0, sizeof(*sb));
1297
1298         sb->md_magic = MD_SB_MAGIC;
1299         sb->major_version = mddev->major_version;
1300         sb->patch_version = mddev->patch_version;
1301         sb->gvalid_words  = 0; /* ignored */
1302         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306
1307         sb->ctime = mddev->ctime;
1308         sb->level = mddev->level;
1309         sb->size = mddev->dev_sectors / 2;
1310         sb->raid_disks = mddev->raid_disks;
1311         sb->md_minor = mddev->md_minor;
1312         sb->not_persistent = 0;
1313         sb->utime = mddev->utime;
1314         sb->state = 0;
1315         sb->events_hi = (mddev->events>>32);
1316         sb->events_lo = (u32)mddev->events;
1317
1318         if (mddev->reshape_position == MaxSector)
1319                 sb->minor_version = 90;
1320         else {
1321                 sb->minor_version = 91;
1322                 sb->reshape_position = mddev->reshape_position;
1323                 sb->new_level = mddev->new_level;
1324                 sb->delta_disks = mddev->delta_disks;
1325                 sb->new_layout = mddev->new_layout;
1326                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327         }
1328         mddev->minor_version = sb->minor_version;
1329         if (mddev->in_sync)
1330         {
1331                 sb->recovery_cp = mddev->recovery_cp;
1332                 sb->cp_events_hi = (mddev->events>>32);
1333                 sb->cp_events_lo = (u32)mddev->events;
1334                 if (mddev->recovery_cp == MaxSector)
1335                         sb->state = (1<< MD_SB_CLEAN);
1336         } else
1337                 sb->recovery_cp = 0;
1338
1339         sb->layout = mddev->layout;
1340         sb->chunk_size = mddev->chunk_sectors << 9;
1341
1342         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344
1345         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347                 mdp_disk_t *d;
1348                 int desc_nr;
1349                 int is_active = test_bit(In_sync, &rdev2->flags);
1350
1351                 if (rdev2->raid_disk >= 0 &&
1352                     sb->minor_version >= 91)
1353                         /* we have nowhere to store the recovery_offset,
1354                          * but if it is not below the reshape_position,
1355                          * we can piggy-back on that.
1356                          */
1357                         is_active = 1;
1358                 if (rdev2->raid_disk < 0 ||
1359                     test_bit(Faulty, &rdev2->flags))
1360                         is_active = 0;
1361                 if (is_active)
1362                         desc_nr = rdev2->raid_disk;
1363                 else
1364                         desc_nr = next_spare++;
1365                 rdev2->desc_nr = desc_nr;
1366                 d = &sb->disks[rdev2->desc_nr];
1367                 nr_disks++;
1368                 d->number = rdev2->desc_nr;
1369                 d->major = MAJOR(rdev2->bdev->bd_dev);
1370                 d->minor = MINOR(rdev2->bdev->bd_dev);
1371                 if (is_active)
1372                         d->raid_disk = rdev2->raid_disk;
1373                 else
1374                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1375                 if (test_bit(Faulty, &rdev2->flags))
1376                         d->state = (1<<MD_DISK_FAULTY);
1377                 else if (is_active) {
1378                         d->state = (1<<MD_DISK_ACTIVE);
1379                         if (test_bit(In_sync, &rdev2->flags))
1380                                 d->state |= (1<<MD_DISK_SYNC);
1381                         active++;
1382                         working++;
1383                 } else {
1384                         d->state = 0;
1385                         spare++;
1386                         working++;
1387                 }
1388                 if (test_bit(WriteMostly, &rdev2->flags))
1389                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390         }
1391         /* now set the "removed" and "faulty" bits on any missing devices */
1392         for (i=0 ; i < mddev->raid_disks ; i++) {
1393                 mdp_disk_t *d = &sb->disks[i];
1394                 if (d->state == 0 && d->number == 0) {
1395                         d->number = i;
1396                         d->raid_disk = i;
1397                         d->state = (1<<MD_DISK_REMOVED);
1398                         d->state |= (1<<MD_DISK_FAULTY);
1399                         failed++;
1400                 }
1401         }
1402         sb->nr_disks = nr_disks;
1403         sb->active_disks = active;
1404         sb->working_disks = working;
1405         sb->failed_disks = failed;
1406         sb->spare_disks = spare;
1407
1408         sb->this_disk = sb->disks[rdev->desc_nr];
1409         sb->sb_csum = calc_sb_csum(sb);
1410 }
1411
1412 /*
1413  * rdev_size_change for 0.90.0
1414  */
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 {
1418         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419                 return 0; /* component must fit device */
1420         if (rdev->mddev->bitmap_info.offset)
1421                 return 0; /* can't move bitmap */
1422         rdev->sb_start = calc_dev_sboffset(rdev);
1423         if (!num_sectors || num_sectors > rdev->sb_start)
1424                 num_sectors = rdev->sb_start;
1425         /* Limit to 4TB as metadata cannot record more than that.
1426          * 4TB == 2^32 KB, or 2*2^32 sectors.
1427          */
1428         if (num_sectors >= (2ULL << 32))
1429                 num_sectors = (2ULL << 32) - 2;
1430         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431                        rdev->sb_page);
1432         md_super_wait(rdev->mddev);
1433         return num_sectors;
1434 }
1435
1436
1437 /*
1438  * version 1 superblock
1439  */
1440
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 {
1443         __le32 disk_csum;
1444         u32 csum;
1445         unsigned long long newcsum;
1446         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447         __le32 *isuper = (__le32*)sb;
1448         int i;
1449
1450         disk_csum = sb->sb_csum;
1451         sb->sb_csum = 0;
1452         newcsum = 0;
1453         for (i=0; size>=4; size -= 4 )
1454                 newcsum += le32_to_cpu(*isuper++);
1455
1456         if (size == 2)
1457                 newcsum += le16_to_cpu(*(__le16*) isuper);
1458
1459         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460         sb->sb_csum = disk_csum;
1461         return cpu_to_le32(csum);
1462 }
1463
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465                             int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 {
1468         struct mdp_superblock_1 *sb;
1469         int ret;
1470         sector_t sb_start;
1471         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472         int bmask;
1473
1474         /*
1475          * Calculate the position of the superblock in 512byte sectors.
1476          * It is always aligned to a 4K boundary and
1477          * depeding on minor_version, it can be:
1478          * 0: At least 8K, but less than 12K, from end of device
1479          * 1: At start of device
1480          * 2: 4K from start of device.
1481          */
1482         switch(minor_version) {
1483         case 0:
1484                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485                 sb_start -= 8*2;
1486                 sb_start &= ~(sector_t)(4*2-1);
1487                 break;
1488         case 1:
1489                 sb_start = 0;
1490                 break;
1491         case 2:
1492                 sb_start = 8;
1493                 break;
1494         default:
1495                 return -EINVAL;
1496         }
1497         rdev->sb_start = sb_start;
1498
1499         /* superblock is rarely larger than 1K, but it can be larger,
1500          * and it is safe to read 4k, so we do that
1501          */
1502         ret = read_disk_sb(rdev, 4096);
1503         if (ret) return ret;
1504
1505
1506         sb = page_address(rdev->sb_page);
1507
1508         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509             sb->major_version != cpu_to_le32(1) ||
1510             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513                 return -EINVAL;
1514
1515         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516                 printk("md: invalid superblock checksum on %s\n",
1517                         bdevname(rdev->bdev,b));
1518                 return -EINVAL;
1519         }
1520         if (le64_to_cpu(sb->data_size) < 10) {
1521                 printk("md: data_size too small on %s\n",
1522                        bdevname(rdev->bdev,b));
1523                 return -EINVAL;
1524         }
1525
1526         rdev->preferred_minor = 0xffff;
1527         rdev->data_offset = le64_to_cpu(sb->data_offset);
1528         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529
1530         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532         if (rdev->sb_size & bmask)
1533                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534
1535         if (minor_version
1536             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537                 return -EINVAL;
1538
1539         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540                 rdev->desc_nr = -1;
1541         else
1542                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543
1544         if (!rdev->bb_page) {
1545                 rdev->bb_page = alloc_page(GFP_KERNEL);
1546                 if (!rdev->bb_page)
1547                         return -ENOMEM;
1548         }
1549         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550             rdev->badblocks.count == 0) {
1551                 /* need to load the bad block list.
1552                  * Currently we limit it to one page.
1553                  */
1554                 s32 offset;
1555                 sector_t bb_sector;
1556                 u64 *bbp;
1557                 int i;
1558                 int sectors = le16_to_cpu(sb->bblog_size);
1559                 if (sectors > (PAGE_SIZE / 512))
1560                         return -EINVAL;
1561                 offset = le32_to_cpu(sb->bblog_offset);
1562                 if (offset == 0)
1563                         return -EINVAL;
1564                 bb_sector = (long long)offset;
1565                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566                                   rdev->bb_page, READ, true))
1567                         return -EIO;
1568                 bbp = (u64 *)page_address(rdev->bb_page);
1569                 rdev->badblocks.shift = sb->bblog_shift;
1570                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571                         u64 bb = le64_to_cpu(*bbp);
1572                         int count = bb & (0x3ff);
1573                         u64 sector = bb >> 10;
1574                         sector <<= sb->bblog_shift;
1575                         count <<= sb->bblog_shift;
1576                         if (bb + 1 == 0)
1577                                 break;
1578                         if (md_set_badblocks(&rdev->badblocks,
1579                                              sector, count, 1) == 0)
1580                                 return -EINVAL;
1581                 }
1582         } else if (sb->bblog_offset == 0)
1583                 rdev->badblocks.shift = -1;
1584
1585         if (!refdev) {
1586                 ret = 1;
1587         } else {
1588                 __u64 ev1, ev2;
1589                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590
1591                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592                     sb->level != refsb->level ||
1593                     sb->layout != refsb->layout ||
1594                     sb->chunksize != refsb->chunksize) {
1595                         printk(KERN_WARNING "md: %s has strangely different"
1596                                 " superblock to %s\n",
1597                                 bdevname(rdev->bdev,b),
1598                                 bdevname(refdev->bdev,b2));
1599                         return -EINVAL;
1600                 }
1601                 ev1 = le64_to_cpu(sb->events);
1602                 ev2 = le64_to_cpu(refsb->events);
1603
1604                 if (ev1 > ev2)
1605                         ret = 1;
1606                 else
1607                         ret = 0;
1608         }
1609         if (minor_version)
1610                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611                         le64_to_cpu(sb->data_offset);
1612         else
1613                 rdev->sectors = rdev->sb_start;
1614         if (rdev->sectors < le64_to_cpu(sb->data_size))
1615                 return -EINVAL;
1616         rdev->sectors = le64_to_cpu(sb->data_size);
1617         if (le64_to_cpu(sb->size) > rdev->sectors)
1618                 return -EINVAL;
1619         return ret;
1620 }
1621
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 {
1624         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625         __u64 ev1 = le64_to_cpu(sb->events);
1626
1627         rdev->raid_disk = -1;
1628         clear_bit(Faulty, &rdev->flags);
1629         clear_bit(In_sync, &rdev->flags);
1630         clear_bit(WriteMostly, &rdev->flags);
1631
1632         if (mddev->raid_disks == 0) {
1633                 mddev->major_version = 1;
1634                 mddev->patch_version = 0;
1635                 mddev->external = 0;
1636                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639                 mddev->level = le32_to_cpu(sb->level);
1640                 mddev->clevel[0] = 0;
1641                 mddev->layout = le32_to_cpu(sb->layout);
1642                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643                 mddev->dev_sectors = le64_to_cpu(sb->size);
1644                 mddev->events = ev1;
1645                 mddev->bitmap_info.offset = 0;
1646                 mddev->bitmap_info.default_offset = 1024 >> 9;
1647                 
1648                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649                 memcpy(mddev->uuid, sb->set_uuid, 16);
1650
1651                 mddev->max_disks =  (4096-256)/2;
1652
1653                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654                     mddev->bitmap_info.file == NULL )
1655                         mddev->bitmap_info.offset =
1656                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                 } else {
1665                         mddev->reshape_position = MaxSector;
1666                         mddev->delta_disks = 0;
1667                         mddev->new_level = mddev->level;
1668                         mddev->new_layout = mddev->layout;
1669                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1670                 }
1671
1672         } else if (mddev->pers == NULL) {
1673                 /* Insist of good event counter while assembling, except for
1674                  * spares (which don't need an event count) */
1675                 ++ev1;
1676                 if (rdev->desc_nr >= 0 &&
1677                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679                         if (ev1 < mddev->events)
1680                                 return -EINVAL;
1681         } else if (mddev->bitmap) {
1682                 /* If adding to array with a bitmap, then we can accept an
1683                  * older device, but not too old.
1684                  */
1685                 if (ev1 < mddev->bitmap->events_cleared)
1686                         return 0;
1687         } else {
1688                 if (ev1 < mddev->events)
1689                         /* just a hot-add of a new device, leave raid_disk at -1 */
1690                         return 0;
1691         }
1692         if (mddev->level != LEVEL_MULTIPATH) {
1693                 int role;
1694                 if (rdev->desc_nr < 0 ||
1695                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696                         role = 0xffff;
1697                         rdev->desc_nr = -1;
1698                 } else
1699                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700                 switch(role) {
1701                 case 0xffff: /* spare */
1702                         break;
1703                 case 0xfffe: /* faulty */
1704                         set_bit(Faulty, &rdev->flags);
1705                         break;
1706                 default:
1707                         if ((le32_to_cpu(sb->feature_map) &
1708                              MD_FEATURE_RECOVERY_OFFSET))
1709                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710                         else
1711                                 set_bit(In_sync, &rdev->flags);
1712                         rdev->raid_disk = role;
1713                         break;
1714                 }
1715                 if (sb->devflags & WriteMostly1)
1716                         set_bit(WriteMostly, &rdev->flags);
1717         } else /* MULTIPATH are always insync */
1718                 set_bit(In_sync, &rdev->flags);
1719
1720         return 0;
1721 }
1722
1723 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725         struct mdp_superblock_1 *sb;
1726         struct md_rdev *rdev2;
1727         int max_dev, i;
1728         /* make rdev->sb match mddev and rdev data. */
1729
1730         sb = page_address(rdev->sb_page);
1731
1732         sb->feature_map = 0;
1733         sb->pad0 = 0;
1734         sb->recovery_offset = cpu_to_le64(0);
1735         memset(sb->pad1, 0, sizeof(sb->pad1));
1736         memset(sb->pad3, 0, sizeof(sb->pad3));
1737
1738         sb->utime = cpu_to_le64((__u64)mddev->utime);
1739         sb->events = cpu_to_le64(mddev->events);
1740         if (mddev->in_sync)
1741                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742         else
1743                 sb->resync_offset = cpu_to_le64(0);
1744
1745         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1746
1747         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748         sb->size = cpu_to_le64(mddev->dev_sectors);
1749         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750         sb->level = cpu_to_le32(mddev->level);
1751         sb->layout = cpu_to_le32(mddev->layout);
1752
1753         if (test_bit(WriteMostly, &rdev->flags))
1754                 sb->devflags |= WriteMostly1;
1755         else
1756                 sb->devflags &= ~WriteMostly1;
1757
1758         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1759                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1760                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1761         }
1762
1763         if (rdev->raid_disk >= 0 &&
1764             !test_bit(In_sync, &rdev->flags)) {
1765                 sb->feature_map |=
1766                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1767                 sb->recovery_offset =
1768                         cpu_to_le64(rdev->recovery_offset);
1769         }
1770
1771         if (mddev->reshape_position != MaxSector) {
1772                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1773                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1774                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1775                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1776                 sb->new_level = cpu_to_le32(mddev->new_level);
1777                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1778         }
1779
1780         if (rdev->badblocks.count == 0)
1781                 /* Nothing to do for bad blocks*/ ;
1782         else if (sb->bblog_offset == 0)
1783                 /* Cannot record bad blocks on this device */
1784                 md_error(mddev, rdev);
1785         else {
1786                 struct badblocks *bb = &rdev->badblocks;
1787                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1788                 u64 *p = bb->page;
1789                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1790                 if (bb->changed) {
1791                         unsigned seq;
1792
1793 retry:
1794                         seq = read_seqbegin(&bb->lock);
1795
1796                         memset(bbp, 0xff, PAGE_SIZE);
1797
1798                         for (i = 0 ; i < bb->count ; i++) {
1799                                 u64 internal_bb = *p++;
1800                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1801                                                 | BB_LEN(internal_bb));
1802                                 *bbp++ = cpu_to_le64(store_bb);
1803                         }
1804                         if (read_seqretry(&bb->lock, seq))
1805                                 goto retry;
1806
1807                         bb->sector = (rdev->sb_start +
1808                                       (int)le32_to_cpu(sb->bblog_offset));
1809                         bb->size = le16_to_cpu(sb->bblog_size);
1810                         bb->changed = 0;
1811                 }
1812         }
1813
1814         max_dev = 0;
1815         list_for_each_entry(rdev2, &mddev->disks, same_set)
1816                 if (rdev2->desc_nr+1 > max_dev)
1817                         max_dev = rdev2->desc_nr+1;
1818
1819         if (max_dev > le32_to_cpu(sb->max_dev)) {
1820                 int bmask;
1821                 sb->max_dev = cpu_to_le32(max_dev);
1822                 rdev->sb_size = max_dev * 2 + 256;
1823                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1824                 if (rdev->sb_size & bmask)
1825                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1826         } else
1827                 max_dev = le32_to_cpu(sb->max_dev);
1828
1829         for (i=0; i<max_dev;i++)
1830                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1831         
1832         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1833                 i = rdev2->desc_nr;
1834                 if (test_bit(Faulty, &rdev2->flags))
1835                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836                 else if (test_bit(In_sync, &rdev2->flags))
1837                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1838                 else if (rdev2->raid_disk >= 0)
1839                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840                 else
1841                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1842         }
1843
1844         sb->sb_csum = calc_sb_1_csum(sb);
1845 }
1846
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1849 {
1850         struct mdp_superblock_1 *sb;
1851         sector_t max_sectors;
1852         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1853                 return 0; /* component must fit device */
1854         if (rdev->sb_start < rdev->data_offset) {
1855                 /* minor versions 1 and 2; superblock before data */
1856                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1857                 max_sectors -= rdev->data_offset;
1858                 if (!num_sectors || num_sectors > max_sectors)
1859                         num_sectors = max_sectors;
1860         } else if (rdev->mddev->bitmap_info.offset) {
1861                 /* minor version 0 with bitmap we can't move */
1862                 return 0;
1863         } else {
1864                 /* minor version 0; superblock after data */
1865                 sector_t sb_start;
1866                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1867                 sb_start &= ~(sector_t)(4*2 - 1);
1868                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1869                 if (!num_sectors || num_sectors > max_sectors)
1870                         num_sectors = max_sectors;
1871                 rdev->sb_start = sb_start;
1872         }
1873         sb = page_address(rdev->sb_page);
1874         sb->data_size = cpu_to_le64(num_sectors);
1875         sb->super_offset = rdev->sb_start;
1876         sb->sb_csum = calc_sb_1_csum(sb);
1877         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1878                        rdev->sb_page);
1879         md_super_wait(rdev->mddev);
1880         return num_sectors;
1881 }
1882
1883 static struct super_type super_types[] = {
1884         [0] = {
1885                 .name   = "0.90.0",
1886                 .owner  = THIS_MODULE,
1887                 .load_super         = super_90_load,
1888                 .validate_super     = super_90_validate,
1889                 .sync_super         = super_90_sync,
1890                 .rdev_size_change   = super_90_rdev_size_change,
1891         },
1892         [1] = {
1893                 .name   = "md-1",
1894                 .owner  = THIS_MODULE,
1895                 .load_super         = super_1_load,
1896                 .validate_super     = super_1_validate,
1897                 .sync_super         = super_1_sync,
1898                 .rdev_size_change   = super_1_rdev_size_change,
1899         },
1900 };
1901
1902 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1903 {
1904         if (mddev->sync_super) {
1905                 mddev->sync_super(mddev, rdev);
1906                 return;
1907         }
1908
1909         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1910
1911         super_types[mddev->major_version].sync_super(mddev, rdev);
1912 }
1913
1914 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1915 {
1916         struct md_rdev *rdev, *rdev2;
1917
1918         rcu_read_lock();
1919         rdev_for_each_rcu(rdev, mddev1)
1920                 rdev_for_each_rcu(rdev2, mddev2)
1921                         if (rdev->bdev->bd_contains ==
1922                             rdev2->bdev->bd_contains) {
1923                                 rcu_read_unlock();
1924                                 return 1;
1925                         }
1926         rcu_read_unlock();
1927         return 0;
1928 }
1929
1930 static LIST_HEAD(pending_raid_disks);
1931
1932 /*
1933  * Try to register data integrity profile for an mddev
1934  *
1935  * This is called when an array is started and after a disk has been kicked
1936  * from the array. It only succeeds if all working and active component devices
1937  * are integrity capable with matching profiles.
1938  */
1939 int md_integrity_register(struct mddev *mddev)
1940 {
1941         struct md_rdev *rdev, *reference = NULL;
1942
1943         if (list_empty(&mddev->disks))
1944                 return 0; /* nothing to do */
1945         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1946                 return 0; /* shouldn't register, or already is */
1947         list_for_each_entry(rdev, &mddev->disks, same_set) {
1948                 /* skip spares and non-functional disks */
1949                 if (test_bit(Faulty, &rdev->flags))
1950                         continue;
1951                 if (rdev->raid_disk < 0)
1952                         continue;
1953                 if (!reference) {
1954                         /* Use the first rdev as the reference */
1955                         reference = rdev;
1956                         continue;
1957                 }
1958                 /* does this rdev's profile match the reference profile? */
1959                 if (blk_integrity_compare(reference->bdev->bd_disk,
1960                                 rdev->bdev->bd_disk) < 0)
1961                         return -EINVAL;
1962         }
1963         if (!reference || !bdev_get_integrity(reference->bdev))
1964                 return 0;
1965         /*
1966          * All component devices are integrity capable and have matching
1967          * profiles, register the common profile for the md device.
1968          */
1969         if (blk_integrity_register(mddev->gendisk,
1970                         bdev_get_integrity(reference->bdev)) != 0) {
1971                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1972                         mdname(mddev));
1973                 return -EINVAL;
1974         }
1975         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1976         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1977                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1978                        mdname(mddev));
1979                 return -EINVAL;
1980         }
1981         return 0;
1982 }
1983 EXPORT_SYMBOL(md_integrity_register);
1984
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1987 {
1988         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1989         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1990
1991         if (!bi_mddev) /* nothing to do */
1992                 return;
1993         if (rdev->raid_disk < 0) /* skip spares */
1994                 return;
1995         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1996                                              rdev->bdev->bd_disk) >= 0)
1997                 return;
1998         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1999         blk_integrity_unregister(mddev->gendisk);
2000 }
2001 EXPORT_SYMBOL(md_integrity_add_rdev);
2002
2003 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2004 {
2005         char b[BDEVNAME_SIZE];
2006         struct kobject *ko;
2007         char *s;
2008         int err;
2009
2010         if (rdev->mddev) {
2011                 MD_BUG();
2012                 return -EINVAL;
2013         }
2014
2015         /* prevent duplicates */
2016         if (find_rdev(mddev, rdev->bdev->bd_dev))
2017                 return -EEXIST;
2018
2019         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2020         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2021                         rdev->sectors < mddev->dev_sectors)) {
2022                 if (mddev->pers) {
2023                         /* Cannot change size, so fail
2024                          * If mddev->level <= 0, then we don't care
2025                          * about aligning sizes (e.g. linear)
2026                          */
2027                         if (mddev->level > 0)
2028                                 return -ENOSPC;
2029                 } else
2030                         mddev->dev_sectors = rdev->sectors;
2031         }
2032
2033         /* Verify rdev->desc_nr is unique.
2034          * If it is -1, assign a free number, else
2035          * check number is not in use
2036          */
2037         if (rdev->desc_nr < 0) {
2038                 int choice = 0;
2039                 if (mddev->pers) choice = mddev->raid_disks;
2040                 while (find_rdev_nr(mddev, choice))
2041                         choice++;
2042                 rdev->desc_nr = choice;
2043         } else {
2044                 if (find_rdev_nr(mddev, rdev->desc_nr))
2045                         return -EBUSY;
2046         }
2047         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2048                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2049                        mdname(mddev), mddev->max_disks);
2050                 return -EBUSY;
2051         }
2052         bdevname(rdev->bdev,b);
2053         while ( (s=strchr(b, '/')) != NULL)
2054                 *s = '!';
2055
2056         rdev->mddev = mddev;
2057         printk(KERN_INFO "md: bind<%s>\n", b);
2058
2059         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060                 goto fail;
2061
2062         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064                 /* failure here is OK */;
2065         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066
2067         list_add_rcu(&rdev->same_set, &mddev->disks);
2068         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069
2070         /* May as well allow recovery to be retried once */
2071         mddev->recovery_disabled++;
2072
2073         return 0;
2074
2075  fail:
2076         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077                b, mdname(mddev));
2078         return err;
2079 }
2080
2081 static void md_delayed_delete(struct work_struct *ws)
2082 {
2083         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084         kobject_del(&rdev->kobj);
2085         kobject_put(&rdev->kobj);
2086 }
2087
2088 static void unbind_rdev_from_array(struct md_rdev * rdev)
2089 {
2090         char b[BDEVNAME_SIZE];
2091         if (!rdev->mddev) {
2092                 MD_BUG();
2093                 return;
2094         }
2095         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096         list_del_rcu(&rdev->same_set);
2097         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098         rdev->mddev = NULL;
2099         sysfs_remove_link(&rdev->kobj, "block");
2100         sysfs_put(rdev->sysfs_state);
2101         rdev->sysfs_state = NULL;
2102         kfree(rdev->badblocks.page);
2103         rdev->badblocks.count = 0;
2104         rdev->badblocks.page = NULL;
2105         /* We need to delay this, otherwise we can deadlock when
2106          * writing to 'remove' to "dev/state".  We also need
2107          * to delay it due to rcu usage.
2108          */
2109         synchronize_rcu();
2110         INIT_WORK(&rdev->del_work, md_delayed_delete);
2111         kobject_get(&rdev->kobj);
2112         queue_work(md_misc_wq, &rdev->del_work);
2113 }
2114
2115 /*
2116  * prevent the device from being mounted, repartitioned or
2117  * otherwise reused by a RAID array (or any other kernel
2118  * subsystem), by bd_claiming the device.
