]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: allow a partially recovered device to be hot-added to an array.
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200         atomic_inc(&md_event_count);
201         wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210         atomic_inc(&md_event_count);
211         wake_up(&md_event_waiters);
212 }
213
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)                                     \
230                                                                         \
231         for (({ spin_lock(&all_mddevs_lock);                            \
232                 _tmp = all_mddevs.next;                                 \
233                 _mddev = NULL;});                                       \
234              ({ if (_tmp != &all_mddevs)                                \
235                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236                 spin_unlock(&all_mddevs_lock);                          \
237                 if (_mddev) mddev_put(_mddev);                          \
238                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
239                 _tmp != &all_mddevs;});                                 \
240              ({ spin_lock(&all_mddevs_lock);                            \
241                 _tmp = _tmp->next;})                                    \
242                 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254         const int rw = bio_data_dir(bio);
255         struct mddev *mddev = q->queuedata;
256         int cpu;
257         unsigned int sectors;
258
259         if (mddev == NULL || mddev->pers == NULL
260             || !mddev->ready) {
261                 bio_io_error(bio);
262                 return;
263         }
264         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266                 return;
267         }
268         smp_rmb(); /* Ensure implications of  'active' are visible */
269         rcu_read_lock();
270         if (mddev->suspended) {
271                 DEFINE_WAIT(__wait);
272                 for (;;) {
273                         prepare_to_wait(&mddev->sb_wait, &__wait,
274                                         TASK_UNINTERRUPTIBLE);
275                         if (!mddev->suspended)
276                                 break;
277                         rcu_read_unlock();
278                         schedule();
279                         rcu_read_lock();
280                 }
281                 finish_wait(&mddev->sb_wait, &__wait);
282         }
283         atomic_inc(&mddev->active_io);
284         rcu_read_unlock();
285
286         /*
287          * save the sectors now since our bio can
288          * go away inside make_request
289          */
290         sectors = bio_sectors(bio);
291         mddev->pers->make_request(mddev, bio);
292
293         cpu = part_stat_lock();
294         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296         part_stat_unlock();
297
298         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299                 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310         BUG_ON(mddev->suspended);
311         mddev->suspended = 1;
312         synchronize_rcu();
313         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314         mddev->pers->quiesce(mddev, 1);
315
316         del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322         mddev->suspended = 0;
323         wake_up(&mddev->sb_wait);
324         mddev->pers->quiesce(mddev, 0);
325
326         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327         md_wakeup_thread(mddev->thread);
328         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334         return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339  * Generic flush handling for md
340  */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344         struct md_rdev *rdev = bio->bi_private;
345         struct mddev *mddev = rdev->mddev;
346
347         rdev_dec_pending(rdev, mddev);
348
349         if (atomic_dec_and_test(&mddev->flush_pending)) {
350                 /* The pre-request flush has finished */
351                 queue_work(md_wq, &mddev->flush_work);
352         }
353         bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361         struct md_rdev *rdev;
362
363         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364         atomic_set(&mddev->flush_pending, 1);
365         rcu_read_lock();
366         rdev_for_each_rcu(rdev, mddev)
367                 if (rdev->raid_disk >= 0 &&
368                     !test_bit(Faulty, &rdev->flags)) {
369                         /* Take two references, one is dropped
370                          * when request finishes, one after
371                          * we reclaim rcu_read_lock
372                          */
373                         struct bio *bi;
374                         atomic_inc(&rdev->nr_pending);
375                         atomic_inc(&rdev->nr_pending);
376                         rcu_read_unlock();
377                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378                         bi->bi_end_io = md_end_flush;
379                         bi->bi_private = rdev;
380                         bi->bi_bdev = rdev->bdev;
381                         atomic_inc(&mddev->flush_pending);
382                         submit_bio(WRITE_FLUSH, bi);
383                         rcu_read_lock();
384                         rdev_dec_pending(rdev, mddev);
385                 }
386         rcu_read_unlock();
387         if (atomic_dec_and_test(&mddev->flush_pending))
388                 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394         struct bio *bio = mddev->flush_bio;
395
396         if (bio->bi_size == 0)
397                 /* an empty barrier - all done */
398                 bio_endio(bio, 0);
399         else {
400                 bio->bi_rw &= ~REQ_FLUSH;
401                 mddev->pers->make_request(mddev, bio);
402         }
403
404         mddev->flush_bio = NULL;
405         wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410         spin_lock_irq(&mddev->write_lock);
411         wait_event_lock_irq(mddev->sb_wait,
412                             !mddev->flush_bio,
413                             mddev->write_lock);
414         mddev->flush_bio = bio;
415         spin_unlock_irq(&mddev->write_lock);
416
417         INIT_WORK(&mddev->flush_work, submit_flushes);
418         queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424         struct mddev *mddev = cb->data;
425         md_wakeup_thread(mddev->thread);
426         kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432         atomic_inc(&mddev->active);
433         return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440         struct bio_set *bs = NULL;
441
442         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443                 return;
444         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445             mddev->ctime == 0 && !mddev->hold_active) {
446                 /* Array is not configured at all, and not held active,
447                  * so destroy it */
448                 list_del_init(&mddev->all_mddevs);
449                 bs = mddev->bio_set;
450                 mddev->bio_set = NULL;
451                 if (mddev->gendisk) {
452                         /* We did a probe so need to clean up.  Call
453                          * queue_work inside the spinlock so that
454                          * flush_workqueue() after mddev_find will
455                          * succeed in waiting for the work to be done.
456                          */
457                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458                         queue_work(md_misc_wq, &mddev->del_work);
459                 } else
460                         kfree(mddev);
461         }
462         spin_unlock(&all_mddevs_lock);
463         if (bs)
464                 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469         mutex_init(&mddev->open_mutex);
470         mutex_init(&mddev->reconfig_mutex);
471         mutex_init(&mddev->bitmap_info.mutex);
472         INIT_LIST_HEAD(&mddev->disks);
473         INIT_LIST_HEAD(&mddev->all_mddevs);
474         init_timer(&mddev->safemode_timer);
475         atomic_set(&mddev->active, 1);
476         atomic_set(&mddev->openers, 0);
477         atomic_set(&mddev->active_io, 0);
478         spin_lock_init(&mddev->write_lock);
479         atomic_set(&mddev->flush_pending, 0);
480         init_waitqueue_head(&mddev->sb_wait);
481         init_waitqueue_head(&mddev->recovery_wait);
482         mddev->reshape_position = MaxSector;
483         mddev->reshape_backwards = 0;
484         mddev->last_sync_action = "none";
485         mddev->resync_min = 0;
486         mddev->resync_max = MaxSector;
487         mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493         struct mddev *mddev, *new = NULL;
494
495         if (unit && MAJOR(unit) != MD_MAJOR)
496                 unit &= ~((1<<MdpMinorShift)-1);
497
498  retry:
499         spin_lock(&all_mddevs_lock);
500
501         if (unit) {
502                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503                         if (mddev->unit == unit) {
504                                 mddev_get(mddev);
505                                 spin_unlock(&all_mddevs_lock);
506                                 kfree(new);
507                                 return mddev;
508                         }
509
510                 if (new) {
511                         list_add(&new->all_mddevs, &all_mddevs);
512                         spin_unlock(&all_mddevs_lock);
513                         new->hold_active = UNTIL_IOCTL;
514                         return new;
515                 }
516         } else if (new) {
517                 /* find an unused unit number */
518                 static int next_minor = 512;
519                 int start = next_minor;
520                 int is_free = 0;
521                 int dev = 0;
522                 while (!is_free) {
523                         dev = MKDEV(MD_MAJOR, next_minor);
524                         next_minor++;
525                         if (next_minor > MINORMASK)
526                                 next_minor = 0;
527                         if (next_minor == start) {
528                                 /* Oh dear, all in use. */
529                                 spin_unlock(&all_mddevs_lock);
530                                 kfree(new);
531                                 return NULL;
532                         }
533                                 
534                         is_free = 1;
535                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536                                 if (mddev->unit == dev) {
537                                         is_free = 0;
538                                         break;
539                                 }
540                 }
541                 new->unit = dev;
542                 new->md_minor = MINOR(dev);
543                 new->hold_active = UNTIL_STOP;
544                 list_add(&new->all_mddevs, &all_mddevs);
545                 spin_unlock(&all_mddevs_lock);
546                 return new;
547         }
548         spin_unlock(&all_mddevs_lock);
549
550         new = kzalloc(sizeof(*new), GFP_KERNEL);
551         if (!new)
552                 return NULL;
553
554         new->unit = unit;
555         if (MAJOR(unit) == MD_MAJOR)
556                 new->md_minor = MINOR(unit);
557         else
558                 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560         mddev_init(new);
561
562         goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567         return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571  * failure due to interrupts is not acceptable.
572  */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575         mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580         return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585         return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592         if (mddev->to_remove) {
593                 /* These cannot be removed under reconfig_mutex as
594                  * an access to the files will try to take reconfig_mutex
595                  * while holding the file unremovable, which leads to
596                  * a deadlock.
597                  * So hold set sysfs_active while the remove in happeing,
598                  * and anything else which might set ->to_remove or my
599                  * otherwise change the sysfs namespace will fail with
600                  * -EBUSY if sysfs_active is still set.
601                  * We set sysfs_active under reconfig_mutex and elsewhere
602                  * test it under the same mutex to ensure its correct value
603                  * is seen.
604                  */
605                 struct attribute_group *to_remove = mddev->to_remove;
606                 mddev->to_remove = NULL;
607                 mddev->sysfs_active = 1;
608                 mutex_unlock(&mddev->reconfig_mutex);
609
610                 if (mddev->kobj.sd) {
611                         if (to_remove != &md_redundancy_group)
612                                 sysfs_remove_group(&mddev->kobj, to_remove);
613                         if (mddev->pers == NULL ||
614                             mddev->pers->sync_request == NULL) {
615                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616                                 if (mddev->sysfs_action)
617                                         sysfs_put(mddev->sysfs_action);
618                                 mddev->sysfs_action = NULL;
619                         }
620                 }
621                 mddev->sysfs_active = 0;
622         } else
623                 mutex_unlock(&mddev->reconfig_mutex);
624
625         /* As we've dropped the mutex we need a spinlock to
626          * make sure the thread doesn't disappear
627          */
628         spin_lock(&pers_lock);
629         md_wakeup_thread(mddev->thread);
630         spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646         struct md_rdev *rdev;
647
648         rdev_for_each_rcu(rdev, mddev)
649                 if (rdev->desc_nr == nr)
650                         return rdev;
651
652         return NULL;
653 }
654
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657         struct md_rdev *rdev;
658
659         rdev_for_each(rdev, mddev)
660                 if (rdev->bdev->bd_dev == dev)
661                         return rdev;
662
663         return NULL;
664 }
665
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each_rcu(rdev, mddev)
671                 if (rdev->bdev->bd_dev == dev)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679         struct md_personality *pers;
680         list_for_each_entry(pers, &pers_list, list) {
681                 if (level != LEVEL_NONE && pers->level == level)
682                         return pers;
683                 if (strcmp(pers->name, clevel)==0)
684                         return pers;
685         }
686         return NULL;
687 }
688
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693         return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698         if (rdev->sb_page)
699                 MD_BUG();
700
701         rdev->sb_page = alloc_page(GFP_KERNEL);
702         if (!rdev->sb_page) {
703                 printk(KERN_ALERT "md: out of memory.\n");
704                 return -ENOMEM;
705         }
706
707         return 0;
708 }
709
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712         if (rdev->sb_page) {
713                 put_page(rdev->sb_page);
714                 rdev->sb_loaded = 0;
715                 rdev->sb_page = NULL;
716                 rdev->sb_start = 0;
717                 rdev->sectors = 0;
718         }
719         if (rdev->bb_page) {
720                 put_page(rdev->bb_page);
721                 rdev->bb_page = NULL;
722         }
723         kfree(rdev->badblocks.page);
724         rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727
728 static void super_written(struct bio *bio, int error)
729 {
730         struct md_rdev *rdev = bio->bi_private;
731         struct mddev *mddev = rdev->mddev;
732
733         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734                 printk("md: super_written gets error=%d, uptodate=%d\n",
735                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737                 md_error(mddev, rdev);
738         }
739
740         if (atomic_dec_and_test(&mddev->pending_writes))
741                 wake_up(&mddev->sb_wait);
742         bio_put(bio);
743 }
744
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746                    sector_t sector, int size, struct page *page)
747 {
748         /* write first size bytes of page to sector of rdev
749          * Increment mddev->pending_writes before returning
750          * and decrement it on completion, waking up sb_wait
751          * if zero is reached.
752          * If an error occurred, call md_error
753          */
754         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755
756         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757         bio->bi_sector = sector;
758         bio_add_page(bio, page, size, 0);
759         bio->bi_private = rdev;
760         bio->bi_end_io = super_written;
761
762         atomic_inc(&mddev->pending_writes);
763         submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765
766 void md_super_wait(struct mddev *mddev)
767 {
768         /* wait for all superblock writes that were scheduled to complete */
769         DEFINE_WAIT(wq);
770         for(;;) {
771                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772                 if (atomic_read(&mddev->pending_writes)==0)
773                         break;
774                 schedule();
775         }
776         finish_wait(&mddev->sb_wait, &wq);
777 }
778
779 static void bi_complete(struct bio *bio, int error)
780 {
781         complete((struct completion*)bio->bi_private);
782 }
783
784 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
785                  struct page *page, int rw, bool metadata_op)
786 {
787         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
788         struct completion event;
789         int ret;
790
791         rw |= REQ_SYNC;
792
793         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
794                 rdev->meta_bdev : rdev->bdev;
795         if (metadata_op)
796                 bio->bi_sector = sector + rdev->sb_start;
797         else if (rdev->mddev->reshape_position != MaxSector &&
798                  (rdev->mddev->reshape_backwards ==
799                   (sector >= rdev->mddev->reshape_position)))
800                 bio->bi_sector = sector + rdev->new_data_offset;
801         else
802                 bio->bi_sector = sector + rdev->data_offset;
803         bio_add_page(bio, page, size, 0);
804         init_completion(&event);
805         bio->bi_private = &event;
806         bio->bi_end_io = bi_complete;
807         submit_bio(rw, bio);
808         wait_for_completion(&event);
809
810         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
811         bio_put(bio);
812         return ret;
813 }
814 EXPORT_SYMBOL_GPL(sync_page_io);
815
816 static int read_disk_sb(struct md_rdev * rdev, int size)
817 {
818         char b[BDEVNAME_SIZE];
819         if (!rdev->sb_page) {
820                 MD_BUG();
821                 return -EINVAL;
822         }
823         if (rdev->sb_loaded)
824                 return 0;
825
826
827         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
828                 goto fail;
829         rdev->sb_loaded = 1;
830         return 0;
831
832 fail:
833         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
834                 bdevname(rdev->bdev,b));
835         return -EINVAL;
836 }
837
838 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
839 {
840         return  sb1->set_uuid0 == sb2->set_uuid0 &&
841                 sb1->set_uuid1 == sb2->set_uuid1 &&
842                 sb1->set_uuid2 == sb2->set_uuid2 &&
843                 sb1->set_uuid3 == sb2->set_uuid3;
844 }
845
846 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
847 {
848         int ret;
849         mdp_super_t *tmp1, *tmp2;
850
851         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
852         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
853
854         if (!tmp1 || !tmp2) {
855                 ret = 0;
856                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
857                 goto abort;
858         }
859
860         *tmp1 = *sb1;
861         *tmp2 = *sb2;
862
863         /*
864          * nr_disks is not constant
865          */
866         tmp1->nr_disks = 0;
867         tmp2->nr_disks = 0;
868
869         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
870 abort:
871         kfree(tmp1);
872         kfree(tmp2);
873         return ret;
874 }
875
876
877 static u32 md_csum_fold(u32 csum)
878 {
879         csum = (csum & 0xffff) + (csum >> 16);
880         return (csum & 0xffff) + (csum >> 16);
881 }
882
883 static unsigned int calc_sb_csum(mdp_super_t * sb)
884 {
885         u64 newcsum = 0;
886         u32 *sb32 = (u32*)sb;
887         int i;
888         unsigned int disk_csum, csum;
889
890         disk_csum = sb->sb_csum;
891         sb->sb_csum = 0;
892
893         for (i = 0; i < MD_SB_BYTES/4 ; i++)
894                 newcsum += sb32[i];
895         csum = (newcsum & 0xffffffff) + (newcsum>>32);
896
897
898 #ifdef CONFIG_ALPHA
899         /* This used to use csum_partial, which was wrong for several
900          * reasons including that different results are returned on
901          * different architectures.  It isn't critical that we get exactly
902          * the same return value as before (we always csum_fold before
903          * testing, and that removes any differences).  However as we
904          * know that csum_partial always returned a 16bit value on
905          * alphas, do a fold to maximise conformity to previous behaviour.
906          */
907         sb->sb_csum = md_csum_fold(disk_csum);
908 #else
909         sb->sb_csum = disk_csum;
910 #endif
911         return csum;
912 }
913
914
915 /*
916  * Handle superblock details.
917  * We want to be able to handle multiple superblock formats
918  * so we have a common interface to them all, and an array of
919  * different handlers.
920  * We rely on user-space to write the initial superblock, and support
921  * reading and updating of superblocks.
922  * Interface methods are:
923  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
924  *      loads and validates a superblock on dev.
925  *      if refdev != NULL, compare superblocks on both devices
926  *    Return:
927  *      0 - dev has a superblock that is compatible with refdev
928  *      1 - dev has a superblock that is compatible and newer than refdev
929  *          so dev should be used as the refdev in future
930  *     -EINVAL superblock incompatible or invalid
931  *     -othererror e.g. -EIO
932  *
933  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
934  *      Verify that dev is acceptable into mddev.
935  *       The first time, mddev->raid_disks will be 0, and data from
936  *       dev should be merged in.  Subsequent calls check that dev
937  *       is new enough.  Return 0 or -EINVAL
938  *
939  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
940  *     Update the superblock for rdev with data in mddev
941  *     This does not write to disc.
942  *
943  */
944
945 struct super_type  {
946         char                *name;
947         struct module       *owner;
948         int                 (*load_super)(struct md_rdev *rdev,
949                                           struct md_rdev *refdev,
950                                           int minor_version);
951         int                 (*validate_super)(struct mddev *mddev,
952                                               struct md_rdev *rdev);
953         void                (*sync_super)(struct mddev *mddev,
954                                           struct md_rdev *rdev);
955         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
956                                                 sector_t num_sectors);
957         int                 (*allow_new_offset)(struct md_rdev *rdev,
958                                                 unsigned long long new_offset);
959 };
960
961 /*
962  * Check that the given mddev has no bitmap.
963  *
964  * This function is called from the run method of all personalities that do not
965  * support bitmaps. It prints an error message and returns non-zero if mddev
966  * has a bitmap. Otherwise, it returns 0.
967  *
968  */
969 int md_check_no_bitmap(struct mddev *mddev)
970 {
971         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
972                 return 0;
973         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
974                 mdname(mddev), mddev->pers->name);
975         return 1;
976 }
977 EXPORT_SYMBOL(md_check_no_bitmap);
978
979 /*
980  * load_super for 0.90.0 
981  */
982 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
983 {
984         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
985         mdp_super_t *sb;
986         int ret;
987
988         /*
989          * Calculate the position of the superblock (512byte sectors),
990          * it's at the end of the disk.
