]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
Merge branch 'writeback-workqueue' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
198
199         bio_advance(bio, offset << 9);
200
201         bio->bi_size = size;
202
203         /* avoid any complications with bi_idx being non-zero*/
204         if (bio->bi_idx) {
205                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
206                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
207                 bio->bi_vcnt -= bio->bi_idx;
208                 bio->bi_idx = 0;
209         }
210         /* Make sure vcnt and last bv are not too big */
211         bio_for_each_segment(bvec, bio, i) {
212                 if (sofar + bvec->bv_len > size)
213                         bvec->bv_len = size - sofar;
214                 if (bvec->bv_len == 0) {
215                         bio->bi_vcnt = i;
216                         break;
217                 }
218                 sofar += bvec->bv_len;
219         }
220 }
221 EXPORT_SYMBOL_GPL(md_trim_bio);
222
223 /*
224  * We have a system wide 'event count' that is incremented
225  * on any 'interesting' event, and readers of /proc/mdstat
226  * can use 'poll' or 'select' to find out when the event
227  * count increases.
228  *
229  * Events are:
230  *  start array, stop array, error, add device, remove device,
231  *  start build, activate spare
232  */
233 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
234 static atomic_t md_event_count;
235 void md_new_event(struct mddev *mddev)
236 {
237         atomic_inc(&md_event_count);
238         wake_up(&md_event_waiters);
239 }
240 EXPORT_SYMBOL_GPL(md_new_event);
241
242 /* Alternate version that can be called from interrupts
243  * when calling sysfs_notify isn't needed.
244  */
245 static void md_new_event_inintr(struct mddev *mddev)
246 {
247         atomic_inc(&md_event_count);
248         wake_up(&md_event_waiters);
249 }
250
251 /*
252  * Enables to iterate over all existing md arrays
253  * all_mddevs_lock protects this list.
254  */
255 static LIST_HEAD(all_mddevs);
256 static DEFINE_SPINLOCK(all_mddevs_lock);
257
258
259 /*
260  * iterates through all used mddevs in the system.
261  * We take care to grab the all_mddevs_lock whenever navigating
262  * the list, and to always hold a refcount when unlocked.
263  * Any code which breaks out of this loop while own
264  * a reference to the current mddev and must mddev_put it.
265  */
266 #define for_each_mddev(_mddev,_tmp)                                     \
267                                                                         \
268         for (({ spin_lock(&all_mddevs_lock);                            \
269                 _tmp = all_mddevs.next;                                 \
270                 _mddev = NULL;});                                       \
271              ({ if (_tmp != &all_mddevs)                                \
272                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
273                 spin_unlock(&all_mddevs_lock);                          \
274                 if (_mddev) mddev_put(_mddev);                          \
275                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
276                 _tmp != &all_mddevs;});                                 \
277              ({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = _tmp->next;})                                    \
279                 )
280
281
282 /* Rather than calling directly into the personality make_request function,
283  * IO requests come here first so that we can check if the device is
284  * being suspended pending a reconfiguration.
285  * We hold a refcount over the call to ->make_request.  By the time that
286  * call has finished, the bio has been linked into some internal structure
287  * and so is visible to ->quiesce(), so we don't need the refcount any more.
288  */
289 static void md_make_request(struct request_queue *q, struct bio *bio)
290 {
291         const int rw = bio_data_dir(bio);
292         struct mddev *mddev = q->queuedata;
293         int cpu;
294         unsigned int sectors;
295
296         if (mddev == NULL || mddev->pers == NULL
297             || !mddev->ready) {
298                 bio_io_error(bio);
299                 return;
300         }
301         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
302                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
303                 return;
304         }
305         smp_rmb(); /* Ensure implications of  'active' are visible */
306         rcu_read_lock();
307         if (mddev->suspended) {
308                 DEFINE_WAIT(__wait);
309                 for (;;) {
310                         prepare_to_wait(&mddev->sb_wait, &__wait,
311                                         TASK_UNINTERRUPTIBLE);
312                         if (!mddev->suspended)
313                                 break;
314                         rcu_read_unlock();
315                         schedule();
316                         rcu_read_lock();
317                 }
318                 finish_wait(&mddev->sb_wait, &__wait);
319         }
320         atomic_inc(&mddev->active_io);
321         rcu_read_unlock();
322
323         /*
324          * save the sectors now since our bio can
325          * go away inside make_request
326          */
327         sectors = bio_sectors(bio);
328         mddev->pers->make_request(mddev, bio);
329
330         cpu = part_stat_lock();
331         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
332         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
333         part_stat_unlock();
334
335         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
336                 wake_up(&mddev->sb_wait);
337 }
338
339 /* mddev_suspend makes sure no new requests are submitted
340  * to the device, and that any requests that have been submitted
341  * are completely handled.
342  * Once ->stop is called and completes, the module will be completely
343  * unused.
344  */
345 void mddev_suspend(struct mddev *mddev)
346 {
347         BUG_ON(mddev->suspended);
348         mddev->suspended = 1;
349         synchronize_rcu();
350         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
351         mddev->pers->quiesce(mddev, 1);
352
353         del_timer_sync(&mddev->safemode_timer);
354 }
355 EXPORT_SYMBOL_GPL(mddev_suspend);
356
357 void mddev_resume(struct mddev *mddev)
358 {
359         mddev->suspended = 0;
360         wake_up(&mddev->sb_wait);
361         mddev->pers->quiesce(mddev, 0);
362
363         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
364         md_wakeup_thread(mddev->thread);
365         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
366 }
367 EXPORT_SYMBOL_GPL(mddev_resume);
368
369 int mddev_congested(struct mddev *mddev, int bits)
370 {
371         return mddev->suspended;
372 }
373 EXPORT_SYMBOL(mddev_congested);
374
375 /*
376  * Generic flush handling for md
377  */
378
379 static void md_end_flush(struct bio *bio, int err)
380 {
381         struct md_rdev *rdev = bio->bi_private;
382         struct mddev *mddev = rdev->mddev;
383
384         rdev_dec_pending(rdev, mddev);
385
386         if (atomic_dec_and_test(&mddev->flush_pending)) {
387                 /* The pre-request flush has finished */
388                 queue_work(md_wq, &mddev->flush_work);
389         }
390         bio_put(bio);
391 }
392
393 static void md_submit_flush_data(struct work_struct *ws);
394
395 static void submit_flushes(struct work_struct *ws)
396 {
397         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
398         struct md_rdev *rdev;
399
400         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
401         atomic_set(&mddev->flush_pending, 1);
402         rcu_read_lock();
403         rdev_for_each_rcu(rdev, mddev)
404                 if (rdev->raid_disk >= 0 &&
405                     !test_bit(Faulty, &rdev->flags)) {
406                         /* Take two references, one is dropped
407                          * when request finishes, one after
408                          * we reclaim rcu_read_lock
409                          */
410                         struct bio *bi;
411                         atomic_inc(&rdev->nr_pending);
412                         atomic_inc(&rdev->nr_pending);
413                         rcu_read_unlock();
414                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
415                         bi->bi_end_io = md_end_flush;
416                         bi->bi_private = rdev;
417                         bi->bi_bdev = rdev->bdev;
418                         atomic_inc(&mddev->flush_pending);
419                         submit_bio(WRITE_FLUSH, bi);
420                         rcu_read_lock();
421                         rdev_dec_pending(rdev, mddev);
422                 }
423         rcu_read_unlock();
424         if (atomic_dec_and_test(&mddev->flush_pending))
425                 queue_work(md_wq, &mddev->flush_work);
426 }
427
428 static void md_submit_flush_data(struct work_struct *ws)
429 {
430         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
431         struct bio *bio = mddev->flush_bio;
432
433         if (bio->bi_size == 0)
434                 /* an empty barrier - all done */
435                 bio_endio(bio, 0);
436         else {
437                 bio->bi_rw &= ~REQ_FLUSH;
438                 mddev->pers->make_request(mddev, bio);
439         }
440
441         mddev->flush_bio = NULL;
442         wake_up(&mddev->sb_wait);
443 }
444
445 void md_flush_request(struct mddev *mddev, struct bio *bio)
446 {
447         spin_lock_irq(&mddev->write_lock);
448         wait_event_lock_irq(mddev->sb_wait,
449                             !mddev->flush_bio,
450                             mddev->write_lock);
451         mddev->flush_bio = bio;
452         spin_unlock_irq(&mddev->write_lock);
453
454         INIT_WORK(&mddev->flush_work, submit_flushes);
455         queue_work(md_wq, &mddev->flush_work);
456 }
457 EXPORT_SYMBOL(md_flush_request);
458
459 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
460 {
461         struct mddev *mddev = cb->data;
462         md_wakeup_thread(mddev->thread);
463         kfree(cb);
464 }
465 EXPORT_SYMBOL(md_unplug);
466
467 static inline struct mddev *mddev_get(struct mddev *mddev)
468 {
469         atomic_inc(&mddev->active);
470         return mddev;
471 }
472
473 static void mddev_delayed_delete(struct work_struct *ws);
474
475 static void mddev_put(struct mddev *mddev)
476 {
477         struct bio_set *bs = NULL;
478
479         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
480                 return;
481         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
482             mddev->ctime == 0 && !mddev->hold_active) {
483                 /* Array is not configured at all, and not held active,
484                  * so destroy it */
485                 list_del_init(&mddev->all_mddevs);
486                 bs = mddev->bio_set;
487                 mddev->bio_set = NULL;
488                 if (mddev->gendisk) {
489                         /* We did a probe so need to clean up.  Call
490                          * queue_work inside the spinlock so that
491                          * flush_workqueue() after mddev_find will
492                          * succeed in waiting for the work to be done.
493                          */
494                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
495                         queue_work(md_misc_wq, &mddev->del_work);
496                 } else
497                         kfree(mddev);
498         }
499         spin_unlock(&all_mddevs_lock);
500         if (bs)
501                 bioset_free(bs);
502 }
503
504 void mddev_init(struct mddev *mddev)
505 {
506         mutex_init(&mddev->open_mutex);
507         mutex_init(&mddev->reconfig_mutex);
508         mutex_init(&mddev->bitmap_info.mutex);
509         INIT_LIST_HEAD(&mddev->disks);
510         INIT_LIST_HEAD(&mddev->all_mddevs);
511         init_timer(&mddev->safemode_timer);
512         atomic_set(&mddev->active, 1);
513         atomic_set(&mddev->openers, 0);
514         atomic_set(&mddev->active_io, 0);
515         spin_lock_init(&mddev->write_lock);
516         atomic_set(&mddev->flush_pending, 0);
517         init_waitqueue_head(&mddev->sb_wait);
518         init_waitqueue_head(&mddev->recovery_wait);
519         mddev->reshape_position = MaxSector;
520         mddev->reshape_backwards = 0;
521         mddev->resync_min = 0;
522         mddev->resync_max = MaxSector;
523         mddev->level = LEVEL_NONE;
524 }
525 EXPORT_SYMBOL_GPL(mddev_init);
526
527 static struct mddev * mddev_find(dev_t unit)
528 {
529         struct mddev *mddev, *new = NULL;
530
531         if (unit && MAJOR(unit) != MD_MAJOR)
532                 unit &= ~((1<<MdpMinorShift)-1);
533
534  retry:
535         spin_lock(&all_mddevs_lock);
536
537         if (unit) {
538                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
539                         if (mddev->unit == unit) {
540                                 mddev_get(mddev);
541                                 spin_unlock(&all_mddevs_lock);
542                                 kfree(new);
543                                 return mddev;
544                         }
545
546                 if (new) {
547                         list_add(&new->all_mddevs, &all_mddevs);
548                         spin_unlock(&all_mddevs_lock);
549                         new->hold_active = UNTIL_IOCTL;
550                         return new;
551                 }
552         } else if (new) {
553                 /* find an unused unit number */
554                 static int next_minor = 512;
555                 int start = next_minor;
556                 int is_free = 0;
557                 int dev = 0;
558                 while (!is_free) {
559                         dev = MKDEV(MD_MAJOR, next_minor);
560                         next_minor++;
561                         if (next_minor > MINORMASK)
562                                 next_minor = 0;
563                         if (next_minor == start) {
564                                 /* Oh dear, all in use. */
565                                 spin_unlock(&all_mddevs_lock);
566                                 kfree(new);
567                                 return NULL;
568                         }
569                                 
570                         is_free = 1;
571                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
572                                 if (mddev->unit == dev) {
573                                         is_free = 0;
574                                         break;
575                                 }
576                 }
577                 new->unit = dev;
578                 new->md_minor = MINOR(dev);
579                 new->hold_active = UNTIL_STOP;
580                 list_add(&new->all_mddevs, &all_mddevs);
581                 spin_unlock(&all_mddevs_lock);
582                 return new;
583         }
584         spin_unlock(&all_mddevs_lock);
585
586         new = kzalloc(sizeof(*new), GFP_KERNEL);
587         if (!new)
588                 return NULL;
589
590         new->unit = unit;
591         if (MAJOR(unit) == MD_MAJOR)
592                 new->md_minor = MINOR(unit);
593         else
594                 new->md_minor = MINOR(unit) >> MdpMinorShift;
595
596         mddev_init(new);
597
598         goto retry;
599 }
600
601 static inline int mddev_lock(struct mddev * mddev)
602 {
603         return mutex_lock_interruptible(&mddev->reconfig_mutex);
604 }
605
606 static inline int mddev_is_locked(struct mddev *mddev)
607 {
608         return mutex_is_locked(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_trylock(struct mddev * mddev)
612 {
613         return mutex_trylock(&mddev->reconfig_mutex);
614 }
615
616 static struct attribute_group md_redundancy_group;
617
618 static void mddev_unlock(struct mddev * mddev)
619 {
620         if (mddev->to_remove) {
621                 /* These cannot be removed under reconfig_mutex as
622                  * an access to the files will try to take reconfig_mutex
623                  * while holding the file unremovable, which leads to
624                  * a deadlock.
625                  * So hold set sysfs_active while the remove in happeing,
626                  * and anything else which might set ->to_remove or my
627                  * otherwise change the sysfs namespace will fail with
628                  * -EBUSY if sysfs_active is still set.
629                  * We set sysfs_active under reconfig_mutex and elsewhere
630                  * test it under the same mutex to ensure its correct value
631                  * is seen.
632                  */
633                 struct attribute_group *to_remove = mddev->to_remove;
634                 mddev->to_remove = NULL;
635                 mddev->sysfs_active = 1;
636                 mutex_unlock(&mddev->reconfig_mutex);
637
638                 if (mddev->kobj.sd) {
639                         if (to_remove != &md_redundancy_group)
640                                 sysfs_remove_group(&mddev->kobj, to_remove);
641                         if (mddev->pers == NULL ||
642                             mddev->pers->sync_request == NULL) {
643                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
644                                 if (mddev->sysfs_action)
645                                         sysfs_put(mddev->sysfs_action);
646                                 mddev->sysfs_action = NULL;
647                         }
648                 }
649                 mddev->sysfs_active = 0;
650         } else
651                 mutex_unlock(&mddev->reconfig_mutex);
652
653         /* As we've dropped the mutex we need a spinlock to
654          * make sure the thread doesn't disappear
655          */
656         spin_lock(&pers_lock);
657         md_wakeup_thread(mddev->thread);
658         spin_unlock(&pers_lock);
659 }
660
661 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
662 {
663         struct md_rdev *rdev;
664
665         rdev_for_each(rdev, mddev)
666                 if (rdev->desc_nr == nr)
667                         return rdev;
668
669         return NULL;
670 }
671
672 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
673 {
674         struct md_rdev *rdev;
675
676         rdev_for_each_rcu(rdev, mddev)
677                 if (rdev->desc_nr == nr)
678                         return rdev;
679
680         return NULL;
681 }
682
683 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
684 {
685         struct md_rdev *rdev;
686
687         rdev_for_each(rdev, mddev)
688                 if (rdev->bdev->bd_dev == dev)
689                         return rdev;
690
691         return NULL;
692 }
693
694 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
695 {
696         struct md_rdev *rdev;
697
698         rdev_for_each_rcu(rdev, mddev)
699                 if (rdev->bdev->bd_dev == dev)
700                         return rdev;
701
702         return NULL;
703 }
704
705 static struct md_personality *find_pers(int level, char *clevel)
706 {
707         struct md_personality *pers;
708         list_for_each_entry(pers, &pers_list, list) {
709                 if (level != LEVEL_NONE && pers->level == level)
710                         return pers;
711                 if (strcmp(pers->name, clevel)==0)
712                         return pers;
713         }
714         return NULL;
715 }
716
717 /* return the offset of the super block in 512byte sectors */
718 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
719 {
720         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
721         return MD_NEW_SIZE_SECTORS(num_sectors);
722 }
723
724 static int alloc_disk_sb(struct md_rdev * rdev)
725 {
726         if (rdev->sb_page)
727                 MD_BUG();
728
729         rdev->sb_page = alloc_page(GFP_KERNEL);
730         if (!rdev->sb_page) {
731                 printk(KERN_ALERT "md: out of memory.\n");
732                 return -ENOMEM;
733         }
734
735         return 0;
736 }
737
738 void md_rdev_clear(struct md_rdev *rdev)
739 {
740         if (rdev->sb_page) {
741                 put_page(rdev->sb_page);
742                 rdev->sb_loaded = 0;
743                 rdev->sb_page = NULL;
744                 rdev->sb_start = 0;
745                 rdev->sectors = 0;
746         }
747         if (rdev->bb_page) {
748                 put_page(rdev->bb_page);
749                 rdev->bb_page = NULL;
750         }
751         kfree(rdev->badblocks.page);
752         rdev->badblocks.page = NULL;
753 }
754 EXPORT_SYMBOL_GPL(md_rdev_clear);
755
756 static void super_written(struct bio *bio, int error)
757 {
758         struct md_rdev *rdev = bio->bi_private;
759         struct mddev *mddev = rdev->mddev;
760
761         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
762                 printk("md: super_written gets error=%d, uptodate=%d\n",
763                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
764                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
765                 md_error(mddev, rdev);
766         }
767
768         if (atomic_dec_and_test(&mddev->pending_writes))
769                 wake_up(&mddev->sb_wait);
770         bio_put(bio);
771 }
772
773 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
774                    sector_t sector, int size, struct page *page)
775 {
776         /* write first size bytes of page to sector of rdev
777          * Increment mddev->pending_writes before returning
778          * and decrement it on completion, waking up sb_wait
779          * if zero is reached.
780          * If an error occurred, call md_error
781          */
782         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
783
784         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
785         bio->bi_sector = sector;
786         bio_add_page(bio, page, size, 0);
787         bio->bi_private = rdev;
788         bio->bi_end_io = super_written;
789
790         atomic_inc(&mddev->pending_writes);
791         submit_bio(WRITE_FLUSH_FUA, bio);
792 }
793
794 void md_super_wait(struct mddev *mddev)
795 {
796         /* wait for all superblock writes that were scheduled to complete */
797         DEFINE_WAIT(wq);
798         for(;;) {
799                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
800                 if (atomic_read(&mddev->pending_writes)==0)
801                         break;
802                 schedule();
803         }
804         finish_wait(&mddev->sb_wait, &wq);
805 }
806
807 static void bi_complete(struct bio *bio, int error)
808 {
809         complete((struct completion*)bio->bi_private);
810 }
811
812 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
813                  struct page *page, int rw, bool metadata_op)
814 {
815         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
816         struct completion event;
817         int ret;
818
819         rw |= REQ_SYNC;
820
821         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
822                 rdev->meta_bdev : rdev->bdev;
823         if (metadata_op)
824                 bio->bi_sector = sector + rdev->sb_start;
825         else if (rdev->mddev->reshape_position != MaxSector &&
826                  (rdev->mddev->reshape_backwards ==
827                   (sector >= rdev->mddev->reshape_position)))
828                 bio->bi_sector = sector + rdev->new_data_offset;
829         else
830                 bio->bi_sector = sector + rdev->data_offset;
831         bio_add_page(bio, page, size, 0);
832         init_completion(&event);
833         bio->bi_private = &event;
834         bio->bi_end_io = bi_complete;
835         submit_bio(rw, bio);
836         wait_for_completion(&event);
837
838         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
839         bio_put(bio);
840         return ret;
841 }
842 EXPORT_SYMBOL_GPL(sync_page_io);
843
844 static int read_disk_sb(struct md_rdev * rdev, int size)
845 {
846         char b[BDEVNAME_SIZE];
847         if (!rdev->sb_page) {
848                 MD_BUG();
849                 return -EINVAL;
850         }
851         if (rdev->sb_loaded)
852                 return 0;
853
854
855         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
856                 goto fail;
857         rdev->sb_loaded = 1;
858         return 0;
859
860 fail:
861         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
862                 bdevname(rdev->bdev,b));
863         return -EINVAL;
864 }
865
866 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
867 {
868         return  sb1->set_uuid0 == sb2->set_uuid0 &&
869                 sb1->set_uuid1 == sb2->set_uuid1 &&
870                 sb1->set_uuid2 == sb2->set_uuid2 &&
871                 sb1->set_uuid3 == sb2->set_uuid3;
872 }
873
874 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
875 {
876         int ret;
877         mdp_super_t *tmp1, *tmp2;
878
879         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
880         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
881
882         if (!tmp1 || !tmp2) {
883                 ret = 0;
884                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
885                 goto abort;
886         }
887
888         *tmp1 = *sb1;
889         *tmp2 = *sb2;
890
891         /*
892          * nr_disks is not constant
893          */
894         tmp1->nr_disks = 0;
895         tmp2->nr_disks = 0;
896
897         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
898 abort:
899         kfree(tmp1);
900         kfree(tmp2);
901         return ret;
902 }
903
904
905 static u32 md_csum_fold(u32 csum)
906 {
907         csum = (csum & 0xffff) + (csum >> 16);
908         return (csum & 0xffff) + (csum >> 16);
909 }
910
911 static unsigned int calc_sb_csum(mdp_super_t * sb)
912 {
913         u64 newcsum = 0;
914         u32 *sb32 = (u32*)sb;
915         int i;
916         unsigned int disk_csum, csum;
917
918         disk_csum = sb->sb_csum;
919         sb->sb_csum = 0;
920
921         for (i = 0; i < MD_SB_BYTES/4 ; i++)
922                 newcsum += sb32[i];
923         csum = (newcsum & 0xffffffff) + (newcsum>>32);
924
925
926 #ifdef CONFIG_ALPHA
927         /* This used to use csum_partial, which was wrong for several
928          * reasons including that different results are returned on
929          * different architectures.  It isn't critical that we get exactly
930          * the same return value as before (we always csum_fold before
931          * testing, and that removes any differences).  However as we
932          * know that csum_partial always returned a 16bit value on
933          * alphas, do a fold to maximise conformity to previous behaviour.
934          */
935         sb->sb_csum = md_csum_fold(disk_csum);
936 #else
937         sb->sb_csum = disk_csum;
938 #endif
939         return csum;
940 }
941
942
943 /*
944  * Handle superblock details.
945  * We want to be able to handle multiple superblock formats
946  * so we have a common interface to them all, and an array of
947  * different handlers.
948  * We rely on user-space to write the initial superblock, and support
949  * reading and updating of superblocks.
950  * Interface methods are:
951  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
952  *      loads and validates a superblock on dev.
953  *      if refdev != NULL, compare superblocks on both devices
954  *    Return:
955  *      0 - dev has a superblock that is compatible with refdev
956  *      1 - dev has a superblock that is compatible and newer than refdev
957  *          so dev should be used as the refdev in future
958  *     -EINVAL superblock incompatible or invalid
959  *     -othererror e.g. -EIO
960  *
961  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
962  *      Verify that dev is acceptable into mddev.
963  *       The first time, mddev->raid_disks will be 0, and data from
964  *       dev should be merged in.  Subsequent calls check that dev
965  *       is new enough.  Return 0 or -EINVAL
966  *
967  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
968  *     Update the superblock for rdev with data in mddev
969  *     This does not write to disc.
970  *
971  */
972
973 struct super_type  {
974         char                *name;
975         struct module       *owner;
976         int                 (*load_super)(struct md_rdev *rdev,
977                                           struct md_rdev *refdev,
978                                           int minor_version);
979         int                 (*validate_super)(struct mddev *mddev,
980                                               struct md_rdev *rdev);
981         void                (*sync_super)(struct mddev *mddev,
982                                           struct md_rdev *rdev);
983         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
984                                                 sector_t num_sectors);
985         int                 (*allow_new_offset)(struct md_rdev *rdev,
986                                                 unsigned long long new_offset);
987 };
988
989 /*
990  * Check that the given mddev has no bitmap.
991  *
992  * This function is called from the run method of all personalities that do not
993  * support bitmaps. It prints an error message and returns non-zero if mddev
994  * has a bitmap. Otherwise, it returns 0.
995  *
996  */
997 int md_check_no_bitmap(struct mddev *mddev)
998 {
999         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1000                 return 0;
1001         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1002                 mdname(mddev), mddev->pers->name);
1003         return 1;
1004 }
1005 EXPORT_SYMBOL(md_check_no_bitmap);
1006
1007 /*
1008  * load_super for 0.90.0 
1009  */
1010 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1011 {
1012         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1013         mdp_super_t *sb;
1014         int ret;
1015
1016         /*
1017          * Calculate the position of the superblock (512byte sectors),
1018          * it's at the end of the disk.
1019          *
1020          * It also happens to be a multiple of 4Kb.
1021          */
1022         rdev->sb_start = calc_dev_sboffset(rdev);
1023
1024         ret = read_disk_sb(rdev, MD_SB_BYTES);
1025         if (ret) return ret;
1026
1027         ret = -EINVAL;
1028
1029         bdevname(rdev->bdev, b);
1030         sb = page_address(rdev->sb_page);
1031
1032         if (sb->md_magic != MD_SB_MAGIC) {
1033                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1034                        b);
1035                 goto abort;
1036         }
1037
1038         if (sb->major_version != 0 ||
1039             sb->minor_version < 90 ||
1040             sb->minor_version > 91) {
1041                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1042                         sb->major_version, sb->minor_version,
1043                         b);
1044                 goto abort;
1045         }
1046
1047         if (sb->raid_disks <= 0)
1048                 goto abort;
1049
1050         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1051                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1052                         b);
1053                 goto abort;
1054         }
1055
1056         rdev->preferred_minor = sb->md_minor;
1057         rdev->data_offset = 0;
1058         rdev->new_data_offset = 0;
1059         rdev->sb_size = MD_SB_BYTES;
1060         rdev->badblocks.shift = -1;
1061
1062         if (sb->level == LEVEL_MULTIPATH)
1063                 rdev->desc_nr = -1;
1064         else
1065                 rdev->desc_nr = sb->this_disk.number;
1066
1067         if (!refdev) {
1068                 ret = 1;
1069         } else {
1070                 __u64 ev1, ev2;
1071                 mdp_super_t *refsb = page_address(refdev->sb_page);
1072                 if (!uuid_equal(refsb, sb)) {
1073                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1074                                 b, bdevname(refdev->bdev,b2));
1075                         goto abort;
1076                 }
1077                 if (!sb_equal(refsb, sb)) {
1078                         printk(KERN_WARNING "md: %s has same UUID"
1079                                " but different superblock to %s\n",
1080                                b, bdevname(refdev->bdev, b2));
1081                         goto abort;
1082                 }
1083                 ev1 = md_event(sb);
1084                 ev2 = md_event(refsb);
1085                 if (ev1 > ev2)
1086                         ret = 1;
1087                 else 
1088                         ret = 0;
1089         }
1090         rdev->sectors = rdev->sb_start;
1091         /* Limit to 4TB as metadata cannot record more than that.
1092          * (not needed for Linear and RAID0 as metadata doesn't
1093          * record this size)
1094          */
1095         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1096                 rdev->sectors = (2ULL << 32) - 2;
1097
1098         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1099                 /* "this cannot possibly happen" ... */
1100                 ret = -EINVAL;
1101
1102  abort:
1103         return ret;
1104 }
1105
1106 /*
1107  * validate_super for 0.90.0
1108  */
1109 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1110 {
1111         mdp_disk_t *desc;
1112         mdp_super_t *sb = page_address(rdev->sb_page);
1113         __u64 ev1 = md_event(sb);
1114
1115         rdev->raid_disk = -1;
1116         clear_bit(Faulty, &rdev->flags);
1117         clear_bit(In_sync, &rdev->flags);
1118         clear_bit(WriteMostly, &rdev->flags);
1119
1120         if (mddev->raid_disks == 0) {
1121                 mddev->major_version = 0;
1122                 mddev->minor_version = sb->minor_version;
1123                 mddev->patch_version = sb->patch_version;
1124                 mddev->external = 0;
1125                 mddev->chunk_sectors = sb->chunk_size >> 9;
1126                 mddev->ctime = sb->ctime;
1127                 mddev->utime = sb->utime;
1128                 mddev->level = sb->level;
1129                 mddev->clevel[0] = 0;
1130                 mddev->layout = sb->layout;
1131                 mddev->raid_disks = sb->raid_disks;
1132                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1133                 mddev->events = ev1;
1134                 mddev->bitmap_info.offset = 0;
1135                 mddev->bitmap_info.space = 0;
1136                 /* bitmap can use 60 K after the 4K superblocks */
1137                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1138                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1139                 mddev->reshape_backwards = 0;
1140
1141                 if (mddev->minor_version >= 91) {
1142                         mddev->reshape_position = sb->reshape_position;
1143                         mddev->delta_disks = sb->delta_disks;
1144                         mddev->new_level = sb->new_level;
1145                         mddev->new_layout = sb->new_layout;
1146                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1147                         if (mddev->delta_disks < 0)
1148                                 mddev->reshape_backwards = 1;
1149                 } else {
1150                         mddev->reshape_position = MaxSector;
1151                         mddev->delta_disks = 0;
1152                         mddev->new_level = mddev->level;
1153                         mddev->new_layout = mddev->layout;
1154                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1155                 }
1156
1157                 if (sb->state & (1<<MD_SB_CLEAN))
1158                         mddev->recovery_cp = MaxSector;
1159                 else {
1160                         if (sb->events_hi == sb->cp_events_hi && 
1161                                 sb->events_lo == sb->cp_events_lo) {
1162                                 mddev->recovery_cp = sb->recovery_cp;
1163                         } else
1164                                 mddev->recovery_cp = 0;
1165                 }
1166
1167                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1168                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1169                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1170                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1171
1172                 mddev->max_disks = MD_SB_DISKS;
1173
1174                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1175                     mddev->bitmap_info.file == NULL) {
1176                         mddev->bitmap_info.offset =
1177                                 mddev->bitmap_info.default_offset;
1178                         mddev->bitmap_info.space =
1179                                 mddev->bitmap_info.space;
1180                 }
1181
1182         } else if (mddev->pers == NULL) {
1183                 /* Insist on good event counter while assembling, except
1184                  * for spares (which don't need an event count) */
1185                 ++ev1;
1186                 if (sb->disks[rdev->desc_nr].state & (
1187                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1188                         if (ev1 < mddev->events) 
1189                                 return -EINVAL;
1190         } else if (mddev->bitmap) {
1191                 /* if adding to array with a bitmap, then we can accept an
1192                  * older device ... but not too old.
1193                  */
1194                 if (ev1 < mddev->bitmap->events_cleared)
1195                         return 0;
1196         } else {
1197                 if (ev1 < mddev->events)
1198                         /* just a hot-add of a new device, leave raid_disk at -1 */
1199                         return 0;
1200         }
1201
1202         if (mddev->level != LEVEL_MULTIPATH) {
1203                 desc = sb->disks + rdev->desc_nr;
1204
1205                 if (desc->state & (1<<MD_DISK_FAULTY))
1206                         set_bit(Faulty, &rdev->flags);
1207                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1208                             desc->raid_disk < mddev->raid_disks */) {
1209                         set_bit(In_sync, &rdev->flags);
1210                         rdev->raid_disk = desc->raid_disk;
1211                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1212                         /* active but not in sync implies recovery up to
1213                          * reshape position.  We don't know exactly where
1214                          * that is, so set to zero for now */
1215                         if (mddev->minor_version >= 91) {
1216                                 rdev->recovery_offset = 0;
1217                                 rdev->raid_disk = desc->raid_disk;
1218                         }
1219                 }
1220                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1221                         set_bit(WriteMostly, &rdev->flags);
1222         } else /* MULTIPATH are always insync */
1223                 set_bit(In_sync, &rdev->flags);
1224         return 0;
1225 }
1226
1227 /*
1228  * sync_super for 0.90.0
1229  */
1230 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1231 {
1232         mdp_super_t *sb;
1233         struct md_rdev *rdev2;
1234         int next_spare = mddev->raid_disks;
1235
1236
1237         /* make rdev->sb match mddev data..
1238          *
1239          * 1/ zero out disks
1240          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1241          * 3/ any empty disks < next_spare become removed
1242          *
1243          * disks[0] gets initialised to REMOVED because
1244          * we cannot be sure from other fields if it has
1245          * been initialised or not.
