]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/md/md.c
md: writing to sync_action should clear the read-auto state.
[linux-beck.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         bio->bi_sector += offset;
198         bio->bi_size = size;
199         offset <<= 9;
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         while (bio->bi_idx < bio->bi_vcnt &&
203                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204                 /* remove this whole bio_vec */
205                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206                 bio->bi_idx++;
207         }
208         if (bio->bi_idx < bio->bi_vcnt) {
209                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211         }
212         /* avoid any complications with bi_idx being non-zero*/
213         if (bio->bi_idx) {
214                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216                 bio->bi_vcnt -= bio->bi_idx;
217                 bio->bi_idx = 0;
218         }
219         /* Make sure vcnt and last bv are not too big */
220         bio_for_each_segment(bvec, bio, i) {
221                 if (sofar + bvec->bv_len > size)
222                         bvec->bv_len = size - sofar;
223                 if (bvec->bv_len == 0) {
224                         bio->bi_vcnt = i;
225                         break;
226                 }
227                 sofar += bvec->bv_len;
228         }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246         atomic_inc(&md_event_count);
247         wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256         atomic_inc(&md_event_count);
257         wake_up(&md_event_waiters);
258 }
259
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)                                     \
276                                                                         \
277         for (({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = all_mddevs.next;                                 \
279                 _mddev = NULL;});                                       \
280              ({ if (_tmp != &all_mddevs)                                \
281                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282                 spin_unlock(&all_mddevs_lock);                          \
283                 if (_mddev) mddev_put(_mddev);                          \
284                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
285                 _tmp != &all_mddevs;});                                 \
286              ({ spin_lock(&all_mddevs_lock);                            \
287                 _tmp = _tmp->next;})                                    \
288                 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300         const int rw = bio_data_dir(bio);
301         struct mddev *mddev = q->queuedata;
302         int cpu;
303         unsigned int sectors;
304
305         if (mddev == NULL || mddev->pers == NULL
306             || !mddev->ready) {
307                 bio_io_error(bio);
308                 return;
309         }
310         smp_rmb(); /* Ensure implications of  'active' are visible */
311         rcu_read_lock();
312         if (mddev->suspended) {
313                 DEFINE_WAIT(__wait);
314                 for (;;) {
315                         prepare_to_wait(&mddev->sb_wait, &__wait,
316                                         TASK_UNINTERRUPTIBLE);
317                         if (!mddev->suspended)
318                                 break;
319                         rcu_read_unlock();
320                         schedule();
321                         rcu_read_lock();
322                 }
323                 finish_wait(&mddev->sb_wait, &__wait);
324         }
325         atomic_inc(&mddev->active_io);
326         rcu_read_unlock();
327
328         /*
329          * save the sectors now since our bio can
330          * go away inside make_request
331          */
332         sectors = bio_sectors(bio);
333         mddev->pers->make_request(mddev, bio);
334
335         cpu = part_stat_lock();
336         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338         part_stat_unlock();
339
340         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341                 wake_up(&mddev->sb_wait);
342 }
343
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352         BUG_ON(mddev->suspended);
353         mddev->suspended = 1;
354         synchronize_rcu();
355         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356         mddev->pers->quiesce(mddev, 1);
357
358         del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361
362 void mddev_resume(struct mddev *mddev)
363 {
364         mddev->suspended = 0;
365         wake_up(&mddev->sb_wait);
366         mddev->pers->quiesce(mddev, 0);
367
368         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369         md_wakeup_thread(mddev->thread);
370         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376         return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379
380 /*
381  * Generic flush handling for md
382  */
383
384 static void md_end_flush(struct bio *bio, int err)
385 {
386         struct md_rdev *rdev = bio->bi_private;
387         struct mddev *mddev = rdev->mddev;
388
389         rdev_dec_pending(rdev, mddev);
390
391         if (atomic_dec_and_test(&mddev->flush_pending)) {
392                 /* The pre-request flush has finished */
393                 queue_work(md_wq, &mddev->flush_work);
394         }
395         bio_put(bio);
396 }
397
398 static void md_submit_flush_data(struct work_struct *ws);
399
400 static void submit_flushes(struct work_struct *ws)
401 {
402         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403         struct md_rdev *rdev;
404
405         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406         atomic_set(&mddev->flush_pending, 1);
407         rcu_read_lock();
408         rdev_for_each_rcu(rdev, mddev)
409                 if (rdev->raid_disk >= 0 &&
410                     !test_bit(Faulty, &rdev->flags)) {
411                         /* Take two references, one is dropped
412                          * when request finishes, one after
413                          * we reclaim rcu_read_lock
414                          */
415                         struct bio *bi;
416                         atomic_inc(&rdev->nr_pending);
417                         atomic_inc(&rdev->nr_pending);
418                         rcu_read_unlock();
419                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420                         bi->bi_end_io = md_end_flush;
421                         bi->bi_private = rdev;
422                         bi->bi_bdev = rdev->bdev;
423                         atomic_inc(&mddev->flush_pending);
424                         submit_bio(WRITE_FLUSH, bi);
425                         rcu_read_lock();
426                         rdev_dec_pending(rdev, mddev);
427                 }
428         rcu_read_unlock();
429         if (atomic_dec_and_test(&mddev->flush_pending))
430                 queue_work(md_wq, &mddev->flush_work);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436         struct bio *bio = mddev->flush_bio;
437
438         if (bio->bi_size == 0)
439                 /* an empty barrier - all done */
440                 bio_endio(bio, 0);
441         else {
442                 bio->bi_rw &= ~REQ_FLUSH;
443                 mddev->pers->make_request(mddev, bio);
444         }
445
446         mddev->flush_bio = NULL;
447         wake_up(&mddev->sb_wait);
448 }
449
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452         spin_lock_irq(&mddev->write_lock);
453         wait_event_lock_irq(mddev->sb_wait,
454                             !mddev->flush_bio,
455                             mddev->write_lock, /*nothing*/);
456         mddev->flush_bio = bio;
457         spin_unlock_irq(&mddev->write_lock);
458
459         INIT_WORK(&mddev->flush_work, submit_flushes);
460         queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466         struct mddev *mddev = cb->data;
467         md_wakeup_thread(mddev->thread);
468         kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474         atomic_inc(&mddev->active);
475         return mddev;
476 }
477
478 static void mddev_delayed_delete(struct work_struct *ws);
479
480 static void mddev_put(struct mddev *mddev)
481 {
482         struct bio_set *bs = NULL;
483
484         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485                 return;
486         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487             mddev->ctime == 0 && !mddev->hold_active) {
488                 /* Array is not configured at all, and not held active,
489                  * so destroy it */
490                 list_del_init(&mddev->all_mddevs);
491                 bs = mddev->bio_set;
492                 mddev->bio_set = NULL;
493                 if (mddev->gendisk) {
494                         /* We did a probe so need to clean up.  Call
495                          * queue_work inside the spinlock so that
496                          * flush_workqueue() after mddev_find will
497                          * succeed in waiting for the work to be done.
498                          */
499                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500                         queue_work(md_misc_wq, &mddev->del_work);
501                 } else
502                         kfree(mddev);
503         }
504         spin_unlock(&all_mddevs_lock);
505         if (bs)
506                 bioset_free(bs);
507 }
508
509 void mddev_init(struct mddev *mddev)
510 {
511         mutex_init(&mddev->open_mutex);
512         mutex_init(&mddev->reconfig_mutex);
513         mutex_init(&mddev->bitmap_info.mutex);
514         INIT_LIST_HEAD(&mddev->disks);
515         INIT_LIST_HEAD(&mddev->all_mddevs);
516         init_timer(&mddev->safemode_timer);
517         atomic_set(&mddev->active, 1);
518         atomic_set(&mddev->openers, 0);
519         atomic_set(&mddev->active_io, 0);
520         spin_lock_init(&mddev->write_lock);
521         atomic_set(&mddev->flush_pending, 0);
522         init_waitqueue_head(&mddev->sb_wait);
523         init_waitqueue_head(&mddev->recovery_wait);
524         mddev->reshape_position = MaxSector;
525         mddev->reshape_backwards = 0;
526         mddev->resync_min = 0;
527         mddev->resync_max = MaxSector;
528         mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531
532 static struct mddev * mddev_find(dev_t unit)
533 {
534         struct mddev *mddev, *new = NULL;
535
536         if (unit && MAJOR(unit) != MD_MAJOR)
537                 unit &= ~((1<<MdpMinorShift)-1);
538
539  retry:
540         spin_lock(&all_mddevs_lock);
541
542         if (unit) {
543                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544                         if (mddev->unit == unit) {
545                                 mddev_get(mddev);
546                                 spin_unlock(&all_mddevs_lock);
547                                 kfree(new);
548                                 return mddev;
549                         }
550
551                 if (new) {
552                         list_add(&new->all_mddevs, &all_mddevs);
553                         spin_unlock(&all_mddevs_lock);
554                         new->hold_active = UNTIL_IOCTL;
555                         return new;
556                 }
557         } else if (new) {
558                 /* find an unused unit number */
559                 static int next_minor = 512;
560                 int start = next_minor;
561                 int is_free = 0;
562                 int dev = 0;
563                 while (!is_free) {
564                         dev = MKDEV(MD_MAJOR, next_minor);
565                         next_minor++;
566                         if (next_minor > MINORMASK)
567                                 next_minor = 0;
568                         if (next_minor == start) {
569                                 /* Oh dear, all in use. */
570                                 spin_unlock(&all_mddevs_lock);
571                                 kfree(new);
572                                 return NULL;
573                         }
574                                 
575                         is_free = 1;
576                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577                                 if (mddev->unit == dev) {
578                                         is_free = 0;
579                                         break;
580                                 }
581                 }
582                 new->unit = dev;
583                 new->md_minor = MINOR(dev);
584                 new->hold_active = UNTIL_STOP;
585                 list_add(&new->all_mddevs, &all_mddevs);
586                 spin_unlock(&all_mddevs_lock);
587                 return new;
588         }
589         spin_unlock(&all_mddevs_lock);
590
591         new = kzalloc(sizeof(*new), GFP_KERNEL);
592         if (!new)
593                 return NULL;
594
595         new->unit = unit;
596         if (MAJOR(unit) == MD_MAJOR)
597                 new->md_minor = MINOR(unit);
598         else
599                 new->md_minor = MINOR(unit) >> MdpMinorShift;
600
601         mddev_init(new);
602
603         goto retry;
604 }
605
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608         return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613         return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618         return mutex_trylock(&mddev->reconfig_mutex);
619 }
620
621 static struct attribute_group md_redundancy_group;
622
623 static void mddev_unlock(struct mddev * mddev)
624 {
625         if (mddev->to_remove) {
626                 /* These cannot be removed under reconfig_mutex as
627                  * an access to the files will try to take reconfig_mutex
628                  * while holding the file unremovable, which leads to
629                  * a deadlock.
630                  * So hold set sysfs_active while the remove in happeing,
631                  * and anything else which might set ->to_remove or my
632                  * otherwise change the sysfs namespace will fail with
633                  * -EBUSY if sysfs_active is still set.
634                  * We set sysfs_active under reconfig_mutex and elsewhere
635                  * test it under the same mutex to ensure its correct value
636                  * is seen.
637                  */
638                 struct attribute_group *to_remove = mddev->to_remove;
639                 mddev->to_remove = NULL;
640                 mddev->sysfs_active = 1;
641                 mutex_unlock(&mddev->reconfig_mutex);
642
643                 if (mddev->kobj.sd) {
644                         if (to_remove != &md_redundancy_group)
645                                 sysfs_remove_group(&mddev->kobj, to_remove);
646                         if (mddev->pers == NULL ||
647                             mddev->pers->sync_request == NULL) {
648                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649                                 if (mddev->sysfs_action)
650                                         sysfs_put(mddev->sysfs_action);
651                                 mddev->sysfs_action = NULL;
652                         }
653                 }
654                 mddev->sysfs_active = 0;
655         } else
656                 mutex_unlock(&mddev->reconfig_mutex);
657
658         /* As we've dropped the mutex we need a spinlock to
659          * make sure the thread doesn't disappear
660          */
661         spin_lock(&pers_lock);
662         md_wakeup_thread(mddev->thread);
663         spin_unlock(&pers_lock);
664 }
665
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each(rdev, mddev)
671                 if (rdev->desc_nr == nr)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679         struct md_rdev *rdev;
680
681         rdev_for_each_rcu(rdev, mddev)
682                 if (rdev->desc_nr == nr)
683                         return rdev;
684
685         return NULL;
686 }
687
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690         struct md_rdev *rdev;
691
692         rdev_for_each(rdev, mddev)
693                 if (rdev->bdev->bd_dev == dev)
694                         return rdev;
695
696         return NULL;
697 }
698
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701         struct md_rdev *rdev;
702
703         rdev_for_each_rcu(rdev, mddev)
704                 if (rdev->bdev->bd_dev == dev)
705                         return rdev;
706
707         return NULL;
708 }
709
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712         struct md_personality *pers;
713         list_for_each_entry(pers, &pers_list, list) {
714                 if (level != LEVEL_NONE && pers->level == level)
715                         return pers;
716                 if (strcmp(pers->name, clevel)==0)
717                         return pers;
718         }
719         return NULL;
720 }
721
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726         return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731         if (rdev->sb_page)
732                 MD_BUG();
733
734         rdev->sb_page = alloc_page(GFP_KERNEL);
735         if (!rdev->sb_page) {
736                 printk(KERN_ALERT "md: out of memory.\n");
737                 return -ENOMEM;
738         }
739
740         return 0;
741 }
742
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745         if (rdev->sb_page) {
746                 put_page(rdev->sb_page);
747                 rdev->sb_loaded = 0;
748                 rdev->sb_page = NULL;
749                 rdev->sb_start = 0;
750                 rdev->sectors = 0;
751         }
752         if (rdev->bb_page) {
753                 put_page(rdev->bb_page);
754                 rdev->bb_page = NULL;
755         }
756         kfree(rdev->badblocks.page);
757         rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760
761 static void super_written(struct bio *bio, int error)
762 {
763         struct md_rdev *rdev = bio->bi_private;
764         struct mddev *mddev = rdev->mddev;
765
766         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767                 printk("md: super_written gets error=%d, uptodate=%d\n",
768                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770                 md_error(mddev, rdev);
771         }
772
773         if (atomic_dec_and_test(&mddev->pending_writes))
774                 wake_up(&mddev->sb_wait);
775         bio_put(bio);
776 }
777
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779                    sector_t sector, int size, struct page *page)
780 {
781         /* write first size bytes of page to sector of rdev
782          * Increment mddev->pending_writes before returning
783          * and decrement it on completion, waking up sb_wait
784          * if zero is reached.
785          * If an error occurred, call md_error
786          */
787         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788
789         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790         bio->bi_sector = sector;
791         bio_add_page(bio, page, size, 0);
792         bio->bi_private = rdev;
793         bio->bi_end_io = super_written;
794
795         atomic_inc(&mddev->pending_writes);
796         submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798
799 void md_super_wait(struct mddev *mddev)
800 {
801         /* wait for all superblock writes that were scheduled to complete */
802         DEFINE_WAIT(wq);
803         for(;;) {
804                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805                 if (atomic_read(&mddev->pending_writes)==0)
806                         break;
807                 schedule();
808         }
809         finish_wait(&mddev->sb_wait, &wq);
810 }
811
812 static void bi_complete(struct bio *bio, int error)
813 {
814         complete((struct completion*)bio->bi_private);
815 }
816
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818                  struct page *page, int rw, bool metadata_op)
819 {
820         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821         struct completion event;
822         int ret;
823
824         rw |= REQ_SYNC;
825
826         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827                 rdev->meta_bdev : rdev->bdev;
828         if (metadata_op)
829                 bio->bi_sector = sector + rdev->sb_start;
830         else if (rdev->mddev->reshape_position != MaxSector &&
831                  (rdev->mddev->reshape_backwards ==
832                   (sector >= rdev->mddev->reshape_position)))
833                 bio->bi_sector = sector + rdev->new_data_offset;
834         else
835                 bio->bi_sector = sector + rdev->data_offset;
836         bio_add_page(bio, page, size, 0);
837         init_completion(&event);
838         bio->bi_private = &event;
839         bio->bi_end_io = bi_complete;
840         submit_bio(rw, bio);
841         wait_for_completion(&event);
842
843         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844         bio_put(bio);
845         return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851         char b[BDEVNAME_SIZE];
852         if (!rdev->sb_page) {
853                 MD_BUG();
854                 return -EINVAL;
855         }
856         if (rdev->sb_loaded)
857                 return 0;
858
859
860         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861                 goto fail;
862         rdev->sb_loaded = 1;
863         return 0;
864
865 fail:
866         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867                 bdevname(rdev->bdev,b));
868         return -EINVAL;
869 }
870
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873         return  sb1->set_uuid0 == sb2->set_uuid0 &&
874                 sb1->set_uuid1 == sb2->set_uuid1 &&
875                 sb1->set_uuid2 == sb2->set_uuid2 &&
876                 sb1->set_uuid3 == sb2->set_uuid3;
877 }
878
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881         int ret;
882         mdp_super_t *tmp1, *tmp2;
883
884         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886
887         if (!tmp1 || !tmp2) {
888                 ret = 0;
889                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890                 goto abort;
891         }
892
893         *tmp1 = *sb1;
894         *tmp2 = *sb2;
895
896         /*
897          * nr_disks is not constant
898          */
899         tmp1->nr_disks = 0;
900         tmp2->nr_disks = 0;
901
902         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904         kfree(tmp1);
905         kfree(tmp2);
906         return ret;
907 }
908
909
910 static u32 md_csum_fold(u32 csum)
911 {
912         csum = (csum & 0xffff) + (csum >> 16);
913         return (csum & 0xffff) + (csum >> 16);
914 }
915
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918         u64 newcsum = 0;
919         u32 *sb32 = (u32*)sb;
920         int i;
921         unsigned int disk_csum, csum;
922
923         disk_csum = sb->sb_csum;
924         sb->sb_csum = 0;
925
926         for (i = 0; i < MD_SB_BYTES/4 ; i++)
927                 newcsum += sb32[i];
928         csum = (newcsum & 0xffffffff) + (newcsum>>32);
929
930
931 #ifdef CONFIG_ALPHA
932         /* This used to use csum_partial, which was wrong for several
933          * reasons including that different results are returned on
934          * different architectures.  It isn't critical that we get exactly
935          * the same return value as before (we always csum_fold before
936          * testing, and that removes any differences).  However as we
937          * know that csum_partial always returned a 16bit value on
938          * alphas, do a fold to maximise conformity to previous behaviour.
939          */
940         sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942         sb->sb_csum = disk_csum;
943 #endif
944         return csum;
945 }
946
947
948 /*
949  * Handle superblock details.
950  * We want to be able to handle multiple superblock formats
951  * so we have a common interface to them all, and an array of
952  * different handlers.
953  * We rely on user-space to write the initial superblock, and support
954  * reading and updating of superblocks.
955  * Interface methods are:
956  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957  *      loads and validates a superblock on dev.
958  *      if refdev != NULL, compare superblocks on both devices
959  *    Return:
960  *      0 - dev has a superblock that is compatible with refdev
961  *      1 - dev has a superblock that is compatible and newer than refdev
962  *          so dev should be used as the refdev in future
963  *     -EINVAL superblock incompatible or invalid
964  *     -othererror e.g. -EIO
965  *
966  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
967  *      Verify that dev is acceptable into mddev.
968  *       The first time, mddev->raid_disks will be 0, and data from
969  *       dev should be merged in.  Subsequent calls check that dev
970  *       is new enough.  Return 0 or -EINVAL
971  *
972  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
973  *     Update the superblock for rdev with data in mddev
974  *     This does not write to disc.
975  *
976  */
977
978 struct super_type  {
979         char                *name;
980         struct module       *owner;
981         int                 (*load_super)(struct md_rdev *rdev,
982                                           struct md_rdev *refdev,
983                                           int minor_version);
984         int                 (*validate_super)(struct mddev *mddev,
985                                               struct md_rdev *rdev);
986         void                (*sync_super)(struct mddev *mddev,
987                                           struct md_rdev *rdev);
988         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
989                                                 sector_t num_sectors);
990         int                 (*allow_new_offset)(struct md_rdev *rdev,
991                                                 unsigned long long new_offset);
992 };
993
994 /*
995  * Check that the given mddev has no bitmap.
996  *
997  * This function is called from the run method of all personalities that do not
998  * support bitmaps. It prints an error message and returns non-zero if mddev
999  * has a bitmap. Otherwise, it returns 0.
1000  *
1001  */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005                 return 0;
1006         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007                 mdname(mddev), mddev->pers->name);
1008         return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011
1012 /*
1013  * load_super for 0.90.0 
1014  */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018         mdp_super_t *sb;
1019         int ret;
1020
1021         /*
1022          * Calculate the position of the superblock (512byte sectors),
1023          * it's at the end of the disk.
1024          *
1025          * It also happens to be a multiple of 4Kb.
1026          */
1027         rdev->sb_start = calc_dev_sboffset(rdev);
1028
1029         ret = read_disk_sb(rdev, MD_SB_BYTES);
1030         if (ret) return ret;
1031
1032         ret = -EINVAL;
1033
1034         bdevname(rdev->bdev, b);
1035         sb = page_address(rdev->sb_page);
1036
1037         if (sb->md_magic != MD_SB_MAGIC) {
1038                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039                        b);
1040                 goto abort;
1041         }
1042
1043         if (sb->major_version != 0 ||
1044             sb->minor_version < 90 ||
1045             sb->minor_version > 91) {
1046                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047                         sb->major_version, sb->minor_version,
1048                         b);
1049                 goto abort;
1050         }
1051
1052         if (sb->raid_disks <= 0)
1053                 goto abort;
1054
1055         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057                         b);
1058                 goto abort;
1059         }
1060
1061         rdev->preferred_minor = sb->md_minor;
1062         rdev->data_offset = 0;
1063         rdev->new_data_offset = 0;
1064         rdev->sb_size = MD_SB_BYTES;
1065         rdev->badblocks.shift = -1;
1066
1067         if (sb->level == LEVEL_MULTIPATH)
1068                 rdev->desc_nr = -1;
1069         else
1070                 rdev->desc_nr = sb->this_disk.number;
1071
1072         if (!refdev) {
1073                 ret = 1;
1074         } else {
1075                 __u64 ev1, ev2;
1076                 mdp_super_t *refsb = page_address(refdev->sb_page);
1077                 if (!uuid_equal(refsb, sb)) {
1078                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079                                 b, bdevname(refdev->bdev,b2));
1080                         goto abort;
1081                 }
1082                 if (!sb_equal(refsb, sb)) {
1083                         printk(KERN_WARNING "md: %s has same UUID"
1084                                " but different superblock to %s\n",
1085                                b, bdevname(refdev->bdev, b2));
1086                         goto abort;
1087                 }
1088                 ev1 = md_event(sb);
1089                 ev2 = md_event(refsb);
1090                 if (ev1 > ev2)
1091                         ret = 1;
1092                 else 
1093                         ret = 0;
1094         }
1095         rdev->sectors = rdev->sb_start;
1096         /* Limit to 4TB as metadata cannot record more than that.
1097          * (not needed for Linear and RAID0 as metadata doesn't
1098          * record this size)
1099          */
1100         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101                 rdev->sectors = (2ULL << 32) - 2;
1102
1103         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104                 /* "this cannot possibly happen" ... */
1105                 ret = -EINVAL;
1106
1107  abort:
1108         return ret;
1109 }
1110
1111 /*
1112  * validate_super for 0.90.0
1113  */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116         mdp_disk_t *desc;
1117         mdp_super_t *sb = page_address(rdev->sb_page);
1118         __u64 ev1 = md_event(sb);
1119
1120         rdev->raid_disk = -1;
1121         clear_bit(Faulty, &rdev->flags);
1122         clear_bit(In_sync, &rdev->flags);
1123         clear_bit(WriteMostly, &rdev->flags);
1124
1125         if (mddev->raid_disks == 0) {
1126                 mddev->major_version = 0;
1127                 mddev->minor_version = sb->minor_version;
1128                 mddev->patch_version = sb->patch_version;
1129                 mddev->external = 0;
1130                 mddev->chunk_sectors = sb->chunk_size >> 9;
1131                 mddev->ctime = sb->ctime;
1132                 mddev->utime = sb->utime;
1133                 mddev->level = sb->level;
1134                 mddev->clevel[0] = 0;
1135                 mddev->layout = sb->layout;
1136                 mddev->raid_disks = sb->raid_disks;
1137                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138                 mddev->events = ev1;
1139                 mddev->bitmap_info.offset = 0;
1140                 mddev->bitmap_info.space = 0;
1141                 /* bitmap can use 60 K after the 4K superblocks */
1142                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144                 mddev->reshape_backwards = 0;
1145
1146                 if (mddev->minor_version >= 91) {
1147                         mddev->reshape_position = sb->reshape_position;
1148                         mddev->delta_disks = sb->delta_disks;
1149                         mddev->new_level = sb->new_level;
1150                         mddev->new_layout = sb->new_layout;
1151                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152                         if (mddev->delta_disks < 0)
1153                                 mddev->reshape_backwards = 1;
1154                 } else {
1155                         mddev->reshape_position = MaxSector;
1156                         mddev->delta_disks = 0;
1157                         mddev->new_level = mddev->level;
1158                         mddev->new_layout = mddev->layout;
1159                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1160                 }
1161
1162                 if (sb->state & (1<<MD_SB_CLEAN))
1163                         mddev->recovery_cp = MaxSector;
1164                 else {
1165                         if (sb->events_hi == sb->cp_events_hi && 
1166                                 sb->events_lo == sb->cp_events_lo) {
1167                                 mddev->recovery_cp = sb->recovery_cp;
1168                         } else
1169                                 mddev->recovery_cp = 0;
1170                 }
1171
1172                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177                 mddev->max_disks = MD_SB_DISKS;
1178
1179                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180                     mddev->bitmap_info.file == NULL) {
1181                         mddev->bitmap_info.offset =
1182                                 mddev->bitmap_info.default_offset;
1183                         mddev->bitmap_info.space =
1184                                 mddev->bitmap_info.space;
1185                 }
1186
1187         } else if (mddev->pers == NULL) {
1188                 /* Insist on good event counter while assembling, except
1189                  * for spares (which don't need an event count) */
1190                 ++ev1;
1191                 if (sb->disks[rdev->desc_nr].state & (
1192                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193                         if (ev1 < mddev->events) 
1194                                 return -EINVAL;
1195         } else if (mddev->bitmap) {
1196                 /* if adding to array with a bitmap, then we can accept an
1197                  * older device ... but not too old.
1198                  */
1199                 if (ev1 < mddev->bitmap->events_cleared)
1200                         return 0;
1201         } else {
1202                 if (ev1 < mddev->events)
1203                         /* just a hot-add of a new device, leave raid_disk at -1 */
1204                         return 0;
1205         }
1206
1207         if (mddev->level != LEVEL_MULTIPATH) {
1208                 desc = sb->disks + rdev->desc_nr;
1209
1210                 if (desc->state & (1<<MD_DISK_FAULTY))
1211                         set_bit(Faulty, &rdev->flags);
1212                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213                             desc->raid_disk < mddev->raid_disks */) {
1214                         set_bit(In_sync, &rdev->flags);
1215                         rdev->raid_disk = desc->raid_disk;
1216                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217                         /* active but not in sync implies recovery up to
1218                          * reshape position.  We don't know exactly where
1219                          * that is, so set to zero for now */
1220                         if (mddev->minor_version >= 91) {
1221                                 rdev->recovery_offset = 0;
1222                                 rdev->raid_disk = desc->raid_disk;
1223                         }
1224                 }
1225                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226                         set_bit(WriteMostly, &rdev->flags);
1227         } else /* MULTIPATH are always insync */
1228                 set_bit(In_sync, &rdev->flags);
1229         return 0;
1230 }
1231
1232 /*
1233  * sync_super for 0.90.0
1234  */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237         mdp_super_t *sb;
1238         struct md_rdev *rdev2;
1239         int next_spare = mddev->raid_disks;
1240
1241
1242         /* make rdev->sb match mddev data..
1243          *
1244          * 1/ zero out disks
1245          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246          * 3/ any empty disks < next_spare become removed
1247          *
1248          * disks[0] gets initialised to REMOVED because
1249          * we cannot be sure from other fields if it has
1250          * been initialised or not.
1251          */
1252         int i;
1253         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254
1255         rdev->sb_size = MD_SB_BYTES;
1256
1257         sb = page_address(rdev->sb_page);
1258
1259         memset(sb, 0, sizeof(*sb));
1260
1261         sb->md_magic = MD_SB_MAGIC;
1262         sb->major_version = mddev->major_version;
1263         sb->patch_version = mddev->patch_version;
1264         sb->gvalid_words  = 0; /* ignored */
1265         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269
1270         sb->ctime = mddev->ctime;
1271         sb->level = mddev->level;
1272         sb->size = mddev->dev_sectors / 2;
1273         sb->raid_disks = mddev->raid_disks;
1274         sb->md_minor = mddev->md_minor;
1275         sb->not_persistent = 0;
1276         sb->utime = mddev->utime;
1277         sb->state = 0;
1278         sb->events_hi = (mddev->events>>32);
1279         sb->events_lo = (u32)mddev->events;
1280
1281         if (mddev->reshape_position == MaxSector)
1282                 sb->minor_version = 90;
1283         else {
1284                 sb->minor_version = 91;
1285                 sb->reshape_position = mddev->reshape_position;
1286                 sb->new_level = mddev->new_level;
1287                 sb->delta_disks = mddev->delta_disks;
1288                 sb->new_layout = mddev->new_layout;
1289                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1290         }
1291         mddev->minor_version = sb->minor_version;
1292         if (mddev->in_sync)
1293         {
1294                 sb->recovery_cp = mddev->recovery_cp;
1295                 sb->cp_events_hi = (mddev->events>>32);
1296                 sb->cp_events_lo = (u32)mddev->events;
1297                 if (mddev->recovery_cp == MaxSector)
1298                         sb->state = (1<< MD_SB_CLEAN);
1299         } else
1300                 sb->recovery_cp = 0;
1301
1302         sb->layout = mddev->layout;
1303         sb->chunk_size = mddev->chunk_sectors << 9;
1304
1305         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307
1308         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309         rdev_for_each(rdev2, mddev) {
1310                 mdp_disk_t *d;
1311                 int desc_nr;
1312                 int is_active = test_bit(In_sync, &rdev2->flags);
1313
1314                 if (rdev2->raid_disk >= 0 &&
1315                     sb->minor_version >= 91)
1316                         /* we have nowhere to store the recovery_offset,
1317                          * but if it is not below the reshape_position,
1318                          * we can piggy-back on that.
1319                          */
1320                         is_active = 1;
1321                 if (rdev2->raid_disk < 0 ||
1322                     test_bit(Faulty, &rdev2->flags))
1323                         is_active = 0;
1324                 if (is_active)
1325                         desc_nr = rdev2->raid_disk;
1326                 else
1327                         desc_nr = next_spare++;
1328                 rdev2->desc_nr = desc_nr;
1329                 d = &sb->disks[rdev2->desc_nr];
1330                 nr_disks++;
1331                 d->number = rdev2->desc_nr;
1332                 d->major = MAJOR(rdev2->bdev->bd_dev);
1333                 d->minor = MINOR(rdev2->bdev->bd_dev);
1334                 if (is_active)
1335                         d->raid_disk = rdev2->raid_disk;
1336                 else
1337                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1338                 if (test_bit(Faulty, &rdev2->flags))
1339                         d->state = (1<<MD_DISK_FAULTY);
1340                 else if (is_active) {
1341                         d->state = (1<<MD_DISK_ACTIVE);
1342                         if (test_bit(In_sync, &rdev2->flags))
1343                                 d->state |= (1<<MD_DISK_SYNC);
1344                         active++;
1345                         working++;
1346                 } else {
1347                         d->state = 0;
1348                         spare++;
1349                         working++;
1350                 }
1351                 if (test_bit(WriteMostly, &rdev2->flags))
1352                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353         }
1354         /* now set the "removed" and "faulty" bits on any missing devices */
1355         for (i=0 ; i < mddev->raid_disks ; i++) {
1356                 mdp_disk_t *d = &sb->disks[i];
1357                 if (d->state == 0 && d->number == 0) {
1358                         d->number = i;
1359                         d->raid_disk = i;
1360                         d->state = (1<<MD_DISK_REMOVED);
1361                         d->state |= (1<<MD_DISK_FAULTY);
1362                         failed++;
1363                 }
1364         }
1365         sb->nr_disks = nr_disks;
1366         sb->active_disks = active;
1367         sb->working_disks = working;
1368         sb->failed_disks = failed;
1369         sb->spare_disks = spare;
1370
1371         sb->this_disk = sb->disks[rdev->desc_nr];
1372         sb->sb_csum = calc_sb_csum(sb);
1373 }
1374
1375 /*
1376  * rdev_size_change for 0.90.0
1377  */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382                 return 0; /* component must fit device */
1383         if (rdev->mddev->bitmap_info.offset)
1384                 return 0; /* can't move bitmap */
1385         rdev->sb_start = calc_dev_sboffset(rdev);
1386         if (!num_sectors || num_sectors > rdev->sb_start)
1387                 num_sectors = rdev->sb_start;
1388         /* Limit to 4TB as metadata cannot record more than that.