991          *
992          * It also happens to be a multiple of 4Kb.
993          */
994         rdev->sb_start = calc_dev_sboffset(rdev);
995
996         ret = read_disk_sb(rdev, MD_SB_BYTES);
997         if (ret) return ret;
998
999         ret = -EINVAL;
1000
1001         bdevname(rdev->bdev, b);
1002         sb = page_address(rdev->sb_page);
1003
1004         if (sb->md_magic != MD_SB_MAGIC) {
1005                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1006                        b);
1007                 goto abort;
1008         }
1009
1010         if (sb->major_version != 0 ||
1011             sb->minor_version < 90 ||
1012             sb->minor_version > 91) {
1013                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1014                         sb->major_version, sb->minor_version,
1015                         b);
1016                 goto abort;
1017         }
1018
1019         if (sb->raid_disks <= 0)
1020                 goto abort;
1021
1022         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1023                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1024                         b);
1025                 goto abort;
1026         }
1027
1028         rdev->preferred_minor = sb->md_minor;
1029         rdev->data_offset = 0;
1030         rdev->new_data_offset = 0;
1031         rdev->sb_size = MD_SB_BYTES;
1032         rdev->badblocks.shift = -1;
1033
1034         if (sb->level == LEVEL_MULTIPATH)
1035                 rdev->desc_nr = -1;
1036         else
1037                 rdev->desc_nr = sb->this_disk.number;
1038
1039         if (!refdev) {
1040                 ret = 1;
1041         } else {
1042                 __u64 ev1, ev2;
1043                 mdp_super_t *refsb = page_address(refdev->sb_page);
1044                 if (!uuid_equal(refsb, sb)) {
1045                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1046                                 b, bdevname(refdev->bdev,b2));
1047                         goto abort;
1048                 }
1049                 if (!sb_equal(refsb, sb)) {
1050                         printk(KERN_WARNING "md: %s has same UUID"
1051                                " but different superblock to %s\n",
1052                                b, bdevname(refdev->bdev, b2));
1053                         goto abort;
1054                 }
1055                 ev1 = md_event(sb);
1056                 ev2 = md_event(refsb);
1057                 if (ev1 > ev2)
1058                         ret = 1;
1059                 else 
1060                         ret = 0;
1061         }
1062         rdev->sectors = rdev->sb_start;
1063         /* Limit to 4TB as metadata cannot record more than that.
1064          * (not needed for Linear and RAID0 as metadata doesn't
1065          * record this size)
1066          */
1067         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1068                 rdev->sectors = (2ULL << 32) - 2;
1069
1070         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1071                 /* "this cannot possibly happen" ... */
1072                 ret = -EINVAL;
1073
1074  abort:
1075         return ret;
1076 }
1077
1078 /*
1079  * validate_super for 0.90.0
1080  */
1081 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1082 {
1083         mdp_disk_t *desc;
1084         mdp_super_t *sb = page_address(rdev->sb_page);
1085         __u64 ev1 = md_event(sb);
1086
1087         rdev->raid_disk = -1;
1088         clear_bit(Faulty, &rdev->flags);
1089         clear_bit(In_sync, &rdev->flags);
1090         clear_bit(Bitmap_sync, &rdev->flags);
1091         clear_bit(WriteMostly, &rdev->flags);
1092
1093         if (mddev->raid_disks == 0) {
1094                 mddev->major_version = 0;
1095                 mddev->minor_version = sb->minor_version;
1096                 mddev->patch_version = sb->patch_version;
1097                 mddev->external = 0;
1098                 mddev->chunk_sectors = sb->chunk_size >> 9;
1099                 mddev->ctime = sb->ctime;
1100                 mddev->utime = sb->utime;
1101                 mddev->level = sb->level;
1102                 mddev->clevel[0] = 0;
1103                 mddev->layout = sb->layout;
1104                 mddev->raid_disks = sb->raid_disks;
1105                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1106                 mddev->events = ev1;
1107                 mddev->bitmap_info.offset = 0;
1108                 mddev->bitmap_info.space = 0;
1109                 /* bitmap can use 60 K after the 4K superblocks */
1110                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1111                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1112                 mddev->reshape_backwards = 0;
1113
1114                 if (mddev->minor_version >= 91) {
1115                         mddev->reshape_position = sb->reshape_position;
1116                         mddev->delta_disks = sb->delta_disks;
1117                         mddev->new_level = sb->new_level;
1118                         mddev->new_layout = sb->new_layout;
1119                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1120                         if (mddev->delta_disks < 0)
1121                                 mddev->reshape_backwards = 1;
1122                 } else {
1123                         mddev->reshape_position = MaxSector;
1124                         mddev->delta_disks = 0;
1125                         mddev->new_level = mddev->level;
1126                         mddev->new_layout = mddev->layout;
1127                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1128                 }
1129
1130                 if (sb->state & (1<<MD_SB_CLEAN))
1131                         mddev->recovery_cp = MaxSector;
1132                 else {
1133                         if (sb->events_hi == sb->cp_events_hi && 
1134                                 sb->events_lo == sb->cp_events_lo) {
1135                                 mddev->recovery_cp = sb->recovery_cp;
1136                         } else
1137                                 mddev->recovery_cp = 0;
1138                 }
1139
1140                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1141                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1142                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1143                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1144
1145                 mddev->max_disks = MD_SB_DISKS;
1146
1147                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1148                     mddev->bitmap_info.file == NULL) {
1149                         mddev->bitmap_info.offset =
1150                                 mddev->bitmap_info.default_offset;
1151                         mddev->bitmap_info.space =
1152                                 mddev->bitmap_info.default_space;
1153                 }
1154
1155         } else if (mddev->pers == NULL) {
1156                 /* Insist on good event counter while assembling, except
1157                  * for spares (which don't need an event count) */
1158                 ++ev1;
1159                 if (sb->disks[rdev->desc_nr].state & (
1160                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1161                         if (ev1 < mddev->events) 
1162                                 return -EINVAL;
1163         } else if (mddev->bitmap) {
1164                 /* if adding to array with a bitmap, then we can accept an
1165                  * older device ... but not too old.
1166                  */
1167                 if (ev1 < mddev->bitmap->events_cleared)
1168                         return 0;
1169                 if (ev1 < mddev->events)
1170                         set_bit(Bitmap_sync, &rdev->flags);
1171         } else {
1172                 if (ev1 < mddev->events)
1173                         /* just a hot-add of a new device, leave raid_disk at -1 */
1174                         return 0;
1175         }
1176
1177         if (mddev->level != LEVEL_MULTIPATH) {
1178                 desc = sb->disks + rdev->desc_nr;
1179
1180                 if (desc->state & (1<<MD_DISK_FAULTY))
1181                         set_bit(Faulty, &rdev->flags);
1182                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1183                             desc->raid_disk < mddev->raid_disks */) {
1184                         set_bit(In_sync, &rdev->flags);
1185                         rdev->raid_disk = desc->raid_disk;
1186                         rdev->saved_raid_disk = desc->raid_disk;
1187                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1188                         /* active but not in sync implies recovery up to
1189                          * reshape position.  We don't know exactly where
1190                          * that is, so set to zero for now */
1191                         if (mddev->minor_version >= 91) {
1192                                 rdev->recovery_offset = 0;
1193                                 rdev->raid_disk = desc->raid_disk;
1194                         }
1195                 }
1196                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1197                         set_bit(WriteMostly, &rdev->flags);
1198         } else /* MULTIPATH are always insync */
1199                 set_bit(In_sync, &rdev->flags);
1200         return 0;
1201 }
1202
1203 /*
1204  * sync_super for 0.90.0
1205  */
1206 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1207 {
1208         mdp_super_t *sb;
1209         struct md_rdev *rdev2;
1210         int next_spare = mddev->raid_disks;
1211
1212
1213         /* make rdev->sb match mddev data..
1214          *
1215          * 1/ zero out disks
1216          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1217          * 3/ any empty disks < next_spare become removed
1218          *
1219          * disks[0] gets initialised to REMOVED because
1220          * we cannot be sure from other fields if it has
1221          * been initialised or not.
1222          */
1223         int i;
1224         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1225
1226         rdev->sb_size = MD_SB_BYTES;
1227
1228         sb = page_address(rdev->sb_page);
1229
1230         memset(sb, 0, sizeof(*sb));
1231
1232         sb->md_magic = MD_SB_MAGIC;
1233         sb->major_version = mddev->major_version;
1234         sb->patch_version = mddev->patch_version;
1235         sb->gvalid_words  = 0; /* ignored */
1236         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1237         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1238         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1239         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1240
1241         sb->ctime = mddev->ctime;
1242         sb->level = mddev->level;
1243         sb->size = mddev->dev_sectors / 2;
1244         sb->raid_disks = mddev->raid_disks;
1245         sb->md_minor = mddev->md_minor;
1246         sb->not_persistent = 0;
1247         sb->utime = mddev->utime;
1248         sb->state = 0;
1249         sb->events_hi = (mddev->events>>32);
1250         sb->events_lo = (u32)mddev->events;
1251
1252         if (mddev->reshape_position == MaxSector)
1253                 sb->minor_version = 90;
1254         else {
1255                 sb->minor_version = 91;
1256                 sb->reshape_position = mddev->reshape_position;
1257                 sb->new_level = mddev->new_level;
1258                 sb->delta_disks = mddev->delta_disks;
1259                 sb->new_layout = mddev->new_layout;
1260                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1261         }
1262         mddev->minor_version = sb->minor_version;
1263         if (mddev->in_sync)
1264         {
1265                 sb->recovery_cp = mddev->recovery_cp;
1266                 sb->cp_events_hi = (mddev->events>>32);
1267                 sb->cp_events_lo = (u32)mddev->events;
1268                 if (mddev->recovery_cp == MaxSector)
1269                         sb->state = (1<< MD_SB_CLEAN);
1270         } else
1271                 sb->recovery_cp = 0;
1272
1273         sb->layout = mddev->layout;
1274         sb->chunk_size = mddev->chunk_sectors << 9;
1275
1276         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1277                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1278
1279         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1280         rdev_for_each(rdev2, mddev) {
1281                 mdp_disk_t *d;
1282                 int desc_nr;
1283                 int is_active = test_bit(In_sync, &rdev2->flags);
1284
1285                 if (rdev2->raid_disk >= 0 &&
1286                     sb->minor_version >= 91)
1287                         /* we have nowhere to store the recovery_offset,
1288                          * but if it is not below the reshape_position,
1289                          * we can piggy-back on that.
1290                          */
1291                         is_active = 1;
1292                 if (rdev2->raid_disk < 0 ||
1293                     test_bit(Faulty, &rdev2->flags))
1294                         is_active = 0;
1295                 if (is_active)
1296                         desc_nr = rdev2->raid_disk;
1297                 else
1298                         desc_nr = next_spare++;
1299                 rdev2->desc_nr = desc_nr;
1300                 d = &sb->disks[rdev2->desc_nr];
1301                 nr_disks++;
1302                 d->number = rdev2->desc_nr;
1303                 d->major = MAJOR(rdev2->bdev->bd_dev);
1304                 d->minor = MINOR(rdev2->bdev->bd_dev);
1305                 if (is_active)
1306                         d->raid_disk = rdev2->raid_disk;
1307                 else
1308                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1309                 if (test_bit(Faulty, &rdev2->flags))
1310                         d->state = (1<<MD_DISK_FAULTY);
1311                 else if (is_active) {
1312                         d->state = (1<<MD_DISK_ACTIVE);
1313                         if (test_bit(In_sync, &rdev2->flags))
1314                                 d->state |= (1<<MD_DISK_SYNC);
1315                         active++;
1316                         working++;
1317                 } else {
1318                         d->state = 0;
1319                         spare++;
1320                         working++;
1321                 }
1322                 if (test_bit(WriteMostly, &rdev2->flags))
1323                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1324         }
1325         /* now set the "removed" and "faulty" bits on any missing devices */
1326         for (i=0 ; i < mddev->raid_disks ; i++) {
1327                 mdp_disk_t *d = &sb->disks[i];
1328                 if (d->state == 0 && d->number == 0) {
1329                         d->number = i;
1330                         d->raid_disk = i;
1331                         d->state = (1<<MD_DISK_REMOVED);
1332                         d->state |= (1<<MD_DISK_FAULTY);
1333                         failed++;
1334                 }
1335         }
1336         sb->nr_disks = nr_disks;
1337         sb->active_disks = active;
1338         sb->working_disks = working;
1339         sb->failed_disks = failed;
1340         sb->spare_disks = spare;
1341
1342         sb->this_disk = sb->disks[rdev->desc_nr];
1343         sb->sb_csum = calc_sb_csum(sb);
1344 }
1345
1346 /*
1347  * rdev_size_change for 0.90.0
1348  */
1349 static unsigned long long
1350 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1351 {
1352         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1353                 return 0; /* component must fit device */
1354         if (rdev->mddev->bitmap_info.offset)
1355                 return 0; /* can't move bitmap */
1356         rdev->sb_start = calc_dev_sboffset(rdev);
1357         if (!num_sectors || num_sectors > rdev->sb_start)
1358                 num_sectors = rdev->sb_start;
1359         /* Limit to 4TB as metadata cannot record more than that.
1360          * 4TB == 2^32 KB, or 2*2^32 sectors.
1361          */
1362         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1363                 num_sectors = (2ULL << 32) - 2;
1364         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1365                        rdev->sb_page);
1366         md_super_wait(rdev->mddev);
1367         return num_sectors;
1368 }
1369
1370 static int
1371 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1372 {
1373         /* non-zero offset changes not possible with v0.90 */
1374         return new_offset == 0;
1375 }
1376
1377 /*
1378  * version 1 superblock
1379  */
1380
1381 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1382 {
1383         __le32 disk_csum;
1384         u32 csum;
1385         unsigned long long newcsum;
1386         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1387         __le32 *isuper = (__le32*)sb;
1388
1389         disk_csum = sb->sb_csum;
1390         sb->sb_csum = 0;
1391         newcsum = 0;
1392         for (; size >= 4; size -= 4)
1393                 newcsum += le32_to_cpu(*isuper++);
1394
1395         if (size == 2)
1396                 newcsum += le16_to_cpu(*(__le16*) isuper);
1397
1398         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1399         sb->sb_csum = disk_csum;
1400         return cpu_to_le32(csum);
1401 }
1402
1403 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1404                             int acknowledged);
1405 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1406 {
1407         struct mdp_superblock_1 *sb;
1408         int ret;
1409         sector_t sb_start;
1410         sector_t sectors;
1411         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1412         int bmask;
1413
1414         /*
1415          * Calculate the position of the superblock in 512byte sectors.
1416          * It is always aligned to a 4K boundary and
1417          * depeding on minor_version, it can be:
1418          * 0: At least 8K, but less than 12K, from end of device
1419          * 1: At start of device
1420          * 2: 4K from start of device.
1421          */
1422         switch(minor_version) {
1423         case 0:
1424                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1425                 sb_start -= 8*2;
1426                 sb_start &= ~(sector_t)(4*2-1);
1427                 break;
1428         case 1:
1429                 sb_start = 0;
1430                 break;
1431         case 2:
1432                 sb_start = 8;
1433                 break;
1434         default:
1435                 return -EINVAL;
1436         }
1437         rdev->sb_start = sb_start;
1438
1439         /* superblock is rarely larger than 1K, but it can be larger,
1440          * and it is safe to read 4k, so we do that
1441          */
1442         ret = read_disk_sb(rdev, 4096);
1443         if (ret) return ret;
1444
1445
1446         sb = page_address(rdev->sb_page);
1447
1448         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1449             sb->major_version != cpu_to_le32(1) ||
1450             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1451             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1452             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1453                 return -EINVAL;
1454
1455         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1456                 printk("md: invalid superblock checksum on %s\n",
1457                         bdevname(rdev->bdev,b));
1458                 return -EINVAL;
1459         }
1460         if (le64_to_cpu(sb->data_size) < 10) {
1461                 printk("md: data_size too small on %s\n",
1462                        bdevname(rdev->bdev,b));
1463                 return -EINVAL;
1464         }
1465         if (sb->pad0 ||
1466             sb->pad3[0] ||
1467             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1468                 /* Some padding is non-zero, might be a new feature */
1469                 return -EINVAL;
1470
1471         rdev->preferred_minor = 0xffff;
1472         rdev->data_offset = le64_to_cpu(sb->data_offset);
1473         rdev->new_data_offset = rdev->data_offset;
1474         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1475             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1476                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1477         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1478
1479         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1480         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1481         if (rdev->sb_size & bmask)
1482                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1483
1484         if (minor_version
1485             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1486                 return -EINVAL;
1487         if (minor_version
1488             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1489                 return -EINVAL;
1490
1491         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1492                 rdev->desc_nr = -1;
1493         else
1494                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1495
1496         if (!rdev->bb_page) {
1497                 rdev->bb_page = alloc_page(GFP_KERNEL);
1498                 if (!rdev->bb_page)
1499                         return -ENOMEM;
1500         }
1501         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1502             rdev->badblocks.count == 0) {
1503                 /* need to load the bad block list.
1504                  * Currently we limit it to one page.
1505                  */
1506                 s32 offset;
1507                 sector_t bb_sector;
1508                 u64 *bbp;
1509                 int i;
1510                 int sectors = le16_to_cpu(sb->bblog_size);
1511                 if (sectors > (PAGE_SIZE / 512))
1512                         return -EINVAL;
1513                 offset = le32_to_cpu(sb->bblog_offset);
1514                 if (offset == 0)
1515                         return -EINVAL;
1516                 bb_sector = (long long)offset;
1517                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1518                                   rdev->bb_page, READ, true))
1519                         return -EIO;
1520                 bbp = (u64 *)page_address(rdev->bb_page);
1521                 rdev->badblocks.shift = sb->bblog_shift;
1522                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1523                         u64 bb = le64_to_cpu(*bbp);
1524                         int count = bb & (0x3ff);
1525                         u64 sector = bb >> 10;
1526                         sector <<= sb->bblog_shift;
1527                         count <<= sb->bblog_shift;
1528                         if (bb + 1 == 0)
1529                                 break;
1530                         if (md_set_badblocks(&rdev->badblocks,
1531                                              sector, count, 1) == 0)
1532                                 return -EINVAL;
1533                 }
1534         } else if (sb->bblog_offset != 0)
1535                 rdev->badblocks.shift = 0;
1536
1537         if (!refdev) {
1538                 ret = 1;
1539         } else {
1540                 __u64 ev1, ev2;
1541                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1542
1543                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1544                     sb->level != refsb->level ||
1545                     sb->layout != refsb->layout ||
1546                     sb->chunksize != refsb->chunksize) {
1547                         printk(KERN_WARNING "md: %s has strangely different"
1548                                 " superblock to %s\n",
1549                                 bdevname(rdev->bdev,b),
1550                                 bdevname(refdev->bdev,b2));
1551                         return -EINVAL;
1552                 }
1553                 ev1 = le64_to_cpu(sb->events);
1554                 ev2 = le64_to_cpu(refsb->events);
1555
1556                 if (ev1 > ev2)
1557                         ret = 1;
1558                 else
1559                         ret = 0;
1560         }
1561         if (minor_version) {
1562                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1563                 sectors -= rdev->data_offset;
1564         } else
1565                 sectors = rdev->sb_start;
1566         if (sectors < le64_to_cpu(sb->data_size))
1567                 return -EINVAL;
1568         rdev->sectors = le64_to_cpu(sb->data_size);
1569         return ret;
1570 }
1571
1572 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1573 {
1574         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1575         __u64 ev1 = le64_to_cpu(sb->events);
1576
1577         rdev->raid_disk = -1;
1578         clear_bit(Faulty, &rdev->flags);
1579         clear_bit(In_sync, &rdev->flags);
1580         clear_bit(Bitmap_sync, &rdev->flags);
1581         clear_bit(WriteMostly, &rdev->flags);
1582
1583         if (mddev->raid_disks == 0) {
1584                 mddev->major_version = 1;
1585                 mddev->patch_version = 0;
1586                 mddev->external = 0;
1587                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1588                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1589                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1590                 mddev->level = le32_to_cpu(sb->level);
1591                 mddev->clevel[0] = 0;
1592                 mddev->layout = le32_to_cpu(sb->layout);
1593                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1594                 mddev->dev_sectors = le64_to_cpu(sb->size);
1595                 mddev->events = ev1;
1596                 mddev->bitmap_info.offset = 0;
1597                 mddev->bitmap_info.space = 0;
1598                 /* Default location for bitmap is 1K after superblock
1599                  * using 3K - total of 4K
1600                  */
1601                 mddev->bitmap_info.default_offset = 1024 >> 9;
1602                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1603                 mddev->reshape_backwards = 0;
1604
1605                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1606                 memcpy(mddev->uuid, sb->set_uuid, 16);
1607
1608                 mddev->max_disks =  (4096-256)/2;
1609
1610                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1611                     mddev->bitmap_info.file == NULL) {
1612                         mddev->bitmap_info.offset =
1613                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1614                         /* Metadata doesn't record how much space is available.