1246          */
1247         int i;
1248         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1249
1250         rdev->sb_size = MD_SB_BYTES;
1251
1252         sb = page_address(rdev->sb_page);
1253
1254         memset(sb, 0, sizeof(*sb));
1255
1256         sb->md_magic = MD_SB_MAGIC;
1257         sb->major_version = mddev->major_version;
1258         sb->patch_version = mddev->patch_version;
1259         sb->gvalid_words  = 0; /* ignored */
1260         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1261         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1262         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1263         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1264
1265         sb->ctime = mddev->ctime;
1266         sb->level = mddev->level;
1267         sb->size = mddev->dev_sectors / 2;
1268         sb->raid_disks = mddev->raid_disks;
1269         sb->md_minor = mddev->md_minor;
1270         sb->not_persistent = 0;
1271         sb->utime = mddev->utime;
1272         sb->state = 0;
1273         sb->events_hi = (mddev->events>>32);
1274         sb->events_lo = (u32)mddev->events;
1275
1276         if (mddev->reshape_position == MaxSector)
1277                 sb->minor_version = 90;
1278         else {
1279                 sb->minor_version = 91;
1280                 sb->reshape_position = mddev->reshape_position;
1281                 sb->new_level = mddev->new_level;
1282                 sb->delta_disks = mddev->delta_disks;
1283                 sb->new_layout = mddev->new_layout;
1284                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1285         }
1286         mddev->minor_version = sb->minor_version;
1287         if (mddev->in_sync)
1288         {
1289                 sb->recovery_cp = mddev->recovery_cp;
1290                 sb->cp_events_hi = (mddev->events>>32);
1291                 sb->cp_events_lo = (u32)mddev->events;
1292                 if (mddev->recovery_cp == MaxSector)
1293                         sb->state = (1<< MD_SB_CLEAN);
1294         } else
1295                 sb->recovery_cp = 0;
1296
1297         sb->layout = mddev->layout;
1298         sb->chunk_size = mddev->chunk_sectors << 9;
1299
1300         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1301                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1302
1303         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1304         rdev_for_each(rdev2, mddev) {
1305                 mdp_disk_t *d;
1306                 int desc_nr;
1307                 int is_active = test_bit(In_sync, &rdev2->flags);
1308
1309                 if (rdev2->raid_disk >= 0 &&
1310                     sb->minor_version >= 91)
1311                         /* we have nowhere to store the recovery_offset,
1312                          * but if it is not below the reshape_position,
1313                          * we can piggy-back on that.
1314                          */
1315                         is_active = 1;
1316                 if (rdev2->raid_disk < 0 ||
1317                     test_bit(Faulty, &rdev2->flags))
1318                         is_active = 0;
1319                 if (is_active)
1320                         desc_nr = rdev2->raid_disk;
1321                 else
1322                         desc_nr = next_spare++;
1323                 rdev2->desc_nr = desc_nr;
1324                 d = &sb->disks[rdev2->desc_nr];
1325                 nr_disks++;
1326                 d->number = rdev2->desc_nr;
1327                 d->major = MAJOR(rdev2->bdev->bd_dev);
1328                 d->minor = MINOR(rdev2->bdev->bd_dev);
1329                 if (is_active)
1330                         d->raid_disk = rdev2->raid_disk;
1331                 else
1332                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1333                 if (test_bit(Faulty, &rdev2->flags))
1334                         d->state = (1<<MD_DISK_FAULTY);
1335                 else if (is_active) {
1336                         d->state = (1<<MD_DISK_ACTIVE);
1337                         if (test_bit(In_sync, &rdev2->flags))
1338                                 d->state |= (1<<MD_DISK_SYNC);
1339                         active++;
1340                         working++;
1341                 } else {
1342                         d->state = 0;
1343                         spare++;
1344                         working++;
1345                 }
1346                 if (test_bit(WriteMostly, &rdev2->flags))
1347                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1348         }
1349         /* now set the "removed" and "faulty" bits on any missing devices */
1350         for (i=0 ; i < mddev->raid_disks ; i++) {
1351                 mdp_disk_t *d = &sb->disks[i];
1352                 if (d->state == 0 && d->number == 0) {
1353                         d->number = i;
1354                         d->raid_disk = i;
1355                         d->state = (1<<MD_DISK_REMOVED);
1356                         d->state |= (1<<MD_DISK_FAULTY);
1357                         failed++;
1358                 }
1359         }
1360         sb->nr_disks = nr_disks;
1361         sb->active_disks = active;
1362         sb->working_disks = working;
1363         sb->failed_disks = failed;
1364         sb->spare_disks = spare;
1365
1366         sb->this_disk = sb->disks[rdev->desc_nr];
1367         sb->sb_csum = calc_sb_csum(sb);
1368 }
1369
1370 /*
1371  * rdev_size_change for 0.90.0
1372  */
1373 static unsigned long long
1374 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1375 {
1376         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1377                 return 0; /* component must fit device */
1378         if (rdev->mddev->bitmap_info.offset)
1379                 return 0; /* can't move bitmap */
1380         rdev->sb_start = calc_dev_sboffset(rdev);
1381         if (!num_sectors || num_sectors > rdev->sb_start)
1382                 num_sectors = rdev->sb_start;
1383         /* Limit to 4TB as metadata cannot record more than that.
1384          * 4TB == 2^32 KB, or 2*2^32 sectors.
1385          */
1386         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1387                 num_sectors = (2ULL << 32) - 2;
1388         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1389                        rdev->sb_page);
1390         md_super_wait(rdev->mddev);
1391         return num_sectors;
1392 }
1393
1394 static int
1395 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1396 {
1397         /* non-zero offset changes not possible with v0.90 */
1398         return new_offset == 0;
1399 }
1400
1401 /*
1402  * version 1 superblock
1403  */
1404
1405 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1406 {
1407         __le32 disk_csum;
1408         u32 csum;
1409         unsigned long long newcsum;
1410         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1411         __le32 *isuper = (__le32*)sb;
1412
1413         disk_csum = sb->sb_csum;
1414         sb->sb_csum = 0;
1415         newcsum = 0;
1416         for (; size >= 4; size -= 4)
1417                 newcsum += le32_to_cpu(*isuper++);
1418
1419         if (size == 2)
1420                 newcsum += le16_to_cpu(*(__le16*) isuper);
1421
1422         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1423         sb->sb_csum = disk_csum;
1424         return cpu_to_le32(csum);
1425 }
1426
1427 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1428                             int acknowledged);
1429 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1430 {
1431         struct mdp_superblock_1 *sb;
1432         int ret;
1433         sector_t sb_start;
1434         sector_t sectors;
1435         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1436         int bmask;
1437
1438         /*
1439          * Calculate the position of the superblock in 512byte sectors.
1440          * It is always aligned to a 4K boundary and
1441          * depeding on minor_version, it can be:
1442          * 0: At least 8K, but less than 12K, from end of device
1443          * 1: At start of device
1444          * 2: 4K from start of device.
1445          */
1446         switch(minor_version) {
1447         case 0:
1448                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1449                 sb_start -= 8*2;
1450                 sb_start &= ~(sector_t)(4*2-1);
1451                 break;
1452         case 1:
1453                 sb_start = 0;
1454                 break;
1455         case 2:
1456                 sb_start = 8;
1457                 break;
1458         default:
1459                 return -EINVAL;
1460         }
1461         rdev->sb_start = sb_start;
1462
1463         /* superblock is rarely larger than 1K, but it can be larger,
1464          * and it is safe to read 4k, so we do that
1465          */
1466         ret = read_disk_sb(rdev, 4096);
1467         if (ret) return ret;
1468
1469
1470         sb = page_address(rdev->sb_page);
1471
1472         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1473             sb->major_version != cpu_to_le32(1) ||
1474             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1475             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1476             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1477                 return -EINVAL;
1478
1479         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1480                 printk("md: invalid superblock checksum on %s\n",
1481                         bdevname(rdev->bdev,b));
1482                 return -EINVAL;
1483         }
1484         if (le64_to_cpu(sb->data_size) < 10) {
1485                 printk("md: data_size too small on %s\n",
1486                        bdevname(rdev->bdev,b));
1487                 return -EINVAL;
1488         }
1489         if (sb->pad0 ||
1490             sb->pad3[0] ||
1491             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1492                 /* Some padding is non-zero, might be a new feature */
1493                 return -EINVAL;
1494
1495         rdev->preferred_minor = 0xffff;
1496         rdev->data_offset = le64_to_cpu(sb->data_offset);
1497         rdev->new_data_offset = rdev->data_offset;
1498         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1499             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1500                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1501         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1502
1503         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1504         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1505         if (rdev->sb_size & bmask)
1506                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1507
1508         if (minor_version
1509             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1510                 return -EINVAL;
1511         if (minor_version
1512             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1513                 return -EINVAL;
1514
1515         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1516                 rdev->desc_nr = -1;
1517         else
1518                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1519
1520         if (!rdev->bb_page) {
1521                 rdev->bb_page = alloc_page(GFP_KERNEL);
1522                 if (!rdev->bb_page)
1523                         return -ENOMEM;
1524         }
1525         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1526             rdev->badblocks.count == 0) {
1527                 /* need to load the bad block list.
1528                  * Currently we limit it to one page.
1529                  */
1530                 s32 offset;
1531                 sector_t bb_sector;
1532                 u64 *bbp;
1533                 int i;
1534                 int sectors = le16_to_cpu(sb->bblog_size);
1535                 if (sectors > (PAGE_SIZE / 512))
1536                         return -EINVAL;
1537                 offset = le32_to_cpu(sb->bblog_offset);
1538                 if (offset == 0)
1539                         return -EINVAL;
1540                 bb_sector = (long long)offset;
1541                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1542                                   rdev->bb_page, READ, true))
1543                         return -EIO;
1544                 bbp = (u64 *)page_address(rdev->bb_page);
1545                 rdev->badblocks.shift = sb->bblog_shift;
1546                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1547                         u64 bb = le64_to_cpu(*bbp);
1548                         int count = bb & (0x3ff);
1549                         u64 sector = bb >> 10;
1550                         sector <<= sb->bblog_shift;
1551                         count <<= sb->bblog_shift;
1552                         if (bb + 1 == 0)
1553                                 break;
1554                         if (md_set_badblocks(&rdev->badblocks,
1555                                              sector, count, 1) == 0)
1556                                 return -EINVAL;
1557                 }
1558         } else if (sb->bblog_offset == 0)
1559                 rdev->badblocks.shift = -1;
1560
1561         if (!refdev) {
1562                 ret = 1;
1563         } else {
1564                 __u64 ev1, ev2;
1565                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1566
1567                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1568                     sb->level != refsb->level ||
1569                     sb->layout != refsb->layout ||
1570                     sb->chunksize != refsb->chunksize) {
1571                         printk(KERN_WARNING "md: %s has strangely different"
1572                                 " superblock to %s\n",
1573                                 bdevname(rdev->bdev,b),
1574                                 bdevname(refdev->bdev,b2));
1575                         return -EINVAL;
1576                 }
1577                 ev1 = le64_to_cpu(sb->events);
1578                 ev2 = le64_to_cpu(refsb->events);
1579
1580                 if (ev1 > ev2)
1581                         ret = 1;
1582                 else
1583                         ret = 0;
1584         }
1585         if (minor_version) {
1586                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1587                 sectors -= rdev->data_offset;
1588         } else
1589                 sectors = rdev->sb_start;
1590         if (sectors < le64_to_cpu(sb->data_size))
1591                 return -EINVAL;
1592         rdev->sectors = le64_to_cpu(sb->data_size);
1593         return ret;
1594 }
1595
1596 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1599         __u64 ev1 = le64_to_cpu(sb->events);
1600
1601         rdev->raid_disk = -1;
1602         clear_bit(Faulty, &rdev->flags);
1603         clear_bit(In_sync, &rdev->flags);
1604         clear_bit(WriteMostly, &rdev->flags);
1605
1606         if (mddev->raid_disks == 0) {
1607                 mddev->major_version = 1;
1608                 mddev->patch_version = 0;
1609                 mddev->external = 0;
1610                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1611                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1612                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1613                 mddev->level = le32_to_cpu(sb->level);
1614                 mddev->clevel[0] = 0;
1615                 mddev->layout = le32_to_cpu(sb->layout);
1616                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1617                 mddev->dev_sectors = le64_to_cpu(sb->size);
1618                 mddev->events = ev1;
1619                 mddev->bitmap_info.offset = 0;
1620                 mddev->bitmap_info.space = 0;
1621                 /* Default location for bitmap is 1K after superblock
1622                  * using 3K - total of 4K
1623                  */
1624                 mddev->bitmap_info.default_offset = 1024 >> 9;
1625                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1626                 mddev->reshape_backwards = 0;
1627
1628                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1629                 memcpy(mddev->uuid, sb->set_uuid, 16);
1630
1631                 mddev->max_disks =  (4096-256)/2;
1632
1633                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1634                     mddev->bitmap_info.file == NULL) {
1635                         mddev->bitmap_info.offset =
1636                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1637                         /* Metadata doesn't record how much space is available.
1638                          * For 1.0, we assume we can use up to the superblock
1639                          * if before, else to 4K beyond superblock.
1640                          * For others, assume no change is possible.
1641                          */
1642                         if (mddev->minor_version > 0)
1643                                 mddev->bitmap_info.space = 0;
1644                         else if (mddev->bitmap_info.offset > 0)
1645                                 mddev->bitmap_info.space =
1646                                         8 - mddev->bitmap_info.offset;
1647                         else
1648                                 mddev->bitmap_info.space =
1649                                         -mddev->bitmap_info.offset;
1650                 }
1651
1652                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1653                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1654                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1655                         mddev->new_level = le32_to_cpu(sb->new_level);
1656                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1657                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1658                         if (mddev->delta_disks < 0 ||
1659                             (mddev->delta_disks == 0 &&
1660                              (le32_to_cpu(sb->feature_map)
1661                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1662                                 mddev->reshape_backwards = 1;
1663                 } else {
1664                         mddev->reshape_position = MaxSector;
1665                         mddev->delta_disks = 0;
1666                         mddev->new_level = mddev->level;
1667                         mddev->new_layout = mddev->layout;
1668                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1669                 }
1670
1671         } else if (mddev->pers == NULL) {
1672                 /* Insist of good event counter while assembling, except for
1673                  * spares (which don't need an event count) */
1674                 ++ev1;
1675                 if (rdev->desc_nr >= 0 &&
1676                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678                         if (ev1 < mddev->events)
1679                                 return -EINVAL;
1680         } else if (mddev->bitmap) {
1681                 /* If adding to array with a bitmap, then we can accept an
1682                  * older device, but not too old.
1683                  */
1684                 if (ev1 < mddev->bitmap->events_cleared)
1685                         return 0;
1686         } else {
1687                 if (ev1 < mddev->events)
1688                         /* just a hot-add of a new device, leave raid_disk at -1 */
1689                         return 0;
1690         }
1691         if (mddev->level != LEVEL_MULTIPATH) {
1692                 int role;
1693                 if (rdev->desc_nr < 0 ||
1694                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695                         role = 0xffff;
1696                         rdev->desc_nr = -1;
1697                 } else
1698                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699                 switch(role) {
1700                 case 0xffff: /* spare */
1701                         break;
1702                 case 0xfffe: /* faulty */
1703                         set_bit(Faulty, &rdev->flags);
1704                         break;
1705                 default:
1706                         if ((le32_to_cpu(sb->feature_map) &
1707                              MD_FEATURE_RECOVERY_OFFSET))
1708                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709                         else
1710                                 set_bit(In_sync, &rdev->flags);
1711                         rdev->raid_disk = role;
1712                         break;
1713                 }
1714                 if (sb->devflags & WriteMostly1)
1715                         set_bit(WriteMostly, &rdev->flags);
1716                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717                         set_bit(Replacement, &rdev->flags);
1718         } else /* MULTIPATH are always insync */
1719                 set_bit(In_sync, &rdev->flags);
1720
1721         return 0;
1722 }
1723
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726         struct mdp_superblock_1 *sb;
1727         struct md_rdev *rdev2;
1728         int max_dev, i;
1729         /* make rdev->sb match mddev and rdev data. */
1730
1731         sb = page_address(rdev->sb_page);
1732
1733         sb->feature_map = 0;
1734         sb->pad0 = 0;
1735         sb->recovery_offset = cpu_to_le64(0);
1736         memset(sb->pad3, 0, sizeof(sb->pad3));
1737
1738         sb->utime = cpu_to_le64((__u64)mddev->utime);
1739         sb->events = cpu_to_le64(mddev->events);
1740         if (mddev->in_sync)
1741                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742         else
1743                 sb->resync_offset = cpu_to_le64(0);
1744
1745         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1746
1747         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748         sb->size = cpu_to_le64(mddev->dev_sectors);
1749         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750         sb->level = cpu_to_le32(mddev->level);
1751         sb->layout = cpu_to_le32(mddev->layout);
1752
1753         if (test_bit(WriteMostly, &rdev->flags))
1754                 sb->devflags |= WriteMostly1;
1755         else
1756                 sb->devflags &= ~WriteMostly1;
1757         sb->data_offset = cpu_to_le64(rdev->data_offset);
1758         sb->data_size = cpu_to_le64(rdev->sectors);
1759
1760         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1761                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1762                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1763         }
1764
1765         if (rdev->raid_disk >= 0 &&
1766             !test_bit(In_sync, &rdev->flags)) {
1767                 sb->feature_map |=
1768                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1769                 sb->recovery_offset =
1770                         cpu_to_le64(rdev->recovery_offset);
1771         }
1772         if (test_bit(Replacement, &rdev->flags))
1773                 sb->feature_map |=
1774                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1775
1776         if (mddev->reshape_position != MaxSector) {
1777                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1778                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1779                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1780                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1781                 sb->new_level = cpu_to_le32(mddev->new_level);
1782                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1783                 if (mddev->delta_disks == 0 &&
1784                     mddev->reshape_backwards)
1785                         sb->feature_map
1786                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1787                 if (rdev->new_data_offset != rdev->data_offset) {
1788                         sb->feature_map
1789                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1790                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1791                                                              - rdev->data_offset));
1792                 }
1793         }
1794
1795         if (rdev->badblocks.count == 0)
1796                 /* Nothing to do for bad blocks*/ ;
1797         else if (sb->bblog_offset == 0)
1798                 /* Cannot record bad blocks on this device */
1799                 md_error(mddev, rdev);
1800         else {
1801                 struct badblocks *bb = &rdev->badblocks;
1802                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1803                 u64 *p = bb->page;
1804                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1805                 if (bb->changed) {
1806                         unsigned seq;
1807
1808 retry:
1809                         seq = read_seqbegin(&bb->lock);
1810
1811                         memset(bbp, 0xff, PAGE_SIZE);
1812
1813                         for (i = 0 ; i < bb->count ; i++) {
1814                                 u64 internal_bb = p[i];
1815                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1816                                                 | BB_LEN(internal_bb));
1817                                 bbp[i] = cpu_to_le64(store_bb);
1818                         }
1819                         bb->changed = 0;
1820                         if (read_seqretry(&bb->lock, seq))
1821                                 goto retry;
1822
1823                         bb->sector = (rdev->sb_start +
1824                                       (int)le32_to_cpu(sb->bblog_offset));
1825                         bb->size = le16_to_cpu(sb->bblog_size);
1826                 }
1827         }
1828
1829         max_dev = 0;
1830         rdev_for_each(rdev2, mddev)
1831                 if (rdev2->desc_nr+1 > max_dev)
1832                         max_dev = rdev2->desc_nr+1;
1833
1834         if (max_dev > le32_to_cpu(sb->max_dev)) {
1835                 int bmask;
1836                 sb->max_dev = cpu_to_le32(max_dev);
1837                 rdev->sb_size = max_dev * 2 + 256;
1838                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1839                 if (rdev->sb_size & bmask)
1840                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1841         } else
1842                 max_dev = le32_to_cpu(sb->max_dev);
1843
1844         for (i=0; i<max_dev;i++)
1845                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1846         
1847         rdev_for_each(rdev2, mddev) {
1848                 i = rdev2->desc_nr;
1849                 if (test_bit(Faulty, &rdev2->flags))
1850                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1851                 else if (test_bit(In_sync, &rdev2->flags))
1852                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1853                 else if (rdev2->raid_disk >= 0)
1854                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1855                 else
1856                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1857         }
1858
1859         sb->sb_csum = calc_sb_1_csum(sb);
1860 }
1861
1862 static unsigned long long
1863 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1864 {
1865         struct mdp_superblock_1 *sb;
1866         sector_t max_sectors;
1867         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1868                 return 0; /* component must fit device */
1869         if (rdev->data_offset != rdev->new_data_offset)
1870                 return 0; /* too confusing */
1871         if (rdev->sb_start < rdev->data_offset) {
1872                 /* minor versions 1 and 2; superblock before data */
1873                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1874                 max_sectors -= rdev->data_offset;
1875                 if (!num_sectors || num_sectors > max_sectors)
1876                         num_sectors = max_sectors;
1877         } else if (rdev->mddev->bitmap_info.offset) {
1878                 /* minor version 0 with bitmap we can't move */
1879                 return 0;
1880         } else {
1881                 /* minor version 0; superblock after data */
1882                 sector_t sb_start;
1883                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1884                 sb_start &= ~(sector_t)(4*2 - 1);
1885                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1886                 if (!num_sectors || num_sectors > max_sectors)
1887                         num_sectors = max_sectors;
1888                 rdev->sb_start = sb_start;
1889         }
1890         sb = page_address(rdev->sb_page);
1891         sb->data_size = cpu_to_le64(num_sectors);
1892         sb->super_offset = rdev->sb_start;
1893         sb->sb_csum = calc_sb_1_csum(sb);
1894         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1895                        rdev->sb_page);
1896         md_super_wait(rdev->mddev);
1897         return num_sectors;
1898
1899 }
1900
1901 static int
1902 super_1_allow_new_offset(struct md_rdev *rdev,
1903                          unsigned long long new_offset)
1904 {
1905         /* All necessary checks on new >= old have been done */
1906         struct bitmap *bitmap;
1907         if (new_offset >= rdev->data_offset)
1908                 return 1;
1909
1910         /* with 1.0 metadata, there is no metadata to tread on
1911          * so we can always move back */
1912         if (rdev->mddev->minor_version == 0)
1913                 return 1;
1914
1915         /* otherwise we must be sure not to step on
1916          * any metadata, so stay:
1917          * 36K beyond start of superblock
1918          * beyond end of badblocks
1919          * beyond write-intent bitmap
1920          */
1921         if (rdev->sb_start + (32+4)*2 > new_offset)
1922                 return 0;
1923         bitmap = rdev->mddev->bitmap;
1924         if (bitmap && !rdev->mddev->bitmap_info.file &&
1925             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1926             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1927                 return 0;
1928         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1929                 return 0;
1930
1931         return 1;
1932 }
1933
1934 static struct super_type super_types[] = {
1935         [0] = {
1936                 .name   = "0.90.0",
1937                 .owner  = THIS_MODULE,
1938                 .load_super         = super_90_load,
1939                 .validate_super     = super_90_validate,
1940                 .sync_super         = super_90_sync,
1941                 .rdev_size_change   = super_90_rdev_size_change,
1942                 .allow_new_offset   = super_90_allow_new_offset,
1943         },
1944         [1] = {
1945                 .name   = "md-1",
1946                 .owner  = THIS_MODULE,
1947                 .load_super         = super_1_load,
1948                 .validate_super     = super_1_validate,
1949                 .sync_super         = super_1_sync,
1950                 .rdev_size_change   = super_1_rdev_size_change,
1951                 .allow_new_offset   = super_1_allow_new_offset,
1952         },
1953 };
1954
1955 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1956 {
1957         if (mddev->sync_super) {
1958                 mddev->sync_super(mddev, rdev);
1959                 return;
1960         }
1961
1962         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1963
1964         super_types[mddev->major_version].sync_super(mddev, rdev);
1965 }
1966
1967 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1968 {
1969         struct md_rdev *rdev, *rdev2;
1970
1971         rcu_read_lock();
1972         rdev_for_each_rcu(rdev, mddev1)
1973                 rdev_for_each_rcu(rdev2, mddev2)
1974                         if (rdev->bdev->bd_contains ==
1975                             rdev2->bdev->bd_contains) {
1976                                 rcu_read_unlock();
1977                                 return 1;
1978                         }
1979         rcu_read_unlock();
1980         return 0;
1981 }
1982
1983 static LIST_HEAD(pending_raid_disks);
1984
1985 /*
1986  * Try to register data integrity profile for an mddev
1987  *
1988  * This is called when an array is started and after a disk has been kicked
1989  * from the array. It only succeeds if all working and active component devices
1990  * are integrity capable with matching profiles.
1991  */
1992 int md_integrity_register(struct mddev *mddev)
1993 {
1994         struct md_rdev *rdev, *reference = NULL;
1995
1996         if (list_empty(&mddev->disks))
1997                 return 0; /* nothing to do */
1998         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1999                 return 0; /* shouldn't register, or already is */
2000         rdev_for_each(rdev, mddev) {
2001                 /* skip spares and non-functional disks */
2002                 if (test_bit(Faulty, &rdev->flags))
2003                         continue;
2004                 if (rdev->raid_disk < 0)
2005                         continue;
2006                 if (!reference) {
2007                         /* Use the first rdev as the reference */
2008                         reference = rdev;
2009                         continue;
2010                 }
2011                 /* does this rdev's profile match the reference profile? */
2012                 if (blk_integrity_compare(reference->bdev->bd_disk,
2013                                 rdev->bdev->bd_disk) < 0)
2014                         return -EINVAL;
2015         }
2016         if (!reference || !bdev_get_integrity(reference->bdev))
2017                 return 0;
2018         /*
2019          * All component devices are integrity capable and have matching
2020          * profiles, register the common profile for the md device.
2021          */
2022         if (blk_integrity_register(mddev->gendisk,
2023                         bdev_get_integrity(reference->bdev)) != 0) {
2024                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2025                         mdname(mddev));
2026                 return -EINVAL;
2027         }
2028         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2029         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2030                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2031                        mdname(mddev));
2032                 return -EINVAL;
2033         }
2034         return 0;
2035 }
2036 EXPORT_SYMBOL(md_integrity_register);
2037
2038 /* Disable data integrity if non-capable/non-matching disk is being added */
2039 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2040 {
2041         struct blk_integrity *bi_rdev;
2042         struct blk_integrity *bi_mddev;
2043
2044         if (!mddev->gendisk)
2045                 return;
2046
2047         bi_rdev = bdev_get_integrity(rdev->bdev);
2048         bi_mddev = blk_get_integrity(mddev->gendisk);
2049
2050         if (!bi_mddev) /* nothing to do */
2051                 return;
2052         if (rdev->raid_disk < 0) /* skip spares */
2053                 return;
2054         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2055                                              rdev->bdev->bd_disk) >= 0)
2056                 return;
2057         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2058         blk_integrity_unregister(mddev->gendisk);
2059 }
2060 EXPORT_SYMBOL(md_integrity_add_rdev);
2061
2062 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2063 {
2064         char b[BDEVNAME_SIZE];
2065         struct kobject *ko;
2066         char *s;
2067         int err;
2068
2069         if (rdev->mddev) {
2070                 MD_BUG();
2071                 return -EINVAL;
2072         }
2073
2074         /* prevent duplicates */
2075         if (find_rdev(mddev, rdev->bdev->bd_dev))
2076                 return -EEXIST;
2077
2078         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2079         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2080                         rdev->sectors < mddev->dev_sectors)) {
2081                 if (mddev->pers) {
2082                         /* Cannot change size, so fail
2083                          * If mddev->level <= 0, then we don't care
2084                          * about aligning sizes (e.g. linear)
2085                          */
2086                         if (mddev->level > 0)
2087                                 return -ENOSPC;
2088                 } else
2089                         mddev->dev_sectors = rdev->sectors;
2090         }
2091
2092         /* Verify rdev->desc_nr is unique.
2093          * If it is -1, assign a free number, else
2094          * check number is not in use
2095          */
2096         if (rdev->desc_nr < 0) {
2097                 int choice = 0;
2098                 if (mddev->pers) choice = mddev->raid_disks;
2099                 while (find_rdev_nr(mddev, choice))
2100                         choice++;
2101                 rdev->desc_nr = choice;
2102         } else {
2103                 if (find_rdev_nr(mddev, rdev->desc_nr))
2104                         return -EBUSY;
2105         }
2106         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2107                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2108                        mdname(mddev), mddev->max_disks);
2109                 return -EBUSY;
2110         }
2111         bdevname(rdev->bdev,b);
2112         while ( (s=strchr(b, '/')) != NULL)
2113                 *s = '!';
2114
2115         rdev->mddev = mddev;
2116         printk(KERN_INFO "md: bind<%s>\n", b);
2117
2118         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2119                 goto fail;
2120
2121         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2122         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2123                 /* failure here is OK */;
2124         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2125
2126         list_add_rcu(&rdev->same_set, &mddev->disks);
2127         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2128
2129         /* May as well allow recovery to be retried once */
2130         mddev->recovery_disabled++;
2131
2132         return 0;
2133
2134  fail:
2135         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2136                b, mdname(mddev));
2137         return err;
2138 }
2139
2140 static void md_delayed_delete(struct work_struct *ws)
2141 {
2142         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2143         kobject_del(&rdev->kobj);
2144         kobject_put(&rdev->kobj);
2145 }
2146
2147 static void unbind_rdev_from_array(struct md_rdev * rdev)
2148 {
2149         char b[BDEVNAME_SIZE];
2150         if (!rdev->mddev) {
2151                 MD_BUG();
2152                 return;
2153         }
2154         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2155         list_del_rcu(&rdev->same_set);
2156         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2157         rdev->mddev = NULL;
2158         sysfs_remove_link(&rdev->kobj, "block");
2159         sysfs_put(rdev->sysfs_state);
2160         rdev->sysfs_state = NULL;
2161         rdev->badblocks.count = 0;
2162         /* We need to delay this, otherwise we can deadlock when
2163          * writing to 'remove' to "dev/state".  We also need
2164          * to delay it due to rcu usage.
2165          */
2166         synchronize_rcu();
2167         INIT_WORK(&rdev->del_work, md_delayed_delete);
2168         kobject_get(&rdev->kobj);
2169         queue_work(md_misc_wq, &rdev->del_work);
2170 }
2171
2172 /*
2173  * prevent the device from being mounted, repartitioned or
2174  * otherwise reused by a RAID array (or any other kernel
2175  * subsystem), by bd_claiming the device.