1389          * 4TB == 2^32 KB, or 2*2^32 sectors.
1390          */
1391         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392                 num_sectors = (2ULL << 32) - 2;
1393         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394                        rdev->sb_page);
1395         md_super_wait(rdev->mddev);
1396         return num_sectors;
1397 }
1398
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402         /* non-zero offset changes not possible with v0.90 */
1403         return new_offset == 0;
1404 }
1405
1406 /*
1407  * version 1 superblock
1408  */
1409
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412         __le32 disk_csum;
1413         u32 csum;
1414         unsigned long long newcsum;
1415         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416         __le32 *isuper = (__le32*)sb;
1417         int i;
1418
1419         disk_csum = sb->sb_csum;
1420         sb->sb_csum = 0;
1421         newcsum = 0;
1422         for (i=0; size>=4; size -= 4 )
1423                 newcsum += le32_to_cpu(*isuper++);
1424
1425         if (size == 2)
1426                 newcsum += le16_to_cpu(*(__le16*) isuper);
1427
1428         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429         sb->sb_csum = disk_csum;
1430         return cpu_to_le32(csum);
1431 }
1432
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434                             int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437         struct mdp_superblock_1 *sb;
1438         int ret;
1439         sector_t sb_start;
1440         sector_t sectors;
1441         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442         int bmask;
1443
1444         /*
1445          * Calculate the position of the superblock in 512byte sectors.
1446          * It is always aligned to a 4K boundary and
1447          * depeding on minor_version, it can be:
1448          * 0: At least 8K, but less than 12K, from end of device
1449          * 1: At start of device
1450          * 2: 4K from start of device.
1451          */
1452         switch(minor_version) {
1453         case 0:
1454                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455                 sb_start -= 8*2;
1456                 sb_start &= ~(sector_t)(4*2-1);
1457                 break;
1458         case 1:
1459                 sb_start = 0;
1460                 break;
1461         case 2:
1462                 sb_start = 8;
1463                 break;
1464         default:
1465                 return -EINVAL;
1466         }
1467         rdev->sb_start = sb_start;
1468
1469         /* superblock is rarely larger than 1K, but it can be larger,
1470          * and it is safe to read 4k, so we do that
1471          */
1472         ret = read_disk_sb(rdev, 4096);
1473         if (ret) return ret;
1474
1475
1476         sb = page_address(rdev->sb_page);
1477
1478         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479             sb->major_version != cpu_to_le32(1) ||
1480             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483                 return -EINVAL;
1484
1485         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486                 printk("md: invalid superblock checksum on %s\n",
1487                         bdevname(rdev->bdev,b));
1488                 return -EINVAL;
1489         }
1490         if (le64_to_cpu(sb->data_size) < 10) {
1491                 printk("md: data_size too small on %s\n",
1492                        bdevname(rdev->bdev,b));
1493                 return -EINVAL;
1494         }
1495         if (sb->pad0 ||
1496             sb->pad3[0] ||
1497             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498                 /* Some padding is non-zero, might be a new feature */
1499                 return -EINVAL;
1500
1501         rdev->preferred_minor = 0xffff;
1502         rdev->data_offset = le64_to_cpu(sb->data_offset);
1503         rdev->new_data_offset = rdev->data_offset;
1504         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508
1509         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511         if (rdev->sb_size & bmask)
1512                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513
1514         if (minor_version
1515             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516                 return -EINVAL;
1517         if (minor_version
1518             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519                 return -EINVAL;
1520
1521         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522                 rdev->desc_nr = -1;
1523         else
1524                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525
1526         if (!rdev->bb_page) {
1527                 rdev->bb_page = alloc_page(GFP_KERNEL);
1528                 if (!rdev->bb_page)
1529                         return -ENOMEM;
1530         }
1531         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532             rdev->badblocks.count == 0) {
1533                 /* need to load the bad block list.
1534                  * Currently we limit it to one page.
1535                  */
1536                 s32 offset;
1537                 sector_t bb_sector;
1538                 u64 *bbp;
1539                 int i;
1540                 int sectors = le16_to_cpu(sb->bblog_size);
1541                 if (sectors > (PAGE_SIZE / 512))
1542                         return -EINVAL;
1543                 offset = le32_to_cpu(sb->bblog_offset);
1544                 if (offset == 0)
1545                         return -EINVAL;
1546                 bb_sector = (long long)offset;
1547                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548                                   rdev->bb_page, READ, true))
1549                         return -EIO;
1550                 bbp = (u64 *)page_address(rdev->bb_page);
1551                 rdev->badblocks.shift = sb->bblog_shift;
1552                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553                         u64 bb = le64_to_cpu(*bbp);
1554                         int count = bb & (0x3ff);
1555                         u64 sector = bb >> 10;
1556                         sector <<= sb->bblog_shift;
1557                         count <<= sb->bblog_shift;
1558                         if (bb + 1 == 0)
1559                                 break;
1560                         if (md_set_badblocks(&rdev->badblocks,
1561                                              sector, count, 1) == 0)
1562                                 return -EINVAL;
1563                 }
1564         } else if (sb->bblog_offset == 0)
1565                 rdev->badblocks.shift = -1;
1566
1567         if (!refdev) {
1568                 ret = 1;
1569         } else {
1570                 __u64 ev1, ev2;
1571                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572
1573                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574                     sb->level != refsb->level ||
1575                     sb->layout != refsb->layout ||
1576                     sb->chunksize != refsb->chunksize) {
1577                         printk(KERN_WARNING "md: %s has strangely different"
1578                                 " superblock to %s\n",
1579                                 bdevname(rdev->bdev,b),
1580                                 bdevname(refdev->bdev,b2));
1581                         return -EINVAL;
1582                 }
1583                 ev1 = le64_to_cpu(sb->events);
1584                 ev2 = le64_to_cpu(refsb->events);
1585
1586                 if (ev1 > ev2)
1587                         ret = 1;
1588                 else
1589                         ret = 0;
1590         }
1591         if (minor_version) {
1592                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593                 sectors -= rdev->data_offset;
1594         } else
1595                 sectors = rdev->sb_start;
1596         if (sectors < le64_to_cpu(sb->data_size))
1597                 return -EINVAL;
1598         rdev->sectors = le64_to_cpu(sb->data_size);
1599         return ret;
1600 }
1601
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605         __u64 ev1 = le64_to_cpu(sb->events);
1606
1607         rdev->raid_disk = -1;
1608         clear_bit(Faulty, &rdev->flags);
1609         clear_bit(In_sync, &rdev->flags);
1610         clear_bit(WriteMostly, &rdev->flags);
1611
1612         if (mddev->raid_disks == 0) {
1613                 mddev->major_version = 1;
1614                 mddev->patch_version = 0;
1615                 mddev->external = 0;
1616                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1617                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1618                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1619                 mddev->level = le32_to_cpu(sb->level);
1620                 mddev->clevel[0] = 0;
1621                 mddev->layout = le32_to_cpu(sb->layout);
1622                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1623                 mddev->dev_sectors = le64_to_cpu(sb->size);
1624                 mddev->events = ev1;
1625                 mddev->bitmap_info.offset = 0;
1626                 mddev->bitmap_info.space = 0;
1627                 /* Default location for bitmap is 1K after superblock
1628                  * using 3K - total of 4K
1629                  */
1630                 mddev->bitmap_info.default_offset = 1024 >> 9;
1631                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1632                 mddev->reshape_backwards = 0;
1633
1634                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1635                 memcpy(mddev->uuid, sb->set_uuid, 16);
1636
1637                 mddev->max_disks =  (4096-256)/2;
1638
1639                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1640                     mddev->bitmap_info.file == NULL) {
1641                         mddev->bitmap_info.offset =
1642                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1643                         /* Metadata doesn't record how much space is available.
1644                          * For 1.0, we assume we can use up to the superblock
1645                          * if before, else to 4K beyond superblock.
1646                          * For others, assume no change is possible.
1647                          */
1648                         if (mddev->minor_version > 0)
1649                                 mddev->bitmap_info.space = 0;
1650                         else if (mddev->bitmap_info.offset > 0)
1651                                 mddev->bitmap_info.space =
1652                                         8 - mddev->bitmap_info.offset;
1653                         else
1654                                 mddev->bitmap_info.space =
1655                                         -mddev->bitmap_info.offset;
1656                 }
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                         if (mddev->delta_disks < 0 ||
1665                             (mddev->delta_disks == 0 &&
1666                              (le32_to_cpu(sb->feature_map)
1667                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1668                                 mddev->reshape_backwards = 1;
1669                 } else {
1670                         mddev->reshape_position = MaxSector;
1671                         mddev->delta_disks = 0;
1672                         mddev->new_level = mddev->level;
1673                         mddev->new_layout = mddev->layout;
1674                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1675                 }
1676
1677         } else if (mddev->pers == NULL) {
1678                 /* Insist of good event counter while assembling, except for
1679                  * spares (which don't need an event count) */
1680                 ++ev1;
1681                 if (rdev->desc_nr >= 0 &&
1682                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1683                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1684                         if (ev1 < mddev->events)
1685                                 return -EINVAL;
1686         } else if (mddev->bitmap) {
1687                 /* If adding to array with a bitmap, then we can accept an
1688                  * older device, but not too old.
1689                  */
1690                 if (ev1 < mddev->bitmap->events_cleared)
1691                         return 0;
1692         } else {
1693                 if (ev1 < mddev->events)
1694                         /* just a hot-add of a new device, leave raid_disk at -1 */
1695                         return 0;
1696         }
1697         if (mddev->level != LEVEL_MULTIPATH) {
1698                 int role;
1699                 if (rdev->desc_nr < 0 ||
1700                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701                         role = 0xffff;
1702                         rdev->desc_nr = -1;
1703                 } else
1704                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1705                 switch(role) {
1706                 case 0xffff: /* spare */
1707                         break;
1708                 case 0xfffe: /* faulty */
1709                         set_bit(Faulty, &rdev->flags);
1710                         break;
1711                 default:
1712                         if ((le32_to_cpu(sb->feature_map) &
1713                              MD_FEATURE_RECOVERY_OFFSET))
1714                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1715                         else
1716                                 set_bit(In_sync, &rdev->flags);
1717                         rdev->raid_disk = role;
1718                         break;
1719                 }
1720                 if (sb->devflags & WriteMostly1)
1721                         set_bit(WriteMostly, &rdev->flags);
1722                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1723                         set_bit(Replacement, &rdev->flags);
1724         } else /* MULTIPATH are always insync */
1725                 set_bit(In_sync, &rdev->flags);
1726
1727         return 0;
1728 }
1729
1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1731 {
1732         struct mdp_superblock_1 *sb;
1733         struct md_rdev *rdev2;
1734         int max_dev, i;
1735         /* make rdev->sb match mddev and rdev data. */
1736
1737         sb = page_address(rdev->sb_page);
1738
1739         sb->feature_map = 0;
1740         sb->pad0 = 0;
1741         sb->recovery_offset = cpu_to_le64(0);
1742         memset(sb->pad3, 0, sizeof(sb->pad3));
1743
1744         sb->utime = cpu_to_le64((__u64)mddev->utime);
1745         sb->events = cpu_to_le64(mddev->events);
1746         if (mddev->in_sync)
1747                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748         else
1749                 sb->resync_offset = cpu_to_le64(0);
1750
1751         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752
1753         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754         sb->size = cpu_to_le64(mddev->dev_sectors);
1755         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756         sb->level = cpu_to_le32(mddev->level);
1757         sb->layout = cpu_to_le32(mddev->layout);
1758
1759         if (test_bit(WriteMostly, &rdev->flags))
1760                 sb->devflags |= WriteMostly1;
1761         else
1762                 sb->devflags &= ~WriteMostly1;
1763         sb->data_offset = cpu_to_le64(rdev->data_offset);
1764         sb->data_size = cpu_to_le64(rdev->sectors);
1765
1766         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1767                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1768                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1769         }
1770
1771         if (rdev->raid_disk >= 0 &&
1772             !test_bit(In_sync, &rdev->flags)) {
1773                 sb->feature_map |=
1774                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1775                 sb->recovery_offset =
1776                         cpu_to_le64(rdev->recovery_offset);
1777         }
1778         if (test_bit(Replacement, &rdev->flags))
1779                 sb->feature_map |=
1780                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1781
1782         if (mddev->reshape_position != MaxSector) {
1783                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1784                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1785                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1786                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1787                 sb->new_level = cpu_to_le32(mddev->new_level);
1788                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1789                 if (mddev->delta_disks == 0 &&
1790                     mddev->reshape_backwards)
1791                         sb->feature_map
1792                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1793                 if (rdev->new_data_offset != rdev->data_offset) {
1794                         sb->feature_map
1795                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1796                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1797                                                              - rdev->data_offset));
1798                 }
1799         }
1800
1801         if (rdev->badblocks.count == 0)
1802                 /* Nothing to do for bad blocks*/ ;
1803         else if (sb->bblog_offset == 0)
1804                 /* Cannot record bad blocks on this device */
1805                 md_error(mddev, rdev);
1806         else {
1807                 struct badblocks *bb = &rdev->badblocks;
1808                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1809                 u64 *p = bb->page;
1810                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1811                 if (bb->changed) {
1812                         unsigned seq;
1813
1814 retry:
1815                         seq = read_seqbegin(&bb->lock);
1816
1817                         memset(bbp, 0xff, PAGE_SIZE);
1818
1819                         for (i = 0 ; i < bb->count ; i++) {
1820                                 u64 internal_bb = *p++;
1821                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1822                                                 | BB_LEN(internal_bb));
1823                                 *bbp++ = cpu_to_le64(store_bb);
1824                         }
1825                         bb->changed = 0;
1826                         if (read_seqretry(&bb->lock, seq))
1827                                 goto retry;
1828
1829                         bb->sector = (rdev->sb_start +
1830                                       (int)le32_to_cpu(sb->bblog_offset));
1831                         bb->size = le16_to_cpu(sb->bblog_size);
1832                 }
1833         }
1834
1835         max_dev = 0;
1836         rdev_for_each(rdev2, mddev)
1837                 if (rdev2->desc_nr+1 > max_dev)
1838                         max_dev = rdev2->desc_nr+1;
1839
1840         if (max_dev > le32_to_cpu(sb->max_dev)) {
1841                 int bmask;
1842                 sb->max_dev = cpu_to_le32(max_dev);
1843                 rdev->sb_size = max_dev * 2 + 256;
1844                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1845                 if (rdev->sb_size & bmask)
1846                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1847         } else
1848                 max_dev = le32_to_cpu(sb->max_dev);
1849
1850         for (i=0; i<max_dev;i++)
1851                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1852         
1853         rdev_for_each(rdev2, mddev) {
1854                 i = rdev2->desc_nr;
1855                 if (test_bit(Faulty, &rdev2->flags))
1856                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1857                 else if (test_bit(In_sync, &rdev2->flags))
1858                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859                 else if (rdev2->raid_disk >= 0)
1860                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1861                 else
1862                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1863         }
1864
1865         sb->sb_csum = calc_sb_1_csum(sb);
1866 }
1867
1868 static unsigned long long
1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1870 {
1871         struct mdp_superblock_1 *sb;
1872         sector_t max_sectors;
1873         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1874                 return 0; /* component must fit device */
1875         if (rdev->data_offset != rdev->new_data_offset)
1876                 return 0; /* too confusing */
1877         if (rdev->sb_start < rdev->data_offset) {
1878                 /* minor versions 1 and 2; superblock before data */
1879                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1880                 max_sectors -= rdev->data_offset;
1881                 if (!num_sectors || num_sectors > max_sectors)
1882                         num_sectors = max_sectors;
1883         } else if (rdev->mddev->bitmap_info.offset) {
1884                 /* minor version 0 with bitmap we can't move */
1885                 return 0;
1886         } else {
1887                 /* minor version 0; superblock after data */
1888                 sector_t sb_start;
1889                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1890                 sb_start &= ~(sector_t)(4*2 - 1);
1891                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1892                 if (!num_sectors || num_sectors > max_sectors)
1893                         num_sectors = max_sectors;
1894                 rdev->sb_start = sb_start;
1895         }
1896         sb = page_address(rdev->sb_page);
1897         sb->data_size = cpu_to_le64(num_sectors);
1898         sb->super_offset = rdev->sb_start;
1899         sb->sb_csum = calc_sb_1_csum(sb);
1900         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1901                        rdev->sb_page);
1902         md_super_wait(rdev->mddev);
1903         return num_sectors;
1904
1905 }
1906
1907 static int
1908 super_1_allow_new_offset(struct md_rdev *rdev,
1909                          unsigned long long new_offset)
1910 {
1911         /* All necessary checks on new >= old have been done */
1912         struct bitmap *bitmap;
1913         if (new_offset >= rdev->data_offset)
1914                 return 1;
1915
1916         /* with 1.0 metadata, there is no metadata to tread on
1917          * so we can always move back */
1918         if (rdev->mddev->minor_version == 0)
1919                 return 1;
1920
1921         /* otherwise we must be sure not to step on
1922          * any metadata, so stay:
1923          * 36K beyond start of superblock
1924          * beyond end of badblocks
1925          * beyond write-intent bitmap
1926          */
1927         if (rdev->sb_start + (32+4)*2 > new_offset)
1928                 return 0;
1929         bitmap = rdev->mddev->bitmap;
1930         if (bitmap && !rdev->mddev->bitmap_info.file &&
1931             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1932             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1933                 return 0;
1934         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1935                 return 0;
1936
1937         return 1;
1938 }
1939
1940 static struct super_type super_types[] = {
1941         [0] = {
1942                 .name   = "0.90.0",
1943                 .owner  = THIS_MODULE,
1944                 .load_super         = super_90_load,
1945                 .validate_super     = super_90_validate,
1946                 .sync_super         = super_90_sync,
1947                 .rdev_size_change   = super_90_rdev_size_change,
1948                 .allow_new_offset   = super_90_allow_new_offset,
1949         },
1950         [1] = {
1951                 .name   = "md-1",
1952                 .owner  = THIS_MODULE,
1953                 .load_super         = super_1_load,
1954                 .validate_super     = super_1_validate,
1955                 .sync_super         = super_1_sync,
1956                 .rdev_size_change   = super_1_rdev_size_change,
1957                 .allow_new_offset   = super_1_allow_new_offset,
1958         },
1959 };
1960
1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1962 {
1963         if (mddev->sync_super) {
1964                 mddev->sync_super(mddev, rdev);
1965                 return;
1966         }
1967
1968         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1969
1970         super_types[mddev->major_version].sync_super(mddev, rdev);
1971 }
1972
1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1974 {
1975         struct md_rdev *rdev, *rdev2;
1976
1977         rcu_read_lock();
1978         rdev_for_each_rcu(rdev, mddev1)
1979                 rdev_for_each_rcu(rdev2, mddev2)
1980                         if (rdev->bdev->bd_contains ==
1981                             rdev2->bdev->bd_contains) {
1982                                 rcu_read_unlock();
1983                                 return 1;
1984                         }
1985         rcu_read_unlock();
1986         return 0;
1987 }
1988
1989 static LIST_HEAD(pending_raid_disks);
1990
1991 /*
1992  * Try to register data integrity profile for an mddev
1993  *
1994  * This is called when an array is started and after a disk has been kicked
1995  * from the array. It only succeeds if all working and active component devices
1996  * are integrity capable with matching profiles.
1997  */
1998 int md_integrity_register(struct mddev *mddev)
1999 {
2000         struct md_rdev *rdev, *reference = NULL;
2001
2002         if (list_empty(&mddev->disks))
2003                 return 0; /* nothing to do */
2004         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2005                 return 0; /* shouldn't register, or already is */
2006         rdev_for_each(rdev, mddev) {
2007                 /* skip spares and non-functional disks */
2008                 if (test_bit(Faulty, &rdev->flags))
2009                         continue;
2010                 if (rdev->raid_disk < 0)
2011                         continue;
2012                 if (!reference) {
2013                         /* Use the first rdev as the reference */
2014                         reference = rdev;
2015                         continue;
2016                 }
2017                 /* does this rdev's profile match the reference profile? */
2018                 if (blk_integrity_compare(reference->bdev->bd_disk,
2019                                 rdev->bdev->bd_disk) < 0)
2020                         return -EINVAL;
2021         }
2022         if (!reference || !bdev_get_integrity(reference->bdev))
2023                 return 0;
2024         /*
2025          * All component devices are integrity capable and have matching
2026          * profiles, register the common profile for the md device.
2027          */
2028         if (blk_integrity_register(mddev->gendisk,
2029                         bdev_get_integrity(reference->bdev)) != 0) {
2030                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2031                         mdname(mddev));
2032                 return -EINVAL;
2033         }
2034         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2035         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2036                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2037                        mdname(mddev));
2038                 return -EINVAL;
2039         }
2040         return 0;
2041 }
2042 EXPORT_SYMBOL(md_integrity_register);
2043
2044 /* Disable data integrity if non-capable/non-matching disk is being added */
2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047         struct blk_integrity *bi_rdev;
2048         struct blk_integrity *bi_mddev;
2049
2050         if (!mddev->gendisk)
2051                 return;
2052
2053         bi_rdev = bdev_get_integrity(rdev->bdev);
2054         bi_mddev = blk_get_integrity(mddev->gendisk);
2055
2056         if (!bi_mddev) /* nothing to do */
2057                 return;
2058         if (rdev->raid_disk < 0) /* skip spares */
2059                 return;
2060         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2061                                              rdev->bdev->bd_disk) >= 0)
2062                 return;
2063         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2064         blk_integrity_unregister(mddev->gendisk);
2065 }
2066 EXPORT_SYMBOL(md_integrity_add_rdev);
2067
2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2069 {
2070         char b[BDEVNAME_SIZE];
2071         struct kobject *ko;
2072         char *s;
2073         int err;
2074
2075         if (rdev->mddev) {
2076                 MD_BUG();
2077                 return -EINVAL;
2078         }
2079
2080         /* prevent duplicates */
2081         if (find_rdev(mddev, rdev->bdev->bd_dev))
2082                 return -EEXIST;
2083
2084         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2085         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2086                         rdev->sectors < mddev->dev_sectors)) {
2087                 if (mddev->pers) {
2088                         /* Cannot change size, so fail
2089                          * If mddev->level <= 0, then we don't care
2090                          * about aligning sizes (e.g. linear)
2091                          */
2092                         if (mddev->level > 0)
2093                                 return -ENOSPC;
2094                 } else
2095                         mddev->dev_sectors = rdev->sectors;
2096         }
2097
2098         /* Verify rdev->desc_nr is unique.
2099          * If it is -1, assign a free number, else
2100          * check number is not in use
2101          */
2102         if (rdev->desc_nr < 0) {
2103                 int choice = 0;
2104                 if (mddev->pers) choice = mddev->raid_disks;
2105                 while (find_rdev_nr(mddev, choice))
2106                         choice++;
2107                 rdev->desc_nr = choice;
2108         } else {
2109                 if (find_rdev_nr(mddev, rdev->desc_nr))
2110                         return -EBUSY;
2111         }
2112         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2113                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2114                        mdname(mddev), mddev->max_disks);
2115                 return -EBUSY;
2116         }
2117         bdevname(rdev->bdev,b);
2118         while ( (s=strchr(b, '/')) != NULL)
2119                 *s = '!';
2120
2121         rdev->mddev = mddev;
2122         printk(KERN_INFO "md: bind<%s>\n", b);
2123
2124         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2125                 goto fail;
2126
2127         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2128         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2129                 /* failure here is OK */;
2130         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2131
2132         list_add_rcu(&rdev->same_set, &mddev->disks);
2133         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2134
2135         /* May as well allow recovery to be retried once */
2136         mddev->recovery_disabled++;
2137
2138         return 0;
2139
2140  fail:
2141         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2142                b, mdname(mddev));
2143         return err;
2144 }
2145
2146 static void md_delayed_delete(struct work_struct *ws)
2147 {
2148         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2149         kobject_del(&rdev->kobj);
2150         kobject_put(&rdev->kobj);
2151 }
2152
2153 static void unbind_rdev_from_array(struct md_rdev * rdev)
2154 {
2155         char b[BDEVNAME_SIZE];
2156         if (!rdev->mddev) {
2157                 MD_BUG();
2158                 return;
2159         }
2160         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2161         list_del_rcu(&rdev->same_set);
2162         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2163         rdev->mddev = NULL;
2164         sysfs_remove_link(&rdev->kobj, "block");
2165         sysfs_put(rdev->sysfs_state);
2166         rdev->sysfs_state = NULL;
2167         rdev->badblocks.count = 0;
2168         /* We need to delay this, otherwise we can deadlock when
2169          * writing to 'remove' to "dev/state".  We also need
2170          * to delay it due to rcu usage.
2171          */
2172         synchronize_rcu();
2173         INIT_WORK(&rdev->del_work, md_delayed_delete);
2174         kobject_get(&rdev->kobj);
2175         queue_work(md_misc_wq, &rdev->del_work);
2176 }
2177
2178 /*
2179  * prevent the device from being mounted, repartitioned or
2180  * otherwise reused by a RAID array (or any other kernel
2181  * subsystem), by bd_claiming the device.
2182  */
2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2184 {
2185         int err = 0;
2186         struct block_device *bdev;
2187         char b[BDEVNAME_SIZE];
2188
2189         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2190                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2191         if (IS_ERR(bdev)) {
2192                 printk(KERN_ERR "md: could not open %s.\n",
2193                         __bdevname(dev, b));
2194                 return PTR_ERR(bdev);
2195         }
2196         rdev->bdev = bdev;
2197         return err;
2198 }
2199
2200 static void unlock_rdev(struct md_rdev *rdev)
2201 {
2202         struct block_device *bdev = rdev->bdev;
2203         rdev->bdev = NULL;
2204         if (!bdev)
2205                 MD_BUG();
2206         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2207 }
2208
2209 void md_autodetect_dev(dev_t dev);
2210
2211 static void export_rdev(struct md_rdev * rdev)
2212 {
2213         char b[BDEVNAME_SIZE];
2214         printk(KERN_INFO "md: export_rdev(%s)\n",
2215                 bdevname(rdev->bdev,b));
2216         if (rdev->mddev)
2217                 MD_BUG();
2218         md_rdev_clear(rdev);
2219 #ifndef MODULE
2220         if (test_bit(AutoDetected, &rdev->flags))
2221                 md_autodetect_dev(rdev->bdev->bd_dev);
2222 #endif
2223         unlock_rdev(rdev);
2224         kobject_put(&rdev->kobj);
2225 }
2226
2227 static void kick_rdev_from_array(struct md_rdev * rdev)
2228 {
2229         unbind_rdev_from_array(rdev);
2230         export_rdev(rdev);
2231 }
2232
2233 static void export_array(struct mddev *mddev)
2234 {
2235         struct md_rdev *rdev, *tmp;
2236
2237         rdev_for_each_safe(rdev, tmp, mddev) {
2238                 if (!rdev->mddev) {
2239                         MD_BUG();
2240                         continue;
2241                 }
2242                 kick_rdev_from_array(rdev);
2243         }
2244         if (!list_empty(&mddev->disks))
2245                 MD_BUG();
2246         mddev->raid_disks = 0;
2247         mddev->major_version = 0;
2248 }
2249
2250 static void print_desc(mdp_disk_t *desc)
2251 {
2252         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2253                 desc->major,desc->minor,desc->raid_disk,desc->state);
2254 }
2255
2256 static void print_sb_90(mdp_super_t *sb)
2257 {
2258         int i;
2259
2260         printk(KERN_INFO 
2261                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2262                 sb->major_version, sb->minor_version, sb->patch_version,
2263                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2264                 sb->ctime);
2265         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2266                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2267                 sb->md_minor, sb->layout, sb->chunk_size);
2268         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2269                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2270                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2271                 sb->failed_disks, sb->spare_disks,
2272                 sb->sb_csum, (unsigned long)sb->events_lo);
2273
2274         printk(KERN_INFO);
2275         for (i = 0; i < MD_SB_DISKS; i++) {
2276                 mdp_disk_t *desc;
2277
2278                 desc = sb->disks + i;
2279                 if (desc->number || desc->major || desc->minor ||
2280                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2281                         printk("     D %2d: ", i);
2282                         print_desc(desc);
2283                 }
2284         }
2285         printk(KERN_INFO "md:     THIS: ");
2286         print_desc(&sb->this_disk);
2287 }
2288
2289 static void print_sb_1(struct mdp_superblock_1 *sb)
2290 {
2291         __u8 *uuid;
2292
2293         uuid = sb->set_uuid;
2294         printk(KERN_INFO
2295                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2296                "md:    Name: \"%s\" CT:%llu\n",
2297                 le32_to_cpu(sb->major_version),
2298                 le32_to_cpu(sb->feature_map),
2299                 uuid,
2300                 sb->set_name,
2301                 (unsigned long long)le64_to_cpu(sb->ctime)
2302                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2303
2304         uuid = sb->device_uuid;
2305         printk(KERN_INFO
2306                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2307                         " RO:%llu\n"
2308                "md:     Dev:%08x UUID: %pU\n"
2309                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2310                "md:         (MaxDev:%u) \n",
2311                 le32_to_cpu(sb->level),
2312                 (unsigned long long)le64_to_cpu(sb->size),
2313                 le32_to_cpu(sb->raid_disks),
2314                 le32_to_cpu(sb->layout),
2315                 le32_to_cpu(sb->chunksize),
2316                 (unsigned long long)le64_to_cpu(sb->data_offset),
2317                 (unsigned long long)le64_to_cpu(sb->data_size),
2318                 (unsigned long long)le64_to_cpu(sb->super_offset),
2319                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2320                 le32_to_cpu(sb->dev_number),
2321                 uuid,
2322                 sb->devflags,
2323                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2324                 (unsigned long long)le64_to_cpu(sb->events),
2325                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2326                 le32_to_cpu(sb->sb_csum),
2327                 le32_to_cpu(sb->max_dev)
2328                 );
2329 }
2330
2331 static void print_rdev(struct md_rdev *rdev, int major_version)
2332 {
2333         char b[BDEVNAME_SIZE];
2334         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2335                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2336                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2337                 rdev->desc_nr);
2338         if (rdev->sb_loaded) {
2339                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2340                 switch (major_version) {
2341                 case 0:
2342                         print_sb_90(page_address(rdev->sb_page));
2343                         break;
2344                 case 1:
2345                         print_sb_1(page_address(rdev->sb_page));
2346                         break;
2347                 }
2348         } else
2349                 printk(KERN_INFO "md: no rdev superblock!\n");
2350 }
2351
2352 static void md_print_devices(void)
2353 {
2354         struct list_head *tmp;
2355         struct md_rdev *rdev;
2356         struct mddev *mddev;
2357         char b[BDEVNAME_SIZE];
2358
2359         printk("\n");
2360         printk("md:     **********************************\n");
2361         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2362         printk("md:     **********************************\n");
2363         for_each_mddev(mddev, tmp) {
2364
2365                 if (mddev->bitmap)
2366                         bitmap_print_sb(mddev->bitmap);
2367                 else
2368                         printk("%s: ", mdname(mddev));
2369                 rdev_for_each(rdev, mddev)
2370                         printk("<%s>", bdevname(rdev->bdev,b));
2371                 printk("\n");
2372
2373                 rdev_for_each(rdev, mddev)
2374                         print_rdev(rdev, mddev->major_version);
2375         }
2376         printk("md:     **********************************\n");
2377         printk("\n");
2378 }
2379
2380
2381 static void sync_sbs(struct mddev * mddev, int nospares)
2382 {
2383         /* Update each superblock (in-memory image), but
2384          * if we are allowed to, skip spares which already
2385          * have the right event counter, or have one earlier
2386          * (which would mean they aren't being marked as dirty
2387          * with the rest of the array)
2388          */
2389         struct md_rdev *rdev;
2390         rdev_for_each(rdev, mddev) {
2391                 if (rdev->sb_events == mddev->events ||
2392                     (nospares &&
2393                      rdev->raid_disk < 0 &&
2394                      rdev->sb_events+1 == mddev->events)) {
2395                         /* Don't update this superblock */
2396                         rdev->sb_loaded = 2;
2397                 } else {
2398                         sync_super(mddev, rdev);
2399                         rdev->sb_loaded = 1;
2400                 }
2401         }
2402 }
2403
2404 static void md_update_sb(struct mddev * mddev, int force_change)
2405 {
2406         struct md_rdev *rdev;
2407         int sync_req;
2408         int nospares = 0;
2409         int any_badblocks_changed = 0;
2410
2411 repeat:
2412         /* First make sure individual recovery_offsets are correct */
2413         rdev_for_each(rdev, mddev) {
2414                 if (rdev->raid_disk >= 0 &&
2415                     mddev->delta_disks >= 0 &&
2416                     !test_bit(In_sync, &rdev->flags) &&
2417                     mddev->curr_resync_completed > rdev->recovery_offset)
2418                                 rdev->recovery_offset = mddev->curr_resync_completed;
2419
2420         }       
2421         if (!mddev->persistent) {
2422                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2423                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2424                 if (!mddev->external) {
2425                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2426                         rdev_for_each(rdev, mddev) {
2427                                 if (rdev->badblocks.changed) {
2428                                         rdev->badblocks.changed = 0;
2429                                         md_ack_all_badblocks(&rdev->badblocks);
2430                                         md_error(mddev, rdev);
2431                                 }
2432                                 clear_bit(Blocked, &rdev->flags);
2433                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2434                                 wake_up(&rdev->blocked_wait);
2435                         }
2436                 }
2437                 wake_up(&mddev->sb_wait);
2438                 return;
2439         }
2440
2441         spin_lock_irq(&mddev->write_lock);
2442
2443         mddev->utime = get_seconds();
2444
2445         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2446                 force_change = 1;
2447         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2448                 /* just a clean<-> dirty transition, possibly leave spares alone,
2449                  * though if events isn't the right even/odd, we will have to do
2450                  * spares after all
2451                  */
2452                 nospares = 1;
2453         if (force_change)
2454                 nospares = 0;
2455         if (mddev->degraded)
2456                 /* If the array is degraded, then skipping spares is both
2457                  * dangerous and fairly pointless.