1615                          * For 1.0, we assume we can use up to the superblock
1616                          * if before, else to 4K beyond superblock.
1617                          * For others, assume no change is possible.
1618                          */
1619                         if (mddev->minor_version > 0)
1620                                 mddev->bitmap_info.space = 0;
1621                         else if (mddev->bitmap_info.offset > 0)
1622                                 mddev->bitmap_info.space =
1623                                         8 - mddev->bitmap_info.offset;
1624                         else
1625                                 mddev->bitmap_info.space =
1626                                         -mddev->bitmap_info.offset;
1627                 }
1628
1629                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1630                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1631                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1632                         mddev->new_level = le32_to_cpu(sb->new_level);
1633                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1634                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1635                         if (mddev->delta_disks < 0 ||
1636                             (mddev->delta_disks == 0 &&
1637                              (le32_to_cpu(sb->feature_map)
1638                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1639                                 mddev->reshape_backwards = 1;
1640                 } else {
1641                         mddev->reshape_position = MaxSector;
1642                         mddev->delta_disks = 0;
1643                         mddev->new_level = mddev->level;
1644                         mddev->new_layout = mddev->layout;
1645                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1646                 }
1647
1648         } else if (mddev->pers == NULL) {
1649                 /* Insist of good event counter while assembling, except for
1650                  * spares (which don't need an event count) */
1651                 ++ev1;
1652                 if (rdev->desc_nr >= 0 &&
1653                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1654                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1655                         if (ev1 < mddev->events)
1656                                 return -EINVAL;
1657         } else if (mddev->bitmap) {
1658                 /* If adding to array with a bitmap, then we can accept an
1659                  * older device, but not too old.
1660                  */
1661                 if (ev1 < mddev->bitmap->events_cleared)
1662                         return 0;
1663                 if (ev1 < mddev->events)
1664                         set_bit(Bitmap_sync, &rdev->flags);
1665         } else {
1666                 if (ev1 < mddev->events)
1667                         /* just a hot-add of a new device, leave raid_disk at -1 */
1668                         return 0;
1669         }
1670         if (mddev->level != LEVEL_MULTIPATH) {
1671                 int role;
1672                 if (rdev->desc_nr < 0 ||
1673                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1674                         role = 0xffff;
1675                         rdev->desc_nr = -1;
1676                 } else
1677                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1678                 switch(role) {
1679                 case 0xffff: /* spare */
1680                         break;
1681                 case 0xfffe: /* faulty */
1682                         set_bit(Faulty, &rdev->flags);
1683                         break;
1684                 default:
1685                         rdev->saved_raid_disk = role;
1686                         if ((le32_to_cpu(sb->feature_map) &
1687                              MD_FEATURE_RECOVERY_OFFSET)) {
1688                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1689                                 if (!(le32_to_cpu(sb->feature_map) &
1690                                       MD_FEATURE_RECOVERY_BITMAP))
1691                                         rdev->saved_raid_disk = -1;
1692                         } else
1693                                 set_bit(In_sync, &rdev->flags);
1694                         rdev->raid_disk = role;
1695                         break;
1696                 }
1697                 if (sb->devflags & WriteMostly1)
1698                         set_bit(WriteMostly, &rdev->flags);
1699                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1700                         set_bit(Replacement, &rdev->flags);
1701         } else /* MULTIPATH are always insync */
1702                 set_bit(In_sync, &rdev->flags);
1703
1704         return 0;
1705 }
1706
1707 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1708 {
1709         struct mdp_superblock_1 *sb;
1710         struct md_rdev *rdev2;
1711         int max_dev, i;
1712         /* make rdev->sb match mddev and rdev data. */
1713
1714         sb = page_address(rdev->sb_page);
1715
1716         sb->feature_map = 0;
1717         sb->pad0 = 0;
1718         sb->recovery_offset = cpu_to_le64(0);
1719         memset(sb->pad3, 0, sizeof(sb->pad3));
1720
1721         sb->utime = cpu_to_le64((__u64)mddev->utime);
1722         sb->events = cpu_to_le64(mddev->events);
1723         if (mddev->in_sync)
1724                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1725         else
1726                 sb->resync_offset = cpu_to_le64(0);
1727
1728         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1729
1730         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1731         sb->size = cpu_to_le64(mddev->dev_sectors);
1732         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1733         sb->level = cpu_to_le32(mddev->level);
1734         sb->layout = cpu_to_le32(mddev->layout);
1735
1736         if (test_bit(WriteMostly, &rdev->flags))
1737                 sb->devflags |= WriteMostly1;
1738         else
1739                 sb->devflags &= ~WriteMostly1;
1740         sb->data_offset = cpu_to_le64(rdev->data_offset);
1741         sb->data_size = cpu_to_le64(rdev->sectors);
1742
1743         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1744                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1745                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1746         }
1747
1748         if (rdev->raid_disk >= 0 &&
1749             !test_bit(In_sync, &rdev->flags)) {
1750                 sb->feature_map |=
1751                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1752                 sb->recovery_offset =
1753                         cpu_to_le64(rdev->recovery_offset);
1754                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1755                         sb->feature_map |=
1756                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1757         }
1758         if (test_bit(Replacement, &rdev->flags))
1759                 sb->feature_map |=
1760                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1761
1762         if (mddev->reshape_position != MaxSector) {
1763                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1764                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1765                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1766                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1767                 sb->new_level = cpu_to_le32(mddev->new_level);
1768                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1769                 if (mddev->delta_disks == 0 &&
1770                     mddev->reshape_backwards)
1771                         sb->feature_map
1772                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1773                 if (rdev->new_data_offset != rdev->data_offset) {
1774                         sb->feature_map
1775                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1776                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1777                                                              - rdev->data_offset));
1778                 }
1779         }
1780
1781         if (rdev->badblocks.count == 0)
1782                 /* Nothing to do for bad blocks*/ ;
1783         else if (sb->bblog_offset == 0)
1784                 /* Cannot record bad blocks on this device */
1785                 md_error(mddev, rdev);
1786         else {
1787                 struct badblocks *bb = &rdev->badblocks;
1788                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1789                 u64 *p = bb->page;
1790                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1791                 if (bb->changed) {
1792                         unsigned seq;
1793
1794 retry:
1795                         seq = read_seqbegin(&bb->lock);
1796
1797                         memset(bbp, 0xff, PAGE_SIZE);
1798
1799                         for (i = 0 ; i < bb->count ; i++) {
1800                                 u64 internal_bb = p[i];
1801                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1802                                                 | BB_LEN(internal_bb));
1803                                 bbp[i] = cpu_to_le64(store_bb);
1804                         }
1805                         bb->changed = 0;
1806                         if (read_seqretry(&bb->lock, seq))
1807                                 goto retry;
1808
1809                         bb->sector = (rdev->sb_start +
1810                                       (int)le32_to_cpu(sb->bblog_offset));
1811                         bb->size = le16_to_cpu(sb->bblog_size);
1812                 }
1813         }
1814
1815         max_dev = 0;
1816         rdev_for_each(rdev2, mddev)
1817                 if (rdev2->desc_nr+1 > max_dev)
1818                         max_dev = rdev2->desc_nr+1;
1819
1820         if (max_dev > le32_to_cpu(sb->max_dev)) {
1821                 int bmask;
1822                 sb->max_dev = cpu_to_le32(max_dev);
1823                 rdev->sb_size = max_dev * 2 + 256;
1824                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1825                 if (rdev->sb_size & bmask)
1826                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1827         } else
1828                 max_dev = le32_to_cpu(sb->max_dev);
1829
1830         for (i=0; i<max_dev;i++)
1831                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1832         
1833         rdev_for_each(rdev2, mddev) {
1834                 i = rdev2->desc_nr;
1835                 if (test_bit(Faulty, &rdev2->flags))
1836                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837                 else if (test_bit(In_sync, &rdev2->flags))
1838                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1839                 else if (rdev2->raid_disk >= 0)
1840                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1841                 else
1842                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1843         }
1844
1845         sb->sb_csum = calc_sb_1_csum(sb);
1846 }
1847
1848 static unsigned long long
1849 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1850 {
1851         struct mdp_superblock_1 *sb;
1852         sector_t max_sectors;
1853         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1854                 return 0; /* component must fit device */
1855         if (rdev->data_offset != rdev->new_data_offset)
1856                 return 0; /* too confusing */
1857         if (rdev->sb_start < rdev->data_offset) {
1858                 /* minor versions 1 and 2; superblock before data */
1859                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1860                 max_sectors -= rdev->data_offset;
1861                 if (!num_sectors || num_sectors > max_sectors)
1862                         num_sectors = max_sectors;
1863         } else if (rdev->mddev->bitmap_info.offset) {
1864                 /* minor version 0 with bitmap we can't move */
1865                 return 0;
1866         } else {
1867                 /* minor version 0; superblock after data */
1868                 sector_t sb_start;
1869                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1870                 sb_start &= ~(sector_t)(4*2 - 1);
1871                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1872                 if (!num_sectors || num_sectors > max_sectors)
1873                         num_sectors = max_sectors;
1874                 rdev->sb_start = sb_start;
1875         }
1876         sb = page_address(rdev->sb_page);
1877         sb->data_size = cpu_to_le64(num_sectors);
1878         sb->super_offset = rdev->sb_start;
1879         sb->sb_csum = calc_sb_1_csum(sb);
1880         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1881                        rdev->sb_page);
1882         md_super_wait(rdev->mddev);
1883         return num_sectors;
1884
1885 }
1886
1887 static int
1888 super_1_allow_new_offset(struct md_rdev *rdev,
1889                          unsigned long long new_offset)
1890 {
1891         /* All necessary checks on new >= old have been done */
1892         struct bitmap *bitmap;
1893         if (new_offset >= rdev->data_offset)
1894                 return 1;
1895
1896         /* with 1.0 metadata, there is no metadata to tread on
1897          * so we can always move back */
1898         if (rdev->mddev->minor_version == 0)
1899                 return 1;
1900
1901         /* otherwise we must be sure not to step on
1902          * any metadata, so stay:
1903          * 36K beyond start of superblock
1904          * beyond end of badblocks
1905          * beyond write-intent bitmap
1906          */
1907         if (rdev->sb_start + (32+4)*2 > new_offset)
1908                 return 0;
1909         bitmap = rdev->mddev->bitmap;
1910         if (bitmap && !rdev->mddev->bitmap_info.file &&
1911             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1912             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1913                 return 0;
1914         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1915                 return 0;
1916
1917         return 1;
1918 }
1919
1920 static struct super_type super_types[] = {
1921         [0] = {
1922                 .name   = "0.90.0",
1923                 .owner  = THIS_MODULE,
1924                 .load_super         = super_90_load,
1925                 .validate_super     = super_90_validate,
1926                 .sync_super         = super_90_sync,
1927                 .rdev_size_change   = super_90_rdev_size_change,
1928                 .allow_new_offset   = super_90_allow_new_offset,
1929         },
1930         [1] = {
1931                 .name   = "md-1",
1932                 .owner  = THIS_MODULE,
1933                 .load_super         = super_1_load,
1934                 .validate_super     = super_1_validate,
1935                 .sync_super         = super_1_sync,
1936                 .rdev_size_change   = super_1_rdev_size_change,
1937                 .allow_new_offset   = super_1_allow_new_offset,
1938         },
1939 };
1940
1941 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1942 {
1943         if (mddev->sync_super) {
1944                 mddev->sync_super(mddev, rdev);
1945                 return;
1946         }
1947
1948         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1949
1950         super_types[mddev->major_version].sync_super(mddev, rdev);
1951 }
1952
1953 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1954 {
1955         struct md_rdev *rdev, *rdev2;
1956
1957         rcu_read_lock();
1958         rdev_for_each_rcu(rdev, mddev1)
1959                 rdev_for_each_rcu(rdev2, mddev2)
1960                         if (rdev->bdev->bd_contains ==
1961                             rdev2->bdev->bd_contains) {
1962                                 rcu_read_unlock();
1963                                 return 1;
1964                         }
1965         rcu_read_unlock();
1966         return 0;
1967 }
1968
1969 static LIST_HEAD(pending_raid_disks);
1970
1971 /*
1972  * Try to register data integrity profile for an mddev
1973  *
1974  * This is called when an array is started and after a disk has been kicked
1975  * from the array. It only succeeds if all working and active component devices
1976  * are integrity capable with matching profiles.
1977  */
1978 int md_integrity_register(struct mddev *mddev)
1979 {
1980         struct md_rdev *rdev, *reference = NULL;
1981
1982         if (list_empty(&mddev->disks))
1983                 return 0; /* nothing to do */
1984         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1985                 return 0; /* shouldn't register, or already is */
1986         rdev_for_each(rdev, mddev) {
1987                 /* skip spares and non-functional disks */
1988                 if (test_bit(Faulty, &rdev->flags))
1989                         continue;
1990                 if (rdev->raid_disk < 0)
1991                         continue;
1992                 if (!reference) {
1993                         /* Use the first rdev as the reference */
1994                         reference = rdev;
1995                         continue;
1996                 }
1997                 /* does this rdev's profile match the reference profile? */
1998                 if (blk_integrity_compare(reference->bdev->bd_disk,
1999                                 rdev->bdev->bd_disk) < 0)
2000                         return -EINVAL;
2001         }
2002         if (!reference || !bdev_get_integrity(reference->bdev))
2003                 return 0;
2004         /*
2005          * All component devices are integrity capable and have matching
2006          * profiles, register the common profile for the md device.
2007          */
2008         if (blk_integrity_register(mddev->gendisk,
2009                         bdev_get_integrity(reference->bdev)) != 0) {
2010                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2011                         mdname(mddev));
2012                 return -EINVAL;
2013         }
2014         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2015         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2016                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2017                        mdname(mddev));
2018                 return -EINVAL;
2019         }
2020         return 0;
2021 }
2022 EXPORT_SYMBOL(md_integrity_register);
2023
2024 /* Disable data integrity if non-capable/non-matching disk is being added */
2025 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2026 {
2027         struct blk_integrity *bi_rdev;
2028         struct blk_integrity *bi_mddev;
2029
2030         if (!mddev->gendisk)
2031                 return;
2032
2033         bi_rdev = bdev_get_integrity(rdev->bdev);
2034         bi_mddev = blk_get_integrity(mddev->gendisk);
2035
2036         if (!bi_mddev) /* nothing to do */
2037                 return;
2038         if (rdev->raid_disk < 0) /* skip spares */
2039                 return;
2040         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2041                                              rdev->bdev->bd_disk) >= 0)
2042                 return;
2043         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2044         blk_integrity_unregister(mddev->gendisk);
2045 }
2046 EXPORT_SYMBOL(md_integrity_add_rdev);
2047
2048 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2049 {
2050         char b[BDEVNAME_SIZE];
2051         struct kobject *ko;
2052         char *s;
2053         int err;
2054
2055         if (rdev->mddev) {
2056                 MD_BUG();
2057                 return -EINVAL;
2058         }
2059
2060         /* prevent duplicates */
2061         if (find_rdev(mddev, rdev->bdev->bd_dev))
2062                 return -EEXIST;
2063
2064         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2065         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2066                         rdev->sectors < mddev->dev_sectors)) {
2067                 if (mddev->pers) {
2068                         /* Cannot change size, so fail
2069                          * If mddev->level <= 0, then we don't care
2070                          * about aligning sizes (e.g. linear)
2071                          */
2072                         if (mddev->level > 0)
2073                                 return -ENOSPC;
2074                 } else
2075                         mddev->dev_sectors = rdev->sectors;
2076         }
2077
2078         /* Verify rdev->desc_nr is unique.
2079          * If it is -1, assign a free number, else
2080          * check number is not in use
2081          */
2082         if (rdev->desc_nr < 0) {
2083                 int choice = 0;
2084                 if (mddev->pers) choice = mddev->raid_disks;
2085                 while (find_rdev_nr(mddev, choice))
2086                         choice++;
2087                 rdev->desc_nr = choice;
2088         } else {
2089                 if (find_rdev_nr(mddev, rdev->desc_nr))
2090                         return -EBUSY;
2091         }
2092         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2093                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2094                        mdname(mddev), mddev->max_disks);
2095                 return -EBUSY;
2096         }
2097         bdevname(rdev->bdev,b);
2098         while ( (s=strchr(b, '/')) != NULL)
2099                 *s = '!';
2100
2101         rdev->mddev = mddev;
2102         printk(KERN_INFO "md: bind<%s>\n", b);
2103
2104         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2105                 goto fail;
2106
2107         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2108         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2109                 /* failure here is OK */;
2110         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2111
2112         list_add_rcu(&rdev->same_set, &mddev->disks);
2113         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2114
2115         /* May as well allow recovery to be retried once */
2116         mddev->recovery_disabled++;
2117
2118         return 0;
2119
2120  fail:
2121         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2122                b, mdname(mddev));
2123         return err;
2124 }
2125
2126 static void md_delayed_delete(struct work_struct *ws)
2127 {
2128         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2129         kobject_del(&rdev->kobj);
2130         kobject_put(&rdev->kobj);
2131 }
2132
2133 static void unbind_rdev_from_array(struct md_rdev * rdev)
2134 {
2135         char b[BDEVNAME_SIZE];
2136         if (!rdev->mddev) {
2137                 MD_BUG();
2138                 return;
2139         }
2140         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2141         list_del_rcu(&rdev->same_set);
2142         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2143         rdev->mddev = NULL;
2144         sysfs_remove_link(&rdev->kobj, "block");
2145         sysfs_put(rdev->sysfs_state);
2146         rdev->sysfs_state = NULL;
2147         rdev->badblocks.count = 0;
2148         /* We need to delay this, otherwise we can deadlock when
2149          * writing to 'remove' to "dev/state".  We also need
2150          * to delay it due to rcu usage.