2176  */
2177 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2178 {
2179         int err = 0;
2180         struct block_device *bdev;
2181         char b[BDEVNAME_SIZE];
2182
2183         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2184                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2185         if (IS_ERR(bdev)) {
2186                 printk(KERN_ERR "md: could not open %s.\n",
2187                         __bdevname(dev, b));
2188                 return PTR_ERR(bdev);
2189         }
2190         rdev->bdev = bdev;
2191         return err;
2192 }
2193
2194 static void unlock_rdev(struct md_rdev *rdev)
2195 {
2196         struct block_device *bdev = rdev->bdev;
2197         rdev->bdev = NULL;
2198         if (!bdev)
2199                 MD_BUG();
2200         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2201 }
2202
2203 void md_autodetect_dev(dev_t dev);
2204
2205 static void export_rdev(struct md_rdev * rdev)
2206 {
2207         char b[BDEVNAME_SIZE];
2208         printk(KERN_INFO "md: export_rdev(%s)\n",
2209                 bdevname(rdev->bdev,b));
2210         if (rdev->mddev)
2211                 MD_BUG();
2212         md_rdev_clear(rdev);
2213 #ifndef MODULE
2214         if (test_bit(AutoDetected, &rdev->flags))
2215                 md_autodetect_dev(rdev->bdev->bd_dev);
2216 #endif
2217         unlock_rdev(rdev);
2218         kobject_put(&rdev->kobj);
2219 }
2220
2221 static void kick_rdev_from_array(struct md_rdev * rdev)
2222 {
2223         unbind_rdev_from_array(rdev);
2224         export_rdev(rdev);
2225 }
2226
2227 static void export_array(struct mddev *mddev)
2228 {
2229         struct md_rdev *rdev, *tmp;
2230
2231         rdev_for_each_safe(rdev, tmp, mddev) {
2232                 if (!rdev->mddev) {
2233                         MD_BUG();
2234                         continue;
2235                 }
2236                 kick_rdev_from_array(rdev);
2237         }
2238         if (!list_empty(&mddev->disks))
2239                 MD_BUG();
2240         mddev->raid_disks = 0;
2241         mddev->major_version = 0;
2242 }
2243
2244 static void print_desc(mdp_disk_t *desc)
2245 {
2246         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2247                 desc->major,desc->minor,desc->raid_disk,desc->state);
2248 }
2249
2250 static void print_sb_90(mdp_super_t *sb)
2251 {
2252         int i;
2253
2254         printk(KERN_INFO 
2255                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2256                 sb->major_version, sb->minor_version, sb->patch_version,
2257                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2258                 sb->ctime);
2259         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2260                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2261                 sb->md_minor, sb->layout, sb->chunk_size);
2262         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2263                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2264                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2265                 sb->failed_disks, sb->spare_disks,
2266                 sb->sb_csum, (unsigned long)sb->events_lo);
2267
2268         printk(KERN_INFO);
2269         for (i = 0; i < MD_SB_DISKS; i++) {
2270                 mdp_disk_t *desc;
2271
2272                 desc = sb->disks + i;
2273                 if (desc->number || desc->major || desc->minor ||
2274                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2275                         printk("     D %2d: ", i);
2276                         print_desc(desc);
2277                 }
2278         }
2279         printk(KERN_INFO "md:     THIS: ");
2280         print_desc(&sb->this_disk);
2281 }
2282
2283 static void print_sb_1(struct mdp_superblock_1 *sb)
2284 {
2285         __u8 *uuid;
2286
2287         uuid = sb->set_uuid;
2288         printk(KERN_INFO
2289                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2290                "md:    Name: \"%s\" CT:%llu\n",
2291                 le32_to_cpu(sb->major_version),
2292                 le32_to_cpu(sb->feature_map),
2293                 uuid,
2294                 sb->set_name,
2295                 (unsigned long long)le64_to_cpu(sb->ctime)
2296                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2297
2298         uuid = sb->device_uuid;
2299         printk(KERN_INFO
2300                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2301                         " RO:%llu\n"
2302                "md:     Dev:%08x UUID: %pU\n"
2303                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2304                "md:         (MaxDev:%u) \n",
2305                 le32_to_cpu(sb->level),
2306                 (unsigned long long)le64_to_cpu(sb->size),
2307                 le32_to_cpu(sb->raid_disks),
2308                 le32_to_cpu(sb->layout),
2309                 le32_to_cpu(sb->chunksize),
2310                 (unsigned long long)le64_to_cpu(sb->data_offset),
2311                 (unsigned long long)le64_to_cpu(sb->data_size),
2312                 (unsigned long long)le64_to_cpu(sb->super_offset),
2313                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2314                 le32_to_cpu(sb->dev_number),
2315                 uuid,
2316                 sb->devflags,
2317                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2318                 (unsigned long long)le64_to_cpu(sb->events),
2319                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2320                 le32_to_cpu(sb->sb_csum),
2321                 le32_to_cpu(sb->max_dev)
2322                 );
2323 }
2324
2325 static void print_rdev(struct md_rdev *rdev, int major_version)
2326 {
2327         char b[BDEVNAME_SIZE];
2328         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2329                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2330                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2331                 rdev->desc_nr);
2332         if (rdev->sb_loaded) {
2333                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2334                 switch (major_version) {
2335                 case 0:
2336                         print_sb_90(page_address(rdev->sb_page));
2337                         break;
2338                 case 1:
2339                         print_sb_1(page_address(rdev->sb_page));
2340                         break;
2341                 }
2342         } else
2343                 printk(KERN_INFO "md: no rdev superblock!\n");
2344 }
2345
2346 static void md_print_devices(void)
2347 {
2348         struct list_head *tmp;
2349         struct md_rdev *rdev;
2350         struct mddev *mddev;
2351         char b[BDEVNAME_SIZE];
2352
2353         printk("\n");
2354         printk("md:     **********************************\n");
2355         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2356         printk("md:     **********************************\n");
2357         for_each_mddev(mddev, tmp) {
2358
2359                 if (mddev->bitmap)
2360                         bitmap_print_sb(mddev->bitmap);
2361                 else
2362                         printk("%s: ", mdname(mddev));
2363                 rdev_for_each(rdev, mddev)
2364                         printk("<%s>", bdevname(rdev->bdev,b));
2365                 printk("\n");
2366
2367                 rdev_for_each(rdev, mddev)
2368                         print_rdev(rdev, mddev->major_version);
2369         }
2370         printk("md:     **********************************\n");
2371         printk("\n");
2372 }
2373
2374
2375 static void sync_sbs(struct mddev * mddev, int nospares)
2376 {
2377         /* Update each superblock (in-memory image), but
2378          * if we are allowed to, skip spares which already
2379          * have the right event counter, or have one earlier
2380          * (which would mean they aren't being marked as dirty
2381          * with the rest of the array)
2382          */
2383         struct md_rdev *rdev;
2384         rdev_for_each(rdev, mddev) {
2385                 if (rdev->sb_events == mddev->events ||
2386                     (nospares &&
2387                      rdev->raid_disk < 0 &&
2388                      rdev->sb_events+1 == mddev->events)) {
2389                         /* Don't update this superblock */
2390                         rdev->sb_loaded = 2;
2391                 } else {
2392                         sync_super(mddev, rdev);
2393                         rdev->sb_loaded = 1;
2394                 }
2395         }
2396 }
2397
2398 static void md_update_sb(struct mddev * mddev, int force_change)
2399 {
2400         struct md_rdev *rdev;
2401         int sync_req;
2402         int nospares = 0;
2403         int any_badblocks_changed = 0;
2404
2405 repeat:
2406         /* First make sure individual recovery_offsets are correct */
2407         rdev_for_each(rdev, mddev) {
2408                 if (rdev->raid_disk >= 0 &&
2409                     mddev->delta_disks >= 0 &&
2410                     !test_bit(In_sync, &rdev->flags) &&
2411                     mddev->curr_resync_completed > rdev->recovery_offset)
2412                                 rdev->recovery_offset = mddev->curr_resync_completed;
2413
2414         }       
2415         if (!mddev->persistent) {
2416                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2417                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2418                 if (!mddev->external) {
2419                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2420                         rdev_for_each(rdev, mddev) {
2421                                 if (rdev->badblocks.changed) {
2422                                         rdev->badblocks.changed = 0;
2423                                         md_ack_all_badblocks(&rdev->badblocks);
2424                                         md_error(mddev, rdev);
2425                                 }
2426                                 clear_bit(Blocked, &rdev->flags);
2427                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2428                                 wake_up(&rdev->blocked_wait);
2429                         }
2430                 }
2431                 wake_up(&mddev->sb_wait);
2432                 return;
2433         }
2434
2435         spin_lock_irq(&mddev->write_lock);
2436
2437         mddev->utime = get_seconds();
2438
2439         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2440                 force_change = 1;
2441         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2442                 /* just a clean<-> dirty transition, possibly leave spares alone,
2443                  * though if events isn't the right even/odd, we will have to do
2444                  * spares after all
2445                  */
2446                 nospares = 1;
2447         if (force_change)
2448                 nospares = 0;
2449         if (mddev->degraded)
2450                 /* If the array is degraded, then skipping spares is both
2451                  * dangerous and fairly pointless.
2452                  * Dangerous because a device that was removed from the array
2453                  * might have a event_count that still looks up-to-date,
2454                  * so it can be re-added without a resync.
2455                  * Pointless because if there are any spares to skip,
2456                  * then a recovery will happen and soon that array won't
2457                  * be degraded any more and the spare can go back to sleep then.
2458                  */
2459                 nospares = 0;
2460
2461         sync_req = mddev->in_sync;
2462
2463         /* If this is just a dirty<->clean transition, and the array is clean
2464          * and 'events' is odd, we can roll back to the previous clean state */
2465         if (nospares
2466             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2467             && mddev->can_decrease_events
2468             && mddev->events != 1) {
2469                 mddev->events--;
2470                 mddev->can_decrease_events = 0;
2471         } else {
2472                 /* otherwise we have to go forward and ... */
2473                 mddev->events ++;
2474                 mddev->can_decrease_events = nospares;
2475         }
2476
2477         if (!mddev->events) {
2478                 /*
2479                  * oops, this 64-bit counter should never wrap.
2480                  * Either we are in around ~1 trillion A.C., assuming
2481                  * 1 reboot per second, or we have a bug:
2482                  */
2483                 MD_BUG();
2484                 mddev->events --;
2485         }
2486
2487         rdev_for_each(rdev, mddev) {
2488                 if (rdev->badblocks.changed)
2489                         any_badblocks_changed++;
2490                 if (test_bit(Faulty, &rdev->flags))
2491                         set_bit(FaultRecorded, &rdev->flags);
2492         }
2493
2494         sync_sbs(mddev, nospares);
2495         spin_unlock_irq(&mddev->write_lock);
2496
2497         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2498                  mdname(mddev), mddev->in_sync);
2499
2500         bitmap_update_sb(mddev->bitmap);
2501         rdev_for_each(rdev, mddev) {
2502                 char b[BDEVNAME_SIZE];
2503
2504                 if (rdev->sb_loaded != 1)
2505                         continue; /* no noise on spare devices */
2506
2507                 if (!test_bit(Faulty, &rdev->flags) &&
2508                     rdev->saved_raid_disk == -1) {
2509                         md_super_write(mddev,rdev,
2510                                        rdev->sb_start, rdev->sb_size,
2511                                        rdev->sb_page);
2512                         pr_debug("md: (write) %s's sb offset: %llu\n",
2513                                  bdevname(rdev->bdev, b),
2514                                  (unsigned long long)rdev->sb_start);
2515                         rdev->sb_events = mddev->events;
2516                         if (rdev->badblocks.size) {
2517                                 md_super_write(mddev, rdev,
2518                                                rdev->badblocks.sector,
2519                                                rdev->badblocks.size << 9,
2520                                                rdev->bb_page);
2521                                 rdev->badblocks.size = 0;
2522                         }
2523
2524                 } else if (test_bit(Faulty, &rdev->flags))
2525                         pr_debug("md: %s (skipping faulty)\n",
2526                                  bdevname(rdev->bdev, b));
2527                 else
2528                         pr_debug("(skipping incremental s/r ");
2529
2530                 if (mddev->level == LEVEL_MULTIPATH)
2531                         /* only need to write one superblock... */
2532                         break;
2533         }
2534         md_super_wait(mddev);
2535         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2536
2537         spin_lock_irq(&mddev->write_lock);
2538         if (mddev->in_sync != sync_req ||
2539             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2540                 /* have to write it out again */
2541                 spin_unlock_irq(&mddev->write_lock);
2542                 goto repeat;
2543         }
2544         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2545         spin_unlock_irq(&mddev->write_lock);
2546         wake_up(&mddev->sb_wait);
2547         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2548                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2549
2550         rdev_for_each(rdev, mddev) {
2551                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2552                         clear_bit(Blocked, &rdev->flags);
2553
2554                 if (any_badblocks_changed)
2555                         md_ack_all_badblocks(&rdev->badblocks);
2556                 clear_bit(BlockedBadBlocks, &rdev->flags);
2557                 wake_up(&rdev->blocked_wait);
2558         }
2559 }
2560
2561 /* words written to sysfs files may, or may not, be \n terminated.
2562  * We want to accept with case. For this we use cmd_match.
2563  */
2564 static int cmd_match(const char *cmd, const char *str)
2565 {
2566         /* See if cmd, written into a sysfs file, matches
2567          * str.  They must either be the same, or cmd can
2568          * have a trailing newline
2569          */
2570         while (*cmd && *str && *cmd == *str) {
2571                 cmd++;
2572                 str++;
2573         }
2574         if (*cmd == '\n')
2575                 cmd++;
2576         if (*str || *cmd)
2577                 return 0;
2578         return 1;
2579 }
2580
2581 struct rdev_sysfs_entry {
2582         struct attribute attr;
2583         ssize_t (*show)(struct md_rdev *, char *);
2584         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2585 };
2586
2587 static ssize_t
2588 state_show(struct md_rdev *rdev, char *page)
2589 {
2590         char *sep = "";
2591         size_t len = 0;
2592
2593         if (test_bit(Faulty, &rdev->flags) ||
2594             rdev->badblocks.unacked_exist) {
2595                 len+= sprintf(page+len, "%sfaulty",sep);
2596                 sep = ",";
2597         }
2598         if (test_bit(In_sync, &rdev->flags)) {
2599                 len += sprintf(page+len, "%sin_sync",sep);
2600                 sep = ",";
2601         }
2602         if (test_bit(WriteMostly, &rdev->flags)) {
2603                 len += sprintf(page+len, "%swrite_mostly",sep);
2604                 sep = ",";
2605         }
2606         if (test_bit(Blocked, &rdev->flags) ||
2607             (rdev->badblocks.unacked_exist
2608              && !test_bit(Faulty, &rdev->flags))) {
2609                 len += sprintf(page+len, "%sblocked", sep);
2610                 sep = ",";
2611         }
2612         if (!test_bit(Faulty, &rdev->flags) &&
2613             !test_bit(In_sync, &rdev->flags)) {
2614                 len += sprintf(page+len, "%sspare", sep);
2615                 sep = ",";
2616         }
2617         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2618                 len += sprintf(page+len, "%swrite_error", sep);
2619                 sep = ",";
2620         }
2621         if (test_bit(WantReplacement, &rdev->flags)) {
2622                 len += sprintf(page+len, "%swant_replacement", sep);
2623                 sep = ",";
2624         }
2625         if (test_bit(Replacement, &rdev->flags)) {
2626                 len += sprintf(page+len, "%sreplacement", sep);
2627                 sep = ",";
2628         }
2629
2630         return len+sprintf(page+len, "\n");
2631 }
2632
2633 static ssize_t
2634 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2635 {
2636         /* can write
2637          *  faulty  - simulates an error
2638          *  remove  - disconnects the device
2639          *  writemostly - sets write_mostly
2640          *  -writemostly - clears write_mostly
2641          *  blocked - sets the Blocked flags
2642          *  -blocked - clears the Blocked and possibly simulates an error
2643          *  insync - sets Insync providing device isn't active
2644          *  write_error - sets WriteErrorSeen
2645          *  -write_error - clears WriteErrorSeen
2646          */
2647         int err = -EINVAL;
2648         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2649                 md_error(rdev->mddev, rdev);
2650                 if (test_bit(Faulty, &rdev->flags))
2651                         err = 0;
2652                 else
2653                         err = -EBUSY;
2654         } else if (cmd_match(buf, "remove")) {
2655                 if (rdev->raid_disk >= 0)
2656                         err = -EBUSY;
2657                 else {
2658                         struct mddev *mddev = rdev->mddev;
2659                         kick_rdev_from_array(rdev);
2660                         if (mddev->pers)
2661                                 md_update_sb(mddev, 1);
2662                         md_new_event(mddev);
2663                         err = 0;
2664                 }
2665         } else if (cmd_match(buf, "writemostly")) {
2666                 set_bit(WriteMostly, &rdev->flags);
2667                 err = 0;
2668         } else if (cmd_match(buf, "-writemostly")) {
2669                 clear_bit(WriteMostly, &rdev->flags);
2670                 err = 0;
2671         } else if (cmd_match(buf, "blocked")) {
2672                 set_bit(Blocked, &rdev->flags);
2673                 err = 0;
2674         } else if (cmd_match(buf, "-blocked")) {
2675                 if (!test_bit(Faulty, &rdev->flags) &&
2676                     rdev->badblocks.unacked_exist) {
2677                         /* metadata handler doesn't understand badblocks,
2678                          * so we need to fail the device
2679                          */
2680                         md_error(rdev->mddev, rdev);
2681                 }
2682                 clear_bit(Blocked, &rdev->flags);
2683                 clear_bit(BlockedBadBlocks, &rdev->flags);
2684                 wake_up(&rdev->blocked_wait);
2685                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2686                 md_wakeup_thread(rdev->mddev->thread);
2687
2688                 err = 0;
2689         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2690                 set_bit(In_sync, &rdev->flags);
2691                 err = 0;
2692         } else if (cmd_match(buf, "write_error")) {
2693                 set_bit(WriteErrorSeen, &rdev->flags);
2694                 err = 0;
2695         } else if (cmd_match(buf, "-write_error")) {
2696                 clear_bit(WriteErrorSeen, &rdev->flags);
2697                 err = 0;
2698         } else if (cmd_match(buf, "want_replacement")) {
2699                 /* Any non-spare device that is not a replacement can
2700                  * become want_replacement at any time, but we then need to
2701                  * check if recovery is needed.
2702                  */
2703                 if (rdev->raid_disk >= 0 &&
2704                     !test_bit(Replacement, &rdev->flags))
2705                         set_bit(WantReplacement, &rdev->flags);
2706                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2707                 md_wakeup_thread(rdev->mddev->thread);
2708                 err = 0;
2709         } else if (cmd_match(buf, "-want_replacement")) {
2710                 /* Clearing 'want_replacement' is always allowed.
2711                  * Once replacements starts it is too late though.
2712                  */
2713                 err = 0;
2714                 clear_bit(WantReplacement, &rdev->flags);
2715         } else if (cmd_match(buf, "replacement")) {
2716                 /* Can only set a device as a replacement when array has not
2717                  * yet been started.  Once running, replacement is automatic
2718                  * from spares, or by assigning 'slot'.
2719                  */
2720                 if (rdev->mddev->pers)
2721                         err = -EBUSY;
2722                 else {
2723                         set_bit(Replacement, &rdev->flags);
2724                         err = 0;
2725                 }
2726         } else if (cmd_match(buf, "-replacement")) {
2727                 /* Similarly, can only clear Replacement before start */
2728                 if (rdev->mddev->pers)
2729                         err = -EBUSY;
2730                 else {
2731                         clear_bit(Replacement, &rdev->flags);
2732                         err = 0;
2733                 }
2734         }
2735         if (!err)
2736                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2737         return err ? err : len;
2738 }
2739 static struct rdev_sysfs_entry rdev_state =
2740 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2741
2742 static ssize_t
2743 errors_show(struct md_rdev *rdev, char *page)
2744 {
2745         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2746 }
2747
2748 static ssize_t
2749 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2750 {
2751         char *e;
2752         unsigned long n = simple_strtoul(buf, &e, 10);
2753         if (*buf && (*e == 0 || *e == '\n')) {
2754                 atomic_set(&rdev->corrected_errors, n);
2755                 return len;
2756         }
2757         return -EINVAL;
2758 }
2759 static struct rdev_sysfs_entry rdev_errors =
2760 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2761
2762 static ssize_t
2763 slot_show(struct md_rdev *rdev, char *page)
2764 {
2765         if (rdev->raid_disk < 0)
2766                 return sprintf(page, "none\n");
2767         else
2768                 return sprintf(page, "%d\n", rdev->raid_disk);
2769 }
2770
2771 static ssize_t
2772 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2773 {
2774         char *e;
2775         int err;
2776         int slot = simple_strtoul(buf, &e, 10);
2777         if (strncmp(buf, "none", 4)==0)
2778                 slot = -1;
2779         else if (e==buf || (*e && *e!= '\n'))
2780                 return -EINVAL;
2781         if (rdev->mddev->pers && slot == -1) {
2782                 /* Setting 'slot' on an active array requires also
2783                  * updating the 'rd%d' link, and communicating
2784                  * with the personality with ->hot_*_disk.
2785                  * For now we only support removing
2786                  * failed/spare devices.  This normally happens automatically,
2787                  * but not when the metadata is externally managed.
2788                  */
2789                 if (rdev->raid_disk == -1)
2790                         return -EEXIST;
2791                 /* personality does all needed checks */
2792                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2793                         return -EINVAL;
2794                 err = rdev->mddev->pers->
2795                         hot_remove_disk(rdev->mddev, rdev);
2796                 if (err)
2797                         return err;
2798                 sysfs_unlink_rdev(rdev->mddev, rdev);
2799                 rdev->raid_disk = -1;
2800                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2801                 md_wakeup_thread(rdev->mddev->thread);
2802         } else if (rdev->mddev->pers) {
2803                 /* Activating a spare .. or possibly reactivating
2804                  * if we ever get bitmaps working here.
2805                  */
2806
2807                 if (rdev->raid_disk != -1)
2808                         return -EBUSY;
2809
2810                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2811                         return -EBUSY;
2812
2813                 if (rdev->mddev->pers->hot_add_disk == NULL)
2814                         return -EINVAL;
2815
2816                 if (slot >= rdev->mddev->raid_disks &&
2817                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2818                         return -ENOSPC;
2819
2820                 rdev->raid_disk = slot;
2821                 if (test_bit(In_sync, &rdev->flags))
2822                         rdev->saved_raid_disk = slot;
2823                 else
2824                         rdev->saved_raid_disk = -1;
2825                 clear_bit(In_sync, &rdev->flags);
2826                 err = rdev->mddev->pers->
2827                         hot_add_disk(rdev->mddev, rdev);
2828                 if (err) {
2829                         rdev->raid_disk = -1;
2830                         return err;
2831                 } else
2832                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2833                 if (sysfs_link_rdev(rdev->mddev, rdev))
2834                         /* failure here is OK */;
2835                 /* don't wakeup anyone, leave that to userspace. */
2836         } else {
2837                 if (slot >= rdev->mddev->raid_disks &&
2838                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2839                         return -ENOSPC;
2840                 rdev->raid_disk = slot;
2841                 /* assume it is working */
2842                 clear_bit(Faulty, &rdev->flags);
2843                 clear_bit(WriteMostly, &rdev->flags);
2844                 set_bit(In_sync, &rdev->flags);
2845                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2846         }
2847         return len;
2848 }
2849
2850
2851 static struct rdev_sysfs_entry rdev_slot =
2852 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2853
2854 static ssize_t
2855 offset_show(struct md_rdev *rdev, char *page)
2856 {
2857         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2858 }
2859
2860 static ssize_t
2861 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2862 {
2863         unsigned long long offset;
2864         if (strict_strtoull(buf, 10, &offset) < 0)
2865                 return -EINVAL;
2866         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2867                 return -EBUSY;
2868         if (rdev->sectors && rdev->mddev->external)
2869                 /* Must set offset before size, so overlap checks
2870                  * can be sane */
2871                 return -EBUSY;
2872         rdev->data_offset = offset;
2873         rdev->new_data_offset = offset;
2874         return len;
2875 }
2876
2877 static struct rdev_sysfs_entry rdev_offset =
2878 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2879
2880 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2881 {
2882         return sprintf(page, "%llu\n",
2883                        (unsigned long long)rdev->new_data_offset);
2884 }
2885
2886 static ssize_t new_offset_store(struct md_rdev *rdev,
2887                                 const char *buf, size_t len)
2888 {
2889         unsigned long long new_offset;
2890         struct mddev *mddev = rdev->mddev;
2891
2892         if (strict_strtoull(buf, 10, &new_offset) < 0)
2893                 return -EINVAL;
2894
2895         if (mddev->sync_thread)
2896                 return -EBUSY;
2897         if (new_offset == rdev->data_offset)
2898                 /* reset is always permitted */
2899                 ;
2900         else if (new_offset > rdev->data_offset) {
2901                 /* must not push array size beyond rdev_sectors */
2902                 if (new_offset - rdev->data_offset
2903                     + mddev->dev_sectors > rdev->sectors)
2904                                 return -E2BIG;
2905         }
2906         /* Metadata worries about other space details. */
2907
2908         /* decreasing the offset is inconsistent with a backwards
2909          * reshape.
2910          */
2911         if (new_offset < rdev->data_offset &&
2912             mddev->reshape_backwards)
2913                 return -EINVAL;
2914         /* Increasing offset is inconsistent with forwards
2915          * reshape.  reshape_direction should be set to
2916          * 'backwards' first.
2917          */
2918         if (new_offset > rdev->data_offset &&
2919             !mddev->reshape_backwards)
2920                 return -EINVAL;
2921
2922         if (mddev->pers && mddev->persistent &&
2923             !super_types[mddev->major_version]
2924             .allow_new_offset(rdev, new_offset))
2925                 return -E2BIG;
2926         rdev->new_data_offset = new_offset;
2927         if (new_offset > rdev->data_offset)
2928                 mddev->reshape_backwards = 1;
2929         else if (new_offset < rdev->data_offset)
2930                 mddev->reshape_backwards = 0;
2931
2932         return len;
2933 }
2934 static struct rdev_sysfs_entry rdev_new_offset =
2935 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2936
2937 static ssize_t
2938 rdev_size_show(struct md_rdev *rdev, char *page)
2939 {
2940         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2941 }
2942
2943 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2944 {
2945         /* check if two start/length pairs overlap */
2946         if (s1+l1 <= s2)
2947                 return 0;
2948         if (s2+l2 <= s1)
2949                 return 0;
2950         return 1;
2951 }
2952
2953 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2954 {
2955         unsigned long long blocks;
2956         sector_t new;
2957
2958         if (strict_strtoull(buf, 10, &blocks) < 0)
2959                 return -EINVAL;
2960
2961         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2962                 return -EINVAL; /* sector conversion overflow */
2963
2964         new = blocks * 2;
2965         if (new != blocks * 2)
2966                 return -EINVAL; /* unsigned long long to sector_t overflow */
2967
2968         *sectors = new;
2969         return 0;
2970 }
2971
2972 static ssize_t
2973 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2974 {
2975         struct mddev *my_mddev = rdev->mddev;
2976         sector_t oldsectors = rdev->sectors;
2977         sector_t sectors;
2978
2979         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2980                 return -EINVAL;
2981         if (rdev->data_offset != rdev->new_data_offset)
2982                 return -EINVAL; /* too confusing */
2983         if (my_mddev->pers && rdev->raid_disk >= 0) {
2984                 if (my_mddev->persistent) {
2985                         sectors = super_types[my_mddev->major_version].
2986                                 rdev_size_change(rdev, sectors);
2987                         if (!sectors)
2988                                 return -EBUSY;
2989                 } else if (!sectors)
2990                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2991                                 rdev->data_offset;
2992                 if (!my_mddev->pers->resize)
2993                         /* Cannot change size for RAID0 or Linear etc */
2994                         return -EINVAL;
2995         }
2996         if (sectors < my_mddev->dev_sectors)
2997                 return -EINVAL; /* component must fit device */
2998
2999         rdev->sectors = sectors;
3000         if (sectors > oldsectors && my_mddev->external) {
3001                 /* need to check that all other rdevs with the same ->bdev
3002                  * do not overlap.  We need to unlock the mddev to avoid
3003                  * a deadlock.  We have already changed rdev->sectors, and if
3004                  * we have to change it back, we will have the lock again.
3005                  */
3006                 struct mddev *mddev;
3007                 int overlap = 0;
3008                 struct list_head *tmp;
3009
3010                 mddev_unlock(my_mddev);
3011                 for_each_mddev(mddev, tmp) {
3012                         struct md_rdev *rdev2;
3013
3014                         mddev_lock(mddev);
3015                         rdev_for_each(rdev2, mddev)
3016                                 if (rdev->bdev == rdev2->bdev &&
3017                                     rdev != rdev2 &&
3018                                     overlaps(rdev->data_offset, rdev->sectors,
3019                                              rdev2->data_offset,
3020                                              rdev2->sectors)) {
3021                                         overlap = 1;
3022                                         break;
3023                                 }
3024                         mddev_unlock(mddev);
3025                         if (overlap) {
3026                                 mddev_put(mddev);
3027                                 break;
3028                         }
3029                 }
3030                 mddev_lock(my_mddev);
3031                 if (overlap) {
3032                         /* Someone else could have slipped in a size
3033                          * change here, but doing so is just silly.
3034                          * We put oldsectors back because we *know* it is
3035                          * safe, and trust userspace not to race with
3036                          * itself
3037                          */
3038                         rdev->sectors = oldsectors;
3039                         return -EBUSY;
3040                 }
3041         }
3042         return len;
3043 }
3044
3045 static struct rdev_sysfs_entry rdev_size =
3046 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3047
3048
3049 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3050 {
3051         unsigned long long recovery_start = rdev->recovery_offset;
3052
3053         if (test_bit(In_sync, &rdev->flags) ||
3054             recovery_start == MaxSector)
3055                 return sprintf(page, "none\n");
3056
3057         return sprintf(page, "%llu\n", recovery_start);
3058 }
3059
3060 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3061 {
3062         unsigned long long recovery_start;
3063
3064         if (cmd_match(buf, "none"))
3065                 recovery_start = MaxSector;
3066         else if (strict_strtoull(buf, 10, &recovery_start))
3067                 return -EINVAL;
3068
3069         if (rdev->mddev->pers &&
3070             rdev->raid_disk >= 0)
3071                 return -EBUSY;
3072
3073         rdev->recovery_offset = recovery_start;
3074         if (recovery_start == MaxSector)
3075                 set_bit(In_sync, &rdev->flags);
3076         else
3077                 clear_bit(In_sync, &rdev->flags);
3078         return len;
3079 }
3080
3081 static struct rdev_sysfs_entry rdev_recovery_start =
3082 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3083
3084
3085 static ssize_t
3086 badblocks_show(struct badblocks *bb, char *page, int unack);
3087 static ssize_t
3088 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3089
3090 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3091 {
3092         return badblocks_show(&rdev->badblocks, page, 0);
3093 }
3094 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3095 {
3096         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3097         /* Maybe that ack was all we needed */
3098         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3099                 wake_up(&rdev->blocked_wait);
3100         return rv;
3101 }
3102 static struct rdev_sysfs_entry rdev_bad_blocks =
3103 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3104
3105
3106 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3107 {
3108         return badblocks_show(&rdev->badblocks, page, 1);
3109 }
3110 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3111 {
3112         return badblocks_store(&rdev->badblocks, page, len, 1);
3113 }
3114 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3115 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3116
3117 static struct attribute *rdev_default_attrs[] = {
3118         &rdev_state.attr,
3119         &rdev_errors.attr,
3120         &rdev_slot.attr,
3121         &rdev_offset.attr,
3122         &rdev_new_offset.attr,
3123         &rdev_size.attr,
3124         &rdev_recovery_start.attr,
3125         &rdev_bad_blocks.attr,
3126         &rdev_unack_bad_blocks.attr,
3127         NULL,
3128 };
3129 static ssize_t
3130 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3131 {
3132         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3133         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3134         struct mddev *mddev = rdev->mddev;
3135         ssize_t rv;
3136
3137         if (!entry->show)
3138                 return -EIO;
3139
3140         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3141         if (!rv) {
3142                 if (rdev->mddev == NULL)
3143                         rv = -EBUSY;
3144                 else
3145                         rv = entry->show(rdev, page);
3146                 mddev_unlock(mddev);
3147         }
3148         return rv;
3149 }
3150
3151 static ssize_t
3152 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3153               const char *page, size_t length)
3154 {
3155         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3156         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3157         ssize_t rv;
3158         struct mddev *mddev = rdev->mddev;
3159
3160         if (!entry->store)
3161                 return -EIO;
3162         if (!capable(CAP_SYS_ADMIN))
3163                 return -EACCES;
3164         rv = mddev ? mddev_lock(mddev): -EBUSY;
3165         if (!rv) {
3166                 if (rdev->mddev == NULL)
3167                         rv = -EBUSY;
3168                 else
3169                         rv = entry->store(rdev, page, length);
3170                 mddev_unlock(mddev);
3171         }
3172         return rv;
3173 }
3174
3175 static void rdev_free(struct kobject *ko)
3176 {
3177         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3178         kfree(rdev);
3179 }
3180 static const struct sysfs_ops rdev_sysfs_ops = {
3181         .show           = rdev_attr_show,
3182         .store          = rdev_attr_store,
3183 };
3184 static struct kobj_type rdev_ktype = {
3185         .release        = rdev_free,
3186         .sysfs_ops      = &rdev_sysfs_ops,
3187         .default_attrs  = rdev_default_attrs,
3188 };
3189
3190 int md_rdev_init(struct md_rdev *rdev)
3191 {
3192         rdev->desc_nr = -1;
3193         rdev->saved_raid_disk = -1;
3194         rdev->raid_disk = -1;
3195         rdev->flags = 0;
3196         rdev->data_offset = 0;
3197         rdev->new_data_offset = 0;
3198         rdev->sb_events = 0;
3199         rdev->last_read_error.tv_sec  = 0;
3200         rdev->last_read_error.tv_nsec = 0;
3201         rdev->sb_loaded = 0;
3202         rdev->bb_page = NULL;
3203         atomic_set(&rdev->nr_pending, 0);
3204         atomic_set(&rdev->read_errors, 0);
3205         atomic_set(&rdev->corrected_errors, 0);
3206
3207         INIT_LIST_HEAD(&rdev->same_set);
3208         init_waitqueue_head(&rdev->blocked_wait);
3209
3210         /* Add space to store bad block list.
3211          * This reserves the space even on arrays where it cannot
3212          * be used - I wonder if that matters
3213          */
3214         rdev->badblocks.count = 0;
3215         rdev->badblocks.shift = 0;
3216         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3217         seqlock_init(&rdev->badblocks.lock);
3218         if (rdev->badblocks.page == NULL)
3219                 return -ENOMEM;
3220
3221         return 0;
3222 }
3223 EXPORT_SYMBOL_GPL(md_rdev_init);
3224 /*
3225  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3226  *
3227  * mark the device faulty if:
3228  *
3229  *   - the device is nonexistent (zero size)
3230  *   - the device has no valid superblock
3231  *
3232  * a faulty rdev _never_ has rdev->sb set.
3233  */
3234 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3235 {
3236         char b[BDEVNAME_SIZE];
3237         int err;
3238         struct md_rdev *rdev;
3239         sector_t size;
3240
3241         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3242         if (!rdev) {
3243                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3244                 return ERR_PTR(-ENOMEM);
3245         }
3246
3247         err = md_rdev_init(rdev);
3248         if (err)
3249                 goto abort_free;
3250         err = alloc_disk_sb(rdev);
3251         if (err)
3252                 goto abort_free;
3253
3254         err = lock_rdev(rdev, newdev, super_format == -2);
3255         if (err)
3256                 goto abort_free;
3257
3258         kobject_init(&rdev->kobj, &rdev_ktype);
3259
3260         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3261         if (!size) {
3262                 printk(KERN_WARNING 
3263                         "md: %s has zero or unknown size, marking faulty!\n",
3264                         bdevname(rdev->bdev,b));
3265                 err = -EINVAL;
3266                 goto abort_free;
3267         }
3268
3269         if (super_format >= 0) {
3270                 err = super_types[super_format].
3271                         load_super(rdev, NULL, super_minor);
3272                 if (err == -EINVAL) {
3273                         printk(KERN_WARNING
3274                                 "md: %s does not have a valid v%d.%d "
3275                                "superblock, not importing!\n",
3276                                 bdevname(rdev->bdev,b),
3277                                super_format, super_minor);
3278                         goto abort_free;
3279                 }
3280                 if (err < 0) {
3281                         printk(KERN_WARNING 
3282                                 "md: could not read %s's sb, not importing!\n",
3283                                 bdevname(rdev->bdev,b));
3284                         goto abort_free;
3285                 }
3286         }
3287         if (super_format == -1)
3288                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3289                 rdev->badblocks.shift = -1;
3290
3291         return rdev;
3292
3293 abort_free:
3294         if (rdev->bdev)
3295                 unlock_rdev(rdev);
3296         md_rdev_clear(rdev);
3297         kfree(rdev);
3298         return ERR_PTR(err);
3299 }
3300
3301 /*
3302  * Check a full RAID array for plausibility
3303  */
3304
3305
3306 static void analyze_sbs(struct mddev * mddev)
3307 {
3308         int i;
3309         struct md_rdev *rdev, *freshest, *tmp;
3310         char b[BDEVNAME_SIZE];
3311
3312         freshest = NULL;
3313         rdev_for_each_safe(rdev, tmp, mddev)
3314                 switch (super_types[mddev->major_version].