2119  */
2120 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2121 {
2122         int err = 0;
2123         struct block_device *bdev;
2124         char b[BDEVNAME_SIZE];
2125
2126         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2127                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2128         if (IS_ERR(bdev)) {
2129                 printk(KERN_ERR "md: could not open %s.\n",
2130                         __bdevname(dev, b));
2131                 return PTR_ERR(bdev);
2132         }
2133         rdev->bdev = bdev;
2134         return err;
2135 }
2136
2137 static void unlock_rdev(struct md_rdev *rdev)
2138 {
2139         struct block_device *bdev = rdev->bdev;
2140         rdev->bdev = NULL;
2141         if (!bdev)
2142                 MD_BUG();
2143         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2144 }
2145
2146 void md_autodetect_dev(dev_t dev);
2147
2148 static void export_rdev(struct md_rdev * rdev)
2149 {
2150         char b[BDEVNAME_SIZE];
2151         printk(KERN_INFO "md: export_rdev(%s)\n",
2152                 bdevname(rdev->bdev,b));
2153         if (rdev->mddev)
2154                 MD_BUG();
2155         free_disk_sb(rdev);
2156 #ifndef MODULE
2157         if (test_bit(AutoDetected, &rdev->flags))
2158                 md_autodetect_dev(rdev->bdev->bd_dev);
2159 #endif
2160         unlock_rdev(rdev);
2161         kobject_put(&rdev->kobj);
2162 }
2163
2164 static void kick_rdev_from_array(struct md_rdev * rdev)
2165 {
2166         unbind_rdev_from_array(rdev);
2167         export_rdev(rdev);
2168 }
2169
2170 static void export_array(struct mddev *mddev)
2171 {
2172         struct md_rdev *rdev, *tmp;
2173
2174         rdev_for_each(rdev, tmp, mddev) {
2175                 if (!rdev->mddev) {
2176                         MD_BUG();
2177                         continue;
2178                 }
2179                 kick_rdev_from_array(rdev);
2180         }
2181         if (!list_empty(&mddev->disks))
2182                 MD_BUG();
2183         mddev->raid_disks = 0;
2184         mddev->major_version = 0;
2185 }
2186
2187 static void print_desc(mdp_disk_t *desc)
2188 {
2189         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2190                 desc->major,desc->minor,desc->raid_disk,desc->state);
2191 }
2192
2193 static void print_sb_90(mdp_super_t *sb)
2194 {
2195         int i;
2196
2197         printk(KERN_INFO 
2198                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199                 sb->major_version, sb->minor_version, sb->patch_version,
2200                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2201                 sb->ctime);
2202         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2204                 sb->md_minor, sb->layout, sb->chunk_size);
2205         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2206                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2208                 sb->failed_disks, sb->spare_disks,
2209                 sb->sb_csum, (unsigned long)sb->events_lo);
2210
2211         printk(KERN_INFO);
2212         for (i = 0; i < MD_SB_DISKS; i++) {
2213                 mdp_disk_t *desc;
2214
2215                 desc = sb->disks + i;
2216                 if (desc->number || desc->major || desc->minor ||
2217                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2218                         printk("     D %2d: ", i);
2219                         print_desc(desc);
2220                 }
2221         }
2222         printk(KERN_INFO "md:     THIS: ");
2223         print_desc(&sb->this_disk);
2224 }
2225
2226 static void print_sb_1(struct mdp_superblock_1 *sb)
2227 {
2228         __u8 *uuid;
2229
2230         uuid = sb->set_uuid;
2231         printk(KERN_INFO
2232                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233                "md:    Name: \"%s\" CT:%llu\n",
2234                 le32_to_cpu(sb->major_version),
2235                 le32_to_cpu(sb->feature_map),
2236                 uuid,
2237                 sb->set_name,
2238                 (unsigned long long)le64_to_cpu(sb->ctime)
2239                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2240
2241         uuid = sb->device_uuid;
2242         printk(KERN_INFO
2243                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2244                         " RO:%llu\n"
2245                "md:     Dev:%08x UUID: %pU\n"
2246                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247                "md:         (MaxDev:%u) \n",
2248                 le32_to_cpu(sb->level),
2249                 (unsigned long long)le64_to_cpu(sb->size),
2250                 le32_to_cpu(sb->raid_disks),
2251                 le32_to_cpu(sb->layout),
2252                 le32_to_cpu(sb->chunksize),
2253                 (unsigned long long)le64_to_cpu(sb->data_offset),
2254                 (unsigned long long)le64_to_cpu(sb->data_size),
2255                 (unsigned long long)le64_to_cpu(sb->super_offset),
2256                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2257                 le32_to_cpu(sb->dev_number),
2258                 uuid,
2259                 sb->devflags,
2260                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2261                 (unsigned long long)le64_to_cpu(sb->events),
2262                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2263                 le32_to_cpu(sb->sb_csum),
2264                 le32_to_cpu(sb->max_dev)
2265                 );
2266 }
2267
2268 static void print_rdev(struct md_rdev *rdev, int major_version)
2269 {
2270         char b[BDEVNAME_SIZE];
2271         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2273                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2274                 rdev->desc_nr);
2275         if (rdev->sb_loaded) {
2276                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2277                 switch (major_version) {
2278                 case 0:
2279                         print_sb_90(page_address(rdev->sb_page));
2280                         break;
2281                 case 1:
2282                         print_sb_1(page_address(rdev->sb_page));
2283                         break;
2284                 }
2285         } else
2286                 printk(KERN_INFO "md: no rdev superblock!\n");
2287 }
2288
2289 static void md_print_devices(void)
2290 {
2291         struct list_head *tmp;
2292         struct md_rdev *rdev;
2293         struct mddev *mddev;
2294         char b[BDEVNAME_SIZE];
2295
2296         printk("\n");
2297         printk("md:     **********************************\n");
2298         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2299         printk("md:     **********************************\n");
2300         for_each_mddev(mddev, tmp) {
2301
2302                 if (mddev->bitmap)
2303                         bitmap_print_sb(mddev->bitmap);
2304                 else
2305                         printk("%s: ", mdname(mddev));
2306                 list_for_each_entry(rdev, &mddev->disks, same_set)
2307                         printk("<%s>", bdevname(rdev->bdev,b));
2308                 printk("\n");
2309
2310                 list_for_each_entry(rdev, &mddev->disks, same_set)
2311                         print_rdev(rdev, mddev->major_version);
2312         }
2313         printk("md:     **********************************\n");
2314         printk("\n");
2315 }
2316
2317
2318 static void sync_sbs(struct mddev * mddev, int nospares)
2319 {
2320         /* Update each superblock (in-memory image), but
2321          * if we are allowed to, skip spares which already
2322          * have the right event counter, or have one earlier
2323          * (which would mean they aren't being marked as dirty
2324          * with the rest of the array)
2325          */
2326         struct md_rdev *rdev;
2327         list_for_each_entry(rdev, &mddev->disks, same_set) {
2328                 if (rdev->sb_events == mddev->events ||
2329                     (nospares &&
2330                      rdev->raid_disk < 0 &&
2331                      rdev->sb_events+1 == mddev->events)) {
2332                         /* Don't update this superblock */
2333                         rdev->sb_loaded = 2;
2334                 } else {
2335                         sync_super(mddev, rdev);
2336                         rdev->sb_loaded = 1;
2337                 }
2338         }
2339 }
2340
2341 static void md_update_sb(struct mddev * mddev, int force_change)
2342 {
2343         struct md_rdev *rdev;
2344         int sync_req;
2345         int nospares = 0;
2346         int any_badblocks_changed = 0;
2347
2348 repeat:
2349         /* First make sure individual recovery_offsets are correct */
2350         list_for_each_entry(rdev, &mddev->disks, same_set) {
2351                 if (rdev->raid_disk >= 0 &&
2352                     mddev->delta_disks >= 0 &&
2353                     !test_bit(In_sync, &rdev->flags) &&
2354                     mddev->curr_resync_completed > rdev->recovery_offset)
2355                                 rdev->recovery_offset = mddev->curr_resync_completed;
2356
2357         }       
2358         if (!mddev->persistent) {
2359                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2360                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2361                 if (!mddev->external) {
2362                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2364                                 if (rdev->badblocks.changed) {
2365                                         md_ack_all_badblocks(&rdev->badblocks);
2366                                         md_error(mddev, rdev);
2367                                 }
2368                                 clear_bit(Blocked, &rdev->flags);
2369                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2370                                 wake_up(&rdev->blocked_wait);
2371                         }
2372                 }
2373                 wake_up(&mddev->sb_wait);
2374                 return;
2375         }
2376
2377         spin_lock_irq(&mddev->write_lock);
2378
2379         mddev->utime = get_seconds();
2380
2381         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2382                 force_change = 1;
2383         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2384                 /* just a clean<-> dirty transition, possibly leave spares alone,
2385                  * though if events isn't the right even/odd, we will have to do
2386                  * spares after all
2387                  */
2388                 nospares = 1;
2389         if (force_change)
2390                 nospares = 0;
2391         if (mddev->degraded)
2392                 /* If the array is degraded, then skipping spares is both
2393                  * dangerous and fairly pointless.
2394                  * Dangerous because a device that was removed from the array
2395                  * might have a event_count that still looks up-to-date,
2396                  * so it can be re-added without a resync.
2397                  * Pointless because if there are any spares to skip,
2398                  * then a recovery will happen and soon that array won't
2399                  * be degraded any more and the spare can go back to sleep then.
2400                  */
2401                 nospares = 0;
2402
2403         sync_req = mddev->in_sync;
2404
2405         /* If this is just a dirty<->clean transition, and the array is clean
2406          * and 'events' is odd, we can roll back to the previous clean state */
2407         if (nospares
2408             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2409             && mddev->can_decrease_events
2410             && mddev->events != 1) {
2411                 mddev->events--;
2412                 mddev->can_decrease_events = 0;
2413         } else {
2414                 /* otherwise we have to go forward and ... */
2415                 mddev->events ++;
2416                 mddev->can_decrease_events = nospares;
2417         }
2418
2419         if (!mddev->events) {
2420                 /*
2421                  * oops, this 64-bit counter should never wrap.
2422                  * Either we are in around ~1 trillion A.C., assuming
2423                  * 1 reboot per second, or we have a bug:
2424                  */
2425                 MD_BUG();
2426                 mddev->events --;
2427         }
2428
2429         list_for_each_entry(rdev, &mddev->disks, same_set) {
2430                 if (rdev->badblocks.changed)
2431                         any_badblocks_changed++;
2432                 if (test_bit(Faulty, &rdev->flags))
2433                         set_bit(FaultRecorded, &rdev->flags);
2434         }
2435
2436         sync_sbs(mddev, nospares);
2437         spin_unlock_irq(&mddev->write_lock);
2438
2439         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2440                  mdname(mddev), mddev->in_sync);
2441
2442         bitmap_update_sb(mddev->bitmap);
2443         list_for_each_entry(rdev, &mddev->disks, same_set) {
2444                 char b[BDEVNAME_SIZE];
2445
2446                 if (rdev->sb_loaded != 1)
2447                         continue; /* no noise on spare devices */
2448
2449                 if (!test_bit(Faulty, &rdev->flags) &&
2450                     rdev->saved_raid_disk == -1) {
2451                         md_super_write(mddev,rdev,
2452                                        rdev->sb_start, rdev->sb_size,
2453                                        rdev->sb_page);
2454                         pr_debug("md: (write) %s's sb offset: %llu\n",
2455                                  bdevname(rdev->bdev, b),
2456                                  (unsigned long long)rdev->sb_start);
2457                         rdev->sb_events = mddev->events;
2458                         if (rdev->badblocks.size) {
2459                                 md_super_write(mddev, rdev,
2460                                                rdev->badblocks.sector,
2461                                                rdev->badblocks.size << 9,
2462                                                rdev->bb_page);
2463                                 rdev->badblocks.size = 0;
2464                         }
2465
2466                 } else if (test_bit(Faulty, &rdev->flags))
2467                         pr_debug("md: %s (skipping faulty)\n",
2468                                  bdevname(rdev->bdev, b));
2469                 else
2470                         pr_debug("(skipping incremental s/r ");
2471
2472                 if (mddev->level == LEVEL_MULTIPATH)
2473                         /* only need to write one superblock... */
2474                         break;
2475         }
2476         md_super_wait(mddev);
2477         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2478
2479         spin_lock_irq(&mddev->write_lock);
2480         if (mddev->in_sync != sync_req ||
2481             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2482                 /* have to write it out again */
2483                 spin_unlock_irq(&mddev->write_lock);
2484                 goto repeat;
2485         }
2486         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2487         spin_unlock_irq(&mddev->write_lock);
2488         wake_up(&mddev->sb_wait);
2489         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2490                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2491
2492         list_for_each_entry(rdev, &mddev->disks, same_set) {
2493                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2494                         clear_bit(Blocked, &rdev->flags);
2495
2496                 if (any_badblocks_changed)
2497                         md_ack_all_badblocks(&rdev->badblocks);
2498                 clear_bit(BlockedBadBlocks, &rdev->flags);
2499                 wake_up(&rdev->blocked_wait);
2500         }
2501 }
2502
2503 /* words written to sysfs files may, or may not, be \n terminated.
2504  * We want to accept with case. For this we use cmd_match.
2505  */
2506 static int cmd_match(const char *cmd, const char *str)
2507 {
2508         /* See if cmd, written into a sysfs file, matches
2509          * str.  They must either be the same, or cmd can
2510          * have a trailing newline
2511          */
2512         while (*cmd && *str && *cmd == *str) {
2513                 cmd++;
2514                 str++;
2515         }
2516         if (*cmd == '\n')
2517                 cmd++;
2518         if (*str || *cmd)
2519                 return 0;
2520         return 1;
2521 }
2522
2523 struct rdev_sysfs_entry {
2524         struct attribute attr;
2525         ssize_t (*show)(struct md_rdev *, char *);
2526         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2527 };
2528
2529 static ssize_t
2530 state_show(struct md_rdev *rdev, char *page)
2531 {
2532         char *sep = "";
2533         size_t len = 0;
2534
2535         if (test_bit(Faulty, &rdev->flags) ||
2536             rdev->badblocks.unacked_exist) {
2537                 len+= sprintf(page+len, "%sfaulty",sep);
2538                 sep = ",";
2539         }
2540         if (test_bit(In_sync, &rdev->flags)) {
2541                 len += sprintf(page+len, "%sin_sync",sep);
2542                 sep = ",";
2543         }
2544         if (test_bit(WriteMostly, &rdev->flags)) {
2545                 len += sprintf(page+len, "%swrite_mostly",sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(Blocked, &rdev->flags) ||
2549             (rdev->badblocks.unacked_exist
2550              && !test_bit(Faulty, &rdev->flags))) {
2551                 len += sprintf(page+len, "%sblocked", sep);
2552                 sep = ",";
2553         }
2554         if (!test_bit(Faulty, &rdev->flags) &&
2555             !test_bit(In_sync, &rdev->flags)) {
2556                 len += sprintf(page+len, "%sspare", sep);
2557                 sep = ",";
2558         }
2559         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2560                 len += sprintf(page+len, "%swrite_error", sep);
2561                 sep = ",";
2562         }
2563         return len+sprintf(page+len, "\n");
2564 }
2565
2566 static ssize_t
2567 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569         /* can write
2570          *  faulty  - simulates an error
2571          *  remove  - disconnects the device
2572          *  writemostly - sets write_mostly
2573          *  -writemostly - clears write_mostly
2574          *  blocked - sets the Blocked flags
2575          *  -blocked - clears the Blocked and possibly simulates an error
2576          *  insync - sets Insync providing device isn't active
2577          *  write_error - sets WriteErrorSeen
2578          *  -write_error - clears WriteErrorSeen
2579          */
2580         int err = -EINVAL;
2581         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2582                 md_error(rdev->mddev, rdev);
2583                 if (test_bit(Faulty, &rdev->flags))
2584                         err = 0;
2585                 else
2586                         err = -EBUSY;
2587         } else if (cmd_match(buf, "remove")) {
2588                 if (rdev->raid_disk >= 0)
2589                         err = -EBUSY;
2590                 else {
2591                         struct mddev *mddev = rdev->mddev;
2592                         kick_rdev_from_array(rdev);
2593                         if (mddev->pers)
2594                                 md_update_sb(mddev, 1);
2595                         md_new_event(mddev);
2596                         err = 0;
2597                 }
2598         } else if (cmd_match(buf, "writemostly")) {
2599                 set_bit(WriteMostly, &rdev->flags);
2600                 err = 0;
2601         } else if (cmd_match(buf, "-writemostly")) {
2602                 clear_bit(WriteMostly, &rdev->flags);
2603                 err = 0;
2604         } else if (cmd_match(buf, "blocked")) {
2605                 set_bit(Blocked, &rdev->flags);
2606                 err = 0;
2607         } else if (cmd_match(buf, "-blocked")) {
2608                 if (!test_bit(Faulty, &rdev->flags) &&
2609                     rdev->badblocks.unacked_exist) {
2610                         /* metadata handler doesn't understand badblocks,
2611                          * so we need to fail the device
2612                          */
2613                         md_error(rdev->mddev, rdev);
2614                 }
2615                 clear_bit(Blocked, &rdev->flags);
2616                 clear_bit(BlockedBadBlocks, &rdev->flags);
2617                 wake_up(&rdev->blocked_wait);
2618                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2619                 md_wakeup_thread(rdev->mddev->thread);
2620
2621                 err = 0;
2622         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2623                 set_bit(In_sync, &rdev->flags);
2624                 err = 0;
2625         } else if (cmd_match(buf, "write_error")) {
2626                 set_bit(WriteErrorSeen, &rdev->flags);
2627                 err = 0;
2628         } else if (cmd_match(buf, "-write_error")) {
2629                 clear_bit(WriteErrorSeen, &rdev->flags);
2630                 err = 0;
2631         }
2632         if (!err)
2633                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2634         return err ? err : len;
2635 }
2636 static struct rdev_sysfs_entry rdev_state =
2637 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2638
2639 static ssize_t
2640 errors_show(struct md_rdev *rdev, char *page)
2641 {
2642         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2643 }
2644
2645 static ssize_t
2646 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2647 {
2648         char *e;
2649         unsigned long n = simple_strtoul(buf, &e, 10);
2650         if (*buf && (*e == 0 || *e == '\n')) {
2651                 atomic_set(&rdev->corrected_errors, n);
2652                 return len;
2653         }
2654         return -EINVAL;
2655 }
2656 static struct rdev_sysfs_entry rdev_errors =
2657 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2658
2659 static ssize_t
2660 slot_show(struct md_rdev *rdev, char *page)
2661 {
2662         if (rdev->raid_disk < 0)
2663                 return sprintf(page, "none\n");
2664         else
2665                 return sprintf(page, "%d\n", rdev->raid_disk);
2666 }
2667
2668 static ssize_t
2669 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2670 {
2671         char *e;
2672         int err;
2673         int slot = simple_strtoul(buf, &e, 10);
2674         if (strncmp(buf, "none", 4)==0)
2675                 slot = -1;
2676         else if (e==buf || (*e && *e!= '\n'))
2677                 return -EINVAL;
2678         if (rdev->mddev->pers && slot == -1) {
2679                 /* Setting 'slot' on an active array requires also
2680                  * updating the 'rd%d' link, and communicating
2681                  * with the personality with ->hot_*_disk.
2682                  * For now we only support removing
2683                  * failed/spare devices.  This normally happens automatically,
2684                  * but not when the metadata is externally managed.
2685                  */
2686                 if (rdev->raid_disk == -1)
2687                         return -EEXIST;
2688                 /* personality does all needed checks */
2689                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2690                         return -EINVAL;
2691                 err = rdev->mddev->pers->
2692                         hot_remove_disk(rdev->mddev, rdev);
2693                 if (err)
2694                         return err;
2695                 sysfs_unlink_rdev(rdev->mddev, rdev);
2696                 rdev->raid_disk = -1;
2697                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2698                 md_wakeup_thread(rdev->mddev->thread);
2699         } else if (rdev->mddev->pers) {
2700                 /* Activating a spare .. or possibly reactivating
2701                  * if we ever get bitmaps working here.
2702                  */
2703
2704                 if (rdev->raid_disk != -1)
2705                         return -EBUSY;
2706
2707                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2708                         return -EBUSY;
2709
2710                 if (rdev->mddev->pers->hot_add_disk == NULL)
2711                         return -EINVAL;
2712
2713                 if (slot >= rdev->mddev->raid_disks &&
2714                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2715                         return -ENOSPC;
2716
2717                 rdev->raid_disk = slot;
2718                 if (test_bit(In_sync, &rdev->flags))
2719                         rdev->saved_raid_disk = slot;
2720                 else
2721                         rdev->saved_raid_disk = -1;
2722                 clear_bit(In_sync, &rdev->flags);
2723                 err = rdev->mddev->pers->
2724                         hot_add_disk(rdev->mddev, rdev);
2725                 if (err) {
2726                         rdev->raid_disk = -1;
2727                         return err;
2728                 } else
2729                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2730                 if (sysfs_link_rdev(rdev->mddev, rdev))
2731                         /* failure here is OK */;
2732                 /* don't wakeup anyone, leave that to userspace. */
2733         } else {
2734                 if (slot >= rdev->mddev->raid_disks &&
2735                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2736                         return -ENOSPC;
2737                 rdev->raid_disk = slot;
2738                 /* assume it is working */
2739                 clear_bit(Faulty, &rdev->flags);
2740                 clear_bit(WriteMostly, &rdev->flags);
2741                 set_bit(In_sync, &rdev->flags);
2742                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2743         }
2744         return len;
2745 }
2746
2747
2748 static struct rdev_sysfs_entry rdev_slot =
2749 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2750
2751 static ssize_t
2752 offset_show(struct md_rdev *rdev, char *page)
2753 {
2754         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2755 }
2756
2757 static ssize_t
2758 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760         char *e;
2761         unsigned long long offset = simple_strtoull(buf, &e, 10);
2762         if (e==buf || (*e && *e != '\n'))
2763                 return -EINVAL;
2764         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2765                 return -EBUSY;
2766         if (rdev->sectors && rdev->mddev->external)
2767                 /* Must set offset before size, so overlap checks
2768                  * can be sane */
2769                 return -EBUSY;
2770         rdev->data_offset = offset;
2771         return len;
2772 }
2773
2774 static struct rdev_sysfs_entry rdev_offset =
2775 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2776
2777 static ssize_t
2778 rdev_size_show(struct md_rdev *rdev, char *page)
2779 {
2780         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2781 }
2782
2783 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2784 {
2785         /* check if two start/length pairs overlap */
2786         if (s1+l1 <= s2)
2787                 return 0;
2788         if (s2+l2 <= s1)
2789                 return 0;
2790         return 1;
2791 }
2792
2793 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2794 {
2795         unsigned long long blocks;
2796         sector_t new;
2797
2798         if (strict_strtoull(buf, 10, &blocks) < 0)
2799                 return -EINVAL;
2800
2801         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2802                 return -EINVAL; /* sector conversion overflow */
2803
2804         new = blocks * 2;
2805         if (new != blocks * 2)
2806                 return -EINVAL; /* unsigned long long to sector_t overflow */
2807
2808         *sectors = new;
2809         return 0;
2810 }
2811
2812 static ssize_t
2813 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2814 {
2815         struct mddev *my_mddev = rdev->mddev;
2816         sector_t oldsectors = rdev->sectors;
2817         sector_t sectors;
2818
2819         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2820                 return -EINVAL;
2821         if (my_mddev->pers && rdev->raid_disk >= 0) {
2822                 if (my_mddev->persistent) {
2823                         sectors = super_types[my_mddev->major_version].
2824                                 rdev_size_change(rdev, sectors);
2825                         if (!sectors)
2826                                 return -EBUSY;
2827                 } else if (!sectors)
2828                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2829                                 rdev->data_offset;
2830         }
2831         if (sectors < my_mddev->dev_sectors)
2832                 return -EINVAL; /* component must fit device */
2833
2834         rdev->sectors = sectors;
2835         if (sectors > oldsectors && my_mddev->external) {
2836                 /* need to check that all other rdevs with the same ->bdev
2837                  * do not overlap.  We need to unlock the mddev to avoid
2838                  * a deadlock.  We have already changed rdev->sectors, and if
2839                  * we have to change it back, we will have the lock again.
2840                  */
2841                 struct mddev *mddev;
2842                 int overlap = 0;
2843                 struct list_head *tmp;
2844
2845                 mddev_unlock(my_mddev);
2846                 for_each_mddev(mddev, tmp) {
2847                         struct md_rdev *rdev2;
2848
2849                         mddev_lock(mddev);
2850                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2851                                 if (rdev->bdev == rdev2->bdev &&
2852                                     rdev != rdev2 &&
2853                                     overlaps(rdev->data_offset, rdev->sectors,
2854                                              rdev2->data_offset,
2855                                              rdev2->sectors)) {
2856                                         overlap = 1;
2857                                         break;
2858                                 }
2859                         mddev_unlock(mddev);
2860                         if (overlap) {
2861                                 mddev_put(mddev);
2862                                 break;
2863                         }
2864                 }
2865                 mddev_lock(my_mddev);
2866                 if (overlap) {
2867                         /* Someone else could have slipped in a size
2868                          * change here, but doing so is just silly.
2869                          * We put oldsectors back because we *know* it is
2870                          * safe, and trust userspace not to race with
2871                          * itself
2872                          */
2873                         rdev->sectors = oldsectors;
2874                         return -EBUSY;
2875                 }
2876         }
2877         return len;
2878 }
2879
2880 static struct rdev_sysfs_entry rdev_size =
2881 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2882
2883
2884 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2885 {
2886         unsigned long long recovery_start = rdev->recovery_offset;
2887
2888         if (test_bit(In_sync, &rdev->flags) ||
2889             recovery_start == MaxSector)
2890                 return sprintf(page, "none\n");
2891
2892         return sprintf(page, "%llu\n", recovery_start);
2893 }
2894
2895 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2896 {
2897         unsigned long long recovery_start;
2898
2899         if (cmd_match(buf, "none"))
2900                 recovery_start = MaxSector;
2901         else if (strict_strtoull(buf, 10, &recovery_start))
2902                 return -EINVAL;
2903
2904         if (rdev->mddev->pers &&
2905             rdev->raid_disk >= 0)
2906                 return -EBUSY;
2907
2908         rdev->recovery_offset = recovery_start;
2909         if (recovery_start == MaxSector)
2910                 set_bit(In_sync, &rdev->flags);
2911         else
2912                 clear_bit(In_sync, &rdev->flags);
2913         return len;
2914 }
2915
2916 static struct rdev_sysfs_entry rdev_recovery_start =
2917 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2918
2919
2920 static ssize_t
2921 badblocks_show(struct badblocks *bb, char *page, int unack);
2922 static ssize_t
2923 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2924
2925 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2926 {
2927         return badblocks_show(&rdev->badblocks, page, 0);
2928 }
2929 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2930 {
2931         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2932         /* Maybe that ack was all we needed */
2933         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2934                 wake_up(&rdev->blocked_wait);
2935         return rv;
2936 }
2937 static struct rdev_sysfs_entry rdev_bad_blocks =
2938 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2939
2940
2941 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2942 {
2943         return badblocks_show(&rdev->badblocks, page, 1);
2944 }
2945 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2946 {
2947         return badblocks_store(&rdev->badblocks, page, len, 1);
2948 }
2949 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2950 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2951
2952 static struct attribute *rdev_default_attrs[] = {
2953         &rdev_state.attr,
2954         &rdev_errors.attr,
2955         &rdev_slot.attr,
2956         &rdev_offset.attr,
2957         &rdev_size.attr,
2958         &rdev_recovery_start.attr,
2959         &rdev_bad_blocks.attr,
2960         &rdev_unack_bad_blocks.attr,
2961         NULL,
2962 };
2963 static ssize_t
2964 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2965 {
2966         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2967         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2968         struct mddev *mddev = rdev->mddev;
2969         ssize_t rv;
2970
2971         if (!entry->show)
2972                 return -EIO;
2973
2974         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2975         if (!rv) {
2976                 if (rdev->mddev == NULL)
2977                         rv = -EBUSY;
2978                 else
2979                         rv = entry->show(rdev, page);
2980                 mddev_unlock(mddev);
2981         }
2982         return rv;
2983 }
2984
2985 static ssize_t
2986 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2987               const char *page, size_t length)
2988 {
2989         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2990         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2991         ssize_t rv;
2992         struct mddev *mddev = rdev->mddev;
2993
2994         if (!entry->store)
2995                 return -EIO;
2996         if (!capable(CAP_SYS_ADMIN))
2997                 return -EACCES;
2998         rv = mddev ? mddev_lock(mddev): -EBUSY;
2999         if (!rv) {
3000                 if (rdev->mddev == NULL)
3001                         rv = -EBUSY;
3002                 else
3003                         rv = entry->store(rdev, page, length);
3004                 mddev_unlock(mddev);
3005         }
3006         return rv;
3007 }
3008
3009 static void rdev_free(struct kobject *ko)
3010 {
3011         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3012         kfree(rdev);
3013 }
3014 static const struct sysfs_ops rdev_sysfs_ops = {
3015         .show           = rdev_attr_show,
3016         .store          = rdev_attr_store,
3017 };
3018 static struct kobj_type rdev_ktype = {
3019         .release        = rdev_free,
3020         .sysfs_ops      = &rdev_sysfs_ops,
3021         .default_attrs  = rdev_default_attrs,
3022 };
3023
3024 int md_rdev_init(struct md_rdev *rdev)
3025 {
3026         rdev->desc_nr = -1;
3027         rdev->saved_raid_disk = -1;
3028         rdev->raid_disk = -1;
3029         rdev->flags = 0;
3030         rdev->data_offset = 0;
3031         rdev->sb_events = 0;
3032         rdev->last_read_error.tv_sec  = 0;
3033         rdev->last_read_error.tv_nsec = 0;
3034         rdev->sb_loaded = 0;
3035         rdev->bb_page = NULL;
3036         atomic_set(&rdev->nr_pending, 0);
3037         atomic_set(&rdev->read_errors, 0);
3038         atomic_set(&rdev->corrected_errors, 0);
3039
3040         INIT_LIST_HEAD(&rdev->same_set);
3041         init_waitqueue_head(&rdev->blocked_wait);
3042
3043         /* Add space to store bad block list.