2151          */
2152         synchronize_rcu();
2153         INIT_WORK(&rdev->del_work, md_delayed_delete);
2154         kobject_get(&rdev->kobj);
2155         queue_work(md_misc_wq, &rdev->del_work);
2156 }
2157
2158 /*
2159  * prevent the device from being mounted, repartitioned or
2160  * otherwise reused by a RAID array (or any other kernel
2161  * subsystem), by bd_claiming the device.
2162  */
2163 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2164 {
2165         int err = 0;
2166         struct block_device *bdev;
2167         char b[BDEVNAME_SIZE];
2168
2169         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2170                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2171         if (IS_ERR(bdev)) {
2172                 printk(KERN_ERR "md: could not open %s.\n",
2173                         __bdevname(dev, b));
2174                 return PTR_ERR(bdev);
2175         }
2176         rdev->bdev = bdev;
2177         return err;
2178 }
2179
2180 static void unlock_rdev(struct md_rdev *rdev)
2181 {
2182         struct block_device *bdev = rdev->bdev;
2183         rdev->bdev = NULL;
2184         if (!bdev)
2185                 MD_BUG();
2186         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2187 }
2188
2189 void md_autodetect_dev(dev_t dev);
2190
2191 static void export_rdev(struct md_rdev * rdev)
2192 {
2193         char b[BDEVNAME_SIZE];
2194         printk(KERN_INFO "md: export_rdev(%s)\n",
2195                 bdevname(rdev->bdev,b));
2196         if (rdev->mddev)
2197                 MD_BUG();
2198         md_rdev_clear(rdev);
2199 #ifndef MODULE
2200         if (test_bit(AutoDetected, &rdev->flags))
2201                 md_autodetect_dev(rdev->bdev->bd_dev);
2202 #endif
2203         unlock_rdev(rdev);
2204         kobject_put(&rdev->kobj);
2205 }
2206
2207 static void kick_rdev_from_array(struct md_rdev * rdev)
2208 {
2209         unbind_rdev_from_array(rdev);
2210         export_rdev(rdev);
2211 }
2212
2213 static void export_array(struct mddev *mddev)
2214 {
2215         struct md_rdev *rdev, *tmp;
2216
2217         rdev_for_each_safe(rdev, tmp, mddev) {
2218                 if (!rdev->mddev) {
2219                         MD_BUG();
2220                         continue;
2221                 }
2222                 kick_rdev_from_array(rdev);
2223         }
2224         if (!list_empty(&mddev->disks))
2225                 MD_BUG();
2226         mddev->raid_disks = 0;
2227         mddev->major_version = 0;
2228 }
2229
2230 static void print_desc(mdp_disk_t *desc)
2231 {
2232         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2233                 desc->major,desc->minor,desc->raid_disk,desc->state);
2234 }
2235
2236 static void print_sb_90(mdp_super_t *sb)
2237 {
2238         int i;
2239
2240         printk(KERN_INFO 
2241                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2242                 sb->major_version, sb->minor_version, sb->patch_version,
2243                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2244                 sb->ctime);
2245         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2246                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2247                 sb->md_minor, sb->layout, sb->chunk_size);
2248         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2249                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2250                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2251                 sb->failed_disks, sb->spare_disks,
2252                 sb->sb_csum, (unsigned long)sb->events_lo);
2253
2254         printk(KERN_INFO);
2255         for (i = 0; i < MD_SB_DISKS; i++) {
2256                 mdp_disk_t *desc;
2257
2258                 desc = sb->disks + i;
2259                 if (desc->number || desc->major || desc->minor ||
2260                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2261                         printk("     D %2d: ", i);
2262                         print_desc(desc);
2263                 }
2264         }
2265         printk(KERN_INFO "md:     THIS: ");
2266         print_desc(&sb->this_disk);
2267 }
2268
2269 static void print_sb_1(struct mdp_superblock_1 *sb)
2270 {
2271         __u8 *uuid;
2272
2273         uuid = sb->set_uuid;
2274         printk(KERN_INFO
2275                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2276                "md:    Name: \"%s\" CT:%llu\n",
2277                 le32_to_cpu(sb->major_version),
2278                 le32_to_cpu(sb->feature_map),
2279                 uuid,
2280                 sb->set_name,
2281                 (unsigned long long)le64_to_cpu(sb->ctime)
2282                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2283
2284         uuid = sb->device_uuid;
2285         printk(KERN_INFO
2286                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2287                         " RO:%llu\n"
2288                "md:     Dev:%08x UUID: %pU\n"
2289                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2290                "md:         (MaxDev:%u) \n",
2291                 le32_to_cpu(sb->level),
2292                 (unsigned long long)le64_to_cpu(sb->size),
2293                 le32_to_cpu(sb->raid_disks),
2294                 le32_to_cpu(sb->layout),
2295                 le32_to_cpu(sb->chunksize),
2296                 (unsigned long long)le64_to_cpu(sb->data_offset),
2297                 (unsigned long long)le64_to_cpu(sb->data_size),
2298                 (unsigned long long)le64_to_cpu(sb->super_offset),
2299                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2300                 le32_to_cpu(sb->dev_number),
2301                 uuid,
2302                 sb->devflags,
2303                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2304                 (unsigned long long)le64_to_cpu(sb->events),
2305                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2306                 le32_to_cpu(sb->sb_csum),
2307                 le32_to_cpu(sb->max_dev)
2308                 );
2309 }
2310
2311 static void print_rdev(struct md_rdev *rdev, int major_version)
2312 {
2313         char b[BDEVNAME_SIZE];
2314         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2315                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2316                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2317                 rdev->desc_nr);
2318         if (rdev->sb_loaded) {
2319                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2320                 switch (major_version) {
2321                 case 0:
2322                         print_sb_90(page_address(rdev->sb_page));
2323                         break;
2324                 case 1:
2325                         print_sb_1(page_address(rdev->sb_page));
2326                         break;
2327                 }
2328         } else
2329                 printk(KERN_INFO "md: no rdev superblock!\n");
2330 }
2331
2332 static void md_print_devices(void)
2333 {
2334         struct list_head *tmp;
2335         struct md_rdev *rdev;
2336         struct mddev *mddev;
2337         char b[BDEVNAME_SIZE];
2338
2339         printk("\n");
2340         printk("md:     **********************************\n");
2341         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2342         printk("md:     **********************************\n");
2343         for_each_mddev(mddev, tmp) {
2344
2345                 if (mddev->bitmap)
2346                         bitmap_print_sb(mddev->bitmap);
2347                 else
2348                         printk("%s: ", mdname(mddev));
2349                 rdev_for_each(rdev, mddev)
2350                         printk("<%s>", bdevname(rdev->bdev,b));
2351                 printk("\n");
2352
2353                 rdev_for_each(rdev, mddev)
2354                         print_rdev(rdev, mddev->major_version);
2355         }
2356         printk("md:     **********************************\n");
2357         printk("\n");
2358 }
2359
2360
2361 static void sync_sbs(struct mddev * mddev, int nospares)
2362 {
2363         /* Update each superblock (in-memory image), but
2364          * if we are allowed to, skip spares which already
2365          * have the right event counter, or have one earlier
2366          * (which would mean they aren't being marked as dirty
2367          * with the rest of the array)
2368          */
2369         struct md_rdev *rdev;
2370         rdev_for_each(rdev, mddev) {
2371                 if (rdev->sb_events == mddev->events ||
2372                     (nospares &&
2373                      rdev->raid_disk < 0 &&
2374                      rdev->sb_events+1 == mddev->events)) {
2375                         /* Don't update this superblock */
2376                         rdev->sb_loaded = 2;
2377                 } else {
2378                         sync_super(mddev, rdev);
2379                         rdev->sb_loaded = 1;
2380                 }
2381         }
2382 }
2383
2384 static void md_update_sb(struct mddev * mddev, int force_change)
2385 {
2386         struct md_rdev *rdev;
2387         int sync_req;
2388         int nospares = 0;
2389         int any_badblocks_changed = 0;
2390
2391         if (mddev->ro) {
2392                 if (force_change)
2393                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2394                 return;
2395         }
2396 repeat:
2397         /* First make sure individual recovery_offsets are correct */
2398         rdev_for_each(rdev, mddev) {
2399                 if (rdev->raid_disk >= 0 &&
2400                     mddev->delta_disks >= 0 &&
2401                     !test_bit(In_sync, &rdev->flags) &&
2402                     mddev->curr_resync_completed > rdev->recovery_offset)
2403                                 rdev->recovery_offset = mddev->curr_resync_completed;
2404
2405         }       
2406         if (!mddev->persistent) {
2407                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2408                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2409                 if (!mddev->external) {
2410                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2411                         rdev_for_each(rdev, mddev) {
2412                                 if (rdev->badblocks.changed) {
2413                                         rdev->badblocks.changed = 0;
2414                                         md_ack_all_badblocks(&rdev->badblocks);
2415                                         md_error(mddev, rdev);
2416                                 }
2417                                 clear_bit(Blocked, &rdev->flags);
2418                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2419                                 wake_up(&rdev->blocked_wait);
2420                         }
2421                 }
2422                 wake_up(&mddev->sb_wait);
2423                 return;
2424         }
2425
2426         spin_lock_irq(&mddev->write_lock);
2427
2428         mddev->utime = get_seconds();
2429
2430         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2431                 force_change = 1;
2432         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2433                 /* just a clean<-> dirty transition, possibly leave spares alone,
2434                  * though if events isn't the right even/odd, we will have to do
2435                  * spares after all
2436                  */
2437                 nospares = 1;
2438         if (force_change)
2439                 nospares = 0;
2440         if (mddev->degraded)
2441                 /* If the array is degraded, then skipping spares is both
2442                  * dangerous and fairly pointless.
2443                  * Dangerous because a device that was removed from the array
2444                  * might have a event_count that still looks up-to-date,
2445                  * so it can be re-added without a resync.
2446                  * Pointless because if there are any spares to skip,
2447                  * then a recovery will happen and soon that array won't
2448                  * be degraded any more and the spare can go back to sleep then.
2449                  */
2450                 nospares = 0;
2451
2452         sync_req = mddev->in_sync;
2453
2454         /* If this is just a dirty<->clean transition, and the array is clean
2455          * and 'events' is odd, we can roll back to the previous clean state */
2456         if (nospares
2457             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2458             && mddev->can_decrease_events
2459             && mddev->events != 1) {
2460                 mddev->events--;
2461                 mddev->can_decrease_events = 0;
2462         } else {
2463                 /* otherwise we have to go forward and ... */
2464                 mddev->events ++;
2465                 mddev->can_decrease_events = nospares;
2466         }
2467
2468         if (!mddev->events) {
2469                 /*
2470                  * oops, this 64-bit counter should never wrap.
2471                  * Either we are in around ~1 trillion A.C., assuming
2472                  * 1 reboot per second, or we have a bug:
2473                  */
2474                 MD_BUG();
2475                 mddev->events --;
2476         }
2477
2478         rdev_for_each(rdev, mddev) {
2479                 if (rdev->badblocks.changed)
2480                         any_badblocks_changed++;
2481                 if (test_bit(Faulty, &rdev->flags))
2482                         set_bit(FaultRecorded, &rdev->flags);
2483         }
2484
2485         sync_sbs(mddev, nospares);
2486         spin_unlock_irq(&mddev->write_lock);
2487
2488         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2489                  mdname(mddev), mddev->in_sync);
2490
2491         bitmap_update_sb(mddev->bitmap);
2492         rdev_for_each(rdev, mddev) {
2493                 char b[BDEVNAME_SIZE];
2494
2495                 if (rdev->sb_loaded != 1)
2496                         continue; /* no noise on spare devices */
2497
2498                 if (!test_bit(Faulty, &rdev->flags)) {
2499                         md_super_write(mddev,rdev,
2500                                        rdev->sb_start, rdev->sb_size,
2501                                        rdev->sb_page);
2502                         pr_debug("md: (write) %s's sb offset: %llu\n",
2503                                  bdevname(rdev->bdev, b),
2504                                  (unsigned long long)rdev->sb_start);
2505                         rdev->sb_events = mddev->events;
2506                         if (rdev->badblocks.size) {
2507                                 md_super_write(mddev, rdev,
2508                                                rdev->badblocks.sector,
2509                                                rdev->badblocks.size << 9,
2510                                                rdev->bb_page);
2511                                 rdev->badblocks.size = 0;
2512                         }
2513
2514                 } else
2515                         pr_debug("md: %s (skipping faulty)\n",
2516                                  bdevname(rdev->bdev, b));
2517
2518                 if (mddev->level == LEVEL_MULTIPATH)
2519                         /* only need to write one superblock... */
2520                         break;
2521         }
2522         md_super_wait(mddev);
2523         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2524
2525         spin_lock_irq(&mddev->write_lock);
2526         if (mddev->in_sync != sync_req ||
2527             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2528                 /* have to write it out again */
2529                 spin_unlock_irq(&mddev->write_lock);
2530                 goto repeat;
2531         }
2532         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2533         spin_unlock_irq(&mddev->write_lock);
2534         wake_up(&mddev->sb_wait);
2535         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2536                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2537
2538         rdev_for_each(rdev, mddev) {
2539                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2540                         clear_bit(Blocked, &rdev->flags);
2541
2542                 if (any_badblocks_changed)
2543                         md_ack_all_badblocks(&rdev->badblocks);
2544                 clear_bit(BlockedBadBlocks, &rdev->flags);
2545                 wake_up(&rdev->blocked_wait);
2546         }
2547 }
2548
2549 /* words written to sysfs files may, or may not, be \n terminated.
2550  * We want to accept with case. For this we use cmd_match.
2551  */
2552 static int cmd_match(const char *cmd, const char *str)
2553 {
2554         /* See if cmd, written into a sysfs file, matches
2555          * str.  They must either be the same, or cmd can
2556          * have a trailing newline
2557          */
2558         while (*cmd && *str && *cmd == *str) {
2559                 cmd++;
2560                 str++;
2561         }
2562         if (*cmd == '\n')
2563                 cmd++;
2564         if (*str || *cmd)
2565                 return 0;
2566         return 1;
2567 }
2568
2569 struct rdev_sysfs_entry {
2570         struct attribute attr;
2571         ssize_t (*show)(struct md_rdev *, char *);
2572         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2573 };
2574
2575 static ssize_t
2576 state_show(struct md_rdev *rdev, char *page)
2577 {
2578         char *sep = "";
2579         size_t len = 0;
2580
2581         if (test_bit(Faulty, &rdev->flags) ||
2582             rdev->badblocks.unacked_exist) {
2583                 len+= sprintf(page+len, "%sfaulty",sep);
2584                 sep = ",";
2585         }
2586         if (test_bit(In_sync, &rdev->flags)) {
2587                 len += sprintf(page+len, "%sin_sync",sep);
2588                 sep = ",";
2589         }
2590         if (test_bit(WriteMostly, &rdev->flags)) {
2591                 len += sprintf(page+len, "%swrite_mostly",sep);
2592                 sep = ",";
2593         }
2594         if (test_bit(Blocked, &rdev->flags) ||
2595             (rdev->badblocks.unacked_exist
2596              && !test_bit(Faulty, &rdev->flags))) {
2597                 len += sprintf(page+len, "%sblocked", sep);
2598                 sep = ",";
2599         }
2600         if (!test_bit(Faulty, &rdev->flags) &&
2601             !test_bit(In_sync, &rdev->flags)) {
2602                 len += sprintf(page+len, "%sspare", sep);
2603                 sep = ",";
2604         }
2605         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2606                 len += sprintf(page+len, "%swrite_error", sep);
2607                 sep = ",";
2608         }
2609         if (test_bit(WantReplacement, &rdev->flags)) {
2610                 len += sprintf(page+len, "%swant_replacement", sep);
2611                 sep = ",";
2612         }
2613         if (test_bit(Replacement, &rdev->flags)) {
2614                 len += sprintf(page+len, "%sreplacement", sep);
2615                 sep = ",";
2616         }
2617
2618         return len+sprintf(page+len, "\n");
2619 }
2620
2621 static ssize_t
2622 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2623 {
2624         /* can write
2625          *  faulty  - simulates an error
2626          *  remove  - disconnects the device
2627          *  writemostly - sets write_mostly
2628          *  -writemostly - clears write_mostly
2629          *  blocked - sets the Blocked flags
2630          *  -blocked - clears the Blocked and possibly simulates an error
2631          *  insync - sets Insync providing device isn't active
2632          *  -insync - clear Insync for a device with a slot assigned,
2633          *            so that it gets rebuilt based on bitmap
2634          *  write_error - sets WriteErrorSeen
2635          *  -write_error - clears WriteErrorSeen
2636          */
2637         int err = -EINVAL;
2638         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2639                 md_error(rdev->mddev, rdev);
2640                 if (test_bit(Faulty, &rdev->flags))
2641                         err = 0;
2642                 else
2643                         err = -EBUSY;
2644         } else if (cmd_match(buf, "remove")) {
2645                 if (rdev->raid_disk >= 0)
2646                         err = -EBUSY;
2647                 else {
2648                         struct mddev *mddev = rdev->mddev;
2649                         kick_rdev_from_array(rdev);
2650                         if (mddev->pers)
2651                                 md_update_sb(mddev, 1);
2652                         md_new_event(mddev);
2653                         err = 0;
2654                 }
2655         } else if (cmd_match(buf, "writemostly")) {
2656                 set_bit(WriteMostly, &rdev->flags);
2657                 err = 0;
2658         } else if (cmd_match(buf, "-writemostly")) {
2659                 clear_bit(WriteMostly, &rdev->flags);
2660                 err = 0;
2661         } else if (cmd_match(buf, "blocked")) {
2662                 set_bit(Blocked, &rdev->flags);
2663                 err = 0;
2664         } else if (cmd_match(buf, "-blocked")) {
2665                 if (!test_bit(Faulty, &rdev->flags) &&
2666                     rdev->badblocks.unacked_exist) {
2667                         /* metadata handler doesn't understand badblocks,
2668                          * so we need to fail the device
2669                          */
2670                         md_error(rdev->mddev, rdev);
2671                 }
2672                 clear_bit(Blocked, &rdev->flags);
2673                 clear_bit(BlockedBadBlocks, &rdev->flags);
2674                 wake_up(&rdev->blocked_wait);
2675                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2676                 md_wakeup_thread(rdev->mddev->thread);
2677
2678                 err = 0;
2679         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2680                 set_bit(In_sync, &rdev->flags);
2681                 err = 0;
2682         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2683                 clear_bit(In_sync, &rdev->flags);
2684                 rdev->saved_raid_disk = rdev->raid_disk;
2685                 rdev->raid_disk = -1;
2686                 err = 0;
2687         } else if (cmd_match(buf, "write_error")) {
2688                 set_bit(WriteErrorSeen, &rdev->flags);
2689                 err = 0;
2690         } else if (cmd_match(buf, "-write_error")) {
2691                 clear_bit(WriteErrorSeen, &rdev->flags);
2692                 err = 0;
2693         } else if (cmd_match(buf, "want_replacement")) {
2694                 /* Any non-spare device that is not a replacement can
2695                  * become want_replacement at any time, but we then need to
2696                  * check if recovery is needed.