3315                         load_super(rdev, freshest, mddev->minor_version)) {
3316                 case 1:
3317                         freshest = rdev;
3318                         break;
3319                 case 0:
3320                         break;
3321                 default:
3322                         printk( KERN_ERR \
3323                                 "md: fatal superblock inconsistency in %s"
3324                                 " -- removing from array\n", 
3325                                 bdevname(rdev->bdev,b));
3326                         kick_rdev_from_array(rdev);
3327                 }
3328
3329
3330         super_types[mddev->major_version].
3331                 validate_super(mddev, freshest);
3332
3333         i = 0;
3334         rdev_for_each_safe(rdev, tmp, mddev) {
3335                 if (mddev->max_disks &&
3336                     (rdev->desc_nr >= mddev->max_disks ||
3337                      i > mddev->max_disks)) {
3338                         printk(KERN_WARNING
3339                                "md: %s: %s: only %d devices permitted\n",
3340                                mdname(mddev), bdevname(rdev->bdev, b),
3341                                mddev->max_disks);
3342                         kick_rdev_from_array(rdev);
3343                         continue;
3344                 }
3345                 if (rdev != freshest)
3346                         if (super_types[mddev->major_version].
3347                             validate_super(mddev, rdev)) {
3348                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3349                                         " from array!\n",
3350                                         bdevname(rdev->bdev,b));
3351                                 kick_rdev_from_array(rdev);
3352                                 continue;
3353                         }
3354                 if (mddev->level == LEVEL_MULTIPATH) {
3355                         rdev->desc_nr = i++;
3356                         rdev->raid_disk = rdev->desc_nr;
3357                         set_bit(In_sync, &rdev->flags);
3358                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3359                         rdev->raid_disk = -1;
3360                         clear_bit(In_sync, &rdev->flags);
3361                 }
3362         }
3363 }
3364
3365 /* Read a fixed-point number.
3366  * Numbers in sysfs attributes should be in "standard" units where
3367  * possible, so time should be in seconds.
3368  * However we internally use a a much smaller unit such as 
3369  * milliseconds or jiffies.
3370  * This function takes a decimal number with a possible fractional
3371  * component, and produces an integer which is the result of
3372  * multiplying that number by 10^'scale'.
3373  * all without any floating-point arithmetic.
3374  */
3375 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3376 {
3377         unsigned long result = 0;
3378         long decimals = -1;
3379         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3380                 if (*cp == '.')
3381                         decimals = 0;
3382                 else if (decimals < scale) {
3383                         unsigned int value;
3384                         value = *cp - '0';
3385                         result = result * 10 + value;
3386                         if (decimals >= 0)
3387                                 decimals++;
3388                 }
3389                 cp++;
3390         }
3391         if (*cp == '\n')
3392                 cp++;
3393         if (*cp)
3394                 return -EINVAL;
3395         if (decimals < 0)
3396                 decimals = 0;
3397         while (decimals < scale) {
3398                 result *= 10;
3399                 decimals ++;
3400         }
3401         *res = result;
3402         return 0;
3403 }
3404
3405
3406 static void md_safemode_timeout(unsigned long data);
3407
3408 static ssize_t
3409 safe_delay_show(struct mddev *mddev, char *page)
3410 {
3411         int msec = (mddev->safemode_delay*1000)/HZ;
3412         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3413 }
3414 static ssize_t
3415 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3416 {
3417         unsigned long msec;
3418
3419         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3420                 return -EINVAL;
3421         if (msec == 0)
3422                 mddev->safemode_delay = 0;
3423         else {
3424                 unsigned long old_delay = mddev->safemode_delay;
3425                 mddev->safemode_delay = (msec*HZ)/1000;
3426                 if (mddev->safemode_delay == 0)
3427                         mddev->safemode_delay = 1;
3428                 if (mddev->safemode_delay < old_delay)
3429                         md_safemode_timeout((unsigned long)mddev);
3430         }
3431         return len;
3432 }
3433 static struct md_sysfs_entry md_safe_delay =
3434 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3435
3436 static ssize_t
3437 level_show(struct mddev *mddev, char *page)
3438 {
3439         struct md_personality *p = mddev->pers;
3440         if (p)
3441                 return sprintf(page, "%s\n", p->name);
3442         else if (mddev->clevel[0])
3443                 return sprintf(page, "%s\n", mddev->clevel);
3444         else if (mddev->level != LEVEL_NONE)
3445                 return sprintf(page, "%d\n", mddev->level);
3446         else
3447                 return 0;
3448 }
3449
3450 static ssize_t
3451 level_store(struct mddev *mddev, const char *buf, size_t len)
3452 {
3453         char clevel[16];
3454         ssize_t rv = len;
3455         struct md_personality *pers;
3456         long level;
3457         void *priv;
3458         struct md_rdev *rdev;
3459
3460         if (mddev->pers == NULL) {
3461                 if (len == 0)
3462                         return 0;
3463                 if (len >= sizeof(mddev->clevel))
3464                         return -ENOSPC;
3465                 strncpy(mddev->clevel, buf, len);
3466                 if (mddev->clevel[len-1] == '\n')
3467                         len--;
3468                 mddev->clevel[len] = 0;
3469                 mddev->level = LEVEL_NONE;
3470                 return rv;
3471         }
3472
3473         /* request to change the personality.  Need to ensure:
3474          *  - array is not engaged in resync/recovery/reshape
3475          *  - old personality can be suspended
3476          *  - new personality will access other array.
3477          */
3478
3479         if (mddev->sync_thread ||
3480             mddev->reshape_position != MaxSector ||
3481             mddev->sysfs_active)
3482                 return -EBUSY;
3483
3484         if (!mddev->pers->quiesce) {
3485                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3486                        mdname(mddev), mddev->pers->name);
3487                 return -EINVAL;
3488         }
3489
3490         /* Now find the new personality */
3491         if (len == 0 || len >= sizeof(clevel))
3492                 return -EINVAL;
3493         strncpy(clevel, buf, len);
3494         if (clevel[len-1] == '\n')
3495                 len--;
3496         clevel[len] = 0;
3497         if (strict_strtol(clevel, 10, &level))
3498                 level = LEVEL_NONE;
3499
3500         if (request_module("md-%s", clevel) != 0)
3501                 request_module("md-level-%s", clevel);
3502         spin_lock(&pers_lock);
3503         pers = find_pers(level, clevel);
3504         if (!pers || !try_module_get(pers->owner)) {
3505                 spin_unlock(&pers_lock);
3506                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3507                 return -EINVAL;
3508         }
3509         spin_unlock(&pers_lock);
3510
3511         if (pers == mddev->pers) {
3512                 /* Nothing to do! */
3513                 module_put(pers->owner);
3514                 return rv;
3515         }
3516         if (!pers->takeover) {
3517                 module_put(pers->owner);
3518                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3519                        mdname(mddev), clevel);
3520                 return -EINVAL;
3521         }
3522
3523         rdev_for_each(rdev, mddev)
3524                 rdev->new_raid_disk = rdev->raid_disk;
3525
3526         /* ->takeover must set new_* and/or delta_disks
3527          * if it succeeds, and may set them when it fails.
3528          */
3529         priv = pers->takeover(mddev);
3530         if (IS_ERR(priv)) {
3531                 mddev->new_level = mddev->level;
3532                 mddev->new_layout = mddev->layout;
3533                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3534                 mddev->raid_disks -= mddev->delta_disks;
3535                 mddev->delta_disks = 0;
3536                 mddev->reshape_backwards = 0;
3537                 module_put(pers->owner);
3538                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3539                        mdname(mddev), clevel);
3540                 return PTR_ERR(priv);
3541         }
3542
3543         /* Looks like we have a winner */
3544         mddev_suspend(mddev);
3545         mddev->pers->stop(mddev);
3546         
3547         if (mddev->pers->sync_request == NULL &&
3548             pers->sync_request != NULL) {
3549                 /* need to add the md_redundancy_group */
3550                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3551                         printk(KERN_WARNING
3552                                "md: cannot register extra attributes for %s\n",
3553                                mdname(mddev));
3554                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3555         }               
3556         if (mddev->pers->sync_request != NULL &&
3557             pers->sync_request == NULL) {
3558                 /* need to remove the md_redundancy_group */
3559                 if (mddev->to_remove == NULL)
3560                         mddev->to_remove = &md_redundancy_group;
3561         }
3562
3563         if (mddev->pers->sync_request == NULL &&
3564             mddev->external) {
3565                 /* We are converting from a no-redundancy array
3566                  * to a redundancy array and metadata is managed
3567                  * externally so we need to be sure that writes
3568                  * won't block due to a need to transition
3569                  *      clean->dirty
3570                  * until external management is started.
3571                  */
3572                 mddev->in_sync = 0;
3573                 mddev->safemode_delay = 0;
3574                 mddev->safemode = 0;
3575         }
3576
3577         rdev_for_each(rdev, mddev) {
3578                 if (rdev->raid_disk < 0)
3579                         continue;
3580                 if (rdev->new_raid_disk >= mddev->raid_disks)
3581                         rdev->new_raid_disk = -1;
3582                 if (rdev->new_raid_disk == rdev->raid_disk)
3583                         continue;
3584                 sysfs_unlink_rdev(mddev, rdev);
3585         }
3586         rdev_for_each(rdev, mddev) {
3587                 if (rdev->raid_disk < 0)
3588                         continue;
3589                 if (rdev->new_raid_disk == rdev->raid_disk)
3590                         continue;
3591                 rdev->raid_disk = rdev->new_raid_disk;
3592                 if (rdev->raid_disk < 0)
3593                         clear_bit(In_sync, &rdev->flags);
3594                 else {
3595                         if (sysfs_link_rdev(mddev, rdev))
3596                                 printk(KERN_WARNING "md: cannot register rd%d"
3597                                        " for %s after level change\n",
3598                                        rdev->raid_disk, mdname(mddev));
3599                 }
3600         }
3601
3602         module_put(mddev->pers->owner);
3603         mddev->pers = pers;
3604         mddev->private = priv;
3605         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3606         mddev->level = mddev->new_level;
3607         mddev->layout = mddev->new_layout;
3608         mddev->chunk_sectors = mddev->new_chunk_sectors;
3609         mddev->delta_disks = 0;
3610         mddev->reshape_backwards = 0;
3611         mddev->degraded = 0;
3612         if (mddev->pers->sync_request == NULL) {
3613                 /* this is now an array without redundancy, so
3614                  * it must always be in_sync
3615                  */
3616                 mddev->in_sync = 1;
3617                 del_timer_sync(&mddev->safemode_timer);
3618         }
3619         pers->run(mddev);
3620         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3621         mddev_resume(mddev);
3622         sysfs_notify(&mddev->kobj, NULL, "level");
3623         md_new_event(mddev);
3624         return rv;
3625 }
3626
3627 static struct md_sysfs_entry md_level =
3628 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3629
3630
3631 static ssize_t
3632 layout_show(struct mddev *mddev, char *page)
3633 {
3634         /* just a number, not meaningful for all levels */
3635         if (mddev->reshape_position != MaxSector &&
3636             mddev->layout != mddev->new_layout)
3637                 return sprintf(page, "%d (%d)\n",
3638                                mddev->new_layout, mddev->layout);
3639         return sprintf(page, "%d\n", mddev->layout);
3640 }
3641
3642 static ssize_t
3643 layout_store(struct mddev *mddev, const char *buf, size_t len)
3644 {
3645         char *e;
3646         unsigned long n = simple_strtoul(buf, &e, 10);
3647
3648         if (!*buf || (*e && *e != '\n'))
3649                 return -EINVAL;
3650
3651         if (mddev->pers) {
3652                 int err;
3653                 if (mddev->pers->check_reshape == NULL)
3654                         return -EBUSY;
3655                 mddev->new_layout = n;
3656                 err = mddev->pers->check_reshape(mddev);
3657                 if (err) {
3658                         mddev->new_layout = mddev->layout;
3659                         return err;
3660                 }
3661         } else {
3662                 mddev->new_layout = n;
3663                 if (mddev->reshape_position == MaxSector)
3664                         mddev->layout = n;
3665         }
3666         return len;
3667 }
3668 static struct md_sysfs_entry md_layout =
3669 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3670
3671
3672 static ssize_t
3673 raid_disks_show(struct mddev *mddev, char *page)
3674 {
3675         if (mddev->raid_disks == 0)
3676                 return 0;
3677         if (mddev->reshape_position != MaxSector &&
3678             mddev->delta_disks != 0)
3679                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3680                                mddev->raid_disks - mddev->delta_disks);
3681         return sprintf(page, "%d\n", mddev->raid_disks);
3682 }
3683
3684 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3685
3686 static ssize_t
3687 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3688 {
3689         char *e;
3690         int rv = 0;
3691         unsigned long n = simple_strtoul(buf, &e, 10);
3692
3693         if (!*buf || (*e && *e != '\n'))
3694                 return -EINVAL;
3695
3696         if (mddev->pers)
3697                 rv = update_raid_disks(mddev, n);
3698         else if (mddev->reshape_position != MaxSector) {
3699                 struct md_rdev *rdev;
3700                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3701
3702                 rdev_for_each(rdev, mddev) {
3703                         if (olddisks < n &&
3704                             rdev->data_offset < rdev->new_data_offset)
3705                                 return -EINVAL;
3706                         if (olddisks > n &&
3707                             rdev->data_offset > rdev->new_data_offset)
3708                                 return -EINVAL;
3709                 }
3710                 mddev->delta_disks = n - olddisks;
3711                 mddev->raid_disks = n;
3712                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3713         } else
3714                 mddev->raid_disks = n;
3715         return rv ? rv : len;
3716 }
3717 static struct md_sysfs_entry md_raid_disks =
3718 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3719
3720 static ssize_t
3721 chunk_size_show(struct mddev *mddev, char *page)
3722 {
3723         if (mddev->reshape_position != MaxSector &&
3724             mddev->chunk_sectors != mddev->new_chunk_sectors)
3725                 return sprintf(page, "%d (%d)\n",
3726                                mddev->new_chunk_sectors << 9,
3727                                mddev->chunk_sectors << 9);
3728         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3729 }
3730
3731 static ssize_t
3732 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3733 {
3734         char *e;
3735         unsigned long n = simple_strtoul(buf, &e, 10);
3736
3737         if (!*buf || (*e && *e != '\n'))
3738                 return -EINVAL;
3739
3740         if (mddev->pers) {
3741                 int err;
3742                 if (mddev->pers->check_reshape == NULL)
3743                         return -EBUSY;
3744                 mddev->new_chunk_sectors = n >> 9;
3745                 err = mddev->pers->check_reshape(mddev);
3746                 if (err) {
3747                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3748                         return err;
3749                 }
3750         } else {
3751                 mddev->new_chunk_sectors = n >> 9;
3752                 if (mddev->reshape_position == MaxSector)
3753                         mddev->chunk_sectors = n >> 9;
3754         }
3755         return len;
3756 }
3757 static struct md_sysfs_entry md_chunk_size =
3758 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3759
3760 static ssize_t
3761 resync_start_show(struct mddev *mddev, char *page)
3762 {
3763         if (mddev->recovery_cp == MaxSector)
3764                 return sprintf(page, "none\n");
3765         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3766 }
3767
3768 static ssize_t
3769 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3770 {
3771         char *e;
3772         unsigned long long n = simple_strtoull(buf, &e, 10);
3773
3774         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3775                 return -EBUSY;
3776         if (cmd_match(buf, "none"))
3777                 n = MaxSector;
3778         else if (!*buf || (*e && *e != '\n'))
3779                 return -EINVAL;
3780
3781         mddev->recovery_cp = n;
3782         if (mddev->pers)
3783                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3784         return len;
3785 }
3786 static struct md_sysfs_entry md_resync_start =
3787 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3788
3789 /*
3790  * The array state can be:
3791  *
3792  * clear
3793  *     No devices, no size, no level
3794  *     Equivalent to STOP_ARRAY ioctl
3795  * inactive
3796  *     May have some settings, but array is not active
3797  *        all IO results in error
3798  *     When written, doesn't tear down array, but just stops it
3799  * suspended (not supported yet)
3800  *     All IO requests will block. The array can be reconfigured.
3801  *     Writing this, if accepted, will block until array is quiescent
3802  * readonly
3803  *     no resync can happen.  no superblocks get written.
3804  *     write requests fail
3805  * read-auto
3806  *     like readonly, but behaves like 'clean' on a write request.
3807  *
3808  * clean - no pending writes, but otherwise active.
3809  *     When written to inactive array, starts without resync
3810  *     If a write request arrives then
3811  *       if metadata is known, mark 'dirty' and switch to 'active'.
3812  *       if not known, block and switch to write-pending
3813  *     If written to an active array that has pending writes, then fails.
3814  * active
3815  *     fully active: IO and resync can be happening.
3816  *     When written to inactive array, starts with resync
3817  *
3818  * write-pending
3819  *     clean, but writes are blocked waiting for 'active' to be written.
3820  *
3821  * active-idle
3822  *     like active, but no writes have been seen for a while (100msec).
3823  *
3824  */
3825 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3826                    write_pending, active_idle, bad_word};
3827 static char *array_states[] = {
3828         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3829         "write-pending", "active-idle", NULL };
3830
3831 static int match_word(const char *word, char **list)
3832 {
3833         int n;
3834         for (n=0; list[n]; n++)
3835                 if (cmd_match(word, list[n]))
3836                         break;
3837         return n;
3838 }
3839
3840 static ssize_t
3841 array_state_show(struct mddev *mddev, char *page)
3842 {
3843         enum array_state st = inactive;
3844
3845         if (mddev->pers)
3846                 switch(mddev->ro) {
3847                 case 1:
3848                         st = readonly;
3849                         break;
3850                 case 2:
3851                         st = read_auto;
3852                         break;
3853                 case 0:
3854                         if (mddev->in_sync)
3855                                 st = clean;
3856                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3857                                 st = write_pending;
3858                         else if (mddev->safemode)
3859                                 st = active_idle;
3860                         else
3861                                 st = active;
3862                 }
3863         else {
3864                 if (list_empty(&mddev->disks) &&
3865                     mddev->raid_disks == 0 &&
3866                     mddev->dev_sectors == 0)
3867                         st = clear;
3868                 else
3869                         st = inactive;
3870         }
3871         return sprintf(page, "%s\n", array_states[st]);
3872 }
3873
3874 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3875 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3876 static int do_md_run(struct mddev * mddev);
3877 static int restart_array(struct mddev *mddev);
3878
3879 static ssize_t
3880 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3881 {
3882         int err = -EINVAL;
3883         enum array_state st = match_word(buf, array_states);
3884         switch(st) {
3885         case bad_word:
3886                 break;
3887         case clear:
3888                 /* stopping an active array */
3889                 err = do_md_stop(mddev, 0, NULL);
3890                 break;
3891         case inactive:
3892                 /* stopping an active array */
3893                 if (mddev->pers)
3894                         err = do_md_stop(mddev, 2, NULL);
3895                 else
3896                         err = 0; /* already inactive */
3897                 break;
3898         case suspended:
3899                 break; /* not supported yet */
3900         case readonly:
3901                 if (mddev->pers)
3902                         err = md_set_readonly(mddev, NULL);
3903                 else {
3904                         mddev->ro = 1;
3905                         set_disk_ro(mddev->gendisk, 1);
3906                         err = do_md_run(mddev);
3907                 }
3908                 break;
3909         case read_auto:
3910                 if (mddev->pers) {
3911                         if (mddev->ro == 0)
3912                                 err = md_set_readonly(mddev, NULL);
3913                         else if (mddev->ro == 1)
3914                                 err = restart_array(mddev);
3915                         if (err == 0) {
3916                                 mddev->ro = 2;
3917                                 set_disk_ro(mddev->gendisk, 0);
3918                         }
3919                 } else {
3920                         mddev->ro = 2;
3921                         err = do_md_run(mddev);
3922                 }
3923                 break;
3924         case clean:
3925                 if (mddev->pers) {
3926                         restart_array(mddev);
3927                         spin_lock_irq(&mddev->write_lock);
3928                         if (atomic_read(&mddev->writes_pending) == 0) {
3929                                 if (mddev->in_sync == 0) {
3930                                         mddev->in_sync = 1;
3931                                         if (mddev->safemode == 1)
3932                                                 mddev->safemode = 0;
3933                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3934                                 }
3935                                 err = 0;
3936                         } else
3937                                 err = -EBUSY;
3938                         spin_unlock_irq(&mddev->write_lock);
3939                 } else
3940                         err = -EINVAL;
3941                 break;
3942         case active:
3943                 if (mddev->pers) {
3944                         restart_array(mddev);
3945                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3946                         wake_up(&mddev->sb_wait);
3947                         err = 0;
3948                 } else {
3949                         mddev->ro = 0;
3950                         set_disk_ro(mddev->gendisk, 0);
3951                         err = do_md_run(mddev);
3952                 }
3953                 break;
3954         case write_pending:
3955         case active_idle:
3956                 /* these cannot be set */
3957                 break;
3958         }
3959         if (err)
3960                 return err;
3961         else {
3962                 if (mddev->hold_active == UNTIL_IOCTL)
3963                         mddev->hold_active = 0;
3964                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3965                 return len;
3966         }
3967 }
3968 static struct md_sysfs_entry md_array_state =
3969 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3970
3971 static ssize_t
3972 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3973         return sprintf(page, "%d\n",
3974                        atomic_read(&mddev->max_corr_read_errors));
3975 }
3976
3977 static ssize_t
3978 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3979 {
3980         char *e;
3981         unsigned long n = simple_strtoul(buf, &e, 10);
3982
3983         if (*buf && (*e == 0 || *e == '\n')) {
3984                 atomic_set(&mddev->max_corr_read_errors, n);
3985                 return len;
3986         }
3987         return -EINVAL;
3988 }
3989
3990 static struct md_sysfs_entry max_corr_read_errors =
3991 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3992         max_corrected_read_errors_store);
3993
3994 static ssize_t
3995 null_show(struct mddev *mddev, char *page)
3996 {
3997         return -EINVAL;
3998 }
3999
4000 static ssize_t
4001 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4002 {
4003         /* buf must be %d:%d\n? giving major and minor numbers */
4004         /* The new device is added to the array.
4005          * If the array has a persistent superblock, we read the
4006          * superblock to initialise info and check validity.
4007          * Otherwise, only checking done is that in bind_rdev_to_array,
4008          * which mainly checks size.
4009          */
4010         char *e;
4011         int major = simple_strtoul(buf, &e, 10);
4012         int minor;
4013         dev_t dev;
4014         struct md_rdev *rdev;
4015         int err;
4016
4017         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4018                 return -EINVAL;
4019         minor = simple_strtoul(e+1, &e, 10);
4020         if (*e && *e != '\n')
4021                 return -EINVAL;
4022         dev = MKDEV(major, minor);
4023         if (major != MAJOR(dev) ||
4024             minor != MINOR(dev))
4025                 return -EOVERFLOW;
4026
4027
4028         if (mddev->persistent) {
4029                 rdev = md_import_device(dev, mddev->major_version,
4030                                         mddev->minor_version);
4031                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4032                         struct md_rdev *rdev0
4033                                 = list_entry(mddev->disks.next,
4034                                              struct md_rdev, same_set);
4035                         err = super_types[mddev->major_version]
4036                                 .load_super(rdev, rdev0, mddev->minor_version);
4037                         if (err < 0)
4038                                 goto out;
4039                 }
4040         } else if (mddev->external)
4041                 rdev = md_import_device(dev, -2, -1);
4042         else
4043                 rdev = md_import_device(dev, -1, -1);
4044
4045         if (IS_ERR(rdev))
4046                 return PTR_ERR(rdev);
4047         err = bind_rdev_to_array(rdev, mddev);
4048  out:
4049         if (err)
4050                 export_rdev(rdev);
4051         return err ? err : len;
4052 }
4053
4054 static struct md_sysfs_entry md_new_device =
4055 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4056
4057 static ssize_t
4058 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4059 {
4060         char *end;
4061         unsigned long chunk, end_chunk;
4062
4063         if (!mddev->bitmap)
4064                 goto out;
4065         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4066         while (*buf) {
4067                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4068                 if (buf == end) break;
4069                 if (*end == '-') { /* range */
4070                         buf = end + 1;
4071                         end_chunk = simple_strtoul(buf, &end, 0);
4072                         if (buf == end) break;
4073                 }
4074                 if (*end && !isspace(*end)) break;
4075                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4076                 buf = skip_spaces(end);
4077         }
4078         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4079 out:
4080         return len;
4081 }
4082
4083 static struct md_sysfs_entry md_bitmap =
4084 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4085
4086 static ssize_t
4087 size_show(struct mddev *mddev, char *page)
4088 {
4089         return sprintf(page, "%llu\n",
4090                 (unsigned long long)mddev->dev_sectors / 2);
4091 }
4092
4093 static int update_size(struct mddev *mddev, sector_t num_sectors);
4094
4095 static ssize_t
4096 size_store(struct mddev *mddev, const char *buf, size_t len)
4097 {
4098         /* If array is inactive, we can reduce the component size, but
4099          * not increase it (except from 0).
4100          * If array is active, we can try an on-line resize
4101          */
4102         sector_t sectors;
4103         int err = strict_blocks_to_sectors(buf, &sectors);
4104
4105         if (err < 0)
4106                 return err;
4107         if (mddev->pers) {
4108                 err = update_size(mddev, sectors);
4109                 md_update_sb(mddev, 1);
4110         } else {
4111                 if (mddev->dev_sectors == 0 ||
4112                     mddev->dev_sectors > sectors)
4113                         mddev->dev_sectors = sectors;
4114                 else
4115                         err = -ENOSPC;
4116         }
4117         return err ? err : len;
4118 }
4119
4120 static struct md_sysfs_entry md_size =
4121 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4122
4123
4124 /* Metadata version.
4125  * This is one of
4126  *   'none' for arrays with no metadata (good luck...)
4127  *   'external' for arrays with externally managed metadata,
4128  * or N.M for internally known formats
4129  */
4130 static ssize_t
4131 metadata_show(struct mddev *mddev, char *page)
4132 {
4133         if (mddev->persistent)
4134                 return sprintf(page, "%d.%d\n",
4135                                mddev->major_version, mddev->minor_version);
4136         else if (mddev->external)
4137                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4138         else
4139                 return sprintf(page, "none\n");
4140 }
4141
4142 static ssize_t
4143 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4144 {
4145         int major, minor;
4146         char *e;
4147         /* Changing the details of 'external' metadata is
4148          * always permitted.  Otherwise there must be
4149          * no devices attached to the array.
4150          */
4151         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4152                 ;
4153         else if (!list_empty(&mddev->disks))
4154                 return -EBUSY;
4155
4156         if (cmd_match(buf, "none")) {
4157                 mddev->persistent = 0;
4158                 mddev->external = 0;
4159                 mddev->major_version = 0;
4160                 mddev->minor_version = 90;
4161                 return len;
4162         }
4163         if (strncmp(buf, "external:", 9) == 0) {
4164                 size_t namelen = len-9;
4165                 if (namelen >= sizeof(mddev->metadata_type))
4166                         namelen = sizeof(mddev->metadata_type)-1;
4167                 strncpy(mddev->metadata_type, buf+9, namelen);
4168                 mddev->metadata_type[namelen] = 0;
4169                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4170                         mddev->metadata_type[--namelen] = 0;
4171                 mddev->persistent = 0;
4172                 mddev->external = 1;
4173                 mddev->major_version = 0;
4174                 mddev->minor_version = 90;
4175                 return len;
4176         }
4177         major = simple_strtoul(buf, &e, 10);
4178         if (e==buf || *e != '.')