3044          * This reserves the space even on arrays where it cannot
3045          * be used - I wonder if that matters
3046          */
3047         rdev->badblocks.count = 0;
3048         rdev->badblocks.shift = 0;
3049         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3050         seqlock_init(&rdev->badblocks.lock);
3051         if (rdev->badblocks.page == NULL)
3052                 return -ENOMEM;
3053
3054         return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(md_rdev_init);
3057 /*
3058  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3059  *
3060  * mark the device faulty if:
3061  *
3062  *   - the device is nonexistent (zero size)
3063  *   - the device has no valid superblock
3064  *
3065  * a faulty rdev _never_ has rdev->sb set.
3066  */
3067 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3068 {
3069         char b[BDEVNAME_SIZE];
3070         int err;
3071         struct md_rdev *rdev;
3072         sector_t size;
3073
3074         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3075         if (!rdev) {
3076                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3077                 return ERR_PTR(-ENOMEM);
3078         }
3079
3080         err = md_rdev_init(rdev);
3081         if (err)
3082                 goto abort_free;
3083         err = alloc_disk_sb(rdev);
3084         if (err)
3085                 goto abort_free;
3086
3087         err = lock_rdev(rdev, newdev, super_format == -2);
3088         if (err)
3089                 goto abort_free;
3090
3091         kobject_init(&rdev->kobj, &rdev_ktype);
3092
3093         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3094         if (!size) {
3095                 printk(KERN_WARNING 
3096                         "md: %s has zero or unknown size, marking faulty!\n",
3097                         bdevname(rdev->bdev,b));
3098                 err = -EINVAL;
3099                 goto abort_free;
3100         }
3101
3102         if (super_format >= 0) {
3103                 err = super_types[super_format].
3104                         load_super(rdev, NULL, super_minor);
3105                 if (err == -EINVAL) {
3106                         printk(KERN_WARNING
3107                                 "md: %s does not have a valid v%d.%d "
3108                                "superblock, not importing!\n",
3109                                 bdevname(rdev->bdev,b),
3110                                super_format, super_minor);
3111                         goto abort_free;
3112                 }
3113                 if (err < 0) {
3114                         printk(KERN_WARNING 
3115                                 "md: could not read %s's sb, not importing!\n",
3116                                 bdevname(rdev->bdev,b));
3117                         goto abort_free;
3118                 }
3119         }
3120         if (super_format == -1)
3121                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3122                 rdev->badblocks.shift = -1;
3123
3124         return rdev;
3125
3126 abort_free:
3127         if (rdev->bdev)
3128                 unlock_rdev(rdev);
3129         free_disk_sb(rdev);
3130         kfree(rdev->badblocks.page);
3131         kfree(rdev);
3132         return ERR_PTR(err);
3133 }
3134
3135 /*
3136  * Check a full RAID array for plausibility
3137  */
3138
3139
3140 static void analyze_sbs(struct mddev * mddev)
3141 {
3142         int i;
3143         struct md_rdev *rdev, *freshest, *tmp;
3144         char b[BDEVNAME_SIZE];
3145
3146         freshest = NULL;
3147         rdev_for_each(rdev, tmp, mddev)
3148                 switch (super_types[mddev->major_version].
3149                         load_super(rdev, freshest, mddev->minor_version)) {
3150                 case 1:
3151                         freshest = rdev;
3152                         break;
3153                 case 0:
3154                         break;
3155                 default:
3156                         printk( KERN_ERR \
3157                                 "md: fatal superblock inconsistency in %s"
3158                                 " -- removing from array\n", 
3159                                 bdevname(rdev->bdev,b));
3160                         kick_rdev_from_array(rdev);
3161                 }
3162
3163
3164         super_types[mddev->major_version].
3165                 validate_super(mddev, freshest);
3166
3167         i = 0;
3168         rdev_for_each(rdev, tmp, mddev) {
3169                 if (mddev->max_disks &&
3170                     (rdev->desc_nr >= mddev->max_disks ||
3171                      i > mddev->max_disks)) {
3172                         printk(KERN_WARNING
3173                                "md: %s: %s: only %d devices permitted\n",
3174                                mdname(mddev), bdevname(rdev->bdev, b),
3175                                mddev->max_disks);
3176                         kick_rdev_from_array(rdev);
3177                         continue;
3178                 }
3179                 if (rdev != freshest)
3180                         if (super_types[mddev->major_version].
3181                             validate_super(mddev, rdev)) {
3182                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3183                                         " from array!\n",
3184                                         bdevname(rdev->bdev,b));
3185                                 kick_rdev_from_array(rdev);
3186                                 continue;
3187                         }
3188                 if (mddev->level == LEVEL_MULTIPATH) {
3189                         rdev->desc_nr = i++;
3190                         rdev->raid_disk = rdev->desc_nr;
3191                         set_bit(In_sync, &rdev->flags);
3192                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3193                         rdev->raid_disk = -1;
3194                         clear_bit(In_sync, &rdev->flags);
3195                 }
3196         }
3197 }
3198
3199 /* Read a fixed-point number.
3200  * Numbers in sysfs attributes should be in "standard" units where
3201  * possible, so time should be in seconds.
3202  * However we internally use a a much smaller unit such as 
3203  * milliseconds or jiffies.
3204  * This function takes a decimal number with a possible fractional
3205  * component, and produces an integer which is the result of
3206  * multiplying that number by 10^'scale'.
3207  * all without any floating-point arithmetic.
3208  */
3209 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3210 {
3211         unsigned long result = 0;
3212         long decimals = -1;
3213         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3214                 if (*cp == '.')
3215                         decimals = 0;
3216                 else if (decimals < scale) {
3217                         unsigned int value;
3218                         value = *cp - '0';
3219                         result = result * 10 + value;
3220                         if (decimals >= 0)
3221                                 decimals++;
3222                 }
3223                 cp++;
3224         }
3225         if (*cp == '\n')
3226                 cp++;
3227         if (*cp)
3228                 return -EINVAL;
3229         if (decimals < 0)
3230                 decimals = 0;
3231         while (decimals < scale) {
3232                 result *= 10;
3233                 decimals ++;
3234         }
3235         *res = result;
3236         return 0;
3237 }
3238
3239
3240 static void md_safemode_timeout(unsigned long data);
3241
3242 static ssize_t
3243 safe_delay_show(struct mddev *mddev, char *page)
3244 {
3245         int msec = (mddev->safemode_delay*1000)/HZ;
3246         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3247 }
3248 static ssize_t
3249 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3250 {
3251         unsigned long msec;
3252
3253         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3254                 return -EINVAL;
3255         if (msec == 0)
3256                 mddev->safemode_delay = 0;
3257         else {
3258                 unsigned long old_delay = mddev->safemode_delay;
3259                 mddev->safemode_delay = (msec*HZ)/1000;
3260                 if (mddev->safemode_delay == 0)
3261                         mddev->safemode_delay = 1;
3262                 if (mddev->safemode_delay < old_delay)
3263                         md_safemode_timeout((unsigned long)mddev);
3264         }
3265         return len;
3266 }
3267 static struct md_sysfs_entry md_safe_delay =
3268 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3269
3270 static ssize_t
3271 level_show(struct mddev *mddev, char *page)
3272 {
3273         struct md_personality *p = mddev->pers;
3274         if (p)
3275                 return sprintf(page, "%s\n", p->name);
3276         else if (mddev->clevel[0])
3277                 return sprintf(page, "%s\n", mddev->clevel);
3278         else if (mddev->level != LEVEL_NONE)
3279                 return sprintf(page, "%d\n", mddev->level);
3280         else
3281                 return 0;
3282 }
3283
3284 static ssize_t
3285 level_store(struct mddev *mddev, const char *buf, size_t len)
3286 {
3287         char clevel[16];
3288         ssize_t rv = len;
3289         struct md_personality *pers;
3290         long level;
3291         void *priv;
3292         struct md_rdev *rdev;
3293
3294         if (mddev->pers == NULL) {
3295                 if (len == 0)
3296                         return 0;
3297                 if (len >= sizeof(mddev->clevel))
3298                         return -ENOSPC;
3299                 strncpy(mddev->clevel, buf, len);
3300                 if (mddev->clevel[len-1] == '\n')
3301                         len--;
3302                 mddev->clevel[len] = 0;
3303                 mddev->level = LEVEL_NONE;
3304                 return rv;
3305         }
3306
3307         /* request to change the personality.  Need to ensure:
3308          *  - array is not engaged in resync/recovery/reshape
3309          *  - old personality can be suspended
3310          *  - new personality will access other array.
3311          */
3312
3313         if (mddev->sync_thread ||
3314             mddev->reshape_position != MaxSector ||
3315             mddev->sysfs_active)
3316                 return -EBUSY;
3317
3318         if (!mddev->pers->quiesce) {
3319                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3320                        mdname(mddev), mddev->pers->name);
3321                 return -EINVAL;
3322         }
3323
3324         /* Now find the new personality */
3325         if (len == 0 || len >= sizeof(clevel))
3326                 return -EINVAL;
3327         strncpy(clevel, buf, len);
3328         if (clevel[len-1] == '\n')
3329                 len--;
3330         clevel[len] = 0;
3331         if (strict_strtol(clevel, 10, &level))
3332                 level = LEVEL_NONE;
3333
3334         if (request_module("md-%s", clevel) != 0)
3335                 request_module("md-level-%s", clevel);
3336         spin_lock(&pers_lock);
3337         pers = find_pers(level, clevel);
3338         if (!pers || !try_module_get(pers->owner)) {
3339                 spin_unlock(&pers_lock);
3340                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3341                 return -EINVAL;
3342         }
3343         spin_unlock(&pers_lock);
3344
3345         if (pers == mddev->pers) {
3346                 /* Nothing to do! */
3347                 module_put(pers->owner);
3348                 return rv;
3349         }
3350         if (!pers->takeover) {
3351                 module_put(pers->owner);
3352                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3353                        mdname(mddev), clevel);
3354                 return -EINVAL;
3355         }
3356
3357         list_for_each_entry(rdev, &mddev->disks, same_set)
3358                 rdev->new_raid_disk = rdev->raid_disk;
3359
3360         /* ->takeover must set new_* and/or delta_disks
3361          * if it succeeds, and may set them when it fails.
3362          */
3363         priv = pers->takeover(mddev);
3364         if (IS_ERR(priv)) {
3365                 mddev->new_level = mddev->level;
3366                 mddev->new_layout = mddev->layout;
3367                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3368                 mddev->raid_disks -= mddev->delta_disks;
3369                 mddev->delta_disks = 0;
3370                 module_put(pers->owner);
3371                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3372                        mdname(mddev), clevel);
3373                 return PTR_ERR(priv);
3374         }
3375
3376         /* Looks like we have a winner */
3377         mddev_suspend(mddev);
3378         mddev->pers->stop(mddev);
3379         
3380         if (mddev->pers->sync_request == NULL &&
3381             pers->sync_request != NULL) {
3382                 /* need to add the md_redundancy_group */
3383                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3384                         printk(KERN_WARNING
3385                                "md: cannot register extra attributes for %s\n",
3386                                mdname(mddev));
3387                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3388         }               
3389         if (mddev->pers->sync_request != NULL &&
3390             pers->sync_request == NULL) {
3391                 /* need to remove the md_redundancy_group */
3392                 if (mddev->to_remove == NULL)
3393                         mddev->to_remove = &md_redundancy_group;
3394         }
3395
3396         if (mddev->pers->sync_request == NULL &&
3397             mddev->external) {
3398                 /* We are converting from a no-redundancy array
3399                  * to a redundancy array and metadata is managed
3400                  * externally so we need to be sure that writes
3401                  * won't block due to a need to transition
3402                  *      clean->dirty
3403                  * until external management is started.
3404                  */
3405                 mddev->in_sync = 0;
3406                 mddev->safemode_delay = 0;
3407                 mddev->safemode = 0;
3408         }
3409
3410         list_for_each_entry(rdev, &mddev->disks, same_set) {
3411                 if (rdev->raid_disk < 0)
3412                         continue;
3413                 if (rdev->new_raid_disk >= mddev->raid_disks)
3414                         rdev->new_raid_disk = -1;
3415                 if (rdev->new_raid_disk == rdev->raid_disk)
3416                         continue;
3417                 sysfs_unlink_rdev(mddev, rdev);
3418         }
3419         list_for_each_entry(rdev, &mddev->disks, same_set) {
3420                 if (rdev->raid_disk < 0)
3421                         continue;
3422                 if (rdev->new_raid_disk == rdev->raid_disk)
3423                         continue;
3424                 rdev->raid_disk = rdev->new_raid_disk;
3425                 if (rdev->raid_disk < 0)
3426                         clear_bit(In_sync, &rdev->flags);
3427                 else {
3428                         if (sysfs_link_rdev(mddev, rdev))
3429                                 printk(KERN_WARNING "md: cannot register rd%d"
3430                                        " for %s after level change\n",
3431                                        rdev->raid_disk, mdname(mddev));
3432                 }
3433         }
3434
3435         module_put(mddev->pers->owner);
3436         mddev->pers = pers;
3437         mddev->private = priv;
3438         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3439         mddev->level = mddev->new_level;
3440         mddev->layout = mddev->new_layout;
3441         mddev->chunk_sectors = mddev->new_chunk_sectors;
3442         mddev->delta_disks = 0;
3443         mddev->degraded = 0;
3444         if (mddev->pers->sync_request == NULL) {
3445                 /* this is now an array without redundancy, so
3446                  * it must always be in_sync
3447                  */
3448                 mddev->in_sync = 1;
3449                 del_timer_sync(&mddev->safemode_timer);
3450         }
3451         pers->run(mddev);
3452         mddev_resume(mddev);
3453         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3454         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3455         md_wakeup_thread(mddev->thread);
3456         sysfs_notify(&mddev->kobj, NULL, "level");
3457         md_new_event(mddev);
3458         return rv;
3459 }
3460
3461 static struct md_sysfs_entry md_level =
3462 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3463
3464
3465 static ssize_t
3466 layout_show(struct mddev *mddev, char *page)
3467 {
3468         /* just a number, not meaningful for all levels */
3469         if (mddev->reshape_position != MaxSector &&
3470             mddev->layout != mddev->new_layout)
3471                 return sprintf(page, "%d (%d)\n",
3472                                mddev->new_layout, mddev->layout);
3473         return sprintf(page, "%d\n", mddev->layout);
3474 }
3475
3476 static ssize_t
3477 layout_store(struct mddev *mddev, const char *buf, size_t len)
3478 {
3479         char *e;
3480         unsigned long n = simple_strtoul(buf, &e, 10);
3481
3482         if (!*buf || (*e && *e != '\n'))
3483                 return -EINVAL;
3484
3485         if (mddev->pers) {
3486                 int err;
3487                 if (mddev->pers->check_reshape == NULL)
3488                         return -EBUSY;
3489                 mddev->new_layout = n;
3490                 err = mddev->pers->check_reshape(mddev);
3491                 if (err) {
3492                         mddev->new_layout = mddev->layout;
3493                         return err;
3494                 }
3495         } else {
3496                 mddev->new_layout = n;
3497                 if (mddev->reshape_position == MaxSector)
3498                         mddev->layout = n;
3499         }
3500         return len;
3501 }
3502 static struct md_sysfs_entry md_layout =
3503 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3504
3505
3506 static ssize_t
3507 raid_disks_show(struct mddev *mddev, char *page)
3508 {
3509         if (mddev->raid_disks == 0)
3510                 return 0;
3511         if (mddev->reshape_position != MaxSector &&
3512             mddev->delta_disks != 0)
3513                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3514                                mddev->raid_disks - mddev->delta_disks);
3515         return sprintf(page, "%d\n", mddev->raid_disks);
3516 }
3517
3518 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3519
3520 static ssize_t
3521 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3522 {
3523         char *e;
3524         int rv = 0;
3525         unsigned long n = simple_strtoul(buf, &e, 10);
3526
3527         if (!*buf || (*e && *e != '\n'))
3528                 return -EINVAL;
3529
3530         if (mddev->pers)
3531                 rv = update_raid_disks(mddev, n);
3532         else if (mddev->reshape_position != MaxSector) {
3533                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3534                 mddev->delta_disks = n - olddisks;
3535                 mddev->raid_disks = n;
3536         } else
3537                 mddev->raid_disks = n;
3538         return rv ? rv : len;
3539 }
3540 static struct md_sysfs_entry md_raid_disks =
3541 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3542
3543 static ssize_t
3544 chunk_size_show(struct mddev *mddev, char *page)
3545 {
3546         if (mddev->reshape_position != MaxSector &&
3547             mddev->chunk_sectors != mddev->new_chunk_sectors)
3548                 return sprintf(page, "%d (%d)\n",
3549                                mddev->new_chunk_sectors << 9,
3550                                mddev->chunk_sectors << 9);
3551         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3552 }
3553
3554 static ssize_t
3555 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3556 {
3557         char *e;
3558         unsigned long n = simple_strtoul(buf, &e, 10);
3559
3560         if (!*buf || (*e && *e != '\n'))
3561                 return -EINVAL;
3562
3563         if (mddev->pers) {
3564                 int err;
3565                 if (mddev->pers->check_reshape == NULL)
3566                         return -EBUSY;
3567                 mddev->new_chunk_sectors = n >> 9;
3568                 err = mddev->pers->check_reshape(mddev);
3569                 if (err) {
3570                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3571                         return err;
3572                 }
3573         } else {
3574                 mddev->new_chunk_sectors = n >> 9;
3575                 if (mddev->reshape_position == MaxSector)
3576                         mddev->chunk_sectors = n >> 9;
3577         }
3578         return len;
3579 }
3580 static struct md_sysfs_entry md_chunk_size =
3581 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3582
3583 static ssize_t
3584 resync_start_show(struct mddev *mddev, char *page)
3585 {
3586         if (mddev->recovery_cp == MaxSector)
3587                 return sprintf(page, "none\n");
3588         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3589 }
3590
3591 static ssize_t
3592 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3593 {
3594         char *e;
3595         unsigned long long n = simple_strtoull(buf, &e, 10);
3596
3597         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3598                 return -EBUSY;
3599         if (cmd_match(buf, "none"))
3600                 n = MaxSector;
3601         else if (!*buf || (*e && *e != '\n'))
3602                 return -EINVAL;
3603
3604         mddev->recovery_cp = n;
3605         return len;
3606 }
3607 static struct md_sysfs_entry md_resync_start =
3608 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3609
3610 /*
3611  * The array state can be:
3612  *
3613  * clear
3614  *     No devices, no size, no level
3615  *     Equivalent to STOP_ARRAY ioctl
3616  * inactive
3617  *     May have some settings, but array is not active
3618  *        all IO results in error
3619  *     When written, doesn't tear down array, but just stops it
3620  * suspended (not supported yet)
3621  *     All IO requests will block. The array can be reconfigured.
3622  *     Writing this, if accepted, will block until array is quiescent
3623  * readonly
3624  *     no resync can happen.  no superblocks get written.
3625  *     write requests fail
3626  * read-auto
3627  *     like readonly, but behaves like 'clean' on a write request.
3628  *
3629  * clean - no pending writes, but otherwise active.
3630  *     When written to inactive array, starts without resync
3631  *     If a write request arrives then
3632  *       if metadata is known, mark 'dirty' and switch to 'active'.
3633  *       if not known, block and switch to write-pending
3634  *     If written to an active array that has pending writes, then fails.
3635  * active
3636  *     fully active: IO and resync can be happening.
3637  *     When written to inactive array, starts with resync
3638  *
3639  * write-pending
3640  *     clean, but writes are blocked waiting for 'active' to be written.
3641  *
3642  * active-idle
3643  *     like active, but no writes have been seen for a while (100msec).
3644  *
3645  */
3646 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3647                    write_pending, active_idle, bad_word};
3648 static char *array_states[] = {
3649         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3650         "write-pending", "active-idle", NULL };
3651
3652 static int match_word(const char *word, char **list)
3653 {
3654         int n;
3655         for (n=0; list[n]; n++)
3656                 if (cmd_match(word, list[n]))
3657                         break;
3658         return n;
3659 }
3660
3661 static ssize_t
3662 array_state_show(struct mddev *mddev, char *page)
3663 {
3664         enum array_state st = inactive;
3665
3666         if (mddev->pers)
3667                 switch(mddev->ro) {
3668                 case 1:
3669                         st = readonly;
3670                         break;
3671                 case 2:
3672                         st = read_auto;
3673                         break;
3674                 case 0:
3675                         if (mddev->in_sync)
3676                                 st = clean;
3677                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3678                                 st = write_pending;
3679                         else if (mddev->safemode)
3680                                 st = active_idle;
3681                         else
3682                                 st = active;
3683                 }
3684         else {
3685                 if (list_empty(&mddev->disks) &&
3686                     mddev->raid_disks == 0 &&
3687                     mddev->dev_sectors == 0)
3688                         st = clear;
3689                 else
3690                         st = inactive;
3691         }
3692         return sprintf(page, "%s\n", array_states[st]);
3693 }
3694
3695 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3696 static int md_set_readonly(struct mddev * mddev, int is_open);
3697 static int do_md_run(struct mddev * mddev);
3698 static int restart_array(struct mddev *mddev);
3699
3700 static ssize_t
3701 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3702 {
3703         int err = -EINVAL;
3704         enum array_state st = match_word(buf, array_states);
3705         switch(st) {
3706         case bad_word:
3707                 break;
3708         case clear:
3709                 /* stopping an active array */
3710                 if (atomic_read(&mddev->openers) > 0)
3711                         return -EBUSY;
3712                 err = do_md_stop(mddev, 0, 0);
3713                 break;
3714         case inactive:
3715                 /* stopping an active array */
3716                 if (mddev->pers) {
3717                         if (atomic_read(&mddev->openers) > 0)
3718                                 return -EBUSY;
3719                         err = do_md_stop(mddev, 2, 0);
3720                 } else
3721                         err = 0; /* already inactive */
3722                 break;
3723         case suspended:
3724                 break; /* not supported yet */
3725         case readonly:
3726                 if (mddev->pers)
3727                         err = md_set_readonly(mddev, 0);
3728                 else {
3729                         mddev->ro = 1;
3730                         set_disk_ro(mddev->gendisk, 1);
3731                         err = do_md_run(mddev);
3732                 }
3733                 break;
3734         case read_auto:
3735                 if (mddev->pers) {
3736                         if (mddev->ro == 0)
3737                                 err = md_set_readonly(mddev, 0);
3738                         else if (mddev->ro == 1)
3739                                 err = restart_array(mddev);
3740                         if (err == 0) {
3741                                 mddev->ro = 2;
3742                                 set_disk_ro(mddev->gendisk, 0);
3743                         }
3744                 } else {
3745                         mddev->ro = 2;
3746                         err = do_md_run(mddev);
3747                 }
3748                 break;
3749         case clean:
3750                 if (mddev->pers) {
3751                         restart_array(mddev);
3752                         spin_lock_irq(&mddev->write_lock);
3753                         if (atomic_read(&mddev->writes_pending) == 0) {
3754                                 if (mddev->in_sync == 0) {
3755                                         mddev->in_sync = 1;
3756                                         if (mddev->safemode == 1)
3757                                                 mddev->safemode = 0;
3758                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3759                                 }
3760                                 err = 0;
3761                         } else
3762                                 err = -EBUSY;
3763                         spin_unlock_irq(&mddev->write_lock);
3764                 } else
3765                         err = -EINVAL;
3766                 break;
3767         case active:
3768                 if (mddev->pers) {
3769                         restart_array(mddev);
3770                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3771                         wake_up(&mddev->sb_wait);
3772                         err = 0;
3773                 } else {
3774                         mddev->ro = 0;
3775                         set_disk_ro(mddev->gendisk, 0);
3776                         err = do_md_run(mddev);
3777                 }
3778                 break;
3779         case write_pending:
3780         case active_idle:
3781                 /* these cannot be set */
3782                 break;
3783         }
3784         if (err)
3785                 return err;
3786         else {
3787                 if (mddev->hold_active == UNTIL_IOCTL)
3788                         mddev->hold_active = 0;
3789                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3790                 return len;
3791         }
3792 }
3793 static struct md_sysfs_entry md_array_state =
3794 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3795
3796 static ssize_t
3797 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3798         return sprintf(page, "%d\n",
3799                        atomic_read(&mddev->max_corr_read_errors));
3800 }
3801
3802 static ssize_t
3803 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3804 {
3805         char *e;
3806         unsigned long n = simple_strtoul(buf, &e, 10);
3807
3808         if (*buf && (*e == 0 || *e == '\n')) {
3809                 atomic_set(&mddev->max_corr_read_errors, n);
3810                 return len;
3811         }
3812         return -EINVAL;
3813 }
3814
3815 static struct md_sysfs_entry max_corr_read_errors =
3816 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3817         max_corrected_read_errors_store);
3818
3819 static ssize_t
3820 null_show(struct mddev *mddev, char *page)
3821 {
3822         return -EINVAL;
3823 }
3824
3825 static ssize_t
3826 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3827 {
3828         /* buf must be %d:%d\n? giving major and minor numbers */
3829         /* The new device is added to the array.
3830          * If the array has a persistent superblock, we read the
3831          * superblock to initialise info and check validity.
3832          * Otherwise, only checking done is that in bind_rdev_to_array,
3833          * which mainly checks size.
3834          */
3835         char *e;
3836         int major = simple_strtoul(buf, &e, 10);
3837         int minor;
3838         dev_t dev;
3839         struct md_rdev *rdev;
3840         int err;
3841
3842         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3843                 return -EINVAL;
3844         minor = simple_strtoul(e+1, &e, 10);
3845         if (*e && *e != '\n')
3846                 return -EINVAL;
3847         dev = MKDEV(major, minor);
3848         if (major != MAJOR(dev) ||
3849             minor != MINOR(dev))
3850                 return -EOVERFLOW;
3851
3852
3853         if (mddev->persistent) {
3854                 rdev = md_import_device(dev, mddev->major_version,
3855                                         mddev->minor_version);
3856                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3857                         struct md_rdev *rdev0
3858                                 = list_entry(mddev->disks.next,
3859                                              struct md_rdev, same_set);
3860                         err = super_types[mddev->major_version]
3861                                 .load_super(rdev, rdev0, mddev->minor_version);
3862                         if (err < 0)
3863                                 goto out;
3864                 }
3865         } else if (mddev->external)
3866                 rdev = md_import_device(dev, -2, -1);
3867         else
3868                 rdev = md_import_device(dev, -1, -1);
3869
3870         if (IS_ERR(rdev))
3871                 return PTR_ERR(rdev);
3872         err = bind_rdev_to_array(rdev, mddev);
3873  out:
3874         if (err)
3875                 export_rdev(rdev);
3876         return err ? err : len;
3877 }
3878
3879 static struct md_sysfs_entry md_new_device =
3880 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3881
3882 static ssize_t
3883 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885         char *end;
3886         unsigned long chunk, end_chunk;
3887
3888         if (!mddev->bitmap)
3889                 goto out;
3890         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3891         while (*buf) {
3892                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3893                 if (buf == end) break;
3894                 if (*end == '-') { /* range */
3895                         buf = end + 1;
3896                         end_chunk = simple_strtoul(buf, &end, 0);
3897                         if (buf == end) break;
3898                 }
3899                 if (*end && !isspace(*end)) break;
3900                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3901                 buf = skip_spaces(end);
3902         }
3903         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3904 out:
3905         return len;
3906 }
3907
3908 static struct md_sysfs_entry md_bitmap =
3909 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3910
3911 static ssize_t
3912 size_show(struct mddev *mddev, char *page)
3913 {
3914         return sprintf(page, "%llu\n",
3915                 (unsigned long long)mddev->dev_sectors / 2);
3916 }
3917
3918 static int update_size(struct mddev *mddev, sector_t num_sectors);
3919
3920 static ssize_t
3921 size_store(struct mddev *mddev, const char *buf, size_t len)
3922 {
3923         /* If array is inactive, we can reduce the component size, but
3924          * not increase it (except from 0).