2697                  */
2698                 if (rdev->raid_disk >= 0 &&
2699                     !test_bit(Replacement, &rdev->flags))
2700                         set_bit(WantReplacement, &rdev->flags);
2701                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2702                 md_wakeup_thread(rdev->mddev->thread);
2703                 err = 0;
2704         } else if (cmd_match(buf, "-want_replacement")) {
2705                 /* Clearing 'want_replacement' is always allowed.
2706                  * Once replacements starts it is too late though.
2707                  */
2708                 err = 0;
2709                 clear_bit(WantReplacement, &rdev->flags);
2710         } else if (cmd_match(buf, "replacement")) {
2711                 /* Can only set a device as a replacement when array has not
2712                  * yet been started.  Once running, replacement is automatic
2713                  * from spares, or by assigning 'slot'.
2714                  */
2715                 if (rdev->mddev->pers)
2716                         err = -EBUSY;
2717                 else {
2718                         set_bit(Replacement, &rdev->flags);
2719                         err = 0;
2720                 }
2721         } else if (cmd_match(buf, "-replacement")) {
2722                 /* Similarly, can only clear Replacement before start */
2723                 if (rdev->mddev->pers)
2724                         err = -EBUSY;
2725                 else {
2726                         clear_bit(Replacement, &rdev->flags);
2727                         err = 0;
2728                 }
2729         }
2730         if (!err)
2731                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2732         return err ? err : len;
2733 }
2734 static struct rdev_sysfs_entry rdev_state =
2735 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2736
2737 static ssize_t
2738 errors_show(struct md_rdev *rdev, char *page)
2739 {
2740         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2741 }
2742
2743 static ssize_t
2744 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2745 {
2746         char *e;
2747         unsigned long n = simple_strtoul(buf, &e, 10);
2748         if (*buf && (*e == 0 || *e == '\n')) {
2749                 atomic_set(&rdev->corrected_errors, n);
2750                 return len;
2751         }
2752         return -EINVAL;
2753 }
2754 static struct rdev_sysfs_entry rdev_errors =
2755 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2756
2757 static ssize_t
2758 slot_show(struct md_rdev *rdev, char *page)
2759 {
2760         if (rdev->raid_disk < 0)
2761                 return sprintf(page, "none\n");
2762         else
2763                 return sprintf(page, "%d\n", rdev->raid_disk);
2764 }
2765
2766 static ssize_t
2767 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2768 {
2769         char *e;
2770         int err;
2771         int slot = simple_strtoul(buf, &e, 10);
2772         if (strncmp(buf, "none", 4)==0)
2773                 slot = -1;
2774         else if (e==buf || (*e && *e!= '\n'))
2775                 return -EINVAL;
2776         if (rdev->mddev->pers && slot == -1) {
2777                 /* Setting 'slot' on an active array requires also
2778                  * updating the 'rd%d' link, and communicating
2779                  * with the personality with ->hot_*_disk.
2780                  * For now we only support removing
2781                  * failed/spare devices.  This normally happens automatically,
2782                  * but not when the metadata is externally managed.
2783                  */
2784                 if (rdev->raid_disk == -1)
2785                         return -EEXIST;
2786                 /* personality does all needed checks */
2787                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2788                         return -EINVAL;
2789                 clear_bit(Blocked, &rdev->flags);
2790                 remove_and_add_spares(rdev->mddev, rdev);
2791                 if (rdev->raid_disk >= 0)
2792                         return -EBUSY;
2793                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2794                 md_wakeup_thread(rdev->mddev->thread);
2795         } else if (rdev->mddev->pers) {
2796                 /* Activating a spare .. or possibly reactivating
2797                  * if we ever get bitmaps working here.
2798                  */
2799
2800                 if (rdev->raid_disk != -1)
2801                         return -EBUSY;
2802
2803                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2804                         return -EBUSY;
2805
2806                 if (rdev->mddev->pers->hot_add_disk == NULL)
2807                         return -EINVAL;
2808
2809                 if (slot >= rdev->mddev->raid_disks &&
2810                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2811                         return -ENOSPC;
2812
2813                 rdev->raid_disk = slot;
2814                 if (test_bit(In_sync, &rdev->flags))
2815                         rdev->saved_raid_disk = slot;
2816                 else
2817                         rdev->saved_raid_disk = -1;
2818                 clear_bit(In_sync, &rdev->flags);
2819                 clear_bit(Bitmap_sync, &rdev->flags);
2820                 err = rdev->mddev->pers->
2821                         hot_add_disk(rdev->mddev, rdev);
2822                 if (err) {
2823                         rdev->raid_disk = -1;
2824                         return err;
2825                 } else
2826                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2827                 if (sysfs_link_rdev(rdev->mddev, rdev))
2828                         /* failure here is OK */;
2829                 /* don't wakeup anyone, leave that to userspace. */
2830         } else {
2831                 if (slot >= rdev->mddev->raid_disks &&
2832                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2833                         return -ENOSPC;
2834                 rdev->raid_disk = slot;
2835                 /* assume it is working */
2836                 clear_bit(Faulty, &rdev->flags);
2837                 clear_bit(WriteMostly, &rdev->flags);
2838                 set_bit(In_sync, &rdev->flags);
2839                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2840         }
2841         return len;
2842 }
2843
2844
2845 static struct rdev_sysfs_entry rdev_slot =
2846 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2847
2848 static ssize_t
2849 offset_show(struct md_rdev *rdev, char *page)
2850 {
2851         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2852 }
2853
2854 static ssize_t
2855 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2856 {
2857         unsigned long long offset;
2858         if (kstrtoull(buf, 10, &offset) < 0)
2859                 return -EINVAL;
2860         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2861                 return -EBUSY;
2862         if (rdev->sectors && rdev->mddev->external)
2863                 /* Must set offset before size, so overlap checks
2864                  * can be sane */
2865                 return -EBUSY;
2866         rdev->data_offset = offset;
2867         rdev->new_data_offset = offset;
2868         return len;
2869 }
2870
2871 static struct rdev_sysfs_entry rdev_offset =
2872 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2873
2874 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2875 {
2876         return sprintf(page, "%llu\n",
2877                        (unsigned long long)rdev->new_data_offset);
2878 }
2879
2880 static ssize_t new_offset_store(struct md_rdev *rdev,
2881                                 const char *buf, size_t len)
2882 {
2883         unsigned long long new_offset;
2884         struct mddev *mddev = rdev->mddev;
2885
2886         if (kstrtoull(buf, 10, &new_offset) < 0)
2887                 return -EINVAL;
2888
2889         if (mddev->sync_thread)
2890                 return -EBUSY;
2891         if (new_offset == rdev->data_offset)
2892                 /* reset is always permitted */
2893                 ;
2894         else if (new_offset > rdev->data_offset) {
2895                 /* must not push array size beyond rdev_sectors */
2896                 if (new_offset - rdev->data_offset
2897                     + mddev->dev_sectors > rdev->sectors)
2898                                 return -E2BIG;
2899         }
2900         /* Metadata worries about other space details. */
2901
2902         /* decreasing the offset is inconsistent with a backwards
2903          * reshape.
2904          */
2905         if (new_offset < rdev->data_offset &&
2906             mddev->reshape_backwards)
2907                 return -EINVAL;
2908         /* Increasing offset is inconsistent with forwards
2909          * reshape.  reshape_direction should be set to
2910          * 'backwards' first.
2911          */
2912         if (new_offset > rdev->data_offset &&
2913             !mddev->reshape_backwards)
2914                 return -EINVAL;
2915
2916         if (mddev->pers && mddev->persistent &&
2917             !super_types[mddev->major_version]
2918             .allow_new_offset(rdev, new_offset))
2919                 return -E2BIG;
2920         rdev->new_data_offset = new_offset;
2921         if (new_offset > rdev->data_offset)
2922                 mddev->reshape_backwards = 1;
2923         else if (new_offset < rdev->data_offset)
2924                 mddev->reshape_backwards = 0;
2925
2926         return len;
2927 }
2928 static struct rdev_sysfs_entry rdev_new_offset =
2929 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2930
2931 static ssize_t
2932 rdev_size_show(struct md_rdev *rdev, char *page)
2933 {
2934         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2935 }
2936
2937 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2938 {
2939         /* check if two start/length pairs overlap */
2940         if (s1+l1 <= s2)
2941                 return 0;
2942         if (s2+l2 <= s1)
2943                 return 0;
2944         return 1;
2945 }
2946
2947 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2948 {
2949         unsigned long long blocks;
2950         sector_t new;
2951
2952         if (kstrtoull(buf, 10, &blocks) < 0)
2953                 return -EINVAL;
2954
2955         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2956                 return -EINVAL; /* sector conversion overflow */
2957
2958         new = blocks * 2;
2959         if (new != blocks * 2)
2960                 return -EINVAL; /* unsigned long long to sector_t overflow */
2961
2962         *sectors = new;
2963         return 0;
2964 }
2965
2966 static ssize_t
2967 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2968 {
2969         struct mddev *my_mddev = rdev->mddev;
2970         sector_t oldsectors = rdev->sectors;
2971         sector_t sectors;
2972
2973         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2974                 return -EINVAL;
2975         if (rdev->data_offset != rdev->new_data_offset)
2976                 return -EINVAL; /* too confusing */
2977         if (my_mddev->pers && rdev->raid_disk >= 0) {
2978                 if (my_mddev->persistent) {
2979                         sectors = super_types[my_mddev->major_version].
2980                                 rdev_size_change(rdev, sectors);
2981                         if (!sectors)
2982                                 return -EBUSY;
2983                 } else if (!sectors)
2984                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2985                                 rdev->data_offset;
2986                 if (!my_mddev->pers->resize)
2987                         /* Cannot change size for RAID0 or Linear etc */
2988                         return -EINVAL;
2989         }
2990         if (sectors < my_mddev->dev_sectors)
2991                 return -EINVAL; /* component must fit device */
2992
2993         rdev->sectors = sectors;
2994         if (sectors > oldsectors && my_mddev->external) {
2995                 /* need to check that all other rdevs with the same ->bdev
2996                  * do not overlap.  We need to unlock the mddev to avoid
2997                  * a deadlock.  We have already changed rdev->sectors, and if
2998                  * we have to change it back, we will have the lock again.
2999                  */
3000                 struct mddev *mddev;
3001                 int overlap = 0;
3002                 struct list_head *tmp;
3003
3004                 mddev_unlock(my_mddev);
3005                 for_each_mddev(mddev, tmp) {
3006                         struct md_rdev *rdev2;
3007
3008                         mddev_lock_nointr(mddev);
3009                         rdev_for_each(rdev2, mddev)
3010                                 if (rdev->bdev == rdev2->bdev &&
3011                                     rdev != rdev2 &&
3012                                     overlaps(rdev->data_offset, rdev->sectors,
3013                                              rdev2->data_offset,
3014                                              rdev2->sectors)) {
3015                                         overlap = 1;
3016                                         break;
3017                                 }
3018                         mddev_unlock(mddev);
3019                         if (overlap) {
3020                                 mddev_put(mddev);
3021                                 break;
3022                         }
3023                 }
3024                 mddev_lock_nointr(my_mddev);
3025                 if (overlap) {
3026                         /* Someone else could have slipped in a size
3027                          * change here, but doing so is just silly.
3028                          * We put oldsectors back because we *know* it is
3029                          * safe, and trust userspace not to race with
3030                          * itself
3031                          */
3032                         rdev->sectors = oldsectors;
3033                         return -EBUSY;
3034                 }
3035         }
3036         return len;
3037 }
3038
3039 static struct rdev_sysfs_entry rdev_size =
3040 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3041
3042
3043 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3044 {
3045         unsigned long long recovery_start = rdev->recovery_offset;
3046
3047         if (test_bit(In_sync, &rdev->flags) ||
3048             recovery_start == MaxSector)
3049                 return sprintf(page, "none\n");
3050
3051         return sprintf(page, "%llu\n", recovery_start);
3052 }
3053
3054 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3055 {
3056         unsigned long long recovery_start;
3057
3058         if (cmd_match(buf, "none"))
3059                 recovery_start = MaxSector;
3060         else if (kstrtoull(buf, 10, &recovery_start))
3061                 return -EINVAL;
3062
3063         if (rdev->mddev->pers &&
3064             rdev->raid_disk >= 0)
3065                 return -EBUSY;
3066
3067         rdev->recovery_offset = recovery_start;
3068         if (recovery_start == MaxSector)
3069                 set_bit(In_sync, &rdev->flags);
3070         else
3071                 clear_bit(In_sync, &rdev->flags);
3072         return len;
3073 }
3074
3075 static struct rdev_sysfs_entry rdev_recovery_start =
3076 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3077
3078
3079 static ssize_t
3080 badblocks_show(struct badblocks *bb, char *page, int unack);
3081 static ssize_t
3082 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3083
3084 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3085 {
3086         return badblocks_show(&rdev->badblocks, page, 0);
3087 }
3088 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3089 {
3090         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3091         /* Maybe that ack was all we needed */
3092         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3093                 wake_up(&rdev->blocked_wait);
3094         return rv;
3095 }
3096 static struct rdev_sysfs_entry rdev_bad_blocks =
3097 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3098
3099
3100 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3101 {
3102         return badblocks_show(&rdev->badblocks, page, 1);
3103 }
3104 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3105 {
3106         return badblocks_store(&rdev->badblocks, page, len, 1);
3107 }
3108 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3109 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3110
3111 static struct attribute *rdev_default_attrs[] = {
3112         &rdev_state.attr,
3113         &rdev_errors.attr,
3114         &rdev_slot.attr,
3115         &rdev_offset.attr,
3116         &rdev_new_offset.attr,
3117         &rdev_size.attr,
3118         &rdev_recovery_start.attr,
3119         &rdev_bad_blocks.attr,
3120         &rdev_unack_bad_blocks.attr,
3121         NULL,
3122 };
3123 static ssize_t
3124 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3125 {
3126         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3127         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3128         struct mddev *mddev = rdev->mddev;
3129         ssize_t rv;
3130
3131         if (!entry->show)
3132                 return -EIO;
3133
3134         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3135         if (!rv) {
3136                 if (rdev->mddev == NULL)
3137                         rv = -EBUSY;
3138                 else
3139                         rv = entry->show(rdev, page);
3140                 mddev_unlock(mddev);
3141         }
3142         return rv;
3143 }
3144
3145 static ssize_t
3146 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3147               const char *page, size_t length)
3148 {
3149         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3150         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3151         ssize_t rv;
3152         struct mddev *mddev = rdev->mddev;
3153
3154         if (!entry->store)
3155                 return -EIO;
3156         if (!capable(CAP_SYS_ADMIN))
3157                 return -EACCES;
3158         rv = mddev ? mddev_lock(mddev): -EBUSY;
3159         if (!rv) {
3160                 if (rdev->mddev == NULL)
3161                         rv = -EBUSY;
3162                 else
3163                         rv = entry->store(rdev, page, length);
3164                 mddev_unlock(mddev);
3165         }
3166         return rv;
3167 }
3168
3169 static void rdev_free(struct kobject *ko)
3170 {
3171         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3172         kfree(rdev);
3173 }
3174 static const struct sysfs_ops rdev_sysfs_ops = {
3175         .show           = rdev_attr_show,
3176         .store          = rdev_attr_store,
3177 };
3178 static struct kobj_type rdev_ktype = {
3179         .release        = rdev_free,
3180         .sysfs_ops      = &rdev_sysfs_ops,
3181         .default_attrs  = rdev_default_attrs,
3182 };
3183
3184 int md_rdev_init(struct md_rdev *rdev)
3185 {
3186         rdev->desc_nr = -1;
3187         rdev->saved_raid_disk = -1;
3188         rdev->raid_disk = -1;
3189         rdev->flags = 0;
3190         rdev->data_offset = 0;
3191         rdev->new_data_offset = 0;
3192         rdev->sb_events = 0;
3193         rdev->last_read_error.tv_sec  = 0;
3194         rdev->last_read_error.tv_nsec = 0;
3195         rdev->sb_loaded = 0;
3196         rdev->bb_page = NULL;
3197         atomic_set(&rdev->nr_pending, 0);
3198         atomic_set(&rdev->read_errors, 0);
3199         atomic_set(&rdev->corrected_errors, 0);
3200
3201         INIT_LIST_HEAD(&rdev->same_set);
3202         init_waitqueue_head(&rdev->blocked_wait);
3203
3204         /* Add space to store bad block list.
3205          * This reserves the space even on arrays where it cannot
3206          * be used - I wonder if that matters
3207          */
3208         rdev->badblocks.count = 0;
3209         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3210         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3211         seqlock_init(&rdev->badblocks.lock);
3212         if (rdev->badblocks.page == NULL)
3213                 return -ENOMEM;
3214
3215         return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(md_rdev_init);
3218 /*
3219  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3220  *
3221  * mark the device faulty if:
3222  *
3223  *   - the device is nonexistent (zero size)
3224  *   - the device has no valid superblock
3225  *
3226  * a faulty rdev _never_ has rdev->sb set.
3227  */
3228 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3229 {
3230         char b[BDEVNAME_SIZE];
3231         int err;
3232         struct md_rdev *rdev;
3233         sector_t size;
3234
3235         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3236         if (!rdev) {
3237                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3238                 return ERR_PTR(-ENOMEM);
3239         }
3240
3241         err = md_rdev_init(rdev);
3242         if (err)
3243                 goto abort_free;
3244         err = alloc_disk_sb(rdev);
3245         if (err)
3246                 goto abort_free;
3247
3248         err = lock_rdev(rdev, newdev, super_format == -2);
3249         if (err)
3250                 goto abort_free;
3251
3252         kobject_init(&rdev->kobj, &rdev_ktype);
3253
3254         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3255         if (!size) {
3256                 printk(KERN_WARNING 
3257                         "md: %s has zero or unknown size, marking faulty!\n",
3258                         bdevname(rdev->bdev,b));
3259                 err = -EINVAL;
3260                 goto abort_free;
3261         }
3262
3263         if (super_format >= 0) {
3264                 err = super_types[super_format].
3265                         load_super(rdev, NULL, super_minor);
3266                 if (err == -EINVAL) {
3267                         printk(KERN_WARNING
3268                                 "md: %s does not have a valid v%d.%d "
3269                                "superblock, not importing!\n",
3270                                 bdevname(rdev->bdev,b),
3271                                super_format, super_minor);
3272                         goto abort_free;
3273                 }
3274                 if (err < 0) {
3275                         printk(KERN_WARNING 
3276                                 "md: could not read %s's sb, not importing!\n",
3277                                 bdevname(rdev->bdev,b));
3278                         goto abort_free;
3279                 }
3280         }
3281
3282         return rdev;
3283
3284 abort_free:
3285         if (rdev->bdev)
3286                 unlock_rdev(rdev);
3287         md_rdev_clear(rdev);
3288         kfree(rdev);
3289         return ERR_PTR(err);
3290 }
3291
3292 /*
3293  * Check a full RAID array for plausibility
3294  */
3295
3296
3297 static void analyze_sbs(struct mddev * mddev)
3298 {
3299         int i;
3300         struct md_rdev *rdev, *freshest, *tmp;
3301         char b[BDEVNAME_SIZE];
3302
3303         freshest = NULL;
3304         rdev_for_each_safe(rdev, tmp, mddev)
3305                 switch (super_types[mddev->major_version].