2458                  * Dangerous because a device that was removed from the array
2459                  * might have a event_count that still looks up-to-date,
2460                  * so it can be re-added without a resync.
2461                  * Pointless because if there are any spares to skip,
2462                  * then a recovery will happen and soon that array won't
2463                  * be degraded any more and the spare can go back to sleep then.
2464                  */
2465                 nospares = 0;
2466
2467         sync_req = mddev->in_sync;
2468
2469         /* If this is just a dirty<->clean transition, and the array is clean
2470          * and 'events' is odd, we can roll back to the previous clean state */
2471         if (nospares
2472             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2473             && mddev->can_decrease_events
2474             && mddev->events != 1) {
2475                 mddev->events--;
2476                 mddev->can_decrease_events = 0;
2477         } else {
2478                 /* otherwise we have to go forward and ... */
2479                 mddev->events ++;
2480                 mddev->can_decrease_events = nospares;
2481         }
2482
2483         if (!mddev->events) {
2484                 /*
2485                  * oops, this 64-bit counter should never wrap.
2486                  * Either we are in around ~1 trillion A.C., assuming
2487                  * 1 reboot per second, or we have a bug:
2488                  */
2489                 MD_BUG();
2490                 mddev->events --;
2491         }
2492
2493         rdev_for_each(rdev, mddev) {
2494                 if (rdev->badblocks.changed)
2495                         any_badblocks_changed++;
2496                 if (test_bit(Faulty, &rdev->flags))
2497                         set_bit(FaultRecorded, &rdev->flags);
2498         }
2499
2500         sync_sbs(mddev, nospares);
2501         spin_unlock_irq(&mddev->write_lock);
2502
2503         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2504                  mdname(mddev), mddev->in_sync);
2505
2506         bitmap_update_sb(mddev->bitmap);
2507         rdev_for_each(rdev, mddev) {
2508                 char b[BDEVNAME_SIZE];
2509
2510                 if (rdev->sb_loaded != 1)
2511                         continue; /* no noise on spare devices */
2512
2513                 if (!test_bit(Faulty, &rdev->flags) &&
2514                     rdev->saved_raid_disk == -1) {
2515                         md_super_write(mddev,rdev,
2516                                        rdev->sb_start, rdev->sb_size,
2517                                        rdev->sb_page);
2518                         pr_debug("md: (write) %s's sb offset: %llu\n",
2519                                  bdevname(rdev->bdev, b),
2520                                  (unsigned long long)rdev->sb_start);
2521                         rdev->sb_events = mddev->events;
2522                         if (rdev->badblocks.size) {
2523                                 md_super_write(mddev, rdev,
2524                                                rdev->badblocks.sector,
2525                                                rdev->badblocks.size << 9,
2526                                                rdev->bb_page);
2527                                 rdev->badblocks.size = 0;
2528                         }
2529
2530                 } else if (test_bit(Faulty, &rdev->flags))
2531                         pr_debug("md: %s (skipping faulty)\n",
2532                                  bdevname(rdev->bdev, b));
2533                 else
2534                         pr_debug("(skipping incremental s/r ");
2535
2536                 if (mddev->level == LEVEL_MULTIPATH)
2537                         /* only need to write one superblock... */
2538                         break;
2539         }
2540         md_super_wait(mddev);
2541         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2542
2543         spin_lock_irq(&mddev->write_lock);
2544         if (mddev->in_sync != sync_req ||
2545             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2546                 /* have to write it out again */
2547                 spin_unlock_irq(&mddev->write_lock);
2548                 goto repeat;
2549         }
2550         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2551         spin_unlock_irq(&mddev->write_lock);
2552         wake_up(&mddev->sb_wait);
2553         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2554                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2555
2556         rdev_for_each(rdev, mddev) {
2557                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2558                         clear_bit(Blocked, &rdev->flags);
2559
2560                 if (any_badblocks_changed)
2561                         md_ack_all_badblocks(&rdev->badblocks);
2562                 clear_bit(BlockedBadBlocks, &rdev->flags);
2563                 wake_up(&rdev->blocked_wait);
2564         }
2565 }
2566
2567 /* words written to sysfs files may, or may not, be \n terminated.
2568  * We want to accept with case. For this we use cmd_match.
2569  */
2570 static int cmd_match(const char *cmd, const char *str)
2571 {
2572         /* See if cmd, written into a sysfs file, matches
2573          * str.  They must either be the same, or cmd can
2574          * have a trailing newline
2575          */
2576         while (*cmd && *str && *cmd == *str) {
2577                 cmd++;
2578                 str++;
2579         }
2580         if (*cmd == '\n')
2581                 cmd++;
2582         if (*str || *cmd)
2583                 return 0;
2584         return 1;
2585 }
2586
2587 struct rdev_sysfs_entry {
2588         struct attribute attr;
2589         ssize_t (*show)(struct md_rdev *, char *);
2590         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2591 };
2592
2593 static ssize_t
2594 state_show(struct md_rdev *rdev, char *page)
2595 {
2596         char *sep = "";
2597         size_t len = 0;
2598
2599         if (test_bit(Faulty, &rdev->flags) ||
2600             rdev->badblocks.unacked_exist) {
2601                 len+= sprintf(page+len, "%sfaulty",sep);
2602                 sep = ",";
2603         }
2604         if (test_bit(In_sync, &rdev->flags)) {
2605                 len += sprintf(page+len, "%sin_sync",sep);
2606                 sep = ",";
2607         }
2608         if (test_bit(WriteMostly, &rdev->flags)) {
2609                 len += sprintf(page+len, "%swrite_mostly",sep);
2610                 sep = ",";
2611         }
2612         if (test_bit(Blocked, &rdev->flags) ||
2613             (rdev->badblocks.unacked_exist
2614              && !test_bit(Faulty, &rdev->flags))) {
2615                 len += sprintf(page+len, "%sblocked", sep);
2616                 sep = ",";
2617         }
2618         if (!test_bit(Faulty, &rdev->flags) &&
2619             !test_bit(In_sync, &rdev->flags)) {
2620                 len += sprintf(page+len, "%sspare", sep);
2621                 sep = ",";
2622         }
2623         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2624                 len += sprintf(page+len, "%swrite_error", sep);
2625                 sep = ",";
2626         }
2627         if (test_bit(WantReplacement, &rdev->flags)) {
2628                 len += sprintf(page+len, "%swant_replacement", sep);
2629                 sep = ",";
2630         }
2631         if (test_bit(Replacement, &rdev->flags)) {
2632                 len += sprintf(page+len, "%sreplacement", sep);
2633                 sep = ",";
2634         }
2635
2636         return len+sprintf(page+len, "\n");
2637 }
2638
2639 static ssize_t
2640 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2641 {
2642         /* can write
2643          *  faulty  - simulates an error
2644          *  remove  - disconnects the device
2645          *  writemostly - sets write_mostly
2646          *  -writemostly - clears write_mostly
2647          *  blocked - sets the Blocked flags
2648          *  -blocked - clears the Blocked and possibly simulates an error
2649          *  insync - sets Insync providing device isn't active
2650          *  write_error - sets WriteErrorSeen
2651          *  -write_error - clears WriteErrorSeen
2652          */
2653         int err = -EINVAL;
2654         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2655                 md_error(rdev->mddev, rdev);
2656                 if (test_bit(Faulty, &rdev->flags))
2657                         err = 0;
2658                 else
2659                         err = -EBUSY;
2660         } else if (cmd_match(buf, "remove")) {
2661                 if (rdev->raid_disk >= 0)
2662                         err = -EBUSY;
2663                 else {
2664                         struct mddev *mddev = rdev->mddev;
2665                         kick_rdev_from_array(rdev);
2666                         if (mddev->pers)
2667                                 md_update_sb(mddev, 1);
2668                         md_new_event(mddev);
2669                         err = 0;
2670                 }
2671         } else if (cmd_match(buf, "writemostly")) {
2672                 set_bit(WriteMostly, &rdev->flags);
2673                 err = 0;
2674         } else if (cmd_match(buf, "-writemostly")) {
2675                 clear_bit(WriteMostly, &rdev->flags);
2676                 err = 0;
2677         } else if (cmd_match(buf, "blocked")) {
2678                 set_bit(Blocked, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "-blocked")) {
2681                 if (!test_bit(Faulty, &rdev->flags) &&
2682                     rdev->badblocks.unacked_exist) {
2683                         /* metadata handler doesn't understand badblocks,
2684                          * so we need to fail the device
2685                          */
2686                         md_error(rdev->mddev, rdev);
2687                 }
2688                 clear_bit(Blocked, &rdev->flags);
2689                 clear_bit(BlockedBadBlocks, &rdev->flags);
2690                 wake_up(&rdev->blocked_wait);
2691                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2692                 md_wakeup_thread(rdev->mddev->thread);
2693
2694                 err = 0;
2695         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2696                 set_bit(In_sync, &rdev->flags);
2697                 err = 0;
2698         } else if (cmd_match(buf, "write_error")) {
2699                 set_bit(WriteErrorSeen, &rdev->flags);
2700                 err = 0;
2701         } else if (cmd_match(buf, "-write_error")) {
2702                 clear_bit(WriteErrorSeen, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "want_replacement")) {
2705                 /* Any non-spare device that is not a replacement can
2706                  * become want_replacement at any time, but we then need to
2707                  * check if recovery is needed.
2708                  */
2709                 if (rdev->raid_disk >= 0 &&
2710                     !test_bit(Replacement, &rdev->flags))
2711                         set_bit(WantReplacement, &rdev->flags);
2712                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2713                 md_wakeup_thread(rdev->mddev->thread);
2714                 err = 0;
2715         } else if (cmd_match(buf, "-want_replacement")) {
2716                 /* Clearing 'want_replacement' is always allowed.
2717                  * Once replacements starts it is too late though.
2718                  */
2719                 err = 0;
2720                 clear_bit(WantReplacement, &rdev->flags);
2721         } else if (cmd_match(buf, "replacement")) {
2722                 /* Can only set a device as a replacement when array has not
2723                  * yet been started.  Once running, replacement is automatic
2724                  * from spares, or by assigning 'slot'.
2725                  */
2726                 if (rdev->mddev->pers)
2727                         err = -EBUSY;
2728                 else {
2729                         set_bit(Replacement, &rdev->flags);
2730                         err = 0;
2731                 }
2732         } else if (cmd_match(buf, "-replacement")) {
2733                 /* Similarly, can only clear Replacement before start */
2734                 if (rdev->mddev->pers)
2735                         err = -EBUSY;
2736                 else {
2737                         clear_bit(Replacement, &rdev->flags);
2738                         err = 0;
2739                 }
2740         }
2741         if (!err)
2742                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2743         return err ? err : len;
2744 }
2745 static struct rdev_sysfs_entry rdev_state =
2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2747
2748 static ssize_t
2749 errors_show(struct md_rdev *rdev, char *page)
2750 {
2751         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2752 }
2753
2754 static ssize_t
2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757         char *e;
2758         unsigned long n = simple_strtoul(buf, &e, 10);
2759         if (*buf && (*e == 0 || *e == '\n')) {
2760                 atomic_set(&rdev->corrected_errors, n);
2761                 return len;
2762         }
2763         return -EINVAL;
2764 }
2765 static struct rdev_sysfs_entry rdev_errors =
2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2767
2768 static ssize_t
2769 slot_show(struct md_rdev *rdev, char *page)
2770 {
2771         if (rdev->raid_disk < 0)
2772                 return sprintf(page, "none\n");
2773         else
2774                 return sprintf(page, "%d\n", rdev->raid_disk);
2775 }
2776
2777 static ssize_t
2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780         char *e;
2781         int err;
2782         int slot = simple_strtoul(buf, &e, 10);
2783         if (strncmp(buf, "none", 4)==0)
2784                 slot = -1;
2785         else if (e==buf || (*e && *e!= '\n'))
2786                 return -EINVAL;
2787         if (rdev->mddev->pers && slot == -1) {
2788                 /* Setting 'slot' on an active array requires also
2789                  * updating the 'rd%d' link, and communicating
2790                  * with the personality with ->hot_*_disk.
2791                  * For now we only support removing
2792                  * failed/spare devices.  This normally happens automatically,
2793                  * but not when the metadata is externally managed.
2794                  */
2795                 if (rdev->raid_disk == -1)
2796                         return -EEXIST;
2797                 /* personality does all needed checks */
2798                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2799                         return -EINVAL;
2800                 err = rdev->mddev->pers->
2801                         hot_remove_disk(rdev->mddev, rdev);
2802                 if (err)
2803                         return err;
2804                 sysfs_unlink_rdev(rdev->mddev, rdev);
2805                 rdev->raid_disk = -1;
2806                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807                 md_wakeup_thread(rdev->mddev->thread);
2808         } else if (rdev->mddev->pers) {
2809                 /* Activating a spare .. or possibly reactivating
2810                  * if we ever get bitmaps working here.
2811                  */
2812
2813                 if (rdev->raid_disk != -1)
2814                         return -EBUSY;
2815
2816                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817                         return -EBUSY;
2818
2819                 if (rdev->mddev->pers->hot_add_disk == NULL)
2820                         return -EINVAL;
2821
2822                 if (slot >= rdev->mddev->raid_disks &&
2823                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824                         return -ENOSPC;
2825
2826                 rdev->raid_disk = slot;
2827                 if (test_bit(In_sync, &rdev->flags))
2828                         rdev->saved_raid_disk = slot;
2829                 else
2830                         rdev->saved_raid_disk = -1;
2831                 clear_bit(In_sync, &rdev->flags);
2832                 err = rdev->mddev->pers->
2833                         hot_add_disk(rdev->mddev, rdev);
2834                 if (err) {
2835                         rdev->raid_disk = -1;
2836                         return err;
2837                 } else
2838                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2839                 if (sysfs_link_rdev(rdev->mddev, rdev))
2840                         /* failure here is OK */;
2841                 /* don't wakeup anyone, leave that to userspace. */
2842         } else {
2843                 if (slot >= rdev->mddev->raid_disks &&
2844                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845                         return -ENOSPC;
2846                 rdev->raid_disk = slot;
2847                 /* assume it is working */
2848                 clear_bit(Faulty, &rdev->flags);
2849                 clear_bit(WriteMostly, &rdev->flags);
2850                 set_bit(In_sync, &rdev->flags);
2851                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2852         }
2853         return len;
2854 }
2855
2856
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869         unsigned long long offset;
2870         if (strict_strtoull(buf, 10, &offset) < 0)
2871                 return -EINVAL;
2872         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873                 return -EBUSY;
2874         if (rdev->sectors && rdev->mddev->external)
2875                 /* Must set offset before size, so overlap checks
2876                  * can be sane */
2877                 return -EBUSY;
2878         rdev->data_offset = offset;
2879         rdev->new_data_offset = offset;
2880         return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888         return sprintf(page, "%llu\n",
2889                        (unsigned long long)rdev->new_data_offset);
2890 }
2891
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893                                 const char *buf, size_t len)
2894 {
2895         unsigned long long new_offset;
2896         struct mddev *mddev = rdev->mddev;
2897
2898         if (strict_strtoull(buf, 10, &new_offset) < 0)
2899                 return -EINVAL;
2900
2901         if (mddev->sync_thread)
2902                 return -EBUSY;
2903         if (new_offset == rdev->data_offset)
2904                 /* reset is always permitted */
2905                 ;
2906         else if (new_offset > rdev->data_offset) {
2907                 /* must not push array size beyond rdev_sectors */
2908                 if (new_offset - rdev->data_offset
2909                     + mddev->dev_sectors > rdev->sectors)
2910                                 return -E2BIG;
2911         }
2912         /* Metadata worries about other space details. */
2913
2914         /* decreasing the offset is inconsistent with a backwards
2915          * reshape.
2916          */
2917         if (new_offset < rdev->data_offset &&
2918             mddev->reshape_backwards)
2919                 return -EINVAL;
2920         /* Increasing offset is inconsistent with forwards
2921          * reshape.  reshape_direction should be set to
2922          * 'backwards' first.
2923          */
2924         if (new_offset > rdev->data_offset &&
2925             !mddev->reshape_backwards)
2926                 return -EINVAL;
2927
2928         if (mddev->pers && mddev->persistent &&
2929             !super_types[mddev->major_version]
2930             .allow_new_offset(rdev, new_offset))
2931                 return -E2BIG;
2932         rdev->new_data_offset = new_offset;
2933         if (new_offset > rdev->data_offset)
2934                 mddev->reshape_backwards = 1;
2935         else if (new_offset < rdev->data_offset)
2936                 mddev->reshape_backwards = 0;
2937
2938         return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951         /* check if two start/length pairs overlap */
2952         if (s1+l1 <= s2)
2953                 return 0;
2954         if (s2+l2 <= s1)
2955                 return 0;
2956         return 1;
2957 }
2958
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961         unsigned long long blocks;
2962         sector_t new;
2963
2964         if (strict_strtoull(buf, 10, &blocks) < 0)
2965                 return -EINVAL;
2966
2967         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968                 return -EINVAL; /* sector conversion overflow */
2969
2970         new = blocks * 2;
2971         if (new != blocks * 2)
2972                 return -EINVAL; /* unsigned long long to sector_t overflow */
2973
2974         *sectors = new;
2975         return 0;
2976 }
2977
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981         struct mddev *my_mddev = rdev->mddev;
2982         sector_t oldsectors = rdev->sectors;
2983         sector_t sectors;
2984
2985         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986                 return -EINVAL;
2987         if (rdev->data_offset != rdev->new_data_offset)
2988                 return -EINVAL; /* too confusing */
2989         if (my_mddev->pers && rdev->raid_disk >= 0) {
2990                 if (my_mddev->persistent) {
2991                         sectors = super_types[my_mddev->major_version].
2992                                 rdev_size_change(rdev, sectors);
2993                         if (!sectors)
2994                                 return -EBUSY;
2995                 } else if (!sectors)
2996                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997                                 rdev->data_offset;
2998         }
2999         if (sectors < my_mddev->dev_sectors)
3000                 return -EINVAL; /* component must fit device */
3001
3002         rdev->sectors = sectors;
3003         if (sectors > oldsectors && my_mddev->external) {
3004                 /* need to check that all other rdevs with the same ->bdev
3005                  * do not overlap.  We need to unlock the mddev to avoid
3006                  * a deadlock.  We have already changed rdev->sectors, and if
3007                  * we have to change it back, we will have the lock again.
3008                  */
3009                 struct mddev *mddev;
3010                 int overlap = 0;
3011                 struct list_head *tmp;
3012
3013                 mddev_unlock(my_mddev);
3014                 for_each_mddev(mddev, tmp) {
3015                         struct md_rdev *rdev2;
3016
3017                         mddev_lock(mddev);
3018                         rdev_for_each(rdev2, mddev)
3019                                 if (rdev->bdev == rdev2->bdev &&
3020                                     rdev != rdev2 &&
3021                                     overlaps(rdev->data_offset, rdev->sectors,
3022                                              rdev2->data_offset,
3023                                              rdev2->sectors)) {
3024                                         overlap = 1;
3025                                         break;
3026                                 }
3027                         mddev_unlock(mddev);
3028                         if (overlap) {
3029                                 mddev_put(mddev);
3030                                 break;
3031                         }
3032                 }
3033                 mddev_lock(my_mddev);
3034                 if (overlap) {
3035                         /* Someone else could have slipped in a size
3036                          * change here, but doing so is just silly.
3037                          * We put oldsectors back because we *know* it is
3038                          * safe, and trust userspace not to race with
3039                          * itself
3040                          */
3041                         rdev->sectors = oldsectors;
3042                         return -EBUSY;
3043                 }
3044         }
3045         return len;
3046 }
3047
3048 static struct rdev_sysfs_entry rdev_size =
3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3050
3051
3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3053 {
3054         unsigned long long recovery_start = rdev->recovery_offset;
3055
3056         if (test_bit(In_sync, &rdev->flags) ||
3057             recovery_start == MaxSector)
3058                 return sprintf(page, "none\n");
3059
3060         return sprintf(page, "%llu\n", recovery_start);
3061 }
3062
3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3064 {
3065         unsigned long long recovery_start;
3066
3067         if (cmd_match(buf, "none"))
3068                 recovery_start = MaxSector;
3069         else if (strict_strtoull(buf, 10, &recovery_start))
3070                 return -EINVAL;
3071
3072         if (rdev->mddev->pers &&
3073             rdev->raid_disk >= 0)
3074                 return -EBUSY;
3075
3076         rdev->recovery_offset = recovery_start;
3077         if (recovery_start == MaxSector)
3078                 set_bit(In_sync, &rdev->flags);
3079         else
3080                 clear_bit(In_sync, &rdev->flags);
3081         return len;
3082 }
3083
3084 static struct rdev_sysfs_entry rdev_recovery_start =
3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3086
3087
3088 static ssize_t
3089 badblocks_show(struct badblocks *bb, char *page, int unack);
3090 static ssize_t
3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3092
3093 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3094 {
3095         return badblocks_show(&rdev->badblocks, page, 0);
3096 }
3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3098 {
3099         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3100         /* Maybe that ack was all we needed */
3101         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3102                 wake_up(&rdev->blocked_wait);
3103         return rv;
3104 }
3105 static struct rdev_sysfs_entry rdev_bad_blocks =
3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3107
3108
3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3110 {
3111         return badblocks_show(&rdev->badblocks, page, 1);
3112 }
3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3114 {
3115         return badblocks_store(&rdev->badblocks, page, len, 1);
3116 }
3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3119
3120 static struct attribute *rdev_default_attrs[] = {
3121         &rdev_state.attr,
3122         &rdev_errors.attr,
3123         &rdev_slot.attr,
3124         &rdev_offset.attr,
3125         &rdev_new_offset.attr,
3126         &rdev_size.attr,
3127         &rdev_recovery_start.attr,
3128         &rdev_bad_blocks.attr,
3129         &rdev_unack_bad_blocks.attr,
3130         NULL,
3131 };
3132 static ssize_t
3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3134 {
3135         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3136         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3137         struct mddev *mddev = rdev->mddev;
3138         ssize_t rv;
3139
3140         if (!entry->show)
3141                 return -EIO;
3142
3143         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3144         if (!rv) {
3145                 if (rdev->mddev == NULL)
3146                         rv = -EBUSY;
3147                 else
3148                         rv = entry->show(rdev, page);
3149                 mddev_unlock(mddev);
3150         }
3151         return rv;
3152 }
3153
3154 static ssize_t
3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3156               const char *page, size_t length)
3157 {
3158         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3159         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3160         ssize_t rv;
3161         struct mddev *mddev = rdev->mddev;
3162
3163         if (!entry->store)
3164                 return -EIO;
3165         if (!capable(CAP_SYS_ADMIN))
3166                 return -EACCES;
3167         rv = mddev ? mddev_lock(mddev): -EBUSY;
3168         if (!rv) {
3169                 if (rdev->mddev == NULL)
3170                         rv = -EBUSY;
3171                 else
3172                         rv = entry->store(rdev, page, length);
3173                 mddev_unlock(mddev);
3174         }
3175         return rv;
3176 }
3177
3178 static void rdev_free(struct kobject *ko)
3179 {
3180         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3181         kfree(rdev);
3182 }
3183 static const struct sysfs_ops rdev_sysfs_ops = {
3184         .show           = rdev_attr_show,
3185         .store          = rdev_attr_store,
3186 };
3187 static struct kobj_type rdev_ktype = {
3188         .release        = rdev_free,
3189         .sysfs_ops      = &rdev_sysfs_ops,
3190         .default_attrs  = rdev_default_attrs,
3191 };
3192
3193 int md_rdev_init(struct md_rdev *rdev)
3194 {
3195         rdev->desc_nr = -1;
3196         rdev->saved_raid_disk = -1;
3197         rdev->raid_disk = -1;
3198         rdev->flags = 0;
3199         rdev->data_offset = 0;
3200         rdev->new_data_offset = 0;
3201         rdev->sb_events = 0;
3202         rdev->last_read_error.tv_sec  = 0;
3203         rdev->last_read_error.tv_nsec = 0;
3204         rdev->sb_loaded = 0;
3205         rdev->bb_page = NULL;
3206         atomic_set(&rdev->nr_pending, 0);
3207         atomic_set(&rdev->read_errors, 0);
3208         atomic_set(&rdev->corrected_errors, 0);
3209
3210         INIT_LIST_HEAD(&rdev->same_set);
3211         init_waitqueue_head(&rdev->blocked_wait);
3212
3213         /* Add space to store bad block list.
3214          * This reserves the space even on arrays where it cannot
3215          * be used - I wonder if that matters
3216          */
3217         rdev->badblocks.count = 0;
3218         rdev->badblocks.shift = 0;
3219         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3220         seqlock_init(&rdev->badblocks.lock);
3221         if (rdev->badblocks.page == NULL)
3222                 return -ENOMEM;
3223
3224         return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(md_rdev_init);
3227 /*
3228  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3229  *
3230  * mark the device faulty if:
3231  *
3232  *   - the device is nonexistent (zero size)
3233  *   - the device has no valid superblock
3234  *
3235  * a faulty rdev _never_ has rdev->sb set.
3236  */
3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3238 {
3239         char b[BDEVNAME_SIZE];
3240         int err;
3241         struct md_rdev *rdev;
3242         sector_t size;
3243
3244         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3245         if (!rdev) {
3246                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3247                 return ERR_PTR(-ENOMEM);
3248         }
3249
3250         err = md_rdev_init(rdev);
3251         if (err)
3252                 goto abort_free;
3253         err = alloc_disk_sb(rdev);
3254         if (err)
3255                 goto abort_free;
3256
3257         err = lock_rdev(rdev, newdev, super_format == -2);
3258         if (err)
3259                 goto abort_free;
3260
3261         kobject_init(&rdev->kobj, &rdev_ktype);
3262
3263         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3264         if (!size) {
3265                 printk(KERN_WARNING 
3266                         "md: %s has zero or unknown size, marking faulty!\n",
3267                         bdevname(rdev->bdev,b));
3268                 err = -EINVAL;
3269                 goto abort_free;
3270         }
3271
3272         if (super_format >= 0) {
3273                 err = super_types[super_format].
3274                         load_super(rdev, NULL, super_minor);
3275                 if (err == -EINVAL) {
3276                         printk(KERN_WARNING
3277                                 "md: %s does not have a valid v%d.%d "
3278                                "superblock, not importing!\n",
3279                                 bdevname(rdev->bdev,b),
3280                                super_format, super_minor);
3281                         goto abort_free;
3282                 }
3283                 if (err < 0) {
3284                         printk(KERN_WARNING 
3285                                 "md: could not read %s's sb, not importing!\n",
3286                                 bdevname(rdev->bdev,b));
3287                         goto abort_free;
3288                 }
3289         }
3290         if (super_format == -1)
3291                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3292                 rdev->badblocks.shift = -1;
3293
3294         return rdev;
3295
3296 abort_free:
3297         if (rdev->bdev)
3298                 unlock_rdev(rdev);
3299         md_rdev_clear(rdev);
3300         kfree(rdev);
3301         return ERR_PTR(err);
3302 }
3303
3304 /*
3305  * Check a full RAID array for plausibility
3306  */
3307
3308
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311         int i;
3312         struct md_rdev *rdev, *freshest, *tmp;
3313         char b[BDEVNAME_SIZE];
3314
3315         freshest = NULL;
3316         rdev_for_each_safe(rdev, tmp, mddev)
3317                 switch (super_types[mddev->major_version].
3318                         load_super(rdev, freshest, mddev->minor_version)) {
3319                 case 1:
3320                         freshest = rdev;
3321                         break;
3322                 case 0:
3323                         break;
3324                 default:
3325                         printk( KERN_ERR \
3326                                 "md: fatal superblock inconsistency in %s"
3327                                 " -- removing from array\n", 
3328                                 bdevname(rdev->bdev,b));
3329                         kick_rdev_from_array(rdev);
3330                 }
3331
3332
3333         super_types[mddev->major_version].
3334                 validate_super(mddev, freshest);
3335
3336         i = 0;
3337         rdev_for_each_safe(rdev, tmp, mddev) {
3338                 if (mddev->max_disks &&
3339                     (rdev->desc_nr >= mddev->max_disks ||
3340                      i > mddev->max_disks)) {
3341                         printk(KERN_WARNING
3342                                "md: %s: %s: only %d devices permitted\n",
3343                                mdname(mddev), bdevname(rdev->bdev, b),
3344                                mddev->max_disks);
3345                         kick_rdev_from_array(rdev);
3346                         continue;
3347                 }
3348                 if (rdev != freshest)
3349                         if (super_types[mddev->major_version].
3350                             validate_super(mddev, rdev)) {
3351                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3352                                         " from array!\n",
3353                                         bdevname(rdev->bdev,b));
3354                                 kick_rdev_from_array(rdev);
3355                                 continue;
3356                         }
3357                 if (mddev->level == LEVEL_MULTIPATH) {
3358                         rdev->desc_nr = i++;
3359                         rdev->raid_disk = rdev->desc_nr;
3360                         set_bit(In_sync, &rdev->flags);
3361                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362                         rdev->raid_disk = -1;
3363                         clear_bit(In_sync, &rdev->flags);
3364                 }
3365         }
3366 }
3367
3368 /* Read a fixed-point number.
3369  * Numbers in sysfs attributes should be in "standard" units where
3370  * possible, so time should be in seconds.
3371  * However we internally use a a much smaller unit such as 
3372  * milliseconds or jiffies.
3373  * This function takes a decimal number with a possible fractional
3374  * component, and produces an integer which is the result of
3375  * multiplying that number by 10^'scale'.
3376  * all without any floating-point arithmetic.
3377  */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380         unsigned long result = 0;
3381         long decimals = -1;
3382         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383                 if (*cp == '.')