3925          * If array is active, we can try an on-line resize
3926          */
3927         sector_t sectors;
3928         int err = strict_blocks_to_sectors(buf, &sectors);
3929
3930         if (err < 0)
3931                 return err;
3932         if (mddev->pers) {
3933                 err = update_size(mddev, sectors);
3934                 md_update_sb(mddev, 1);
3935         } else {
3936                 if (mddev->dev_sectors == 0 ||
3937                     mddev->dev_sectors > sectors)
3938                         mddev->dev_sectors = sectors;
3939                 else
3940                         err = -ENOSPC;
3941         }
3942         return err ? err : len;
3943 }
3944
3945 static struct md_sysfs_entry md_size =
3946 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3947
3948
3949 /* Metdata version.
3950  * This is one of
3951  *   'none' for arrays with no metadata (good luck...)
3952  *   'external' for arrays with externally managed metadata,
3953  * or N.M for internally known formats
3954  */
3955 static ssize_t
3956 metadata_show(struct mddev *mddev, char *page)
3957 {
3958         if (mddev->persistent)
3959                 return sprintf(page, "%d.%d\n",
3960                                mddev->major_version, mddev->minor_version);
3961         else if (mddev->external)
3962                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3963         else
3964                 return sprintf(page, "none\n");
3965 }
3966
3967 static ssize_t
3968 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3969 {
3970         int major, minor;
3971         char *e;
3972         /* Changing the details of 'external' metadata is
3973          * always permitted.  Otherwise there must be
3974          * no devices attached to the array.
3975          */
3976         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3977                 ;
3978         else if (!list_empty(&mddev->disks))
3979                 return -EBUSY;
3980
3981         if (cmd_match(buf, "none")) {
3982                 mddev->persistent = 0;
3983                 mddev->external = 0;
3984                 mddev->major_version = 0;
3985                 mddev->minor_version = 90;
3986                 return len;
3987         }
3988         if (strncmp(buf, "external:", 9) == 0) {
3989                 size_t namelen = len-9;
3990                 if (namelen >= sizeof(mddev->metadata_type))
3991                         namelen = sizeof(mddev->metadata_type)-1;
3992                 strncpy(mddev->metadata_type, buf+9, namelen);
3993                 mddev->metadata_type[namelen] = 0;
3994                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3995                         mddev->metadata_type[--namelen] = 0;
3996                 mddev->persistent = 0;
3997                 mddev->external = 1;
3998                 mddev->major_version = 0;
3999                 mddev->minor_version = 90;
4000                 return len;
4001         }
4002         major = simple_strtoul(buf, &e, 10);
4003         if (e==buf || *e != '.')
4004                 return -EINVAL;
4005         buf = e+1;
4006         minor = simple_strtoul(buf, &e, 10);
4007         if (e==buf || (*e && *e != '\n') )
4008                 return -EINVAL;
4009         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4010                 return -ENOENT;
4011         mddev->major_version = major;
4012         mddev->minor_version = minor;
4013         mddev->persistent = 1;
4014         mddev->external = 0;
4015         return len;
4016 }
4017
4018 static struct md_sysfs_entry md_metadata =
4019 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4020
4021 static ssize_t
4022 action_show(struct mddev *mddev, char *page)
4023 {
4024         char *type = "idle";
4025         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4026                 type = "frozen";
4027         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4028             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4029                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4030                         type = "reshape";
4031                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4032                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4033                                 type = "resync";
4034                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4035                                 type = "check";
4036                         else
4037                                 type = "repair";
4038                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4039                         type = "recover";
4040         }
4041         return sprintf(page, "%s\n", type);
4042 }
4043
4044 static void reap_sync_thread(struct mddev *mddev);
4045
4046 static ssize_t
4047 action_store(struct mddev *mddev, const char *page, size_t len)
4048 {
4049         if (!mddev->pers || !mddev->pers->sync_request)
4050                 return -EINVAL;
4051
4052         if (cmd_match(page, "frozen"))
4053                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4054         else
4055                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4056
4057         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4058                 if (mddev->sync_thread) {
4059                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4060                         reap_sync_thread(mddev);
4061                 }
4062         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4063                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4064                 return -EBUSY;
4065         else if (cmd_match(page, "resync"))
4066                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4067         else if (cmd_match(page, "recover")) {
4068                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4069                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4070         } else if (cmd_match(page, "reshape")) {
4071                 int err;
4072                 if (mddev->pers->start_reshape == NULL)
4073                         return -EINVAL;
4074                 err = mddev->pers->start_reshape(mddev);
4075                 if (err)
4076                         return err;
4077                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4078         } else {
4079                 if (cmd_match(page, "check"))
4080                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4081                 else if (!cmd_match(page, "repair"))
4082                         return -EINVAL;
4083                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4084                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4085         }
4086         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4087         md_wakeup_thread(mddev->thread);
4088         sysfs_notify_dirent_safe(mddev->sysfs_action);
4089         return len;
4090 }
4091
4092 static ssize_t
4093 mismatch_cnt_show(struct mddev *mddev, char *page)
4094 {
4095         return sprintf(page, "%llu\n",
4096                        (unsigned long long) mddev->resync_mismatches);
4097 }
4098
4099 static struct md_sysfs_entry md_scan_mode =
4100 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4101
4102
4103 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4104
4105 static ssize_t
4106 sync_min_show(struct mddev *mddev, char *page)
4107 {
4108         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4109                        mddev->sync_speed_min ? "local": "system");
4110 }
4111
4112 static ssize_t
4113 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4114 {
4115         int min;
4116         char *e;
4117         if (strncmp(buf, "system", 6)==0) {
4118                 mddev->sync_speed_min = 0;
4119                 return len;
4120         }
4121         min = simple_strtoul(buf, &e, 10);
4122         if (buf == e || (*e && *e != '\n') || min <= 0)
4123                 return -EINVAL;
4124         mddev->sync_speed_min = min;
4125         return len;
4126 }
4127
4128 static struct md_sysfs_entry md_sync_min =
4129 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4130
4131 static ssize_t
4132 sync_max_show(struct mddev *mddev, char *page)
4133 {
4134         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4135                        mddev->sync_speed_max ? "local": "system");
4136 }
4137
4138 static ssize_t
4139 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4140 {
4141         int max;
4142         char *e;
4143         if (strncmp(buf, "system", 6)==0) {
4144                 mddev->sync_speed_max = 0;
4145                 return len;
4146         }
4147         max = simple_strtoul(buf, &e, 10);
4148         if (buf == e || (*e && *e != '\n') || max <= 0)
4149                 return -EINVAL;
4150         mddev->sync_speed_max = max;
4151         return len;
4152 }
4153
4154 static struct md_sysfs_entry md_sync_max =
4155 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4156
4157 static ssize_t
4158 degraded_show(struct mddev *mddev, char *page)
4159 {
4160         return sprintf(page, "%d\n", mddev->degraded);
4161 }
4162 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4163
4164 static ssize_t
4165 sync_force_parallel_show(struct mddev *mddev, char *page)
4166 {
4167         return sprintf(page, "%d\n", mddev->parallel_resync);
4168 }
4169
4170 static ssize_t
4171 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4172 {
4173         long n;
4174
4175         if (strict_strtol(buf, 10, &n))
4176                 return -EINVAL;
4177
4178         if (n != 0 && n != 1)
4179                 return -EINVAL;
4180
4181         mddev->parallel_resync = n;
4182
4183         if (mddev->sync_thread)
4184                 wake_up(&resync_wait);
4185
4186         return len;
4187 }
4188
4189 /* force parallel resync, even with shared block devices */
4190 static struct md_sysfs_entry md_sync_force_parallel =
4191 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4192        sync_force_parallel_show, sync_force_parallel_store);
4193
4194 static ssize_t
4195 sync_speed_show(struct mddev *mddev, char *page)
4196 {
4197         unsigned long resync, dt, db;
4198         if (mddev->curr_resync == 0)
4199                 return sprintf(page, "none\n");
4200         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4201         dt = (jiffies - mddev->resync_mark) / HZ;
4202         if (!dt) dt++;
4203         db = resync - mddev->resync_mark_cnt;
4204         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4205 }
4206
4207 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4208
4209 static ssize_t
4210 sync_completed_show(struct mddev *mddev, char *page)
4211 {
4212         unsigned long long max_sectors, resync;
4213
4214         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4215                 return sprintf(page, "none\n");
4216
4217         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4218                 max_sectors = mddev->resync_max_sectors;
4219         else
4220                 max_sectors = mddev->dev_sectors;
4221
4222         resync = mddev->curr_resync_completed;
4223         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4224 }
4225
4226 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4227
4228 static ssize_t
4229 min_sync_show(struct mddev *mddev, char *page)
4230 {
4231         return sprintf(page, "%llu\n",
4232                        (unsigned long long)mddev->resync_min);
4233 }
4234 static ssize_t
4235 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4236 {
4237         unsigned long long min;
4238         if (strict_strtoull(buf, 10, &min))
4239                 return -EINVAL;
4240         if (min > mddev->resync_max)
4241                 return -EINVAL;
4242         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4243                 return -EBUSY;
4244
4245         /* Must be a multiple of chunk_size */
4246         if (mddev->chunk_sectors) {
4247                 sector_t temp = min;
4248                 if (sector_div(temp, mddev->chunk_sectors))
4249                         return -EINVAL;
4250         }
4251         mddev->resync_min = min;
4252
4253         return len;
4254 }
4255
4256 static struct md_sysfs_entry md_min_sync =
4257 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4258
4259 static ssize_t
4260 max_sync_show(struct mddev *mddev, char *page)
4261 {
4262         if (mddev->resync_max == MaxSector)
4263                 return sprintf(page, "max\n");
4264         else
4265                 return sprintf(page, "%llu\n",
4266                                (unsigned long long)mddev->resync_max);
4267 }
4268 static ssize_t
4269 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4270 {
4271         if (strncmp(buf, "max", 3) == 0)
4272                 mddev->resync_max = MaxSector;
4273         else {
4274                 unsigned long long max;
4275                 if (strict_strtoull(buf, 10, &max))
4276                         return -EINVAL;
4277                 if (max < mddev->resync_min)
4278                         return -EINVAL;
4279                 if (max < mddev->resync_max &&
4280                     mddev->ro == 0 &&
4281                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4282                         return -EBUSY;
4283
4284                 /* Must be a multiple of chunk_size */
4285                 if (mddev->chunk_sectors) {
4286                         sector_t temp = max;
4287                         if (sector_div(temp, mddev->chunk_sectors))
4288                                 return -EINVAL;
4289                 }
4290                 mddev->resync_max = max;
4291         }
4292         wake_up(&mddev->recovery_wait);
4293         return len;
4294 }
4295
4296 static struct md_sysfs_entry md_max_sync =
4297 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4298
4299 static ssize_t
4300 suspend_lo_show(struct mddev *mddev, char *page)
4301 {
4302         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4303 }
4304
4305 static ssize_t
4306 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4307 {
4308         char *e;
4309         unsigned long long new = simple_strtoull(buf, &e, 10);
4310         unsigned long long old = mddev->suspend_lo;
4311
4312         if (mddev->pers == NULL || 
4313             mddev->pers->quiesce == NULL)
4314                 return -EINVAL;
4315         if (buf == e || (*e && *e != '\n'))
4316                 return -EINVAL;
4317
4318         mddev->suspend_lo = new;
4319         if (new >= old)
4320                 /* Shrinking suspended region */
4321                 mddev->pers->quiesce(mddev, 2);
4322         else {
4323                 /* Expanding suspended region - need to wait */
4324                 mddev->pers->quiesce(mddev, 1);
4325                 mddev->pers->quiesce(mddev, 0);
4326         }
4327         return len;
4328 }
4329 static struct md_sysfs_entry md_suspend_lo =
4330 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4331
4332
4333 static ssize_t
4334 suspend_hi_show(struct mddev *mddev, char *page)
4335 {
4336         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4337 }
4338
4339 static ssize_t
4340 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4341 {
4342         char *e;
4343         unsigned long long new = simple_strtoull(buf, &e, 10);
4344         unsigned long long old = mddev->suspend_hi;
4345
4346         if (mddev->pers == NULL ||
4347             mddev->pers->quiesce == NULL)
4348                 return -EINVAL;
4349         if (buf == e || (*e && *e != '\n'))
4350                 return -EINVAL;
4351
4352         mddev->suspend_hi = new;
4353         if (new <= old)
4354                 /* Shrinking suspended region */
4355                 mddev->pers->quiesce(mddev, 2);
4356         else {
4357                 /* Expanding suspended region - need to wait */
4358                 mddev->pers->quiesce(mddev, 1);
4359                 mddev->pers->quiesce(mddev, 0);
4360         }
4361         return len;
4362 }
4363 static struct md_sysfs_entry md_suspend_hi =
4364 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4365
4366 static ssize_t
4367 reshape_position_show(struct mddev *mddev, char *page)
4368 {
4369         if (mddev->reshape_position != MaxSector)
4370                 return sprintf(page, "%llu\n",
4371                                (unsigned long long)mddev->reshape_position);
4372         strcpy(page, "none\n");
4373         return 5;
4374 }
4375
4376 static ssize_t
4377 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4378 {
4379         char *e;
4380         unsigned long long new = simple_strtoull(buf, &e, 10);
4381         if (mddev->pers)
4382                 return -EBUSY;
4383         if (buf == e || (*e && *e != '\n'))
4384                 return -EINVAL;
4385         mddev->reshape_position = new;
4386         mddev->delta_disks = 0;
4387         mddev->new_level = mddev->level;
4388         mddev->new_layout = mddev->layout;
4389         mddev->new_chunk_sectors = mddev->chunk_sectors;
4390         return len;
4391 }
4392
4393 static struct md_sysfs_entry md_reshape_position =
4394 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4395        reshape_position_store);
4396
4397 static ssize_t
4398 array_size_show(struct mddev *mddev, char *page)
4399 {
4400         if (mddev->external_size)
4401                 return sprintf(page, "%llu\n",
4402                                (unsigned long long)mddev->array_sectors/2);
4403         else
4404                 return sprintf(page, "default\n");
4405 }
4406
4407 static ssize_t
4408 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4409 {
4410         sector_t sectors;
4411
4412         if (strncmp(buf, "default", 7) == 0) {
4413                 if (mddev->pers)
4414                         sectors = mddev->pers->size(mddev, 0, 0);
4415                 else
4416                         sectors = mddev->array_sectors;
4417
4418                 mddev->external_size = 0;
4419         } else {
4420                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4421                         return -EINVAL;
4422                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4423                         return -E2BIG;
4424
4425                 mddev->external_size = 1;
4426         }
4427
4428         mddev->array_sectors = sectors;
4429         if (mddev->pers) {
4430                 set_capacity(mddev->gendisk, mddev->array_sectors);
4431                 revalidate_disk(mddev->gendisk);
4432         }
4433         return len;
4434 }
4435
4436 static struct md_sysfs_entry md_array_size =
4437 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4438        array_size_store);
4439
4440 static struct attribute *md_default_attrs[] = {
4441         &md_level.attr,
4442         &md_layout.attr,
4443         &md_raid_disks.attr,
4444         &md_chunk_size.attr,
4445         &md_size.attr,
4446         &md_resync_start.attr,
4447         &md_metadata.attr,
4448         &md_new_device.attr,
4449         &md_safe_delay.attr,
4450         &md_array_state.attr,
4451         &md_reshape_position.attr,
4452         &md_array_size.attr,
4453         &max_corr_read_errors.attr,
4454         NULL,
4455 };
4456
4457 static struct attribute *md_redundancy_attrs[] = {
4458         &md_scan_mode.attr,
4459         &md_mismatches.attr,
4460         &md_sync_min.attr,
4461         &md_sync_max.attr,
4462         &md_sync_speed.attr,
4463         &md_sync_force_parallel.attr,
4464         &md_sync_completed.attr,
4465         &md_min_sync.attr,
4466         &md_max_sync.attr,
4467         &md_suspend_lo.attr,
4468         &md_suspend_hi.attr,
4469         &md_bitmap.attr,
4470         &md_degraded.attr,
4471         NULL,
4472 };
4473 static struct attribute_group md_redundancy_group = {
4474         .name = NULL,
4475         .attrs = md_redundancy_attrs,
4476 };
4477
4478
4479 static ssize_t
4480 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4481 {
4482         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4483         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4484         ssize_t rv;
4485
4486         if (!entry->show)
4487                 return -EIO;
4488         spin_lock(&all_mddevs_lock);
4489         if (list_empty(&mddev->all_mddevs)) {
4490                 spin_unlock(&all_mddevs_lock);
4491                 return -EBUSY;
4492         }
4493         mddev_get(mddev);
4494         spin_unlock(&all_mddevs_lock);
4495
4496         rv = mddev_lock(mddev);
4497         if (!rv) {
4498                 rv = entry->show(mddev, page);
4499                 mddev_unlock(mddev);
4500         }
4501         mddev_put(mddev);
4502         return rv;
4503 }
4504
4505 static ssize_t
4506 md_attr_store(struct kobject *kobj, struct attribute *attr,
4507               const char *page, size_t length)
4508 {
4509         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4510         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4511         ssize_t rv;
4512
4513         if (!entry->store)
4514                 return -EIO;
4515         if (!capable(CAP_SYS_ADMIN))
4516                 return -EACCES;
4517         spin_lock(&all_mddevs_lock);
4518         if (list_empty(&mddev->all_mddevs)) {
4519                 spin_unlock(&all_mddevs_lock);
4520                 return -EBUSY;
4521         }
4522         mddev_get(mddev);
4523         spin_unlock(&all_mddevs_lock);
4524         rv = mddev_lock(mddev);
4525         if (!rv) {
4526                 rv = entry->store(mddev, page, length);
4527                 mddev_unlock(mddev);
4528         }
4529         mddev_put(mddev);
4530         return rv;
4531 }
4532
4533 static void md_free(struct kobject *ko)
4534 {
4535         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4536
4537         if (mddev->sysfs_state)
4538                 sysfs_put(mddev->sysfs_state);
4539
4540         if (mddev->gendisk) {
4541                 del_gendisk(mddev->gendisk);
4542                 put_disk(mddev->gendisk);
4543         }
4544         if (mddev->queue)
4545                 blk_cleanup_queue(mddev->queue);
4546
4547         kfree(mddev);
4548 }
4549
4550 static const struct sysfs_ops md_sysfs_ops = {
4551         .show   = md_attr_show,
4552         .store  = md_attr_store,
4553 };
4554 static struct kobj_type md_ktype = {
4555         .release        = md_free,
4556         .sysfs_ops      = &md_sysfs_ops,
4557         .default_attrs  = md_default_attrs,
4558 };
4559
4560 int mdp_major = 0;
4561
4562 static void mddev_delayed_delete(struct work_struct *ws)
4563 {
4564         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4565
4566         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4567         kobject_del(&mddev->kobj);
4568         kobject_put(&mddev->kobj);
4569 }
4570
4571 static int md_alloc(dev_t dev, char *name)
4572 {
4573         static DEFINE_MUTEX(disks_mutex);
4574         struct mddev *mddev = mddev_find(dev);
4575         struct gendisk *disk;
4576         int partitioned;
4577         int shift;
4578         int unit;
4579         int error;
4580
4581         if (!mddev)
4582                 return -ENODEV;
4583
4584         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4585         shift = partitioned ? MdpMinorShift : 0;
4586         unit = MINOR(mddev->unit) >> shift;
4587
4588         /* wait for any previous instance of this device to be
4589          * completely removed (mddev_delayed_delete).
4590          */
4591         flush_workqueue(md_misc_wq);
4592
4593         mutex_lock(&disks_mutex);
4594         error = -EEXIST;
4595         if (mddev->gendisk)
4596                 goto abort;
4597
4598         if (name) {
4599                 /* Need to ensure that 'name' is not a duplicate.
4600                  */
4601                 struct mddev *mddev2;
4602                 spin_lock(&all_mddevs_lock);
4603
4604                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4605                         if (mddev2->gendisk &&
4606                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4607                                 spin_unlock(&all_mddevs_lock);
4608                                 goto abort;
4609                         }
4610                 spin_unlock(&all_mddevs_lock);
4611         }
4612
4613         error = -ENOMEM;
4614         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4615         if (!mddev->queue)
4616                 goto abort;
4617         mddev->queue->queuedata = mddev;
4618
4619         blk_queue_make_request(mddev->queue, md_make_request);
4620
4621         disk = alloc_disk(1 << shift);
4622         if (!disk) {
4623                 blk_cleanup_queue(mddev->queue);
4624                 mddev->queue = NULL;
4625                 goto abort;
4626         }
4627         disk->major = MAJOR(mddev->unit);
4628         disk->first_minor = unit << shift;
4629         if (name)
4630                 strcpy(disk->disk_name, name);
4631         else if (partitioned)
4632                 sprintf(disk->disk_name, "md_d%d", unit);
4633         else
4634                 sprintf(disk->disk_name, "md%d", unit);
4635         disk->fops = &md_fops;
4636         disk->private_data = mddev;
4637         disk->queue = mddev->queue;
4638         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4639         /* Allow extended partitions.  This makes the
4640          * 'mdp' device redundant, but we can't really
4641          * remove it now.
4642          */
4643         disk->flags |= GENHD_FL_EXT_DEVT;
4644         mddev->gendisk = disk;
4645         /* As soon as we call add_disk(), another thread could get
4646          * through to md_open, so make sure it doesn't get too far
4647          */
4648         mutex_lock(&mddev->open_mutex);
4649         add_disk(disk);
4650
4651         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4652                                      &disk_to_dev(disk)->kobj, "%s", "md");
4653         if (error) {
4654                 /* This isn't possible, but as kobject_init_and_add is marked
4655                  * __must_check, we must do something with the result
4656                  */
4657                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4658                        disk->disk_name);
4659                 error = 0;
4660         }
4661         if (mddev->kobj.sd &&
4662             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4663                 printk(KERN_DEBUG "pointless warning\n");
4664         mutex_unlock(&mddev->open_mutex);
4665  abort:
4666         mutex_unlock(&disks_mutex);
4667         if (!error && mddev->kobj.sd) {
4668                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4669                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4670         }
4671         mddev_put(mddev);
4672         return error;
4673 }
4674
4675 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4676 {
4677         md_alloc(dev, NULL);
4678         return NULL;
4679 }
4680
4681 static int add_named_array(const char *val, struct kernel_param *kp)
4682 {
4683         /* val must be "md_*" where * is not all digits.
4684          * We allocate an array with a large free minor number, and
4685          * set the name to val.  val must not already be an active name.
4686          */
4687         int len = strlen(val);
4688         char buf[DISK_NAME_LEN];
4689
4690         while (len && val[len-1] == '\n')
4691                 len--;
4692         if (len >= DISK_NAME_LEN)
4693                 return -E2BIG;
4694         strlcpy(buf, val, len+1);
4695         if (strncmp(buf, "md_", 3) != 0)
4696                 return -EINVAL;
4697         return md_alloc(0, buf);
4698 }
4699
4700 static void md_safemode_timeout(unsigned long data)
4701 {
4702         struct mddev *mddev = (struct mddev *) data;
4703
4704         if (!atomic_read(&mddev->writes_pending)) {
4705                 mddev->safemode = 1;
4706                 if (mddev->external)
4707                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4708         }
4709         md_wakeup_thread(mddev->thread);
4710 }
4711
4712 static int start_dirty_degraded;
4713
4714 int md_run(struct mddev *mddev)
4715 {
4716         int err;
4717         struct md_rdev *rdev;
4718         struct md_personality *pers;
4719
4720         if (list_empty(&mddev->disks))
4721                 /* cannot run an array with no devices.. */
4722                 return -EINVAL;
4723
4724         if (mddev->pers)
4725                 return -EBUSY;
4726         /* Cannot run until previous stop completes properly */
4727         if (mddev->sysfs_active)
4728                 return -EBUSY;
4729
4730         /*
4731          * Analyze all RAID superblock(s)
4732          */
4733         if (!mddev->raid_disks) {
4734                 if (!mddev->persistent)
4735                         return -EINVAL;
4736                 analyze_sbs(mddev);
4737         }
4738
4739         if (mddev->level != LEVEL_NONE)
4740                 request_module("md-level-%d", mddev->level);
4741         else if (mddev->clevel[0])
4742                 request_module("md-%s", mddev->clevel);
4743
4744         /*
4745          * Drop all container device buffers, from now on
4746          * the only valid external interface is through the md
4747          * device.
4748          */
4749         list_for_each_entry(rdev, &mddev->disks, same_set) {
4750                 if (test_bit(Faulty, &rdev->flags))
4751                         continue;
4752                 sync_blockdev(rdev->bdev);
4753                 invalidate_bdev(rdev->bdev);
4754
4755                 /* perform some consistency tests on the device.
4756                  * We don't want the data to overlap the metadata,
4757                  * Internal Bitmap issues have been handled elsewhere.
4758                  */
4759                 if (rdev->meta_bdev) {
4760                         /* Nothing to check */;
4761                 } else if (rdev->data_offset < rdev->sb_start) {
4762                         if (mddev->dev_sectors &&
4763                             rdev->data_offset + mddev->dev_sectors
4764                             > rdev->sb_start) {
4765                                 printk("md: %s: data overlaps metadata\n",
4766                                        mdname(mddev));
4767                                 return -EINVAL;
4768                         }
4769                 } else {
4770                         if (rdev->sb_start + rdev->sb_size/512
4771                             > rdev->data_offset) {
4772                                 printk("md: %s: metadata overlaps data\n",
4773                                        mdname(mddev));
4774                                 return -EINVAL;
4775                         }
4776                 }
4777                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4778         }
4779
4780         if (mddev->bio_set == NULL)
4781                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4782                                                sizeof(struct mddev *));
4783
4784         spin_lock(&pers_lock);
4785         pers = find_pers(mddev->level, mddev->clevel);
4786         if (!pers || !try_module_get(pers->owner)) {
4787                 spin_unlock(&pers_lock);
4788                 if (mddev->level != LEVEL_NONE)
4789                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4790                                mddev->level);
4791                 else
4792                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4793                                mddev->clevel);
4794                 return -EINVAL;
4795         }
4796         mddev->pers = pers;
4797         spin_unlock(&pers_lock);
4798         if (mddev->level != pers->level) {
4799                 mddev->level = pers->level;
4800                 mddev->new_level = pers->level;
4801         }
4802         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4803
4804         if (mddev->reshape_position != MaxSector &&
4805             pers->start_reshape == NULL) {
4806                 /* This personality cannot handle reshaping... */
4807                 mddev->pers = NULL;
4808                 module_put(pers->owner);
4809                 return -EINVAL;
4810         }
4811
4812         if (pers->sync_request) {
4813                 /* Warn if this is a potentially silly
4814                  * configuration.