3306                         load_super(rdev, freshest, mddev->minor_version)) {
3307                 case 1:
3308                         freshest = rdev;
3309                         break;
3310                 case 0:
3311                         break;
3312                 default:
3313                         printk( KERN_ERR \
3314                                 "md: fatal superblock inconsistency in %s"
3315                                 " -- removing from array\n", 
3316                                 bdevname(rdev->bdev,b));
3317                         kick_rdev_from_array(rdev);
3318                 }
3319
3320
3321         super_types[mddev->major_version].
3322                 validate_super(mddev, freshest);
3323
3324         i = 0;
3325         rdev_for_each_safe(rdev, tmp, mddev) {
3326                 if (mddev->max_disks &&
3327                     (rdev->desc_nr >= mddev->max_disks ||
3328                      i > mddev->max_disks)) {
3329                         printk(KERN_WARNING
3330                                "md: %s: %s: only %d devices permitted\n",
3331                                mdname(mddev), bdevname(rdev->bdev, b),
3332                                mddev->max_disks);
3333                         kick_rdev_from_array(rdev);
3334                         continue;
3335                 }
3336                 if (rdev != freshest)
3337                         if (super_types[mddev->major_version].
3338                             validate_super(mddev, rdev)) {
3339                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3340                                         " from array!\n",
3341                                         bdevname(rdev->bdev,b));
3342                                 kick_rdev_from_array(rdev);
3343                                 continue;
3344                         }
3345                 if (mddev->level == LEVEL_MULTIPATH) {
3346                         rdev->desc_nr = i++;
3347                         rdev->raid_disk = rdev->desc_nr;
3348                         set_bit(In_sync, &rdev->flags);
3349                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3350                         rdev->raid_disk = -1;
3351                         clear_bit(In_sync, &rdev->flags);
3352                 }
3353         }
3354 }
3355
3356 /* Read a fixed-point number.
3357  * Numbers in sysfs attributes should be in "standard" units where
3358  * possible, so time should be in seconds.
3359  * However we internally use a a much smaller unit such as 
3360  * milliseconds or jiffies.
3361  * This function takes a decimal number with a possible fractional
3362  * component, and produces an integer which is the result of
3363  * multiplying that number by 10^'scale'.
3364  * all without any floating-point arithmetic.
3365  */
3366 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3367 {
3368         unsigned long result = 0;
3369         long decimals = -1;
3370         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3371                 if (*cp == '.')
3372                         decimals = 0;
3373                 else if (decimals < scale) {
3374                         unsigned int value;
3375                         value = *cp - '0';
3376                         result = result * 10 + value;
3377                         if (decimals >= 0)
3378                                 decimals++;
3379                 }
3380                 cp++;
3381         }
3382         if (*cp == '\n')
3383                 cp++;
3384         if (*cp)
3385                 return -EINVAL;
3386         if (decimals < 0)
3387                 decimals = 0;
3388         while (decimals < scale) {
3389                 result *= 10;
3390                 decimals ++;
3391         }
3392         *res = result;
3393         return 0;
3394 }
3395
3396
3397 static void md_safemode_timeout(unsigned long data);
3398
3399 static ssize_t
3400 safe_delay_show(struct mddev *mddev, char *page)
3401 {
3402         int msec = (mddev->safemode_delay*1000)/HZ;
3403         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3404 }
3405 static ssize_t
3406 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3407 {
3408         unsigned long msec;
3409
3410         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3411                 return -EINVAL;
3412         if (msec == 0)
3413                 mddev->safemode_delay = 0;
3414         else {
3415                 unsigned long old_delay = mddev->safemode_delay;
3416                 mddev->safemode_delay = (msec*HZ)/1000;
3417                 if (mddev->safemode_delay == 0)
3418                         mddev->safemode_delay = 1;
3419                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3420                         md_safemode_timeout((unsigned long)mddev);
3421         }
3422         return len;
3423 }
3424 static struct md_sysfs_entry md_safe_delay =
3425 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3426
3427 static ssize_t
3428 level_show(struct mddev *mddev, char *page)
3429 {
3430         struct md_personality *p = mddev->pers;
3431         if (p)
3432                 return sprintf(page, "%s\n", p->name);
3433         else if (mddev->clevel[0])
3434                 return sprintf(page, "%s\n", mddev->clevel);
3435         else if (mddev->level != LEVEL_NONE)
3436                 return sprintf(page, "%d\n", mddev->level);
3437         else
3438                 return 0;
3439 }
3440
3441 static ssize_t
3442 level_store(struct mddev *mddev, const char *buf, size_t len)
3443 {
3444         char clevel[16];
3445         ssize_t rv = len;
3446         struct md_personality *pers;
3447         long level;
3448         void *priv;
3449         struct md_rdev *rdev;
3450
3451         if (mddev->pers == NULL) {
3452                 if (len == 0)
3453                         return 0;
3454                 if (len >= sizeof(mddev->clevel))
3455                         return -ENOSPC;
3456                 strncpy(mddev->clevel, buf, len);
3457                 if (mddev->clevel[len-1] == '\n')
3458                         len--;
3459                 mddev->clevel[len] = 0;
3460                 mddev->level = LEVEL_NONE;
3461                 return rv;
3462         }
3463
3464         /* request to change the personality.  Need to ensure:
3465          *  - array is not engaged in resync/recovery/reshape
3466          *  - old personality can be suspended
3467          *  - new personality will access other array.
3468          */
3469
3470         if (mddev->sync_thread ||
3471             mddev->reshape_position != MaxSector ||
3472             mddev->sysfs_active)
3473                 return -EBUSY;
3474
3475         if (!mddev->pers->quiesce) {
3476                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3477                        mdname(mddev), mddev->pers->name);
3478                 return -EINVAL;
3479         }
3480
3481         /* Now find the new personality */
3482         if (len == 0 || len >= sizeof(clevel))
3483                 return -EINVAL;
3484         strncpy(clevel, buf, len);
3485         if (clevel[len-1] == '\n')
3486                 len--;
3487         clevel[len] = 0;
3488         if (kstrtol(clevel, 10, &level))
3489                 level = LEVEL_NONE;
3490
3491         if (request_module("md-%s", clevel) != 0)
3492                 request_module("md-level-%s", clevel);
3493         spin_lock(&pers_lock);
3494         pers = find_pers(level, clevel);
3495         if (!pers || !try_module_get(pers->owner)) {
3496                 spin_unlock(&pers_lock);
3497                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3498                 return -EINVAL;
3499         }
3500         spin_unlock(&pers_lock);
3501
3502         if (pers == mddev->pers) {
3503                 /* Nothing to do! */
3504                 module_put(pers->owner);
3505                 return rv;
3506         }
3507         if (!pers->takeover) {
3508                 module_put(pers->owner);
3509                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3510                        mdname(mddev), clevel);
3511                 return -EINVAL;
3512         }
3513
3514         rdev_for_each(rdev, mddev)
3515                 rdev->new_raid_disk = rdev->raid_disk;
3516
3517         /* ->takeover must set new_* and/or delta_disks
3518          * if it succeeds, and may set them when it fails.
3519          */
3520         priv = pers->takeover(mddev);
3521         if (IS_ERR(priv)) {
3522                 mddev->new_level = mddev->level;
3523                 mddev->new_layout = mddev->layout;
3524                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3525                 mddev->raid_disks -= mddev->delta_disks;
3526                 mddev->delta_disks = 0;
3527                 mddev->reshape_backwards = 0;
3528                 module_put(pers->owner);
3529                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3530                        mdname(mddev), clevel);
3531                 return PTR_ERR(priv);
3532         }
3533
3534         /* Looks like we have a winner */
3535         mddev_suspend(mddev);
3536         mddev->pers->stop(mddev);
3537         
3538         if (mddev->pers->sync_request == NULL &&
3539             pers->sync_request != NULL) {
3540                 /* need to add the md_redundancy_group */
3541                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3542                         printk(KERN_WARNING
3543                                "md: cannot register extra attributes for %s\n",
3544                                mdname(mddev));
3545                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3546         }               
3547         if (mddev->pers->sync_request != NULL &&
3548             pers->sync_request == NULL) {
3549                 /* need to remove the md_redundancy_group */
3550                 if (mddev->to_remove == NULL)
3551                         mddev->to_remove = &md_redundancy_group;
3552         }
3553
3554         if (mddev->pers->sync_request == NULL &&
3555             mddev->external) {
3556                 /* We are converting from a no-redundancy array
3557                  * to a redundancy array and metadata is managed
3558                  * externally so we need to be sure that writes
3559                  * won't block due to a need to transition
3560                  *      clean->dirty
3561                  * until external management is started.
3562                  */
3563                 mddev->in_sync = 0;
3564                 mddev->safemode_delay = 0;
3565                 mddev->safemode = 0;
3566         }
3567
3568         rdev_for_each(rdev, mddev) {
3569                 if (rdev->raid_disk < 0)
3570                         continue;
3571                 if (rdev->new_raid_disk >= mddev->raid_disks)
3572                         rdev->new_raid_disk = -1;
3573                 if (rdev->new_raid_disk == rdev->raid_disk)
3574                         continue;
3575                 sysfs_unlink_rdev(mddev, rdev);
3576         }
3577         rdev_for_each(rdev, mddev) {
3578                 if (rdev->raid_disk < 0)
3579                         continue;
3580                 if (rdev->new_raid_disk == rdev->raid_disk)
3581                         continue;
3582                 rdev->raid_disk = rdev->new_raid_disk;
3583                 if (rdev->raid_disk < 0)
3584                         clear_bit(In_sync, &rdev->flags);
3585                 else {
3586                         if (sysfs_link_rdev(mddev, rdev))
3587                                 printk(KERN_WARNING "md: cannot register rd%d"
3588                                        " for %s after level change\n",
3589                                        rdev->raid_disk, mdname(mddev));
3590                 }
3591         }
3592
3593         module_put(mddev->pers->owner);
3594         mddev->pers = pers;
3595         mddev->private = priv;
3596         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3597         mddev->level = mddev->new_level;
3598         mddev->layout = mddev->new_layout;
3599         mddev->chunk_sectors = mddev->new_chunk_sectors;
3600         mddev->delta_disks = 0;
3601         mddev->reshape_backwards = 0;
3602         mddev->degraded = 0;
3603         if (mddev->pers->sync_request == NULL) {
3604                 /* this is now an array without redundancy, so
3605                  * it must always be in_sync
3606                  */
3607                 mddev->in_sync = 1;
3608                 del_timer_sync(&mddev->safemode_timer);
3609         }
3610         blk_set_stacking_limits(&mddev->queue->limits);
3611         pers->run(mddev);
3612         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3613         mddev_resume(mddev);
3614         sysfs_notify(&mddev->kobj, NULL, "level");
3615         md_new_event(mddev);
3616         return rv;
3617 }
3618
3619 static struct md_sysfs_entry md_level =
3620 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3621
3622
3623 static ssize_t
3624 layout_show(struct mddev *mddev, char *page)
3625 {
3626         /* just a number, not meaningful for all levels */
3627         if (mddev->reshape_position != MaxSector &&
3628             mddev->layout != mddev->new_layout)
3629                 return sprintf(page, "%d (%d)\n",
3630                                mddev->new_layout, mddev->layout);
3631         return sprintf(page, "%d\n", mddev->layout);
3632 }
3633
3634 static ssize_t
3635 layout_store(struct mddev *mddev, const char *buf, size_t len)
3636 {
3637         char *e;
3638         unsigned long n = simple_strtoul(buf, &e, 10);
3639
3640         if (!*buf || (*e && *e != '\n'))
3641                 return -EINVAL;
3642
3643         if (mddev->pers) {
3644                 int err;
3645                 if (mddev->pers->check_reshape == NULL)
3646                         return -EBUSY;
3647                 mddev->new_layout = n;
3648                 err = mddev->pers->check_reshape(mddev);
3649                 if (err) {
3650                         mddev->new_layout = mddev->layout;
3651                         return err;
3652                 }
3653         } else {
3654                 mddev->new_layout = n;
3655                 if (mddev->reshape_position == MaxSector)
3656                         mddev->layout = n;
3657         }
3658         return len;
3659 }
3660 static struct md_sysfs_entry md_layout =
3661 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3662
3663
3664 static ssize_t
3665 raid_disks_show(struct mddev *mddev, char *page)
3666 {
3667         if (mddev->raid_disks == 0)
3668                 return 0;
3669         if (mddev->reshape_position != MaxSector &&
3670             mddev->delta_disks != 0)
3671                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3672                                mddev->raid_disks - mddev->delta_disks);
3673         return sprintf(page, "%d\n", mddev->raid_disks);
3674 }
3675
3676 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3677
3678 static ssize_t
3679 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3680 {
3681         char *e;
3682         int rv = 0;
3683         unsigned long n = simple_strtoul(buf, &e, 10);
3684
3685         if (!*buf || (*e && *e != '\n'))
3686                 return -EINVAL;
3687
3688         if (mddev->pers)
3689                 rv = update_raid_disks(mddev, n);
3690         else if (mddev->reshape_position != MaxSector) {
3691                 struct md_rdev *rdev;
3692                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3693
3694                 rdev_for_each(rdev, mddev) {
3695                         if (olddisks < n &&
3696                             rdev->data_offset < rdev->new_data_offset)
3697                                 return -EINVAL;
3698                         if (olddisks > n &&
3699                             rdev->data_offset > rdev->new_data_offset)
3700                                 return -EINVAL;
3701                 }
3702                 mddev->delta_disks = n - olddisks;
3703                 mddev->raid_disks = n;
3704                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3705         } else
3706                 mddev->raid_disks = n;
3707         return rv ? rv : len;
3708 }
3709 static struct md_sysfs_entry md_raid_disks =
3710 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3711
3712 static ssize_t
3713 chunk_size_show(struct mddev *mddev, char *page)
3714 {
3715         if (mddev->reshape_position != MaxSector &&
3716             mddev->chunk_sectors != mddev->new_chunk_sectors)
3717                 return sprintf(page, "%d (%d)\n",
3718                                mddev->new_chunk_sectors << 9,
3719                                mddev->chunk_sectors << 9);
3720         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3721 }
3722
3723 static ssize_t
3724 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3725 {
3726         char *e;
3727         unsigned long n = simple_strtoul(buf, &e, 10);
3728
3729         if (!*buf || (*e && *e != '\n'))
3730                 return -EINVAL;
3731
3732         if (mddev->pers) {
3733                 int err;
3734                 if (mddev->pers->check_reshape == NULL)
3735                         return -EBUSY;
3736                 mddev->new_chunk_sectors = n >> 9;
3737                 err = mddev->pers->check_reshape(mddev);
3738                 if (err) {
3739                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3740                         return err;
3741                 }
3742         } else {
3743                 mddev->new_chunk_sectors = n >> 9;
3744                 if (mddev->reshape_position == MaxSector)
3745                         mddev->chunk_sectors = n >> 9;
3746         }
3747         return len;
3748 }
3749 static struct md_sysfs_entry md_chunk_size =
3750 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3751
3752 static ssize_t
3753 resync_start_show(struct mddev *mddev, char *page)
3754 {
3755         if (mddev->recovery_cp == MaxSector)
3756                 return sprintf(page, "none\n");
3757         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3758 }
3759
3760 static ssize_t
3761 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3762 {
3763         char *e;
3764         unsigned long long n = simple_strtoull(buf, &e, 10);
3765
3766         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3767                 return -EBUSY;
3768         if (cmd_match(buf, "none"))
3769                 n = MaxSector;
3770         else if (!*buf || (*e && *e != '\n'))
3771                 return -EINVAL;
3772
3773         mddev->recovery_cp = n;
3774         if (mddev->pers)
3775                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3776         return len;
3777 }
3778 static struct md_sysfs_entry md_resync_start =
3779 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3780
3781 /*
3782  * The array state can be:
3783  *
3784  * clear
3785  *     No devices, no size, no level
3786  *     Equivalent to STOP_ARRAY ioctl
3787  * inactive
3788  *     May have some settings, but array is not active
3789  *        all IO results in error
3790  *     When written, doesn't tear down array, but just stops it
3791  * suspended (not supported yet)
3792  *     All IO requests will block. The array can be reconfigured.
3793  *     Writing this, if accepted, will block until array is quiescent
3794  * readonly
3795  *     no resync can happen.  no superblocks get written.
3796  *     write requests fail
3797  * read-auto
3798  *     like readonly, but behaves like 'clean' on a write request.
3799  *
3800  * clean - no pending writes, but otherwise active.
3801  *     When written to inactive array, starts without resync
3802  *     If a write request arrives then
3803  *       if metadata is known, mark 'dirty' and switch to 'active'.
3804  *       if not known, block and switch to write-pending
3805  *     If written to an active array that has pending writes, then fails.
3806  * active
3807  *     fully active: IO and resync can be happening.
3808  *     When written to inactive array, starts with resync
3809  *
3810  * write-pending
3811  *     clean, but writes are blocked waiting for 'active' to be written.
3812  *
3813  * active-idle
3814  *     like active, but no writes have been seen for a while (100msec).