4179                 return -EINVAL;
4180         buf = e+1;
4181         minor = simple_strtoul(buf, &e, 10);
4182         if (e==buf || (*e && *e != '\n') )
4183                 return -EINVAL;
4184         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4185                 return -ENOENT;
4186         mddev->major_version = major;
4187         mddev->minor_version = minor;
4188         mddev->persistent = 1;
4189         mddev->external = 0;
4190         return len;
4191 }
4192
4193 static struct md_sysfs_entry md_metadata =
4194 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4195
4196 static ssize_t
4197 action_show(struct mddev *mddev, char *page)
4198 {
4199         char *type = "idle";
4200         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4201                 type = "frozen";
4202         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4203             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4204                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4205                         type = "reshape";
4206                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4207                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4208                                 type = "resync";
4209                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4210                                 type = "check";
4211                         else
4212                                 type = "repair";
4213                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4214                         type = "recover";
4215         }
4216         return sprintf(page, "%s\n", type);
4217 }
4218
4219 static void reap_sync_thread(struct mddev *mddev);
4220
4221 static ssize_t
4222 action_store(struct mddev *mddev, const char *page, size_t len)
4223 {
4224         if (!mddev->pers || !mddev->pers->sync_request)
4225                 return -EINVAL;
4226
4227         if (cmd_match(page, "frozen"))
4228                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229         else
4230                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231
4232         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4233                 if (mddev->sync_thread) {
4234                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4235                         reap_sync_thread(mddev);
4236                 }
4237         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4238                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4239                 return -EBUSY;
4240         else if (cmd_match(page, "resync"))
4241                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4242         else if (cmd_match(page, "recover")) {
4243                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4244                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4245         } else if (cmd_match(page, "reshape")) {
4246                 int err;
4247                 if (mddev->pers->start_reshape == NULL)
4248                         return -EINVAL;
4249                 err = mddev->pers->start_reshape(mddev);
4250                 if (err)
4251                         return err;
4252                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4253         } else {
4254                 if (cmd_match(page, "check"))
4255                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4256                 else if (!cmd_match(page, "repair"))
4257                         return -EINVAL;
4258                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4259                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4260         }
4261         if (mddev->ro == 2) {
4262                 /* A write to sync_action is enough to justify
4263                  * canceling read-auto mode
4264                  */
4265                 mddev->ro = 0;
4266                 md_wakeup_thread(mddev->sync_thread);
4267         }
4268         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4269         md_wakeup_thread(mddev->thread);
4270         sysfs_notify_dirent_safe(mddev->sysfs_action);
4271         return len;
4272 }
4273
4274 static ssize_t
4275 mismatch_cnt_show(struct mddev *mddev, char *page)
4276 {
4277         return sprintf(page, "%llu\n",
4278                        (unsigned long long)
4279                        atomic64_read(&mddev->resync_mismatches));
4280 }
4281
4282 static struct md_sysfs_entry md_scan_mode =
4283 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4284
4285
4286 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4287
4288 static ssize_t
4289 sync_min_show(struct mddev *mddev, char *page)
4290 {
4291         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4292                        mddev->sync_speed_min ? "local": "system");
4293 }
4294
4295 static ssize_t
4296 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4297 {
4298         int min;
4299         char *e;
4300         if (strncmp(buf, "system", 6)==0) {
4301                 mddev->sync_speed_min = 0;
4302                 return len;
4303         }
4304         min = simple_strtoul(buf, &e, 10);
4305         if (buf == e || (*e && *e != '\n') || min <= 0)
4306                 return -EINVAL;
4307         mddev->sync_speed_min = min;
4308         return len;
4309 }
4310
4311 static struct md_sysfs_entry md_sync_min =
4312 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4313
4314 static ssize_t
4315 sync_max_show(struct mddev *mddev, char *page)
4316 {
4317         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4318                        mddev->sync_speed_max ? "local": "system");
4319 }
4320
4321 static ssize_t
4322 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4323 {
4324         int max;
4325         char *e;
4326         if (strncmp(buf, "system", 6)==0) {
4327                 mddev->sync_speed_max = 0;
4328                 return len;
4329         }
4330         max = simple_strtoul(buf, &e, 10);
4331         if (buf == e || (*e && *e != '\n') || max <= 0)
4332                 return -EINVAL;
4333         mddev->sync_speed_max = max;
4334         return len;
4335 }
4336
4337 static struct md_sysfs_entry md_sync_max =
4338 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4339
4340 static ssize_t
4341 degraded_show(struct mddev *mddev, char *page)
4342 {
4343         return sprintf(page, "%d\n", mddev->degraded);
4344 }
4345 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4346
4347 static ssize_t
4348 sync_force_parallel_show(struct mddev *mddev, char *page)
4349 {
4350         return sprintf(page, "%d\n", mddev->parallel_resync);
4351 }
4352
4353 static ssize_t
4354 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4355 {
4356         long n;
4357
4358         if (strict_strtol(buf, 10, &n))
4359                 return -EINVAL;
4360
4361         if (n != 0 && n != 1)
4362                 return -EINVAL;
4363
4364         mddev->parallel_resync = n;
4365
4366         if (mddev->sync_thread)
4367                 wake_up(&resync_wait);
4368
4369         return len;
4370 }
4371
4372 /* force parallel resync, even with shared block devices */
4373 static struct md_sysfs_entry md_sync_force_parallel =
4374 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4375        sync_force_parallel_show, sync_force_parallel_store);
4376
4377 static ssize_t
4378 sync_speed_show(struct mddev *mddev, char *page)
4379 {
4380         unsigned long resync, dt, db;
4381         if (mddev->curr_resync == 0)
4382                 return sprintf(page, "none\n");
4383         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4384         dt = (jiffies - mddev->resync_mark) / HZ;
4385         if (!dt) dt++;
4386         db = resync - mddev->resync_mark_cnt;
4387         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4388 }
4389
4390 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4391
4392 static ssize_t
4393 sync_completed_show(struct mddev *mddev, char *page)
4394 {
4395         unsigned long long max_sectors, resync;
4396
4397         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4398                 return sprintf(page, "none\n");
4399
4400         if (mddev->curr_resync == 1 ||
4401             mddev->curr_resync == 2)
4402                 return sprintf(page, "delayed\n");
4403
4404         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4405             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4406                 max_sectors = mddev->resync_max_sectors;
4407         else
4408                 max_sectors = mddev->dev_sectors;
4409
4410         resync = mddev->curr_resync_completed;
4411         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4412 }
4413
4414 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4415
4416 static ssize_t
4417 min_sync_show(struct mddev *mddev, char *page)
4418 {
4419         return sprintf(page, "%llu\n",
4420                        (unsigned long long)mddev->resync_min);
4421 }
4422 static ssize_t
4423 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4424 {
4425         unsigned long long min;
4426         if (strict_strtoull(buf, 10, &min))
4427                 return -EINVAL;
4428         if (min > mddev->resync_max)
4429                 return -EINVAL;
4430         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4431                 return -EBUSY;
4432
4433         /* Must be a multiple of chunk_size */
4434         if (mddev->chunk_sectors) {
4435                 sector_t temp = min;
4436                 if (sector_div(temp, mddev->chunk_sectors))
4437                         return -EINVAL;
4438         }
4439         mddev->resync_min = min;
4440
4441         return len;
4442 }
4443
4444 static struct md_sysfs_entry md_min_sync =
4445 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4446
4447 static ssize_t
4448 max_sync_show(struct mddev *mddev, char *page)
4449 {
4450         if (mddev->resync_max == MaxSector)
4451                 return sprintf(page, "max\n");
4452         else
4453                 return sprintf(page, "%llu\n",
4454                                (unsigned long long)mddev->resync_max);
4455 }
4456 static ssize_t
4457 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459         if (strncmp(buf, "max", 3) == 0)
4460                 mddev->resync_max = MaxSector;
4461         else {
4462                 unsigned long long max;
4463                 if (strict_strtoull(buf, 10, &max))
4464                         return -EINVAL;
4465                 if (max < mddev->resync_min)
4466                         return -EINVAL;
4467                 if (max < mddev->resync_max &&
4468                     mddev->ro == 0 &&
4469                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4470                         return -EBUSY;
4471
4472                 /* Must be a multiple of chunk_size */
4473                 if (mddev->chunk_sectors) {
4474                         sector_t temp = max;
4475                         if (sector_div(temp, mddev->chunk_sectors))
4476                                 return -EINVAL;
4477                 }
4478                 mddev->resync_max = max;
4479         }
4480         wake_up(&mddev->recovery_wait);
4481         return len;
4482 }
4483
4484 static struct md_sysfs_entry md_max_sync =
4485 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4486
4487 static ssize_t
4488 suspend_lo_show(struct mddev *mddev, char *page)
4489 {
4490         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4491 }
4492
4493 static ssize_t
4494 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4495 {
4496         char *e;
4497         unsigned long long new = simple_strtoull(buf, &e, 10);
4498         unsigned long long old = mddev->suspend_lo;
4499
4500         if (mddev->pers == NULL || 
4501             mddev->pers->quiesce == NULL)
4502                 return -EINVAL;
4503         if (buf == e || (*e && *e != '\n'))
4504                 return -EINVAL;
4505
4506         mddev->suspend_lo = new;
4507         if (new >= old)
4508                 /* Shrinking suspended region */
4509                 mddev->pers->quiesce(mddev, 2);
4510         else {
4511                 /* Expanding suspended region - need to wait */
4512                 mddev->pers->quiesce(mddev, 1);
4513                 mddev->pers->quiesce(mddev, 0);
4514         }
4515         return len;
4516 }
4517 static struct md_sysfs_entry md_suspend_lo =
4518 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4519
4520
4521 static ssize_t
4522 suspend_hi_show(struct mddev *mddev, char *page)
4523 {
4524         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4525 }
4526
4527 static ssize_t
4528 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4529 {
4530         char *e;
4531         unsigned long long new = simple_strtoull(buf, &e, 10);
4532         unsigned long long old = mddev->suspend_hi;
4533
4534         if (mddev->pers == NULL ||
4535             mddev->pers->quiesce == NULL)
4536                 return -EINVAL;
4537         if (buf == e || (*e && *e != '\n'))
4538                 return -EINVAL;
4539
4540         mddev->suspend_hi = new;
4541         if (new <= old)
4542                 /* Shrinking suspended region */
4543                 mddev->pers->quiesce(mddev, 2);
4544         else {
4545                 /* Expanding suspended region - need to wait */
4546                 mddev->pers->quiesce(mddev, 1);
4547                 mddev->pers->quiesce(mddev, 0);
4548         }
4549         return len;
4550 }
4551 static struct md_sysfs_entry md_suspend_hi =
4552 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4553
4554 static ssize_t
4555 reshape_position_show(struct mddev *mddev, char *page)
4556 {
4557         if (mddev->reshape_position != MaxSector)
4558                 return sprintf(page, "%llu\n",
4559                                (unsigned long long)mddev->reshape_position);
4560         strcpy(page, "none\n");
4561         return 5;
4562 }
4563
4564 static ssize_t
4565 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4566 {
4567         struct md_rdev *rdev;
4568         char *e;
4569         unsigned long long new = simple_strtoull(buf, &e, 10);
4570         if (mddev->pers)
4571                 return -EBUSY;
4572         if (buf == e || (*e && *e != '\n'))
4573                 return -EINVAL;
4574         mddev->reshape_position = new;
4575         mddev->delta_disks = 0;
4576         mddev->reshape_backwards = 0;
4577         mddev->new_level = mddev->level;
4578         mddev->new_layout = mddev->layout;
4579         mddev->new_chunk_sectors = mddev->chunk_sectors;
4580         rdev_for_each(rdev, mddev)
4581                 rdev->new_data_offset = rdev->data_offset;
4582         return len;
4583 }
4584
4585 static struct md_sysfs_entry md_reshape_position =
4586 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4587        reshape_position_store);
4588
4589 static ssize_t
4590 reshape_direction_show(struct mddev *mddev, char *page)
4591 {
4592         return sprintf(page, "%s\n",
4593                        mddev->reshape_backwards ? "backwards" : "forwards");
4594 }
4595
4596 static ssize_t
4597 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4598 {
4599         int backwards = 0;
4600         if (cmd_match(buf, "forwards"))
4601                 backwards = 0;
4602         else if (cmd_match(buf, "backwards"))
4603                 backwards = 1;
4604         else
4605                 return -EINVAL;
4606         if (mddev->reshape_backwards == backwards)
4607                 return len;
4608
4609         /* check if we are allowed to change */
4610         if (mddev->delta_disks)
4611                 return -EBUSY;
4612
4613         if (mddev->persistent &&
4614             mddev->major_version == 0)
4615                 return -EINVAL;
4616
4617         mddev->reshape_backwards = backwards;
4618         return len;
4619 }
4620
4621 static struct md_sysfs_entry md_reshape_direction =
4622 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4623        reshape_direction_store);
4624
4625 static ssize_t
4626 array_size_show(struct mddev *mddev, char *page)
4627 {
4628         if (mddev->external_size)
4629                 return sprintf(page, "%llu\n",
4630                                (unsigned long long)mddev->array_sectors/2);
4631         else
4632                 return sprintf(page, "default\n");
4633 }
4634
4635 static ssize_t
4636 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4637 {
4638         sector_t sectors;
4639
4640         if (strncmp(buf, "default", 7) == 0) {
4641                 if (mddev->pers)
4642                         sectors = mddev->pers->size(mddev, 0, 0);
4643                 else
4644                         sectors = mddev->array_sectors;
4645
4646                 mddev->external_size = 0;
4647         } else {
4648                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4649                         return -EINVAL;
4650                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4651                         return -E2BIG;
4652
4653                 mddev->external_size = 1;
4654         }
4655
4656         mddev->array_sectors = sectors;
4657         if (mddev->pers) {
4658                 set_capacity(mddev->gendisk, mddev->array_sectors);
4659                 revalidate_disk(mddev->gendisk);
4660         }
4661         return len;
4662 }
4663
4664 static struct md_sysfs_entry md_array_size =
4665 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4666        array_size_store);
4667
4668 static struct attribute *md_default_attrs[] = {
4669         &md_level.attr,
4670         &md_layout.attr,
4671         &md_raid_disks.attr,
4672         &md_chunk_size.attr,
4673         &md_size.attr,
4674         &md_resync_start.attr,
4675         &md_metadata.attr,
4676         &md_new_device.attr,
4677         &md_safe_delay.attr,
4678         &md_array_state.attr,
4679         &md_reshape_position.attr,
4680         &md_reshape_direction.attr,
4681         &md_array_size.attr,
4682         &max_corr_read_errors.attr,
4683         NULL,
4684 };
4685
4686 static struct attribute *md_redundancy_attrs[] = {
4687         &md_scan_mode.attr,
4688         &md_mismatches.attr,
4689         &md_sync_min.attr,
4690         &md_sync_max.attr,
4691         &md_sync_speed.attr,
4692         &md_sync_force_parallel.attr,
4693         &md_sync_completed.attr,
4694         &md_min_sync.attr,
4695         &md_max_sync.attr,
4696         &md_suspend_lo.attr,
4697         &md_suspend_hi.attr,
4698         &md_bitmap.attr,
4699         &md_degraded.attr,
4700         NULL,
4701 };
4702 static struct attribute_group md_redundancy_group = {
4703         .name = NULL,
4704         .attrs = md_redundancy_attrs,
4705 };
4706
4707
4708 static ssize_t
4709 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4710 {
4711         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4712         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4713         ssize_t rv;
4714
4715         if (!entry->show)
4716                 return -EIO;
4717         spin_lock(&all_mddevs_lock);
4718         if (list_empty(&mddev->all_mddevs)) {
4719                 spin_unlock(&all_mddevs_lock);
4720                 return -EBUSY;
4721         }
4722         mddev_get(mddev);
4723         spin_unlock(&all_mddevs_lock);
4724
4725         rv = mddev_lock(mddev);
4726         if (!rv) {
4727                 rv = entry->show(mddev, page);
4728                 mddev_unlock(mddev);
4729         }
4730         mddev_put(mddev);
4731         return rv;
4732 }
4733
4734 static ssize_t
4735 md_attr_store(struct kobject *kobj, struct attribute *attr,
4736               const char *page, size_t length)
4737 {
4738         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4739         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4740         ssize_t rv;
4741
4742         if (!entry->store)
4743                 return -EIO;
4744         if (!capable(CAP_SYS_ADMIN))
4745                 return -EACCES;
4746         spin_lock(&all_mddevs_lock);
4747         if (list_empty(&mddev->all_mddevs)) {
4748                 spin_unlock(&all_mddevs_lock);
4749                 return -EBUSY;
4750         }
4751         mddev_get(mddev);
4752         spin_unlock(&all_mddevs_lock);
4753         if (entry->store == new_dev_store)
4754                 flush_workqueue(md_misc_wq);
4755         rv = mddev_lock(mddev);
4756         if (!rv) {
4757                 rv = entry->store(mddev, page, length);
4758                 mddev_unlock(mddev);
4759         }
4760         mddev_put(mddev);
4761         return rv;
4762 }
4763
4764 static void md_free(struct kobject *ko)
4765 {
4766         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4767
4768         if (mddev->sysfs_state)
4769                 sysfs_put(mddev->sysfs_state);
4770
4771         if (mddev->gendisk) {
4772                 del_gendisk(mddev->gendisk);
4773                 put_disk(mddev->gendisk);
4774         }
4775         if (mddev->queue)
4776                 blk_cleanup_queue(mddev->queue);
4777
4778         kfree(mddev);
4779 }
4780
4781 static const struct sysfs_ops md_sysfs_ops = {
4782         .show   = md_attr_show,
4783         .store  = md_attr_store,
4784 };
4785 static struct kobj_type md_ktype = {
4786         .release        = md_free,
4787         .sysfs_ops      = &md_sysfs_ops,
4788         .default_attrs  = md_default_attrs,
4789 };
4790
4791 int mdp_major = 0;
4792
4793 static void mddev_delayed_delete(struct work_struct *ws)
4794 {
4795         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4796
4797         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4798         kobject_del(&mddev->kobj);
4799         kobject_put(&mddev->kobj);
4800 }
4801
4802 static int md_alloc(dev_t dev, char *name)
4803 {
4804         static DEFINE_MUTEX(disks_mutex);
4805         struct mddev *mddev = mddev_find(dev);
4806         struct gendisk *disk;
4807         int partitioned;
4808         int shift;
4809         int unit;
4810         int error;
4811
4812         if (!mddev)
4813                 return -ENODEV;
4814
4815         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4816         shift = partitioned ? MdpMinorShift : 0;
4817         unit = MINOR(mddev->unit) >> shift;
4818
4819         /* wait for any previous instance of this device to be
4820          * completely removed (mddev_delayed_delete).
4821          */
4822         flush_workqueue(md_misc_wq);
4823
4824         mutex_lock(&disks_mutex);
4825         error = -EEXIST;
4826         if (mddev->gendisk)
4827                 goto abort;
4828
4829         if (name) {
4830                 /* Need to ensure that 'name' is not a duplicate.
4831                  */
4832                 struct mddev *mddev2;
4833                 spin_lock(&all_mddevs_lock);
4834
4835                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4836                         if (mddev2->gendisk &&
4837                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4838                                 spin_unlock(&all_mddevs_lock);
4839                                 goto abort;
4840                         }
4841                 spin_unlock(&all_mddevs_lock);
4842         }
4843
4844         error = -ENOMEM;
4845         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4846         if (!mddev->queue)
4847                 goto abort;
4848         mddev->queue->queuedata = mddev;
4849
4850         blk_queue_make_request(mddev->queue, md_make_request);
4851         blk_set_stacking_limits(&mddev->queue->limits);
4852
4853         disk = alloc_disk(1 << shift);
4854         if (!disk) {
4855                 blk_cleanup_queue(mddev->queue);
4856                 mddev->queue = NULL;
4857                 goto abort;
4858         }
4859         disk->major = MAJOR(mddev->unit);
4860         disk->first_minor = unit << shift;
4861         if (name)
4862                 strcpy(disk->disk_name, name);
4863         else if (partitioned)
4864                 sprintf(disk->disk_name, "md_d%d", unit);
4865         else
4866                 sprintf(disk->disk_name, "md%d", unit);
4867         disk->fops = &md_fops;
4868         disk->private_data = mddev;
4869         disk->queue = mddev->queue;
4870         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4871         /* Allow extended partitions.  This makes the
4872          * 'mdp' device redundant, but we can't really
4873          * remove it now.
4874          */
4875         disk->flags |= GENHD_FL_EXT_DEVT;
4876         mddev->gendisk = disk;
4877         /* As soon as we call add_disk(), another thread could get
4878          * through to md_open, so make sure it doesn't get too far
4879          */
4880         mutex_lock(&mddev->open_mutex);
4881         add_disk(disk);
4882
4883         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4884                                      &disk_to_dev(disk)->kobj, "%s", "md");
4885         if (error) {
4886                 /* This isn't possible, but as kobject_init_and_add is marked
4887                  * __must_check, we must do something with the result
4888                  */
4889                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4890                        disk->disk_name);
4891                 error = 0;
4892         }
4893         if (mddev->kobj.sd &&
4894             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4895                 printk(KERN_DEBUG "pointless warning\n");
4896         mutex_unlock(&mddev->open_mutex);
4897  abort:
4898         mutex_unlock(&disks_mutex);
4899         if (!error && mddev->kobj.sd) {
4900                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4901                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4902         }
4903         mddev_put(mddev);
4904         return error;
4905 }
4906
4907 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4908 {
4909         md_alloc(dev, NULL);
4910         return NULL;
4911 }
4912
4913 static int add_named_array(const char *val, struct kernel_param *kp)
4914 {
4915         /* val must be "md_*" where * is not all digits.
4916          * We allocate an array with a large free minor number, and
4917          * set the name to val.  val must not already be an active name.
4918          */
4919         int len = strlen(val);
4920         char buf[DISK_NAME_LEN];
4921
4922         while (len && val[len-1] == '\n')
4923                 len--;
4924         if (len >= DISK_NAME_LEN)
4925                 return -E2BIG;
4926         strlcpy(buf, val, len+1);
4927         if (strncmp(buf, "md_", 3) != 0)
4928                 return -EINVAL;
4929         return md_alloc(0, buf);
4930 }
4931
4932 static void md_safemode_timeout(unsigned long data)
4933 {
4934         struct mddev *mddev = (struct mddev *) data;
4935
4936         if (!atomic_read(&mddev->writes_pending)) {
4937                 mddev->safemode = 1;
4938                 if (mddev->external)
4939                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4940         }
4941         md_wakeup_thread(mddev->thread);
4942 }
4943
4944 static int start_dirty_degraded;
4945
4946 int md_run(struct mddev *mddev)
4947 {
4948         int err;
4949         struct md_rdev *rdev;
4950         struct md_personality *pers;
4951
4952         if (list_empty(&mddev->disks))
4953                 /* cannot run an array with no devices.. */
4954                 return -EINVAL;
4955
4956         if (mddev->pers)
4957                 return -EBUSY;
4958         /* Cannot run until previous stop completes properly */
4959         if (mddev->sysfs_active)
4960                 return -EBUSY;
4961
4962         /*
4963          * Analyze all RAID superblock(s)
4964          */
4965         if (!mddev->raid_disks) {
4966                 if (!mddev->persistent)
4967                         return -EINVAL;
4968                 analyze_sbs(mddev);
4969         }
4970
4971         if (mddev->level != LEVEL_NONE)
4972                 request_module("md-level-%d", mddev->level);
4973         else if (mddev->clevel[0])
4974                 request_module("md-%s", mddev->clevel);
4975
4976         /*
4977          * Drop all container device buffers, from now on
4978          * the only valid external interface is through the md
4979          * device.
4980          */
4981         rdev_for_each(rdev, mddev) {
4982                 if (test_bit(Faulty, &rdev->flags))
4983                         continue;
4984                 sync_blockdev(rdev->bdev);
4985                 invalidate_bdev(rdev->bdev);
4986
4987                 /* perform some consistency tests on the device.
4988                  * We don't want the data to overlap the metadata,
4989                  * Internal Bitmap issues have been handled elsewhere.
4990                  */
4991                 if (rdev->meta_bdev) {
4992                         /* Nothing to check */;
4993                 } else if (rdev->data_offset < rdev->sb_start) {
4994                         if (mddev->dev_sectors &&
4995                             rdev->data_offset + mddev->dev_sectors
4996                             > rdev->sb_start) {
4997                                 printk("md: %s: data overlaps metadata\n",
4998                                        mdname(mddev));
4999                                 return -EINVAL;
5000                         }
5001                 } else {
5002                         if (rdev->sb_start + rdev->sb_size/512
5003                             > rdev->data_offset) {
5004                                 printk("md: %s: metadata overlaps data\n",
5005                                        mdname(mddev));
5006                                 return -EINVAL;
5007                         }
5008                 }
5009                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5010         }
5011
5012         if (mddev->bio_set == NULL)
5013                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5014
5015         spin_lock(&pers_lock);
5016         pers = find_pers(mddev->level, mddev->clevel);
5017         if (!pers || !try_module_get(pers->owner)) {
5018                 spin_unlock(&pers_lock);
5019                 if (mddev->level != LEVEL_NONE)
5020                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5021                                mddev->level);
5022                 else
5023                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5024                                mddev->clevel);
5025                 return -EINVAL;
5026         }
5027         mddev->pers = pers;
5028         spin_unlock(&pers_lock);
5029         if (mddev->level != pers->level) {
5030                 mddev->level = pers->level;
5031                 mddev->new_level = pers->level;
5032         }
5033         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5034
5035         if (mddev->reshape_position != MaxSector &&
5036             pers->start_reshape == NULL) {
5037                 /* This personality cannot handle reshaping... */
5038                 mddev->pers = NULL;
5039                 module_put(pers->owner);
5040                 return -EINVAL;
5041         }
5042
5043         if (pers->sync_request) {
5044                 /* Warn if this is a potentially silly
5045                  * configuration.
5046                  */
5047                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5048                 struct md_rdev *rdev2;
5049                 int warned = 0;
5050
5051                 rdev_for_each(rdev, mddev)
5052                         rdev_for_each(rdev2, mddev) {
5053                                 if (rdev < rdev2 &&
5054                                     rdev->bdev->bd_contains ==
5055                                     rdev2->bdev->bd_contains) {
5056                                         printk(KERN_WARNING
5057                                                "%s: WARNING: %s appears to be"
5058                                                " on the same physical disk as"
5059                                                " %s.\n",
5060                                                mdname(mddev),
5061                                                bdevname(rdev->bdev,b),
5062                                                bdevname(rdev2->bdev,b2));
5063                                         warned = 1;
5064                                 }
5065                         }
5066
5067                 if (warned)
5068                         printk(KERN_WARNING
5069                                "True protection against single-disk"
5070                                " failure might be compromised.\n");
5071         }
5072
5073         mddev->recovery = 0;
5074         /* may be over-ridden by personality */
5075         mddev->resync_max_sectors = mddev->dev_sectors;
5076
5077         mddev->ok_start_degraded = start_dirty_degraded;
5078
5079         if (start_readonly && mddev->ro == 0)
5080                 mddev->ro = 2; /* read-only, but switch on first write */
5081
5082         err = mddev->pers->run(mddev);
5083         if (err)
5084                 printk(KERN_ERR "md: pers->run() failed ...\n");
5085         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5086                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5087                           " but 'external_size' not in effect?\n", __func__);
5088                 printk(KERN_ERR
5089                        "md: invalid array_size %llu > default size %llu\n",
5090                        (unsigned long long)mddev->array_sectors / 2,
5091                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5092                 err = -EINVAL;
5093                 mddev->pers->stop(mddev);
5094         }
5095         if (err == 0 && mddev->pers->sync_request &&
5096             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5097                 err = bitmap_create(mddev);
5098                 if (err) {
5099                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5100                                mdname(mddev), err);
5101                         mddev->pers->stop(mddev);
5102                 }
5103         }
5104         if (err) {
5105                 module_put(mddev->pers->owner);
5106                 mddev->pers = NULL;
5107                 bitmap_destroy(mddev);
5108                 return err;
5109         }
5110         if (mddev->pers->sync_request) {
5111                 if (mddev->kobj.sd &&
5112                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5113                         printk(KERN_WARNING
5114                                "md: cannot register extra attributes for %s\n",
5115                                mdname(mddev));
5116                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5117         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5118                 mddev->ro = 0;
5119
5120         atomic_set(&mddev->writes_pending,0);
5121         atomic_set(&mddev->max_corr_read_errors,
5122                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5123         mddev->safemode = 0;
5124         mddev->safemode_timer.function = md_safemode_timeout;
5125         mddev->safemode_timer.data = (unsigned long) mddev;
5126         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5127         mddev->in_sync = 1;
5128         smp_wmb();
5129         mddev->ready = 1;
5130         rdev_for_each(rdev, mddev)
5131                 if (rdev->raid_disk >= 0)
5132                         if (sysfs_link_rdev(mddev, rdev))
5133                                 /* failure here is OK */;
5134         
5135         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5136         
5137         if (mddev->flags)
5138                 md_update_sb(mddev, 0);
5139
5140         md_new_event(mddev);
5141         sysfs_notify_dirent_safe(mddev->sysfs_state);
5142         sysfs_notify_dirent_safe(mddev->sysfs_action);
5143         sysfs_notify(&mddev->kobj, NULL, "degraded");
5144         return 0;
5145 }
5146 EXPORT_SYMBOL_GPL(md_run);
5147
5148 static int do_md_run(struct mddev *mddev)
5149 {
5150         int err;
5151
5152         err = md_run(mddev);
5153         if (err)
5154                 goto out;
5155         err = bitmap_load(mddev);
5156         if (err) {
5157                 bitmap_destroy(mddev);
5158                 goto out;
5159         }
5160
5161         md_wakeup_thread(mddev->thread);
5162         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5163
5164         set_capacity(mddev->gendisk, mddev->array_sectors);
5165         revalidate_disk(mddev->gendisk);
5166         mddev->changed = 1;
5167         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5168 out:
5169         return err;
5170 }
5171
5172 static int restart_array(struct mddev *mddev)
5173 {
5174         struct gendisk *disk = mddev->gendisk;
5175
5176         /* Complain if it has no devices */
5177         if (list_empty(&mddev->disks))
5178                 return -ENXIO;
5179         if (!mddev->pers)
5180                 return -EINVAL;
5181         if (!mddev->ro)
5182                 return -EBUSY;
5183         mddev->safemode = 0;
5184         mddev->ro = 0;
5185         set_disk_ro(disk, 0);
5186         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5187                 mdname(mddev));
5188         /* Kick recovery or resync if necessary */
5189         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5190         md_wakeup_thread(mddev->thread);
5191         md_wakeup_thread(mddev->sync_thread);
5192         sysfs_notify_dirent_safe(mddev->sysfs_state);
5193         return 0;
5194 }
5195
5196 /* similar to deny_write_access, but accounts for our holding a reference
5197  * to the file ourselves */
5198 static int deny_bitmap_write_access(struct file * file)
5199 {
5200         struct inode *inode = file->f_mapping->host;
5201
5202         spin_lock(&inode->i_lock);
5203         if (atomic_read(&inode->i_writecount) > 1) {
5204                 spin_unlock(&inode->i_lock);
5205                 return -ETXTBSY;
5206         }
5207         atomic_set(&inode->i_writecount, -1);
5208         spin_unlock(&inode->i_lock);
5209
5210         return 0;
5211 }
5212
5213 void restore_bitmap_write_access(struct file *file)
5214 {
5215         struct inode *inode = file->f_mapping->host;
5216
5217         spin_lock(&inode->i_lock);
5218         atomic_set(&inode->i_writecount, 1);
5219         spin_unlock(&inode->i_lock);
5220 }
5221
5222 static void md_clean(struct mddev *mddev)
5223 {
5224         mddev->array_sectors = 0;
5225         mddev->external_size = 0;
5226         mddev->dev_sectors = 0;
5227         mddev->raid_disks = 0;
5228         mddev->recovery_cp = 0;
5229         mddev->resync_min = 0;
5230         mddev->resync_max = MaxSector;
5231         mddev->reshape_position = MaxSector;
5232         mddev->external = 0;
5233         mddev->persistent = 0;
5234         mddev->level = LEVEL_NONE;
5235         mddev->clevel[0] = 0;
5236         mddev->flags = 0;
5237         mddev->ro = 0;
5238         mddev->metadata_type[0] = 0;
5239         mddev->chunk_sectors = 0;
5240         mddev->ctime = mddev->utime = 0;
5241         mddev->layout = 0;
5242         mddev->max_disks = 0;
5243         mddev->events = 0;
5244         mddev->can_decrease_events = 0;
5245         mddev->delta_disks = 0;
5246         mddev->reshape_backwards = 0;
5247         mddev->new_level = LEVEL_NONE;
5248         mddev->new_layout = 0;
5249         mddev->new_chunk_sectors = 0;
5250         mddev->curr_resync = 0;
5251         atomic64_set(&mddev->resync_mismatches, 0);
5252         mddev->suspend_lo = mddev->suspend_hi = 0;
5253         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5254         mddev->recovery = 0;
5255         mddev->in_sync = 0;
5256         mddev->changed = 0;
5257         mddev->degraded = 0;
5258         mddev->safemode = 0;
5259         mddev->merge_check_needed = 0;
5260         mddev->bitmap_info.offset = 0;
5261         mddev->bitmap_info.default_offset = 0;
5262         mddev->bitmap_info.default_space = 0;
5263         mddev->bitmap_info.chunksize = 0;
5264         mddev->bitmap_info.daemon_sleep = 0;
5265         mddev->bitmap_info.max_write_behind = 0;
5266 }
5267
5268 static void __md_stop_writes(struct mddev *mddev)
5269 {
5270         if (mddev->sync_thread) {
5271                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5272                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5273                 reap_sync_thread(mddev);
5274         }
5275
5276         del_timer_sync(&mddev->safemode_timer);
5277
5278         bitmap_flush(mddev);
5279         md_super_wait(mddev);
5280
5281         if (!mddev->in_sync || mddev->flags) {
5282                 /* mark array as shutdown cleanly */
5283                 mddev->in_sync = 1;
5284                 md_update_sb(mddev, 1);
5285         }
5286 }
5287
5288 void md_stop_writes(struct mddev *mddev)
5289 {
5290         mddev_lock(mddev);
5291         __md_stop_writes(mddev);
5292         mddev_unlock(mddev);
5293 }
5294 EXPORT_SYMBOL_GPL(md_stop_writes);
5295
5296 static void __md_stop(struct mddev *mddev)
5297 {
5298         mddev->ready = 0;
5299         mddev->pers->stop(mddev);
5300         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5301                 mddev->to_remove = &md_redundancy_group;
5302         module_put(mddev->pers->owner);
5303         mddev->pers = NULL;
5304         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5305 }
5306
5307 void md_stop(struct mddev *mddev)
5308 {
5309         /* stop the array and free an attached data structures.
5310          * This is called from dm-raid
5311          */
5312         __md_stop(mddev);
5313         bitmap_destroy(mddev);
5314         if (mddev->bio_set)
5315                 bioset_free(mddev->bio_set);
5316 }
5317
5318 EXPORT_SYMBOL_GPL(md_stop);
5319
5320 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5321 {
5322         int err = 0;
5323         mutex_lock(&mddev->open_mutex);
5324         if (atomic_read(&mddev->openers) > !!bdev) {
5325                 printk("md: %s still in use.\n",mdname(mddev));
5326                 err = -EBUSY;
5327                 goto out;
5328         }
5329         if (bdev)
5330                 sync_blockdev(bdev);
5331         if (mddev->pers) {
5332                 __md_stop_writes(mddev);
5333
5334                 err  = -ENXIO;
5335                 if (mddev->ro==1)
5336                         goto out;
5337                 mddev->ro = 1;
5338                 set_disk_ro(mddev->gendisk, 1);
5339                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5340                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5341                 err = 0;        
5342         }
5343 out:
5344         mutex_unlock(&mddev->open_mutex);
5345         return err;
5346 }
5347
5348 /* mode:
5349  *   0 - completely stop and dis-assemble array
5350  *   2 - stop but do not disassemble array
5351  */
5352 static int do_md_stop(struct mddev * mddev, int mode,
5353                       struct block_device *bdev)
5354 {
5355         struct gendisk *disk = mddev->gendisk;
5356         struct md_rdev *rdev;
5357
5358         mutex_lock(&mddev->open_mutex);
5359         if (atomic_read(&mddev->openers) > !!bdev ||
5360             mddev->sysfs_active) {
5361                 printk("md: %s still in use.\n",mdname(mddev));
5362                 mutex_unlock(&mddev->open_mutex);
5363                 return -EBUSY;
5364         }
5365         if (bdev)
5366                 /* It is possible IO was issued on some other
5367                  * open file which was closed before we took ->open_mutex.
5368                  * As that was not the last close __blkdev_put will not
5369                  * have called sync_blockdev, so we must.
5370                  */
5371                 sync_blockdev(bdev);
5372
5373         if (mddev->pers) {
5374                 if (mddev->ro)
5375                         set_disk_ro(disk, 0);
5376
5377                 __md_stop_writes(mddev);
5378                 __md_stop(mddev);
5379                 mddev->queue->merge_bvec_fn = NULL;
5380                 mddev->queue->backing_dev_info.congested_fn = NULL;
5381
5382                 /* tell userspace to handle 'inactive' */
5383                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5384
5385                 rdev_for_each(rdev, mddev)
5386                         if (rdev->raid_disk >= 0)
5387                                 sysfs_unlink_rdev(mddev, rdev);
5388
5389                 set_capacity(disk, 0);
5390                 mutex_unlock(&mddev->open_mutex);
5391                 mddev->changed = 1;
5392                 revalidate_disk(disk);
5393
5394                 if (mddev->ro)
5395                         mddev->ro = 0;
5396         } else
5397                 mutex_unlock(&mddev->open_mutex);
5398         /*
5399          * Free resources if final stop
5400          */
5401         if (mode == 0) {
5402                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5403
5404                 bitmap_destroy(mddev);
5405                 if (mddev->bitmap_info.file) {
5406                         restore_bitmap_write_access(mddev->bitmap_info.file);
5407                         fput(mddev->bitmap_info.file);
5408                         mddev->bitmap_info.file = NULL;
5409                 }
5410                 mddev->bitmap_info.offset = 0;
5411
5412                 export_array(mddev);
5413
5414                 md_clean(mddev);
5415                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5416                 if (mddev->hold_active == UNTIL_STOP)
5417                         mddev->hold_active = 0;
5418         }
5419         blk_integrity_unregister(disk);
5420         md_new_event(mddev);
5421         sysfs_notify_dirent_safe(mddev->sysfs_state);
5422         return 0;
5423 }
5424
5425 #ifndef MODULE
5426 static void autorun_array(struct mddev *mddev)
5427 {
5428         struct md_rdev *rdev;
5429         int err;
5430
5431         if (list_empty(&mddev->disks))
5432                 return;
5433
5434         printk(KERN_INFO "md: running: ");
5435
5436         rdev_for_each(rdev, mddev) {
5437                 char b[BDEVNAME_SIZE];
5438                 printk("<%s>", bdevname(rdev->bdev,b));
5439         }
5440         printk("\n");
5441
5442         err = do_md_run(mddev);
5443         if (err) {
5444                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5445                 do_md_stop(mddev, 0, NULL);
5446         }
5447 }
5448
5449 /*
5450  * lets try to run arrays based on all disks that have arrived
5451  * until now. (those are in pending_raid_disks)
5452  *
5453  * the method: pick the first pending disk, collect all disks with
5454  * the same UUID, remove all from the pending list and put them into
5455  * the 'same_array' list. Then order this list based on superblock
5456  * update time (freshest comes first), kick out 'old' disks and
5457  * compare superblocks. If everything's fine then run it.