4815                  */
4816                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4817                 struct md_rdev *rdev2;
4818                 int warned = 0;
4819
4820                 list_for_each_entry(rdev, &mddev->disks, same_set)
4821                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4822                                 if (rdev < rdev2 &&
4823                                     rdev->bdev->bd_contains ==
4824                                     rdev2->bdev->bd_contains) {
4825                                         printk(KERN_WARNING
4826                                                "%s: WARNING: %s appears to be"
4827                                                " on the same physical disk as"
4828                                                " %s.\n",
4829                                                mdname(mddev),
4830                                                bdevname(rdev->bdev,b),
4831                                                bdevname(rdev2->bdev,b2));
4832                                         warned = 1;
4833                                 }
4834                         }
4835
4836                 if (warned)
4837                         printk(KERN_WARNING
4838                                "True protection against single-disk"
4839                                " failure might be compromised.\n");
4840         }
4841
4842         mddev->recovery = 0;
4843         /* may be over-ridden by personality */
4844         mddev->resync_max_sectors = mddev->dev_sectors;
4845
4846         mddev->ok_start_degraded = start_dirty_degraded;
4847
4848         if (start_readonly && mddev->ro == 0)
4849                 mddev->ro = 2; /* read-only, but switch on first write */
4850
4851         err = mddev->pers->run(mddev);
4852         if (err)
4853                 printk(KERN_ERR "md: pers->run() failed ...\n");
4854         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4855                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4856                           " but 'external_size' not in effect?\n", __func__);
4857                 printk(KERN_ERR
4858                        "md: invalid array_size %llu > default size %llu\n",
4859                        (unsigned long long)mddev->array_sectors / 2,
4860                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4861                 err = -EINVAL;
4862                 mddev->pers->stop(mddev);
4863         }
4864         if (err == 0 && mddev->pers->sync_request) {
4865                 err = bitmap_create(mddev);
4866                 if (err) {
4867                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4868                                mdname(mddev), err);
4869                         mddev->pers->stop(mddev);
4870                 }
4871         }
4872         if (err) {
4873                 module_put(mddev->pers->owner);
4874                 mddev->pers = NULL;
4875                 bitmap_destroy(mddev);
4876                 return err;
4877         }
4878         if (mddev->pers->sync_request) {
4879                 if (mddev->kobj.sd &&
4880                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4881                         printk(KERN_WARNING
4882                                "md: cannot register extra attributes for %s\n",
4883                                mdname(mddev));
4884                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4885         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4886                 mddev->ro = 0;
4887
4888         atomic_set(&mddev->writes_pending,0);
4889         atomic_set(&mddev->max_corr_read_errors,
4890                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4891         mddev->safemode = 0;
4892         mddev->safemode_timer.function = md_safemode_timeout;
4893         mddev->safemode_timer.data = (unsigned long) mddev;
4894         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4895         mddev->in_sync = 1;
4896         smp_wmb();
4897         mddev->ready = 1;
4898         list_for_each_entry(rdev, &mddev->disks, same_set)
4899                 if (rdev->raid_disk >= 0)
4900                         if (sysfs_link_rdev(mddev, rdev))
4901                                 /* failure here is OK */;
4902         
4903         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4904         
4905         if (mddev->flags)
4906                 md_update_sb(mddev, 0);
4907
4908         md_new_event(mddev);
4909         sysfs_notify_dirent_safe(mddev->sysfs_state);
4910         sysfs_notify_dirent_safe(mddev->sysfs_action);
4911         sysfs_notify(&mddev->kobj, NULL, "degraded");
4912         return 0;
4913 }
4914 EXPORT_SYMBOL_GPL(md_run);
4915
4916 static int do_md_run(struct mddev *mddev)
4917 {
4918         int err;
4919
4920         err = md_run(mddev);
4921         if (err)
4922                 goto out;
4923         err = bitmap_load(mddev);
4924         if (err) {
4925                 bitmap_destroy(mddev);
4926                 goto out;
4927         }
4928
4929         md_wakeup_thread(mddev->thread);
4930         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4931
4932         set_capacity(mddev->gendisk, mddev->array_sectors);
4933         revalidate_disk(mddev->gendisk);
4934         mddev->changed = 1;
4935         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4936 out:
4937         return err;
4938 }
4939
4940 static int restart_array(struct mddev *mddev)
4941 {
4942         struct gendisk *disk = mddev->gendisk;
4943
4944         /* Complain if it has no devices */
4945         if (list_empty(&mddev->disks))
4946                 return -ENXIO;
4947         if (!mddev->pers)
4948                 return -EINVAL;
4949         if (!mddev->ro)
4950                 return -EBUSY;
4951         mddev->safemode = 0;
4952         mddev->ro = 0;
4953         set_disk_ro(disk, 0);
4954         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4955                 mdname(mddev));
4956         /* Kick recovery or resync if necessary */
4957         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4958         md_wakeup_thread(mddev->thread);
4959         md_wakeup_thread(mddev->sync_thread);
4960         sysfs_notify_dirent_safe(mddev->sysfs_state);
4961         return 0;
4962 }
4963
4964 /* similar to deny_write_access, but accounts for our holding a reference
4965  * to the file ourselves */
4966 static int deny_bitmap_write_access(struct file * file)
4967 {
4968         struct inode *inode = file->f_mapping->host;
4969
4970         spin_lock(&inode->i_lock);
4971         if (atomic_read(&inode->i_writecount) > 1) {
4972                 spin_unlock(&inode->i_lock);
4973                 return -ETXTBSY;
4974         }
4975         atomic_set(&inode->i_writecount, -1);
4976         spin_unlock(&inode->i_lock);
4977
4978         return 0;
4979 }
4980
4981 void restore_bitmap_write_access(struct file *file)
4982 {
4983         struct inode *inode = file->f_mapping->host;
4984
4985         spin_lock(&inode->i_lock);
4986         atomic_set(&inode->i_writecount, 1);
4987         spin_unlock(&inode->i_lock);
4988 }
4989
4990 static void md_clean(struct mddev *mddev)
4991 {
4992         mddev->array_sectors = 0;
4993         mddev->external_size = 0;
4994         mddev->dev_sectors = 0;
4995         mddev->raid_disks = 0;
4996         mddev->recovery_cp = 0;
4997         mddev->resync_min = 0;
4998         mddev->resync_max = MaxSector;
4999         mddev->reshape_position = MaxSector;
5000         mddev->external = 0;
5001         mddev->persistent = 0;
5002         mddev->level = LEVEL_NONE;
5003         mddev->clevel[0] = 0;
5004         mddev->flags = 0;
5005         mddev->ro = 0;
5006         mddev->metadata_type[0] = 0;
5007         mddev->chunk_sectors = 0;
5008         mddev->ctime = mddev->utime = 0;
5009         mddev->layout = 0;
5010         mddev->max_disks = 0;
5011         mddev->events = 0;
5012         mddev->can_decrease_events = 0;
5013         mddev->delta_disks = 0;
5014         mddev->new_level = LEVEL_NONE;
5015         mddev->new_layout = 0;
5016         mddev->new_chunk_sectors = 0;
5017         mddev->curr_resync = 0;
5018         mddev->resync_mismatches = 0;
5019         mddev->suspend_lo = mddev->suspend_hi = 0;
5020         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5021         mddev->recovery = 0;
5022         mddev->in_sync = 0;
5023         mddev->changed = 0;
5024         mddev->degraded = 0;
5025         mddev->safemode = 0;
5026         mddev->bitmap_info.offset = 0;
5027         mddev->bitmap_info.default_offset = 0;
5028         mddev->bitmap_info.chunksize = 0;
5029         mddev->bitmap_info.daemon_sleep = 0;
5030         mddev->bitmap_info.max_write_behind = 0;
5031 }
5032
5033 static void __md_stop_writes(struct mddev *mddev)
5034 {
5035         if (mddev->sync_thread) {
5036                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5037                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5038                 reap_sync_thread(mddev);
5039         }
5040
5041         del_timer_sync(&mddev->safemode_timer);
5042
5043         bitmap_flush(mddev);
5044         md_super_wait(mddev);
5045
5046         if (!mddev->in_sync || mddev->flags) {
5047                 /* mark array as shutdown cleanly */
5048                 mddev->in_sync = 1;
5049                 md_update_sb(mddev, 1);
5050         }
5051 }
5052
5053 void md_stop_writes(struct mddev *mddev)
5054 {
5055         mddev_lock(mddev);
5056         __md_stop_writes(mddev);
5057         mddev_unlock(mddev);
5058 }
5059 EXPORT_SYMBOL_GPL(md_stop_writes);
5060
5061 void md_stop(struct mddev *mddev)
5062 {
5063         mddev->ready = 0;
5064         mddev->pers->stop(mddev);
5065         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5066                 mddev->to_remove = &md_redundancy_group;
5067         module_put(mddev->pers->owner);
5068         mddev->pers = NULL;
5069         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5070 }
5071 EXPORT_SYMBOL_GPL(md_stop);
5072
5073 static int md_set_readonly(struct mddev *mddev, int is_open)
5074 {
5075         int err = 0;
5076         mutex_lock(&mddev->open_mutex);
5077         if (atomic_read(&mddev->openers) > is_open) {
5078                 printk("md: %s still in use.\n",mdname(mddev));
5079                 err = -EBUSY;
5080                 goto out;
5081         }
5082         if (mddev->pers) {
5083                 __md_stop_writes(mddev);
5084
5085                 err  = -ENXIO;
5086                 if (mddev->ro==1)
5087                         goto out;
5088                 mddev->ro = 1;
5089                 set_disk_ro(mddev->gendisk, 1);
5090                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5091                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5092                 err = 0;        
5093         }
5094 out:
5095         mutex_unlock(&mddev->open_mutex);
5096         return err;
5097 }
5098
5099 /* mode:
5100  *   0 - completely stop and dis-assemble array
5101  *   2 - stop but do not disassemble array
5102  */
5103 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5104 {
5105         struct gendisk *disk = mddev->gendisk;
5106         struct md_rdev *rdev;
5107
5108         mutex_lock(&mddev->open_mutex);
5109         if (atomic_read(&mddev->openers) > is_open ||
5110             mddev->sysfs_active) {
5111                 printk("md: %s still in use.\n",mdname(mddev));
5112                 mutex_unlock(&mddev->open_mutex);
5113                 return -EBUSY;
5114         }
5115
5116         if (mddev->pers) {
5117                 if (mddev->ro)
5118                         set_disk_ro(disk, 0);
5119
5120                 __md_stop_writes(mddev);
5121                 md_stop(mddev);
5122                 mddev->queue->merge_bvec_fn = NULL;
5123                 mddev->queue->backing_dev_info.congested_fn = NULL;
5124
5125                 /* tell userspace to handle 'inactive' */
5126                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5127
5128                 list_for_each_entry(rdev, &mddev->disks, same_set)
5129                         if (rdev->raid_disk >= 0)
5130                                 sysfs_unlink_rdev(mddev, rdev);
5131
5132                 set_capacity(disk, 0);
5133                 mutex_unlock(&mddev->open_mutex);
5134                 mddev->changed = 1;
5135                 revalidate_disk(disk);
5136
5137                 if (mddev->ro)
5138                         mddev->ro = 0;
5139         } else
5140                 mutex_unlock(&mddev->open_mutex);
5141         /*
5142          * Free resources if final stop
5143          */
5144         if (mode == 0) {
5145                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5146
5147                 bitmap_destroy(mddev);
5148                 if (mddev->bitmap_info.file) {
5149                         restore_bitmap_write_access(mddev->bitmap_info.file);
5150                         fput(mddev->bitmap_info.file);
5151                         mddev->bitmap_info.file = NULL;
5152                 }
5153                 mddev->bitmap_info.offset = 0;
5154
5155                 export_array(mddev);
5156
5157                 md_clean(mddev);
5158                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5159                 if (mddev->hold_active == UNTIL_STOP)
5160                         mddev->hold_active = 0;
5161         }
5162         blk_integrity_unregister(disk);
5163         md_new_event(mddev);
5164         sysfs_notify_dirent_safe(mddev->sysfs_state);
5165         return 0;
5166 }
5167
5168 #ifndef MODULE
5169 static void autorun_array(struct mddev *mddev)
5170 {
5171         struct md_rdev *rdev;
5172         int err;
5173
5174         if (list_empty(&mddev->disks))
5175                 return;
5176
5177         printk(KERN_INFO "md: running: ");
5178
5179         list_for_each_entry(rdev, &mddev->disks, same_set) {
5180                 char b[BDEVNAME_SIZE];
5181                 printk("<%s>", bdevname(rdev->bdev,b));
5182         }
5183         printk("\n");
5184
5185         err = do_md_run(mddev);
5186         if (err) {
5187                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5188                 do_md_stop(mddev, 0, 0);
5189         }
5190 }
5191
5192 /*
5193  * lets try to run arrays based on all disks that have arrived
5194  * until now. (those are in pending_raid_disks)
5195  *
5196  * the method: pick the first pending disk, collect all disks with
5197  * the same UUID, remove all from the pending list and put them into
5198  * the 'same_array' list. Then order this list based on superblock
5199  * update time (freshest comes first), kick out 'old' disks and
5200  * compare superblocks. If everything's fine then run it.
5201  *
5202  * If "unit" is allocated, then bump its reference count
5203  */
5204 static void autorun_devices(int part)
5205 {
5206         struct md_rdev *rdev0, *rdev, *tmp;
5207         struct mddev *mddev;
5208         char b[BDEVNAME_SIZE];
5209
5210         printk(KERN_INFO "md: autorun ...\n");
5211         while (!list_empty(&pending_raid_disks)) {
5212                 int unit;
5213                 dev_t dev;
5214                 LIST_HEAD(candidates);
5215                 rdev0 = list_entry(pending_raid_disks.next,
5216                                          struct md_rdev, same_set);
5217
5218                 printk(KERN_INFO "md: considering %s ...\n",
5219                         bdevname(rdev0->bdev,b));
5220                 INIT_LIST_HEAD(&candidates);
5221                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5222                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5223                                 printk(KERN_INFO "md:  adding %s ...\n",
5224                                         bdevname(rdev->bdev,b));
5225                                 list_move(&rdev->same_set, &candidates);
5226                         }
5227                 /*
5228                  * now we have a set of devices, with all of them having
5229                  * mostly sane superblocks. It's time to allocate the
5230                  * mddev.
5231                  */
5232                 if (part) {
5233                         dev = MKDEV(mdp_major,
5234                                     rdev0->preferred_minor << MdpMinorShift);
5235                         unit = MINOR(dev) >> MdpMinorShift;
5236                 } else {
5237                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5238                         unit = MINOR(dev);
5239                 }
5240                 if (rdev0->preferred_minor != unit) {
5241                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5242                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5243                         break;
5244                 }
5245
5246                 md_probe(dev, NULL, NULL);
5247                 mddev = mddev_find(dev);
5248                 if (!mddev || !mddev->gendisk) {
5249                         if (mddev)
5250                                 mddev_put(mddev);
5251                         printk(KERN_ERR
5252                                 "md: cannot allocate memory for md drive.\n");
5253                         break;
5254                 }
5255                 if (mddev_lock(mddev)) 
5256                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5257                                mdname(mddev));
5258                 else if (mddev->raid_disks || mddev->major_version
5259                          || !list_empty(&mddev->disks)) {
5260                         printk(KERN_WARNING 
5261                                 "md: %s already running, cannot run %s\n",
5262                                 mdname(mddev), bdevname(rdev0->bdev,b));
5263                         mddev_unlock(mddev);
5264                 } else {
5265                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5266                         mddev->persistent = 1;
5267                         rdev_for_each_list(rdev, tmp, &candidates) {
5268                                 list_del_init(&rdev->same_set);
5269                                 if (bind_rdev_to_array(rdev, mddev))
5270                                         export_rdev(rdev);
5271                         }
5272                         autorun_array(mddev);
5273                         mddev_unlock(mddev);
5274                 }
5275                 /* on success, candidates will be empty, on error
5276                  * it won't...
5277                  */
5278                 rdev_for_each_list(rdev, tmp, &candidates) {
5279                         list_del_init(&rdev->same_set);
5280                         export_rdev(rdev);
5281                 }
5282                 mddev_put(mddev);
5283         }
5284         printk(KERN_INFO "md: ... autorun DONE.\n");
5285 }
5286 #endif /* !MODULE */
5287
5288 static int get_version(void __user * arg)
5289 {
5290         mdu_version_t ver;
5291
5292         ver.major = MD_MAJOR_VERSION;
5293         ver.minor = MD_MINOR_VERSION;
5294         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5295
5296         if (copy_to_user(arg, &ver, sizeof(ver)))
5297                 return -EFAULT;
5298
5299         return 0;
5300 }
5301
5302 static int get_array_info(struct mddev * mddev, void __user * arg)
5303 {
5304         mdu_array_info_t info;
5305         int nr,working,insync,failed,spare;
5306         struct md_rdev *rdev;
5307
5308         nr=working=insync=failed=spare=0;
5309         list_for_each_entry(rdev, &mddev->disks, same_set) {
5310                 nr++;
5311                 if (test_bit(Faulty, &rdev->flags))
5312                         failed++;
5313                 else {
5314                         working++;
5315                         if (test_bit(In_sync, &rdev->flags))
5316                                 insync++;       
5317                         else
5318                                 spare++;
5319                 }
5320         }
5321
5322         info.major_version = mddev->major_version;
5323         info.minor_version = mddev->minor_version;
5324         info.patch_version = MD_PATCHLEVEL_VERSION;
5325         info.ctime         = mddev->ctime;
5326         info.level         = mddev->level;
5327         info.size          = mddev->dev_sectors / 2;
5328         if (info.size != mddev->dev_sectors / 2) /* overflow */
5329                 info.size = -1;
5330         info.nr_disks      = nr;
5331         info.raid_disks    = mddev->raid_disks;
5332         info.md_minor      = mddev->md_minor;
5333         info.not_persistent= !mddev->persistent;
5334
5335         info.utime         = mddev->utime;
5336         info.state         = 0;
5337         if (mddev->in_sync)
5338                 info.state = (1<<MD_SB_CLEAN);
5339         if (mddev->bitmap && mddev->bitmap_info.offset)
5340                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5341         info.active_disks  = insync;
5342         info.working_disks = working;
5343         info.failed_disks  = failed;
5344         info.spare_disks   = spare;
5345
5346         info.layout        = mddev->layout;
5347         info.chunk_size    = mddev->chunk_sectors << 9;
5348
5349         if (copy_to_user(arg, &info, sizeof(info)))
5350                 return -EFAULT;
5351
5352         return 0;
5353 }
5354
5355 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5356 {
5357         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5358         char *ptr, *buf = NULL;
5359         int err = -ENOMEM;
5360
5361         if (md_allow_write(mddev))
5362                 file = kmalloc(sizeof(*file), GFP_NOIO);
5363         else
5364                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5365
5366         if (!file)
5367                 goto out;
5368
5369         /* bitmap disabled, zero the first byte and copy out */
5370         if (!mddev->bitmap || !mddev->bitmap->file) {
5371                 file->pathname[0] = '\0';
5372                 goto copy_out;
5373         }
5374
5375         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5376         if (!buf)
5377                 goto out;
5378
5379         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5380         if (IS_ERR(ptr))
5381                 goto out;
5382
5383         strcpy(file->pathname, ptr);
5384
5385 copy_out:
5386         err = 0;
5387         if (copy_to_user(arg, file, sizeof(*file)))
5388                 err = -EFAULT;
5389 out:
5390         kfree(buf);
5391         kfree(file);
5392         return err;
5393 }
5394
5395 static int get_disk_info(struct mddev * mddev, void __user * arg)
5396 {
5397         mdu_disk_info_t info;
5398         struct md_rdev *rdev;
5399
5400         if (copy_from_user(&info, arg, sizeof(info)))
5401                 return -EFAULT;
5402
5403         rdev = find_rdev_nr(mddev, info.number);
5404         if (rdev) {
5405                 info.major = MAJOR(rdev->bdev->bd_dev);
5406                 info.minor = MINOR(rdev->bdev->bd_dev);
5407                 info.raid_disk = rdev->raid_disk;
5408                 info.state = 0;
5409                 if (test_bit(Faulty, &rdev->flags))
5410                         info.state |= (1<<MD_DISK_FAULTY);
5411                 else if (test_bit(In_sync, &rdev->flags)) {
5412                         info.state |= (1<<MD_DISK_ACTIVE);
5413                         info.state |= (1<<MD_DISK_SYNC);
5414                 }
5415                 if (test_bit(WriteMostly, &rdev->flags))
5416                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5417         } else {
5418                 info.major = info.minor = 0;
5419                 info.raid_disk = -1;
5420                 info.state = (1<<MD_DISK_REMOVED);
5421         }
5422
5423         if (copy_to_user(arg, &info, sizeof(info)))
5424                 return -EFAULT;
5425
5426         return 0;
5427 }
5428
5429 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5430 {
5431         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5432         struct md_rdev *rdev;
5433         dev_t dev = MKDEV(info->major,info->minor);
5434
5435         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5436                 return -EOVERFLOW;
5437
5438         if (!mddev->raid_disks) {
5439                 int err;
5440                 /* expecting a device which has a superblock */
5441                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5442                 if (IS_ERR(rdev)) {
5443                         printk(KERN_WARNING 
5444                                 "md: md_import_device returned %ld\n",
5445                                 PTR_ERR(rdev));
5446                         return PTR_ERR(rdev);
5447                 }
5448                 if (!list_empty(&mddev->disks)) {
5449                         struct md_rdev *rdev0
5450                                 = list_entry(mddev->disks.next,
5451                                              struct md_rdev, same_set);
5452                         err = super_types[mddev->major_version]
5453                                 .load_super(rdev, rdev0, mddev->minor_version);
5454                         if (err < 0) {
5455                                 printk(KERN_WARNING 
5456                                         "md: %s has different UUID to %s\n",
5457                                         bdevname(rdev->bdev,b), 
5458                                         bdevname(rdev0->bdev,b2));
5459                                 export_rdev(rdev);
5460                                 return -EINVAL;
5461                         }
5462                 }
5463                 err = bind_rdev_to_array(rdev, mddev);
5464                 if (err)
5465                         export_rdev(rdev);
5466                 return err;
5467         }
5468
5469         /*
5470          * add_new_disk can be used once the array is assembled
5471          * to add "hot spares".  They must already have a superblock
5472          * written
5473          */
5474         if (mddev->pers) {
5475                 int err;
5476                 if (!mddev->pers->hot_add_disk) {
5477                         printk(KERN_WARNING 
5478                                 "%s: personality does not support diskops!\n",
5479                                mdname(mddev));
5480                         return -EINVAL;
5481                 }
5482                 if (mddev->persistent)
5483                         rdev = md_import_device(dev, mddev->major_version,
5484                                                 mddev->minor_version);
5485                 else
5486                         rdev = md_import_device(dev, -1, -1);
5487                 if (IS_ERR(rdev)) {
5488                         printk(KERN_WARNING 
5489                                 "md: md_import_device returned %ld\n",
5490                                 PTR_ERR(rdev));
5491                         return PTR_ERR(rdev);
5492                 }
5493                 /* set saved_raid_disk if appropriate */
5494                 if (!mddev->persistent) {
5495                         if (info->state & (1<<MD_DISK_SYNC)  &&
5496                             info->raid_disk < mddev->raid_disks) {
5497                                 rdev->raid_disk = info->raid_disk;
5498                                 set_bit(In_sync, &rdev->flags);
5499                         } else
5500                                 rdev->raid_disk = -1;
5501                 } else
5502                         super_types[mddev->major_version].
5503                                 validate_super(mddev, rdev);
5504                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5505                     (!test_bit(In_sync, &rdev->flags) ||
5506                      rdev->raid_disk != info->raid_disk)) {
5507                         /* This was a hot-add request, but events doesn't
5508                          * match, so reject it.
5509                          */
5510                         export_rdev(rdev);
5511                         return -EINVAL;
5512                 }
5513
5514                 if (test_bit(In_sync, &rdev->flags))
5515                         rdev->saved_raid_disk = rdev->raid_disk;
5516                 else
5517                         rdev->saved_raid_disk = -1;
5518
5519                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5520                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5521                         set_bit(WriteMostly, &rdev->flags);
5522                 else
5523                         clear_bit(WriteMostly, &rdev->flags);
5524
5525                 rdev->raid_disk = -1;
5526                 err = bind_rdev_to_array(rdev, mddev);
5527                 if (!err && !mddev->pers->hot_remove_disk) {
5528                         /* If there is hot_add_disk but no hot_remove_disk
5529                          * then added disks for geometry changes,
5530                          * and should be added immediately.
5531                          */
5532                         super_types[mddev->major_version].
5533                                 validate_super(mddev, rdev);
5534                         err = mddev->pers->hot_add_disk(mddev, rdev);
5535                         if (err)
5536                                 unbind_rdev_from_array(rdev);
5537                 }
5538                 if (err)
5539                         export_rdev(rdev);
5540                 else
5541                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5542
5543                 md_update_sb(mddev, 1);
5544                 if (mddev->degraded)
5545                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5546                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5547                 if (!err)
5548                         md_new_event(mddev);
5549                 md_wakeup_thread(mddev->thread);
5550                 return err;
5551         }
5552
5553         /* otherwise, add_new_disk is only allowed
5554          * for major_version==0 superblocks
5555          */
5556         if (mddev->major_version != 0) {
5557                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5558                        mdname(mddev));
5559                 return -EINVAL;
5560         }
5561
5562         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5563                 int err;
5564                 rdev = md_import_device(dev, -1, 0);
5565                 if (IS_ERR(rdev)) {
5566                         printk(KERN_WARNING 
5567                                 "md: error, md_import_device() returned %ld\n",
5568                                 PTR_ERR(rdev));
5569                         return PTR_ERR(rdev);
5570                 }
5571                 rdev->desc_nr = info->number;
5572                 if (info->raid_disk < mddev->raid_disks)
5573                         rdev->raid_disk = info->raid_disk;
5574                 else
5575                         rdev->raid_disk = -1;
5576
5577                 if (rdev->raid_disk < mddev->raid_disks)
5578                         if (info->state & (1<<MD_DISK_SYNC))
5579                                 set_bit(In_sync, &rdev->flags);
5580
5581                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5582                         set_bit(WriteMostly, &rdev->flags);
5583
5584                 if (!mddev->persistent) {
5585                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5586                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5587                 } else
5588                         rdev->sb_start = calc_dev_sboffset(rdev);
5589                 rdev->sectors = rdev->sb_start;
5590
5591                 err = bind_rdev_to_array(rdev, mddev);
5592                 if (err) {
5593                         export_rdev(rdev);
5594                         return err;
5595                 }
5596         }
5597
5598         return 0;
5599 }
5600
5601 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5602 {
5603         char b[BDEVNAME_SIZE];
5604         struct md_rdev *rdev;
5605
5606         rdev = find_rdev(mddev, dev);
5607         if (!rdev)
5608                 return -ENXIO;
5609
5610         if (rdev->raid_disk >= 0)
5611                 goto busy;
5612
5613         kick_rdev_from_array(rdev);
5614         md_update_sb(mddev, 1);
5615         md_new_event(mddev);
5616
5617         return 0;
5618 busy:
5619         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5620                 bdevname(rdev->bdev,b), mdname(mddev));
5621         return -EBUSY;
5622 }
5623
5624 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5625 {
5626         char b[BDEVNAME_SIZE];
5627         int err;
5628         struct md_rdev *rdev;
5629
5630         if (!mddev->pers)
5631                 return -ENODEV;
5632
5633         if (mddev->major_version != 0) {
5634                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5635                         " version-0 superblocks.\n",
5636                         mdname(mddev));
5637                 return -EINVAL;
5638         }
5639         if (!mddev->pers->hot_add_disk) {
5640                 printk(KERN_WARNING 
5641                         "%s: personality does not support diskops!\n",
5642                         mdname(mddev));
5643                 return -EINVAL;
5644         }
5645
5646         rdev = md_import_device(dev, -1, 0);
5647         if (IS_ERR(rdev)) {
5648                 printk(KERN_WARNING 
5649                         "md: error, md_import_device() returned %ld\n",
5650                         PTR_ERR(rdev));
5651                 return -EINVAL;
5652         }
5653
5654         if (mddev->persistent)
5655                 rdev->sb_start = calc_dev_sboffset(rdev);
5656         else
5657                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5658
5659         rdev->sectors = rdev->sb_start;
5660
5661         if (test_bit(Faulty, &rdev->flags)) {
5662                 printk(KERN_WARNING 
5663                         "md: can not hot-add faulty %s disk to %s!\n",
5664                         bdevname(rdev->bdev,b), mdname(mddev));
5665                 err = -EINVAL;
5666                 goto abort_export;
5667         }
5668         clear_bit(In_sync, &rdev->flags);
5669         rdev->desc_nr = -1;
5670         rdev->saved_raid_disk = -1;
5671         err = bind_rdev_to_array(rdev, mddev);
5672         if (err)
5673                 goto abort_export;
5674
5675         /*
5676          * The rest should better be atomic, we can have disk failures
5677          * noticed in interrupt contexts ...