3815  *
3816  */
3817 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3818                    write_pending, active_idle, bad_word};
3819 static char *array_states[] = {
3820         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3821         "write-pending", "active-idle", NULL };
3822
3823 static int match_word(const char *word, char **list)
3824 {
3825         int n;
3826         for (n=0; list[n]; n++)
3827                 if (cmd_match(word, list[n]))
3828                         break;
3829         return n;
3830 }
3831
3832 static ssize_t
3833 array_state_show(struct mddev *mddev, char *page)
3834 {
3835         enum array_state st = inactive;
3836
3837         if (mddev->pers)
3838                 switch(mddev->ro) {
3839                 case 1:
3840                         st = readonly;
3841                         break;
3842                 case 2:
3843                         st = read_auto;
3844                         break;
3845                 case 0:
3846                         if (mddev->in_sync)
3847                                 st = clean;
3848                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3849                                 st = write_pending;
3850                         else if (mddev->safemode)
3851                                 st = active_idle;
3852                         else
3853                                 st = active;
3854                 }
3855         else {
3856                 if (list_empty(&mddev->disks) &&
3857                     mddev->raid_disks == 0 &&
3858                     mddev->dev_sectors == 0)
3859                         st = clear;
3860                 else
3861                         st = inactive;
3862         }
3863         return sprintf(page, "%s\n", array_states[st]);
3864 }
3865
3866 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3867 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3868 static int do_md_run(struct mddev * mddev);
3869 static int restart_array(struct mddev *mddev);
3870
3871 static ssize_t
3872 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3873 {
3874         int err = -EINVAL;
3875         enum array_state st = match_word(buf, array_states);
3876         switch(st) {
3877         case bad_word:
3878                 break;
3879         case clear:
3880                 /* stopping an active array */
3881                 err = do_md_stop(mddev, 0, NULL);
3882                 break;
3883         case inactive:
3884                 /* stopping an active array */
3885                 if (mddev->pers)
3886                         err = do_md_stop(mddev, 2, NULL);
3887                 else
3888                         err = 0; /* already inactive */
3889                 break;
3890         case suspended:
3891                 break; /* not supported yet */
3892         case readonly:
3893                 if (mddev->pers)
3894                         err = md_set_readonly(mddev, NULL);
3895                 else {
3896                         mddev->ro = 1;
3897                         set_disk_ro(mddev->gendisk, 1);
3898                         err = do_md_run(mddev);
3899                 }
3900                 break;
3901         case read_auto:
3902                 if (mddev->pers) {
3903                         if (mddev->ro == 0)
3904                                 err = md_set_readonly(mddev, NULL);
3905                         else if (mddev->ro == 1)
3906                                 err = restart_array(mddev);
3907                         if (err == 0) {
3908                                 mddev->ro = 2;
3909                                 set_disk_ro(mddev->gendisk, 0);
3910                         }
3911                 } else {
3912                         mddev->ro = 2;
3913                         err = do_md_run(mddev);
3914                 }
3915                 break;
3916         case clean:
3917                 if (mddev->pers) {
3918                         restart_array(mddev);
3919                         spin_lock_irq(&mddev->write_lock);
3920                         if (atomic_read(&mddev->writes_pending) == 0) {
3921                                 if (mddev->in_sync == 0) {
3922                                         mddev->in_sync = 1;
3923                                         if (mddev->safemode == 1)
3924                                                 mddev->safemode = 0;
3925                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3926                                 }
3927                                 err = 0;
3928                         } else
3929                                 err = -EBUSY;
3930                         spin_unlock_irq(&mddev->write_lock);
3931                 } else
3932                         err = -EINVAL;
3933                 break;
3934         case active:
3935                 if (mddev->pers) {
3936                         restart_array(mddev);
3937                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3938                         wake_up(&mddev->sb_wait);
3939                         err = 0;
3940                 } else {
3941                         mddev->ro = 0;
3942                         set_disk_ro(mddev->gendisk, 0);
3943                         err = do_md_run(mddev);
3944                 }
3945                 break;
3946         case write_pending:
3947         case active_idle:
3948                 /* these cannot be set */
3949                 break;
3950         }
3951         if (err)
3952                 return err;
3953         else {
3954                 if (mddev->hold_active == UNTIL_IOCTL)
3955                         mddev->hold_active = 0;
3956                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3957                 return len;
3958         }
3959 }
3960 static struct md_sysfs_entry md_array_state =
3961 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3962
3963 static ssize_t
3964 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3965         return sprintf(page, "%d\n",
3966                        atomic_read(&mddev->max_corr_read_errors));
3967 }
3968
3969 static ssize_t
3970 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972         char *e;
3973         unsigned long n = simple_strtoul(buf, &e, 10);
3974
3975         if (*buf && (*e == 0 || *e == '\n')) {
3976                 atomic_set(&mddev->max_corr_read_errors, n);
3977                 return len;
3978         }
3979         return -EINVAL;
3980 }
3981
3982 static struct md_sysfs_entry max_corr_read_errors =
3983 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3984         max_corrected_read_errors_store);
3985
3986 static ssize_t
3987 null_show(struct mddev *mddev, char *page)
3988 {
3989         return -EINVAL;
3990 }
3991
3992 static ssize_t
3993 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3994 {
3995         /* buf must be %d:%d\n? giving major and minor numbers */
3996         /* The new device is added to the array.
3997          * If the array has a persistent superblock, we read the
3998          * superblock to initialise info and check validity.
3999          * Otherwise, only checking done is that in bind_rdev_to_array,
4000          * which mainly checks size.
4001          */
4002         char *e;
4003         int major = simple_strtoul(buf, &e, 10);
4004         int minor;
4005         dev_t dev;
4006         struct md_rdev *rdev;
4007         int err;
4008
4009         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4010                 return -EINVAL;
4011         minor = simple_strtoul(e+1, &e, 10);
4012         if (*e && *e != '\n')
4013                 return -EINVAL;
4014         dev = MKDEV(major, minor);
4015         if (major != MAJOR(dev) ||
4016             minor != MINOR(dev))
4017                 return -EOVERFLOW;
4018
4019
4020         if (mddev->persistent) {
4021                 rdev = md_import_device(dev, mddev->major_version,
4022                                         mddev->minor_version);
4023                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4024                         struct md_rdev *rdev0
4025                                 = list_entry(mddev->disks.next,
4026                                              struct md_rdev, same_set);
4027                         err = super_types[mddev->major_version]
4028                                 .load_super(rdev, rdev0, mddev->minor_version);
4029                         if (err < 0)
4030                                 goto out;
4031                 }
4032         } else if (mddev->external)
4033                 rdev = md_import_device(dev, -2, -1);
4034         else
4035                 rdev = md_import_device(dev, -1, -1);
4036
4037         if (IS_ERR(rdev))
4038                 return PTR_ERR(rdev);
4039         err = bind_rdev_to_array(rdev, mddev);
4040  out:
4041         if (err)
4042                 export_rdev(rdev);
4043         return err ? err : len;
4044 }
4045
4046 static struct md_sysfs_entry md_new_device =
4047 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4048
4049 static ssize_t
4050 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4051 {
4052         char *end;
4053         unsigned long chunk, end_chunk;
4054
4055         if (!mddev->bitmap)
4056                 goto out;
4057         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4058         while (*buf) {
4059                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4060                 if (buf == end) break;
4061                 if (*end == '-') { /* range */
4062                         buf = end + 1;
4063                         end_chunk = simple_strtoul(buf, &end, 0);
4064                         if (buf == end) break;
4065                 }
4066                 if (*end && !isspace(*end)) break;
4067                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4068                 buf = skip_spaces(end);
4069         }
4070         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4071 out:
4072         return len;
4073 }
4074
4075 static struct md_sysfs_entry md_bitmap =
4076 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4077
4078 static ssize_t
4079 size_show(struct mddev *mddev, char *page)
4080 {
4081         return sprintf(page, "%llu\n",
4082                 (unsigned long long)mddev->dev_sectors / 2);
4083 }
4084
4085 static int update_size(struct mddev *mddev, sector_t num_sectors);
4086
4087 static ssize_t
4088 size_store(struct mddev *mddev, const char *buf, size_t len)
4089 {
4090         /* If array is inactive, we can reduce the component size, but
4091          * not increase it (except from 0).
4092          * If array is active, we can try an on-line resize
4093          */
4094         sector_t sectors;
4095         int err = strict_blocks_to_sectors(buf, &sectors);
4096
4097         if (err < 0)
4098                 return err;
4099         if (mddev->pers) {
4100                 err = update_size(mddev, sectors);
4101                 md_update_sb(mddev, 1);
4102         } else {
4103                 if (mddev->dev_sectors == 0 ||
4104                     mddev->dev_sectors > sectors)
4105                         mddev->dev_sectors = sectors;
4106                 else
4107                         err = -ENOSPC;
4108         }
4109         return err ? err : len;
4110 }
4111
4112 static struct md_sysfs_entry md_size =
4113 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4114
4115
4116 /* Metadata version.
4117  * This is one of
4118  *   'none' for arrays with no metadata (good luck...)
4119  *   'external' for arrays with externally managed metadata,
4120  * or N.M for internally known formats
4121  */
4122 static ssize_t
4123 metadata_show(struct mddev *mddev, char *page)
4124 {
4125         if (mddev->persistent)
4126                 return sprintf(page, "%d.%d\n",
4127                                mddev->major_version, mddev->minor_version);
4128         else if (mddev->external)
4129                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4130         else
4131                 return sprintf(page, "none\n");
4132 }
4133
4134 static ssize_t
4135 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4136 {
4137         int major, minor;
4138         char *e;
4139         /* Changing the details of 'external' metadata is
4140          * always permitted.  Otherwise there must be
4141          * no devices attached to the array.
4142          */
4143         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4144                 ;
4145         else if (!list_empty(&mddev->disks))
4146                 return -EBUSY;
4147
4148         if (cmd_match(buf, "none")) {
4149                 mddev->persistent = 0;
4150                 mddev->external = 0;
4151                 mddev->major_version = 0;
4152                 mddev->minor_version = 90;
4153                 return len;
4154         }
4155         if (strncmp(buf, "external:", 9) == 0) {
4156                 size_t namelen = len-9;
4157                 if (namelen >= sizeof(mddev->metadata_type))
4158                         namelen = sizeof(mddev->metadata_type)-1;
4159                 strncpy(mddev->metadata_type, buf+9, namelen);
4160                 mddev->metadata_type[namelen] = 0;
4161                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162                         mddev->metadata_type[--namelen] = 0;
4163                 mddev->persistent = 0;
4164                 mddev->external = 1;
4165                 mddev->major_version = 0;
4166                 mddev->minor_version = 90;
4167                 return len;
4168         }
4169         major = simple_strtoul(buf, &e, 10);
4170         if (e==buf || *e != '.')
4171                 return -EINVAL;
4172         buf = e+1;
4173         minor = simple_strtoul(buf, &e, 10);
4174         if (e==buf || (*e && *e != '\n') )
4175                 return -EINVAL;
4176         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4177                 return -ENOENT;
4178         mddev->major_version = major;
4179         mddev->minor_version = minor;
4180         mddev->persistent = 1;
4181         mddev->external = 0;
4182         return len;
4183 }
4184
4185 static struct md_sysfs_entry md_metadata =
4186 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4187
4188 static ssize_t
4189 action_show(struct mddev *mddev, char *page)
4190 {
4191         char *type = "idle";
4192         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4193                 type = "frozen";
4194         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4195             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4196                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4197                         type = "reshape";
4198                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4199                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4200                                 type = "resync";
4201                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4202                                 type = "check";
4203                         else
4204                                 type = "repair";
4205                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4206                         type = "recover";
4207         }
4208         return sprintf(page, "%s\n", type);
4209 }
4210
4211 static ssize_t
4212 action_store(struct mddev *mddev, const char *page, size_t len)
4213 {
4214         if (!mddev->pers || !mddev->pers->sync_request)
4215                 return -EINVAL;
4216
4217         if (cmd_match(page, "frozen"))
4218                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4219         else
4220                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4221
4222         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4223                 if (mddev->sync_thread) {
4224                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4225                         md_reap_sync_thread(mddev);
4226                 }
4227         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4228                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4229                 return -EBUSY;
4230         else if (cmd_match(page, "resync"))
4231                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4232         else if (cmd_match(page, "recover")) {
4233                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4234                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4235         } else if (cmd_match(page, "reshape")) {
4236                 int err;
4237                 if (mddev->pers->start_reshape == NULL)
4238                         return -EINVAL;
4239                 err = mddev->pers->start_reshape(mddev);
4240                 if (err)
4241                         return err;
4242                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4243         } else {
4244                 if (cmd_match(page, "check"))
4245                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4246                 else if (!cmd_match(page, "repair"))
4247                         return -EINVAL;
4248                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4249                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4250         }
4251         if (mddev->ro == 2) {
4252                 /* A write to sync_action is enough to justify
4253                  * canceling read-auto mode
4254                  */
4255                 mddev->ro = 0;
4256                 md_wakeup_thread(mddev->sync_thread);
4257         }
4258         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4259         md_wakeup_thread(mddev->thread);
4260         sysfs_notify_dirent_safe(mddev->sysfs_action);
4261         return len;
4262 }
4263
4264 static struct md_sysfs_entry md_scan_mode =
4265 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4266
4267 static ssize_t
4268 last_sync_action_show(struct mddev *mddev, char *page)
4269 {
4270         return sprintf(page, "%s\n", mddev->last_sync_action);
4271 }
4272
4273 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4274
4275 static ssize_t
4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4277 {
4278         return sprintf(page, "%llu\n",
4279                        (unsigned long long)
4280                        atomic64_read(&mddev->resync_mismatches));
4281 }
4282
4283 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4284
4285 static ssize_t
4286 sync_min_show(struct mddev *mddev, char *page)
4287 {
4288         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4289                        mddev->sync_speed_min ? "local": "system");
4290 }
4291
4292 static ssize_t
4293 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4294 {
4295         int min;
4296         char *e;
4297         if (strncmp(buf, "system", 6)==0) {
4298                 mddev->sync_speed_min = 0;
4299                 return len;
4300         }
4301         min = simple_strtoul(buf, &e, 10);
4302         if (buf == e || (*e && *e != '\n') || min <= 0)
4303                 return -EINVAL;
4304         mddev->sync_speed_min = min;
4305         return len;
4306 }
4307
4308 static struct md_sysfs_entry md_sync_min =
4309 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4310
4311 static ssize_t
4312 sync_max_show(struct mddev *mddev, char *page)
4313 {
4314         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4315                        mddev->sync_speed_max ? "local": "system");
4316 }
4317
4318 static ssize_t
4319 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321         int max;
4322         char *e;
4323         if (strncmp(buf, "system", 6)==0) {
4324                 mddev->sync_speed_max = 0;
4325                 return len;
4326         }
4327         max = simple_strtoul(buf, &e, 10);
4328         if (buf == e || (*e && *e != '\n') || max <= 0)
4329                 return -EINVAL;
4330         mddev->sync_speed_max = max;
4331         return len;
4332 }
4333
4334 static struct md_sysfs_entry md_sync_max =
4335 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4336
4337 static ssize_t
4338 degraded_show(struct mddev *mddev, char *page)
4339 {
4340         return sprintf(page, "%d\n", mddev->degraded);
4341 }
4342 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4343
4344 static ssize_t
4345 sync_force_parallel_show(struct mddev *mddev, char *page)
4346 {
4347         return sprintf(page, "%d\n", mddev->parallel_resync);
4348 }
4349
4350 static ssize_t
4351 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4352 {
4353         long n;
4354
4355         if (kstrtol(buf, 10, &n))
4356                 return -EINVAL;
4357
4358         if (n != 0 && n != 1)
4359                 return -EINVAL;
4360
4361         mddev->parallel_resync = n;
4362
4363         if (mddev->sync_thread)
4364                 wake_up(&resync_wait);
4365
4366         return len;
4367 }
4368
4369 /* force parallel resync, even with shared block devices */
4370 static struct md_sysfs_entry md_sync_force_parallel =
4371 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4372        sync_force_parallel_show, sync_force_parallel_store);
4373
4374 static ssize_t
4375 sync_speed_show(struct mddev *mddev, char *page)
4376 {
4377         unsigned long resync, dt, db;
4378         if (mddev->curr_resync == 0)
4379                 return sprintf(page, "none\n");
4380         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4381         dt = (jiffies - mddev->resync_mark) / HZ;
4382         if (!dt) dt++;
4383         db = resync - mddev->resync_mark_cnt;
4384         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4385 }
4386
4387 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4388
4389 static ssize_t
4390 sync_completed_show(struct mddev *mddev, char *page)
4391 {
4392         unsigned long long max_sectors, resync;
4393
4394         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4395                 return sprintf(page, "none\n");
4396
4397         if (mddev->curr_resync == 1 ||
4398             mddev->curr_resync == 2)
4399                 return sprintf(page, "delayed\n");
4400
4401         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4402             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4403                 max_sectors = mddev->resync_max_sectors;
4404         else
4405                 max_sectors = mddev->dev_sectors;
4406
4407         resync = mddev->curr_resync_completed;
4408         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4409 }
4410
4411 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4412
4413 static ssize_t
4414 min_sync_show(struct mddev *mddev, char *page)
4415 {
4416         return sprintf(page, "%llu\n",
4417                        (unsigned long long)mddev->resync_min);
4418 }
4419 static ssize_t
4420 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4421 {
4422         unsigned long long min;
4423         if (kstrtoull(buf, 10, &min))
4424                 return -EINVAL;
4425         if (min > mddev->resync_max)
4426                 return -EINVAL;
4427         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4428                 return -EBUSY;
4429
4430         /* Must be a multiple of chunk_size */
4431         if (mddev->chunk_sectors) {
4432                 sector_t temp = min;
4433                 if (sector_div(temp, mddev->chunk_sectors))
4434                         return -EINVAL;
4435         }
4436         mddev->resync_min = min;
4437
4438         return len;
4439 }
4440
4441 static struct md_sysfs_entry md_min_sync =
4442 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4443
4444 static ssize_t
4445 max_sync_show(struct mddev *mddev, char *page)
4446 {
4447         if (mddev->resync_max == MaxSector)
4448                 return sprintf(page, "max\n");
4449         else
4450                 return sprintf(page, "%llu\n",
4451                                (unsigned long long)mddev->resync_max);
4452 }
4453 static ssize_t
4454 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4455 {
4456         if (strncmp(buf, "max", 3) == 0)
4457                 mddev->resync_max = MaxSector;
4458         else {
4459                 unsigned long long max;
4460                 if (kstrtoull(buf, 10, &max))
4461                         return -EINVAL;
4462                 if (max < mddev->resync_min)
4463                         return -EINVAL;
4464                 if (max < mddev->resync_max &&
4465                     mddev->ro == 0 &&
4466                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4467                         return -EBUSY;
4468
4469                 /* Must be a multiple of chunk_size */
4470                 if (mddev->chunk_sectors) {
4471                         sector_t temp = max;
4472                         if (sector_div(temp, mddev->chunk_sectors))
4473                                 return -EINVAL;
4474                 }
4475                 mddev->resync_max = max;
4476         }
4477         wake_up(&mddev->recovery_wait);
4478         return len;
4479 }
4480
4481 static struct md_sysfs_entry md_max_sync =
4482 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4483
4484 static ssize_t
4485 suspend_lo_show(struct mddev *mddev, char *page)
4486 {
4487         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4488 }
4489
4490 static ssize_t