3384                         decimals = 0;
3385                 else if (decimals < scale) {
3386                         unsigned int value;
3387                         value = *cp - '0';
3388                         result = result * 10 + value;
3389                         if (decimals >= 0)
3390                                 decimals++;
3391                 }
3392                 cp++;
3393         }
3394         if (*cp == '\n')
3395                 cp++;
3396         if (*cp)
3397                 return -EINVAL;
3398         if (decimals < 0)
3399                 decimals = 0;
3400         while (decimals < scale) {
3401                 result *= 10;
3402                 decimals ++;
3403         }
3404         *res = result;
3405         return 0;
3406 }
3407
3408
3409 static void md_safemode_timeout(unsigned long data);
3410
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414         int msec = (mddev->safemode_delay*1000)/HZ;
3415         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420         unsigned long msec;
3421
3422         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423                 return -EINVAL;
3424         if (msec == 0)
3425                 mddev->safemode_delay = 0;
3426         else {
3427                 unsigned long old_delay = mddev->safemode_delay;
3428                 mddev->safemode_delay = (msec*HZ)/1000;
3429                 if (mddev->safemode_delay == 0)
3430                         mddev->safemode_delay = 1;
3431                 if (mddev->safemode_delay < old_delay)
3432                         md_safemode_timeout((unsigned long)mddev);
3433         }
3434         return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442         struct md_personality *p = mddev->pers;
3443         if (p)
3444                 return sprintf(page, "%s\n", p->name);
3445         else if (mddev->clevel[0])
3446                 return sprintf(page, "%s\n", mddev->clevel);
3447         else if (mddev->level != LEVEL_NONE)
3448                 return sprintf(page, "%d\n", mddev->level);
3449         else
3450                 return 0;
3451 }
3452
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456         char clevel[16];
3457         ssize_t rv = len;
3458         struct md_personality *pers;
3459         long level;
3460         void *priv;
3461         struct md_rdev *rdev;
3462
3463         if (mddev->pers == NULL) {
3464                 if (len == 0)
3465                         return 0;
3466                 if (len >= sizeof(mddev->clevel))
3467                         return -ENOSPC;
3468                 strncpy(mddev->clevel, buf, len);
3469                 if (mddev->clevel[len-1] == '\n')
3470                         len--;
3471                 mddev->clevel[len] = 0;
3472                 mddev->level = LEVEL_NONE;
3473                 return rv;
3474         }
3475
3476         /* request to change the personality.  Need to ensure:
3477          *  - array is not engaged in resync/recovery/reshape
3478          *  - old personality can be suspended
3479          *  - new personality will access other array.
3480          */
3481
3482         if (mddev->sync_thread ||
3483             mddev->reshape_position != MaxSector ||
3484             mddev->sysfs_active)
3485                 return -EBUSY;
3486
3487         if (!mddev->pers->quiesce) {
3488                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489                        mdname(mddev), mddev->pers->name);
3490                 return -EINVAL;
3491         }
3492
3493         /* Now find the new personality */
3494         if (len == 0 || len >= sizeof(clevel))
3495                 return -EINVAL;
3496         strncpy(clevel, buf, len);
3497         if (clevel[len-1] == '\n')
3498                 len--;
3499         clevel[len] = 0;
3500         if (strict_strtol(clevel, 10, &level))
3501                 level = LEVEL_NONE;
3502
3503         if (request_module("md-%s", clevel) != 0)
3504                 request_module("md-level-%s", clevel);
3505         spin_lock(&pers_lock);
3506         pers = find_pers(level, clevel);
3507         if (!pers || !try_module_get(pers->owner)) {
3508                 spin_unlock(&pers_lock);
3509                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510                 return -EINVAL;
3511         }
3512         spin_unlock(&pers_lock);
3513
3514         if (pers == mddev->pers) {
3515                 /* Nothing to do! */
3516                 module_put(pers->owner);
3517                 return rv;
3518         }
3519         if (!pers->takeover) {
3520                 module_put(pers->owner);
3521                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522                        mdname(mddev), clevel);
3523                 return -EINVAL;
3524         }
3525
3526         rdev_for_each(rdev, mddev)
3527                 rdev->new_raid_disk = rdev->raid_disk;
3528
3529         /* ->takeover must set new_* and/or delta_disks
3530          * if it succeeds, and may set them when it fails.
3531          */
3532         priv = pers->takeover(mddev);
3533         if (IS_ERR(priv)) {
3534                 mddev->new_level = mddev->level;
3535                 mddev->new_layout = mddev->layout;
3536                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3537                 mddev->raid_disks -= mddev->delta_disks;
3538                 mddev->delta_disks = 0;
3539                 mddev->reshape_backwards = 0;
3540                 module_put(pers->owner);
3541                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542                        mdname(mddev), clevel);
3543                 return PTR_ERR(priv);
3544         }
3545
3546         /* Looks like we have a winner */
3547         mddev_suspend(mddev);
3548         mddev->pers->stop(mddev);
3549         
3550         if (mddev->pers->sync_request == NULL &&
3551             pers->sync_request != NULL) {
3552                 /* need to add the md_redundancy_group */
3553                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554                         printk(KERN_WARNING
3555                                "md: cannot register extra attributes for %s\n",
3556                                mdname(mddev));
3557                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558         }               
3559         if (mddev->pers->sync_request != NULL &&
3560             pers->sync_request == NULL) {
3561                 /* need to remove the md_redundancy_group */
3562                 if (mddev->to_remove == NULL)
3563                         mddev->to_remove = &md_redundancy_group;
3564         }
3565
3566         if (mddev->pers->sync_request == NULL &&
3567             mddev->external) {
3568                 /* We are converting from a no-redundancy array
3569                  * to a redundancy array and metadata is managed
3570                  * externally so we need to be sure that writes
3571                  * won't block due to a need to transition
3572                  *      clean->dirty
3573                  * until external management is started.
3574                  */
3575                 mddev->in_sync = 0;
3576                 mddev->safemode_delay = 0;
3577                 mddev->safemode = 0;
3578         }
3579
3580         rdev_for_each(rdev, mddev) {
3581                 if (rdev->raid_disk < 0)
3582                         continue;
3583                 if (rdev->new_raid_disk >= mddev->raid_disks)
3584                         rdev->new_raid_disk = -1;
3585                 if (rdev->new_raid_disk == rdev->raid_disk)
3586                         continue;
3587                 sysfs_unlink_rdev(mddev, rdev);
3588         }
3589         rdev_for_each(rdev, mddev) {
3590                 if (rdev->raid_disk < 0)
3591                         continue;
3592                 if (rdev->new_raid_disk == rdev->raid_disk)
3593                         continue;
3594                 rdev->raid_disk = rdev->new_raid_disk;
3595                 if (rdev->raid_disk < 0)
3596                         clear_bit(In_sync, &rdev->flags);
3597                 else {
3598                         if (sysfs_link_rdev(mddev, rdev))
3599                                 printk(KERN_WARNING "md: cannot register rd%d"
3600                                        " for %s after level change\n",
3601                                        rdev->raid_disk, mdname(mddev));
3602                 }
3603         }
3604
3605         module_put(mddev->pers->owner);
3606         mddev->pers = pers;
3607         mddev->private = priv;
3608         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609         mddev->level = mddev->new_level;
3610         mddev->layout = mddev->new_layout;
3611         mddev->chunk_sectors = mddev->new_chunk_sectors;
3612         mddev->delta_disks = 0;
3613         mddev->reshape_backwards = 0;
3614         mddev->degraded = 0;
3615         if (mddev->pers->sync_request == NULL) {
3616                 /* this is now an array without redundancy, so
3617                  * it must always be in_sync
3618                  */
3619                 mddev->in_sync = 1;
3620                 del_timer_sync(&mddev->safemode_timer);
3621         }
3622         pers->run(mddev);
3623         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624         mddev_resume(mddev);
3625         sysfs_notify(&mddev->kobj, NULL, "level");
3626         md_new_event(mddev);
3627         return rv;
3628 }
3629
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632
3633
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637         /* just a number, not meaningful for all levels */
3638         if (mddev->reshape_position != MaxSector &&
3639             mddev->layout != mddev->new_layout)
3640                 return sprintf(page, "%d (%d)\n",
3641                                mddev->new_layout, mddev->layout);
3642         return sprintf(page, "%d\n", mddev->layout);
3643 }
3644
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648         char *e;
3649         unsigned long n = simple_strtoul(buf, &e, 10);
3650
3651         if (!*buf || (*e && *e != '\n'))
3652                 return -EINVAL;
3653
3654         if (mddev->pers) {
3655                 int err;
3656                 if (mddev->pers->check_reshape == NULL)
3657                         return -EBUSY;
3658                 mddev->new_layout = n;
3659                 err = mddev->pers->check_reshape(mddev);
3660                 if (err) {
3661                         mddev->new_layout = mddev->layout;
3662                         return err;
3663                 }
3664         } else {
3665                 mddev->new_layout = n;
3666                 if (mddev->reshape_position == MaxSector)
3667                         mddev->layout = n;
3668         }
3669         return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678         if (mddev->raid_disks == 0)
3679                 return 0;
3680         if (mddev->reshape_position != MaxSector &&
3681             mddev->delta_disks != 0)
3682                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683                                mddev->raid_disks - mddev->delta_disks);
3684         return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692         char *e;
3693         int rv = 0;
3694         unsigned long n = simple_strtoul(buf, &e, 10);
3695
3696         if (!*buf || (*e && *e != '\n'))
3697                 return -EINVAL;
3698
3699         if (mddev->pers)
3700                 rv = update_raid_disks(mddev, n);
3701         else if (mddev->reshape_position != MaxSector) {
3702                 struct md_rdev *rdev;
3703                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3704
3705                 rdev_for_each(rdev, mddev) {
3706                         if (olddisks < n &&
3707                             rdev->data_offset < rdev->new_data_offset)
3708                                 return -EINVAL;
3709                         if (olddisks > n &&
3710                             rdev->data_offset > rdev->new_data_offset)
3711                                 return -EINVAL;
3712                 }
3713                 mddev->delta_disks = n - olddisks;
3714                 mddev->raid_disks = n;
3715                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3716         } else
3717                 mddev->raid_disks = n;
3718         return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726         if (mddev->reshape_position != MaxSector &&
3727             mddev->chunk_sectors != mddev->new_chunk_sectors)
3728                 return sprintf(page, "%d (%d)\n",
3729                                mddev->new_chunk_sectors << 9,
3730                                mddev->chunk_sectors << 9);
3731         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737         char *e;
3738         unsigned long n = simple_strtoul(buf, &e, 10);
3739
3740         if (!*buf || (*e && *e != '\n'))
3741                 return -EINVAL;
3742
3743         if (mddev->pers) {
3744                 int err;
3745                 if (mddev->pers->check_reshape == NULL)
3746                         return -EBUSY;
3747                 mddev->new_chunk_sectors = n >> 9;
3748                 err = mddev->pers->check_reshape(mddev);
3749                 if (err) {
3750                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3751                         return err;
3752                 }
3753         } else {
3754                 mddev->new_chunk_sectors = n >> 9;
3755                 if (mddev->reshape_position == MaxSector)
3756                         mddev->chunk_sectors = n >> 9;
3757         }
3758         return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766         if (mddev->recovery_cp == MaxSector)
3767                 return sprintf(page, "none\n");
3768         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774         char *e;
3775         unsigned long long n = simple_strtoull(buf, &e, 10);
3776
3777         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778                 return -EBUSY;
3779         if (cmd_match(buf, "none"))
3780                 n = MaxSector;
3781         else if (!*buf || (*e && *e != '\n'))
3782                 return -EINVAL;
3783
3784         mddev->recovery_cp = n;
3785         return len;
3786 }
3787 static struct md_sysfs_entry md_resync_start =
3788 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3789
3790 /*
3791  * The array state can be:
3792  *
3793  * clear
3794  *     No devices, no size, no level
3795  *     Equivalent to STOP_ARRAY ioctl
3796  * inactive
3797  *     May have some settings, but array is not active
3798  *        all IO results in error
3799  *     When written, doesn't tear down array, but just stops it
3800  * suspended (not supported yet)
3801  *     All IO requests will block. The array can be reconfigured.
3802  *     Writing this, if accepted, will block until array is quiescent
3803  * readonly
3804  *     no resync can happen.  no superblocks get written.
3805  *     write requests fail
3806  * read-auto
3807  *     like readonly, but behaves like 'clean' on a write request.
3808  *
3809  * clean - no pending writes, but otherwise active.
3810  *     When written to inactive array, starts without resync
3811  *     If a write request arrives then
3812  *       if metadata is known, mark 'dirty' and switch to 'active'.
3813  *       if not known, block and switch to write-pending
3814  *     If written to an active array that has pending writes, then fails.
3815  * active
3816  *     fully active: IO and resync can be happening.
3817  *     When written to inactive array, starts with resync
3818  *
3819  * write-pending
3820  *     clean, but writes are blocked waiting for 'active' to be written.
3821  *
3822  * active-idle
3823  *     like active, but no writes have been seen for a while (100msec).
3824  *
3825  */
3826 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3827                    write_pending, active_idle, bad_word};
3828 static char *array_states[] = {
3829         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3830         "write-pending", "active-idle", NULL };
3831
3832 static int match_word(const char *word, char **list)
3833 {
3834         int n;
3835         for (n=0; list[n]; n++)
3836                 if (cmd_match(word, list[n]))
3837                         break;
3838         return n;
3839 }
3840
3841 static ssize_t
3842 array_state_show(struct mddev *mddev, char *page)
3843 {
3844         enum array_state st = inactive;
3845
3846         if (mddev->pers)
3847                 switch(mddev->ro) {
3848                 case 1:
3849                         st = readonly;
3850                         break;
3851                 case 2:
3852                         st = read_auto;
3853                         break;
3854                 case 0:
3855                         if (mddev->in_sync)
3856                                 st = clean;
3857                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3858                                 st = write_pending;
3859                         else if (mddev->safemode)
3860                                 st = active_idle;
3861                         else
3862                                 st = active;
3863                 }
3864         else {
3865                 if (list_empty(&mddev->disks) &&
3866                     mddev->raid_disks == 0 &&
3867                     mddev->dev_sectors == 0)
3868                         st = clear;
3869                 else
3870                         st = inactive;
3871         }
3872         return sprintf(page, "%s\n", array_states[st]);
3873 }
3874
3875 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3876 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3877 static int do_md_run(struct mddev * mddev);
3878 static int restart_array(struct mddev *mddev);
3879
3880 static ssize_t
3881 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3882 {
3883         int err = -EINVAL;
3884         enum array_state st = match_word(buf, array_states);
3885         switch(st) {
3886         case bad_word:
3887                 break;
3888         case clear:
3889                 /* stopping an active array */
3890                 err = do_md_stop(mddev, 0, NULL);
3891                 break;
3892         case inactive:
3893                 /* stopping an active array */
3894                 if (mddev->pers)
3895                         err = do_md_stop(mddev, 2, NULL);
3896                 else
3897                         err = 0; /* already inactive */
3898                 break;
3899         case suspended:
3900                 break; /* not supported yet */
3901         case readonly:
3902                 if (mddev->pers)
3903                         err = md_set_readonly(mddev, NULL);
3904                 else {
3905                         mddev->ro = 1;
3906                         set_disk_ro(mddev->gendisk, 1);
3907                         err = do_md_run(mddev);
3908                 }
3909                 break;
3910         case read_auto:
3911                 if (mddev->pers) {
3912                         if (mddev->ro == 0)
3913                                 err = md_set_readonly(mddev, NULL);
3914                         else if (mddev->ro == 1)
3915                                 err = restart_array(mddev);
3916                         if (err == 0) {
3917                                 mddev->ro = 2;
3918                                 set_disk_ro(mddev->gendisk, 0);
3919                         }
3920                 } else {
3921                         mddev->ro = 2;
3922                         err = do_md_run(mddev);
3923                 }
3924                 break;
3925         case clean:
3926                 if (mddev->pers) {
3927                         restart_array(mddev);
3928                         spin_lock_irq(&mddev->write_lock);
3929                         if (atomic_read(&mddev->writes_pending) == 0) {
3930                                 if (mddev->in_sync == 0) {
3931                                         mddev->in_sync = 1;
3932                                         if (mddev->safemode == 1)
3933                                                 mddev->safemode = 0;
3934                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3935                                 }
3936                                 err = 0;
3937                         } else
3938                                 err = -EBUSY;
3939                         spin_unlock_irq(&mddev->write_lock);
3940                 } else
3941                         err = -EINVAL;
3942                 break;
3943         case active:
3944                 if (mddev->pers) {
3945                         restart_array(mddev);
3946                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3947                         wake_up(&mddev->sb_wait);
3948                         err = 0;
3949                 } else {
3950                         mddev->ro = 0;
3951                         set_disk_ro(mddev->gendisk, 0);
3952                         err = do_md_run(mddev);
3953                 }
3954                 break;
3955         case write_pending:
3956         case active_idle:
3957                 /* these cannot be set */
3958                 break;
3959         }
3960         if (err)
3961                 return err;
3962         else {
3963                 if (mddev->hold_active == UNTIL_IOCTL)
3964                         mddev->hold_active = 0;
3965                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3966                 return len;
3967         }
3968 }
3969 static struct md_sysfs_entry md_array_state =
3970 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3971
3972 static ssize_t
3973 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3974         return sprintf(page, "%d\n",
3975                        atomic_read(&mddev->max_corr_read_errors));
3976 }
3977
3978 static ssize_t
3979 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3980 {
3981         char *e;
3982         unsigned long n = simple_strtoul(buf, &e, 10);
3983
3984         if (*buf && (*e == 0 || *e == '\n')) {
3985                 atomic_set(&mddev->max_corr_read_errors, n);
3986                 return len;
3987         }
3988         return -EINVAL;
3989 }
3990
3991 static struct md_sysfs_entry max_corr_read_errors =
3992 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3993         max_corrected_read_errors_store);
3994
3995 static ssize_t
3996 null_show(struct mddev *mddev, char *page)
3997 {
3998         return -EINVAL;
3999 }
4000
4001 static ssize_t
4002 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4003 {
4004         /* buf must be %d:%d\n? giving major and minor numbers */
4005         /* The new device is added to the array.
4006          * If the array has a persistent superblock, we read the
4007          * superblock to initialise info and check validity.
4008          * Otherwise, only checking done is that in bind_rdev_to_array,
4009          * which mainly checks size.
4010          */
4011         char *e;
4012         int major = simple_strtoul(buf, &e, 10);
4013         int minor;
4014         dev_t dev;
4015         struct md_rdev *rdev;
4016         int err;
4017
4018         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4019                 return -EINVAL;
4020         minor = simple_strtoul(e+1, &e, 10);
4021         if (*e && *e != '\n')
4022                 return -EINVAL;
4023         dev = MKDEV(major, minor);
4024         if (major != MAJOR(dev) ||
4025             minor != MINOR(dev))
4026                 return -EOVERFLOW;
4027
4028
4029         if (mddev->persistent) {
4030                 rdev = md_import_device(dev, mddev->major_version,
4031                                         mddev->minor_version);
4032                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4033                         struct md_rdev *rdev0
4034                                 = list_entry(mddev->disks.next,
4035                                              struct md_rdev, same_set);
4036                         err = super_types[mddev->major_version]
4037                                 .load_super(rdev, rdev0, mddev->minor_version);
4038                         if (err < 0)
4039                                 goto out;
4040                 }
4041         } else if (mddev->external)
4042                 rdev = md_import_device(dev, -2, -1);
4043         else
4044                 rdev = md_import_device(dev, -1, -1);
4045
4046         if (IS_ERR(rdev))
4047                 return PTR_ERR(rdev);
4048         err = bind_rdev_to_array(rdev, mddev);
4049  out:
4050         if (err)
4051                 export_rdev(rdev);
4052         return err ? err : len;
4053 }
4054
4055 static struct md_sysfs_entry md_new_device =
4056 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4057
4058 static ssize_t
4059 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4060 {
4061         char *end;
4062         unsigned long chunk, end_chunk;
4063
4064         if (!mddev->bitmap)
4065                 goto out;
4066         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4067         while (*buf) {
4068                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4069                 if (buf == end) break;
4070                 if (*end == '-') { /* range */
4071                         buf = end + 1;
4072                         end_chunk = simple_strtoul(buf, &end, 0);
4073                         if (buf == end) break;
4074                 }
4075                 if (*end && !isspace(*end)) break;
4076                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4077                 buf = skip_spaces(end);
4078         }
4079         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4080 out:
4081         return len;
4082 }
4083
4084 static struct md_sysfs_entry md_bitmap =
4085 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4086
4087 static ssize_t
4088 size_show(struct mddev *mddev, char *page)
4089 {
4090         return sprintf(page, "%llu\n",
4091                 (unsigned long long)mddev->dev_sectors / 2);
4092 }
4093
4094 static int update_size(struct mddev *mddev, sector_t num_sectors);
4095
4096 static ssize_t
4097 size_store(struct mddev *mddev, const char *buf, size_t len)
4098 {
4099         /* If array is inactive, we can reduce the component size, but
4100          * not increase it (except from 0).
4101          * If array is active, we can try an on-line resize
4102          */
4103         sector_t sectors;
4104         int err = strict_blocks_to_sectors(buf, &sectors);
4105
4106         if (err < 0)
4107                 return err;
4108         if (mddev->pers) {
4109                 err = update_size(mddev, sectors);
4110                 md_update_sb(mddev, 1);
4111         } else {
4112                 if (mddev->dev_sectors == 0 ||
4113                     mddev->dev_sectors > sectors)
4114                         mddev->dev_sectors = sectors;
4115                 else
4116                         err = -ENOSPC;
4117         }
4118         return err ? err : len;
4119 }
4120
4121 static struct md_sysfs_entry md_size =
4122 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4123
4124
4125 /* Metdata version.
4126  * This is one of
4127  *   'none' for arrays with no metadata (good luck...)
4128  *   'external' for arrays with externally managed metadata,
4129  * or N.M for internally known formats
4130  */
4131 static ssize_t
4132 metadata_show(struct mddev *mddev, char *page)
4133 {
4134         if (mddev->persistent)
4135                 return sprintf(page, "%d.%d\n",
4136                                mddev->major_version, mddev->minor_version);
4137         else if (mddev->external)
4138                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4139         else
4140                 return sprintf(page, "none\n");
4141 }
4142
4143 static ssize_t
4144 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4145 {
4146         int major, minor;
4147         char *e;
4148         /* Changing the details of 'external' metadata is
4149          * always permitted.  Otherwise there must be
4150          * no devices attached to the array.
4151          */
4152         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4153                 ;
4154         else if (!list_empty(&mddev->disks))
4155                 return -EBUSY;
4156
4157         if (cmd_match(buf, "none")) {
4158                 mddev->persistent = 0;
4159                 mddev->external = 0;
4160                 mddev->major_version = 0;
4161                 mddev->minor_version = 90;
4162                 return len;
4163         }
4164         if (strncmp(buf, "external:", 9) == 0) {
4165                 size_t namelen = len-9;
4166                 if (namelen >= sizeof(mddev->metadata_type))
4167                         namelen = sizeof(mddev->metadata_type)-1;
4168                 strncpy(mddev->metadata_type, buf+9, namelen);
4169                 mddev->metadata_type[namelen] = 0;
4170                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4171                         mddev->metadata_type[--namelen] = 0;
4172                 mddev->persistent = 0;
4173                 mddev->external = 1;
4174                 mddev->major_version = 0;
4175                 mddev->minor_version = 90;
4176                 return len;
4177         }
4178         major = simple_strtoul(buf, &e, 10);
4179         if (e==buf || *e != '.')
4180                 return -EINVAL;
4181         buf = e+1;
4182         minor = simple_strtoul(buf, &e, 10);
4183         if (e==buf || (*e && *e != '\n') )
4184                 return -EINVAL;
4185         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4186                 return -ENOENT;
4187         mddev->major_version = major;
4188         mddev->minor_version = minor;
4189         mddev->persistent = 1;
4190         mddev->external = 0;
4191         return len;
4192 }
4193
4194 static struct md_sysfs_entry md_metadata =
4195 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4196
4197 static ssize_t
4198 action_show(struct mddev *mddev, char *page)
4199 {
4200         char *type = "idle";
4201         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4202                 type = "frozen";
4203         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4204             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4205                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4206                         type = "reshape";
4207                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4208                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4209                                 type = "resync";
4210                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4211                                 type = "check";
4212                         else
4213                                 type = "repair";
4214                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4215                         type = "recover";
4216         }
4217         return sprintf(page, "%s\n", type);
4218 }
4219
4220 static void reap_sync_thread(struct mddev *mddev);
4221
4222 static ssize_t
4223 action_store(struct mddev *mddev, const char *page, size_t len)
4224 {
4225         if (!mddev->pers || !mddev->pers->sync_request)
4226                 return -EINVAL;
4227
4228         if (cmd_match(page, "frozen"))
4229                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4230         else
4231                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232
4233         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4234                 if (mddev->sync_thread) {
4235                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236                         reap_sync_thread(mddev);
4237                 }
4238         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240                 return -EBUSY;
4241         else if (cmd_match(page, "resync"))
4242                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4243         else if (cmd_match(page, "recover")) {
4244                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4245                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4246         } else if (cmd_match(page, "reshape")) {
4247                 int err;
4248                 if (mddev->pers->start_reshape == NULL)
4249                         return -EINVAL;
4250                 err = mddev->pers->start_reshape(mddev);
4251                 if (err)
4252                         return err;
4253                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4254         } else {
4255                 if (cmd_match(page, "check"))
4256                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4257                 else if (!cmd_match(page, "repair"))
4258                         return -EINVAL;
4259                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4260                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4261         }
4262         if (mddev->ro == 2) {
4263                 /* A write to sync_action is enough to justify
4264                  * canceling read-auto mode
4265                  */
4266                 mddev->ro = 0;
4267                 md_wakeup_thread(mddev->sync_thread);
4268         }
4269         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4270         md_wakeup_thread(mddev->thread);
4271         sysfs_notify_dirent_safe(mddev->sysfs_action);
4272         return len;
4273 }
4274
4275 static ssize_t
4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4277 {
4278         return sprintf(page, "%llu\n",
4279                        (unsigned long long)
4280                        atomic64_read(&mddev->resync_mismatches));
4281 }
4282
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285
4286
4287 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4288
4289 static ssize_t
4290 sync_min_show(struct mddev *mddev, char *page)
4291 {
4292         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4293                        mddev->sync_speed_min ? "local": "system");
4294 }
4295
4296 static ssize_t
4297 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299         int min;
4300         char *e;
4301         if (strncmp(buf, "system", 6)==0) {
4302                 mddev->sync_speed_min = 0;
4303                 return len;
4304         }
4305         min = simple_strtoul(buf, &e, 10);
4306         if (buf == e || (*e && *e != '\n') || min <= 0)
4307                 return -EINVAL;
4308         mddev->sync_speed_min = min;
4309         return len;
4310 }
4311
4312 static struct md_sysfs_entry md_sync_min =
4313 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4314
4315 static ssize_t
4316 sync_max_show(struct mddev *mddev, char *page)
4317 {
4318         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4319                        mddev->sync_speed_max ? "local": "system");
4320 }
4321
4322 static ssize_t
4323 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4324 {
4325         int max;
4326         char *e;
4327         if (strncmp(buf, "system", 6)==0) {
4328                 mddev->sync_speed_max = 0;
4329                 return len;
4330         }
4331         max = simple_strtoul(buf, &e, 10);
4332         if (buf == e || (*e && *e != '\n') || max <= 0)
4333                 return -EINVAL;
4334         mddev->sync_speed_max = max;
4335         return len;
4336 }
4337
4338 static struct md_sysfs_entry md_sync_max =
4339 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4340
4341 static ssize_t
4342 degraded_show(struct mddev *mddev, char *page)
4343 {
4344         return sprintf(page, "%d\n", mddev->degraded);
4345 }
4346 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4347
4348 static ssize_t
4349 sync_force_parallel_show(struct mddev *mddev, char *page)
4350 {
4351         return sprintf(page, "%d\n", mddev->parallel_resync);
4352 }
4353
4354 static ssize_t
4355 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357         long n;
4358
4359         if (strict_strtol(buf, 10, &n))
4360                 return -EINVAL;
4361
4362         if (n != 0 && n != 1)
4363                 return -EINVAL;
4364
4365         mddev->parallel_resync = n;
4366
4367         if (mddev->sync_thread)
4368                 wake_up(&resync_wait);
4369
4370         return len;
4371 }
4372
4373 /* force parallel resync, even with shared block devices */
4374 static struct md_sysfs_entry md_sync_force_parallel =
4375 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4376        sync_force_parallel_show, sync_force_parallel_store);
4377
4378 static ssize_t
4379 sync_speed_show(struct mddev *mddev, char *page)
4380 {
4381         unsigned long resync, dt, db;
4382         if (mddev->curr_resync == 0)
4383                 return sprintf(page, "none\n");
4384         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4385         dt = (jiffies - mddev->resync_mark) / HZ;
4386         if (!dt) dt++;
4387         db = resync - mddev->resync_mark_cnt;
4388         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4389 }
4390
4391 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4392
4393 static ssize_t
4394 sync_completed_show(struct mddev *mddev, char *page)
4395 {
4396         unsigned long long max_sectors, resync;
4397
4398         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4399                 return sprintf(page, "none\n");
4400
4401         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4402             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4403                 max_sectors = mddev->resync_max_sectors;
4404         else
4405                 max_sectors = mddev->dev_sectors;
4406
4407         resync = mddev->curr_resync_completed;
4408         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4409 }
4410
4411 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4412
4413 static ssize_t
4414 min_sync_show(struct mddev *mddev, char *page)
4415 {
4416         return sprintf(page, "%llu\n",
4417                        (unsigned long long)mddev->resync_min);
4418 }
4419 static ssize_t
4420 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4421 {
4422         unsigned long long min;
4423         if (strict_strtoull(buf, 10, &min))
4424                 return -EINVAL;
4425         if (min > mddev->resync_max)
4426                 return -EINVAL;
4427         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4428                 return -EBUSY;
4429
4430         /* Must be a multiple of chunk_size */
4431         if (mddev->chunk_sectors) {
4432                 sector_t temp = min;
4433                 if (sector_div(temp, mddev->chunk_sectors))
4434                         return -EINVAL;
4435         }
4436         mddev->resync_min = min;
4437
4438         return len;
4439 }
4440
4441 static struct md_sysfs_entry md_min_sync =
4442 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4443
4444 static ssize_t
4445 max_sync_show(struct mddev *mddev, char *page)
4446 {
4447         if (mddev->resync_max == MaxSector)
4448                 return sprintf(page, "max\n");
4449         else
4450                 return sprintf(page, "%llu\n",
4451                                (unsigned long long)mddev->resync_max);
4452 }
4453 static ssize_t
4454 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4455 {
4456         if (strncmp(buf, "max", 3) == 0)
4457                 mddev->resync_max = MaxSector;
4458         else {
4459                 unsigned long long max;
4460                 if (strict_strtoull(buf, 10, &max))
4461                         return -EINVAL;
4462                 if (max < mddev->resync_min)
4463                         return -EINVAL;
4464                 if (max < mddev->resync_max &&
4465                     mddev->ro == 0 &&
4466                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4467                         return -EBUSY;
4468
4469                 /* Must be a multiple of chunk_size */
4470                 if (mddev->chunk_sectors) {
4471                         sector_t temp = max;
4472                         if (sector_div(temp, mddev->chunk_sectors))
4473                                 return -EINVAL;
4474                 }
4475                 mddev->resync_max = max;
4476         }
4477         wake_up(&mddev->recovery_wait);
4478         return len;
4479 }
4480
4481 static struct md_sysfs_entry md_max_sync =
4482 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4483
4484 static ssize_t
4485 suspend_lo_show(struct mddev *mddev, char *page)
4486 {
4487         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4488 }
4489
4490 static ssize_t
4491 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4492 {
4493         char *e;
4494         unsigned long long new = simple_strtoull(buf, &e, 10);
4495         unsigned long long old = mddev->suspend_lo;
4496
4497         if (mddev->pers == NULL || 
4498             mddev->pers->quiesce == NULL)
4499                 return -EINVAL;
4500         if (buf == e || (*e && *e != '\n'))
4501                 return -EINVAL;
4502
4503         mddev->suspend_lo = new;
4504         if (new >= old)
4505                 /* Shrinking suspended region */
4506                 mddev->pers->quiesce(mddev, 2);
4507         else {
4508                 /* Expanding suspended region - need to wait */
4509                 mddev->pers->quiesce(mddev, 1);
4510                 mddev->pers->quiesce(mddev, 0);
4511         }
4512         return len;
4513 }
4514 static struct md_sysfs_entry md_suspend_lo =
4515 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4516
4517
4518 static ssize_t
4519 suspend_hi_show(struct mddev *mddev, char *page)
4520 {
4521         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4522 }
4523
4524 static ssize_t
4525 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4526 {
4527         char *e;
4528         unsigned long long new = simple_strtoull(buf, &e, 10);
4529         unsigned long long old = mddev->suspend_hi;
4530
4531         if (mddev->pers == NULL ||
4532             mddev->pers->quiesce == NULL)
4533                 return -EINVAL;
4534         if (buf == e || (*e && *e != '\n'))
4535                 return -EINVAL;
4536
4537         mddev->suspend_hi = new;
4538         if (new <= old)
4539                 /* Shrinking suspended region */
4540                 mddev->pers->quiesce(mddev, 2);
4541         else {
4542                 /* Expanding suspended region - need to wait */
4543                 mddev->pers->quiesce(mddev, 1);
4544                 mddev->pers->quiesce(mddev, 0);
4545         }
4546         return len;
4547 }
4548 static struct md_sysfs_entry md_suspend_hi =
4549 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4550
4551 static ssize_t
4552 reshape_position_show(struct mddev *mddev, char *page)
4553 {
4554         if (mddev->reshape_position != MaxSector)
4555                 return sprintf(page, "%llu\n",
4556                                (unsigned long long)mddev->reshape_position);
4557         strcpy(page, "none\n");
4558         return 5;
4559 }
4560
4561 static ssize_t
4562 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4563 {
4564         struct md_rdev *rdev;
4565         char *e;
4566         unsigned long long new = simple_strtoull(buf, &e, 10);
4567         if (mddev->pers)
4568                 return -EBUSY;
4569         if (buf == e || (*e && *e != '\n'))
4570                 return -EINVAL;
4571         mddev->reshape_position = new;
4572         mddev->delta_disks = 0;
4573         mddev->reshape_backwards = 0;
4574         mddev->new_level = mddev->level;
4575         mddev->new_layout = mddev->layout;
4576         mddev->new_chunk_sectors = mddev->chunk_sectors;
4577         rdev_for_each(rdev, mddev)
4578                 rdev->new_data_offset = rdev->data_offset;
4579         return len;
4580 }
4581
4582 static struct md_sysfs_entry md_reshape_position =
4583 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4584        reshape_position_store);
4585
4586 static ssize_t
4587 reshape_direction_show(struct mddev *mddev, char *page)
4588 {
4589         return sprintf(page, "%s\n",
4590                        mddev->reshape_backwards ? "backwards" : "forwards");
4591 }
4592
4593 static ssize_t
4594 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4595 {
4596         int backwards = 0;
4597         if (cmd_match(buf, "forwards"))
4598                 backwards = 0;
4599         else if (cmd_match(buf, "backwards"))
4600                 backwards = 1;
4601         else
4602                 return -EINVAL;
4603         if (mddev->reshape_backwards == backwards)
4604                 return len;
4605
4606         /* check if we are allowed to change */
4607         if (mddev->delta_disks)
4608                 return -EBUSY;
4609
4610         if (mddev->persistent &&
4611             mddev->major_version == 0)
4612                 return -EINVAL;
4613
4614         mddev->reshape_backwards = backwards;
4615         return len;
4616 }
4617
4618 static struct md_sysfs_entry md_reshape_direction =
4619 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4620        reshape_direction_store);
4621
4622 static ssize_t
4623 array_size_show(struct mddev *mddev, char *page)
4624 {
4625         if (mddev->external_size)
4626                 return sprintf(page, "%llu\n",
4627                                (unsigned long long)mddev->array_sectors/2);
4628         else
4629                 return sprintf(page, "default\n");
4630 }
4631
4632 static ssize_t
4633 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4634 {
4635         sector_t sectors;
4636
4637         if (strncmp(buf, "default", 7) == 0) {
4638                 if (mddev->pers)
4639                         sectors = mddev->pers->size(mddev, 0, 0);
4640                 else
4641                         sectors = mddev->array_sectors;
4642
4643                 mddev->external_size = 0;
4644         } else {
4645                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4646                         return -EINVAL;
4647                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4648                         return -E2BIG;
4649
4650                 mddev->external_size = 1;
4651         }
4652
4653         mddev->array_sectors = sectors;
4654         if (mddev->pers) {
4655                 set_capacity(mddev->gendisk, mddev->array_sectors);
4656                 revalidate_disk(mddev->gendisk);
4657         }
4658         return len;
4659 }
4660
4661 static struct md_sysfs_entry md_array_size =
4662 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4663        array_size_store);
4664
4665 static struct attribute *md_default_attrs[] = {
4666         &md_level.attr,
4667         &md_layout.attr,
4668         &md_raid_disks.attr,
4669         &md_chunk_size.attr,
4670         &md_size.attr,
4671         &md_resync_start.attr,
4672         &md_metadata.attr,
4673         &md_new_device.attr,
4674         &md_safe_delay.attr,
4675         &md_array_state.attr,
4676         &md_reshape_position.attr,
4677         &md_reshape_direction.attr,
4678         &md_array_size.attr,
4679         &max_corr_read_errors.attr,
4680         NULL,
4681 };
4682
4683 static struct attribute *md_redundancy_attrs[] = {
4684         &md_scan_mode.attr,
4685         &md_mismatches.attr,
4686         &md_sync_min.attr,
4687         &md_sync_max.attr,
4688         &md_sync_speed.attr,
4689         &md_sync_force_parallel.attr,
4690         &md_sync_completed.attr,
4691         &md_min_sync.attr,
4692         &md_max_sync.attr,
4693         &md_suspend_lo.attr,
4694         &md_suspend_hi.attr,
4695         &md_bitmap.attr,
4696         &md_degraded.attr,
4697         NULL,
4698 };
4699 static struct attribute_group md_redundancy_group = {
4700         .name = NULL,
4701         .attrs = md_redundancy_attrs,
4702 };
4703
4704
4705 static ssize_t
4706 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4707 {
4708         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4709         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4710         ssize_t rv;
4711
4712         if (!entry->show)
4713                 return -EIO;
4714         spin_lock(&all_mddevs_lock);
4715         if (list_empty(&mddev->all_mddevs)) {
4716                 spin_unlock(&all_mddevs_lock);
4717                 return -EBUSY;
4718         }
4719         mddev_get(mddev);
4720         spin_unlock(&all_mddevs_lock);
4721
4722         rv = mddev_lock(mddev);
4723         if (!rv) {
4724                 rv = entry->show(mddev, page);
4725                 mddev_unlock(mddev);
4726         }
4727         mddev_put(mddev);
4728         return rv;
4729 }
4730
4731 static ssize_t
4732 md_attr_store(struct kobject *kobj, struct attribute *attr,
4733               const char *page, size_t length)
4734 {
4735         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4736         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4737         ssize_t rv;
4738
4739         if (!entry->store)
4740                 return -EIO;
4741         if (!capable(CAP_SYS_ADMIN))
4742                 return -EACCES;
4743         spin_lock(&all_mddevs_lock);
4744         if (list_empty(&mddev->all_mddevs)) {
4745                 spin_unlock(&all_mddevs_lock);
4746                 return -EBUSY;
4747         }
4748         mddev_get(mddev);
4749         spin_unlock(&all_mddevs_lock);
4750         rv = mddev_lock(mddev);
4751         if (!rv) {
4752                 rv = entry->store(mddev, page, length);
4753                 mddev_unlock(mddev);
4754         }
4755         mddev_put(mddev);
4756         return rv;
4757 }
4758
4759 static void md_free(struct kobject *ko)
4760 {
4761         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4762
4763         if (mddev->sysfs_state)
4764                 sysfs_put(mddev->sysfs_state);
4765
4766         if (mddev->gendisk) {
4767                 del_gendisk(mddev->gendisk);
4768                 put_disk(mddev->gendisk);
4769         }
4770         if (mddev->queue)
4771                 blk_cleanup_queue(mddev->queue);
4772
4773         kfree(mddev);
4774 }
4775
4776 static const struct sysfs_ops md_sysfs_ops = {
4777         .show   = md_attr_show,
4778         .store  = md_attr_store,
4779 };
4780 static struct kobj_type md_ktype = {
4781         .release        = md_free,
4782         .sysfs_ops      = &md_sysfs_ops,
4783         .default_attrs  = md_default_attrs,
4784 };
4785
4786 int mdp_major = 0;
4787
4788 static void mddev_delayed_delete(struct work_struct *ws)
4789 {
4790         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4791
4792         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4793         kobject_del(&mddev->kobj);
4794         kobject_put(&mddev->kobj);
4795 }
4796
4797 static int md_alloc(dev_t dev, char *name)
4798 {
4799         static DEFINE_MUTEX(disks_mutex);
4800         struct mddev *mddev = mddev_find(dev);
4801         struct gendisk *disk;
4802         int partitioned;
4803         int shift;
4804         int unit;
4805         int error;
4806
4807         if (!mddev)
4808                 return -ENODEV;
4809
4810         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4811         shift = partitioned ? MdpMinorShift : 0;
4812         unit = MINOR(mddev->unit) >> shift;
4813
4814         /* wait for any previous instance of this device to be
4815          * completely removed (mddev_delayed_delete).