5678          */
5679
5680         rdev->raid_disk = -1;
5681
5682         md_update_sb(mddev, 1);
5683
5684         /*
5685          * Kick recovery, maybe this spare has to be added to the
5686          * array immediately.
5687          */
5688         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5689         md_wakeup_thread(mddev->thread);
5690         md_new_event(mddev);
5691         return 0;
5692
5693 abort_export:
5694         export_rdev(rdev);
5695         return err;
5696 }
5697
5698 static int set_bitmap_file(struct mddev *mddev, int fd)
5699 {
5700         int err;
5701
5702         if (mddev->pers) {
5703                 if (!mddev->pers->quiesce)
5704                         return -EBUSY;
5705                 if (mddev->recovery || mddev->sync_thread)
5706                         return -EBUSY;
5707                 /* we should be able to change the bitmap.. */
5708         }
5709
5710
5711         if (fd >= 0) {
5712                 if (mddev->bitmap)
5713                         return -EEXIST; /* cannot add when bitmap is present */
5714                 mddev->bitmap_info.file = fget(fd);
5715
5716                 if (mddev->bitmap_info.file == NULL) {
5717                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5718                                mdname(mddev));
5719                         return -EBADF;
5720                 }
5721
5722                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5723                 if (err) {
5724                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5725                                mdname(mddev));
5726                         fput(mddev->bitmap_info.file);
5727                         mddev->bitmap_info.file = NULL;
5728                         return err;
5729                 }
5730                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5731         } else if (mddev->bitmap == NULL)
5732                 return -ENOENT; /* cannot remove what isn't there */
5733         err = 0;
5734         if (mddev->pers) {
5735                 mddev->pers->quiesce(mddev, 1);
5736                 if (fd >= 0) {
5737                         err = bitmap_create(mddev);
5738                         if (!err)
5739                                 err = bitmap_load(mddev);
5740                 }
5741                 if (fd < 0 || err) {
5742                         bitmap_destroy(mddev);
5743                         fd = -1; /* make sure to put the file */
5744                 }
5745                 mddev->pers->quiesce(mddev, 0);
5746         }
5747         if (fd < 0) {
5748                 if (mddev->bitmap_info.file) {
5749                         restore_bitmap_write_access(mddev->bitmap_info.file);
5750                         fput(mddev->bitmap_info.file);
5751                 }
5752                 mddev->bitmap_info.file = NULL;
5753         }
5754
5755         return err;
5756 }
5757
5758 /*
5759  * set_array_info is used two different ways
5760  * The original usage is when creating a new array.
5761  * In this usage, raid_disks is > 0 and it together with
5762  *  level, size, not_persistent,layout,chunksize determine the
5763  *  shape of the array.
5764  *  This will always create an array with a type-0.90.0 superblock.
5765  * The newer usage is when assembling an array.
5766  *  In this case raid_disks will be 0, and the major_version field is
5767  *  use to determine which style super-blocks are to be found on the devices.
5768  *  The minor and patch _version numbers are also kept incase the
5769  *  super_block handler wishes to interpret them.
5770  */
5771 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5772 {
5773
5774         if (info->raid_disks == 0) {
5775                 /* just setting version number for superblock loading */
5776                 if (info->major_version < 0 ||
5777                     info->major_version >= ARRAY_SIZE(super_types) ||
5778                     super_types[info->major_version].name == NULL) {
5779                         /* maybe try to auto-load a module? */
5780                         printk(KERN_INFO 
5781                                 "md: superblock version %d not known\n",
5782                                 info->major_version);
5783                         return -EINVAL;
5784                 }
5785                 mddev->major_version = info->major_version;
5786                 mddev->minor_version = info->minor_version;
5787                 mddev->patch_version = info->patch_version;
5788                 mddev->persistent = !info->not_persistent;
5789                 /* ensure mddev_put doesn't delete this now that there
5790                  * is some minimal configuration.
5791                  */
5792                 mddev->ctime         = get_seconds();
5793                 return 0;
5794         }
5795         mddev->major_version = MD_MAJOR_VERSION;
5796         mddev->minor_version = MD_MINOR_VERSION;
5797         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5798         mddev->ctime         = get_seconds();
5799
5800         mddev->level         = info->level;
5801         mddev->clevel[0]     = 0;
5802         mddev->dev_sectors   = 2 * (sector_t)info->size;
5803         mddev->raid_disks    = info->raid_disks;
5804         /* don't set md_minor, it is determined by which /dev/md* was
5805          * openned
5806          */
5807         if (info->state & (1<<MD_SB_CLEAN))
5808                 mddev->recovery_cp = MaxSector;
5809         else
5810                 mddev->recovery_cp = 0;
5811         mddev->persistent    = ! info->not_persistent;
5812         mddev->external      = 0;
5813
5814         mddev->layout        = info->layout;
5815         mddev->chunk_sectors = info->chunk_size >> 9;
5816
5817         mddev->max_disks     = MD_SB_DISKS;
5818
5819         if (mddev->persistent)
5820                 mddev->flags         = 0;
5821         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5822
5823         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5824         mddev->bitmap_info.offset = 0;
5825
5826         mddev->reshape_position = MaxSector;
5827
5828         /*
5829          * Generate a 128 bit UUID
5830          */
5831         get_random_bytes(mddev->uuid, 16);
5832
5833         mddev->new_level = mddev->level;
5834         mddev->new_chunk_sectors = mddev->chunk_sectors;
5835         mddev->new_layout = mddev->layout;
5836         mddev->delta_disks = 0;
5837
5838         return 0;
5839 }
5840
5841 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5842 {
5843         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5844
5845         if (mddev->external_size)
5846                 return;
5847
5848         mddev->array_sectors = array_sectors;
5849 }
5850 EXPORT_SYMBOL(md_set_array_sectors);
5851
5852 static int update_size(struct mddev *mddev, sector_t num_sectors)
5853 {
5854         struct md_rdev *rdev;
5855         int rv;
5856         int fit = (num_sectors == 0);
5857
5858         if (mddev->pers->resize == NULL)
5859                 return -EINVAL;
5860         /* The "num_sectors" is the number of sectors of each device that
5861          * is used.  This can only make sense for arrays with redundancy.
5862          * linear and raid0 always use whatever space is available. We can only
5863          * consider changing this number if no resync or reconstruction is
5864          * happening, and if the new size is acceptable. It must fit before the
5865          * sb_start or, if that is <data_offset, it must fit before the size
5866          * of each device.  If num_sectors is zero, we find the largest size
5867          * that fits.
5868          */
5869         if (mddev->sync_thread)
5870                 return -EBUSY;
5871         if (mddev->bitmap)
5872                 /* Sorry, cannot grow a bitmap yet, just remove it,
5873                  * grow, and re-add.
5874                  */
5875                 return -EBUSY;
5876         list_for_each_entry(rdev, &mddev->disks, same_set) {
5877                 sector_t avail = rdev->sectors;
5878
5879                 if (fit && (num_sectors == 0 || num_sectors > avail))
5880                         num_sectors = avail;
5881                 if (avail < num_sectors)
5882                         return -ENOSPC;
5883         }
5884         rv = mddev->pers->resize(mddev, num_sectors);
5885         if (!rv)
5886                 revalidate_disk(mddev->gendisk);
5887         return rv;
5888 }
5889
5890 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5891 {
5892         int rv;
5893         /* change the number of raid disks */
5894         if (mddev->pers->check_reshape == NULL)
5895                 return -EINVAL;
5896         if (raid_disks <= 0 ||
5897             (mddev->max_disks && raid_disks >= mddev->max_disks))
5898                 return -EINVAL;
5899         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5900                 return -EBUSY;
5901         mddev->delta_disks = raid_disks - mddev->raid_disks;
5902
5903         rv = mddev->pers->check_reshape(mddev);
5904         if (rv < 0)
5905                 mddev->delta_disks = 0;
5906         return rv;
5907 }
5908
5909
5910 /*
5911  * update_array_info is used to change the configuration of an
5912  * on-line array.
5913  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5914  * fields in the info are checked against the array.
5915  * Any differences that cannot be handled will cause an error.
5916  * Normally, only one change can be managed at a time.
5917  */
5918 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5919 {
5920         int rv = 0;
5921         int cnt = 0;
5922         int state = 0;
5923
5924         /* calculate expected state,ignoring low bits */
5925         if (mddev->bitmap && mddev->bitmap_info.offset)
5926                 state |= (1 << MD_SB_BITMAP_PRESENT);
5927
5928         if (mddev->major_version != info->major_version ||
5929             mddev->minor_version != info->minor_version ||
5930 /*          mddev->patch_version != info->patch_version || */
5931             mddev->ctime         != info->ctime         ||
5932             mddev->level         != info->level         ||
5933 /*          mddev->layout        != info->layout        || */
5934             !mddev->persistent   != info->not_persistent||
5935             mddev->chunk_sectors != info->chunk_size >> 9 ||
5936             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5937             ((state^info->state) & 0xfffffe00)
5938                 )
5939                 return -EINVAL;
5940         /* Check there is only one change */
5941         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5942                 cnt++;
5943         if (mddev->raid_disks != info->raid_disks)
5944                 cnt++;
5945         if (mddev->layout != info->layout)
5946                 cnt++;
5947         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5948                 cnt++;
5949         if (cnt == 0)
5950                 return 0;
5951         if (cnt > 1)
5952                 return -EINVAL;
5953
5954         if (mddev->layout != info->layout) {
5955                 /* Change layout
5956                  * we don't need to do anything at the md level, the
5957                  * personality will take care of it all.
5958                  */
5959                 if (mddev->pers->check_reshape == NULL)
5960                         return -EINVAL;
5961                 else {
5962                         mddev->new_layout = info->layout;
5963                         rv = mddev->pers->check_reshape(mddev);
5964                         if (rv)
5965                                 mddev->new_layout = mddev->layout;
5966                         return rv;
5967                 }
5968         }
5969         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5970                 rv = update_size(mddev, (sector_t)info->size * 2);
5971
5972         if (mddev->raid_disks    != info->raid_disks)
5973                 rv = update_raid_disks(mddev, info->raid_disks);
5974
5975         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5976                 if (mddev->pers->quiesce == NULL)
5977                         return -EINVAL;
5978                 if (mddev->recovery || mddev->sync_thread)
5979                         return -EBUSY;
5980                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5981                         /* add the bitmap */
5982                         if (mddev->bitmap)
5983                                 return -EEXIST;
5984                         if (mddev->bitmap_info.default_offset == 0)
5985                                 return -EINVAL;
5986                         mddev->bitmap_info.offset =
5987                                 mddev->bitmap_info.default_offset;
5988                         mddev->pers->quiesce(mddev, 1);
5989                         rv = bitmap_create(mddev);
5990                         if (!rv)
5991                                 rv = bitmap_load(mddev);
5992                         if (rv)
5993                                 bitmap_destroy(mddev);
5994                         mddev->pers->quiesce(mddev, 0);
5995                 } else {
5996                         /* remove the bitmap */
5997                         if (!mddev->bitmap)
5998                                 return -ENOENT;
5999                         if (mddev->bitmap->file)
6000                                 return -EINVAL;
6001                         mddev->pers->quiesce(mddev, 1);
6002                         bitmap_destroy(mddev);
6003                         mddev->pers->quiesce(mddev, 0);
6004                         mddev->bitmap_info.offset = 0;
6005                 }
6006         }
6007         md_update_sb(mddev, 1);
6008         return rv;
6009 }
6010
6011 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6012 {
6013         struct md_rdev *rdev;
6014
6015         if (mddev->pers == NULL)
6016                 return -ENODEV;
6017
6018         rdev = find_rdev(mddev, dev);
6019         if (!rdev)
6020                 return -ENODEV;
6021
6022         md_error(mddev, rdev);
6023         if (!test_bit(Faulty, &rdev->flags))
6024                 return -EBUSY;
6025         return 0;
6026 }
6027
6028 /*
6029  * We have a problem here : there is no easy way to give a CHS
6030  * virtual geometry. We currently pretend that we have a 2 heads
6031  * 4 sectors (with a BIG number of cylinders...). This drives
6032  * dosfs just mad... ;-)
6033  */
6034 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6035 {
6036         struct mddev *mddev = bdev->bd_disk->private_data;
6037
6038         geo->heads = 2;
6039         geo->sectors = 4;
6040         geo->cylinders = mddev->array_sectors / 8;
6041         return 0;
6042 }
6043
6044 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6045                         unsigned int cmd, unsigned long arg)
6046 {
6047         int err = 0;
6048         void __user *argp = (void __user *)arg;
6049         struct mddev *mddev = NULL;
6050         int ro;
6051
6052         switch (cmd) {
6053         case RAID_VERSION:
6054         case GET_ARRAY_INFO:
6055         case GET_DISK_INFO:
6056                 break;
6057         default:
6058                 if (!capable(CAP_SYS_ADMIN))
6059                         return -EACCES;
6060         }
6061
6062         /*
6063          * Commands dealing with the RAID driver but not any
6064          * particular array:
6065          */
6066         switch (cmd)
6067         {
6068                 case RAID_VERSION:
6069                         err = get_version(argp);
6070                         goto done;
6071
6072                 case PRINT_RAID_DEBUG:
6073                         err = 0;
6074                         md_print_devices();
6075                         goto done;
6076
6077 #ifndef MODULE
6078                 case RAID_AUTORUN:
6079                         err = 0;
6080                         autostart_arrays(arg);
6081                         goto done;
6082 #endif
6083                 default:;
6084         }
6085
6086         /*
6087          * Commands creating/starting a new array:
6088          */
6089
6090         mddev = bdev->bd_disk->private_data;
6091
6092         if (!mddev) {
6093                 BUG();
6094                 goto abort;
6095         }
6096
6097         err = mddev_lock(mddev);
6098         if (err) {
6099                 printk(KERN_INFO 
6100                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6101                         err, cmd);
6102                 goto abort;
6103         }
6104
6105         switch (cmd)
6106         {
6107                 case SET_ARRAY_INFO:
6108                         {
6109                                 mdu_array_info_t info;
6110                                 if (!arg)
6111                                         memset(&info, 0, sizeof(info));
6112                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6113                                         err = -EFAULT;
6114                                         goto abort_unlock;
6115                                 }
6116                                 if (mddev->pers) {
6117                                         err = update_array_info(mddev, &info);
6118                                         if (err) {
6119                                                 printk(KERN_WARNING "md: couldn't update"
6120                                                        " array info. %d\n", err);
6121                                                 goto abort_unlock;
6122                                         }
6123                                         goto done_unlock;
6124                                 }
6125                                 if (!list_empty(&mddev->disks)) {
6126                                         printk(KERN_WARNING
6127                                                "md: array %s already has disks!\n",
6128                                                mdname(mddev));
6129                                         err = -EBUSY;
6130                                         goto abort_unlock;
6131                                 }
6132                                 if (mddev->raid_disks) {
6133                                         printk(KERN_WARNING
6134                                                "md: array %s already initialised!\n",
6135                                                mdname(mddev));
6136                                         err = -EBUSY;
6137                                         goto abort_unlock;
6138                                 }
6139                                 err = set_array_info(mddev, &info);
6140                                 if (err) {
6141                                         printk(KERN_WARNING "md: couldn't set"
6142                                                " array info. %d\n", err);
6143                                         goto abort_unlock;
6144                                 }
6145                         }
6146                         goto done_unlock;
6147
6148                 default:;
6149         }
6150
6151         /*
6152          * Commands querying/configuring an existing array:
6153          */
6154         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6155          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6156         if ((!mddev->raid_disks && !mddev->external)
6157             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6158             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6159             && cmd != GET_BITMAP_FILE) {
6160                 err = -ENODEV;
6161                 goto abort_unlock;
6162         }
6163
6164         /*
6165          * Commands even a read-only array can execute:
6166          */
6167         switch (cmd)
6168         {
6169                 case GET_ARRAY_INFO:
6170                         err = get_array_info(mddev, argp);
6171                         goto done_unlock;
6172
6173                 case GET_BITMAP_FILE:
6174                         err = get_bitmap_file(mddev, argp);
6175                         goto done_unlock;
6176
6177                 case GET_DISK_INFO:
6178                         err = get_disk_info(mddev, argp);
6179                         goto done_unlock;
6180
6181                 case RESTART_ARRAY_RW:
6182                         err = restart_array(mddev);
6183                         goto done_unlock;
6184
6185                 case STOP_ARRAY:
6186                         err = do_md_stop(mddev, 0, 1);
6187                         goto done_unlock;
6188
6189                 case STOP_ARRAY_RO:
6190                         err = md_set_readonly(mddev, 1);
6191                         goto done_unlock;
6192
6193                 case BLKROSET:
6194                         if (get_user(ro, (int __user *)(arg))) {
6195                                 err = -EFAULT;
6196                                 goto done_unlock;
6197                         }
6198                         err = -EINVAL;
6199
6200                         /* if the bdev is going readonly the value of mddev->ro
6201                          * does not matter, no writes are coming
6202                          */
6203                         if (ro)
6204                                 goto done_unlock;
6205
6206                         /* are we are already prepared for writes? */
6207                         if (mddev->ro != 1)
6208                                 goto done_unlock;
6209
6210                         /* transitioning to readauto need only happen for
6211                          * arrays that call md_write_start
6212                          */
6213                         if (mddev->pers) {
6214                                 err = restart_array(mddev);
6215                                 if (err == 0) {
6216                                         mddev->ro = 2;
6217                                         set_disk_ro(mddev->gendisk, 0);
6218                                 }
6219                         }
6220                         goto done_unlock;
6221         }
6222
6223         /*
6224          * The remaining ioctls are changing the state of the
6225          * superblock, so we do not allow them on read-only arrays.
6226          * However non-MD ioctls (e.g. get-size) will still come through
6227          * here and hit the 'default' below, so only disallow
6228          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6229          */
6230         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6231                 if (mddev->ro == 2) {
6232                         mddev->ro = 0;
6233                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6234                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6235                         md_wakeup_thread(mddev->thread);
6236                 } else {
6237                         err = -EROFS;
6238                         goto abort_unlock;
6239                 }
6240         }
6241
6242         switch (cmd)
6243         {
6244                 case ADD_NEW_DISK:
6245                 {
6246                         mdu_disk_info_t info;
6247                         if (copy_from_user(&info, argp, sizeof(info)))
6248                                 err = -EFAULT;
6249                         else
6250                                 err = add_new_disk(mddev, &info);
6251                         goto done_unlock;
6252                 }
6253
6254                 case HOT_REMOVE_DISK:
6255                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6256                         goto done_unlock;
6257
6258                 case HOT_ADD_DISK:
6259                         err = hot_add_disk(mddev, new_decode_dev(arg));
6260                         goto done_unlock;
6261
6262                 case SET_DISK_FAULTY:
6263                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6264                         goto done_unlock;
6265
6266                 case RUN_ARRAY:
6267                         err = do_md_run(mddev);
6268                         goto done_unlock;
6269
6270                 case SET_BITMAP_FILE:
6271                         err = set_bitmap_file(mddev, (int)arg);
6272                         goto done_unlock;
6273
6274                 default:
6275                         err = -EINVAL;
6276                         goto abort_unlock;
6277         }
6278
6279 done_unlock:
6280 abort_unlock:
6281         if (mddev->hold_active == UNTIL_IOCTL &&
6282             err != -EINVAL)
6283                 mddev->hold_active = 0;
6284         mddev_unlock(mddev);
6285
6286         return err;
6287 done:
6288         if (err)
6289                 MD_BUG();
6290 abort:
6291         return err;
6292 }
6293 #ifdef CONFIG_COMPAT
6294 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6295                     unsigned int cmd, unsigned long arg)
6296 {
6297         switch (cmd) {
6298         case HOT_REMOVE_DISK:
6299         case HOT_ADD_DISK:
6300         case SET_DISK_FAULTY:
6301         case SET_BITMAP_FILE:
6302                 /* These take in integer arg, do not convert */
6303                 break;
6304         default:
6305                 arg = (unsigned long)compat_ptr(arg);
6306                 break;
6307         }
6308
6309         return md_ioctl(bdev, mode, cmd, arg);
6310 }
6311 #endif /* CONFIG_COMPAT */
6312
6313 static int md_open(struct block_device *bdev, fmode_t mode)
6314 {
6315         /*
6316          * Succeed if we can lock the mddev, which confirms that
6317          * it isn't being stopped right now.
6318          */
6319         struct mddev *mddev = mddev_find(bdev->bd_dev);
6320         int err;
6321
6322         if (mddev->gendisk != bdev->bd_disk) {
6323                 /* we are racing with mddev_put which is discarding this
6324                  * bd_disk.
6325                  */
6326                 mddev_put(mddev);
6327                 /* Wait until bdev->bd_disk is definitely gone */
6328                 flush_workqueue(md_misc_wq);
6329                 /* Then retry the open from the top */
6330                 return -ERESTARTSYS;
6331         }
6332         BUG_ON(mddev != bdev->bd_disk->private_data);
6333
6334         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6335                 goto out;
6336
6337         err = 0;
6338         atomic_inc(&mddev->openers);
6339         mutex_unlock(&mddev->open_mutex);
6340
6341         check_disk_change(bdev);
6342  out:
6343         return err;
6344 }
6345
6346 static int md_release(struct gendisk *disk, fmode_t mode)
6347 {
6348         struct mddev *mddev = disk->private_data;
6349
6350         BUG_ON(!mddev);
6351         atomic_dec(&mddev->openers);
6352         mddev_put(mddev);
6353
6354         return 0;
6355 }
6356
6357 static int md_media_changed(struct gendisk *disk)
6358 {
6359         struct mddev *mddev = disk->private_data;
6360
6361         return mddev->changed;
6362 }
6363
6364 static int md_revalidate(struct gendisk *disk)
6365 {
6366         struct mddev *mddev = disk->private_data;
6367
6368         mddev->changed = 0;
6369         return 0;
6370 }
6371 static const struct block_device_operations md_fops =
6372 {
6373         .owner          = THIS_MODULE,
6374         .open           = md_open,
6375         .release        = md_release,
6376         .ioctl          = md_ioctl,
6377 #ifdef CONFIG_COMPAT
6378         .compat_ioctl   = md_compat_ioctl,
6379 #endif
6380         .getgeo         = md_getgeo,
6381         .media_changed  = md_media_changed,
6382         .revalidate_disk= md_revalidate,
6383 };
6384
6385 static int md_thread(void * arg)
6386 {
6387         struct md_thread *thread = arg;
6388
6389         /*
6390          * md_thread is a 'system-thread', it's priority should be very
6391          * high. We avoid resource deadlocks individually in each
6392          * raid personality. (RAID5 does preallocation) We also use RR and
6393          * the very same RT priority as kswapd, thus we will never get
6394          * into a priority inversion deadlock.
6395          *
6396          * we definitely have to have equal or higher priority than
6397          * bdflush, otherwise bdflush will deadlock if there are too
6398          * many dirty RAID5 blocks.
6399          */
6400
6401         allow_signal(SIGKILL);
6402         while (!kthread_should_stop()) {
6403
6404                 /* We need to wait INTERRUPTIBLE so that
6405                  * we don't add to the load-average.
6406                  * That means we need to be sure no signals are
6407                  * pending
6408                  */
6409                 if (signal_pending(current))
6410                         flush_signals(current);
6411
6412                 wait_event_interruptible_timeout
6413                         (thread->wqueue,
6414                          test_bit(THREAD_WAKEUP, &thread->flags)
6415                          || kthread_should_stop(),
6416                          thread->timeout);
6417
6418                 clear_bit(THREAD_WAKEUP, &thread->flags);
6419                 if (!kthread_should_stop())
6420                         thread->run(thread->mddev);
6421         }
6422
6423         return 0;
6424 }
6425
6426 void md_wakeup_thread(struct md_thread *thread)
6427 {
6428         if (thread) {
6429                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6430                 set_bit(THREAD_WAKEUP, &thread->flags);
6431                 wake_up(&thread->wqueue);
6432         }
6433 }
6434
6435 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6436                                  const char *name)
6437 {
6438         struct md_thread *thread;
6439
6440         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6441         if (!thread)
6442                 return NULL;
6443
6444         init_waitqueue_head(&thread->wqueue);
6445
6446         thread->run = run;
6447         thread->mddev = mddev;
6448         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6449         thread->tsk = kthread_run(md_thread, thread,
6450                                   "%s_%s",
6451                                   mdname(thread->mddev),
6452                                   name ?: mddev->pers->name);
6453         if (IS_ERR(thread->tsk)) {
6454                 kfree(thread);
6455                 return NULL;
6456         }
6457         return thread;
6458 }
6459
6460 void md_unregister_thread(struct md_thread **threadp)
6461 {
6462         struct md_thread *thread = *threadp;
6463         if (!thread)
6464                 return;
6465         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6466         /* Locking ensures that mddev_unlock does not wake_up a
6467          * non-existent thread
6468          */
6469         spin_lock(&pers_lock);
6470         *threadp = NULL;
6471         spin_unlock(&pers_lock);
6472
6473         kthread_stop(thread->tsk);
6474         kfree(thread);
6475 }
6476
6477 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6478 {
6479         if (!mddev) {
6480                 MD_BUG();
6481                 return;
6482         }
6483
6484         if (!rdev || test_bit(Faulty, &rdev->flags))
6485                 return;
6486
6487         if (!mddev->pers || !mddev->pers->error_handler)
6488                 return;
6489         mddev->pers->error_handler(mddev,rdev);
6490         if (mddev->degraded)
6491                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6492         sysfs_notify_dirent_safe(rdev->sysfs_state);
6493         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6494         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6495         md_wakeup_thread(mddev->thread);
6496         if (mddev->event_work.func)
6497                 queue_work(md_misc_wq, &mddev->event_work);
6498         md_new_event_inintr(mddev);
6499 }
6500
6501 /* seq_file implementation /proc/mdstat */
6502
6503 static void status_unused(struct seq_file *seq)
6504 {
6505         int i = 0;
6506         struct md_rdev *rdev;
6507
6508         seq_printf(seq, "unused devices: ");
6509
6510         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6511                 char b[BDEVNAME_SIZE];
6512                 i++;
6513                 seq_printf(seq, "%s ",
6514                               bdevname(rdev->bdev,b));
6515         }
6516         if (!i)
6517                 seq_printf(seq, "<none>");
6518
6519         seq_printf(seq, "\n");
6520 }
6521
6522
6523 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6524 {
6525         sector_t max_sectors, resync, res;
6526         unsigned long dt, db;
6527         sector_t rt;
6528         int scale;
6529         unsigned int per_milli;
6530
6531         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6532
6533         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6534                 max_sectors = mddev->resync_max_sectors;
6535         else
6536                 max_sectors = mddev->dev_sectors;
6537
6538         /*
6539          * Should not happen.
6540          */
6541         if (!max_sectors) {
6542                 MD_BUG();
6543                 return;
6544         }
6545         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6546          * in a sector_t, and (max_sectors>>scale) will fit in a
6547          * u32, as those are the requirements for sector_div.