5458  *
5459  * If "unit" is allocated, then bump its reference count
5460  */
5461 static void autorun_devices(int part)
5462 {
5463         struct md_rdev *rdev0, *rdev, *tmp;
5464         struct mddev *mddev;
5465         char b[BDEVNAME_SIZE];
5466
5467         printk(KERN_INFO "md: autorun ...\n");
5468         while (!list_empty(&pending_raid_disks)) {
5469                 int unit;
5470                 dev_t dev;
5471                 LIST_HEAD(candidates);
5472                 rdev0 = list_entry(pending_raid_disks.next,
5473                                          struct md_rdev, same_set);
5474
5475                 printk(KERN_INFO "md: considering %s ...\n",
5476                         bdevname(rdev0->bdev,b));
5477                 INIT_LIST_HEAD(&candidates);
5478                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5479                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5480                                 printk(KERN_INFO "md:  adding %s ...\n",
5481                                         bdevname(rdev->bdev,b));
5482                                 list_move(&rdev->same_set, &candidates);
5483                         }
5484                 /*
5485                  * now we have a set of devices, with all of them having
5486                  * mostly sane superblocks. It's time to allocate the
5487                  * mddev.
5488                  */
5489                 if (part) {
5490                         dev = MKDEV(mdp_major,
5491                                     rdev0->preferred_minor << MdpMinorShift);
5492                         unit = MINOR(dev) >> MdpMinorShift;
5493                 } else {
5494                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5495                         unit = MINOR(dev);
5496                 }
5497                 if (rdev0->preferred_minor != unit) {
5498                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5499                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5500                         break;
5501                 }
5502
5503                 md_probe(dev, NULL, NULL);
5504                 mddev = mddev_find(dev);
5505                 if (!mddev || !mddev->gendisk) {
5506                         if (mddev)
5507                                 mddev_put(mddev);
5508                         printk(KERN_ERR
5509                                 "md: cannot allocate memory for md drive.\n");
5510                         break;
5511                 }
5512                 if (mddev_lock(mddev)) 
5513                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5514                                mdname(mddev));
5515                 else if (mddev->raid_disks || mddev->major_version
5516                          || !list_empty(&mddev->disks)) {
5517                         printk(KERN_WARNING 
5518                                 "md: %s already running, cannot run %s\n",
5519                                 mdname(mddev), bdevname(rdev0->bdev,b));
5520                         mddev_unlock(mddev);
5521                 } else {
5522                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5523                         mddev->persistent = 1;
5524                         rdev_for_each_list(rdev, tmp, &candidates) {
5525                                 list_del_init(&rdev->same_set);
5526                                 if (bind_rdev_to_array(rdev, mddev))
5527                                         export_rdev(rdev);
5528                         }
5529                         autorun_array(mddev);
5530                         mddev_unlock(mddev);
5531                 }
5532                 /* on success, candidates will be empty, on error
5533                  * it won't...
5534                  */
5535                 rdev_for_each_list(rdev, tmp, &candidates) {
5536                         list_del_init(&rdev->same_set);
5537                         export_rdev(rdev);
5538                 }
5539                 mddev_put(mddev);
5540         }
5541         printk(KERN_INFO "md: ... autorun DONE.\n");
5542 }
5543 #endif /* !MODULE */
5544
5545 static int get_version(void __user * arg)
5546 {
5547         mdu_version_t ver;
5548
5549         ver.major = MD_MAJOR_VERSION;
5550         ver.minor = MD_MINOR_VERSION;
5551         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5552
5553         if (copy_to_user(arg, &ver, sizeof(ver)))
5554                 return -EFAULT;
5555
5556         return 0;
5557 }
5558
5559 static int get_array_info(struct mddev * mddev, void __user * arg)
5560 {
5561         mdu_array_info_t info;
5562         int nr,working,insync,failed,spare;
5563         struct md_rdev *rdev;
5564
5565         nr = working = insync = failed = spare = 0;
5566         rcu_read_lock();
5567         rdev_for_each_rcu(rdev, mddev) {
5568                 nr++;
5569                 if (test_bit(Faulty, &rdev->flags))
5570                         failed++;
5571                 else {
5572                         working++;
5573                         if (test_bit(In_sync, &rdev->flags))
5574                                 insync++;       
5575                         else
5576                                 spare++;
5577                 }
5578         }
5579         rcu_read_unlock();
5580
5581         info.major_version = mddev->major_version;
5582         info.minor_version = mddev->minor_version;
5583         info.patch_version = MD_PATCHLEVEL_VERSION;
5584         info.ctime         = mddev->ctime;
5585         info.level         = mddev->level;
5586         info.size          = mddev->dev_sectors / 2;
5587         if (info.size != mddev->dev_sectors / 2) /* overflow */
5588                 info.size = -1;
5589         info.nr_disks      = nr;
5590         info.raid_disks    = mddev->raid_disks;
5591         info.md_minor      = mddev->md_minor;
5592         info.not_persistent= !mddev->persistent;
5593
5594         info.utime         = mddev->utime;
5595         info.state         = 0;
5596         if (mddev->in_sync)
5597                 info.state = (1<<MD_SB_CLEAN);
5598         if (mddev->bitmap && mddev->bitmap_info.offset)
5599                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5600         info.active_disks  = insync;
5601         info.working_disks = working;
5602         info.failed_disks  = failed;
5603         info.spare_disks   = spare;
5604
5605         info.layout        = mddev->layout;
5606         info.chunk_size    = mddev->chunk_sectors << 9;
5607
5608         if (copy_to_user(arg, &info, sizeof(info)))
5609                 return -EFAULT;
5610
5611         return 0;
5612 }
5613
5614 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5615 {
5616         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5617         char *ptr, *buf = NULL;
5618         int err = -ENOMEM;
5619
5620         if (md_allow_write(mddev))
5621                 file = kmalloc(sizeof(*file), GFP_NOIO);
5622         else
5623                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5624
5625         if (!file)
5626                 goto out;
5627
5628         /* bitmap disabled, zero the first byte and copy out */
5629         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5630                 file->pathname[0] = '\0';
5631                 goto copy_out;
5632         }
5633
5634         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5635         if (!buf)
5636                 goto out;
5637
5638         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5639                      buf, sizeof(file->pathname));
5640         if (IS_ERR(ptr))
5641                 goto out;
5642
5643         strcpy(file->pathname, ptr);
5644
5645 copy_out:
5646         err = 0;
5647         if (copy_to_user(arg, file, sizeof(*file)))
5648                 err = -EFAULT;
5649 out:
5650         kfree(buf);
5651         kfree(file);
5652         return err;
5653 }
5654
5655 static int get_disk_info(struct mddev * mddev, void __user * arg)
5656 {
5657         mdu_disk_info_t info;
5658         struct md_rdev *rdev;
5659
5660         if (copy_from_user(&info, arg, sizeof(info)))
5661                 return -EFAULT;
5662
5663         rcu_read_lock();
5664         rdev = find_rdev_nr_rcu(mddev, info.number);
5665         if (rdev) {
5666                 info.major = MAJOR(rdev->bdev->bd_dev);
5667                 info.minor = MINOR(rdev->bdev->bd_dev);
5668                 info.raid_disk = rdev->raid_disk;
5669                 info.state = 0;
5670                 if (test_bit(Faulty, &rdev->flags))
5671                         info.state |= (1<<MD_DISK_FAULTY);
5672                 else if (test_bit(In_sync, &rdev->flags)) {
5673                         info.state |= (1<<MD_DISK_ACTIVE);
5674                         info.state |= (1<<MD_DISK_SYNC);
5675                 }
5676                 if (test_bit(WriteMostly, &rdev->flags))
5677                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5678         } else {
5679                 info.major = info.minor = 0;
5680                 info.raid_disk = -1;
5681                 info.state = (1<<MD_DISK_REMOVED);
5682         }
5683         rcu_read_unlock();
5684
5685         if (copy_to_user(arg, &info, sizeof(info)))
5686                 return -EFAULT;
5687
5688         return 0;
5689 }
5690
5691 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5692 {
5693         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5694         struct md_rdev *rdev;
5695         dev_t dev = MKDEV(info->major,info->minor);
5696
5697         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5698                 return -EOVERFLOW;
5699
5700         if (!mddev->raid_disks) {
5701                 int err;
5702                 /* expecting a device which has a superblock */
5703                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5704                 if (IS_ERR(rdev)) {
5705                         printk(KERN_WARNING 
5706                                 "md: md_import_device returned %ld\n",
5707                                 PTR_ERR(rdev));
5708                         return PTR_ERR(rdev);
5709                 }
5710                 if (!list_empty(&mddev->disks)) {
5711                         struct md_rdev *rdev0
5712                                 = list_entry(mddev->disks.next,
5713                                              struct md_rdev, same_set);
5714                         err = super_types[mddev->major_version]
5715                                 .load_super(rdev, rdev0, mddev->minor_version);
5716                         if (err < 0) {
5717                                 printk(KERN_WARNING 
5718                                         "md: %s has different UUID to %s\n",
5719                                         bdevname(rdev->bdev,b), 
5720                                         bdevname(rdev0->bdev,b2));
5721                                 export_rdev(rdev);
5722                                 return -EINVAL;
5723                         }
5724                 }
5725                 err = bind_rdev_to_array(rdev, mddev);
5726                 if (err)
5727                         export_rdev(rdev);
5728                 return err;
5729         }
5730
5731         /*
5732          * add_new_disk can be used once the array is assembled
5733          * to add "hot spares".  They must already have a superblock
5734          * written
5735          */
5736         if (mddev->pers) {
5737                 int err;
5738                 if (!mddev->pers->hot_add_disk) {
5739                         printk(KERN_WARNING 
5740                                 "%s: personality does not support diskops!\n",
5741                                mdname(mddev));
5742                         return -EINVAL;
5743                 }
5744                 if (mddev->persistent)
5745                         rdev = md_import_device(dev, mddev->major_version,
5746                                                 mddev->minor_version);
5747                 else
5748                         rdev = md_import_device(dev, -1, -1);
5749                 if (IS_ERR(rdev)) {
5750                         printk(KERN_WARNING 
5751                                 "md: md_import_device returned %ld\n",
5752                                 PTR_ERR(rdev));
5753                         return PTR_ERR(rdev);
5754                 }
5755                 /* set saved_raid_disk if appropriate */
5756                 if (!mddev->persistent) {
5757                         if (info->state & (1<<MD_DISK_SYNC)  &&
5758                             info->raid_disk < mddev->raid_disks) {
5759                                 rdev->raid_disk = info->raid_disk;
5760                                 set_bit(In_sync, &rdev->flags);
5761                         } else
5762                                 rdev->raid_disk = -1;
5763                 } else
5764                         super_types[mddev->major_version].
5765                                 validate_super(mddev, rdev);
5766                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5767                      rdev->raid_disk != info->raid_disk) {
5768                         /* This was a hot-add request, but events doesn't
5769                          * match, so reject it.
5770                          */
5771                         export_rdev(rdev);
5772                         return -EINVAL;
5773                 }
5774
5775                 if (test_bit(In_sync, &rdev->flags))
5776                         rdev->saved_raid_disk = rdev->raid_disk;
5777                 else
5778                         rdev->saved_raid_disk = -1;
5779
5780                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5781                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5782                         set_bit(WriteMostly, &rdev->flags);
5783                 else
5784                         clear_bit(WriteMostly, &rdev->flags);
5785
5786                 rdev->raid_disk = -1;
5787                 err = bind_rdev_to_array(rdev, mddev);
5788                 if (!err && !mddev->pers->hot_remove_disk) {
5789                         /* If there is hot_add_disk but no hot_remove_disk
5790                          * then added disks for geometry changes,
5791                          * and should be added immediately.
5792                          */
5793                         super_types[mddev->major_version].
5794                                 validate_super(mddev, rdev);
5795                         err = mddev->pers->hot_add_disk(mddev, rdev);
5796                         if (err)
5797                                 unbind_rdev_from_array(rdev);
5798                 }
5799                 if (err)
5800                         export_rdev(rdev);
5801                 else
5802                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5803
5804                 md_update_sb(mddev, 1);
5805                 if (mddev->degraded)
5806                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5807                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5808                 if (!err)
5809                         md_new_event(mddev);
5810                 md_wakeup_thread(mddev->thread);
5811                 return err;
5812         }
5813
5814         /* otherwise, add_new_disk is only allowed
5815          * for major_version==0 superblocks
5816          */
5817         if (mddev->major_version != 0) {
5818                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5819                        mdname(mddev));
5820                 return -EINVAL;
5821         }
5822
5823         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5824                 int err;
5825                 rdev = md_import_device(dev, -1, 0);
5826                 if (IS_ERR(rdev)) {
5827                         printk(KERN_WARNING 
5828                                 "md: error, md_import_device() returned %ld\n",
5829                                 PTR_ERR(rdev));
5830                         return PTR_ERR(rdev);
5831                 }
5832                 rdev->desc_nr = info->number;
5833                 if (info->raid_disk < mddev->raid_disks)
5834                         rdev->raid_disk = info->raid_disk;
5835                 else
5836                         rdev->raid_disk = -1;
5837
5838                 if (rdev->raid_disk < mddev->raid_disks)
5839                         if (info->state & (1<<MD_DISK_SYNC))
5840                                 set_bit(In_sync, &rdev->flags);
5841
5842                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5843                         set_bit(WriteMostly, &rdev->flags);
5844
5845                 if (!mddev->persistent) {
5846                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5847                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5848                 } else
5849                         rdev->sb_start = calc_dev_sboffset(rdev);
5850                 rdev->sectors = rdev->sb_start;
5851
5852                 err = bind_rdev_to_array(rdev, mddev);
5853                 if (err) {
5854                         export_rdev(rdev);
5855                         return err;
5856                 }
5857         }
5858
5859         return 0;
5860 }
5861
5862 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5863 {
5864         char b[BDEVNAME_SIZE];
5865         struct md_rdev *rdev;
5866
5867         rdev = find_rdev(mddev, dev);
5868         if (!rdev)
5869                 return -ENXIO;
5870
5871         if (rdev->raid_disk >= 0)
5872                 goto busy;
5873
5874         kick_rdev_from_array(rdev);
5875         md_update_sb(mddev, 1);
5876         md_new_event(mddev);
5877
5878         return 0;
5879 busy:
5880         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5881                 bdevname(rdev->bdev,b), mdname(mddev));
5882         return -EBUSY;
5883 }
5884
5885 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5886 {
5887         char b[BDEVNAME_SIZE];
5888         int err;
5889         struct md_rdev *rdev;
5890
5891         if (!mddev->pers)
5892                 return -ENODEV;
5893
5894         if (mddev->major_version != 0) {
5895                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5896                         " version-0 superblocks.\n",
5897                         mdname(mddev));
5898                 return -EINVAL;
5899         }
5900         if (!mddev->pers->hot_add_disk) {
5901                 printk(KERN_WARNING 
5902                         "%s: personality does not support diskops!\n",
5903                         mdname(mddev));
5904                 return -EINVAL;
5905         }
5906
5907         rdev = md_import_device(dev, -1, 0);
5908         if (IS_ERR(rdev)) {
5909                 printk(KERN_WARNING 
5910                         "md: error, md_import_device() returned %ld\n",
5911                         PTR_ERR(rdev));
5912                 return -EINVAL;
5913         }
5914
5915         if (mddev->persistent)
5916                 rdev->sb_start = calc_dev_sboffset(rdev);
5917         else
5918                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5919
5920         rdev->sectors = rdev->sb_start;
5921
5922         if (test_bit(Faulty, &rdev->flags)) {
5923                 printk(KERN_WARNING 
5924                         "md: can not hot-add faulty %s disk to %s!\n",
5925                         bdevname(rdev->bdev,b), mdname(mddev));
5926                 err = -EINVAL;
5927                 goto abort_export;
5928         }
5929         clear_bit(In_sync, &rdev->flags);
5930         rdev->desc_nr = -1;
5931         rdev->saved_raid_disk = -1;
5932         err = bind_rdev_to_array(rdev, mddev);
5933         if (err)
5934                 goto abort_export;
5935
5936         /*
5937          * The rest should better be atomic, we can have disk failures
5938          * noticed in interrupt contexts ...
5939          */
5940
5941         rdev->raid_disk = -1;
5942
5943         md_update_sb(mddev, 1);
5944
5945         /*
5946          * Kick recovery, maybe this spare has to be added to the
5947          * array immediately.
5948          */
5949         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5950         md_wakeup_thread(mddev->thread);
5951         md_new_event(mddev);
5952         return 0;
5953
5954 abort_export:
5955         export_rdev(rdev);
5956         return err;
5957 }
5958
5959 static int set_bitmap_file(struct mddev *mddev, int fd)
5960 {
5961         int err;
5962
5963         if (mddev->pers) {
5964                 if (!mddev->pers->quiesce)
5965                         return -EBUSY;
5966                 if (mddev->recovery || mddev->sync_thread)
5967                         return -EBUSY;
5968                 /* we should be able to change the bitmap.. */
5969         }
5970
5971
5972         if (fd >= 0) {
5973                 if (mddev->bitmap)
5974                         return -EEXIST; /* cannot add when bitmap is present */
5975                 mddev->bitmap_info.file = fget(fd);
5976
5977                 if (mddev->bitmap_info.file == NULL) {
5978                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5979                                mdname(mddev));
5980                         return -EBADF;
5981                 }
5982
5983                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5984                 if (err) {
5985                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5986                                mdname(mddev));
5987                         fput(mddev->bitmap_info.file);
5988                         mddev->bitmap_info.file = NULL;
5989                         return err;
5990                 }
5991                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5992         } else if (mddev->bitmap == NULL)
5993                 return -ENOENT; /* cannot remove what isn't there */
5994         err = 0;
5995         if (mddev->pers) {
5996                 mddev->pers->quiesce(mddev, 1);
5997                 if (fd >= 0) {
5998                         err = bitmap_create(mddev);
5999                         if (!err)
6000                                 err = bitmap_load(mddev);
6001                 }
6002                 if (fd < 0 || err) {
6003                         bitmap_destroy(mddev);
6004                         fd = -1; /* make sure to put the file */
6005                 }
6006                 mddev->pers->quiesce(mddev, 0);
6007         }
6008         if (fd < 0) {
6009                 if (mddev->bitmap_info.file) {
6010                         restore_bitmap_write_access(mddev->bitmap_info.file);
6011                         fput(mddev->bitmap_info.file);
6012                 }
6013                 mddev->bitmap_info.file = NULL;
6014         }
6015
6016         return err;
6017 }
6018
6019 /*
6020  * set_array_info is used two different ways
6021  * The original usage is when creating a new array.
6022  * In this usage, raid_disks is > 0 and it together with
6023  *  level, size, not_persistent,layout,chunksize determine the
6024  *  shape of the array.
6025  *  This will always create an array with a type-0.90.0 superblock.
6026  * The newer usage is when assembling an array.
6027  *  In this case raid_disks will be 0, and the major_version field is
6028  *  use to determine which style super-blocks are to be found on the devices.
6029  *  The minor and patch _version numbers are also kept incase the
6030  *  super_block handler wishes to interpret them.
6031  */
6032 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6033 {
6034
6035         if (info->raid_disks == 0) {
6036                 /* just setting version number for superblock loading */
6037                 if (info->major_version < 0 ||
6038                     info->major_version >= ARRAY_SIZE(super_types) ||
6039                     super_types[info->major_version].name == NULL) {
6040                         /* maybe try to auto-load a module? */
6041                         printk(KERN_INFO 
6042                                 "md: superblock version %d not known\n",
6043                                 info->major_version);
6044                         return -EINVAL;
6045                 }
6046                 mddev->major_version = info->major_version;
6047                 mddev->minor_version = info->minor_version;
6048                 mddev->patch_version = info->patch_version;
6049                 mddev->persistent = !info->not_persistent;
6050                 /* ensure mddev_put doesn't delete this now that there
6051                  * is some minimal configuration.
6052                  */
6053                 mddev->ctime         = get_seconds();
6054                 return 0;
6055         }
6056         mddev->major_version = MD_MAJOR_VERSION;
6057         mddev->minor_version = MD_MINOR_VERSION;
6058         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6059         mddev->ctime         = get_seconds();
6060
6061         mddev->level         = info->level;
6062         mddev->clevel[0]     = 0;
6063         mddev->dev_sectors   = 2 * (sector_t)info->size;
6064         mddev->raid_disks    = info->raid_disks;
6065         /* don't set md_minor, it is determined by which /dev/md* was
6066          * openned
6067          */
6068         if (info->state & (1<<MD_SB_CLEAN))
6069                 mddev->recovery_cp = MaxSector;
6070         else
6071                 mddev->recovery_cp = 0;
6072         mddev->persistent    = ! info->not_persistent;
6073         mddev->external      = 0;
6074
6075         mddev->layout        = info->layout;
6076         mddev->chunk_sectors = info->chunk_size >> 9;
6077
6078         mddev->max_disks     = MD_SB_DISKS;
6079
6080         if (mddev->persistent)
6081                 mddev->flags         = 0;
6082         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6083
6084         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6085         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6086         mddev->bitmap_info.offset = 0;
6087
6088         mddev->reshape_position = MaxSector;
6089
6090         /*
6091          * Generate a 128 bit UUID
6092          */
6093         get_random_bytes(mddev->uuid, 16);
6094
6095         mddev->new_level = mddev->level;
6096         mddev->new_chunk_sectors = mddev->chunk_sectors;
6097         mddev->new_layout = mddev->layout;
6098         mddev->delta_disks = 0;
6099         mddev->reshape_backwards = 0;
6100
6101         return 0;
6102 }
6103
6104 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6105 {
6106         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6107
6108         if (mddev->external_size)
6109                 return;
6110
6111         mddev->array_sectors = array_sectors;
6112 }
6113 EXPORT_SYMBOL(md_set_array_sectors);
6114
6115 static int update_size(struct mddev *mddev, sector_t num_sectors)
6116 {
6117         struct md_rdev *rdev;
6118         int rv;
6119         int fit = (num_sectors == 0);
6120
6121         if (mddev->pers->resize == NULL)
6122                 return -EINVAL;
6123         /* The "num_sectors" is the number of sectors of each device that
6124          * is used.  This can only make sense for arrays with redundancy.
6125          * linear and raid0 always use whatever space is available. We can only
6126          * consider changing this number if no resync or reconstruction is
6127          * happening, and if the new size is acceptable. It must fit before the
6128          * sb_start or, if that is <data_offset, it must fit before the size
6129          * of each device.  If num_sectors is zero, we find the largest size
6130          * that fits.
6131          */
6132         if (mddev->sync_thread)
6133                 return -EBUSY;
6134
6135         rdev_for_each(rdev, mddev) {
6136                 sector_t avail = rdev->sectors;
6137
6138                 if (fit && (num_sectors == 0 || num_sectors > avail))
6139                         num_sectors = avail;
6140                 if (avail < num_sectors)
6141                         return -ENOSPC;
6142         }
6143         rv = mddev->pers->resize(mddev, num_sectors);
6144         if (!rv)
6145                 revalidate_disk(mddev->gendisk);
6146         return rv;
6147 }
6148
6149 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6150 {
6151         int rv;
6152         struct md_rdev *rdev;
6153         /* change the number of raid disks */
6154         if (mddev->pers->check_reshape == NULL)
6155                 return -EINVAL;
6156         if (raid_disks <= 0 ||
6157             (mddev->max_disks && raid_disks >= mddev->max_disks))
6158                 return -EINVAL;
6159         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6160                 return -EBUSY;
6161
6162         rdev_for_each(rdev, mddev) {
6163                 if (mddev->raid_disks < raid_disks &&
6164                     rdev->data_offset < rdev->new_data_offset)
6165                         return -EINVAL;
6166                 if (mddev->raid_disks > raid_disks &&
6167                     rdev->data_offset > rdev->new_data_offset)
6168                         return -EINVAL;
6169         }
6170
6171         mddev->delta_disks = raid_disks - mddev->raid_disks;
6172         if (mddev->delta_disks < 0)
6173                 mddev->reshape_backwards = 1;
6174         else if (mddev->delta_disks > 0)
6175                 mddev->reshape_backwards = 0;
6176
6177         rv = mddev->pers->check_reshape(mddev);
6178         if (rv < 0) {
6179                 mddev->delta_disks = 0;
6180                 mddev->reshape_backwards = 0;
6181         }
6182         return rv;
6183 }
6184
6185
6186 /*
6187  * update_array_info is used to change the configuration of an
6188  * on-line array.
6189  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6190  * fields in the info are checked against the array.
6191  * Any differences that cannot be handled will cause an error.
6192  * Normally, only one change can be managed at a time.
6193  */
6194 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6195 {
6196         int rv = 0;
6197         int cnt = 0;
6198         int state = 0;
6199
6200         /* calculate expected state,ignoring low bits */
6201         if (mddev->bitmap && mddev->bitmap_info.offset)
6202                 state |= (1 << MD_SB_BITMAP_PRESENT);
6203
6204         if (mddev->major_version != info->major_version ||
6205             mddev->minor_version != info->minor_version ||
6206 /*          mddev->patch_version != info->patch_version || */
6207             mddev->ctime         != info->ctime         ||
6208             mddev->level         != info->level         ||
6209 /*          mddev->layout        != info->layout        || */
6210             !mddev->persistent   != info->not_persistent||
6211             mddev->chunk_sectors != info->chunk_size >> 9 ||
6212             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6213             ((state^info->state) & 0xfffffe00)
6214                 )
6215                 return -EINVAL;
6216         /* Check there is only one change */
6217         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6218                 cnt++;
6219         if (mddev->raid_disks != info->raid_disks)
6220                 cnt++;
6221         if (mddev->layout != info->layout)
6222                 cnt++;
6223         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6224                 cnt++;
6225         if (cnt == 0)
6226                 return 0;
6227         if (cnt > 1)
6228                 return -EINVAL;
6229
6230         if (mddev->layout != info->layout) {
6231                 /* Change layout
6232                  * we don't need to do anything at the md level, the
6233                  * personality will take care of it all.
6234                  */
6235                 if (mddev->pers->check_reshape == NULL)
6236                         return -EINVAL;
6237                 else {
6238                         mddev->new_layout = info->layout;
6239                         rv = mddev->pers->check_reshape(mddev);
6240                         if (rv)
6241                                 mddev->new_layout = mddev->layout;
6242                         return rv;
6243                 }
6244         }
6245         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6246                 rv = update_size(mddev, (sector_t)info->size * 2);
6247
6248         if (mddev->raid_disks    != info->raid_disks)
6249                 rv = update_raid_disks(mddev, info->raid_disks);
6250
6251         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6252                 if (mddev->pers->quiesce == NULL)
6253                         return -EINVAL;
6254                 if (mddev->recovery || mddev->sync_thread)
6255                         return -EBUSY;
6256                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6257                         /* add the bitmap */
6258                         if (mddev->bitmap)
6259                                 return -EEXIST;
6260                         if (mddev->bitmap_info.default_offset == 0)
6261                                 return -EINVAL;
6262                         mddev->bitmap_info.offset =
6263                                 mddev->bitmap_info.default_offset;
6264                         mddev->bitmap_info.space =
6265                                 mddev->bitmap_info.default_space;
6266                         mddev->pers->quiesce(mddev, 1);
6267                         rv = bitmap_create(mddev);
6268                         if (!rv)
6269                                 rv = bitmap_load(mddev);
6270                         if (rv)
6271                                 bitmap_destroy(mddev);
6272                         mddev->pers->quiesce(mddev, 0);
6273                 } else {
6274                         /* remove the bitmap */
6275                         if (!mddev->bitmap)
6276                                 return -ENOENT;
6277                         if (mddev->bitmap->storage.file)
6278                                 return -EINVAL;
6279                         mddev->pers->quiesce(mddev, 1);
6280                         bitmap_destroy(mddev);
6281                         mddev->pers->quiesce(mddev, 0);
6282                         mddev->bitmap_info.offset = 0;
6283                 }
6284         }
6285         md_update_sb(mddev, 1);
6286         return rv;
6287 }
6288
6289 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6290 {
6291         struct md_rdev *rdev;
6292         int err = 0;
6293
6294         if (mddev->pers == NULL)
6295                 return -ENODEV;
6296
6297         rcu_read_lock();
6298         rdev = find_rdev_rcu(mddev, dev);
6299         if (!rdev)
6300                 err =  -ENODEV;
6301         else {
6302                 md_error(mddev, rdev);
6303                 if (!test_bit(Faulty, &rdev->flags))
6304                         err = -EBUSY;
6305         }
6306         rcu_read_unlock();
6307         return err;
6308 }
6309
6310 /*
6311  * We have a problem here : there is no easy way to give a CHS
6312  * virtual geometry. We currently pretend that we have a 2 heads
6313  * 4 sectors (with a BIG number of cylinders...). This drives
6314  * dosfs just mad... ;-)
6315  */
6316 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6317 {
6318         struct mddev *mddev = bdev->bd_disk->private_data;
6319
6320         geo->heads = 2;
6321         geo->sectors = 4;
6322         geo->cylinders = mddev->array_sectors / 8;
6323         return 0;
6324 }
6325
6326 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6327                         unsigned int cmd, unsigned long arg)
6328 {
6329         int err = 0;
6330         void __user *argp = (void __user *)arg;
6331         struct mddev *mddev = NULL;
6332         int ro;
6333
6334         switch (cmd) {
6335         case RAID_VERSION:
6336         case GET_ARRAY_INFO:
6337         case GET_DISK_INFO:
6338                 break;
6339         default:
6340                 if (!capable(CAP_SYS_ADMIN))
6341                         return -EACCES;
6342         }
6343
6344         /*
6345          * Commands dealing with the RAID driver but not any
6346          * particular array:
6347          */
6348         switch (cmd) {
6349         case RAID_VERSION:
6350                 err = get_version(argp);
6351                 goto done;
6352
6353         case PRINT_RAID_DEBUG:
6354                 err = 0;
6355                 md_print_devices();
6356                 goto done;
6357
6358 #ifndef MODULE
6359         case RAID_AUTORUN:
6360                 err = 0;
6361                 autostart_arrays(arg);
6362                 goto done;
6363 #endif
6364         default:;
6365         }
6366
6367         /*
6368          * Commands creating/starting a new array:
6369          */
6370
6371         mddev = bdev->bd_disk->private_data;
6372
6373         if (!mddev) {
6374                 BUG();
6375                 goto abort;
6376         }
6377
6378         /* Some actions do not requires the mutex */
6379         switch (cmd) {
6380         case GET_ARRAY_INFO:
6381                 if (!mddev->raid_disks && !mddev->external)
6382                         err = -ENODEV;
6383                 else
6384                         err = get_array_info(mddev, argp);
6385                 goto abort;
6386
6387         case GET_DISK_INFO:
6388                 if (!mddev->raid_disks && !mddev->external)
6389                         err = -ENODEV;
6390                 else
6391                         err = get_disk_info(mddev, argp);
6392                 goto abort;
6393
6394         case SET_DISK_FAULTY:
6395                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6396                 goto abort;
6397         }
6398
6399         if (cmd == ADD_NEW_DISK)
6400                 /* need to ensure md_delayed_delete() has completed */
6401                 flush_workqueue(md_misc_wq);
6402
6403         err = mddev_lock(mddev);
6404         if (err) {
6405                 printk(KERN_INFO 
6406                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6407                         err, cmd);
6408                 goto abort;
6409         }
6410
6411         if (cmd == SET_ARRAY_INFO) {
6412                 mdu_array_info_t info;
6413                 if (!arg)
6414                         memset(&info, 0, sizeof(info));
6415                 else if (copy_from_user(&info, argp, sizeof(info))) {
6416                         err = -EFAULT;
6417                         goto abort_unlock;
6418                 }
6419                 if (mddev->pers) {
6420                         err = update_array_info(mddev, &info);
6421                         if (err) {
6422                                 printk(KERN_WARNING "md: couldn't update"
6423                                        " array info. %d\n", err);
6424                                 goto abort_unlock;
6425                         }
6426                         goto done_unlock;
6427                 }
6428                 if (!list_empty(&mddev->disks)) {
6429                         printk(KERN_WARNING
6430                                "md: array %s already has disks!\n",
6431                                mdname(mddev));
6432                         err = -EBUSY;
6433                         goto abort_unlock;
6434                 }
6435                 if (mddev->raid_disks) {
6436                         printk(KERN_WARNING
6437                                "md: array %s already initialised!\n",
6438                                mdname(mddev));
6439                         err = -EBUSY;
6440                         goto abort_unlock;
6441                 }
6442                 err = set_array_info(mddev, &info);
6443                 if (err) {
6444                         printk(KERN_WARNING "md: couldn't set"
6445                                " array info. %d\n", err);
6446                         goto abort_unlock;
6447                 }
6448                 goto done_unlock;
6449         }
6450
6451         /*
6452          * Commands querying/configuring an existing array:
6453          */
6454         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6455          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6456         if ((!mddev->raid_disks && !mddev->external)
6457             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6458             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6459             && cmd != GET_BITMAP_FILE) {
6460                 err = -ENODEV;
6461                 goto abort_unlock;
6462         }
6463
6464         /*
6465          * Commands even a read-only array can execute:
6466          */
6467         switch (cmd) {
6468         case GET_BITMAP_FILE:
6469                 err = get_bitmap_file(mddev, argp);
6470                 goto done_unlock;
6471
6472         case RESTART_ARRAY_RW:
6473                 err = restart_array(mddev);
6474                 goto done_unlock;
6475
6476         case STOP_ARRAY:
6477                 err = do_md_stop(mddev, 0, bdev);
6478                 goto done_unlock;
6479
6480         case STOP_ARRAY_RO:
6481                 err = md_set_readonly(mddev, bdev);
6482                 goto done_unlock;
6483
6484         case BLKROSET:
6485                 if (get_user(ro, (int __user *)(arg))) {
6486                         err = -EFAULT;
6487                         goto done_unlock;
6488                 }
6489                 err = -EINVAL;
6490
6491                 /* if the bdev is going readonly the value of mddev->ro
6492                  * does not matter, no writes are coming
6493                  */
6494                 if (ro)
6495                         goto done_unlock;
6496
6497                 /* are we are already prepared for writes? */
6498                 if (mddev->ro != 1)
6499                         goto done_unlock;
6500
6501                 /* transitioning to readauto need only happen for
6502                  * arrays that call md_write_start
6503                  */
6504                 if (mddev->pers) {
6505                         err = restart_array(mddev);
6506                         if (err == 0) {
6507                                 mddev->ro = 2;
6508                                 set_disk_ro(mddev->gendisk, 0);
6509                         }
6510                 }
6511                 goto done_unlock;
6512         }
6513
6514         /*
6515          * The remaining ioctls are changing the state of the
6516          * superblock, so we do not allow them on read-only arrays.