4816          */
4817         flush_workqueue(md_misc_wq);
4818
4819         mutex_lock(&disks_mutex);
4820         error = -EEXIST;
4821         if (mddev->gendisk)
4822                 goto abort;
4823
4824         if (name) {
4825                 /* Need to ensure that 'name' is not a duplicate.
4826                  */
4827                 struct mddev *mddev2;
4828                 spin_lock(&all_mddevs_lock);
4829
4830                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4831                         if (mddev2->gendisk &&
4832                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4833                                 spin_unlock(&all_mddevs_lock);
4834                                 goto abort;
4835                         }
4836                 spin_unlock(&all_mddevs_lock);
4837         }
4838
4839         error = -ENOMEM;
4840         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4841         if (!mddev->queue)
4842                 goto abort;
4843         mddev->queue->queuedata = mddev;
4844
4845         blk_queue_make_request(mddev->queue, md_make_request);
4846         blk_set_stacking_limits(&mddev->queue->limits);
4847
4848         disk = alloc_disk(1 << shift);
4849         if (!disk) {
4850                 blk_cleanup_queue(mddev->queue);
4851                 mddev->queue = NULL;
4852                 goto abort;
4853         }
4854         disk->major = MAJOR(mddev->unit);
4855         disk->first_minor = unit << shift;
4856         if (name)
4857                 strcpy(disk->disk_name, name);
4858         else if (partitioned)
4859                 sprintf(disk->disk_name, "md_d%d", unit);
4860         else
4861                 sprintf(disk->disk_name, "md%d", unit);
4862         disk->fops = &md_fops;
4863         disk->private_data = mddev;
4864         disk->queue = mddev->queue;
4865         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4866         /* Allow extended partitions.  This makes the
4867          * 'mdp' device redundant, but we can't really
4868          * remove it now.
4869          */
4870         disk->flags |= GENHD_FL_EXT_DEVT;
4871         mddev->gendisk = disk;
4872         /* As soon as we call add_disk(), another thread could get
4873          * through to md_open, so make sure it doesn't get too far
4874          */
4875         mutex_lock(&mddev->open_mutex);
4876         add_disk(disk);
4877
4878         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4879                                      &disk_to_dev(disk)->kobj, "%s", "md");
4880         if (error) {
4881                 /* This isn't possible, but as kobject_init_and_add is marked
4882                  * __must_check, we must do something with the result
4883                  */
4884                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4885                        disk->disk_name);
4886                 error = 0;
4887         }
4888         if (mddev->kobj.sd &&
4889             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4890                 printk(KERN_DEBUG "pointless warning\n");
4891         mutex_unlock(&mddev->open_mutex);
4892  abort:
4893         mutex_unlock(&disks_mutex);
4894         if (!error && mddev->kobj.sd) {
4895                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4896                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4897         }
4898         mddev_put(mddev);
4899         return error;
4900 }
4901
4902 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4903 {
4904         md_alloc(dev, NULL);
4905         return NULL;
4906 }
4907
4908 static int add_named_array(const char *val, struct kernel_param *kp)
4909 {
4910         /* val must be "md_*" where * is not all digits.
4911          * We allocate an array with a large free minor number, and
4912          * set the name to val.  val must not already be an active name.
4913          */
4914         int len = strlen(val);
4915         char buf[DISK_NAME_LEN];
4916
4917         while (len && val[len-1] == '\n')
4918                 len--;
4919         if (len >= DISK_NAME_LEN)
4920                 return -E2BIG;
4921         strlcpy(buf, val, len+1);
4922         if (strncmp(buf, "md_", 3) != 0)
4923                 return -EINVAL;
4924         return md_alloc(0, buf);
4925 }
4926
4927 static void md_safemode_timeout(unsigned long data)
4928 {
4929         struct mddev *mddev = (struct mddev *) data;
4930
4931         if (!atomic_read(&mddev->writes_pending)) {
4932                 mddev->safemode = 1;
4933                 if (mddev->external)
4934                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4935         }
4936         md_wakeup_thread(mddev->thread);
4937 }
4938
4939 static int start_dirty_degraded;
4940
4941 int md_run(struct mddev *mddev)
4942 {
4943         int err;
4944         struct md_rdev *rdev;
4945         struct md_personality *pers;
4946
4947         if (list_empty(&mddev->disks))
4948                 /* cannot run an array with no devices.. */
4949                 return -EINVAL;
4950
4951         if (mddev->pers)
4952                 return -EBUSY;
4953         /* Cannot run until previous stop completes properly */
4954         if (mddev->sysfs_active)
4955                 return -EBUSY;
4956
4957         /*
4958          * Analyze all RAID superblock(s)
4959          */
4960         if (!mddev->raid_disks) {
4961                 if (!mddev->persistent)
4962                         return -EINVAL;
4963                 analyze_sbs(mddev);
4964         }
4965
4966         if (mddev->level != LEVEL_NONE)
4967                 request_module("md-level-%d", mddev->level);
4968         else if (mddev->clevel[0])
4969                 request_module("md-%s", mddev->clevel);
4970
4971         /*
4972          * Drop all container device buffers, from now on
4973          * the only valid external interface is through the md
4974          * device.
4975          */
4976         rdev_for_each(rdev, mddev) {
4977                 if (test_bit(Faulty, &rdev->flags))
4978                         continue;
4979                 sync_blockdev(rdev->bdev);
4980                 invalidate_bdev(rdev->bdev);
4981
4982                 /* perform some consistency tests on the device.
4983                  * We don't want the data to overlap the metadata,
4984                  * Internal Bitmap issues have been handled elsewhere.
4985                  */
4986                 if (rdev->meta_bdev) {
4987                         /* Nothing to check */;
4988                 } else if (rdev->data_offset < rdev->sb_start) {
4989                         if (mddev->dev_sectors &&
4990                             rdev->data_offset + mddev->dev_sectors
4991                             > rdev->sb_start) {
4992                                 printk("md: %s: data overlaps metadata\n",
4993                                        mdname(mddev));
4994                                 return -EINVAL;
4995                         }
4996                 } else {
4997                         if (rdev->sb_start + rdev->sb_size/512
4998                             > rdev->data_offset) {
4999                                 printk("md: %s: metadata overlaps data\n",
5000                                        mdname(mddev));
5001                                 return -EINVAL;
5002                         }
5003                 }
5004                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5005         }
5006
5007         if (mddev->bio_set == NULL)
5008                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5009
5010         spin_lock(&pers_lock);
5011         pers = find_pers(mddev->level, mddev->clevel);
5012         if (!pers || !try_module_get(pers->owner)) {
5013                 spin_unlock(&pers_lock);
5014                 if (mddev->level != LEVEL_NONE)
5015                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5016                                mddev->level);
5017                 else
5018                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5019                                mddev->clevel);
5020                 return -EINVAL;
5021         }
5022         mddev->pers = pers;
5023         spin_unlock(&pers_lock);
5024         if (mddev->level != pers->level) {
5025                 mddev->level = pers->level;
5026                 mddev->new_level = pers->level;
5027         }
5028         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5029
5030         if (mddev->reshape_position != MaxSector &&
5031             pers->start_reshape == NULL) {
5032                 /* This personality cannot handle reshaping... */
5033                 mddev->pers = NULL;
5034                 module_put(pers->owner);
5035                 return -EINVAL;
5036         }
5037
5038         if (pers->sync_request) {
5039                 /* Warn if this is a potentially silly
5040                  * configuration.
5041                  */
5042                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5043                 struct md_rdev *rdev2;
5044                 int warned = 0;
5045
5046                 rdev_for_each(rdev, mddev)
5047                         rdev_for_each(rdev2, mddev) {
5048                                 if (rdev < rdev2 &&
5049                                     rdev->bdev->bd_contains ==
5050                                     rdev2->bdev->bd_contains) {
5051                                         printk(KERN_WARNING
5052                                                "%s: WARNING: %s appears to be"
5053                                                " on the same physical disk as"
5054                                                " %s.\n",
5055                                                mdname(mddev),
5056                                                bdevname(rdev->bdev,b),
5057                                                bdevname(rdev2->bdev,b2));
5058                                         warned = 1;
5059                                 }
5060                         }
5061
5062                 if (warned)
5063                         printk(KERN_WARNING
5064                                "True protection against single-disk"
5065                                " failure might be compromised.\n");
5066         }
5067
5068         mddev->recovery = 0;
5069         /* may be over-ridden by personality */
5070         mddev->resync_max_sectors = mddev->dev_sectors;
5071
5072         mddev->ok_start_degraded = start_dirty_degraded;
5073
5074         if (start_readonly && mddev->ro == 0)
5075                 mddev->ro = 2; /* read-only, but switch on first write */
5076
5077         err = mddev->pers->run(mddev);
5078         if (err)
5079                 printk(KERN_ERR "md: pers->run() failed ...\n");
5080         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5081                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5082                           " but 'external_size' not in effect?\n", __func__);
5083                 printk(KERN_ERR
5084                        "md: invalid array_size %llu > default size %llu\n",
5085                        (unsigned long long)mddev->array_sectors / 2,
5086                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5087                 err = -EINVAL;
5088                 mddev->pers->stop(mddev);
5089         }
5090         if (err == 0 && mddev->pers->sync_request &&
5091             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5092                 err = bitmap_create(mddev);
5093                 if (err) {
5094                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5095                                mdname(mddev), err);
5096                         mddev->pers->stop(mddev);
5097                 }
5098         }
5099         if (err) {
5100                 module_put(mddev->pers->owner);
5101                 mddev->pers = NULL;
5102                 bitmap_destroy(mddev);
5103                 return err;
5104         }
5105         if (mddev->pers->sync_request) {
5106                 if (mddev->kobj.sd &&
5107                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5108                         printk(KERN_WARNING
5109                                "md: cannot register extra attributes for %s\n",
5110                                mdname(mddev));
5111                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5112         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5113                 mddev->ro = 0;
5114
5115         atomic_set(&mddev->writes_pending,0);
5116         atomic_set(&mddev->max_corr_read_errors,
5117                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5118         mddev->safemode = 0;
5119         mddev->safemode_timer.function = md_safemode_timeout;
5120         mddev->safemode_timer.data = (unsigned long) mddev;
5121         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5122         mddev->in_sync = 1;
5123         smp_wmb();
5124         mddev->ready = 1;
5125         rdev_for_each(rdev, mddev)
5126                 if (rdev->raid_disk >= 0)
5127                         if (sysfs_link_rdev(mddev, rdev))
5128                                 /* failure here is OK */;
5129         
5130         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5131         
5132         if (mddev->flags)
5133                 md_update_sb(mddev, 0);
5134
5135         md_new_event(mddev);
5136         sysfs_notify_dirent_safe(mddev->sysfs_state);
5137         sysfs_notify_dirent_safe(mddev->sysfs_action);
5138         sysfs_notify(&mddev->kobj, NULL, "degraded");
5139         return 0;
5140 }
5141 EXPORT_SYMBOL_GPL(md_run);
5142
5143 static int do_md_run(struct mddev *mddev)
5144 {
5145         int err;
5146
5147         err = md_run(mddev);
5148         if (err)
5149                 goto out;
5150         err = bitmap_load(mddev);
5151         if (err) {
5152                 bitmap_destroy(mddev);
5153                 goto out;
5154         }
5155
5156         md_wakeup_thread(mddev->thread);
5157         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5158
5159         set_capacity(mddev->gendisk, mddev->array_sectors);
5160         revalidate_disk(mddev->gendisk);
5161         mddev->changed = 1;
5162         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5163 out:
5164         return err;
5165 }
5166
5167 static int restart_array(struct mddev *mddev)
5168 {
5169         struct gendisk *disk = mddev->gendisk;
5170
5171         /* Complain if it has no devices */
5172         if (list_empty(&mddev->disks))
5173                 return -ENXIO;
5174         if (!mddev->pers)
5175                 return -EINVAL;
5176         if (!mddev->ro)
5177                 return -EBUSY;
5178         mddev->safemode = 0;
5179         mddev->ro = 0;
5180         set_disk_ro(disk, 0);
5181         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5182                 mdname(mddev));
5183         /* Kick recovery or resync if necessary */
5184         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5185         md_wakeup_thread(mddev->thread);
5186         md_wakeup_thread(mddev->sync_thread);
5187         sysfs_notify_dirent_safe(mddev->sysfs_state);
5188         return 0;
5189 }
5190
5191 /* similar to deny_write_access, but accounts for our holding a reference
5192  * to the file ourselves */
5193 static int deny_bitmap_write_access(struct file * file)
5194 {
5195         struct inode *inode = file->f_mapping->host;
5196
5197         spin_lock(&inode->i_lock);
5198         if (atomic_read(&inode->i_writecount) > 1) {
5199                 spin_unlock(&inode->i_lock);
5200                 return -ETXTBSY;
5201         }
5202         atomic_set(&inode->i_writecount, -1);
5203         spin_unlock(&inode->i_lock);
5204
5205         return 0;
5206 }
5207
5208 void restore_bitmap_write_access(struct file *file)
5209 {
5210         struct inode *inode = file->f_mapping->host;
5211
5212         spin_lock(&inode->i_lock);
5213         atomic_set(&inode->i_writecount, 1);
5214         spin_unlock(&inode->i_lock);
5215 }
5216
5217 static void md_clean(struct mddev *mddev)
5218 {
5219         mddev->array_sectors = 0;
5220         mddev->external_size = 0;
5221         mddev->dev_sectors = 0;
5222         mddev->raid_disks = 0;
5223         mddev->recovery_cp = 0;
5224         mddev->resync_min = 0;
5225         mddev->resync_max = MaxSector;
5226         mddev->reshape_position = MaxSector;
5227         mddev->external = 0;
5228         mddev->persistent = 0;
5229         mddev->level = LEVEL_NONE;
5230         mddev->clevel[0] = 0;
5231         mddev->flags = 0;
5232         mddev->ro = 0;
5233         mddev->metadata_type[0] = 0;
5234         mddev->chunk_sectors = 0;
5235         mddev->ctime = mddev->utime = 0;
5236         mddev->layout = 0;
5237         mddev->max_disks = 0;
5238         mddev->events = 0;
5239         mddev->can_decrease_events = 0;
5240         mddev->delta_disks = 0;
5241         mddev->reshape_backwards = 0;
5242         mddev->new_level = LEVEL_NONE;
5243         mddev->new_layout = 0;
5244         mddev->new_chunk_sectors = 0;
5245         mddev->curr_resync = 0;
5246         atomic64_set(&mddev->resync_mismatches, 0);
5247         mddev->suspend_lo = mddev->suspend_hi = 0;
5248         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5249         mddev->recovery = 0;
5250         mddev->in_sync = 0;
5251         mddev->changed = 0;
5252         mddev->degraded = 0;
5253         mddev->safemode = 0;
5254         mddev->merge_check_needed = 0;
5255         mddev->bitmap_info.offset = 0;
5256         mddev->bitmap_info.default_offset = 0;
5257         mddev->bitmap_info.default_space = 0;
5258         mddev->bitmap_info.chunksize = 0;
5259         mddev->bitmap_info.daemon_sleep = 0;
5260         mddev->bitmap_info.max_write_behind = 0;
5261 }
5262
5263 static void __md_stop_writes(struct mddev *mddev)
5264 {
5265         if (mddev->sync_thread) {
5266                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5267                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5268                 reap_sync_thread(mddev);
5269         }
5270
5271         del_timer_sync(&mddev->safemode_timer);
5272
5273         bitmap_flush(mddev);
5274         md_super_wait(mddev);
5275
5276         if (!mddev->in_sync || mddev->flags) {
5277                 /* mark array as shutdown cleanly */
5278                 mddev->in_sync = 1;
5279                 md_update_sb(mddev, 1);
5280         }
5281 }
5282
5283 void md_stop_writes(struct mddev *mddev)
5284 {
5285         mddev_lock(mddev);
5286         __md_stop_writes(mddev);
5287         mddev_unlock(mddev);
5288 }
5289 EXPORT_SYMBOL_GPL(md_stop_writes);
5290
5291 void md_stop(struct mddev *mddev)
5292 {
5293         mddev->ready = 0;
5294         mddev->pers->stop(mddev);
5295         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5296                 mddev->to_remove = &md_redundancy_group;
5297         module_put(mddev->pers->owner);
5298         mddev->pers = NULL;
5299         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5300 }
5301 EXPORT_SYMBOL_GPL(md_stop);
5302
5303 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5304 {
5305         int err = 0;
5306         mutex_lock(&mddev->open_mutex);
5307         if (atomic_read(&mddev->openers) > !!bdev) {
5308                 printk("md: %s still in use.\n",mdname(mddev));
5309                 err = -EBUSY;
5310                 goto out;
5311         }
5312         if (bdev)
5313                 sync_blockdev(bdev);
5314         if (mddev->pers) {
5315                 __md_stop_writes(mddev);
5316
5317                 err  = -ENXIO;
5318                 if (mddev->ro==1)
5319                         goto out;
5320                 mddev->ro = 1;
5321                 set_disk_ro(mddev->gendisk, 1);
5322                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5323                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5324                 err = 0;        
5325         }
5326 out:
5327         mutex_unlock(&mddev->open_mutex);
5328         return err;
5329 }
5330
5331 /* mode:
5332  *   0 - completely stop and dis-assemble array
5333  *   2 - stop but do not disassemble array
5334  */
5335 static int do_md_stop(struct mddev * mddev, int mode,
5336                       struct block_device *bdev)
5337 {
5338         struct gendisk *disk = mddev->gendisk;
5339         struct md_rdev *rdev;
5340
5341         mutex_lock(&mddev->open_mutex);
5342         if (atomic_read(&mddev->openers) > !!bdev ||
5343             mddev->sysfs_active) {
5344                 printk("md: %s still in use.\n",mdname(mddev));
5345                 mutex_unlock(&mddev->open_mutex);
5346                 return -EBUSY;
5347         }
5348         if (bdev)
5349                 /* It is possible IO was issued on some other
5350                  * open file which was closed before we took ->open_mutex.
5351                  * As that was not the last close __blkdev_put will not
5352                  * have called sync_blockdev, so we must.
5353                  */
5354                 sync_blockdev(bdev);
5355
5356         if (mddev->pers) {
5357                 if (mddev->ro)
5358                         set_disk_ro(disk, 0);
5359
5360                 __md_stop_writes(mddev);
5361                 md_stop(mddev);
5362                 mddev->queue->merge_bvec_fn = NULL;
5363                 mddev->queue->backing_dev_info.congested_fn = NULL;
5364
5365                 /* tell userspace to handle 'inactive' */
5366                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5367
5368                 rdev_for_each(rdev, mddev)
5369                         if (rdev->raid_disk >= 0)
5370                                 sysfs_unlink_rdev(mddev, rdev);
5371
5372                 set_capacity(disk, 0);
5373                 mutex_unlock(&mddev->open_mutex);
5374                 mddev->changed = 1;
5375                 revalidate_disk(disk);
5376
5377                 if (mddev->ro)
5378                         mddev->ro = 0;
5379         } else
5380                 mutex_unlock(&mddev->open_mutex);
5381         /*
5382          * Free resources if final stop
5383          */
5384         if (mode == 0) {
5385                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5386
5387                 bitmap_destroy(mddev);
5388                 if (mddev->bitmap_info.file) {
5389                         restore_bitmap_write_access(mddev->bitmap_info.file);
5390                         fput(mddev->bitmap_info.file);
5391                         mddev->bitmap_info.file = NULL;
5392                 }
5393                 mddev->bitmap_info.offset = 0;
5394
5395                 export_array(mddev);
5396
5397                 md_clean(mddev);
5398                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5399                 if (mddev->hold_active == UNTIL_STOP)
5400                         mddev->hold_active = 0;
5401         }
5402         blk_integrity_unregister(disk);
5403         md_new_event(mddev);
5404         sysfs_notify_dirent_safe(mddev->sysfs_state);
5405         return 0;
5406 }
5407
5408 #ifndef MODULE
5409 static void autorun_array(struct mddev *mddev)
5410 {
5411         struct md_rdev *rdev;
5412         int err;
5413
5414         if (list_empty(&mddev->disks))
5415                 return;
5416
5417         printk(KERN_INFO "md: running: ");
5418
5419         rdev_for_each(rdev, mddev) {
5420                 char b[BDEVNAME_SIZE];
5421                 printk("<%s>", bdevname(rdev->bdev,b));
5422         }
5423         printk("\n");
5424
5425         err = do_md_run(mddev);
5426         if (err) {
5427                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5428                 do_md_stop(mddev, 0, NULL);
5429         }
5430 }
5431
5432 /*
5433  * lets try to run arrays based on all disks that have arrived
5434  * until now. (those are in pending_raid_disks)
5435  *
5436  * the method: pick the first pending disk, collect all disks with
5437  * the same UUID, remove all from the pending list and put them into
5438  * the 'same_array' list. Then order this list based on superblock
5439  * update time (freshest comes first), kick out 'old' disks and
5440  * compare superblocks. If everything's fine then run it.
5441  *
5442  * If "unit" is allocated, then bump its reference count
5443  */
5444 static void autorun_devices(int part)
5445 {
5446         struct md_rdev *rdev0, *rdev, *tmp;
5447         struct mddev *mddev;
5448         char b[BDEVNAME_SIZE];
5449
5450         printk(KERN_INFO "md: autorun ...\n");
5451         while (!list_empty(&pending_raid_disks)) {
5452                 int unit;
5453                 dev_t dev;
5454                 LIST_HEAD(candidates);
5455                 rdev0 = list_entry(pending_raid_disks.next,
5456                                          struct md_rdev, same_set);
5457
5458                 printk(KERN_INFO "md: considering %s ...\n",
5459                         bdevname(rdev0->bdev,b));
5460                 INIT_LIST_HEAD(&candidates);
5461                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5462                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5463                                 printk(KERN_INFO "md:  adding %s ...\n",
5464                                         bdevname(rdev->bdev,b));
5465                                 list_move(&rdev->same_set, &candidates);
5466                         }
5467                 /*
5468                  * now we have a set of devices, with all of them having
5469                  * mostly sane superblocks. It's time to allocate the
5470                  * mddev.
5471                  */
5472                 if (part) {
5473                         dev = MKDEV(mdp_major,
5474                                     rdev0->preferred_minor << MdpMinorShift);
5475                         unit = MINOR(dev) >> MdpMinorShift;
5476                 } else {
5477                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5478                         unit = MINOR(dev);
5479                 }
5480                 if (rdev0->preferred_minor != unit) {
5481                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5482                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5483                         break;
5484                 }
5485
5486                 md_probe(dev, NULL, NULL);
5487                 mddev = mddev_find(dev);
5488                 if (!mddev || !mddev->gendisk) {
5489                         if (mddev)
5490                                 mddev_put(mddev);
5491                         printk(KERN_ERR
5492                                 "md: cannot allocate memory for md drive.\n");
5493                         break;
5494                 }
5495                 if (mddev_lock(mddev)) 
5496                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5497                                mdname(mddev));
5498                 else if (mddev->raid_disks || mddev->major_version
5499                          || !list_empty(&mddev->disks)) {
5500                         printk(KERN_WARNING 
5501                                 "md: %s already running, cannot run %s\n",
5502                                 mdname(mddev), bdevname(rdev0->bdev,b));
5503                         mddev_unlock(mddev);
5504                 } else {
5505                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5506                         mddev->persistent = 1;
5507                         rdev_for_each_list(rdev, tmp, &candidates) {
5508                                 list_del_init(&rdev->same_set);
5509                                 if (bind_rdev_to_array(rdev, mddev))
5510                                         export_rdev(rdev);
5511                         }
5512                         autorun_array(mddev);
5513                         mddev_unlock(mddev);
5514                 }
5515                 /* on success, candidates will be empty, on error
5516                  * it won't...