6548          * Thus 'scale' must be at least 10
6549          */
6550         scale = 10;
6551         if (sizeof(sector_t) > sizeof(unsigned long)) {
6552                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6553                         scale++;
6554         }
6555         res = (resync>>scale)*1000;
6556         sector_div(res, (u32)((max_sectors>>scale)+1));
6557
6558         per_milli = res;
6559         {
6560                 int i, x = per_milli/50, y = 20-x;
6561                 seq_printf(seq, "[");
6562                 for (i = 0; i < x; i++)
6563                         seq_printf(seq, "=");
6564                 seq_printf(seq, ">");
6565                 for (i = 0; i < y; i++)
6566                         seq_printf(seq, ".");
6567                 seq_printf(seq, "] ");
6568         }
6569         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6570                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6571                     "reshape" :
6572                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6573                      "check" :
6574                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6575                       "resync" : "recovery"))),
6576                    per_milli/10, per_milli % 10,
6577                    (unsigned long long) resync/2,
6578                    (unsigned long long) max_sectors/2);
6579
6580         /*
6581          * dt: time from mark until now
6582          * db: blocks written from mark until now
6583          * rt: remaining time
6584          *
6585          * rt is a sector_t, so could be 32bit or 64bit.
6586          * So we divide before multiply in case it is 32bit and close
6587          * to the limit.
6588          * We scale the divisor (db) by 32 to avoid losing precision
6589          * near the end of resync when the number of remaining sectors
6590          * is close to 'db'.
6591          * We then divide rt by 32 after multiplying by db to compensate.
6592          * The '+1' avoids division by zero if db is very small.
6593          */
6594         dt = ((jiffies - mddev->resync_mark) / HZ);
6595         if (!dt) dt++;
6596         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6597                 - mddev->resync_mark_cnt;
6598
6599         rt = max_sectors - resync;    /* number of remaining sectors */
6600         sector_div(rt, db/32+1);
6601         rt *= dt;
6602         rt >>= 5;
6603
6604         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6605                    ((unsigned long)rt % 60)/6);
6606
6607         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6608 }
6609
6610 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6611 {
6612         struct list_head *tmp;
6613         loff_t l = *pos;
6614         struct mddev *mddev;
6615
6616         if (l >= 0x10000)
6617                 return NULL;
6618         if (!l--)
6619                 /* header */
6620                 return (void*)1;
6621
6622         spin_lock(&all_mddevs_lock);
6623         list_for_each(tmp,&all_mddevs)
6624                 if (!l--) {
6625                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6626                         mddev_get(mddev);
6627                         spin_unlock(&all_mddevs_lock);
6628                         return mddev;
6629                 }
6630         spin_unlock(&all_mddevs_lock);
6631         if (!l--)
6632                 return (void*)2;/* tail */
6633         return NULL;
6634 }
6635
6636 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6637 {
6638         struct list_head *tmp;
6639         struct mddev *next_mddev, *mddev = v;
6640         
6641         ++*pos;
6642         if (v == (void*)2)
6643                 return NULL;
6644
6645         spin_lock(&all_mddevs_lock);
6646         if (v == (void*)1)
6647                 tmp = all_mddevs.next;
6648         else
6649                 tmp = mddev->all_mddevs.next;
6650         if (tmp != &all_mddevs)
6651                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6652         else {
6653                 next_mddev = (void*)2;
6654                 *pos = 0x10000;
6655         }               
6656         spin_unlock(&all_mddevs_lock);
6657
6658         if (v != (void*)1)
6659                 mddev_put(mddev);
6660         return next_mddev;
6661
6662 }
6663
6664 static void md_seq_stop(struct seq_file *seq, void *v)
6665 {
6666         struct mddev *mddev = v;
6667
6668         if (mddev && v != (void*)1 && v != (void*)2)
6669                 mddev_put(mddev);
6670 }
6671
6672 static int md_seq_show(struct seq_file *seq, void *v)
6673 {
6674         struct mddev *mddev = v;
6675         sector_t sectors;
6676         struct md_rdev *rdev;
6677         struct bitmap *bitmap;
6678
6679         if (v == (void*)1) {
6680                 struct md_personality *pers;
6681                 seq_printf(seq, "Personalities : ");
6682                 spin_lock(&pers_lock);
6683                 list_for_each_entry(pers, &pers_list, list)
6684                         seq_printf(seq, "[%s] ", pers->name);
6685
6686                 spin_unlock(&pers_lock);
6687                 seq_printf(seq, "\n");
6688                 seq->poll_event = atomic_read(&md_event_count);
6689                 return 0;
6690         }
6691         if (v == (void*)2) {
6692                 status_unused(seq);
6693                 return 0;
6694         }
6695
6696         if (mddev_lock(mddev) < 0)
6697                 return -EINTR;
6698
6699         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6700                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6701                                                 mddev->pers ? "" : "in");
6702                 if (mddev->pers) {
6703                         if (mddev->ro==1)
6704                                 seq_printf(seq, " (read-only)");
6705                         if (mddev->ro==2)
6706                                 seq_printf(seq, " (auto-read-only)");
6707                         seq_printf(seq, " %s", mddev->pers->name);
6708                 }
6709
6710                 sectors = 0;
6711                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6712                         char b[BDEVNAME_SIZE];
6713                         seq_printf(seq, " %s[%d]",
6714                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6715                         if (test_bit(WriteMostly, &rdev->flags))
6716                                 seq_printf(seq, "(W)");
6717                         if (test_bit(Faulty, &rdev->flags)) {
6718                                 seq_printf(seq, "(F)");
6719                                 continue;
6720                         } else if (rdev->raid_disk < 0)
6721                                 seq_printf(seq, "(S)"); /* spare */
6722                         sectors += rdev->sectors;
6723                 }
6724
6725                 if (!list_empty(&mddev->disks)) {
6726                         if (mddev->pers)
6727                                 seq_printf(seq, "\n      %llu blocks",
6728                                            (unsigned long long)
6729                                            mddev->array_sectors / 2);
6730                         else
6731                                 seq_printf(seq, "\n      %llu blocks",
6732                                            (unsigned long long)sectors / 2);
6733                 }
6734                 if (mddev->persistent) {
6735                         if (mddev->major_version != 0 ||
6736                             mddev->minor_version != 90) {
6737                                 seq_printf(seq," super %d.%d",
6738                                            mddev->major_version,
6739                                            mddev->minor_version);
6740                         }
6741                 } else if (mddev->external)
6742                         seq_printf(seq, " super external:%s",
6743                                    mddev->metadata_type);
6744                 else
6745                         seq_printf(seq, " super non-persistent");
6746
6747                 if (mddev->pers) {
6748                         mddev->pers->status(seq, mddev);
6749                         seq_printf(seq, "\n      ");
6750                         if (mddev->pers->sync_request) {
6751                                 if (mddev->curr_resync > 2) {
6752                                         status_resync(seq, mddev);
6753                                         seq_printf(seq, "\n      ");
6754                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6755                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6756                                 else if (mddev->recovery_cp < MaxSector)
6757                                         seq_printf(seq, "\tresync=PENDING\n      ");
6758                         }
6759                 } else
6760                         seq_printf(seq, "\n       ");
6761
6762                 if ((bitmap = mddev->bitmap)) {
6763                         unsigned long chunk_kb;
6764                         unsigned long flags;
6765                         spin_lock_irqsave(&bitmap->lock, flags);
6766                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6767                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6768                                 "%lu%s chunk",
6769                                 bitmap->pages - bitmap->missing_pages,
6770                                 bitmap->pages,
6771                                 (bitmap->pages - bitmap->missing_pages)
6772                                         << (PAGE_SHIFT - 10),
6773                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6774                                 chunk_kb ? "KB" : "B");
6775                         if (bitmap->file) {
6776                                 seq_printf(seq, ", file: ");
6777                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6778                         }
6779
6780                         seq_printf(seq, "\n");
6781                         spin_unlock_irqrestore(&bitmap->lock, flags);
6782                 }
6783
6784                 seq_printf(seq, "\n");
6785         }
6786         mddev_unlock(mddev);
6787         
6788         return 0;
6789 }
6790
6791 static const struct seq_operations md_seq_ops = {
6792         .start  = md_seq_start,
6793         .next   = md_seq_next,
6794         .stop   = md_seq_stop,
6795         .show   = md_seq_show,
6796 };
6797
6798 static int md_seq_open(struct inode *inode, struct file *file)
6799 {
6800         struct seq_file *seq;
6801         int error;
6802
6803         error = seq_open(file, &md_seq_ops);
6804         if (error)
6805                 return error;
6806
6807         seq = file->private_data;
6808         seq->poll_event = atomic_read(&md_event_count);
6809         return error;
6810 }
6811
6812 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6813 {
6814         struct seq_file *seq = filp->private_data;
6815         int mask;
6816
6817         poll_wait(filp, &md_event_waiters, wait);
6818
6819         /* always allow read */
6820         mask = POLLIN | POLLRDNORM;
6821
6822         if (seq->poll_event != atomic_read(&md_event_count))
6823                 mask |= POLLERR | POLLPRI;
6824         return mask;
6825 }
6826
6827 static const struct file_operations md_seq_fops = {
6828         .owner          = THIS_MODULE,
6829         .open           = md_seq_open,
6830         .read           = seq_read,
6831         .llseek         = seq_lseek,
6832         .release        = seq_release_private,
6833         .poll           = mdstat_poll,
6834 };
6835
6836 int register_md_personality(struct md_personality *p)
6837 {
6838         spin_lock(&pers_lock);
6839         list_add_tail(&p->list, &pers_list);
6840         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6841         spin_unlock(&pers_lock);
6842         return 0;
6843 }
6844
6845 int unregister_md_personality(struct md_personality *p)
6846 {
6847         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6848         spin_lock(&pers_lock);
6849         list_del_init(&p->list);
6850         spin_unlock(&pers_lock);
6851         return 0;
6852 }
6853
6854 static int is_mddev_idle(struct mddev *mddev, int init)
6855 {
6856         struct md_rdev * rdev;
6857         int idle;
6858         int curr_events;
6859
6860         idle = 1;
6861         rcu_read_lock();
6862         rdev_for_each_rcu(rdev, mddev) {
6863                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6864                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6865                               (int)part_stat_read(&disk->part0, sectors[1]) -
6866                               atomic_read(&disk->sync_io);
6867                 /* sync IO will cause sync_io to increase before the disk_stats
6868                  * as sync_io is counted when a request starts, and
6869                  * disk_stats is counted when it completes.
6870                  * So resync activity will cause curr_events to be smaller than
6871                  * when there was no such activity.
6872                  * non-sync IO will cause disk_stat to increase without
6873                  * increasing sync_io so curr_events will (eventually)
6874                  * be larger than it was before.  Once it becomes
6875                  * substantially larger, the test below will cause
6876                  * the array to appear non-idle, and resync will slow
6877                  * down.
6878                  * If there is a lot of outstanding resync activity when
6879                  * we set last_event to curr_events, then all that activity
6880                  * completing might cause the array to appear non-idle
6881                  * and resync will be slowed down even though there might
6882                  * not have been non-resync activity.  This will only
6883                  * happen once though.  'last_events' will soon reflect
6884                  * the state where there is little or no outstanding
6885                  * resync requests, and further resync activity will
6886                  * always make curr_events less than last_events.
6887                  *
6888                  */
6889                 if (init || curr_events - rdev->last_events > 64) {
6890                         rdev->last_events = curr_events;
6891                         idle = 0;
6892                 }
6893         }
6894         rcu_read_unlock();
6895         return idle;
6896 }
6897
6898 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6899 {
6900         /* another "blocks" (512byte) blocks have been synced */
6901         atomic_sub(blocks, &mddev->recovery_active);
6902         wake_up(&mddev->recovery_wait);
6903         if (!ok) {
6904                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6905                 md_wakeup_thread(mddev->thread);
6906                 // stop recovery, signal do_sync ....
6907         }
6908 }
6909
6910
6911 /* md_write_start(mddev, bi)
6912  * If we need to update some array metadata (e.g. 'active' flag
6913  * in superblock) before writing, schedule a superblock update
6914  * and wait for it to complete.
6915  */
6916 void md_write_start(struct mddev *mddev, struct bio *bi)
6917 {
6918         int did_change = 0;
6919         if (bio_data_dir(bi) != WRITE)
6920                 return;
6921
6922         BUG_ON(mddev->ro == 1);
6923         if (mddev->ro == 2) {
6924                 /* need to switch to read/write */
6925                 mddev->ro = 0;
6926                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6927                 md_wakeup_thread(mddev->thread);
6928                 md_wakeup_thread(mddev->sync_thread);
6929                 did_change = 1;
6930         }
6931         atomic_inc(&mddev->writes_pending);
6932         if (mddev->safemode == 1)
6933                 mddev->safemode = 0;
6934         if (mddev->in_sync) {
6935                 spin_lock_irq(&mddev->write_lock);
6936                 if (mddev->in_sync) {
6937                         mddev->in_sync = 0;
6938                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6939                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6940                         md_wakeup_thread(mddev->thread);
6941                         did_change = 1;
6942                 }
6943                 spin_unlock_irq(&mddev->write_lock);
6944         }
6945         if (did_change)
6946                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6947         wait_event(mddev->sb_wait,
6948                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6949 }
6950
6951 void md_write_end(struct mddev *mddev)
6952 {
6953         if (atomic_dec_and_test(&mddev->writes_pending)) {
6954                 if (mddev->safemode == 2)
6955                         md_wakeup_thread(mddev->thread);
6956                 else if (mddev->safemode_delay)
6957                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6958         }
6959 }
6960
6961 /* md_allow_write(mddev)
6962  * Calling this ensures that the array is marked 'active' so that writes
6963  * may proceed without blocking.  It is important to call this before
6964  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6965  * Must be called with mddev_lock held.
6966  *
6967  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6968  * is dropped, so return -EAGAIN after notifying userspace.
6969  */
6970 int md_allow_write(struct mddev *mddev)
6971 {
6972         if (!mddev->pers)
6973                 return 0;
6974         if (mddev->ro)
6975                 return 0;
6976         if (!mddev->pers->sync_request)
6977                 return 0;
6978
6979         spin_lock_irq(&mddev->write_lock);
6980         if (mddev->in_sync) {
6981                 mddev->in_sync = 0;
6982                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6983                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6984                 if (mddev->safemode_delay &&
6985                     mddev->safemode == 0)
6986                         mddev->safemode = 1;
6987                 spin_unlock_irq(&mddev->write_lock);
6988                 md_update_sb(mddev, 0);
6989                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6990         } else
6991                 spin_unlock_irq(&mddev->write_lock);
6992
6993         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6994                 return -EAGAIN;
6995         else
6996                 return 0;
6997 }
6998 EXPORT_SYMBOL_GPL(md_allow_write);
6999
7000 #define SYNC_MARKS      10
7001 #define SYNC_MARK_STEP  (3*HZ)
7002 void md_do_sync(struct mddev *mddev)
7003 {
7004         struct mddev *mddev2;
7005         unsigned int currspeed = 0,
7006                  window;
7007         sector_t max_sectors,j, io_sectors;
7008         unsigned long mark[SYNC_MARKS];
7009         sector_t mark_cnt[SYNC_MARKS];
7010         int last_mark,m;
7011         struct list_head *tmp;
7012         sector_t last_check;
7013         int skipped = 0;
7014         struct md_rdev *rdev;
7015         char *desc;
7016
7017         /* just incase thread restarts... */
7018         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7019                 return;
7020         if (mddev->ro) /* never try to sync a read-only array */
7021                 return;
7022
7023         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7024                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7025                         desc = "data-check";
7026                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7027                         desc = "requested-resync";
7028                 else
7029                         desc = "resync";
7030         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7031                 desc = "reshape";
7032         else
7033                 desc = "recovery";
7034
7035         /* we overload curr_resync somewhat here.
7036          * 0 == not engaged in resync at all
7037          * 2 == checking that there is no conflict with another sync
7038          * 1 == like 2, but have yielded to allow conflicting resync to
7039          *              commense
7040          * other == active in resync - this many blocks
7041          *
7042          * Before starting a resync we must have set curr_resync to
7043          * 2, and then checked that every "conflicting" array has curr_resync
7044          * less than ours.  When we find one that is the same or higher
7045          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7046          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7047          * This will mean we have to start checking from the beginning again.
7048          *
7049          */
7050
7051         do {
7052                 mddev->curr_resync = 2;
7053
7054         try_again:
7055                 if (kthread_should_stop())
7056                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7057
7058                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7059                         goto skip;
7060                 for_each_mddev(mddev2, tmp) {
7061                         if (mddev2 == mddev)
7062                                 continue;
7063                         if (!mddev->parallel_resync
7064                         &&  mddev2->curr_resync
7065                         &&  match_mddev_units(mddev, mddev2)) {
7066                                 DEFINE_WAIT(wq);
7067                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7068                                         /* arbitrarily yield */
7069                                         mddev->curr_resync = 1;
7070                                         wake_up(&resync_wait);
7071                                 }
7072                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7073                                         /* no need to wait here, we can wait the next
7074                                          * time 'round when curr_resync == 2
7075                                          */
7076                                         continue;
7077                                 /* We need to wait 'interruptible' so as not to
7078                                  * contribute to the load average, and not to
7079                                  * be caught by 'softlockup'
7080                                  */
7081                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7082                                 if (!kthread_should_stop() &&
7083                                     mddev2->curr_resync >= mddev->curr_resync) {
7084                                         printk(KERN_INFO "md: delaying %s of %s"
7085                                                " until %s has finished (they"
7086                                                " share one or more physical units)\n",
7087                                                desc, mdname(mddev), mdname(mddev2));
7088                                         mddev_put(mddev2);
7089                                         if (signal_pending(current))
7090                                                 flush_signals(current);
7091                                         schedule();
7092                                         finish_wait(&resync_wait, &wq);
7093                                         goto try_again;
7094                                 }
7095                                 finish_wait(&resync_wait, &wq);
7096                         }
7097                 }
7098         } while (mddev->curr_resync < 2);
7099
7100         j = 0;
7101         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7102                 /* resync follows the size requested by the personality,
7103                  * which defaults to physical size, but can be virtual size
7104                  */
7105                 max_sectors = mddev->resync_max_sectors;
7106                 mddev->resync_mismatches = 0;
7107                 /* we don't use the checkpoint if there's a bitmap */
7108                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7109                         j = mddev->resync_min;
7110                 else if (!mddev->bitmap)
7111                         j = mddev->recovery_cp;
7112
7113         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7114                 max_sectors = mddev->dev_sectors;
7115         else {
7116                 /* recovery follows the physical size of devices */
7117                 max_sectors = mddev->dev_sectors;
7118                 j = MaxSector;
7119                 rcu_read_lock();
7120                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7121                         if (rdev->raid_disk >= 0 &&
7122                             !test_bit(Faulty, &rdev->flags) &&
7123                             !test_bit(In_sync, &rdev->flags) &&
7124                             rdev->recovery_offset < j)
7125                                 j = rdev->recovery_offset;
7126                 rcu_read_unlock();
7127         }
7128
7129         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7130         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7131                 " %d KB/sec/disk.\n", speed_min(mddev));
7132         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7133                "(but not more than %d KB/sec) for %s.\n",
7134                speed_max(mddev), desc);
7135
7136         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7137
7138         io_sectors = 0;
7139         for (m = 0; m < SYNC_MARKS; m++) {
7140                 mark[m] = jiffies;
7141                 mark_cnt[m] = io_sectors;
7142         }
7143         last_mark = 0;
7144         mddev->resync_mark = mark[last_mark];
7145         mddev->resync_mark_cnt = mark_cnt[last_mark];
7146
7147         /*
7148          * Tune reconstruction:
7149          */
7150         window = 32*(PAGE_SIZE/512);
7151         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7152                 window/2, (unsigned long long)max_sectors/2);
7153
7154         atomic_set(&mddev->recovery_active, 0);
7155         last_check = 0;
7156
7157         if (j>2) {
7158                 printk(KERN_INFO 
7159                        "md: resuming %s of %s from checkpoint.\n",
7160                        desc, mdname(mddev));
7161                 mddev->curr_resync = j;
7162         }
7163         mddev->curr_resync_completed = j;
7164
7165         while (j < max_sectors) {
7166                 sector_t sectors;
7167
7168                 skipped = 0;
7169
7170                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7171                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7172                       (mddev->curr_resync - mddev->curr_resync_completed)
7173                       > (max_sectors >> 4)) ||
7174                      (j - mddev->curr_resync_completed)*2
7175                      >= mddev->resync_max - mddev->curr_resync_completed
7176                             )) {
7177                         /* time to update curr_resync_completed */
7178                         wait_event(mddev->recovery_wait,
7179                                    atomic_read(&mddev->recovery_active) == 0);
7180                         mddev->curr_resync_completed = j;
7181                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7182                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7183                 }
7184
7185                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7186                         /* As this condition is controlled by user-space,
7187                          * we can block indefinitely, so use '_interruptible'
7188                          * to avoid triggering warnings.
7189                          */
7190                         flush_signals(current); /* just in case */
7191                         wait_event_interruptible(mddev->recovery_wait,
7192                                                  mddev->resync_max > j
7193                                                  || kthread_should_stop());
7194                 }
7195
7196                 if (kthread_should_stop())
7197                         goto interrupted;
7198
7199                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7200                                                   currspeed < speed_min(mddev));
7201                 if (sectors == 0) {
7202                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7203                         goto out;
7204                 }
7205
7206                 if (!skipped) { /* actual IO requested */
7207                         io_sectors += sectors;
7208                         atomic_add(sectors, &mddev->recovery_active);
7209                 }
7210
7211                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7212                         break;
7213
7214                 j += sectors;
7215                 if (j>1) mddev->curr_resync = j;
7216                 mddev->curr_mark_cnt = io_sectors;
7217                 if (last_check == 0)
7218                         /* this is the earliest that rebuild will be
7219                          * visible in /proc/mdstat
7220                          */
7221                         md_new_event(mddev);
7222
7223                 if (last_check + window > io_sectors || j == max_sectors)
7224                         continue;
7225
7226                 last_check = io_sectors;
7227         repeat:
7228                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7229                         /* step marks */
7230                         int next = (last_mark+1) % SYNC_MARKS;
7231
7232                         mddev->resync_mark = mark[next];
7233                         mddev->resync_mark_cnt = mark_cnt[next];
7234                         mark[next] = jiffies;
7235                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7236                         last_mark = next;
7237                 }
7238
7239
7240                 if (kthread_should_stop())
7241                         goto interrupted;
7242
7243
7244                 /*
7245                  * this loop exits only if either when we are slower than
7246                  * the 'hard' speed limit, or the system was IO-idle for
7247                  * a jiffy.
7248                  * the system might be non-idle CPU-wise, but we only care
7249                  * about not overloading the IO subsystem. (things like an
7250                  * e2fsck being done on the RAID array should execute fast)
7251                  */
7252                 cond_resched();
7253
7254                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7255                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7256
7257                 if (currspeed > speed_min(mddev)) {
7258                         if ((currspeed > speed_max(mddev)) ||
7259                                         !is_mddev_idle(mddev, 0)) {
7260                                 msleep(500);
7261                                 goto repeat;
7262                         }
7263                 }
7264         }
7265         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7266         /*
7267          * this also signals 'finished resyncing' to md_stop
7268          */
7269  out:
7270         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7271
7272         /* tell personality that we are finished */
7273         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7274
7275         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7276             mddev->curr_resync > 2) {
7277                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7278                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7279                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7280                                         printk(KERN_INFO
7281                                                "md: checkpointing %s of %s.\n",
7282                                                desc, mdname(mddev));
7283                                         mddev->recovery_cp = mddev->curr_resync;
7284                                 }
7285                         } else
7286                                 mddev->recovery_cp = MaxSector;
7287                 } else {
7288                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7289                                 mddev->curr_resync = MaxSector;
7290                         rcu_read_lock();
7291                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7292                                 if (rdev->raid_disk >= 0 &&
7293                                     mddev->delta_disks >= 0 &&
7294                                     !test_bit(Faulty, &rdev->flags) &&
7295                                     !test_bit(In_sync, &rdev->flags) &&
7296                                     rdev->recovery_offset < mddev->curr_resync)
7297                                         rdev->recovery_offset = mddev->curr_resync;
7298                         rcu_read_unlock();
7299                 }
7300         }
7301         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7302
7303  skip:
7304         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7305                 /* We completed so min/max setting can be forgotten if used. */
7306                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7307                         mddev->resync_min = 0;
7308                 mddev->resync_max = MaxSector;
7309         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7310                 mddev->resync_min = mddev->curr_resync_completed;
7311         mddev->curr_resync = 0;
7312         wake_up(&resync_wait);
7313         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7314         md_wakeup_thread(mddev->thread);
7315         return;
7316
7317  interrupted:
7318         /*
7319          * got a signal, exit.
7320          */
7321         printk(KERN_INFO
7322                "md: md_do_sync() got signal ... exiting\n");
7323         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7324         goto out;
7325
7326 }
7327 EXPORT_SYMBOL_GPL(md_do_sync);
7328
7329 static int remove_and_add_spares(struct mddev *mddev)
7330 {
7331         struct md_rdev *rdev;
7332         int spares = 0;
7333
7334         mddev->curr_resync_completed = 0;
7335
7336         list_for_each_entry(rdev, &mddev->disks, same_set)
7337                 if (rdev->raid_disk >= 0 &&
7338                     !test_bit(Blocked, &rdev->flags) &&
7339                     (test_bit(Faulty, &rdev->flags) ||
7340                      ! test_bit(In_sync, &rdev->flags)) &&
7341                     atomic_read(&rdev->nr_pending)==0) {
7342                         if (mddev->pers->hot_remove_disk(
7343                                     mddev, rdev) == 0) {
7344                                 sysfs_unlink_rdev(mddev, rdev);
7345                                 rdev->raid_disk = -1;
7346                         }
7347                 }
7348
7349         if (mddev->degraded) {
7350                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7351                         if (rdev->raid_disk >= 0 &&
7352                             !test_bit(In_sync, &rdev->flags) &&
7353                             !test_bit(Faulty, &rdev->flags))
7354                                 spares++;
7355                         if (rdev->raid_disk < 0
7356                             && !test_bit(Faulty, &rdev->flags)) {
7357                                 rdev->recovery_offset = 0;
7358                                 if (mddev->pers->
7359                                     hot_add_disk(mddev, rdev) == 0) {
7360                                         if (sysfs_link_rdev(mddev, rdev))
7361                                                 /* failure here is OK */;
7362                                         spares++;
7363                                         md_new_event(mddev);
7364                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7365                                 }
7366                         }
7367                 }
7368         }
7369         return spares;
7370 }
7371
7372 static void reap_sync_thread(struct mddev *mddev)
7373 {
7374         struct md_rdev *rdev;
7375
7376         /* resync has finished, collect result */
7377         md_unregister_thread(&mddev->sync_thread);
7378         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7379             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7380                 /* success...*/
7381                 /* activate any spares */
7382                 if (mddev->pers->spare_active(mddev))
7383                         sysfs_notify(&mddev->kobj, NULL,
7384                                      "degraded");
7385         }
7386         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7387             mddev->pers->finish_reshape)
7388                 mddev->pers->finish_reshape(mddev);
7389
7390         /* If array is no-longer degraded, then any saved_raid_disk
7391          * information must be scrapped.  Also if any device is now
7392          * In_sync we must scrape the saved_raid_disk for that device
7393          * do the superblock for an incrementally recovered device
7394          * written out.
7395          */
7396         list_for_each_entry(rdev, &mddev->disks, same_set)
7397                 if (!mddev->degraded ||
7398                     test_bit(In_sync, &rdev->flags))
7399                         rdev->saved_raid_disk = -1;
7400
7401         md_update_sb(mddev, 1);
7402         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7403         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7404         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7405         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7406         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7407         /* flag recovery needed just to double check */
7408         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7409         sysfs_notify_dirent_safe(mddev->sysfs_action);
7410         md_new_event(mddev);
7411         if (mddev->event_work.func)
7412                 queue_work(md_misc_wq, &mddev->event_work);
7413 }
7414
7415 /*
7416  * This routine is regularly called by all per-raid-array threads to
7417  * deal with generic issues like resync and super-block update.