6517          * However non-MD ioctls (e.g. get-size) will still come through
6518          * here and hit the 'default' below, so only disallow
6519          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6520          */
6521         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6522                 if (mddev->ro == 2) {
6523                         mddev->ro = 0;
6524                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6525                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6526                         /* mddev_unlock will wake thread */
6527                         /* If a device failed while we were read-only, we
6528                          * need to make sure the metadata is updated now.
6529                          */
6530                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6531                                 mddev_unlock(mddev);
6532                                 wait_event(mddev->sb_wait,
6533                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6534                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6535                                 mddev_lock(mddev);
6536                         }
6537                 } else {
6538                         err = -EROFS;
6539                         goto abort_unlock;
6540                 }
6541         }
6542
6543         switch (cmd) {
6544         case ADD_NEW_DISK:
6545         {
6546                 mdu_disk_info_t info;
6547                 if (copy_from_user(&info, argp, sizeof(info)))
6548                         err = -EFAULT;
6549                 else
6550                         err = add_new_disk(mddev, &info);
6551                 goto done_unlock;
6552         }
6553
6554         case HOT_REMOVE_DISK:
6555                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6556                 goto done_unlock;
6557
6558         case HOT_ADD_DISK:
6559                 err = hot_add_disk(mddev, new_decode_dev(arg));
6560                 goto done_unlock;
6561
6562         case RUN_ARRAY:
6563                 err = do_md_run(mddev);
6564                 goto done_unlock;
6565
6566         case SET_BITMAP_FILE:
6567                 err = set_bitmap_file(mddev, (int)arg);
6568                 goto done_unlock;
6569
6570         default:
6571                 err = -EINVAL;
6572                 goto abort_unlock;
6573         }
6574
6575 done_unlock:
6576 abort_unlock:
6577         if (mddev->hold_active == UNTIL_IOCTL &&
6578             err != -EINVAL)
6579                 mddev->hold_active = 0;
6580         mddev_unlock(mddev);
6581
6582         return err;
6583 done:
6584         if (err)
6585                 MD_BUG();
6586 abort:
6587         return err;
6588 }
6589 #ifdef CONFIG_COMPAT
6590 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6591                     unsigned int cmd, unsigned long arg)
6592 {
6593         switch (cmd) {
6594         case HOT_REMOVE_DISK:
6595         case HOT_ADD_DISK:
6596         case SET_DISK_FAULTY:
6597         case SET_BITMAP_FILE:
6598                 /* These take in integer arg, do not convert */
6599                 break;
6600         default:
6601                 arg = (unsigned long)compat_ptr(arg);
6602                 break;
6603         }
6604
6605         return md_ioctl(bdev, mode, cmd, arg);
6606 }
6607 #endif /* CONFIG_COMPAT */
6608
6609 static int md_open(struct block_device *bdev, fmode_t mode)
6610 {
6611         /*
6612          * Succeed if we can lock the mddev, which confirms that
6613          * it isn't being stopped right now.
6614          */
6615         struct mddev *mddev = mddev_find(bdev->bd_dev);
6616         int err;
6617
6618         if (!mddev)
6619                 return -ENODEV;
6620
6621         if (mddev->gendisk != bdev->bd_disk) {
6622                 /* we are racing with mddev_put which is discarding this
6623                  * bd_disk.
6624                  */
6625                 mddev_put(mddev);
6626                 /* Wait until bdev->bd_disk is definitely gone */
6627                 flush_workqueue(md_misc_wq);
6628                 /* Then retry the open from the top */
6629                 return -ERESTARTSYS;
6630         }
6631         BUG_ON(mddev != bdev->bd_disk->private_data);
6632
6633         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6634                 goto out;
6635
6636         err = 0;
6637         atomic_inc(&mddev->openers);
6638         mutex_unlock(&mddev->open_mutex);
6639
6640         check_disk_change(bdev);
6641  out:
6642         return err;
6643 }
6644
6645 static int md_release(struct gendisk *disk, fmode_t mode)
6646 {
6647         struct mddev *mddev = disk->private_data;
6648
6649         BUG_ON(!mddev);
6650         atomic_dec(&mddev->openers);
6651         mddev_put(mddev);
6652
6653         return 0;
6654 }
6655
6656 static int md_media_changed(struct gendisk *disk)
6657 {
6658         struct mddev *mddev = disk->private_data;
6659
6660         return mddev->changed;
6661 }
6662
6663 static int md_revalidate(struct gendisk *disk)
6664 {
6665         struct mddev *mddev = disk->private_data;
6666
6667         mddev->changed = 0;
6668         return 0;
6669 }
6670 static const struct block_device_operations md_fops =
6671 {
6672         .owner          = THIS_MODULE,
6673         .open           = md_open,
6674         .release        = md_release,
6675         .ioctl          = md_ioctl,
6676 #ifdef CONFIG_COMPAT
6677         .compat_ioctl   = md_compat_ioctl,
6678 #endif
6679         .getgeo         = md_getgeo,
6680         .media_changed  = md_media_changed,
6681         .revalidate_disk= md_revalidate,
6682 };
6683
6684 static int md_thread(void * arg)
6685 {
6686         struct md_thread *thread = arg;
6687
6688         /*
6689          * md_thread is a 'system-thread', it's priority should be very
6690          * high. We avoid resource deadlocks individually in each
6691          * raid personality. (RAID5 does preallocation) We also use RR and
6692          * the very same RT priority as kswapd, thus we will never get
6693          * into a priority inversion deadlock.
6694          *
6695          * we definitely have to have equal or higher priority than
6696          * bdflush, otherwise bdflush will deadlock if there are too
6697          * many dirty RAID5 blocks.
6698          */
6699
6700         allow_signal(SIGKILL);
6701         while (!kthread_should_stop()) {
6702
6703                 /* We need to wait INTERRUPTIBLE so that
6704                  * we don't add to the load-average.
6705                  * That means we need to be sure no signals are
6706                  * pending
6707                  */
6708                 if (signal_pending(current))
6709                         flush_signals(current);
6710
6711                 wait_event_interruptible_timeout
6712                         (thread->wqueue,
6713                          test_bit(THREAD_WAKEUP, &thread->flags)
6714                          || kthread_should_stop(),
6715                          thread->timeout);
6716
6717                 clear_bit(THREAD_WAKEUP, &thread->flags);
6718                 if (!kthread_should_stop())
6719                         thread->run(thread);
6720         }
6721
6722         return 0;
6723 }
6724
6725 void md_wakeup_thread(struct md_thread *thread)
6726 {
6727         if (thread) {
6728                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6729                 set_bit(THREAD_WAKEUP, &thread->flags);
6730                 wake_up(&thread->wqueue);
6731         }
6732 }
6733
6734 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6735                 struct mddev *mddev, const char *name)
6736 {
6737         struct md_thread *thread;
6738
6739         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6740         if (!thread)
6741                 return NULL;
6742
6743         init_waitqueue_head(&thread->wqueue);
6744
6745         thread->run = run;
6746         thread->mddev = mddev;
6747         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6748         thread->tsk = kthread_run(md_thread, thread,
6749                                   "%s_%s",
6750                                   mdname(thread->mddev),
6751                                   name);
6752         if (IS_ERR(thread->tsk)) {
6753                 kfree(thread);
6754                 return NULL;
6755         }
6756         return thread;
6757 }
6758
6759 void md_unregister_thread(struct md_thread **threadp)
6760 {
6761         struct md_thread *thread = *threadp;
6762         if (!thread)
6763                 return;
6764         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6765         /* Locking ensures that mddev_unlock does not wake_up a
6766          * non-existent thread
6767          */
6768         spin_lock(&pers_lock);
6769         *threadp = NULL;
6770         spin_unlock(&pers_lock);
6771
6772         kthread_stop(thread->tsk);
6773         kfree(thread);
6774 }
6775
6776 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6777 {
6778         if (!mddev) {
6779                 MD_BUG();
6780                 return;
6781         }
6782
6783         if (!rdev || test_bit(Faulty, &rdev->flags))
6784                 return;
6785
6786         if (!mddev->pers || !mddev->pers->error_handler)
6787                 return;
6788         mddev->pers->error_handler(mddev,rdev);
6789         if (mddev->degraded)
6790                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6791         sysfs_notify_dirent_safe(rdev->sysfs_state);
6792         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6793         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6794         md_wakeup_thread(mddev->thread);
6795         if (mddev->event_work.func)
6796                 queue_work(md_misc_wq, &mddev->event_work);
6797         md_new_event_inintr(mddev);
6798 }
6799
6800 /* seq_file implementation /proc/mdstat */
6801
6802 static void status_unused(struct seq_file *seq)
6803 {
6804         int i = 0;
6805         struct md_rdev *rdev;
6806
6807         seq_printf(seq, "unused devices: ");
6808
6809         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6810                 char b[BDEVNAME_SIZE];
6811                 i++;
6812                 seq_printf(seq, "%s ",
6813                               bdevname(rdev->bdev,b));
6814         }
6815         if (!i)
6816                 seq_printf(seq, "<none>");
6817
6818         seq_printf(seq, "\n");
6819 }
6820
6821
6822 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6823 {
6824         sector_t max_sectors, resync, res;
6825         unsigned long dt, db;
6826         sector_t rt;
6827         int scale;
6828         unsigned int per_milli;
6829
6830         if (mddev->curr_resync <= 3)
6831                 resync = 0;
6832         else
6833                 resync = mddev->curr_resync
6834                         - atomic_read(&mddev->recovery_active);
6835
6836         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6837             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6838                 max_sectors = mddev->resync_max_sectors;
6839         else
6840                 max_sectors = mddev->dev_sectors;
6841
6842         /*
6843          * Should not happen.
6844          */
6845         if (!max_sectors) {
6846                 MD_BUG();
6847                 return;
6848         }
6849         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6850          * in a sector_t, and (max_sectors>>scale) will fit in a
6851          * u32, as those are the requirements for sector_div.
6852          * Thus 'scale' must be at least 10
6853          */
6854         scale = 10;
6855         if (sizeof(sector_t) > sizeof(unsigned long)) {
6856                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6857                         scale++;
6858         }
6859         res = (resync>>scale)*1000;
6860         sector_div(res, (u32)((max_sectors>>scale)+1));
6861
6862         per_milli = res;
6863         {
6864                 int i, x = per_milli/50, y = 20-x;
6865                 seq_printf(seq, "[");
6866                 for (i = 0; i < x; i++)
6867                         seq_printf(seq, "=");
6868                 seq_printf(seq, ">");
6869                 for (i = 0; i < y; i++)
6870                         seq_printf(seq, ".");
6871                 seq_printf(seq, "] ");
6872         }
6873         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6874                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6875                     "reshape" :
6876                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6877                      "check" :
6878                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6879                       "resync" : "recovery"))),
6880                    per_milli/10, per_milli % 10,
6881                    (unsigned long long) resync/2,
6882                    (unsigned long long) max_sectors/2);
6883
6884         /*
6885          * dt: time from mark until now
6886          * db: blocks written from mark until now
6887          * rt: remaining time
6888          *
6889          * rt is a sector_t, so could be 32bit or 64bit.
6890          * So we divide before multiply in case it is 32bit and close
6891          * to the limit.
6892          * We scale the divisor (db) by 32 to avoid losing precision
6893          * near the end of resync when the number of remaining sectors
6894          * is close to 'db'.
6895          * We then divide rt by 32 after multiplying by db to compensate.
6896          * The '+1' avoids division by zero if db is very small.
6897          */
6898         dt = ((jiffies - mddev->resync_mark) / HZ);
6899         if (!dt) dt++;
6900         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6901                 - mddev->resync_mark_cnt;
6902
6903         rt = max_sectors - resync;    /* number of remaining sectors */
6904         sector_div(rt, db/32+1);
6905         rt *= dt;
6906         rt >>= 5;
6907
6908         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6909                    ((unsigned long)rt % 60)/6);
6910
6911         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6912 }
6913
6914 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6915 {
6916         struct list_head *tmp;
6917         loff_t l = *pos;
6918         struct mddev *mddev;
6919
6920         if (l >= 0x10000)
6921                 return NULL;
6922         if (!l--)
6923                 /* header */
6924                 return (void*)1;
6925
6926         spin_lock(&all_mddevs_lock);
6927         list_for_each(tmp,&all_mddevs)
6928                 if (!l--) {
6929                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6930                         mddev_get(mddev);
6931                         spin_unlock(&all_mddevs_lock);
6932                         return mddev;
6933                 }
6934         spin_unlock(&all_mddevs_lock);
6935         if (!l--)
6936                 return (void*)2;/* tail */
6937         return NULL;
6938 }
6939
6940 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6941 {
6942         struct list_head *tmp;
6943         struct mddev *next_mddev, *mddev = v;
6944         
6945         ++*pos;
6946         if (v == (void*)2)
6947                 return NULL;
6948
6949         spin_lock(&all_mddevs_lock);
6950         if (v == (void*)1)
6951                 tmp = all_mddevs.next;
6952         else
6953                 tmp = mddev->all_mddevs.next;
6954         if (tmp != &all_mddevs)
6955                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6956         else {
6957                 next_mddev = (void*)2;
6958                 *pos = 0x10000;
6959         }               
6960         spin_unlock(&all_mddevs_lock);
6961
6962         if (v != (void*)1)
6963                 mddev_put(mddev);
6964         return next_mddev;
6965
6966 }
6967
6968 static void md_seq_stop(struct seq_file *seq, void *v)
6969 {
6970         struct mddev *mddev = v;
6971
6972         if (mddev && v != (void*)1 && v != (void*)2)
6973                 mddev_put(mddev);
6974 }
6975
6976 static int md_seq_show(struct seq_file *seq, void *v)
6977 {
6978         struct mddev *mddev = v;
6979         sector_t sectors;
6980         struct md_rdev *rdev;
6981
6982         if (v == (void*)1) {
6983                 struct md_personality *pers;
6984                 seq_printf(seq, "Personalities : ");
6985                 spin_lock(&pers_lock);
6986                 list_for_each_entry(pers, &pers_list, list)
6987                         seq_printf(seq, "[%s] ", pers->name);
6988
6989                 spin_unlock(&pers_lock);
6990                 seq_printf(seq, "\n");
6991                 seq->poll_event = atomic_read(&md_event_count);
6992                 return 0;
6993         }
6994         if (v == (void*)2) {
6995                 status_unused(seq);
6996                 return 0;
6997         }
6998
6999         if (mddev_lock(mddev) < 0)
7000                 return -EINTR;
7001
7002         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7003                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7004                                                 mddev->pers ? "" : "in");
7005                 if (mddev->pers) {
7006                         if (mddev->ro==1)
7007                                 seq_printf(seq, " (read-only)");
7008                         if (mddev->ro==2)
7009                                 seq_printf(seq, " (auto-read-only)");
7010                         seq_printf(seq, " %s", mddev->pers->name);
7011                 }
7012
7013                 sectors = 0;
7014                 rdev_for_each(rdev, mddev) {
7015                         char b[BDEVNAME_SIZE];
7016                         seq_printf(seq, " %s[%d]",
7017                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7018                         if (test_bit(WriteMostly, &rdev->flags))
7019                                 seq_printf(seq, "(W)");
7020                         if (test_bit(Faulty, &rdev->flags)) {
7021                                 seq_printf(seq, "(F)");
7022                                 continue;
7023                         }
7024                         if (rdev->raid_disk < 0)
7025                                 seq_printf(seq, "(S)"); /* spare */
7026                         if (test_bit(Replacement, &rdev->flags))
7027                                 seq_printf(seq, "(R)");
7028                         sectors += rdev->sectors;
7029                 }
7030
7031                 if (!list_empty(&mddev->disks)) {
7032                         if (mddev->pers)
7033                                 seq_printf(seq, "\n      %llu blocks",
7034                                            (unsigned long long)
7035                                            mddev->array_sectors / 2);
7036                         else
7037                                 seq_printf(seq, "\n      %llu blocks",
7038                                            (unsigned long long)sectors / 2);
7039                 }
7040                 if (mddev->persistent) {
7041                         if (mddev->major_version != 0 ||
7042                             mddev->minor_version != 90) {
7043                                 seq_printf(seq," super %d.%d",
7044                                            mddev->major_version,
7045                                            mddev->minor_version);
7046                         }
7047                 } else if (mddev->external)
7048                         seq_printf(seq, " super external:%s",
7049                                    mddev->metadata_type);
7050                 else
7051                         seq_printf(seq, " super non-persistent");
7052
7053                 if (mddev->pers) {
7054                         mddev->pers->status(seq, mddev);
7055                         seq_printf(seq, "\n      ");
7056                         if (mddev->pers->sync_request) {
7057                                 if (mddev->curr_resync > 2) {
7058                                         status_resync(seq, mddev);
7059                                         seq_printf(seq, "\n      ");
7060                                 } else if (mddev->curr_resync >= 1)
7061                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7062                                 else if (mddev->recovery_cp < MaxSector)
7063                                         seq_printf(seq, "\tresync=PENDING\n      ");
7064                         }
7065                 } else
7066                         seq_printf(seq, "\n       ");
7067
7068                 bitmap_status(seq, mddev->bitmap);
7069
7070                 seq_printf(seq, "\n");
7071         }
7072         mddev_unlock(mddev);
7073         
7074         return 0;
7075 }
7076
7077 static const struct seq_operations md_seq_ops = {
7078         .start  = md_seq_start,
7079         .next   = md_seq_next,
7080         .stop   = md_seq_stop,
7081         .show   = md_seq_show,
7082 };
7083
7084 static int md_seq_open(struct inode *inode, struct file *file)
7085 {
7086         struct seq_file *seq;
7087         int error;
7088
7089         error = seq_open(file, &md_seq_ops);
7090         if (error)
7091                 return error;
7092
7093         seq = file->private_data;
7094         seq->poll_event = atomic_read(&md_event_count);
7095         return error;
7096 }
7097
7098 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7099 {
7100         struct seq_file *seq = filp->private_data;
7101         int mask;
7102
7103         poll_wait(filp, &md_event_waiters, wait);
7104
7105         /* always allow read */
7106         mask = POLLIN | POLLRDNORM;
7107
7108         if (seq->poll_event != atomic_read(&md_event_count))
7109                 mask |= POLLERR | POLLPRI;
7110         return mask;
7111 }
7112
7113 static const struct file_operations md_seq_fops = {
7114         .owner          = THIS_MODULE,
7115         .open           = md_seq_open,
7116         .read           = seq_read,
7117         .llseek         = seq_lseek,
7118         .release        = seq_release_private,
7119         .poll           = mdstat_poll,
7120 };
7121
7122 int register_md_personality(struct md_personality *p)
7123 {
7124         spin_lock(&pers_lock);
7125         list_add_tail(&p->list, &pers_list);
7126         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7127         spin_unlock(&pers_lock);
7128         return 0;
7129 }
7130
7131 int unregister_md_personality(struct md_personality *p)
7132 {
7133         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7134         spin_lock(&pers_lock);
7135         list_del_init(&p->list);
7136         spin_unlock(&pers_lock);
7137         return 0;
7138 }
7139
7140 static int is_mddev_idle(struct mddev *mddev, int init)
7141 {
7142         struct md_rdev * rdev;
7143         int idle;
7144         int curr_events;
7145
7146         idle = 1;
7147         rcu_read_lock();
7148         rdev_for_each_rcu(rdev, mddev) {
7149                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7150                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7151                               (int)part_stat_read(&disk->part0, sectors[1]) -
7152                               atomic_read(&disk->sync_io);
7153                 /* sync IO will cause sync_io to increase before the disk_stats
7154                  * as sync_io is counted when a request starts, and
7155                  * disk_stats is counted when it completes.
7156                  * So resync activity will cause curr_events to be smaller than
7157                  * when there was no such activity.
7158                  * non-sync IO will cause disk_stat to increase without
7159                  * increasing sync_io so curr_events will (eventually)
7160                  * be larger than it was before.  Once it becomes
7161                  * substantially larger, the test below will cause
7162                  * the array to appear non-idle, and resync will slow
7163                  * down.
7164                  * If there is a lot of outstanding resync activity when
7165                  * we set last_event to curr_events, then all that activity
7166                  * completing might cause the array to appear non-idle
7167                  * and resync will be slowed down even though there might
7168                  * not have been non-resync activity.  This will only
7169                  * happen once though.  'last_events' will soon reflect
7170                  * the state where there is little or no outstanding
7171                  * resync requests, and further resync activity will
7172                  * always make curr_events less than last_events.
7173                  *
7174                  */
7175                 if (init || curr_events - rdev->last_events > 64) {
7176                         rdev->last_events = curr_events;
7177                         idle = 0;
7178                 }
7179         }
7180         rcu_read_unlock();
7181         return idle;
7182 }
7183
7184 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7185 {
7186         /* another "blocks" (512byte) blocks have been synced */
7187         atomic_sub(blocks, &mddev->recovery_active);
7188         wake_up(&mddev->recovery_wait);
7189         if (!ok) {
7190                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7191                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7192                 md_wakeup_thread(mddev->thread);
7193                 // stop recovery, signal do_sync ....
7194         }
7195 }
7196
7197
7198 /* md_write_start(mddev, bi)
7199  * If we need to update some array metadata (e.g. 'active' flag
7200  * in superblock) before writing, schedule a superblock update
7201  * and wait for it to complete.
7202  */
7203 void md_write_start(struct mddev *mddev, struct bio *bi)
7204 {
7205         int did_change = 0;
7206         if (bio_data_dir(bi) != WRITE)
7207                 return;
7208
7209         BUG_ON(mddev->ro == 1);
7210         if (mddev->ro == 2) {
7211                 /* need to switch to read/write */
7212                 mddev->ro = 0;
7213                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7214                 md_wakeup_thread(mddev->thread);
7215                 md_wakeup_thread(mddev->sync_thread);
7216                 did_change = 1;
7217         }
7218         atomic_inc(&mddev->writes_pending);
7219         if (mddev->safemode == 1)
7220                 mddev->safemode = 0;
7221         if (mddev->in_sync) {
7222                 spin_lock_irq(&mddev->write_lock);
7223                 if (mddev->in_sync) {
7224                         mddev->in_sync = 0;
7225                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7226                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7227                         md_wakeup_thread(mddev->thread);
7228                         did_change = 1;
7229                 }
7230                 spin_unlock_irq(&mddev->write_lock);
7231         }
7232         if (did_change)
7233                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7234         wait_event(mddev->sb_wait,
7235                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7236 }
7237
7238 void md_write_end(struct mddev *mddev)
7239 {
7240         if (atomic_dec_and_test(&mddev->writes_pending)) {
7241                 if (mddev->safemode == 2)
7242                         md_wakeup_thread(mddev->thread);
7243                 else if (mddev->safemode_delay)
7244                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7245         }
7246 }
7247
7248 /* md_allow_write(mddev)
7249  * Calling this ensures that the array is marked 'active' so that writes
7250  * may proceed without blocking.  It is important to call this before
7251  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7252  * Must be called with mddev_lock held.
7253  *
7254  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7255  * is dropped, so return -EAGAIN after notifying userspace.
7256  */
7257 int md_allow_write(struct mddev *mddev)
7258 {
7259         if (!mddev->pers)
7260                 return 0;
7261         if (mddev->ro)
7262                 return 0;
7263         if (!mddev->pers->sync_request)
7264                 return 0;
7265
7266         spin_lock_irq(&mddev->write_lock);
7267         if (mddev->in_sync) {
7268                 mddev->in_sync = 0;
7269                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7270                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7271                 if (mddev->safemode_delay &&
7272                     mddev->safemode == 0)
7273                         mddev->safemode = 1;
7274                 spin_unlock_irq(&mddev->write_lock);
7275                 md_update_sb(mddev, 0);
7276                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7277         } else
7278                 spin_unlock_irq(&mddev->write_lock);
7279
7280         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7281                 return -EAGAIN;
7282         else
7283                 return 0;
7284 }
7285 EXPORT_SYMBOL_GPL(md_allow_write);
7286
7287 #define SYNC_MARKS      10
7288 #define SYNC_MARK_STEP  (3*HZ)
7289 #define UPDATE_FREQUENCY (5*60*HZ)
7290 void md_do_sync(struct md_thread *thread)
7291 {
7292         struct mddev *mddev = thread->mddev;
7293         struct mddev *mddev2;
7294         unsigned int currspeed = 0,
7295                  window;
7296         sector_t max_sectors,j, io_sectors;
7297         unsigned long mark[SYNC_MARKS];
7298         unsigned long update_time;
7299         sector_t mark_cnt[SYNC_MARKS];
7300         int last_mark,m;
7301         struct list_head *tmp;
7302         sector_t last_check;
7303         int skipped = 0;
7304         struct md_rdev *rdev;
7305         char *desc;
7306         struct blk_plug plug;
7307
7308         /* just incase thread restarts... */
7309         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7310                 return;
7311         if (mddev->ro) /* never try to sync a read-only array */
7312                 return;
7313
7314         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7315                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7316                         desc = "data-check";
7317                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7318                         desc = "requested-resync";
7319                 else
7320                         desc = "resync";
7321         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7322                 desc = "reshape";
7323         else
7324                 desc = "recovery";
7325
7326         /* we overload curr_resync somewhat here.
7327          * 0 == not engaged in resync at all
7328          * 2 == checking that there is no conflict with another sync
7329          * 1 == like 2, but have yielded to allow conflicting resync to
7330          *              commense
7331          * other == active in resync - this many blocks
7332          *
7333          * Before starting a resync we must have set curr_resync to
7334          * 2, and then checked that every "conflicting" array has curr_resync
7335          * less than ours.  When we find one that is the same or higher
7336          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7337          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7338          * This will mean we have to start checking from the beginning again.
7339          *
7340          */
7341
7342         do {
7343                 mddev->curr_resync = 2;
7344
7345         try_again:
7346                 if (kthread_should_stop())
7347                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7348
7349                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7350                         goto skip;
7351                 for_each_mddev(mddev2, tmp) {
7352                         if (mddev2 == mddev)
7353                                 continue;
7354                         if (!mddev->parallel_resync
7355                         &&  mddev2->curr_resync
7356                         &&  match_mddev_units(mddev, mddev2)) {
7357                                 DEFINE_WAIT(wq);
7358                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7359                                         /* arbitrarily yield */
7360                                         mddev->curr_resync = 1;
7361                                         wake_up(&resync_wait);
7362                                 }
7363                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7364                                         /* no need to wait here, we can wait the next
7365                                          * time 'round when curr_resync == 2
7366                                          */
7367                                         continue;
7368                                 /* We need to wait 'interruptible' so as not to
7369                                  * contribute to the load average, and not to
7370                                  * be caught by 'softlockup'
7371                                  */
7372                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7373                                 if (!kthread_should_stop() &&
7374                                     mddev2->curr_resync >= mddev->curr_resync) {
7375                                         printk(KERN_INFO "md: delaying %s of %s"
7376                                                " until %s has finished (they"
7377                                                " share one or more physical units)\n",
7378                                                desc, mdname(mddev), mdname(mddev2));
7379                                         mddev_put(mddev2);
7380                                         if (signal_pending(current))
7381                                                 flush_signals(current);
7382                                         schedule();
7383                                         finish_wait(&resync_wait, &wq);
7384                                         goto try_again;
7385                                 }
7386                                 finish_wait(&resync_wait, &wq);
7387                         }
7388                 }
7389         } while (mddev->curr_resync < 2);
7390
7391         j = 0;
7392         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7393                 /* resync follows the size requested by the personality,
7394                  * which defaults to physical size, but can be virtual size
7395                  */
7396                 max_sectors = mddev->resync_max_sectors;
7397                 atomic64_set(&mddev->resync_mismatches, 0);
7398                 /* we don't use the checkpoint if there's a bitmap */
7399                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7400                         j = mddev->resync_min;
7401                 else if (!mddev->bitmap)
7402                         j = mddev->recovery_cp;
7403
7404         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7405                 max_sectors = mddev->resync_max_sectors;
7406         else {
7407                 /* recovery follows the physical size of devices */
7408                 max_sectors = mddev->dev_sectors;
7409                 j = MaxSector;
7410                 rcu_read_lock();
7411                 rdev_for_each_rcu(rdev, mddev)
7412                         if (rdev->raid_disk >= 0 &&
7413                             !test_bit(Faulty, &rdev->flags) &&
7414                             !test_bit(In_sync, &rdev->flags) &&
7415                             rdev->recovery_offset < j)
7416                                 j = rdev->recovery_offset;
7417                 rcu_read_unlock();
7418         }
7419
7420         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7421         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7422                 " %d KB/sec/disk.\n", speed_min(mddev));
7423         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7424                "(but not more than %d KB/sec) for %s.\n",
7425                speed_max(mddev), desc);
7426
7427         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7428
7429         io_sectors = 0;
7430         for (m = 0; m < SYNC_MARKS; m++) {
7431                 mark[m] = jiffies;
7432                 mark_cnt[m] = io_sectors;
7433         }
7434         last_mark = 0;
7435         mddev->resync_mark = mark[last_mark];
7436         mddev->resync_mark_cnt = mark_cnt[last_mark];
7437
7438         /*
7439          * Tune reconstruction:
7440          */
7441         window = 32*(PAGE_SIZE/512);
7442         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7443                 window/2, (unsigned long long)max_sectors/2);
7444
7445         atomic_set(&mddev->recovery_active, 0);
7446         last_check = 0;
7447
7448         if (j>2) {
7449                 printk(KERN_INFO 
7450                        "md: resuming %s of %s from checkpoint.\n",
7451                        desc, mdname(mddev));
7452                 mddev->curr_resync = j;
7453         } else
7454                 mddev->curr_resync = 3; /* no longer delayed */
7455         mddev->curr_resync_completed = j;
7456         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7457         md_new_event(mddev);
7458         update_time = jiffies;
7459
7460         blk_start_plug(&plug);
7461         while (j < max_sectors) {
7462                 sector_t sectors;
7463
7464                 skipped = 0;
7465
7466                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7467                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7468                       (mddev->curr_resync - mddev->curr_resync_completed)
7469                       > (max_sectors >> 4)) ||
7470                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7471                      (j - mddev->curr_resync_completed)*2
7472                      >= mddev->resync_max - mddev->curr_resync_completed
7473                             )) {
7474                         /* time to update curr_resync_completed */
7475                         wait_event(mddev->recovery_wait,
7476                                    atomic_read(&mddev->recovery_active) == 0);
7477                         mddev->curr_resync_completed = j;
7478                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7479                             j > mddev->recovery_cp)
7480                                 mddev->recovery_cp = j;
7481                         update_time = jiffies;
7482                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7483                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7484                 }
7485
7486                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7487                         /* As this condition is controlled by user-space,
7488                          * we can block indefinitely, so use '_interruptible'
7489                          * to avoid triggering warnings.
7490                          */
7491                         flush_signals(current); /* just in case */
7492                         wait_event_interruptible(mddev->recovery_wait,
7493                                                  mddev->resync_max > j
7494                                                  || kthread_should_stop());
7495                 }
7496
7497                 if (kthread_should_stop())
7498                         goto interrupted;
7499
7500                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7501                                                   currspeed < speed_min(mddev));
7502                 if (sectors == 0) {
7503                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7504                         goto out;
7505                 }
7506
7507                 if (!skipped) { /* actual IO requested */
7508                         io_sectors += sectors;
7509                         atomic_add(sectors, &mddev->recovery_active);
7510                 }
7511
7512                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7513                         break;
7514
7515                 j += sectors;
7516                 if (j > 2)
7517                         mddev->curr_resync = j;
7518                 mddev->curr_mark_cnt = io_sectors;
7519                 if (last_check == 0)
7520                         /* this is the earliest that rebuild will be
7521                          * visible in /proc/mdstat
7522                          */
7523                         md_new_event(mddev);
7524
7525                 if (last_check + window > io_sectors || j == max_sectors)
7526                         continue;
7527
7528                 last_check = io_sectors;
7529         repeat:
7530                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7531                         /* step marks */
7532                         int next = (last_mark+1) % SYNC_MARKS;
7533
7534                         mddev->resync_mark = mark[next];
7535                         mddev->resync_mark_cnt = mark_cnt[next];
7536                         mark[next] = jiffies;
7537                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7538                         last_mark = next;
7539                 }
7540
7541
7542                 if (kthread_should_stop())
7543                         goto interrupted;
7544
7545
7546                 /*
7547                  * this loop exits only if either when we are slower than
7548                  * the 'hard' speed limit, or the system was IO-idle for
7549                  * a jiffy.