5517                  */
5518                 rdev_for_each_list(rdev, tmp, &candidates) {
5519                         list_del_init(&rdev->same_set);
5520                         export_rdev(rdev);
5521                 }
5522                 mddev_put(mddev);
5523         }
5524         printk(KERN_INFO "md: ... autorun DONE.\n");
5525 }
5526 #endif /* !MODULE */
5527
5528 static int get_version(void __user * arg)
5529 {
5530         mdu_version_t ver;
5531
5532         ver.major = MD_MAJOR_VERSION;
5533         ver.minor = MD_MINOR_VERSION;
5534         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5535
5536         if (copy_to_user(arg, &ver, sizeof(ver)))
5537                 return -EFAULT;
5538
5539         return 0;
5540 }
5541
5542 static int get_array_info(struct mddev * mddev, void __user * arg)
5543 {
5544         mdu_array_info_t info;
5545         int nr,working,insync,failed,spare;
5546         struct md_rdev *rdev;
5547
5548         nr = working = insync = failed = spare = 0;
5549         rcu_read_lock();
5550         rdev_for_each_rcu(rdev, mddev) {
5551                 nr++;
5552                 if (test_bit(Faulty, &rdev->flags))
5553                         failed++;
5554                 else {
5555                         working++;
5556                         if (test_bit(In_sync, &rdev->flags))
5557                                 insync++;       
5558                         else
5559                                 spare++;
5560                 }
5561         }
5562         rcu_read_unlock();
5563
5564         info.major_version = mddev->major_version;
5565         info.minor_version = mddev->minor_version;
5566         info.patch_version = MD_PATCHLEVEL_VERSION;
5567         info.ctime         = mddev->ctime;
5568         info.level         = mddev->level;
5569         info.size          = mddev->dev_sectors / 2;
5570         if (info.size != mddev->dev_sectors / 2) /* overflow */
5571                 info.size = -1;
5572         info.nr_disks      = nr;
5573         info.raid_disks    = mddev->raid_disks;
5574         info.md_minor      = mddev->md_minor;
5575         info.not_persistent= !mddev->persistent;
5576
5577         info.utime         = mddev->utime;
5578         info.state         = 0;
5579         if (mddev->in_sync)
5580                 info.state = (1<<MD_SB_CLEAN);
5581         if (mddev->bitmap && mddev->bitmap_info.offset)
5582                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5583         info.active_disks  = insync;
5584         info.working_disks = working;
5585         info.failed_disks  = failed;
5586         info.spare_disks   = spare;
5587
5588         info.layout        = mddev->layout;
5589         info.chunk_size    = mddev->chunk_sectors << 9;
5590
5591         if (copy_to_user(arg, &info, sizeof(info)))
5592                 return -EFAULT;
5593
5594         return 0;
5595 }
5596
5597 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5598 {
5599         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5600         char *ptr, *buf = NULL;
5601         int err = -ENOMEM;
5602
5603         if (md_allow_write(mddev))
5604                 file = kmalloc(sizeof(*file), GFP_NOIO);
5605         else
5606                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5607
5608         if (!file)
5609                 goto out;
5610
5611         /* bitmap disabled, zero the first byte and copy out */
5612         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5613                 file->pathname[0] = '\0';
5614                 goto copy_out;
5615         }
5616
5617         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5618         if (!buf)
5619                 goto out;
5620
5621         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5622                      buf, sizeof(file->pathname));
5623         if (IS_ERR(ptr))
5624                 goto out;
5625
5626         strcpy(file->pathname, ptr);
5627
5628 copy_out:
5629         err = 0;
5630         if (copy_to_user(arg, file, sizeof(*file)))
5631                 err = -EFAULT;
5632 out:
5633         kfree(buf);
5634         kfree(file);
5635         return err;
5636 }
5637
5638 static int get_disk_info(struct mddev * mddev, void __user * arg)
5639 {
5640         mdu_disk_info_t info;
5641         struct md_rdev *rdev;
5642
5643         if (copy_from_user(&info, arg, sizeof(info)))
5644                 return -EFAULT;
5645
5646         rcu_read_lock();
5647         rdev = find_rdev_nr_rcu(mddev, info.number);
5648         if (rdev) {
5649                 info.major = MAJOR(rdev->bdev->bd_dev);
5650                 info.minor = MINOR(rdev->bdev->bd_dev);
5651                 info.raid_disk = rdev->raid_disk;
5652                 info.state = 0;
5653                 if (test_bit(Faulty, &rdev->flags))
5654                         info.state |= (1<<MD_DISK_FAULTY);
5655                 else if (test_bit(In_sync, &rdev->flags)) {
5656                         info.state |= (1<<MD_DISK_ACTIVE);
5657                         info.state |= (1<<MD_DISK_SYNC);
5658                 }
5659                 if (test_bit(WriteMostly, &rdev->flags))
5660                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5661         } else {
5662                 info.major = info.minor = 0;
5663                 info.raid_disk = -1;
5664                 info.state = (1<<MD_DISK_REMOVED);
5665         }
5666         rcu_read_unlock();
5667
5668         if (copy_to_user(arg, &info, sizeof(info)))
5669                 return -EFAULT;
5670
5671         return 0;
5672 }
5673
5674 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5675 {
5676         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5677         struct md_rdev *rdev;
5678         dev_t dev = MKDEV(info->major,info->minor);
5679
5680         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5681                 return -EOVERFLOW;
5682
5683         if (!mddev->raid_disks) {
5684                 int err;
5685                 /* expecting a device which has a superblock */
5686                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5687                 if (IS_ERR(rdev)) {
5688                         printk(KERN_WARNING 
5689                                 "md: md_import_device returned %ld\n",
5690                                 PTR_ERR(rdev));
5691                         return PTR_ERR(rdev);
5692                 }
5693                 if (!list_empty(&mddev->disks)) {
5694                         struct md_rdev *rdev0
5695                                 = list_entry(mddev->disks.next,
5696                                              struct md_rdev, same_set);
5697                         err = super_types[mddev->major_version]
5698                                 .load_super(rdev, rdev0, mddev->minor_version);
5699                         if (err < 0) {
5700                                 printk(KERN_WARNING 
5701                                         "md: %s has different UUID to %s\n",
5702                                         bdevname(rdev->bdev,b), 
5703                                         bdevname(rdev0->bdev,b2));
5704                                 export_rdev(rdev);
5705                                 return -EINVAL;
5706                         }
5707                 }
5708                 err = bind_rdev_to_array(rdev, mddev);
5709                 if (err)
5710                         export_rdev(rdev);
5711                 return err;
5712         }
5713
5714         /*
5715          * add_new_disk can be used once the array is assembled
5716          * to add "hot spares".  They must already have a superblock
5717          * written
5718          */
5719         if (mddev->pers) {
5720                 int err;
5721                 if (!mddev->pers->hot_add_disk) {
5722                         printk(KERN_WARNING 
5723                                 "%s: personality does not support diskops!\n",
5724                                mdname(mddev));
5725                         return -EINVAL;
5726                 }
5727                 if (mddev->persistent)
5728                         rdev = md_import_device(dev, mddev->major_version,
5729                                                 mddev->minor_version);
5730                 else
5731                         rdev = md_import_device(dev, -1, -1);
5732                 if (IS_ERR(rdev)) {
5733                         printk(KERN_WARNING 
5734                                 "md: md_import_device returned %ld\n",
5735                                 PTR_ERR(rdev));
5736                         return PTR_ERR(rdev);
5737                 }
5738                 /* set saved_raid_disk if appropriate */
5739                 if (!mddev->persistent) {
5740                         if (info->state & (1<<MD_DISK_SYNC)  &&
5741                             info->raid_disk < mddev->raid_disks) {
5742                                 rdev->raid_disk = info->raid_disk;
5743                                 set_bit(In_sync, &rdev->flags);
5744                         } else
5745                                 rdev->raid_disk = -1;
5746                 } else
5747                         super_types[mddev->major_version].
5748                                 validate_super(mddev, rdev);
5749                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5750                      rdev->raid_disk != info->raid_disk) {
5751                         /* This was a hot-add request, but events doesn't
5752                          * match, so reject it.
5753                          */
5754                         export_rdev(rdev);
5755                         return -EINVAL;
5756                 }
5757
5758                 if (test_bit(In_sync, &rdev->flags))
5759                         rdev->saved_raid_disk = rdev->raid_disk;
5760                 else
5761                         rdev->saved_raid_disk = -1;
5762
5763                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5764                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5765                         set_bit(WriteMostly, &rdev->flags);
5766                 else
5767                         clear_bit(WriteMostly, &rdev->flags);
5768
5769                 rdev->raid_disk = -1;
5770                 err = bind_rdev_to_array(rdev, mddev);
5771                 if (!err && !mddev->pers->hot_remove_disk) {
5772                         /* If there is hot_add_disk but no hot_remove_disk
5773                          * then added disks for geometry changes,
5774                          * and should be added immediately.
5775                          */
5776                         super_types[mddev->major_version].
5777                                 validate_super(mddev, rdev);
5778                         err = mddev->pers->hot_add_disk(mddev, rdev);
5779                         if (err)
5780                                 unbind_rdev_from_array(rdev);
5781                 }
5782                 if (err)
5783                         export_rdev(rdev);
5784                 else
5785                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5786
5787                 md_update_sb(mddev, 1);
5788                 if (mddev->degraded)
5789                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5790                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5791                 if (!err)
5792                         md_new_event(mddev);
5793                 md_wakeup_thread(mddev->thread);
5794                 return err;
5795         }
5796
5797         /* otherwise, add_new_disk is only allowed
5798          * for major_version==0 superblocks
5799          */
5800         if (mddev->major_version != 0) {
5801                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5802                        mdname(mddev));
5803                 return -EINVAL;
5804         }
5805
5806         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5807                 int err;
5808                 rdev = md_import_device(dev, -1, 0);
5809                 if (IS_ERR(rdev)) {
5810                         printk(KERN_WARNING 
5811                                 "md: error, md_import_device() returned %ld\n",
5812                                 PTR_ERR(rdev));
5813                         return PTR_ERR(rdev);
5814                 }
5815                 rdev->desc_nr = info->number;
5816                 if (info->raid_disk < mddev->raid_disks)
5817                         rdev->raid_disk = info->raid_disk;
5818                 else
5819                         rdev->raid_disk = -1;
5820
5821                 if (rdev->raid_disk < mddev->raid_disks)
5822                         if (info->state & (1<<MD_DISK_SYNC))
5823                                 set_bit(In_sync, &rdev->flags);
5824
5825                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5826                         set_bit(WriteMostly, &rdev->flags);
5827
5828                 if (!mddev->persistent) {
5829                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5830                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5831                 } else
5832                         rdev->sb_start = calc_dev_sboffset(rdev);
5833                 rdev->sectors = rdev->sb_start;
5834
5835                 err = bind_rdev_to_array(rdev, mddev);
5836                 if (err) {
5837                         export_rdev(rdev);
5838                         return err;
5839                 }
5840         }
5841
5842         return 0;
5843 }
5844
5845 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5846 {
5847         char b[BDEVNAME_SIZE];
5848         struct md_rdev *rdev;
5849
5850         rdev = find_rdev(mddev, dev);
5851         if (!rdev)
5852                 return -ENXIO;
5853
5854         if (rdev->raid_disk >= 0)
5855                 goto busy;
5856
5857         kick_rdev_from_array(rdev);
5858         md_update_sb(mddev, 1);
5859         md_new_event(mddev);
5860
5861         return 0;
5862 busy:
5863         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5864                 bdevname(rdev->bdev,b), mdname(mddev));
5865         return -EBUSY;
5866 }
5867
5868 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5869 {
5870         char b[BDEVNAME_SIZE];
5871         int err;
5872         struct md_rdev *rdev;
5873
5874         if (!mddev->pers)
5875                 return -ENODEV;
5876
5877         if (mddev->major_version != 0) {
5878                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5879                         " version-0 superblocks.\n",
5880                         mdname(mddev));
5881                 return -EINVAL;
5882         }
5883         if (!mddev->pers->hot_add_disk) {
5884                 printk(KERN_WARNING 
5885                         "%s: personality does not support diskops!\n",
5886                         mdname(mddev));
5887                 return -EINVAL;
5888         }
5889
5890         rdev = md_import_device(dev, -1, 0);
5891         if (IS_ERR(rdev)) {
5892                 printk(KERN_WARNING 
5893                         "md: error, md_import_device() returned %ld\n",
5894                         PTR_ERR(rdev));
5895                 return -EINVAL;
5896         }
5897
5898         if (mddev->persistent)
5899                 rdev->sb_start = calc_dev_sboffset(rdev);
5900         else
5901                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5902
5903         rdev->sectors = rdev->sb_start;
5904
5905         if (test_bit(Faulty, &rdev->flags)) {
5906                 printk(KERN_WARNING 
5907                         "md: can not hot-add faulty %s disk to %s!\n",
5908                         bdevname(rdev->bdev,b), mdname(mddev));
5909                 err = -EINVAL;
5910                 goto abort_export;
5911         }
5912         clear_bit(In_sync, &rdev->flags);
5913         rdev->desc_nr = -1;
5914         rdev->saved_raid_disk = -1;
5915         err = bind_rdev_to_array(rdev, mddev);
5916         if (err)
5917                 goto abort_export;
5918
5919         /*
5920          * The rest should better be atomic, we can have disk failures
5921          * noticed in interrupt contexts ...
5922          */
5923
5924         rdev->raid_disk = -1;
5925
5926         md_update_sb(mddev, 1);
5927
5928         /*
5929          * Kick recovery, maybe this spare has to be added to the
5930          * array immediately.
5931          */
5932         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5933         md_wakeup_thread(mddev->thread);
5934         md_new_event(mddev);
5935         return 0;
5936
5937 abort_export:
5938         export_rdev(rdev);
5939         return err;
5940 }
5941
5942 static int set_bitmap_file(struct mddev *mddev, int fd)
5943 {
5944         int err;
5945
5946         if (mddev->pers) {
5947                 if (!mddev->pers->quiesce)
5948                         return -EBUSY;
5949                 if (mddev->recovery || mddev->sync_thread)
5950                         return -EBUSY;
5951                 /* we should be able to change the bitmap.. */
5952         }
5953
5954
5955         if (fd >= 0) {
5956                 if (mddev->bitmap)
5957                         return -EEXIST; /* cannot add when bitmap is present */
5958                 mddev->bitmap_info.file = fget(fd);
5959
5960                 if (mddev->bitmap_info.file == NULL) {
5961                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5962                                mdname(mddev));
5963                         return -EBADF;
5964                 }
5965
5966                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5967                 if (err) {
5968                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5969                                mdname(mddev));
5970                         fput(mddev->bitmap_info.file);
5971                         mddev->bitmap_info.file = NULL;
5972                         return err;
5973                 }
5974                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5975         } else if (mddev->bitmap == NULL)
5976                 return -ENOENT; /* cannot remove what isn't there */
5977         err = 0;
5978         if (mddev->pers) {
5979                 mddev->pers->quiesce(mddev, 1);
5980                 if (fd >= 0) {
5981                         err = bitmap_create(mddev);
5982                         if (!err)
5983                                 err = bitmap_load(mddev);
5984                 }
5985                 if (fd < 0 || err) {
5986                         bitmap_destroy(mddev);
5987                         fd = -1; /* make sure to put the file */
5988                 }
5989                 mddev->pers->quiesce(mddev, 0);
5990         }
5991         if (fd < 0) {
5992                 if (mddev->bitmap_info.file) {
5993                         restore_bitmap_write_access(mddev->bitmap_info.file);
5994                         fput(mddev->bitmap_info.file);
5995                 }
5996                 mddev->bitmap_info.file = NULL;
5997         }
5998
5999         return err;
6000 }
6001
6002 /*
6003  * set_array_info is used two different ways
6004  * The original usage is when creating a new array.
6005  * In this usage, raid_disks is > 0 and it together with
6006  *  level, size, not_persistent,layout,chunksize determine the
6007  *  shape of the array.
6008  *  This will always create an array with a type-0.90.0 superblock.
6009  * The newer usage is when assembling an array.
6010  *  In this case raid_disks will be 0, and the major_version field is
6011  *  use to determine which style super-blocks are to be found on the devices.
6012  *  The minor and patch _version numbers are also kept incase the
6013  *  super_block handler wishes to interpret them.
6014  */
6015 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6016 {
6017
6018         if (info->raid_disks == 0) {
6019                 /* just setting version number for superblock loading */
6020                 if (info->major_version < 0 ||
6021                     info->major_version >= ARRAY_SIZE(super_types) ||
6022                     super_types[info->major_version].name == NULL) {
6023                         /* maybe try to auto-load a module? */
6024                         printk(KERN_INFO 
6025                                 "md: superblock version %d not known\n",
6026                                 info->major_version);
6027                         return -EINVAL;
6028                 }
6029                 mddev->major_version = info->major_version;
6030                 mddev->minor_version = info->minor_version;
6031                 mddev->patch_version = info->patch_version;
6032                 mddev->persistent = !info->not_persistent;
6033                 /* ensure mddev_put doesn't delete this now that there
6034                  * is some minimal configuration.
6035                  */
6036                 mddev->ctime         = get_seconds();
6037                 return 0;
6038         }
6039         mddev->major_version = MD_MAJOR_VERSION;
6040         mddev->minor_version = MD_MINOR_VERSION;
6041         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6042         mddev->ctime         = get_seconds();
6043
6044         mddev->level         = info->level;
6045         mddev->clevel[0]     = 0;
6046         mddev->dev_sectors   = 2 * (sector_t)info->size;
6047         mddev->raid_disks    = info->raid_disks;
6048         /* don't set md_minor, it is determined by which /dev/md* was
6049          * openned
6050          */
6051         if (info->state & (1<<MD_SB_CLEAN))
6052                 mddev->recovery_cp = MaxSector;
6053         else
6054                 mddev->recovery_cp = 0;
6055         mddev->persistent    = ! info->not_persistent;
6056         mddev->external      = 0;
6057
6058         mddev->layout        = info->layout;
6059         mddev->chunk_sectors = info->chunk_size >> 9;
6060
6061         mddev->max_disks     = MD_SB_DISKS;
6062
6063         if (mddev->persistent)
6064                 mddev->flags         = 0;
6065         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6066
6067         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6068         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6069         mddev->bitmap_info.offset = 0;
6070
6071         mddev->reshape_position = MaxSector;
6072
6073         /*
6074          * Generate a 128 bit UUID
6075          */
6076         get_random_bytes(mddev->uuid, 16);
6077
6078         mddev->new_level = mddev->level;
6079         mddev->new_chunk_sectors = mddev->chunk_sectors;
6080         mddev->new_layout = mddev->layout;
6081         mddev->delta_disks = 0;
6082         mddev->reshape_backwards = 0;
6083
6084         return 0;
6085 }
6086
6087 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6088 {
6089         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6090
6091         if (mddev->external_size)
6092                 return;
6093
6094         mddev->array_sectors = array_sectors;
6095 }
6096 EXPORT_SYMBOL(md_set_array_sectors);
6097
6098 static int update_size(struct mddev *mddev, sector_t num_sectors)
6099 {
6100         struct md_rdev *rdev;
6101         int rv;
6102         int fit = (num_sectors == 0);
6103
6104         if (mddev->pers->resize == NULL)
6105                 return -EINVAL;
6106         /* The "num_sectors" is the number of sectors of each device that
6107          * is used.  This can only make sense for arrays with redundancy.
6108          * linear and raid0 always use whatever space is available. We can only
6109          * consider changing this number if no resync or reconstruction is
6110          * happening, and if the new size is acceptable. It must fit before the
6111          * sb_start or, if that is <data_offset, it must fit before the size
6112          * of each device.  If num_sectors is zero, we find the largest size
6113          * that fits.
6114          */
6115         if (mddev->sync_thread)
6116                 return -EBUSY;
6117
6118         rdev_for_each(rdev, mddev) {
6119                 sector_t avail = rdev->sectors;
6120
6121                 if (fit && (num_sectors == 0 || num_sectors > avail))
6122                         num_sectors = avail;
6123                 if (avail < num_sectors)
6124                         return -ENOSPC;
6125         }
6126         rv = mddev->pers->resize(mddev, num_sectors);
6127         if (!rv)
6128                 revalidate_disk(mddev->gendisk);
6129         return rv;
6130 }
6131
6132 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6133 {
6134         int rv;
6135         struct md_rdev *rdev;
6136         /* change the number of raid disks */
6137         if (mddev->pers->check_reshape == NULL)
6138                 return -EINVAL;
6139         if (raid_disks <= 0 ||
6140             (mddev->max_disks && raid_disks >= mddev->max_disks))
6141                 return -EINVAL;
6142         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6143                 return -EBUSY;
6144
6145         rdev_for_each(rdev, mddev) {
6146                 if (mddev->raid_disks < raid_disks &&
6147                     rdev->data_offset < rdev->new_data_offset)
6148                         return -EINVAL;
6149                 if (mddev->raid_disks > raid_disks &&
6150                     rdev->data_offset > rdev->new_data_offset)
6151                         return -EINVAL;
6152         }
6153
6154         mddev->delta_disks = raid_disks - mddev->raid_disks;
6155         if (mddev->delta_disks < 0)
6156                 mddev->reshape_backwards = 1;
6157         else if (mddev->delta_disks > 0)
6158                 mddev->reshape_backwards = 0;
6159
6160         rv = mddev->pers->check_reshape(mddev);
6161         if (rv < 0) {
6162                 mddev->delta_disks = 0;
6163                 mddev->reshape_backwards = 0;
6164         }
6165         return rv;
6166 }
6167
6168
6169 /*
6170  * update_array_info is used to change the configuration of an
6171  * on-line array.
6172  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6173  * fields in the info are checked against the array.
6174  * Any differences that cannot be handled will cause an error.
6175  * Normally, only one change can be managed at a time.
6176  */
6177 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6178 {
6179         int rv = 0;
6180         int cnt = 0;
6181         int state = 0;
6182
6183         /* calculate expected state,ignoring low bits */
6184         if (mddev->bitmap && mddev->bitmap_info.offset)
6185                 state |= (1 << MD_SB_BITMAP_PRESENT);
6186
6187         if (mddev->major_version != info->major_version ||
6188             mddev->minor_version != info->minor_version ||
6189 /*          mddev->patch_version != info->patch_version || */
6190             mddev->ctime         != info->ctime         ||
6191             mddev->level         != info->level         ||
6192 /*          mddev->layout        != info->layout        || */
6193             !mddev->persistent   != info->not_persistent||
6194             mddev->chunk_sectors != info->chunk_size >> 9 ||
6195             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6196             ((state^info->state) & 0xfffffe00)
6197                 )
6198                 return -EINVAL;
6199         /* Check there is only one change */
6200         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6201                 cnt++;
6202         if (mddev->raid_disks != info->raid_disks)
6203                 cnt++;
6204         if (mddev->layout != info->layout)
6205                 cnt++;
6206         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6207                 cnt++;
6208         if (cnt == 0)
6209                 return 0;
6210         if (cnt > 1)
6211                 return -EINVAL;
6212
6213         if (mddev->layout != info->layout) {
6214                 /* Change layout
6215                  * we don't need to do anything at the md level, the
6216                  * personality will take care of it all.
6217                  */
6218                 if (mddev->pers->check_reshape == NULL)
6219                         return -EINVAL;
6220                 else {
6221                         mddev->new_layout = info->layout;
6222                         rv = mddev->pers->check_reshape(mddev);
6223                         if (rv)
6224                                 mddev->new_layout = mddev->layout;
6225                         return rv;
6226                 }
6227         }
6228         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6229                 rv = update_size(mddev, (sector_t)info->size * 2);
6230
6231         if (mddev->raid_disks    != info->raid_disks)
6232                 rv = update_raid_disks(mddev, info->raid_disks);
6233
6234         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6235                 if (mddev->pers->quiesce == NULL)
6236                         return -EINVAL;
6237                 if (mddev->recovery || mddev->sync_thread)
6238                         return -EBUSY;
6239                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6240                         /* add the bitmap */
6241                         if (mddev->bitmap)
6242                                 return -EEXIST;
6243                         if (mddev->bitmap_info.default_offset == 0)
6244                                 return -EINVAL;
6245                         mddev->bitmap_info.offset =
6246                                 mddev->bitmap_info.default_offset;
6247                         mddev->bitmap_info.space =
6248                                 mddev->bitmap_info.default_space;
6249                         mddev->pers->quiesce(mddev, 1);
6250                         rv = bitmap_create(mddev);
6251                         if (!rv)
6252                                 rv = bitmap_load(mddev);
6253                         if (rv)
6254                                 bitmap_destroy(mddev);
6255                         mddev->pers->quiesce(mddev, 0);
6256                 } else {
6257                         /* remove the bitmap */
6258                         if (!mddev->bitmap)
6259                                 return -ENOENT;
6260                         if (mddev->bitmap->storage.file)
6261                                 return -EINVAL;
6262                         mddev->pers->quiesce(mddev, 1);
6263                         bitmap_destroy(mddev);
6264                         mddev->pers->quiesce(mddev, 0);
6265                         mddev->bitmap_info.offset = 0;
6266                 }
6267         }
6268         md_update_sb(mddev, 1);
6269         return rv;
6270 }
6271
6272 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6273 {
6274         struct md_rdev *rdev;
6275         int err = 0;
6276
6277         if (mddev->pers == NULL)
6278                 return -ENODEV;
6279
6280         rcu_read_lock();
6281         rdev = find_rdev_rcu(mddev, dev);
6282         if (!rdev)
6283                 err =  -ENODEV;
6284         else {
6285                 md_error(mddev, rdev);
6286                 if (!test_bit(Faulty, &rdev->flags))
6287                         err = -EBUSY;
6288         }
6289         rcu_read_unlock();
6290         return err;
6291 }
6292
6293 /*
6294  * We have a problem here : there is no easy way to give a CHS
6295  * virtual geometry. We currently pretend that we have a 2 heads
6296  * 4 sectors (with a BIG number of cylinders...). This drives
6297  * dosfs just mad... ;-)
6298  */
6299 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6300 {
6301         struct mddev *mddev = bdev->bd_disk->private_data;
6302
6303         geo->heads = 2;
6304         geo->sectors = 4;
6305         geo->cylinders = mddev->array_sectors / 8;
6306         return 0;
6307 }
6308
6309 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6310                         unsigned int cmd, unsigned long arg)
6311 {
6312         int err = 0;
6313         void __user *argp = (void __user *)arg;
6314         struct mddev *mddev = NULL;
6315         int ro;
6316
6317         switch (cmd) {
6318         case RAID_VERSION:
6319         case GET_ARRAY_INFO:
6320         case GET_DISK_INFO:
6321                 break;
6322         default:
6323                 if (!capable(CAP_SYS_ADMIN))
6324                         return -EACCES;
6325         }
6326
6327         /*
6328          * Commands dealing with the RAID driver but not any
6329          * particular array:
6330          */
6331         switch (cmd)
6332         {
6333                 case RAID_VERSION:
6334                         err = get_version(argp);
6335                         goto done;
6336
6337                 case PRINT_RAID_DEBUG:
6338                         err = 0;
6339                         md_print_devices();
6340                         goto done;
6341
6342 #ifndef MODULE
6343                 case RAID_AUTORUN:
6344                         err = 0;
6345                         autostart_arrays(arg);
6346                         goto done;
6347 #endif
6348                 default:;
6349         }
6350
6351         /*
6352          * Commands creating/starting a new array:
6353          */
6354
6355         mddev = bdev->bd_disk->private_data;
6356
6357         if (!mddev) {
6358                 BUG();
6359                 goto abort;
6360         }
6361
6362         /* Some actions do not requires the mutex */
6363         switch (cmd) {
6364         case GET_ARRAY_INFO:
6365                 if (!mddev->raid_disks && !mddev->external)
6366                         err = -ENODEV;
6367                 else
6368                         err = get_array_info(mddev, argp);
6369                 goto abort;
6370
6371         case GET_DISK_INFO:
6372                 if (!mddev->raid_disks && !mddev->external)
6373                         err = -ENODEV;
6374                 else
6375                         err = get_disk_info(mddev, argp);
6376                 goto abort;
6377
6378         case SET_DISK_FAULTY:
6379                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6380                 goto abort;
6381         }
6382
6383         err = mddev_lock(mddev);
6384         if (err) {
6385                 printk(KERN_INFO 
6386                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6387                         err, cmd);
6388                 goto abort;
6389         }
6390
6391         switch (cmd)
6392         {
6393                 case SET_ARRAY_INFO:
6394                         {
6395                                 mdu_array_info_t info;
6396                                 if (!arg)
6397                                         memset(&info, 0, sizeof(info));
6398                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6399                                         err = -EFAULT;
6400                                         goto abort_unlock;
6401                                 }
6402                                 if (mddev->pers) {
6403                                         err = update_array_info(mddev, &info);
6404                                         if (err) {
6405                                                 printk(KERN_WARNING "md: couldn't update"
6406                                                        " array info. %d\n", err);
6407                                                 goto abort_unlock;
6408                                         }
6409                                         goto done_unlock;
6410                                 }
6411                                 if (!list_empty(&mddev->disks)) {
6412                                         printk(KERN_WARNING
6413                                                "md: array %s already has disks!\n",
6414                                                mdname(mddev));
6415                                         err = -EBUSY;
6416                                         goto abort_unlock;
6417                                 }
6418                                 if (mddev->raid_disks) {
6419                                         printk(KERN_WARNING
6420                                                "md: array %s already initialised!\n",
6421                                                mdname(mddev));
6422                                         err = -EBUSY;
6423                                         goto abort_unlock;
6424                                 }
6425                                 err = set_array_info(mddev, &info);
6426                                 if (err) {
6427                                         printk(KERN_WARNING "md: couldn't set"
6428                                                " array info. %d\n", err);
6429                                         goto abort_unlock;
6430                                 }
6431                         }
6432                         goto done_unlock;
6433
6434                 default:;
6435         }
6436
6437         /*
6438          * Commands querying/configuring an existing array:
6439          */
6440         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6441          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6442         if ((!mddev->raid_disks && !mddev->external)
6443             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6444             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6445             && cmd != GET_BITMAP_FILE) {
6446                 err = -ENODEV;
6447                 goto abort_unlock;
6448         }
6449
6450         /*
6451          * Commands even a read-only array can execute:
6452          */
6453         switch (cmd)
6454         {
6455                 case GET_BITMAP_FILE:
6456                         err = get_bitmap_file(mddev, argp);
6457                         goto done_unlock;
6458
6459                 case RESTART_ARRAY_RW:
6460                         err = restart_array(mddev);
6461                         goto done_unlock;
6462
6463                 case STOP_ARRAY:
6464                         err = do_md_stop(mddev, 0, bdev);
6465                         goto done_unlock;
6466
6467                 case STOP_ARRAY_RO:
6468                         err = md_set_readonly(mddev, bdev);
6469                         goto done_unlock;
6470
6471                 case BLKROSET:
6472                         if (get_user(ro, (int __user *)(arg))) {
6473                                 err = -EFAULT;
6474                                 goto done_unlock;
6475                         }
6476                         err = -EINVAL;
6477
6478                         /* if the bdev is going readonly the value of mddev->ro
6479                          * does not matter, no writes are coming
6480                          */
6481                         if (ro)
6482                                 goto done_unlock;
6483
6484                         /* are we are already prepared for writes? */
6485                         if (mddev->ro != 1)
6486                                 goto done_unlock;
6487
6488                         /* transitioning to readauto need only happen for
6489                          * arrays that call md_write_start
6490                          */
6491                         if (mddev->pers) {
6492                                 err = restart_array(mddev);
6493                                 if (err == 0) {
6494                                         mddev->ro = 2;
6495                                         set_disk_ro(mddev->gendisk, 0);
6496                                 }
6497                         }
6498                         goto done_unlock;
6499         }
6500
6501         /*
6502          * The remaining ioctls are changing the state of the
6503          * superblock, so we do not allow them on read-only arrays.