7418  * Raid personalities that don't have a thread (linear/raid0) do not
7419  * need this as they never do any recovery or update the superblock.
7420  *
7421  * It does not do any resync itself, but rather "forks" off other threads
7422  * to do that as needed.
7423  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7424  * "->recovery" and create a thread at ->sync_thread.
7425  * When the thread finishes it sets MD_RECOVERY_DONE
7426  * and wakeups up this thread which will reap the thread and finish up.
7427  * This thread also removes any faulty devices (with nr_pending == 0).
7428  *
7429  * The overall approach is:
7430  *  1/ if the superblock needs updating, update it.
7431  *  2/ If a recovery thread is running, don't do anything else.
7432  *  3/ If recovery has finished, clean up, possibly marking spares active.
7433  *  4/ If there are any faulty devices, remove them.
7434  *  5/ If array is degraded, try to add spares devices
7435  *  6/ If array has spares or is not in-sync, start a resync thread.
7436  */
7437 void md_check_recovery(struct mddev *mddev)
7438 {
7439         if (mddev->suspended)
7440                 return;
7441
7442         if (mddev->bitmap)
7443                 bitmap_daemon_work(mddev);
7444
7445         if (signal_pending(current)) {
7446                 if (mddev->pers->sync_request && !mddev->external) {
7447                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7448                                mdname(mddev));
7449                         mddev->safemode = 2;
7450                 }
7451                 flush_signals(current);
7452         }
7453
7454         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7455                 return;
7456         if ( ! (
7457                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7458                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7459                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7460                 (mddev->external == 0 && mddev->safemode == 1) ||
7461                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7462                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7463                 ))
7464                 return;
7465
7466         if (mddev_trylock(mddev)) {
7467                 int spares = 0;
7468
7469                 if (mddev->ro) {
7470                         /* Only thing we do on a ro array is remove
7471                          * failed devices.
7472                          */
7473                         struct md_rdev *rdev;
7474                         list_for_each_entry(rdev, &mddev->disks, same_set)
7475                                 if (rdev->raid_disk >= 0 &&
7476                                     !test_bit(Blocked, &rdev->flags) &&
7477                                     test_bit(Faulty, &rdev->flags) &&
7478                                     atomic_read(&rdev->nr_pending)==0) {
7479                                         if (mddev->pers->hot_remove_disk(
7480                                                     mddev, rdev) == 0) {
7481                                                 sysfs_unlink_rdev(mddev, rdev);
7482                                                 rdev->raid_disk = -1;
7483                                         }
7484                                 }
7485                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7486                         goto unlock;
7487                 }
7488
7489                 if (!mddev->external) {
7490                         int did_change = 0;
7491                         spin_lock_irq(&mddev->write_lock);
7492                         if (mddev->safemode &&
7493                             !atomic_read(&mddev->writes_pending) &&
7494                             !mddev->in_sync &&
7495                             mddev->recovery_cp == MaxSector) {
7496                                 mddev->in_sync = 1;
7497                                 did_change = 1;
7498                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7499                         }
7500                         if (mddev->safemode == 1)
7501                                 mddev->safemode = 0;
7502                         spin_unlock_irq(&mddev->write_lock);
7503                         if (did_change)
7504                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7505                 }
7506
7507                 if (mddev->flags)
7508                         md_update_sb(mddev, 0);
7509
7510                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7511                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7512                         /* resync/recovery still happening */
7513                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7514                         goto unlock;
7515                 }
7516                 if (mddev->sync_thread) {
7517                         reap_sync_thread(mddev);
7518                         goto unlock;
7519                 }
7520                 /* Set RUNNING before clearing NEEDED to avoid
7521                  * any transients in the value of "sync_action".
7522                  */
7523                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7524                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7525                 /* Clear some bits that don't mean anything, but
7526                  * might be left set
7527                  */
7528                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7529                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7530
7531                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7532                         goto unlock;
7533                 /* no recovery is running.
7534                  * remove any failed drives, then
7535                  * add spares if possible.
7536                  * Spare are also removed and re-added, to allow
7537                  * the personality to fail the re-add.
7538                  */
7539
7540                 if (mddev->reshape_position != MaxSector) {
7541                         if (mddev->pers->check_reshape == NULL ||
7542                             mddev->pers->check_reshape(mddev) != 0)
7543                                 /* Cannot proceed */
7544                                 goto unlock;
7545                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7546                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7547                 } else if ((spares = remove_and_add_spares(mddev))) {
7548                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7549                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7550                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7551                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7552                 } else if (mddev->recovery_cp < MaxSector) {
7553                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7554                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7555                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7556                         /* nothing to be done ... */
7557                         goto unlock;
7558
7559                 if (mddev->pers->sync_request) {
7560                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7561                                 /* We are adding a device or devices to an array
7562                                  * which has the bitmap stored on all devices.
7563                                  * So make sure all bitmap pages get written
7564                                  */
7565                                 bitmap_write_all(mddev->bitmap);
7566                         }
7567                         mddev->sync_thread = md_register_thread(md_do_sync,
7568                                                                 mddev,
7569                                                                 "resync");
7570                         if (!mddev->sync_thread) {
7571                                 printk(KERN_ERR "%s: could not start resync"
7572                                         " thread...\n", 
7573                                         mdname(mddev));
7574                                 /* leave the spares where they are, it shouldn't hurt */
7575                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7576                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7577                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7578                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7579                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7580                         } else
7581                                 md_wakeup_thread(mddev->sync_thread);
7582                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7583                         md_new_event(mddev);
7584                 }
7585         unlock:
7586                 if (!mddev->sync_thread) {
7587                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7588                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7589                                                &mddev->recovery))
7590                                 if (mddev->sysfs_action)
7591                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7592                 }
7593                 mddev_unlock(mddev);
7594         }
7595 }
7596
7597 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7598 {
7599         sysfs_notify_dirent_safe(rdev->sysfs_state);
7600         wait_event_timeout(rdev->blocked_wait,
7601                            !test_bit(Blocked, &rdev->flags) &&
7602                            !test_bit(BlockedBadBlocks, &rdev->flags),
7603                            msecs_to_jiffies(5000));
7604         rdev_dec_pending(rdev, mddev);
7605 }
7606 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7607
7608
7609 /* Bad block management.
7610  * We can record which blocks on each device are 'bad' and so just
7611  * fail those blocks, or that stripe, rather than the whole device.
7612  * Entries in the bad-block table are 64bits wide.  This comprises:
7613  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7614  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7615  *  A 'shift' can be set so that larger blocks are tracked and
7616  *  consequently larger devices can be covered.
7617  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7618  *
7619  * Locking of the bad-block table uses a seqlock so md_is_badblock
7620  * might need to retry if it is very unlucky.
7621  * We will sometimes want to check for bad blocks in a bi_end_io function,
7622  * so we use the write_seqlock_irq variant.
7623  *
7624  * When looking for a bad block we specify a range and want to
7625  * know if any block in the range is bad.  So we binary-search
7626  * to the last range that starts at-or-before the given endpoint,
7627  * (or "before the sector after the target range")
7628  * then see if it ends after the given start.
7629  * We return
7630  *  0 if there are no known bad blocks in the range
7631  *  1 if there are known bad block which are all acknowledged
7632  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7633  * plus the start/length of the first bad section we overlap.
7634  */
7635 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7636                    sector_t *first_bad, int *bad_sectors)
7637 {
7638         int hi;
7639         int lo = 0;
7640         u64 *p = bb->page;
7641         int rv = 0;
7642         sector_t target = s + sectors;
7643         unsigned seq;
7644
7645         if (bb->shift > 0) {
7646                 /* round the start down, and the end up */
7647                 s >>= bb->shift;
7648                 target += (1<<bb->shift) - 1;
7649                 target >>= bb->shift;
7650                 sectors = target - s;
7651         }
7652         /* 'target' is now the first block after the bad range */
7653
7654 retry:
7655         seq = read_seqbegin(&bb->lock);
7656
7657         hi = bb->count;
7658
7659         /* Binary search between lo and hi for 'target'
7660          * i.e. for the last range that starts before 'target'
7661          */
7662         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7663          * are known not to be the last range before target.
7664          * VARIANT: hi-lo is the number of possible
7665          * ranges, and decreases until it reaches 1
7666          */
7667         while (hi - lo > 1) {
7668                 int mid = (lo + hi) / 2;
7669                 sector_t a = BB_OFFSET(p[mid]);
7670                 if (a < target)
7671                         /* This could still be the one, earlier ranges
7672                          * could not. */
7673                         lo = mid;
7674                 else
7675                         /* This and later ranges are definitely out. */
7676                         hi = mid;
7677         }
7678         /* 'lo' might be the last that started before target, but 'hi' isn't */
7679         if (hi > lo) {
7680                 /* need to check all range that end after 's' to see if
7681                  * any are unacknowledged.
7682                  */
7683                 while (lo >= 0 &&
7684                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7685                         if (BB_OFFSET(p[lo]) < target) {
7686                                 /* starts before the end, and finishes after
7687                                  * the start, so they must overlap
7688                                  */
7689                                 if (rv != -1 && BB_ACK(p[lo]))
7690                                         rv = 1;
7691                                 else
7692                                         rv = -1;
7693                                 *first_bad = BB_OFFSET(p[lo]);
7694                                 *bad_sectors = BB_LEN(p[lo]);
7695                         }
7696                         lo--;
7697                 }
7698         }
7699
7700         if (read_seqretry(&bb->lock, seq))
7701                 goto retry;
7702
7703         return rv;
7704 }
7705 EXPORT_SYMBOL_GPL(md_is_badblock);
7706
7707 /*
7708  * Add a range of bad blocks to the table.
7709  * This might extend the table, or might contract it
7710  * if two adjacent ranges can be merged.
7711  * We binary-search to find the 'insertion' point, then
7712  * decide how best to handle it.
7713  */
7714 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7715                             int acknowledged)
7716 {
7717         u64 *p;
7718         int lo, hi;
7719         int rv = 1;
7720
7721         if (bb->shift < 0)
7722                 /* badblocks are disabled */
7723                 return 0;
7724
7725         if (bb->shift) {
7726                 /* round the start down, and the end up */
7727                 sector_t next = s + sectors;
7728                 s >>= bb->shift;
7729                 next += (1<<bb->shift) - 1;
7730                 next >>= bb->shift;
7731                 sectors = next - s;
7732         }
7733
7734         write_seqlock_irq(&bb->lock);
7735
7736         p = bb->page;
7737         lo = 0;
7738         hi = bb->count;
7739         /* Find the last range that starts at-or-before 's' */
7740         while (hi - lo > 1) {
7741                 int mid = (lo + hi) / 2;
7742                 sector_t a = BB_OFFSET(p[mid]);
7743                 if (a <= s)
7744                         lo = mid;
7745                 else
7746                         hi = mid;
7747         }
7748         if (hi > lo && BB_OFFSET(p[lo]) > s)
7749                 hi = lo;
7750
7751         if (hi > lo) {
7752                 /* we found a range that might merge with the start
7753                  * of our new range
7754                  */
7755                 sector_t a = BB_OFFSET(p[lo]);
7756                 sector_t e = a + BB_LEN(p[lo]);
7757                 int ack = BB_ACK(p[lo]);
7758                 if (e >= s) {
7759                         /* Yes, we can merge with a previous range */
7760                         if (s == a && s + sectors >= e)
7761                                 /* new range covers old */
7762                                 ack = acknowledged;
7763                         else
7764                                 ack = ack && acknowledged;
7765
7766                         if (e < s + sectors)
7767                                 e = s + sectors;
7768                         if (e - a <= BB_MAX_LEN) {
7769                                 p[lo] = BB_MAKE(a, e-a, ack);
7770                                 s = e;
7771                         } else {
7772                                 /* does not all fit in one range,
7773                                  * make p[lo] maximal
7774                                  */
7775                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7776                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7777                                 s = a + BB_MAX_LEN;
7778                         }
7779                         sectors = e - s;
7780                 }
7781         }
7782         if (sectors && hi < bb->count) {
7783                 /* 'hi' points to the first range that starts after 's'.
7784                  * Maybe we can merge with the start of that range */
7785                 sector_t a = BB_OFFSET(p[hi]);
7786                 sector_t e = a + BB_LEN(p[hi]);
7787                 int ack = BB_ACK(p[hi]);
7788                 if (a <= s + sectors) {
7789                         /* merging is possible */
7790                         if (e <= s + sectors) {
7791                                 /* full overlap */
7792                                 e = s + sectors;
7793                                 ack = acknowledged;
7794                         } else
7795                                 ack = ack && acknowledged;
7796
7797                         a = s;
7798                         if (e - a <= BB_MAX_LEN) {
7799                                 p[hi] = BB_MAKE(a, e-a, ack);
7800                                 s = e;
7801                         } else {
7802                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7803                                 s = a + BB_MAX_LEN;
7804                         }
7805                         sectors = e - s;
7806                         lo = hi;
7807                         hi++;
7808                 }
7809         }
7810         if (sectors == 0 && hi < bb->count) {
7811                 /* we might be able to combine lo and hi */
7812                 /* Note: 's' is at the end of 'lo' */
7813                 sector_t a = BB_OFFSET(p[hi]);
7814                 int lolen = BB_LEN(p[lo]);
7815                 int hilen = BB_LEN(p[hi]);
7816                 int newlen = lolen + hilen - (s - a);
7817                 if (s >= a && newlen < BB_MAX_LEN) {
7818                         /* yes, we can combine them */
7819                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7820                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7821                         memmove(p + hi, p + hi + 1,
7822                                 (bb->count - hi - 1) * 8);
7823                         bb->count--;
7824                 }
7825         }
7826         while (sectors) {
7827                 /* didn't merge (it all).
7828                  * Need to add a range just before 'hi' */
7829                 if (bb->count >= MD_MAX_BADBLOCKS) {
7830                         /* No room for more */
7831                         rv = 0;
7832                         break;
7833                 } else {
7834                         int this_sectors = sectors;
7835                         memmove(p + hi + 1, p + hi,
7836                                 (bb->count - hi) * 8);
7837                         bb->count++;
7838
7839                         if (this_sectors > BB_MAX_LEN)
7840                                 this_sectors = BB_MAX_LEN;
7841                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7842                         sectors -= this_sectors;
7843                         s += this_sectors;
7844                 }
7845         }
7846
7847         bb->changed = 1;
7848         if (!acknowledged)
7849                 bb->unacked_exist = 1;
7850         write_sequnlock_irq(&bb->lock);
7851
7852         return rv;
7853 }
7854
7855 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7856                        int acknowledged)
7857 {
7858         int rv = md_set_badblocks(&rdev->badblocks,
7859                                   s + rdev->data_offset, sectors, acknowledged);
7860         if (rv) {
7861                 /* Make sure they get written out promptly */
7862                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7863                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7864                 md_wakeup_thread(rdev->mddev->thread);
7865         }
7866         return rv;
7867 }
7868 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7869
7870 /*
7871  * Remove a range of bad blocks from the table.
7872  * This may involve extending the table if we spilt a region,
7873  * but it must not fail.  So if the table becomes full, we just
7874  * drop the remove request.
7875  */
7876 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7877 {
7878         u64 *p;
7879         int lo, hi;
7880         sector_t target = s + sectors;
7881         int rv = 0;
7882
7883         if (bb->shift > 0) {
7884                 /* When clearing we round the start up and the end down.
7885                  * This should not matter as the shift should align with
7886                  * the block size and no rounding should ever be needed.
7887                  * However it is better the think a block is bad when it
7888                  * isn't than to think a block is not bad when it is.
7889                  */
7890                 s += (1<<bb->shift) - 1;
7891                 s >>= bb->shift;
7892                 target >>= bb->shift;
7893                 sectors = target - s;
7894         }
7895
7896         write_seqlock_irq(&bb->lock);
7897
7898         p = bb->page;
7899         lo = 0;
7900         hi = bb->count;
7901         /* Find the last range that starts before 'target' */
7902         while (hi - lo > 1) {
7903                 int mid = (lo + hi) / 2;
7904                 sector_t a = BB_OFFSET(p[mid]);
7905                 if (a < target)
7906                         lo = mid;
7907                 else
7908                         hi = mid;
7909         }
7910         if (hi > lo) {
7911                 /* p[lo] is the last range that could overlap the
7912                  * current range.  Earlier ranges could also overlap,
7913                  * but only this one can overlap the end of the range.
7914                  */
7915                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7916                         /* Partial overlap, leave the tail of this range */
7917                         int ack = BB_ACK(p[lo]);
7918                         sector_t a = BB_OFFSET(p[lo]);
7919                         sector_t end = a + BB_LEN(p[lo]);
7920
7921                         if (a < s) {
7922                                 /* we need to split this range */
7923                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7924                                         rv = 0;
7925                                         goto out;
7926                                 }
7927                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7928                                 bb->count++;
7929                                 p[lo] = BB_MAKE(a, s-a, ack);
7930                                 lo++;
7931                         }
7932                         p[lo] = BB_MAKE(target, end - target, ack);
7933                         /* there is no longer an overlap */
7934                         hi = lo;
7935                         lo--;
7936                 }
7937                 while (lo >= 0 &&
7938                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7939                         /* This range does overlap */
7940                         if (BB_OFFSET(p[lo]) < s) {
7941                                 /* Keep the early parts of this range. */
7942                                 int ack = BB_ACK(p[lo]);
7943                                 sector_t start = BB_OFFSET(p[lo]);
7944                                 p[lo] = BB_MAKE(start, s - start, ack);
7945                                 /* now low doesn't overlap, so.. */
7946                                 break;
7947                         }
7948                         lo--;
7949                 }
7950                 /* 'lo' is strictly before, 'hi' is strictly after,
7951                  * anything between needs to be discarded
7952                  */
7953                 if (hi - lo > 1) {
7954                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7955                         bb->count -= (hi - lo - 1);
7956                 }
7957         }
7958
7959         bb->changed = 1;
7960 out:
7961         write_sequnlock_irq(&bb->lock);
7962         return rv;
7963 }
7964
7965 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7966 {
7967         return md_clear_badblocks(&rdev->badblocks,
7968                                   s + rdev->data_offset,
7969                                   sectors);
7970 }
7971 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7972
7973 /*
7974  * Acknowledge all bad blocks in a list.
7975  * This only succeeds if ->changed is clear.  It is used by
7976  * in-kernel metadata updates
7977  */
7978 void md_ack_all_badblocks(struct badblocks *bb)
7979 {
7980         if (bb->page == NULL || bb->changed)
7981                 /* no point even trying */
7982                 return;
7983         write_seqlock_irq(&bb->lock);
7984
7985         if (bb->changed == 0) {
7986                 u64 *p = bb->page;
7987                 int i;
7988                 for (i = 0; i < bb->count ; i++) {
7989                         if (!BB_ACK(p[i])) {
7990                                 sector_t start = BB_OFFSET(p[i]);
7991                                 int len = BB_LEN(p[i]);
7992                                 p[i] = BB_MAKE(start, len, 1);
7993                         }
7994                 }
7995                 bb->unacked_exist = 0;
7996         }
7997         write_sequnlock_irq(&bb->lock);
7998 }
7999 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8000
8001 /* sysfs access to bad-blocks list.
8002  * We present two files.
8003  * 'bad-blocks' lists sector numbers and lengths of ranges that
8004  *    are recorded as bad.  The list is truncated to fit within
8005  *    the one-page limit of sysfs.
8006  *    Writing "sector length" to this file adds an acknowledged
8007  *    bad block list.
8008  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8009  *    been acknowledged.  Writing to this file adds bad blocks
8010  *    without acknowledging them.  This is largely for testing.
8011  */
8012
8013 static ssize_t
8014 badblocks_show(struct badblocks *bb, char *page, int unack)
8015 {
8016         size_t len;
8017         int i;
8018         u64 *p = bb->page;
8019         unsigned seq;
8020
8021         if (bb->shift < 0)
8022                 return 0;
8023
8024 retry:
8025         seq = read_seqbegin(&bb->lock);
8026
8027         len = 0;
8028         i = 0;
8029
8030         while (len < PAGE_SIZE && i < bb->count) {
8031                 sector_t s = BB_OFFSET(p[i]);
8032                 unsigned int length = BB_LEN(p[i]);
8033                 int ack = BB_ACK(p[i]);
8034                 i++;
8035
8036                 if (unack && ack)
8037                         continue;
8038
8039                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8040                                 (unsigned long long)s << bb->shift,
8041                                 length << bb->shift);
8042         }
8043         if (unack && len == 0)
8044                 bb->unacked_exist = 0;
8045
8046         if (read_seqretry(&bb->lock, seq))
8047                 goto retry;
8048
8049         return len;
8050 }
8051
8052 #define DO_DEBUG 1
8053
8054 static ssize_t
8055 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8056 {
8057         unsigned long long sector;
8058         int length;
8059         char newline;
8060 #ifdef DO_DEBUG
8061         /* Allow clearing via sysfs *only* for testing/debugging.
8062          * Normally only a successful write may clear a badblock
8063          */
8064         int clear = 0;
8065         if (page[0] == '-') {
8066                 clear = 1;
8067                 page++;
8068         }
8069 #endif /* DO_DEBUG */
8070
8071         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8072         case 3:
8073                 if (newline != '\n')
8074                         return -EINVAL;
8075         case 2:
8076                 if (length <= 0)
8077                         return -EINVAL;
8078                 break;
8079         default:
8080                 return -EINVAL;
8081         }
8082
8083 #ifdef DO_DEBUG
8084         if (clear) {
8085                 md_clear_badblocks(bb, sector, length);
8086                 return len;
8087         }
8088 #endif /* DO_DEBUG */
8089         if (md_set_badblocks(bb, sector, length, !unack))
8090                 return len;
8091         else
8092                 return -ENOSPC;
8093 }
8094
8095 static int md_notify_reboot(struct notifier_block *this,
8096                             unsigned long code, void *x)
8097 {
8098         struct list_head *tmp;
8099         struct mddev *mddev;
8100         int need_delay = 0;
8101
8102         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8103
8104                 printk(KERN_INFO "md: stopping all md devices.\n");
8105
8106                 for_each_mddev(mddev, tmp) {
8107                         if (mddev_trylock(mddev)) {
8108                                 /* Force a switch to readonly even array
8109                                  * appears to still be in use.  Hence
8110                                  * the '100'.
8111                                  */
8112                                 md_set_readonly(mddev, 100);
8113                                 mddev_unlock(mddev);
8114                         }
8115                         need_delay = 1;
8116                 }
8117                 /*
8118                  * certain more exotic SCSI devices are known to be
8119                  * volatile wrt too early system reboots. While the
8120                  * right place to handle this issue is the given
8121                  * driver, we do want to have a safe RAID driver ...
8122                  */
8123                 if (need_delay)
8124                         mdelay(1000*1);
8125         }
8126         return NOTIFY_DONE;
8127 }
8128
8129 static struct notifier_block md_notifier = {
8130         .notifier_call  = md_notify_reboot,
8131         .next           = NULL,
8132         .priority       = INT_MAX, /* before any real devices */
8133 };
8134
8135 static void md_geninit(void)
8136 {
8137         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8138
8139         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8140 }
8141
8142 static int __init md_init(void)
8143 {
8144         int ret = -ENOMEM;
8145
8146         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8147         if (!md_wq)
8148                 goto err_wq;
8149
8150         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8151         if (!md_misc_wq)
8152                 goto err_misc_wq;
8153
8154         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8155                 goto err_md;
8156
8157         if ((ret = register_blkdev(0, "mdp")) < 0)
8158                 goto err_mdp;
8159         mdp_major = ret;
8160
8161         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8162                             md_probe, NULL, NULL);
8163         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8164                             md_probe, NULL, NULL);
8165
8166         register_reboot_notifier(&md_notifier);
8167         raid_table_header = register_sysctl_table(raid_root_table);
8168
8169         md_geninit();
8170         return 0;
8171
8172 err_mdp:
8173         unregister_blkdev(MD_MAJOR, "md");
8174 err_md:
8175         destroy_workqueue(md_misc_wq);
8176 err_misc_wq:
8177         destroy_workqueue(md_wq);
8178 err_wq:
8179         return ret;
8180 }
8181
8182 #ifndef MODULE
8183
8184 /*
8185  * Searches all registered partitions for autorun RAID arrays
8186  * at boot time.
8187  */
8188
8189 static LIST_HEAD(all_detected_devices);
8190 struct detected_devices_node {
8191         struct list_head list;
8192         dev_t dev;
8193 };
8194
8195 void md_autodetect_dev(dev_t dev)
8196 {
8197         struct detected_devices_node *node_detected_dev;
8198
8199         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8200         if (node_detected_dev) {
8201                 node_detected_dev->dev = dev;
8202                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8203         } else {
8204                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8205                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8206         }
8207 }
8208
8209
8210 static void autostart_arrays(int part)
8211 {
8212         struct md_rdev *rdev;
8213         struct detected_devices_node *node_detected_dev;
8214         dev_t dev;
8215         int i_scanned, i_passed;
8216
8217         i_scanned = 0;
8218         i_passed = 0;
8219
8220         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8221
8222         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8223                 i_scanned++;
8224                 node_detected_dev = list_entry(all_detected_devices.next,
8225                                         struct detected_devices_node, list);
8226                 list_del(&node_detected_dev->list);
8227                 dev = node_detected_dev->dev;
8228                 kfree(node_detected_dev);
8229                 rdev = md_import_device(dev,0, 90);
8230                 if (IS_ERR(rdev))
8231                         continue;
8232
8233                 if (test_bit(Faulty, &rdev->flags)) {
8234                         MD_BUG();
8235                         continue;
8236                 }
8237                 set_bit(AutoDetected, &rdev->flags);
8238                 list_add(&rdev->same_set, &pending_raid_disks);
8239                 i_passed++;
8240         }
8241
8242         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8243                                                 i_scanned, i_passed);
8244
8245         autorun_devices(part);
8246 }
8247
8248 #endif /* !MODULE */
8249
8250 static __exit void md_exit(void)
8251 {
8252         struct mddev *mddev;
8253         struct list_head *tmp;
8254
8255         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8256         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8257
8258         unregister_blkdev(MD_MAJOR,"md");
8259         unregister_blkdev(mdp_major, "mdp");
8260         unregister_reboot_notifier(&md_notifier);
8261         unregister_sysctl_table(raid_table_header);
8262         remove_proc_entry("mdstat", NULL);
8263         for_each_mddev(mddev, tmp) {
8264                 export_array(mddev);
8265                 mddev->hold_active = 0;
8266         }
8267         destroy_workqueue(md_misc_wq);
8268         destroy_workqueue(md_wq);
8269 }
8270
8271 subsys_initcall(md_init);
8272 module_exit(md_exit)
8273
8274 static int get_ro(char *buffer, struct kernel_param *kp)
8275 {
8276         return sprintf(buffer, "%d", start_readonly);
8277 }
8278 static int set_ro(const char *val, struct kernel_param *kp)
8279 {
8280         char *e;
8281         int num = simple_strtoul(val, &e, 10);
8282         if (*val && (*e == '\0' || *e == '\n')) {
8283                 start_readonly = num;
8284                 return 0;
8285         }
8286         return -EINVAL;
8287 }
8288
8289 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8290 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8291
8292 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8293
8294 EXPORT_SYMBOL(register_md_personality);
8295 EXPORT_SYMBOL(unregister_md_personality);
8296 EXPORT_SYMBOL(md_error);
8297 EXPORT_SYMBOL(md_done_sync);
8298 EXPORT_SYMBOL(md_write_start);
8299 EXPORT_SYMBOL(md_write_end);
8300 EXPORT_SYMBOL(md_register_thread);
8301 EXPORT_SYMBOL(md_unregister_thread);
8302 EXPORT_SYMBOL(md_wakeup_thread);
8303 EXPORT_SYMBOL(md_check_recovery);
8304 MODULE_LICENSE("GPL");
8305 MODULE_DESCRIPTION("MD RAID framework");
8306 MODULE_ALIAS("md");
8307 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);