7550                  * the system might be non-idle CPU-wise, but we only care
7551                  * about not overloading the IO subsystem. (things like an
7552                  * e2fsck being done on the RAID array should execute fast)
7553                  */
7554                 cond_resched();
7555
7556                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7557                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7558
7559                 if (currspeed > speed_min(mddev)) {
7560                         if ((currspeed > speed_max(mddev)) ||
7561                                         !is_mddev_idle(mddev, 0)) {
7562                                 msleep(500);
7563                                 goto repeat;
7564                         }
7565                 }
7566         }
7567         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7568         /*
7569          * this also signals 'finished resyncing' to md_stop
7570          */
7571  out:
7572         blk_finish_plug(&plug);
7573         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7574
7575         /* tell personality that we are finished */
7576         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7577
7578         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7579             mddev->curr_resync > 2) {
7580                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7581                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7582                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7583                                         printk(KERN_INFO
7584                                                "md: checkpointing %s of %s.\n",
7585                                                desc, mdname(mddev));
7586                                         if (test_bit(MD_RECOVERY_ERROR,
7587                                                 &mddev->recovery))
7588                                                 mddev->recovery_cp =
7589                                                         mddev->curr_resync_completed;
7590                                         else
7591                                                 mddev->recovery_cp =
7592                                                         mddev->curr_resync;
7593                                 }
7594                         } else
7595                                 mddev->recovery_cp = MaxSector;
7596                 } else {
7597                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7598                                 mddev->curr_resync = MaxSector;
7599                         rcu_read_lock();
7600                         rdev_for_each_rcu(rdev, mddev)
7601                                 if (rdev->raid_disk >= 0 &&
7602                                     mddev->delta_disks >= 0 &&
7603                                     !test_bit(Faulty, &rdev->flags) &&
7604                                     !test_bit(In_sync, &rdev->flags) &&
7605                                     rdev->recovery_offset < mddev->curr_resync)
7606                                         rdev->recovery_offset = mddev->curr_resync;
7607                         rcu_read_unlock();
7608                 }
7609         }
7610  skip:
7611         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7612
7613         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7614                 /* We completed so min/max setting can be forgotten if used. */
7615                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7616                         mddev->resync_min = 0;
7617                 mddev->resync_max = MaxSector;
7618         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7619                 mddev->resync_min = mddev->curr_resync_completed;
7620         mddev->curr_resync = 0;
7621         wake_up(&resync_wait);
7622         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7623         md_wakeup_thread(mddev->thread);
7624         return;
7625
7626  interrupted:
7627         /*
7628          * got a signal, exit.
7629          */
7630         printk(KERN_INFO
7631                "md: md_do_sync() got signal ... exiting\n");
7632         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7633         goto out;
7634
7635 }
7636 EXPORT_SYMBOL_GPL(md_do_sync);
7637
7638 static int remove_and_add_spares(struct mddev *mddev)
7639 {
7640         struct md_rdev *rdev;
7641         int spares = 0;
7642         int removed = 0;
7643
7644         rdev_for_each(rdev, mddev)
7645                 if (rdev->raid_disk >= 0 &&
7646                     !test_bit(Blocked, &rdev->flags) &&
7647                     (test_bit(Faulty, &rdev->flags) ||
7648                      ! test_bit(In_sync, &rdev->flags)) &&
7649                     atomic_read(&rdev->nr_pending)==0) {
7650                         if (mddev->pers->hot_remove_disk(
7651                                     mddev, rdev) == 0) {
7652                                 sysfs_unlink_rdev(mddev, rdev);
7653                                 rdev->raid_disk = -1;
7654                                 removed++;
7655                         }
7656                 }
7657         if (removed && mddev->kobj.sd)
7658                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7659
7660         rdev_for_each(rdev, mddev) {
7661                 if (rdev->raid_disk >= 0 &&
7662                     !test_bit(In_sync, &rdev->flags) &&
7663                     !test_bit(Faulty, &rdev->flags))
7664                         spares++;
7665                 if (rdev->raid_disk < 0
7666                     && !test_bit(Faulty, &rdev->flags)) {
7667                         rdev->recovery_offset = 0;
7668                         if (mddev->pers->
7669                             hot_add_disk(mddev, rdev) == 0) {
7670                                 if (sysfs_link_rdev(mddev, rdev))
7671                                         /* failure here is OK */;
7672                                 spares++;
7673                                 md_new_event(mddev);
7674                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7675                         }
7676                 }
7677         }
7678         if (removed)
7679                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7680         return spares;
7681 }
7682
7683 static void reap_sync_thread(struct mddev *mddev)
7684 {
7685         struct md_rdev *rdev;
7686
7687         /* resync has finished, collect result */
7688         md_unregister_thread(&mddev->sync_thread);
7689         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7690             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7691                 /* success...*/
7692                 /* activate any spares */
7693                 if (mddev->pers->spare_active(mddev)) {
7694                         sysfs_notify(&mddev->kobj, NULL,
7695                                      "degraded");
7696                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7697                 }
7698         }
7699         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7700             mddev->pers->finish_reshape)
7701                 mddev->pers->finish_reshape(mddev);
7702
7703         /* If array is no-longer degraded, then any saved_raid_disk
7704          * information must be scrapped.  Also if any device is now
7705          * In_sync we must scrape the saved_raid_disk for that device
7706          * do the superblock for an incrementally recovered device
7707          * written out.
7708          */
7709         rdev_for_each(rdev, mddev)
7710                 if (!mddev->degraded ||
7711                     test_bit(In_sync, &rdev->flags))
7712                         rdev->saved_raid_disk = -1;
7713
7714         md_update_sb(mddev, 1);
7715         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7716         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7717         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7718         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7719         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7720         /* flag recovery needed just to double check */
7721         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7722         sysfs_notify_dirent_safe(mddev->sysfs_action);
7723         md_new_event(mddev);
7724         if (mddev->event_work.func)
7725                 queue_work(md_misc_wq, &mddev->event_work);
7726 }
7727
7728 /*
7729  * This routine is regularly called by all per-raid-array threads to
7730  * deal with generic issues like resync and super-block update.
7731  * Raid personalities that don't have a thread (linear/raid0) do not
7732  * need this as they never do any recovery or update the superblock.
7733  *
7734  * It does not do any resync itself, but rather "forks" off other threads
7735  * to do that as needed.
7736  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7737  * "->recovery" and create a thread at ->sync_thread.
7738  * When the thread finishes it sets MD_RECOVERY_DONE
7739  * and wakeups up this thread which will reap the thread and finish up.
7740  * This thread also removes any faulty devices (with nr_pending == 0).
7741  *
7742  * The overall approach is:
7743  *  1/ if the superblock needs updating, update it.
7744  *  2/ If a recovery thread is running, don't do anything else.
7745  *  3/ If recovery has finished, clean up, possibly marking spares active.
7746  *  4/ If there are any faulty devices, remove them.
7747  *  5/ If array is degraded, try to add spares devices
7748  *  6/ If array has spares or is not in-sync, start a resync thread.
7749  */
7750 void md_check_recovery(struct mddev *mddev)
7751 {
7752         if (mddev->suspended)
7753                 return;
7754
7755         if (mddev->bitmap)
7756                 bitmap_daemon_work(mddev);
7757
7758         if (signal_pending(current)) {
7759                 if (mddev->pers->sync_request && !mddev->external) {
7760                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7761                                mdname(mddev));
7762                         mddev->safemode = 2;
7763                 }
7764                 flush_signals(current);
7765         }
7766
7767         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7768                 return;
7769         if ( ! (
7770                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7771                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7772                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7773                 (mddev->external == 0 && mddev->safemode == 1) ||
7774                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7775                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7776                 ))
7777                 return;
7778
7779         if (mddev_trylock(mddev)) {
7780                 int spares = 0;
7781
7782                 if (mddev->ro) {
7783                         /* Only thing we do on a ro array is remove
7784                          * failed devices.
7785                          */
7786                         struct md_rdev *rdev;
7787                         rdev_for_each(rdev, mddev)
7788                                 if (rdev->raid_disk >= 0 &&
7789                                     !test_bit(Blocked, &rdev->flags) &&
7790                                     test_bit(Faulty, &rdev->flags) &&
7791                                     atomic_read(&rdev->nr_pending)==0) {
7792                                         if (mddev->pers->hot_remove_disk(
7793                                                     mddev, rdev) == 0) {
7794                                                 sysfs_unlink_rdev(mddev, rdev);
7795                                                 rdev->raid_disk = -1;
7796                                         }
7797                                 }
7798                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7799                         goto unlock;
7800                 }
7801
7802                 if (!mddev->external) {
7803                         int did_change = 0;
7804                         spin_lock_irq(&mddev->write_lock);
7805                         if (mddev->safemode &&
7806                             !atomic_read(&mddev->writes_pending) &&
7807                             !mddev->in_sync &&
7808                             mddev->recovery_cp == MaxSector) {
7809                                 mddev->in_sync = 1;
7810                                 did_change = 1;
7811                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7812                         }
7813                         if (mddev->safemode == 1)
7814                                 mddev->safemode = 0;
7815                         spin_unlock_irq(&mddev->write_lock);
7816                         if (did_change)
7817                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7818                 }
7819
7820                 if (mddev->flags)
7821                         md_update_sb(mddev, 0);
7822
7823                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7824                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7825                         /* resync/recovery still happening */
7826                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7827                         goto unlock;
7828                 }
7829                 if (mddev->sync_thread) {
7830                         reap_sync_thread(mddev);
7831                         goto unlock;
7832                 }
7833                 /* Set RUNNING before clearing NEEDED to avoid
7834                  * any transients in the value of "sync_action".
7835                  */
7836                 mddev->curr_resync_completed = 0;
7837                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7838                 /* Clear some bits that don't mean anything, but
7839                  * might be left set
7840                  */
7841                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7842                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7843
7844                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7845                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7846                         goto unlock;
7847                 /* no recovery is running.
7848                  * remove any failed drives, then
7849                  * add spares if possible.
7850                  * Spares are also removed and re-added, to allow
7851                  * the personality to fail the re-add.
7852                  */
7853
7854                 if (mddev->reshape_position != MaxSector) {
7855                         if (mddev->pers->check_reshape == NULL ||
7856                             mddev->pers->check_reshape(mddev) != 0)
7857                                 /* Cannot proceed */
7858                                 goto unlock;
7859                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7860                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7861                 } else if ((spares = remove_and_add_spares(mddev))) {
7862                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7863                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7864                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7865                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7866                 } else if (mddev->recovery_cp < MaxSector) {
7867                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7868                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7869                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7870                         /* nothing to be done ... */
7871                         goto unlock;
7872
7873                 if (mddev->pers->sync_request) {
7874                         if (spares) {
7875                                 /* We are adding a device or devices to an array
7876                                  * which has the bitmap stored on all devices.
7877                                  * So make sure all bitmap pages get written
7878                                  */
7879                                 bitmap_write_all(mddev->bitmap);
7880                         }
7881                         mddev->sync_thread = md_register_thread(md_do_sync,
7882                                                                 mddev,
7883                                                                 "resync");
7884                         if (!mddev->sync_thread) {
7885                                 printk(KERN_ERR "%s: could not start resync"
7886                                         " thread...\n", 
7887                                         mdname(mddev));
7888                                 /* leave the spares where they are, it shouldn't hurt */
7889                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7890                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7891                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7892                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7893                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7894                         } else
7895                                 md_wakeup_thread(mddev->sync_thread);
7896                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7897                         md_new_event(mddev);
7898                 }
7899         unlock:
7900                 if (!mddev->sync_thread) {
7901                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7902                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7903                                                &mddev->recovery))
7904                                 if (mddev->sysfs_action)
7905                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7906                 }
7907                 mddev_unlock(mddev);
7908         }
7909 }
7910
7911 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7912 {
7913         sysfs_notify_dirent_safe(rdev->sysfs_state);
7914         wait_event_timeout(rdev->blocked_wait,
7915                            !test_bit(Blocked, &rdev->flags) &&
7916                            !test_bit(BlockedBadBlocks, &rdev->flags),
7917                            msecs_to_jiffies(5000));
7918         rdev_dec_pending(rdev, mddev);
7919 }
7920 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7921
7922 void md_finish_reshape(struct mddev *mddev)
7923 {
7924         /* called be personality module when reshape completes. */
7925         struct md_rdev *rdev;
7926
7927         rdev_for_each(rdev, mddev) {
7928                 if (rdev->data_offset > rdev->new_data_offset)
7929                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7930                 else
7931                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7932                 rdev->data_offset = rdev->new_data_offset;
7933         }
7934 }
7935 EXPORT_SYMBOL(md_finish_reshape);
7936
7937 /* Bad block management.
7938  * We can record which blocks on each device are 'bad' and so just
7939  * fail those blocks, or that stripe, rather than the whole device.
7940  * Entries in the bad-block table are 64bits wide.  This comprises:
7941  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7942  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7943  *  A 'shift' can be set so that larger blocks are tracked and
7944  *  consequently larger devices can be covered.
7945  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7946  *
7947  * Locking of the bad-block table uses a seqlock so md_is_badblock
7948  * might need to retry if it is very unlucky.
7949  * We will sometimes want to check for bad blocks in a bi_end_io function,
7950  * so we use the write_seqlock_irq variant.
7951  *
7952  * When looking for a bad block we specify a range and want to
7953  * know if any block in the range is bad.  So we binary-search
7954  * to the last range that starts at-or-before the given endpoint,
7955  * (or "before the sector after the target range")
7956  * then see if it ends after the given start.
7957  * We return
7958  *  0 if there are no known bad blocks in the range
7959  *  1 if there are known bad block which are all acknowledged
7960  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7961  * plus the start/length of the first bad section we overlap.
7962  */
7963 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7964                    sector_t *first_bad, int *bad_sectors)
7965 {
7966         int hi;
7967         int lo;
7968         u64 *p = bb->page;
7969         int rv;
7970         sector_t target = s + sectors;
7971         unsigned seq;
7972
7973         if (bb->shift > 0) {
7974                 /* round the start down, and the end up */
7975                 s >>= bb->shift;
7976                 target += (1<<bb->shift) - 1;
7977                 target >>= bb->shift;
7978                 sectors = target - s;
7979         }
7980         /* 'target' is now the first block after the bad range */
7981
7982 retry:
7983         seq = read_seqbegin(&bb->lock);
7984         lo = 0;
7985         rv = 0;
7986         hi = bb->count;
7987
7988         /* Binary search between lo and hi for 'target'
7989          * i.e. for the last range that starts before 'target'
7990          */
7991         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7992          * are known not to be the last range before target.
7993          * VARIANT: hi-lo is the number of possible
7994          * ranges, and decreases until it reaches 1
7995          */
7996         while (hi - lo > 1) {
7997                 int mid = (lo + hi) / 2;
7998                 sector_t a = BB_OFFSET(p[mid]);
7999                 if (a < target)
8000                         /* This could still be the one, earlier ranges
8001                          * could not. */
8002                         lo = mid;
8003                 else
8004                         /* This and later ranges are definitely out. */
8005                         hi = mid;
8006         }
8007         /* 'lo' might be the last that started before target, but 'hi' isn't */
8008         if (hi > lo) {
8009                 /* need to check all range that end after 's' to see if
8010                  * any are unacknowledged.
8011                  */
8012                 while (lo >= 0 &&
8013                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8014                         if (BB_OFFSET(p[lo]) < target) {
8015                                 /* starts before the end, and finishes after
8016                                  * the start, so they must overlap
8017                                  */
8018                                 if (rv != -1 && BB_ACK(p[lo]))
8019                                         rv = 1;
8020                                 else
8021                                         rv = -1;
8022                                 *first_bad = BB_OFFSET(p[lo]);
8023                                 *bad_sectors = BB_LEN(p[lo]);
8024                         }
8025                         lo--;
8026                 }
8027         }
8028
8029         if (read_seqretry(&bb->lock, seq))
8030                 goto retry;
8031
8032         return rv;
8033 }
8034 EXPORT_SYMBOL_GPL(md_is_badblock);
8035
8036 /*
8037  * Add a range of bad blocks to the table.
8038  * This might extend the table, or might contract it
8039  * if two adjacent ranges can be merged.
8040  * We binary-search to find the 'insertion' point, then
8041  * decide how best to handle it.
8042  */
8043 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8044                             int acknowledged)
8045 {
8046         u64 *p;
8047         int lo, hi;
8048         int rv = 1;
8049
8050         if (bb->shift < 0)
8051                 /* badblocks are disabled */
8052                 return 0;
8053
8054         if (bb->shift) {
8055                 /* round the start down, and the end up */
8056                 sector_t next = s + sectors;
8057                 s >>= bb->shift;
8058                 next += (1<<bb->shift) - 1;
8059                 next >>= bb->shift;
8060                 sectors = next - s;
8061         }
8062
8063         write_seqlock_irq(&bb->lock);
8064
8065         p = bb->page;
8066         lo = 0;
8067         hi = bb->count;
8068         /* Find the last range that starts at-or-before 's' */
8069         while (hi - lo > 1) {
8070                 int mid = (lo + hi) / 2;
8071                 sector_t a = BB_OFFSET(p[mid]);
8072                 if (a <= s)
8073                         lo = mid;
8074                 else
8075                         hi = mid;
8076         }
8077         if (hi > lo && BB_OFFSET(p[lo]) > s)
8078                 hi = lo;
8079
8080         if (hi > lo) {
8081                 /* we found a range that might merge with the start
8082                  * of our new range
8083                  */
8084                 sector_t a = BB_OFFSET(p[lo]);
8085                 sector_t e = a + BB_LEN(p[lo]);
8086                 int ack = BB_ACK(p[lo]);
8087                 if (e >= s) {
8088                         /* Yes, we can merge with a previous range */
8089                         if (s == a && s + sectors >= e)
8090                                 /* new range covers old */
8091                                 ack = acknowledged;
8092                         else
8093                                 ack = ack && acknowledged;
8094
8095                         if (e < s + sectors)
8096                                 e = s + sectors;
8097                         if (e - a <= BB_MAX_LEN) {
8098                                 p[lo] = BB_MAKE(a, e-a, ack);
8099                                 s = e;
8100                         } else {
8101                                 /* does not all fit in one range,
8102                                  * make p[lo] maximal
8103                                  */
8104                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8105                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8106                                 s = a + BB_MAX_LEN;
8107                         }
8108                         sectors = e - s;
8109                 }
8110         }
8111         if (sectors && hi < bb->count) {
8112                 /* 'hi' points to the first range that starts after 's'.
8113                  * Maybe we can merge with the start of that range */
8114                 sector_t a = BB_OFFSET(p[hi]);
8115                 sector_t e = a + BB_LEN(p[hi]);
8116                 int ack = BB_ACK(p[hi]);
8117                 if (a <= s + sectors) {
8118                         /* merging is possible */
8119                         if (e <= s + sectors) {
8120                                 /* full overlap */
8121                                 e = s + sectors;
8122                                 ack = acknowledged;
8123                         } else
8124                                 ack = ack && acknowledged;
8125
8126                         a = s;
8127                         if (e - a <= BB_MAX_LEN) {
8128                                 p[hi] = BB_MAKE(a, e-a, ack);
8129                                 s = e;
8130                         } else {
8131                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8132                                 s = a + BB_MAX_LEN;
8133                         }
8134                         sectors = e - s;
8135                         lo = hi;
8136                         hi++;
8137                 }
8138         }
8139         if (sectors == 0 && hi < bb->count) {
8140                 /* we might be able to combine lo and hi */
8141                 /* Note: 's' is at the end of 'lo' */
8142                 sector_t a = BB_OFFSET(p[hi]);
8143                 int lolen = BB_LEN(p[lo]);
8144                 int hilen = BB_LEN(p[hi]);
8145                 int newlen = lolen + hilen - (s - a);
8146                 if (s >= a && newlen < BB_MAX_LEN) {
8147                         /* yes, we can combine them */
8148                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8149                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8150                         memmove(p + hi, p + hi + 1,
8151                                 (bb->count - hi - 1) * 8);
8152                         bb->count--;
8153                 }
8154         }
8155         while (sectors) {
8156                 /* didn't merge (it all).
8157                  * Need to add a range just before 'hi' */
8158                 if (bb->count >= MD_MAX_BADBLOCKS) {
8159                         /* No room for more */
8160                         rv = 0;
8161                         break;
8162                 } else {
8163                         int this_sectors = sectors;
8164                         memmove(p + hi + 1, p + hi,
8165                                 (bb->count - hi) * 8);
8166                         bb->count++;
8167
8168                         if (this_sectors > BB_MAX_LEN)
8169                                 this_sectors = BB_MAX_LEN;
8170                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8171                         sectors -= this_sectors;
8172                         s += this_sectors;
8173                 }
8174         }
8175
8176         bb->changed = 1;
8177         if (!acknowledged)
8178                 bb->unacked_exist = 1;
8179         write_sequnlock_irq(&bb->lock);
8180
8181         return rv;
8182 }
8183
8184 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8185                        int is_new)
8186 {
8187         int rv;
8188         if (is_new)
8189                 s += rdev->new_data_offset;
8190         else
8191                 s += rdev->data_offset;
8192         rv = md_set_badblocks(&rdev->badblocks,
8193                               s, sectors, 0);
8194         if (rv) {
8195                 /* Make sure they get written out promptly */
8196                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8197                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8198                 md_wakeup_thread(rdev->mddev->thread);
8199         }
8200         return rv;
8201 }
8202 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8203
8204 /*
8205  * Remove a range of bad blocks from the table.
8206  * This may involve extending the table if we spilt a region,
8207  * but it must not fail.  So if the table becomes full, we just
8208  * drop the remove request.
8209  */
8210 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8211 {
8212         u64 *p;
8213         int lo, hi;
8214         sector_t target = s + sectors;
8215         int rv = 0;
8216
8217         if (bb->shift > 0) {
8218                 /* When clearing we round the start up and the end down.
8219                  * This should not matter as the shift should align with
8220                  * the block size and no rounding should ever be needed.
8221                  * However it is better the think a block is bad when it
8222                  * isn't than to think a block is not bad when it is.
8223                  */
8224                 s += (1<<bb->shift) - 1;
8225                 s >>= bb->shift;
8226                 target >>= bb->shift;
8227                 sectors = target - s;
8228         }
8229
8230         write_seqlock_irq(&bb->lock);
8231
8232         p = bb->page;
8233         lo = 0;
8234         hi = bb->count;
8235         /* Find the last range that starts before 'target' */
8236         while (hi - lo > 1) {
8237                 int mid = (lo + hi) / 2;
8238                 sector_t a = BB_OFFSET(p[mid]);
8239                 if (a < target)
8240                         lo = mid;
8241                 else
8242                         hi = mid;
8243         }
8244         if (hi > lo) {
8245                 /* p[lo] is the last range that could overlap the
8246                  * current range.  Earlier ranges could also overlap,
8247                  * but only this one can overlap the end of the range.
8248                  */
8249                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8250                         /* Partial overlap, leave the tail of this range */
8251                         int ack = BB_ACK(p[lo]);
8252                         sector_t a = BB_OFFSET(p[lo]);
8253                         sector_t end = a + BB_LEN(p[lo]);
8254
8255                         if (a < s) {
8256                                 /* we need to split this range */
8257                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8258                                         rv = 0;
8259                                         goto out;
8260                                 }
8261                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8262                                 bb->count++;
8263                                 p[lo] = BB_MAKE(a, s-a, ack);
8264                                 lo++;
8265                         }
8266                         p[lo] = BB_MAKE(target, end - target, ack);
8267                         /* there is no longer an overlap */
8268                         hi = lo;
8269                         lo--;
8270                 }
8271                 while (lo >= 0 &&
8272                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8273                         /* This range does overlap */
8274                         if (BB_OFFSET(p[lo]) < s) {
8275                                 /* Keep the early parts of this range. */
8276                                 int ack = BB_ACK(p[lo]);
8277                                 sector_t start = BB_OFFSET(p[lo]);
8278                                 p[lo] = BB_MAKE(start, s - start, ack);
8279                                 /* now low doesn't overlap, so.. */
8280                                 break;
8281                         }
8282                         lo--;
8283                 }
8284                 /* 'lo' is strictly before, 'hi' is strictly after,
8285                  * anything between needs to be discarded
8286                  */
8287                 if (hi - lo > 1) {
8288                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8289                         bb->count -= (hi - lo - 1);
8290                 }
8291         }
8292
8293         bb->changed = 1;
8294 out:
8295         write_sequnlock_irq(&bb->lock);
8296         return rv;
8297 }
8298
8299 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8300                          int is_new)
8301 {
8302         if (is_new)
8303                 s += rdev->new_data_offset;
8304         else
8305                 s += rdev->data_offset;
8306         return md_clear_badblocks(&rdev->badblocks,
8307                                   s, sectors);
8308 }
8309 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8310
8311 /*
8312  * Acknowledge all bad blocks in a list.
8313  * This only succeeds if ->changed is clear.  It is used by
8314  * in-kernel metadata updates
8315  */
8316 void md_ack_all_badblocks(struct badblocks *bb)
8317 {
8318         if (bb->page == NULL || bb->changed)
8319                 /* no point even trying */
8320                 return;
8321         write_seqlock_irq(&bb->lock);
8322
8323         if (bb->changed == 0 && bb->unacked_exist) {
8324                 u64 *p = bb->page;
8325                 int i;
8326                 for (i = 0; i < bb->count ; i++) {
8327                         if (!BB_ACK(p[i])) {
8328                                 sector_t start = BB_OFFSET(p[i]);
8329                                 int len = BB_LEN(p[i]);
8330                                 p[i] = BB_MAKE(start, len, 1);
8331                         }
8332                 }
8333                 bb->unacked_exist = 0;
8334         }
8335         write_sequnlock_irq(&bb->lock);
8336 }
8337 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8338
8339 /* sysfs access to bad-blocks list.
8340  * We present two files.
8341  * 'bad-blocks' lists sector numbers and lengths of ranges that
8342  *    are recorded as bad.  The list is truncated to fit within
8343  *    the one-page limit of sysfs.
8344  *    Writing "sector length" to this file adds an acknowledged
8345  *    bad block list.
8346  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8347  *    been acknowledged.  Writing to this file adds bad blocks
8348  *    without acknowledging them.  This is largely for testing.
8349  */
8350
8351 static ssize_t
8352 badblocks_show(struct badblocks *bb, char *page, int unack)
8353 {
8354         size_t len;
8355         int i;
8356         u64 *p = bb->page;
8357         unsigned seq;
8358
8359         if (bb->shift < 0)
8360                 return 0;
8361
8362 retry:
8363         seq = read_seqbegin(&bb->lock);
8364
8365         len = 0;
8366         i = 0;
8367
8368         while (len < PAGE_SIZE && i < bb->count) {
8369                 sector_t s = BB_OFFSET(p[i]);
8370                 unsigned int length = BB_LEN(p[i]);
8371                 int ack = BB_ACK(p[i]);
8372                 i++;
8373
8374                 if (unack && ack)
8375                         continue;
8376
8377                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8378                                 (unsigned long long)s << bb->shift,
8379                                 length << bb->shift);
8380         }
8381         if (unack && len == 0)
8382                 bb->unacked_exist = 0;
8383
8384         if (read_seqretry(&bb->lock, seq))
8385                 goto retry;
8386
8387         return len;
8388 }
8389
8390 #define DO_DEBUG 1
8391
8392 static ssize_t
8393 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8394 {
8395         unsigned long long sector;
8396         int length;
8397         char newline;
8398 #ifdef DO_DEBUG
8399         /* Allow clearing via sysfs *only* for testing/debugging.
8400          * Normally only a successful write may clear a badblock
8401          */
8402         int clear = 0;
8403         if (page[0] == '-') {
8404                 clear = 1;
8405                 page++;
8406         }
8407 #endif /* DO_DEBUG */
8408
8409         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8410         case 3:
8411                 if (newline != '\n')
8412                         return -EINVAL;
8413         case 2:
8414                 if (length <= 0)
8415                         return -EINVAL;
8416                 break;
8417         default:
8418                 return -EINVAL;
8419         }
8420
8421 #ifdef DO_DEBUG
8422         if (clear) {
8423                 md_clear_badblocks(bb, sector, length);
8424                 return len;
8425         }
8426 #endif /* DO_DEBUG */
8427         if (md_set_badblocks(bb, sector, length, !unack))
8428                 return len;
8429         else
8430                 return -ENOSPC;
8431 }
8432
8433 static int md_notify_reboot(struct notifier_block *this,
8434                             unsigned long code, void *x)
8435 {
8436         struct list_head *tmp;
8437         struct mddev *mddev;
8438         int need_delay = 0;
8439
8440         for_each_mddev(mddev, tmp) {
8441                 if (mddev_trylock(mddev)) {
8442                         if (mddev->pers)
8443                                 __md_stop_writes(mddev);
8444                         mddev->safemode = 2;
8445                         mddev_unlock(mddev);
8446                 }
8447                 need_delay = 1;
8448         }
8449         /*
8450          * certain more exotic SCSI devices are known to be
8451          * volatile wrt too early system reboots. While the
8452          * right place to handle this issue is the given
8453          * driver, we do want to have a safe RAID driver ...
8454          */
8455         if (need_delay)
8456                 mdelay(1000*1);
8457
8458         return NOTIFY_DONE;
8459 }
8460
8461 static struct notifier_block md_notifier = {
8462         .notifier_call  = md_notify_reboot,
8463         .next           = NULL,
8464         .priority       = INT_MAX, /* before any real devices */
8465 };
8466
8467 static void md_geninit(void)
8468 {
8469         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8470
8471         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8472 }
8473
8474 static int __init md_init(void)
8475 {
8476         int ret = -ENOMEM;
8477
8478         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8479         if (!md_wq)
8480                 goto err_wq;
8481
8482         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8483         if (!md_misc_wq)
8484                 goto err_misc_wq;
8485
8486         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8487                 goto err_md;
8488
8489         if ((ret = register_blkdev(0, "mdp")) < 0)
8490                 goto err_mdp;
8491         mdp_major = ret;
8492
8493         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8494                             md_probe, NULL, NULL);
8495         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8496                             md_probe, NULL, NULL);
8497
8498         register_reboot_notifier(&md_notifier);
8499         raid_table_header = register_sysctl_table(raid_root_table);
8500
8501         md_geninit();
8502         return 0;
8503
8504 err_mdp:
8505         unregister_blkdev(MD_MAJOR, "md");
8506 err_md:
8507         destroy_workqueue(md_misc_wq);
8508 err_misc_wq:
8509         destroy_workqueue(md_wq);
8510 err_wq:
8511         return ret;
8512 }
8513
8514 #ifndef MODULE
8515
8516 /*
8517  * Searches all registered partitions for autorun RAID arrays
8518  * at boot time.
8519  */
8520
8521 static LIST_HEAD(all_detected_devices);
8522 struct detected_devices_node {
8523         struct list_head list;
8524         dev_t dev;
8525 };
8526
8527 void md_autodetect_dev(dev_t dev)
8528 {
8529         struct detected_devices_node *node_detected_dev;
8530
8531         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8532         if (node_detected_dev) {
8533                 node_detected_dev->dev = dev;
8534                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8535         } else {
8536                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8537                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8538         }
8539 }
8540
8541
8542 static void autostart_arrays(int part)
8543 {
8544         struct md_rdev *rdev;
8545         struct detected_devices_node *node_detected_dev;
8546         dev_t dev;
8547         int i_scanned, i_passed;
8548
8549         i_scanned = 0;
8550         i_passed = 0;
8551
8552         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8553
8554         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8555                 i_scanned++;
8556                 node_detected_dev = list_entry(all_detected_devices.next,
8557                                         struct detected_devices_node, list);
8558                 list_del(&node_detected_dev->list);
8559                 dev = node_detected_dev->dev;
8560                 kfree(node_detected_dev);
8561                 rdev = md_import_device(dev,0, 90);
8562                 if (IS_ERR(rdev))
8563                         continue;
8564
8565                 if (test_bit(Faulty, &rdev->flags)) {
8566                         MD_BUG();
8567                         continue;
8568                 }
8569                 set_bit(AutoDetected, &rdev->flags);
8570                 list_add(&rdev->same_set, &pending_raid_disks);
8571                 i_passed++;
8572         }
8573
8574         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8575                                                 i_scanned, i_passed);
8576
8577         autorun_devices(part);
8578 }
8579
8580 #endif /* !MODULE */
8581
8582 static __exit void md_exit(void)
8583 {
8584         struct mddev *mddev;
8585         struct list_head *tmp;
8586
8587         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8588         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8589
8590         unregister_blkdev(MD_MAJOR,"md");
8591         unregister_blkdev(mdp_major, "mdp");
8592         unregister_reboot_notifier(&md_notifier);
8593         unregister_sysctl_table(raid_table_header);
8594         remove_proc_entry("mdstat", NULL);
8595         for_each_mddev(mddev, tmp) {
8596                 export_array(mddev);
8597                 mddev->hold_active = 0;
8598         }
8599         destroy_workqueue(md_misc_wq);
8600         destroy_workqueue(md_wq);
8601 }
8602
8603 subsys_initcall(md_init);
8604 module_exit(md_exit)
8605
8606 static int get_ro(char *buffer, struct kernel_param *kp)
8607 {
8608         return sprintf(buffer, "%d", start_readonly);
8609 }
8610 static int set_ro(const char *val, struct kernel_param *kp)
8611 {
8612         char *e;
8613         int num = simple_strtoul(val, &e, 10);
8614         if (*val && (*e == '\0' || *e == '\n')) {
8615                 start_readonly = num;
8616                 return 0;
8617         }
8618         return -EINVAL;
8619 }
8620
8621 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8622 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8623
8624 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8625
8626 EXPORT_SYMBOL(register_md_personality);
8627 EXPORT_SYMBOL(unregister_md_personality);
8628 EXPORT_SYMBOL(md_error);
8629 EXPORT_SYMBOL(md_done_sync);
8630 EXPORT_SYMBOL(md_write_start);
8631 EXPORT_SYMBOL(md_write_end);
8632 EXPORT_SYMBOL(md_register_thread);
8633 EXPORT_SYMBOL(md_unregister_thread);
8634 EXPORT_SYMBOL(md_wakeup_thread);
8635 EXPORT_SYMBOL(md_check_recovery);
8636 MODULE_LICENSE("GPL");
8637 MODULE_DESCRIPTION("MD RAID framework");
8638 MODULE_ALIAS("md");
8639 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);