6504          * However non-MD ioctls (e.g. get-size) will still come through
6505          * here and hit the 'default' below, so only disallow
6506          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6507          */
6508         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6509                 if (mddev->ro == 2) {
6510                         mddev->ro = 0;
6511                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6512                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6513                         md_wakeup_thread(mddev->thread);
6514                 } else {
6515                         err = -EROFS;
6516                         goto abort_unlock;
6517                 }
6518         }
6519
6520         switch (cmd)
6521         {
6522                 case ADD_NEW_DISK:
6523                 {
6524                         mdu_disk_info_t info;
6525                         if (copy_from_user(&info, argp, sizeof(info)))
6526                                 err = -EFAULT;
6527                         else
6528                                 err = add_new_disk(mddev, &info);
6529                         goto done_unlock;
6530                 }
6531
6532                 case HOT_REMOVE_DISK:
6533                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6534                         goto done_unlock;
6535
6536                 case HOT_ADD_DISK:
6537                         err = hot_add_disk(mddev, new_decode_dev(arg));
6538                         goto done_unlock;
6539
6540                 case RUN_ARRAY:
6541                         err = do_md_run(mddev);
6542                         goto done_unlock;
6543
6544                 case SET_BITMAP_FILE:
6545                         err = set_bitmap_file(mddev, (int)arg);
6546                         goto done_unlock;
6547
6548                 default:
6549                         err = -EINVAL;
6550                         goto abort_unlock;
6551         }
6552
6553 done_unlock:
6554 abort_unlock:
6555         if (mddev->hold_active == UNTIL_IOCTL &&
6556             err != -EINVAL)
6557                 mddev->hold_active = 0;
6558         mddev_unlock(mddev);
6559
6560         return err;
6561 done:
6562         if (err)
6563                 MD_BUG();
6564 abort:
6565         return err;
6566 }
6567 #ifdef CONFIG_COMPAT
6568 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6569                     unsigned int cmd, unsigned long arg)
6570 {
6571         switch (cmd) {
6572         case HOT_REMOVE_DISK:
6573         case HOT_ADD_DISK:
6574         case SET_DISK_FAULTY:
6575         case SET_BITMAP_FILE:
6576                 /* These take in integer arg, do not convert */
6577                 break;
6578         default:
6579                 arg = (unsigned long)compat_ptr(arg);
6580                 break;
6581         }
6582
6583         return md_ioctl(bdev, mode, cmd, arg);
6584 }
6585 #endif /* CONFIG_COMPAT */
6586
6587 static int md_open(struct block_device *bdev, fmode_t mode)
6588 {
6589         /*
6590          * Succeed if we can lock the mddev, which confirms that
6591          * it isn't being stopped right now.
6592          */
6593         struct mddev *mddev = mddev_find(bdev->bd_dev);
6594         int err;
6595
6596         if (!mddev)
6597                 return -ENODEV;
6598
6599         if (mddev->gendisk != bdev->bd_disk) {
6600                 /* we are racing with mddev_put which is discarding this
6601                  * bd_disk.
6602                  */
6603                 mddev_put(mddev);
6604                 /* Wait until bdev->bd_disk is definitely gone */
6605                 flush_workqueue(md_misc_wq);
6606                 /* Then retry the open from the top */
6607                 return -ERESTARTSYS;
6608         }
6609         BUG_ON(mddev != bdev->bd_disk->private_data);
6610
6611         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6612                 goto out;
6613
6614         err = 0;
6615         atomic_inc(&mddev->openers);
6616         mutex_unlock(&mddev->open_mutex);
6617
6618         check_disk_change(bdev);
6619  out:
6620         return err;
6621 }
6622
6623 static int md_release(struct gendisk *disk, fmode_t mode)
6624 {
6625         struct mddev *mddev = disk->private_data;
6626
6627         BUG_ON(!mddev);
6628         atomic_dec(&mddev->openers);
6629         mddev_put(mddev);
6630
6631         return 0;
6632 }
6633
6634 static int md_media_changed(struct gendisk *disk)
6635 {
6636         struct mddev *mddev = disk->private_data;
6637
6638         return mddev->changed;
6639 }
6640
6641 static int md_revalidate(struct gendisk *disk)
6642 {
6643         struct mddev *mddev = disk->private_data;
6644
6645         mddev->changed = 0;
6646         return 0;
6647 }
6648 static const struct block_device_operations md_fops =
6649 {
6650         .owner          = THIS_MODULE,
6651         .open           = md_open,
6652         .release        = md_release,
6653         .ioctl          = md_ioctl,
6654 #ifdef CONFIG_COMPAT
6655         .compat_ioctl   = md_compat_ioctl,
6656 #endif
6657         .getgeo         = md_getgeo,
6658         .media_changed  = md_media_changed,
6659         .revalidate_disk= md_revalidate,
6660 };
6661
6662 static int md_thread(void * arg)
6663 {
6664         struct md_thread *thread = arg;
6665
6666         /*
6667          * md_thread is a 'system-thread', it's priority should be very
6668          * high. We avoid resource deadlocks individually in each
6669          * raid personality. (RAID5 does preallocation) We also use RR and
6670          * the very same RT priority as kswapd, thus we will never get
6671          * into a priority inversion deadlock.
6672          *
6673          * we definitely have to have equal or higher priority than
6674          * bdflush, otherwise bdflush will deadlock if there are too
6675          * many dirty RAID5 blocks.
6676          */
6677
6678         allow_signal(SIGKILL);
6679         while (!kthread_should_stop()) {
6680
6681                 /* We need to wait INTERRUPTIBLE so that
6682                  * we don't add to the load-average.
6683                  * That means we need to be sure no signals are
6684                  * pending
6685                  */
6686                 if (signal_pending(current))
6687                         flush_signals(current);
6688
6689                 wait_event_interruptible_timeout
6690                         (thread->wqueue,
6691                          test_bit(THREAD_WAKEUP, &thread->flags)
6692                          || kthread_should_stop(),
6693                          thread->timeout);
6694
6695                 clear_bit(THREAD_WAKEUP, &thread->flags);
6696                 if (!kthread_should_stop())
6697                         thread->run(thread);
6698         }
6699
6700         return 0;
6701 }
6702
6703 void md_wakeup_thread(struct md_thread *thread)
6704 {
6705         if (thread) {
6706                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6707                 set_bit(THREAD_WAKEUP, &thread->flags);
6708                 wake_up(&thread->wqueue);
6709         }
6710 }
6711
6712 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6713                 struct mddev *mddev, const char *name)
6714 {
6715         struct md_thread *thread;
6716
6717         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6718         if (!thread)
6719                 return NULL;
6720
6721         init_waitqueue_head(&thread->wqueue);
6722
6723         thread->run = run;
6724         thread->mddev = mddev;
6725         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6726         thread->tsk = kthread_run(md_thread, thread,
6727                                   "%s_%s",
6728                                   mdname(thread->mddev),
6729                                   name);
6730         if (IS_ERR(thread->tsk)) {
6731                 kfree(thread);
6732                 return NULL;
6733         }
6734         return thread;
6735 }
6736
6737 void md_unregister_thread(struct md_thread **threadp)
6738 {
6739         struct md_thread *thread = *threadp;
6740         if (!thread)
6741                 return;
6742         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6743         /* Locking ensures that mddev_unlock does not wake_up a
6744          * non-existent thread
6745          */
6746         spin_lock(&pers_lock);
6747         *threadp = NULL;
6748         spin_unlock(&pers_lock);
6749
6750         kthread_stop(thread->tsk);
6751         kfree(thread);
6752 }
6753
6754 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6755 {
6756         if (!mddev) {
6757                 MD_BUG();
6758                 return;
6759         }
6760
6761         if (!rdev || test_bit(Faulty, &rdev->flags))
6762                 return;
6763
6764         if (!mddev->pers || !mddev->pers->error_handler)
6765                 return;
6766         mddev->pers->error_handler(mddev,rdev);
6767         if (mddev->degraded)
6768                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6769         sysfs_notify_dirent_safe(rdev->sysfs_state);
6770         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6771         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6772         md_wakeup_thread(mddev->thread);
6773         if (mddev->event_work.func)
6774                 queue_work(md_misc_wq, &mddev->event_work);
6775         md_new_event_inintr(mddev);
6776 }
6777
6778 /* seq_file implementation /proc/mdstat */
6779
6780 static void status_unused(struct seq_file *seq)
6781 {
6782         int i = 0;
6783         struct md_rdev *rdev;
6784
6785         seq_printf(seq, "unused devices: ");
6786
6787         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6788                 char b[BDEVNAME_SIZE];
6789                 i++;
6790                 seq_printf(seq, "%s ",
6791                               bdevname(rdev->bdev,b));
6792         }
6793         if (!i)
6794                 seq_printf(seq, "<none>");
6795
6796         seq_printf(seq, "\n");
6797 }
6798
6799
6800 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6801 {
6802         sector_t max_sectors, resync, res;
6803         unsigned long dt, db;
6804         sector_t rt;
6805         int scale;
6806         unsigned int per_milli;
6807
6808         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6809
6810         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6811             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6812                 max_sectors = mddev->resync_max_sectors;
6813         else
6814                 max_sectors = mddev->dev_sectors;
6815
6816         /*
6817          * Should not happen.
6818          */
6819         if (!max_sectors) {
6820                 MD_BUG();
6821                 return;
6822         }
6823         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6824          * in a sector_t, and (max_sectors>>scale) will fit in a
6825          * u32, as those are the requirements for sector_div.
6826          * Thus 'scale' must be at least 10
6827          */
6828         scale = 10;
6829         if (sizeof(sector_t) > sizeof(unsigned long)) {
6830                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6831                         scale++;
6832         }
6833         res = (resync>>scale)*1000;
6834         sector_div(res, (u32)((max_sectors>>scale)+1));
6835
6836         per_milli = res;
6837         {
6838                 int i, x = per_milli/50, y = 20-x;
6839                 seq_printf(seq, "[");
6840                 for (i = 0; i < x; i++)
6841                         seq_printf(seq, "=");
6842                 seq_printf(seq, ">");
6843                 for (i = 0; i < y; i++)
6844                         seq_printf(seq, ".");
6845                 seq_printf(seq, "] ");
6846         }
6847         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6848                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6849                     "reshape" :
6850                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6851                      "check" :
6852                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6853                       "resync" : "recovery"))),
6854                    per_milli/10, per_milli % 10,
6855                    (unsigned long long) resync/2,
6856                    (unsigned long long) max_sectors/2);
6857
6858         /*
6859          * dt: time from mark until now
6860          * db: blocks written from mark until now
6861          * rt: remaining time
6862          *
6863          * rt is a sector_t, so could be 32bit or 64bit.
6864          * So we divide before multiply in case it is 32bit and close
6865          * to the limit.
6866          * We scale the divisor (db) by 32 to avoid losing precision
6867          * near the end of resync when the number of remaining sectors
6868          * is close to 'db'.
6869          * We then divide rt by 32 after multiplying by db to compensate.
6870          * The '+1' avoids division by zero if db is very small.
6871          */
6872         dt = ((jiffies - mddev->resync_mark) / HZ);
6873         if (!dt) dt++;
6874         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6875                 - mddev->resync_mark_cnt;
6876
6877         rt = max_sectors - resync;    /* number of remaining sectors */
6878         sector_div(rt, db/32+1);
6879         rt *= dt;
6880         rt >>= 5;
6881
6882         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6883                    ((unsigned long)rt % 60)/6);
6884
6885         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6886 }
6887
6888 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6889 {
6890         struct list_head *tmp;
6891         loff_t l = *pos;
6892         struct mddev *mddev;
6893
6894         if (l >= 0x10000)
6895                 return NULL;
6896         if (!l--)
6897                 /* header */
6898                 return (void*)1;
6899
6900         spin_lock(&all_mddevs_lock);
6901         list_for_each(tmp,&all_mddevs)
6902                 if (!l--) {
6903                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6904                         mddev_get(mddev);
6905                         spin_unlock(&all_mddevs_lock);
6906                         return mddev;
6907                 }
6908         spin_unlock(&all_mddevs_lock);
6909         if (!l--)
6910                 return (void*)2;/* tail */
6911         return NULL;
6912 }
6913
6914 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6915 {
6916         struct list_head *tmp;
6917         struct mddev *next_mddev, *mddev = v;
6918         
6919         ++*pos;
6920         if (v == (void*)2)
6921                 return NULL;
6922
6923         spin_lock(&all_mddevs_lock);
6924         if (v == (void*)1)
6925                 tmp = all_mddevs.next;
6926         else
6927                 tmp = mddev->all_mddevs.next;
6928         if (tmp != &all_mddevs)
6929                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6930         else {
6931                 next_mddev = (void*)2;
6932                 *pos = 0x10000;
6933         }               
6934         spin_unlock(&all_mddevs_lock);
6935
6936         if (v != (void*)1)
6937                 mddev_put(mddev);
6938         return next_mddev;
6939
6940 }
6941
6942 static void md_seq_stop(struct seq_file *seq, void *v)
6943 {
6944         struct mddev *mddev = v;
6945
6946         if (mddev && v != (void*)1 && v != (void*)2)
6947                 mddev_put(mddev);
6948 }
6949
6950 static int md_seq_show(struct seq_file *seq, void *v)
6951 {
6952         struct mddev *mddev = v;
6953         sector_t sectors;
6954         struct md_rdev *rdev;
6955
6956         if (v == (void*)1) {
6957                 struct md_personality *pers;
6958                 seq_printf(seq, "Personalities : ");
6959                 spin_lock(&pers_lock);
6960                 list_for_each_entry(pers, &pers_list, list)
6961                         seq_printf(seq, "[%s] ", pers->name);
6962
6963                 spin_unlock(&pers_lock);
6964                 seq_printf(seq, "\n");
6965                 seq->poll_event = atomic_read(&md_event_count);
6966                 return 0;
6967         }
6968         if (v == (void*)2) {
6969                 status_unused(seq);
6970                 return 0;
6971         }
6972
6973         if (mddev_lock(mddev) < 0)
6974                 return -EINTR;
6975
6976         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6977                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6978                                                 mddev->pers ? "" : "in");
6979                 if (mddev->pers) {
6980                         if (mddev->ro==1)
6981                                 seq_printf(seq, " (read-only)");
6982                         if (mddev->ro==2)
6983                                 seq_printf(seq, " (auto-read-only)");
6984                         seq_printf(seq, " %s", mddev->pers->name);
6985                 }
6986
6987                 sectors = 0;
6988                 rdev_for_each(rdev, mddev) {
6989                         char b[BDEVNAME_SIZE];
6990                         seq_printf(seq, " %s[%d]",
6991                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6992                         if (test_bit(WriteMostly, &rdev->flags))
6993                                 seq_printf(seq, "(W)");
6994                         if (test_bit(Faulty, &rdev->flags)) {
6995                                 seq_printf(seq, "(F)");
6996                                 continue;
6997                         }
6998                         if (rdev->raid_disk < 0)
6999                                 seq_printf(seq, "(S)"); /* spare */
7000                         if (test_bit(Replacement, &rdev->flags))
7001                                 seq_printf(seq, "(R)");
7002                         sectors += rdev->sectors;
7003                 }
7004
7005                 if (!list_empty(&mddev->disks)) {
7006                         if (mddev->pers)
7007                                 seq_printf(seq, "\n      %llu blocks",
7008                                            (unsigned long long)
7009                                            mddev->array_sectors / 2);
7010                         else
7011                                 seq_printf(seq, "\n      %llu blocks",
7012                                            (unsigned long long)sectors / 2);
7013                 }
7014                 if (mddev->persistent) {
7015                         if (mddev->major_version != 0 ||
7016                             mddev->minor_version != 90) {
7017                                 seq_printf(seq," super %d.%d",
7018                                            mddev->major_version,
7019                                            mddev->minor_version);
7020                         }
7021                 } else if (mddev->external)
7022                         seq_printf(seq, " super external:%s",
7023                                    mddev->metadata_type);
7024                 else
7025                         seq_printf(seq, " super non-persistent");
7026
7027                 if (mddev->pers) {
7028                         mddev->pers->status(seq, mddev);
7029                         seq_printf(seq, "\n      ");
7030                         if (mddev->pers->sync_request) {
7031                                 if (mddev->curr_resync > 2) {
7032                                         status_resync(seq, mddev);
7033                                         seq_printf(seq, "\n      ");
7034                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7035                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7036                                 else if (mddev->recovery_cp < MaxSector)
7037                                         seq_printf(seq, "\tresync=PENDING\n      ");
7038                         }
7039                 } else
7040                         seq_printf(seq, "\n       ");
7041
7042                 bitmap_status(seq, mddev->bitmap);
7043
7044                 seq_printf(seq, "\n");
7045         }
7046         mddev_unlock(mddev);
7047         
7048         return 0;
7049 }
7050
7051 static const struct seq_operations md_seq_ops = {
7052         .start  = md_seq_start,
7053         .next   = md_seq_next,
7054         .stop   = md_seq_stop,
7055         .show   = md_seq_show,
7056 };
7057
7058 static int md_seq_open(struct inode *inode, struct file *file)
7059 {
7060         struct seq_file *seq;
7061         int error;
7062
7063         error = seq_open(file, &md_seq_ops);
7064         if (error)
7065                 return error;
7066
7067         seq = file->private_data;
7068         seq->poll_event = atomic_read(&md_event_count);
7069         return error;
7070 }
7071
7072 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7073 {
7074         struct seq_file *seq = filp->private_data;
7075         int mask;
7076
7077         poll_wait(filp, &md_event_waiters, wait);
7078
7079         /* always allow read */
7080         mask = POLLIN | POLLRDNORM;
7081
7082         if (seq->poll_event != atomic_read(&md_event_count))
7083                 mask |= POLLERR | POLLPRI;
7084         return mask;
7085 }
7086
7087 static const struct file_operations md_seq_fops = {
7088         .owner          = THIS_MODULE,
7089         .open           = md_seq_open,
7090         .read           = seq_read,
7091         .llseek         = seq_lseek,
7092         .release        = seq_release_private,
7093         .poll           = mdstat_poll,
7094 };
7095
7096 int register_md_personality(struct md_personality *p)
7097 {
7098         spin_lock(&pers_lock);
7099         list_add_tail(&p->list, &pers_list);
7100         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7101         spin_unlock(&pers_lock);
7102         return 0;
7103 }
7104
7105 int unregister_md_personality(struct md_personality *p)
7106 {
7107         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7108         spin_lock(&pers_lock);
7109         list_del_init(&p->list);
7110         spin_unlock(&pers_lock);
7111         return 0;
7112 }
7113
7114 static int is_mddev_idle(struct mddev *mddev, int init)
7115 {
7116         struct md_rdev * rdev;
7117         int idle;
7118         int curr_events;
7119
7120         idle = 1;
7121         rcu_read_lock();
7122         rdev_for_each_rcu(rdev, mddev) {
7123                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7124                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7125                               (int)part_stat_read(&disk->part0, sectors[1]) -
7126                               atomic_read(&disk->sync_io);
7127                 /* sync IO will cause sync_io to increase before the disk_stats
7128                  * as sync_io is counted when a request starts, and
7129                  * disk_stats is counted when it completes.
7130                  * So resync activity will cause curr_events to be smaller than
7131                  * when there was no such activity.
7132                  * non-sync IO will cause disk_stat to increase without
7133                  * increasing sync_io so curr_events will (eventually)
7134                  * be larger than it was before.  Once it becomes
7135                  * substantially larger, the test below will cause
7136                  * the array to appear non-idle, and resync will slow
7137                  * down.
7138                  * If there is a lot of outstanding resync activity when
7139                  * we set last_event to curr_events, then all that activity
7140                  * completing might cause the array to appear non-idle
7141                  * and resync will be slowed down even though there might
7142                  * not have been non-resync activity.  This will only
7143                  * happen once though.  'last_events' will soon reflect
7144                  * the state where there is little or no outstanding
7145                  * resync requests, and further resync activity will
7146                  * always make curr_events less than last_events.
7147                  *
7148                  */
7149                 if (init || curr_events - rdev->last_events > 64) {
7150                         rdev->last_events = curr_events;
7151                         idle = 0;
7152                 }
7153         }
7154         rcu_read_unlock();
7155         return idle;
7156 }
7157
7158 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7159 {
7160         /* another "blocks" (512byte) blocks have been synced */
7161         atomic_sub(blocks, &mddev->recovery_active);
7162         wake_up(&mddev->recovery_wait);
7163         if (!ok) {
7164                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7165                 md_wakeup_thread(mddev->thread);
7166                 // stop recovery, signal do_sync ....
7167         }
7168 }
7169
7170
7171 /* md_write_start(mddev, bi)
7172  * If we need to update some array metadata (e.g. 'active' flag
7173  * in superblock) before writing, schedule a superblock update
7174  * and wait for it to complete.
7175  */
7176 void md_write_start(struct mddev *mddev, struct bio *bi)
7177 {
7178         int did_change = 0;
7179         if (bio_data_dir(bi) != WRITE)
7180                 return;
7181
7182         BUG_ON(mddev->ro == 1);
7183         if (mddev->ro == 2) {
7184                 /* need to switch to read/write */
7185                 mddev->ro = 0;
7186                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7187                 md_wakeup_thread(mddev->thread);
7188                 md_wakeup_thread(mddev->sync_thread);
7189                 did_change = 1;
7190         }
7191         atomic_inc(&mddev->writes_pending);
7192         if (mddev->safemode == 1)
7193                 mddev->safemode = 0;
7194         if (mddev->in_sync) {
7195                 spin_lock_irq(&mddev->write_lock);
7196                 if (mddev->in_sync) {
7197                         mddev->in_sync = 0;
7198                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7199                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7200                         md_wakeup_thread(mddev->thread);
7201                         did_change = 1;
7202                 }
7203                 spin_unlock_irq(&mddev->write_lock);
7204         }
7205         if (did_change)
7206                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7207         wait_event(mddev->sb_wait,
7208                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7209 }
7210
7211 void md_write_end(struct mddev *mddev)
7212 {
7213         if (atomic_dec_and_test(&mddev->writes_pending)) {
7214                 if (mddev->safemode == 2)
7215                         md_wakeup_thread(mddev->thread);
7216                 else if (mddev->safemode_delay)
7217                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7218         }
7219 }
7220
7221 /* md_allow_write(mddev)
7222  * Calling this ensures that the array is marked 'active' so that writes
7223  * may proceed without blocking.  It is important to call this before
7224  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7225  * Must be called with mddev_lock held.
7226  *
7227  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7228  * is dropped, so return -EAGAIN after notifying userspace.
7229  */
7230 int md_allow_write(struct mddev *mddev)
7231 {
7232         if (!mddev->pers)
7233                 return 0;
7234         if (mddev->ro)
7235                 return 0;
7236         if (!mddev->pers->sync_request)
7237                 return 0;
7238
7239         spin_lock_irq(&mddev->write_lock);
7240         if (mddev->in_sync) {
7241                 mddev->in_sync = 0;
7242                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7243                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7244                 if (mddev->safemode_delay &&
7245                     mddev->safemode == 0)
7246                         mddev->safemode = 1;
7247                 spin_unlock_irq(&mddev->write_lock);
7248                 md_update_sb(mddev, 0);
7249                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7250         } else
7251                 spin_unlock_irq(&mddev->write_lock);
7252
7253         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7254                 return -EAGAIN;
7255         else
7256                 return 0;
7257 }
7258 EXPORT_SYMBOL_GPL(md_allow_write);
7259
7260 #define SYNC_MARKS      10
7261 #define SYNC_MARK_STEP  (3*HZ)
7262 void md_do_sync(struct md_thread *thread)
7263 {
7264         struct mddev *mddev = thread->mddev;
7265         struct mddev *mddev2;
7266         unsigned int currspeed = 0,
7267                  window;
7268         sector_t max_sectors,j, io_sectors;
7269         unsigned long mark[SYNC_MARKS];
7270         sector_t mark_cnt[SYNC_MARKS];
7271         int last_mark,m;
7272         struct list_head *tmp;
7273         sector_t last_check;
7274         int skipped = 0;
7275         struct md_rdev *rdev;
7276         char *desc;
7277         struct blk_plug plug;
7278
7279         /* just incase thread restarts... */
7280         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7281                 return;
7282         if (mddev->ro) /* never try to sync a read-only array */
7283                 return;
7284
7285         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7286                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7287                         desc = "data-check";
7288                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7289                         desc = "requested-resync";
7290                 else
7291                         desc = "resync";
7292         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7293                 desc = "reshape";
7294         else
7295                 desc = "recovery";
7296
7297         /* we overload curr_resync somewhat here.
7298          * 0 == not engaged in resync at all
7299          * 2 == checking that there is no conflict with another sync
7300          * 1 == like 2, but have yielded to allow conflicting resync to
7301          *              commense
7302          * other == active in resync - this many blocks
7303          *
7304          * Before starting a resync we must have set curr_resync to
7305          * 2, and then checked that every "conflicting" array has curr_resync
7306          * less than ours.  When we find one that is the same or higher
7307          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7308          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7309          * This will mean we have to start checking from the beginning again.
7310          *
7311          */
7312
7313         do {
7314                 mddev->curr_resync = 2;
7315
7316         try_again:
7317                 if (kthread_should_stop())
7318                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7319
7320                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7321                         goto skip;
7322                 for_each_mddev(mddev2, tmp) {
7323                         if (mddev2 == mddev)
7324                                 continue;
7325                         if (!mddev->parallel_resync
7326                         &&  mddev2->curr_resync
7327                         &&  match_mddev_units(mddev, mddev2)) {
7328                                 DEFINE_WAIT(wq);
7329                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7330                                         /* arbitrarily yield */
7331                                         mddev->curr_resync = 1;
7332                                         wake_up(&resync_wait);
7333                                 }
7334                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7335                                         /* no need to wait here, we can wait the next
7336                                          * time 'round when curr_resync == 2
7337                                          */
7338                                         continue;
7339                                 /* We need to wait 'interruptible' so as not to
7340                                  * contribute to the load average, and not to
7341                                  * be caught by 'softlockup'
7342                                  */
7343                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7344                                 if (!kthread_should_stop() &&
7345                                     mddev2->curr_resync >= mddev->curr_resync) {
7346                                         printk(KERN_INFO "md: delaying %s of %s"
7347                                                " until %s has finished (they"
7348                                                " share one or more physical units)\n",
7349                                                desc, mdname(mddev), mdname(mddev2));
7350                                         mddev_put(mddev2);
7351                                         if (signal_pending(current))
7352                                                 flush_signals(current);
7353                                         schedule();
7354                                         finish_wait(&resync_wait, &wq);
7355                                         goto try_again;
7356                                 }
7357                                 finish_wait(&resync_wait, &wq);
7358                         }
7359                 }
7360         } while (mddev->curr_resync < 2);
7361
7362         j = 0;
7363         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7364                 /* resync follows the size requested by the personality,
7365                  * which defaults to physical size, but can be virtual size
7366                  */
7367                 max_sectors = mddev->resync_max_sectors;
7368                 atomic64_set(&mddev->resync_mismatches, 0);
7369                 /* we don't use the checkpoint if there's a bitmap */
7370                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7371                         j = mddev->resync_min;
7372                 else if (!mddev->bitmap)
7373                         j = mddev->recovery_cp;
7374
7375         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7376                 max_sectors = mddev->resync_max_sectors;
7377         else {
7378                 /* recovery follows the physical size of devices */
7379                 max_sectors = mddev->dev_sectors;
7380                 j = MaxSector;
7381                 rcu_read_lock();
7382                 rdev_for_each_rcu(rdev, mddev)
7383                         if (rdev->raid_disk >= 0 &&
7384                             !test_bit(Faulty, &rdev->flags) &&
7385                             !test_bit(In_sync, &rdev->flags) &&
7386                             rdev->recovery_offset < j)
7387                                 j = rdev->recovery_offset;
7388                 rcu_read_unlock();
7389         }
7390
7391         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7392         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7393                 " %d KB/sec/disk.\n", speed_min(mddev));
7394         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7395                "(but not more than %d KB/sec) for %s.\n",
7396                speed_max(mddev), desc);
7397
7398         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7399
7400         io_sectors = 0;
7401         for (m = 0; m < SYNC_MARKS; m++) {
7402                 mark[m] = jiffies;
7403                 mark_cnt[m] = io_sectors;
7404         }
7405         last_mark = 0;
7406         mddev->resync_mark = mark[last_mark];
7407         mddev->resync_mark_cnt = mark_cnt[last_mark];
7408
7409         /*
7410          * Tune reconstruction:
7411          */
7412         window = 32*(PAGE_SIZE/512);
7413         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7414                 window/2, (unsigned long long)max_sectors/2);
7415
7416         atomic_set(&mddev->recovery_active, 0);
7417         last_check = 0;
7418
7419         if (j>2) {
7420                 printk(KERN_INFO 
7421                        "md: resuming %s of %s from checkpoint.\n",
7422                        desc, mdname(mddev));
7423                 mddev->curr_resync = j;
7424         }
7425         mddev->curr_resync_completed = j;
7426
7427         blk_start_plug(&plug);
7428         while (j < max_sectors) {
7429                 sector_t sectors;
7430
7431                 skipped = 0;
7432
7433                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7434                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7435                       (mddev->curr_resync - mddev->curr_resync_completed)
7436                       > (max_sectors >> 4)) ||
7437                      (j - mddev->curr_resync_completed)*2
7438                      >= mddev->resync_max - mddev->curr_resync_completed
7439                             )) {
7440                         /* time to update curr_resync_completed */
7441                         wait_event(mddev->recovery_wait,
7442                                    atomic_read(&mddev->recovery_active) == 0);
7443                         mddev->curr_resync_completed = j;
7444                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7445                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7446                 }
7447
7448                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7449                         /* As this condition is controlled by user-space,
7450                          * we can block indefinitely, so use '_interruptible'
7451                          * to avoid triggering warnings.
7452                          */
7453                         flush_signals(current); /* just in case */
7454                         wait_event_interruptible(mddev->recovery_wait,
7455                                                  mddev->resync_max > j
7456                                                  || kthread_should_stop());
7457                 }
7458
7459                 if (kthread_should_stop())
7460                         goto interrupted;
7461
7462                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7463                                                   currspeed < speed_min(mddev));
7464                 if (sectors == 0) {
7465                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7466                         goto out;
7467                 }
7468
7469                 if (!skipped) { /* actual IO requested */
7470                         io_sectors += sectors;
7471                         atomic_add(sectors, &mddev->recovery_active);
7472                 }
7473
7474                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7475                         break;
7476
7477                 j += sectors;
7478                 if (j>1) mddev->curr_resync = j;
7479                 mddev->curr_mark_cnt = io_sectors;
7480                 if (last_check == 0)
7481                         /* this is the earliest that rebuild will be
7482                          * visible in /proc/mdstat
7483                          */
7484                         md_new_event(mddev);
7485
7486                 if (last_check + window > io_sectors || j == max_sectors)
7487                         continue;
7488
7489                 last_check = io_sectors;
7490         repeat:
7491                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7492                         /* step marks */
7493                         int next = (last_mark+1) % SYNC_MARKS;
7494
7495                         mddev->resync_mark = mark[next];
7496                         mddev->resync_mark_cnt = mark_cnt[next];
7497                         mark[next] = jiffies;
7498                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7499                         last_mark = next;
7500                 }
7501
7502
7503                 if (kthread_should_stop())
7504                         goto interrupted;
7505
7506
7507                 /*
7508                  * this loop exits only if either when we are slower than
7509                  * the 'hard' speed limit, or the system was IO-idle for
7510                  * a jiffy.
7511                  * the system might be non-idle CPU-wise, but we only care
7512                  * about not overloading the IO subsystem. (things like an
7513                  * e2fsck being done on the RAID array should execute fast)
7514                  */
7515                 cond_resched();
7516
7517                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7518                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7519
7520                 if (currspeed > speed_min(mddev)) {
7521                         if ((currspeed > speed_max(mddev)) ||
7522                                         !is_mddev_idle(mddev, 0)) {
7523                                 msleep(500);
7524                                 goto repeat;
7525                         }
7526                 }
7527         }
7528         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7529         /*
7530          * this also signals 'finished resyncing' to md_stop
7531          */
7532  out:
7533         blk_finish_plug(&plug);
7534         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7535
7536         /* tell personality that we are finished */
7537         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7538
7539         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7540             mddev->curr_resync > 2) {
7541                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7542                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7543                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7544                                         printk(KERN_INFO
7545                                                "md: checkpointing %s of %s.\n",
7546                                                desc, mdname(mddev));
7547                                         mddev->recovery_cp =
7548                                                 mddev->curr_resync_completed;
7549                                 }
7550                         } else
7551                                 mddev->recovery_cp = MaxSector;
7552                 } else {
7553                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7554                                 mddev->curr_resync = MaxSector;
7555                         rcu_read_lock();
7556                         rdev_for_each_rcu(rdev, mddev)
7557                                 if (rdev->raid_disk >= 0 &&
7558                                     mddev->delta_disks >= 0 &&
7559                                     !test_bit(Faulty, &rdev->flags) &&
7560                                     !test_bit(In_sync, &rdev->flags) &&
7561                                     rdev->recovery_offset < mddev->curr_resync)
7562                                         rdev->recovery_offset = mddev->curr_resync;
7563                         rcu_read_unlock();
7564                 }
7565         }
7566  skip:
7567         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7568
7569         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7570                 /* We completed so min/max setting can be forgotten if used. */
7571                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7572                         mddev->resync_min = 0;
7573                 mddev->resync_max = MaxSector;
7574         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7575                 mddev->resync_min = mddev->curr_resync_completed;
7576         mddev->curr_resync = 0;
7577         wake_up(&resync_wait);
7578         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7579         md_wakeup_thread(mddev->thread);
7580         return;
7581
7582  interrupted:
7583         /*
7584          * got a signal, exit.
7585          */
7586         printk(KERN_INFO
7587                "md: md_do_sync() got signal ... exiting\n");
7588         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7589         goto out;
7590
7591 }
7592 EXPORT_SYMBOL_GPL(md_do_sync);
7593
7594 static int remove_and_add_spares(struct mddev *mddev)
7595 {
7596         struct md_rdev *rdev;
7597         int spares = 0;
7598         int removed = 0;
7599
7600         mddev->curr_resync_completed = 0;
7601
7602         rdev_for_each(rdev, mddev)
7603                 if (rdev->raid_disk >= 0 &&
7604                     !test_bit(Blocked, &rdev->flags) &&
7605                     (test_bit(Faulty, &rdev->flags) ||
7606                      ! test_bit(In_sync, &rdev->flags)) &&
7607                     atomic_read(&rdev->nr_pending)==0) {
7608                         if (mddev->pers->hot_remove_disk(
7609                                     mddev, rdev) == 0) {
7610                                 sysfs_unlink_rdev(mddev, rdev);
7611                                 rdev->raid_disk = -1;
7612                                 removed++;
7613                         }
7614                 }
7615         if (removed)
7616                 sysfs_notify(&mddev->kobj, NULL,
7617                              "degraded");
7618
7619
7620         rdev_for_each(rdev, mddev) {
7621                 if (rdev->raid_disk >= 0 &&
7622                     !test_bit(In_sync, &rdev->flags) &&
7623                     !test_bit(Faulty, &rdev->flags))
7624                         spares++;
7625                 if (rdev->raid_disk < 0
7626                     && !test_bit(Faulty, &rdev->flags)) {
7627                         rdev->recovery_offset = 0;
7628                         if (mddev->pers->
7629                             hot_add_disk(mddev, rdev) == 0) {
7630                                 if (sysfs_link_rdev(mddev, rdev))
7631                                         /* failure here is OK */;
7632                                 spares++;
7633                                 md_new_event(mddev);
7634                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7635                         }
7636                 }
7637         }
7638         return spares;
7639 }
7640
7641 static void reap_sync_thread(struct mddev *mddev)
7642 {
7643         struct md_rdev *rdev;
7644
7645         /* resync has finished, collect result */
7646         md_unregister_thread(&mddev->sync_thread);
7647         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7648             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7649                 /* success...*/
7650                 /* activate any spares */
7651                 if (mddev->pers->spare_active(mddev))
7652                         sysfs_notify(&mddev->kobj, NULL,
7653                                      "degraded");
7654         }
7655         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7656             mddev->pers->finish_reshape)
7657                 mddev->pers->finish_reshape(mddev);
7658
7659         /* If array is no-longer degraded, then any saved_raid_disk
7660          * information must be scrapped.  Also if any device is now
7661          * In_sync we must scrape the saved_raid_disk for that device
7662          * do the superblock for an incrementally recovered device
7663          * written out.
7664          */
7665         rdev_for_each(rdev, mddev)
7666                 if (!mddev->degraded ||
7667                     test_bit(In_sync, &rdev->flags))
7668                         rdev->saved_raid_disk = -1;
7669
7670         md_update_sb(mddev, 1);
7671         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7672         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7673         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7674         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7675         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7676         /* flag recovery needed just to double check */
7677         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7678         sysfs_notify_dirent_safe(mddev->sysfs_action);
7679         md_new_event(mddev);
7680         if (mddev->event_work.func)
7681                 queue_work(md_misc_wq, &mddev->event_work);
7682 }
7683
7684 /*
7685  * This routine is regularly called by all per-raid-array threads to
7686  * deal with generic issues like resync and super-block update.
7687  * Raid personalities that don't have a thread (linear/raid0) do not
7688  * need this as they never do any recovery or update the superblock.
7689  *
7690  * It does not do any resync itself, but rather "forks" off other threads
7691  * to do that as needed.
7692  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7693  * "->recovery" and create a thread at ->sync_thread.
7694  * When the thread finishes it sets MD_RECOVERY_DONE
7695  * and wakeups up this thread which will reap the thread and finish up.
7696  * This thread also removes any faulty devices (with nr_pending == 0).
7697  *
7698  * The overall approach is:
7699  *  1/ if the superblock needs updating, update it.
7700  *  2/ If a recovery thread is running, don't do anything else.
7701  *  3/ If recovery has finished, clean up, possibly marking spares active.
7702  *  4/ If there are any faulty devices, remove them.
7703  *  5/ If array is degraded, try to add spares devices
7704  *  6/ If array has spares or is not in-sync, start a resync thread.
7705  */
7706 void md_check_recovery(struct mddev *mddev)
7707 {
7708         if (mddev->suspended)
7709                 return;
7710
7711         if (mddev->bitmap)
7712                 bitmap_daemon_work(mddev);
7713
7714         if (signal_pending(current)) {
7715                 if (mddev->pers->sync_request && !mddev->external) {
7716                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7717                                mdname(mddev));
7718                         mddev->safemode = 2;
7719                 }
7720                 flush_signals(current);
7721         }
7722
7723         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7724                 return;
7725         if ( ! (
7726                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7727                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7728                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7729                 (mddev->external == 0 && mddev->safemode == 1) ||
7730                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7731                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7732                 ))
7733                 return;
7734
7735         if (mddev_trylock(mddev)) {
7736                 int spares = 0;
7737
7738                 if (mddev->ro) {
7739                         /* Only thing we do on a ro array is remove
7740                          * failed devices.
7741                          */
7742                         struct md_rdev *rdev;
7743                         rdev_for_each(rdev, mddev)
7744                                 if (rdev->raid_disk >= 0 &&
7745                                     !test_bit(Blocked, &rdev->flags) &&
7746                                     test_bit(Faulty, &rdev->flags) &&
7747                                     atomic_read(&rdev->nr_pending)==0) {
7748                                         if (mddev->pers->hot_remove_disk(
7749                                                     mddev, rdev) == 0) {
7750                                                 sysfs_unlink_rdev(mddev, rdev);
7751                                                 rdev->raid_disk = -1;
7752                                         }
7753                                 }
7754                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7755                         goto unlock;
7756                 }
7757
7758                 if (!mddev->external) {
7759                         int did_change = 0;
7760                         spin_lock_irq(&mddev->write_lock);
7761                         if (mddev->safemode &&
7762                             !atomic_read(&mddev->writes_pending) &&
7763                             !mddev->in_sync &&
7764                             mddev->recovery_cp == MaxSector) {
7765                                 mddev->in_sync = 1;
7766                                 did_change = 1;
7767                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7768                         }
7769                         if (mddev->safemode == 1)
7770                                 mddev->safemode = 0;
7771                         spin_unlock_irq(&mddev->write_lock);
7772                         if (did_change)
7773                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7774                 }
7775
7776                 if (mddev->flags)
7777                         md_update_sb(mddev, 0);
7778
7779                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7780                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7781                         /* resync/recovery still happening */
7782                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7783                         goto unlock;
7784                 }
7785                 if (mddev->sync_thread) {
7786                         reap_sync_thread(mddev);
7787                         goto unlock;
7788                 }
7789                 /* Set RUNNING before clearing NEEDED to avoid
7790                  * any transients in the value of "sync_action".
7791                  */
7792                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7793                 /* Clear some bits that don't mean anything, but
7794                  * might be left set
7795                  */
7796                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7797                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7798
7799                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7800                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7801                         goto unlock;
7802                 /* no recovery is running.
7803                  * remove any failed drives, then
7804                  * add spares if possible.
7805                  * Spare are also removed and re-added, to allow
7806                  * the personality to fail the re-add.
7807                  */
7808
7809                 if (mddev->reshape_position != MaxSector) {
7810                         if (mddev->pers->check_reshape == NULL ||
7811                             mddev->pers->check_reshape(mddev) != 0)
7812                                 /* Cannot proceed */
7813                                 goto unlock;
7814                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7815                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7816                 } else if ((spares = remove_and_add_spares(mddev))) {
7817                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7819                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7821                 } else if (mddev->recovery_cp < MaxSector) {
7822                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7823                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7824                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7825                         /* nothing to be done ... */
7826                         goto unlock;
7827
7828                 if (mddev->pers->sync_request) {
7829                         if (spares) {
7830                                 /* We are adding a device or devices to an array
7831                                  * which has the bitmap stored on all devices.
7832                                  * So make sure all bitmap pages get written
7833                                  */
7834                                 bitmap_write_all(mddev->bitmap);
7835                         }
7836                         mddev->sync_thread = md_register_thread(md_do_sync,
7837                                                                 mddev,
7838                                                                 "resync");
7839                         if (!mddev->sync_thread) {
7840                                 printk(KERN_ERR "%s: could not start resync"
7841                                         " thread...\n", 
7842                                         mdname(mddev));
7843                                 /* leave the spares where they are, it shouldn't hurt */
7844                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7845                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7846                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7847                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7848                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7849                         } else
7850                                 md_wakeup_thread(mddev->sync_thread);
7851                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7852                         md_new_event(mddev);
7853                 }
7854         unlock:
7855                 if (!mddev->sync_thread) {
7856                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7857                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7858                                                &mddev->recovery))
7859                                 if (mddev->sysfs_action)
7860                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7861                 }
7862                 mddev_unlock(mddev);
7863         }
7864 }
7865
7866 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7867 {
7868         sysfs_notify_dirent_safe(rdev->sysfs_state);
7869         wait_event_timeout(rdev->blocked_wait,
7870                            !test_bit(Blocked, &rdev->flags) &&
7871                            !test_bit(BlockedBadBlocks, &rdev->flags),
7872                            msecs_to_jiffies(5000));
7873         rdev_dec_pending(rdev, mddev);
7874 }
7875 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7876
7877 void md_finish_reshape(struct mddev *mddev)
7878 {
7879         /* called be personality module when reshape completes. */
7880         struct md_rdev *rdev;
7881
7882         rdev_for_each(rdev, mddev) {
7883                 if (rdev->data_offset > rdev->new_data_offset)
7884                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7885                 else
7886                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7887                 rdev->data_offset = rdev->new_data_offset;
7888         }
7889 }
7890 EXPORT_SYMBOL(md_finish_reshape);
7891
7892 /* Bad block management.
7893  * We can record which blocks on each device are 'bad' and so just
7894  * fail those blocks, or that stripe, rather than the whole device.
7895  * Entries in the bad-block table are 64bits wide.  This comprises:
7896  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7897  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7898  *  A 'shift' can be set so that larger blocks are tracked and
7899  *  consequently larger devices can be covered.
7900  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7901  *
7902  * Locking of the bad-block table uses a seqlock so md_is_badblock
7903  * might need to retry if it is very unlucky.
7904  * We will sometimes want to check for bad blocks in a bi_end_io function,
7905  * so we use the write_seqlock_irq variant.
7906  *
7907  * When looking for a bad block we specify a range and want to
7908  * know if any block in the range is bad.  So we binary-search
7909  * to the last range that starts at-or-before the given endpoint,
7910  * (or "before the sector after the target range")
7911  * then see if it ends after the given start.
7912  * We return
7913  *  0 if there are no known bad blocks in the range
7914  *  1 if there are known bad block which are all acknowledged
7915  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7916  * plus the start/length of the first bad section we overlap.
7917  */
7918 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7919                    sector_t *first_bad, int *bad_sectors)
7920 {
7921         int hi;
7922         int lo = 0;
7923         u64 *p = bb->page;
7924         int rv = 0;
7925         sector_t target = s + sectors;
7926         unsigned seq;
7927
7928         if (bb->shift > 0) {
7929                 /* round the start down, and the end up */
7930                 s >>= bb->shift;
7931                 target += (1<<bb->shift) - 1;
7932                 target >>= bb->shift;
7933                 sectors = target - s;
7934         }
7935         /* 'target' is now the first block after the bad range */
7936
7937 retry:
7938         seq = read_seqbegin(&bb->lock);
7939
7940         hi = bb->count;
7941
7942         /* Binary search between lo and hi for 'target'
7943          * i.e. for the last range that starts before 'target'
7944          */
7945         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7946          * are known not to be the last range before target.
7947          * VARIANT: hi-lo is the number of possible
7948          * ranges, and decreases until it reaches 1
7949          */
7950         while (hi - lo > 1) {
7951                 int mid = (lo + hi) / 2;
7952                 sector_t a = BB_OFFSET(p[mid]);
7953                 if (a < target)
7954                         /* This could still be the one, earlier ranges
7955                          * could not. */
7956                         lo = mid;
7957                 else
7958                         /* This and later ranges are definitely out. */
7959                         hi = mid;
7960         }
7961         /* 'lo' might be the last that started before target, but 'hi' isn't */
7962         if (hi > lo) {
7963                 /* need to check all range that end after 's' to see if
7964                  * any are unacknowledged.
7965                  */
7966                 while (lo >= 0 &&
7967                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7968                         if (BB_OFFSET(p[lo]) < target) {
7969                                 /* starts before the end, and finishes after
7970                                  * the start, so they must overlap
7971                                  */
7972                                 if (rv != -1 && BB_ACK(p[lo]))
7973                                         rv = 1;
7974                                 else
7975                                         rv = -1;
7976                                 *first_bad = BB_OFFSET(p[lo]);
7977                                 *bad_sectors = BB_LEN(p[lo]);
7978                         }
7979                         lo--;
7980                 }
7981         }
7982
7983         if (read_seqretry(&bb->lock, seq))
7984                 goto retry;
7985
7986         return rv;
7987 }
7988 EXPORT_SYMBOL_GPL(md_is_badblock);
7989
7990 /*
7991  * Add a range of bad blocks to the table.
7992  * This might extend the table, or might contract it
7993  * if two adjacent ranges can be merged.
7994  * We binary-search to find the 'insertion' point, then
7995  * decide how best to handle it.
7996  */
7997 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7998                             int acknowledged)
7999 {
8000         u64 *p;
8001         int lo, hi;
8002         int rv = 1;
8003
8004         if (bb->shift < 0)
8005                 /* badblocks are disabled */
8006                 return 0;
8007
8008         if (bb->shift) {
8009                 /* round the start down, and the end up */
8010                 sector_t next = s + sectors;
8011                 s >>= bb->shift;
8012                 next += (1<<bb->shift) - 1;
8013                 next >>= bb->shift;
8014                 sectors = next - s;
8015         }
8016
8017         write_seqlock_irq(&bb->lock);
8018
8019         p = bb->page;
8020         lo = 0;
8021         hi = bb->count;
8022         /* Find the last range that starts at-or-before 's' */
8023         while (hi - lo > 1) {
8024                 int mid = (lo + hi) / 2;
8025                 sector_t a = BB_OFFSET(p[mid]);
8026                 if (a <= s)
8027                         lo = mid;
8028                 else
8029                         hi = mid;
8030         }
8031         if (hi > lo && BB_OFFSET(p[lo]) > s)
8032                 hi = lo;
8033
8034         if (hi > lo) {
8035                 /* we found a range that might merge with the start
8036                  * of our new range
8037                  */
8038                 sector_t a = BB_OFFSET(p[lo]);
8039                 sector_t e = a + BB_LEN(p[lo]);
8040                 int ack = BB_ACK(p[lo]);
8041                 if (e >= s) {
8042                         /* Yes, we can merge with a previous range */
8043                         if (s == a && s + sectors >= e)
8044                                 /* new range covers old */
8045                                 ack = acknowledged;
8046                         else
8047                                 ack = ack && acknowledged;
8048
8049                         if (e < s + sectors)
8050                                 e = s + sectors;
8051                         if (e - a <= BB_MAX_LEN) {
8052                                 p[lo] = BB_MAKE(a, e-a, ack);
8053                                 s = e;
8054                         } else {
8055                                 /* does not all fit in one range,
8056                                  * make p[lo] maximal
8057                                  */
8058                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8059                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8060                                 s = a + BB_MAX_LEN;
8061                         }
8062                         sectors = e - s;
8063                 }
8064         }
8065         if (sectors && hi < bb->count) {
8066                 /* 'hi' points to the first range that starts after 's'.
8067                  * Maybe we can merge with the start of that range */
8068                 sector_t a = BB_OFFSET(p[hi]);
8069                 sector_t e = a + BB_LEN(p[hi]);
8070                 int ack = BB_ACK(p[hi]);
8071                 if (a <= s + sectors) {
8072                         /* merging is possible */
8073                         if (e <= s + sectors) {
8074                                 /* full overlap */
8075                                 e = s + sectors;
8076                                 ack = acknowledged;
8077                         } else
8078                                 ack = ack && acknowledged;
8079
8080                         a = s;
8081                         if (e - a <= BB_MAX_LEN) {
8082                                 p[hi] = BB_MAKE(a, e-a, ack);
8083                                 s = e;
8084                         } else {
8085                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8086                                 s = a + BB_MAX_LEN;
8087                         }
8088                         sectors = e - s;
8089                         lo = hi;
8090                         hi++;
8091                 }
8092         }
8093         if (sectors == 0 && hi < bb->count) {
8094                 /* we might be able to combine lo and hi */
8095                 /* Note: 's' is at the end of 'lo' */
8096                 sector_t a = BB_OFFSET(p[hi]);
8097                 int lolen = BB_LEN(p[lo]);
8098                 int hilen = BB_LEN(p[hi]);
8099                 int newlen = lolen + hilen - (s - a);
8100                 if (s >= a && newlen < BB_MAX_LEN) {
8101                         /* yes, we can combine them */
8102                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8103                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8104                         memmove(p + hi, p + hi + 1,
8105                                 (bb->count - hi - 1) * 8);
8106                         bb->count--;
8107                 }
8108         }
8109         while (sectors) {
8110                 /* didn't merge (it all).
8111                  * Need to add a range just before 'hi' */
8112                 if (bb->count >= MD_MAX_BADBLOCKS) {
8113                         /* No room for more */
8114                         rv = 0;
8115                         break;
8116                 } else {
8117                         int this_sectors = sectors;
8118                         memmove(p + hi + 1, p + hi,
8119                                 (bb->count - hi) * 8);
8120                         bb->count++;
8121
8122                         if (this_sectors > BB_MAX_LEN)
8123                                 this_sectors = BB_MAX_LEN;
8124                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8125                         sectors -= this_sectors;
8126                         s += this_sectors;
8127                 }
8128         }
8129
8130         bb->changed = 1;
8131         if (!acknowledged)
8132                 bb->unacked_exist = 1;
8133         write_sequnlock_irq(&bb->lock);
8134
8135         return rv;
8136 }
8137
8138 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8139                        int is_new)
8140 {
8141         int rv;
8142         if (is_new)
8143                 s += rdev->new_data_offset;
8144         else
8145                 s += rdev->data_offset;
8146         rv = md_set_badblocks(&rdev->badblocks,
8147                               s, sectors, 0);
8148         if (rv) {
8149                 /* Make sure they get written out promptly */
8150                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8151                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8152                 md_wakeup_thread(rdev->mddev->thread);
8153         }
8154         return rv;
8155 }
8156 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8157
8158 /*
8159  * Remove a range of bad blocks from the table.
8160  * This may involve extending the table if we spilt a region,
8161  * but it must not fail.  So if the table becomes full, we just
8162  * drop the remove request.
8163  */
8164 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8165 {
8166         u64 *p;
8167         int lo, hi;
8168         sector_t target = s + sectors;
8169         int rv = 0;
8170
8171         if (bb->shift > 0) {
8172                 /* When clearing we round the start up and the end down.
8173                  * This should not matter as the shift should align with
8174                  * the block size and no rounding should ever be needed.
8175                  * However it is better the think a block is bad when it
8176                  * isn't than to think a block is not bad when it is.
8177                  */
8178                 s += (1<<bb->shift) - 1;
8179                 s >>= bb->shift;
8180                 target >>= bb->shift;
8181                 sectors = target - s;
8182         }
8183
8184         write_seqlock_irq(&bb->lock);
8185
8186         p = bb->page;
8187         lo = 0;
8188         hi = bb->count;
8189         /* Find the last range that starts before 'target' */
8190         while (hi - lo > 1) {
8191                 int mid = (lo + hi) / 2;
8192                 sector_t a = BB_OFFSET(p[mid]);
8193                 if (a < target)
8194                         lo = mid;
8195                 else
8196                         hi = mid;
8197         }
8198         if (hi > lo) {
8199                 /* p[lo] is the last range that could overlap the
8200                  * current range.  Earlier ranges could also overlap,
8201                  * but only this one can overlap the end of the range.
8202                  */
8203                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8204                         /* Partial overlap, leave the tail of this range */
8205                         int ack = BB_ACK(p[lo]);
8206                         sector_t a = BB_OFFSET(p[lo]);
8207                         sector_t end = a + BB_LEN(p[lo]);
8208
8209                         if (a < s) {
8210                                 /* we need to split this range */
8211                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8212                                         rv = 0;
8213                                         goto out;
8214                                 }
8215                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8216                                 bb->count++;
8217                                 p[lo] = BB_MAKE(a, s-a, ack);
8218                                 lo++;
8219                         }
8220                         p[lo] = BB_MAKE(target, end - target, ack);
8221                         /* there is no longer an overlap */
8222                         hi = lo;
8223                         lo--;
8224                 }
8225                 while (lo >= 0 &&
8226                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8227                         /* This range does overlap */
8228                         if (BB_OFFSET(p[lo]) < s) {
8229                                 /* Keep the early parts of this range. */
8230                                 int ack = BB_ACK(p[lo]);
8231                                 sector_t start = BB_OFFSET(p[lo]);
8232                                 p[lo] = BB_MAKE(start, s - start, ack);
8233                                 /* now low doesn't overlap, so.. */
8234                                 break;
8235                         }
8236                         lo--;
8237                 }
8238                 /* 'lo' is strictly before, 'hi' is strictly after,
8239                  * anything between needs to be discarded
8240                  */
8241                 if (hi - lo > 1) {
8242                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8243                         bb->count -= (hi - lo - 1);
8244                 }
8245         }
8246
8247         bb->changed = 1;
8248 out:
8249         write_sequnlock_irq(&bb->lock);
8250         return rv;
8251 }
8252
8253 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8254                          int is_new)
8255 {
8256         if (is_new)
8257                 s += rdev->new_data_offset;
8258         else
8259                 s += rdev->data_offset;
8260         return md_clear_badblocks(&rdev->badblocks,
8261                                   s, sectors);
8262 }
8263 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8264
8265 /*
8266  * Acknowledge all bad blocks in a list.
8267  * This only succeeds if ->changed is clear.  It is used by
8268  * in-kernel metadata updates
8269  */
8270 void md_ack_all_badblocks(struct badblocks *bb)
8271 {
8272         if (bb->page == NULL || bb->changed)
8273                 /* no point even trying */
8274                 return;
8275         write_seqlock_irq(&bb->lock);
8276
8277         if (bb->changed == 0 && bb->unacked_exist) {
8278                 u64 *p = bb->page;
8279                 int i;
8280                 for (i = 0; i < bb->count ; i++) {
8281                         if (!BB_ACK(p[i])) {
8282                                 sector_t start = BB_OFFSET(p[i]);
8283                                 int len = BB_LEN(p[i]);
8284                                 p[i] = BB_MAKE(start, len, 1);
8285                         }
8286                 }
8287                 bb->unacked_exist = 0;
8288         }
8289         write_sequnlock_irq(&bb->lock);
8290 }
8291 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8292
8293 /* sysfs access to bad-blocks list.
8294  * We present two files.
8295  * 'bad-blocks' lists sector numbers and lengths of ranges that
8296  *    are recorded as bad.  The list is truncated to fit within
8297  *    the one-page limit of sysfs.
8298  *    Writing "sector length" to this file adds an acknowledged
8299  *    bad block list.
8300  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8301  *    been acknowledged.  Writing to this file adds bad blocks
8302  *    without acknowledging them.  This is largely for testing.
8303  */
8304
8305 static ssize_t
8306 badblocks_show(struct badblocks *bb, char *page, int unack)
8307 {
8308         size_t len;
8309         int i;
8310         u64 *p = bb->page;
8311         unsigned seq;
8312
8313         if (bb->shift < 0)
8314                 return 0;
8315
8316 retry:
8317         seq = read_seqbegin(&bb->lock);
8318
8319         len = 0;
8320         i = 0;
8321
8322         while (len < PAGE_SIZE && i < bb->count) {
8323                 sector_t s = BB_OFFSET(p[i]);
8324                 unsigned int length = BB_LEN(p[i]);
8325                 int ack = BB_ACK(p[i]);
8326                 i++;
8327
8328                 if (unack && ack)
8329                         continue;
8330
8331                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8332                                 (unsigned long long)s << bb->shift,
8333                                 length << bb->shift);
8334         }
8335         if (unack && len == 0)
8336                 bb->unacked_exist = 0;
8337
8338         if (read_seqretry(&bb->lock, seq))
8339                 goto retry;
8340
8341         return len;
8342 }
8343
8344 #define DO_DEBUG 1
8345
8346 static ssize_t
8347 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8348 {
8349         unsigned long long sector;
8350         int length;
8351         char newline;
8352 #ifdef DO_DEBUG
8353         /* Allow clearing via sysfs *only* for testing/debugging.
8354          * Normally only a successful write may clear a badblock
8355          */
8356         int clear = 0;
8357         if (page[0] == '-') {
8358                 clear = 1;
8359                 page++;
8360         }
8361 #endif /* DO_DEBUG */
8362
8363         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8364         case 3:
8365                 if (newline != '\n')
8366                         return -EINVAL;
8367         case 2:
8368                 if (length <= 0)
8369                         return -EINVAL;
8370                 break;
8371         default:
8372                 return -EINVAL;
8373         }
8374
8375 #ifdef DO_DEBUG
8376         if (clear) {
8377                 md_clear_badblocks(bb, sector, length);
8378                 return len;
8379         }
8380 #endif /* DO_DEBUG */
8381         if (md_set_badblocks(bb, sector, length, !unack))
8382                 return len;
8383         else
8384                 return -ENOSPC;
8385 }
8386
8387 static int md_notify_reboot(struct notifier_block *this,
8388                             unsigned long code, void *x)
8389 {
8390         struct list_head *tmp;
8391         struct mddev *mddev;
8392         int need_delay = 0;
8393
8394         for_each_mddev(mddev, tmp) {
8395                 if (mddev_trylock(mddev)) {
8396                         if (mddev->pers)
8397                                 __md_stop_writes(mddev);
8398                         mddev->safemode = 2;
8399                         mddev_unlock(mddev);
8400                 }
8401                 need_delay = 1;
8402         }
8403         /*
8404          * certain more exotic SCSI devices are known to be
8405          * volatile wrt too early system reboots. While the
8406          * right place to handle this issue is the given
8407          * driver, we do want to have a safe RAID driver ...
8408          */
8409         if (need_delay)
8410                 mdelay(1000*1);
8411
8412         return NOTIFY_DONE;
8413 }
8414
8415 static struct notifier_block md_notifier = {
8416         .notifier_call  = md_notify_reboot,
8417         .next           = NULL,
8418         .priority       = INT_MAX, /* before any real devices */
8419 };
8420
8421 static void md_geninit(void)
8422 {
8423         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8424
8425         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8426 }
8427
8428 static int __init md_init(void)
8429 {
8430         int ret = -ENOMEM;
8431
8432         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8433         if (!md_wq)
8434                 goto err_wq;
8435
8436         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8437         if (!md_misc_wq)
8438                 goto err_misc_wq;
8439
8440         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8441                 goto err_md;
8442
8443         if ((ret = register_blkdev(0, "mdp")) < 0)
8444                 goto err_mdp;
8445         mdp_major = ret;
8446
8447         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8448                             md_probe, NULL, NULL);
8449         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8450                             md_probe, NULL, NULL);
8451
8452         register_reboot_notifier(&md_notifier);
8453         raid_table_header = register_sysctl_table(raid_root_table);
8454
8455         md_geninit();
8456         return 0;
8457
8458 err_mdp:
8459         unregister_blkdev(MD_MAJOR, "md");
8460 err_md:
8461         destroy_workqueue(md_misc_wq);
8462 err_misc_wq:
8463         destroy_workqueue(md_wq);
8464 err_wq:
8465         return ret;
8466 }
8467
8468 #ifndef MODULE
8469
8470 /*
8471  * Searches all registered partitions for autorun RAID arrays
8472  * at boot time.
8473  */
8474
8475 static LIST_HEAD(all_detected_devices);
8476 struct detected_devices_node {
8477         struct list_head list;
8478         dev_t dev;
8479 };
8480
8481 void md_autodetect_dev(dev_t dev)
8482 {
8483         struct detected_devices_node *node_detected_dev;
8484
8485         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8486         if (node_detected_dev) {
8487                 node_detected_dev->dev = dev;
8488                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8489         } else {
8490                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8491                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8492         }
8493 }
8494
8495
8496 static void autostart_arrays(int part)
8497 {
8498         struct md_rdev *rdev;
8499         struct detected_devices_node *node_detected_dev;
8500         dev_t dev;
8501         int i_scanned, i_passed;
8502
8503         i_scanned = 0;
8504         i_passed = 0;
8505
8506         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8507
8508         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8509                 i_scanned++;
8510                 node_detected_dev = list_entry(all_detected_devices.next,
8511                                         struct detected_devices_node, list);
8512                 list_del(&node_detected_dev->list);
8513                 dev = node_detected_dev->dev;
8514                 kfree(node_detected_dev);
8515                 rdev = md_import_device(dev,0, 90);
8516                 if (IS_ERR(rdev))
8517                         continue;
8518
8519                 if (test_bit(Faulty, &rdev->flags)) {
8520                         MD_BUG();
8521                         continue;
8522                 }
8523                 set_bit(AutoDetected, &rdev->flags);
8524                 list_add(&rdev->same_set, &pending_raid_disks);
8525                 i_passed++;
8526         }
8527
8528         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8529                                                 i_scanned, i_passed);
8530
8531         autorun_devices(part);
8532 }
8533
8534 #endif /* !MODULE */
8535
8536 static __exit void md_exit(void)
8537 {
8538         struct mddev *mddev;
8539         struct list_head *tmp;
8540
8541         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8542         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8543
8544         unregister_blkdev(MD_MAJOR,"md");
8545         unregister_blkdev(mdp_major, "mdp");
8546         unregister_reboot_notifier(&md_notifier);
8547         unregister_sysctl_table(raid_table_header);
8548         remove_proc_entry("mdstat", NULL);
8549         for_each_mddev(mddev, tmp) {
8550                 export_array(mddev);
8551                 mddev->hold_active = 0;
8552         }
8553         destroy_workqueue(md_misc_wq);
8554         destroy_workqueue(md_wq);
8555 }
8556
8557 subsys_initcall(md_init);
8558 module_exit(md_exit)
8559
8560 static int get_ro(char *buffer, struct kernel_param *kp)
8561 {
8562         return sprintf(buffer, "%d", start_readonly);
8563 }
8564 static int set_ro(const char *val, struct kernel_param *kp)
8565 {
8566         char *e;
8567         int num = simple_strtoul(val, &e, 10);
8568         if (*val && (*e == '\0' || *e == '\n')) {
8569                 start_readonly = num;
8570                 return 0;
8571         }
8572         return -EINVAL;
8573 }
8574
8575 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8576 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8577
8578 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8579
8580 EXPORT_SYMBOL(register_md_personality);
8581 EXPORT_SYMBOL(unregister_md_personality);
8582 EXPORT_SYMBOL(md_error);
8583 EXPORT_SYMBOL(md_done_sync);
8584 EXPORT_SYMBOL(md_write_start);
8585 EXPORT_SYMBOL(md_write_end);
8586 EXPORT_SYMBOL(md_register_thread);
8587 EXPORT_SYMBOL(md_unregister_thread);
8588 EXPORT_SYMBOL(md_wakeup_thread);
8589 EXPORT_SYMBOL(md_check_recovery);
8590 MODULE_LICENSE("GPL");
8591 MODULE_DESCRIPTION("MD RAID framework");
8592 MODULE_ALIAS("md");
8593 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);