4491 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4492 {
4493         char *e;
4494         unsigned long long new = simple_strtoull(buf, &e, 10);
4495         unsigned long long old = mddev->suspend_lo;
4496
4497         if (mddev->pers == NULL || 
4498             mddev->pers->quiesce == NULL)
4499                 return -EINVAL;
4500         if (buf == e || (*e && *e != '\n'))
4501                 return -EINVAL;
4502
4503         mddev->suspend_lo = new;
4504         if (new >= old)
4505                 /* Shrinking suspended region */
4506                 mddev->pers->quiesce(mddev, 2);
4507         else {
4508                 /* Expanding suspended region - need to wait */
4509                 mddev->pers->quiesce(mddev, 1);
4510                 mddev->pers->quiesce(mddev, 0);
4511         }
4512         return len;
4513 }
4514 static struct md_sysfs_entry md_suspend_lo =
4515 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4516
4517
4518 static ssize_t
4519 suspend_hi_show(struct mddev *mddev, char *page)
4520 {
4521         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4522 }
4523
4524 static ssize_t
4525 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4526 {
4527         char *e;
4528         unsigned long long new = simple_strtoull(buf, &e, 10);
4529         unsigned long long old = mddev->suspend_hi;
4530
4531         if (mddev->pers == NULL ||
4532             mddev->pers->quiesce == NULL)
4533                 return -EINVAL;
4534         if (buf == e || (*e && *e != '\n'))
4535                 return -EINVAL;
4536
4537         mddev->suspend_hi = new;
4538         if (new <= old)
4539                 /* Shrinking suspended region */
4540                 mddev->pers->quiesce(mddev, 2);
4541         else {
4542                 /* Expanding suspended region - need to wait */
4543                 mddev->pers->quiesce(mddev, 1);
4544                 mddev->pers->quiesce(mddev, 0);
4545         }
4546         return len;
4547 }
4548 static struct md_sysfs_entry md_suspend_hi =
4549 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4550
4551 static ssize_t
4552 reshape_position_show(struct mddev *mddev, char *page)
4553 {
4554         if (mddev->reshape_position != MaxSector)
4555                 return sprintf(page, "%llu\n",
4556                                (unsigned long long)mddev->reshape_position);
4557         strcpy(page, "none\n");
4558         return 5;
4559 }
4560
4561 static ssize_t
4562 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4563 {
4564         struct md_rdev *rdev;
4565         char *e;
4566         unsigned long long new = simple_strtoull(buf, &e, 10);
4567         if (mddev->pers)
4568                 return -EBUSY;
4569         if (buf == e || (*e && *e != '\n'))
4570                 return -EINVAL;
4571         mddev->reshape_position = new;
4572         mddev->delta_disks = 0;
4573         mddev->reshape_backwards = 0;
4574         mddev->new_level = mddev->level;
4575         mddev->new_layout = mddev->layout;
4576         mddev->new_chunk_sectors = mddev->chunk_sectors;
4577         rdev_for_each(rdev, mddev)
4578                 rdev->new_data_offset = rdev->data_offset;
4579         return len;
4580 }
4581
4582 static struct md_sysfs_entry md_reshape_position =
4583 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4584        reshape_position_store);
4585
4586 static ssize_t
4587 reshape_direction_show(struct mddev *mddev, char *page)
4588 {
4589         return sprintf(page, "%s\n",
4590                        mddev->reshape_backwards ? "backwards" : "forwards");
4591 }
4592
4593 static ssize_t
4594 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4595 {
4596         int backwards = 0;
4597         if (cmd_match(buf, "forwards"))
4598                 backwards = 0;
4599         else if (cmd_match(buf, "backwards"))
4600                 backwards = 1;
4601         else
4602                 return -EINVAL;
4603         if (mddev->reshape_backwards == backwards)
4604                 return len;
4605
4606         /* check if we are allowed to change */
4607         if (mddev->delta_disks)
4608                 return -EBUSY;
4609
4610         if (mddev->persistent &&
4611             mddev->major_version == 0)
4612                 return -EINVAL;
4613
4614         mddev->reshape_backwards = backwards;
4615         return len;
4616 }
4617
4618 static struct md_sysfs_entry md_reshape_direction =
4619 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4620        reshape_direction_store);
4621
4622 static ssize_t
4623 array_size_show(struct mddev *mddev, char *page)
4624 {
4625         if (mddev->external_size)
4626                 return sprintf(page, "%llu\n",
4627                                (unsigned long long)mddev->array_sectors/2);
4628         else
4629                 return sprintf(page, "default\n");
4630 }
4631
4632 static ssize_t
4633 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4634 {
4635         sector_t sectors;
4636
4637         if (strncmp(buf, "default", 7) == 0) {
4638                 if (mddev->pers)
4639                         sectors = mddev->pers->size(mddev, 0, 0);
4640                 else
4641                         sectors = mddev->array_sectors;
4642
4643                 mddev->external_size = 0;
4644         } else {
4645                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4646                         return -EINVAL;
4647                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4648                         return -E2BIG;
4649
4650                 mddev->external_size = 1;
4651         }
4652
4653         mddev->array_sectors = sectors;
4654         if (mddev->pers) {
4655                 set_capacity(mddev->gendisk, mddev->array_sectors);
4656                 revalidate_disk(mddev->gendisk);
4657         }
4658         return len;
4659 }
4660
4661 static struct md_sysfs_entry md_array_size =
4662 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4663        array_size_store);
4664
4665 static struct attribute *md_default_attrs[] = {
4666         &md_level.attr,
4667         &md_layout.attr,
4668         &md_raid_disks.attr,
4669         &md_chunk_size.attr,
4670         &md_size.attr,
4671         &md_resync_start.attr,
4672         &md_metadata.attr,
4673         &md_new_device.attr,
4674         &md_safe_delay.attr,
4675         &md_array_state.attr,
4676         &md_reshape_position.attr,
4677         &md_reshape_direction.attr,
4678         &md_array_size.attr,
4679         &max_corr_read_errors.attr,
4680         NULL,
4681 };
4682
4683 static struct attribute *md_redundancy_attrs[] = {
4684         &md_scan_mode.attr,
4685         &md_last_scan_mode.attr,
4686         &md_mismatches.attr,
4687         &md_sync_min.attr,
4688         &md_sync_max.attr,
4689         &md_sync_speed.attr,
4690         &md_sync_force_parallel.attr,
4691         &md_sync_completed.attr,
4692         &md_min_sync.attr,
4693         &md_max_sync.attr,
4694         &md_suspend_lo.attr,
4695         &md_suspend_hi.attr,
4696         &md_bitmap.attr,
4697         &md_degraded.attr,
4698         NULL,
4699 };
4700 static struct attribute_group md_redundancy_group = {
4701         .name = NULL,
4702         .attrs = md_redundancy_attrs,
4703 };
4704
4705
4706 static ssize_t
4707 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4708 {
4709         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4710         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4711         ssize_t rv;
4712
4713         if (!entry->show)
4714                 return -EIO;
4715         spin_lock(&all_mddevs_lock);
4716         if (list_empty(&mddev->all_mddevs)) {
4717                 spin_unlock(&all_mddevs_lock);
4718                 return -EBUSY;
4719         }
4720         mddev_get(mddev);
4721         spin_unlock(&all_mddevs_lock);
4722
4723         rv = mddev_lock(mddev);
4724         if (!rv) {
4725                 rv = entry->show(mddev, page);
4726                 mddev_unlock(mddev);
4727         }
4728         mddev_put(mddev);
4729         return rv;
4730 }
4731
4732 static ssize_t
4733 md_attr_store(struct kobject *kobj, struct attribute *attr,
4734               const char *page, size_t length)
4735 {
4736         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4737         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4738         ssize_t rv;
4739
4740         if (!entry->store)
4741                 return -EIO;
4742         if (!capable(CAP_SYS_ADMIN))
4743                 return -EACCES;
4744         spin_lock(&all_mddevs_lock);
4745         if (list_empty(&mddev->all_mddevs)) {
4746                 spin_unlock(&all_mddevs_lock);
4747                 return -EBUSY;
4748         }
4749         mddev_get(mddev);
4750         spin_unlock(&all_mddevs_lock);
4751         if (entry->store == new_dev_store)
4752                 flush_workqueue(md_misc_wq);
4753         rv = mddev_lock(mddev);
4754         if (!rv) {
4755                 rv = entry->store(mddev, page, length);
4756                 mddev_unlock(mddev);
4757         }
4758         mddev_put(mddev);
4759         return rv;
4760 }
4761
4762 static void md_free(struct kobject *ko)
4763 {
4764         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4765
4766         if (mddev->sysfs_state)
4767                 sysfs_put(mddev->sysfs_state);
4768
4769         if (mddev->gendisk) {
4770                 del_gendisk(mddev->gendisk);
4771                 put_disk(mddev->gendisk);
4772         }
4773         if (mddev->queue)
4774                 blk_cleanup_queue(mddev->queue);
4775
4776         kfree(mddev);
4777 }
4778
4779 static const struct sysfs_ops md_sysfs_ops = {
4780         .show   = md_attr_show,
4781         .store  = md_attr_store,
4782 };
4783 static struct kobj_type md_ktype = {
4784         .release        = md_free,
4785         .sysfs_ops      = &md_sysfs_ops,
4786         .default_attrs  = md_default_attrs,
4787 };
4788
4789 int mdp_major = 0;
4790
4791 static void mddev_delayed_delete(struct work_struct *ws)
4792 {
4793         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4794
4795         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4796         kobject_del(&mddev->kobj);
4797         kobject_put(&mddev->kobj);
4798 }
4799
4800 static int md_alloc(dev_t dev, char *name)
4801 {
4802         static DEFINE_MUTEX(disks_mutex);
4803         struct mddev *mddev = mddev_find(dev);
4804         struct gendisk *disk;
4805         int partitioned;
4806         int shift;
4807         int unit;
4808         int error;
4809
4810         if (!mddev)
4811                 return -ENODEV;
4812
4813         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4814         shift = partitioned ? MdpMinorShift : 0;
4815         unit = MINOR(mddev->unit) >> shift;
4816
4817         /* wait for any previous instance of this device to be
4818          * completely removed (mddev_delayed_delete).
4819          */
4820         flush_workqueue(md_misc_wq);
4821
4822         mutex_lock(&disks_mutex);
4823         error = -EEXIST;
4824         if (mddev->gendisk)
4825                 goto abort;
4826
4827         if (name) {
4828                 /* Need to ensure that 'name' is not a duplicate.
4829                  */
4830                 struct mddev *mddev2;
4831                 spin_lock(&all_mddevs_lock);
4832
4833                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4834                         if (mddev2->gendisk &&
4835                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4836                                 spin_unlock(&all_mddevs_lock);
4837                                 goto abort;
4838                         }
4839                 spin_unlock(&all_mddevs_lock);
4840         }
4841
4842         error = -ENOMEM;
4843         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4844         if (!mddev->queue)
4845                 goto abort;
4846         mddev->queue->queuedata = mddev;
4847
4848         blk_queue_make_request(mddev->queue, md_make_request);
4849         blk_set_stacking_limits(&mddev->queue->limits);
4850
4851         disk = alloc_disk(1 << shift);
4852         if (!disk) {
4853                 blk_cleanup_queue(mddev->queue);
4854                 mddev->queue = NULL;
4855                 goto abort;
4856         }
4857         disk->major = MAJOR(mddev->unit);
4858         disk->first_minor = unit << shift;
4859         if (name)
4860                 strcpy(disk->disk_name, name);
4861         else if (partitioned)
4862                 sprintf(disk->disk_name, "md_d%d", unit);
4863         else
4864                 sprintf(disk->disk_name, "md%d", unit);
4865         disk->fops = &md_fops;
4866         disk->private_data = mddev;
4867         disk->queue = mddev->queue;
4868         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4869         /* Allow extended partitions.  This makes the
4870          * 'mdp' device redundant, but we can't really
4871          * remove it now.
4872          */
4873         disk->flags |= GENHD_FL_EXT_DEVT;
4874         mddev->gendisk = disk;
4875         /* As soon as we call add_disk(), another thread could get
4876          * through to md_open, so make sure it doesn't get too far
4877          */
4878         mutex_lock(&mddev->open_mutex);
4879         add_disk(disk);
4880
4881         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4882                                      &disk_to_dev(disk)->kobj, "%s", "md");
4883         if (error) {
4884                 /* This isn't possible, but as kobject_init_and_add is marked
4885                  * __must_check, we must do something with the result
4886                  */
4887                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4888                        disk->disk_name);
4889                 error = 0;
4890         }
4891         if (mddev->kobj.sd &&
4892             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4893                 printk(KERN_DEBUG "pointless warning\n");
4894         mutex_unlock(&mddev->open_mutex);
4895  abort:
4896         mutex_unlock(&disks_mutex);
4897         if (!error && mddev->kobj.sd) {
4898                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4899                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4900         }
4901         mddev_put(mddev);
4902         return error;
4903 }
4904
4905 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4906 {
4907         md_alloc(dev, NULL);
4908         return NULL;
4909 }
4910
4911 static int add_named_array(const char *val, struct kernel_param *kp)
4912 {
4913         /* val must be "md_*" where * is not all digits.
4914          * We allocate an array with a large free minor number, and
4915          * set the name to val.  val must not already be an active name.
4916          */
4917         int len = strlen(val);
4918         char buf[DISK_NAME_LEN];
4919
4920         while (len && val[len-1] == '\n')
4921                 len--;
4922         if (len >= DISK_NAME_LEN)
4923                 return -E2BIG;
4924         strlcpy(buf, val, len+1);
4925         if (strncmp(buf, "md_", 3) != 0)
4926                 return -EINVAL;
4927         return md_alloc(0, buf);
4928 }
4929
4930 static void md_safemode_timeout(unsigned long data)
4931 {
4932         struct mddev *mddev = (struct mddev *) data;
4933
4934         if (!atomic_read(&mddev->writes_pending)) {
4935                 mddev->safemode = 1;
4936                 if (mddev->external)
4937                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4938         }
4939         md_wakeup_thread(mddev->thread);
4940 }
4941
4942 static int start_dirty_degraded;
4943
4944 int md_run(struct mddev *mddev)
4945 {
4946         int err;
4947         struct md_rdev *rdev;
4948         struct md_personality *pers;
4949
4950         if (list_empty(&mddev->disks))
4951                 /* cannot run an array with no devices.. */
4952                 return -EINVAL;
4953
4954         if (mddev->pers)
4955                 return -EBUSY;
4956         /* Cannot run until previous stop completes properly */
4957         if (mddev->sysfs_active)
4958                 return -EBUSY;
4959
4960         /*
4961          * Analyze all RAID superblock(s)
4962          */
4963         if (!mddev->raid_disks) {
4964                 if (!mddev->persistent)
4965                         return -EINVAL;
4966                 analyze_sbs(mddev);
4967         }
4968
4969         if (mddev->level != LEVEL_NONE)
4970                 request_module("md-level-%d", mddev->level);
4971         else if (mddev->clevel[0])
4972                 request_module("md-%s", mddev->clevel);
4973
4974         /*
4975          * Drop all container device buffers, from now on
4976          * the only valid external interface is through the md
4977          * device.
4978          */
4979         rdev_for_each(rdev, mddev) {
4980                 if (test_bit(Faulty, &rdev->flags))
4981                         continue;
4982                 sync_blockdev(rdev->bdev);
4983                 invalidate_bdev(rdev->bdev);
4984
4985                 /* perform some consistency tests on the device.
4986                  * We don't want the data to overlap the metadata,
4987                  * Internal Bitmap issues have been handled elsewhere.
4988                  */
4989                 if (rdev->meta_bdev) {
4990                         /* Nothing to check */;
4991                 } else if (rdev->data_offset < rdev->sb_start) {
4992                         if (mddev->dev_sectors &&
4993                             rdev->data_offset + mddev->dev_sectors
4994                             > rdev->sb_start) {
4995                                 printk("md: %s: data overlaps metadata\n",
4996                                        mdname(mddev));
4997                                 return -EINVAL;
4998                         }
4999                 } else {
5000                         if (rdev->sb_start + rdev->sb_size/512
5001                             > rdev->data_offset) {
5002                                 printk("md: %s: metadata overlaps data\n",
5003                                        mdname(mddev));
5004                                 return -EINVAL;
5005                         }
5006                 }
5007                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5008         }
5009
5010         if (mddev->bio_set == NULL)
5011                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5012
5013         spin_lock(&pers_lock);
5014         pers = find_pers(mddev->level, mddev->clevel);
5015         if (!pers || !try_module_get(pers->owner)) {
5016                 spin_unlock(&pers_lock);
5017                 if (mddev->level != LEVEL_NONE)
5018                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5019                                mddev->level);
5020                 else
5021                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5022                                mddev->clevel);
5023                 return -EINVAL;
5024         }
5025         mddev->pers = pers;
5026         spin_unlock(&pers_lock);
5027         if (mddev->level != pers->level) {
5028                 mddev->level = pers->level;
5029                 mddev->new_level = pers->level;
5030         }
5031         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5032
5033         if (mddev->reshape_position != MaxSector &&
5034             pers->start_reshape == NULL) {
5035                 /* This personality cannot handle reshaping... */
5036                 mddev->pers = NULL;
5037                 module_put(pers->owner);
5038                 return -EINVAL;
5039         }
5040
5041         if (pers->sync_request) {
5042                 /* Warn if this is a potentially silly
5043                  * configuration.
5044                  */
5045                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5046                 struct md_rdev *rdev2;
5047                 int warned = 0;
5048
5049                 rdev_for_each(rdev, mddev)
5050                         rdev_for_each(rdev2, mddev) {
5051                                 if (rdev < rdev2 &&
5052                                     rdev->bdev->bd_contains ==
5053                                     rdev2->bdev->bd_contains) {
5054                                         printk(KERN_WARNING
5055                                                "%s: WARNING: %s appears to be"
5056                                                " on the same physical disk as"
5057                                                " %s.\n",
5058                                                mdname(mddev),
5059                                                bdevname(rdev->bdev,b),
5060                                                bdevname(rdev2->bdev,b2));
5061                                         warned = 1;
5062                                 }
5063                         }
5064
5065                 if (warned)
5066                         printk(KERN_WARNING
5067                                "True protection against single-disk"
5068                                " failure might be compromised.\n");
5069         }
5070
5071         mddev->recovery = 0;
5072         /* may be over-ridden by personality */
5073         mddev->resync_max_sectors = mddev->dev_sectors;
5074
5075         mddev->ok_start_degraded = start_dirty_degraded;
5076
5077         if (start_readonly && mddev->ro == 0)
5078                 mddev->ro = 2; /* read-only, but switch on first write */
5079
5080         err = mddev->pers->run(mddev);
5081         if (err)
5082                 printk(KERN_ERR "md: pers->run() failed ...\n");
5083         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5084                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5085                           " but 'external_size' not in effect?\n", __func__);
5086                 printk(KERN_ERR
5087                        "md: invalid array_size %llu > default size %llu\n",
5088                        (unsigned long long)mddev->array_sectors / 2,
5089                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5090                 err = -EINVAL;
5091                 mddev->pers->stop(mddev);
5092         }
5093         if (err == 0 && mddev->pers->sync_request &&
5094             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5095                 err = bitmap_create(mddev);
5096                 if (err) {
5097                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5098                                mdname(mddev), err);
5099                         mddev->pers->stop(mddev);
5100                 }
5101         }
5102         if (err) {
5103                 module_put(mddev->pers->owner);
5104                 mddev->pers = NULL;
5105                 bitmap_destroy(mddev);
5106                 return err;
5107         }
5108         if (mddev->pers->sync_request) {
5109                 if (mddev->kobj.sd &&
5110                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5111                         printk(KERN_WARNING
5112                                "md: cannot register extra attributes for %s\n",
5113                                mdname(mddev));
5114                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5115         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5116                 mddev->ro = 0;
5117
5118         atomic_set(&mddev->writes_pending,0);
5119         atomic_set(&mddev->max_corr_read_errors,
5120                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5121         mddev->safemode = 0;
5122         mddev->safemode_timer.function = md_safemode_timeout;
5123         mddev->safemode_timer.data = (unsigned long) mddev;
5124         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5125         mddev->in_sync = 1;
5126         smp_wmb();
5127         mddev->ready = 1;
5128         rdev_for_each(rdev, mddev)
5129                 if (rdev->raid_disk >= 0)
5130                         if (sysfs_link_rdev(mddev, rdev))
5131                                 /* failure here is OK */;
5132         
5133         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5134         
5135         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5136                 md_update_sb(mddev, 0);
5137
5138         md_new_event(mddev);
5139         sysfs_notify_dirent_safe(mddev->sysfs_state);
5140         sysfs_notify_dirent_safe(mddev->sysfs_action);
5141         sysfs_notify(&mddev->kobj, NULL, "degraded");
5142         return 0;
5143 }
5144 EXPORT_SYMBOL_GPL(md_run);
5145
5146 static int do_md_run(struct mddev *mddev)
5147 {
5148         int err;
5149
5150         err = md_run(mddev);
5151         if (err)
5152                 goto out;
5153         err = bitmap_load(mddev);
5154         if (err) {
5155                 bitmap_destroy(mddev);
5156                 goto out;
5157         }
5158
5159         md_wakeup_thread(mddev->thread);
5160         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5161
5162         set_capacity(mddev->gendisk, mddev->array_sectors);
5163         revalidate_disk(mddev->gendisk);
5164         mddev->changed = 1;
5165         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5166 out:
5167         return err;
5168 }
5169
5170 static int restart_array(struct mddev *mddev)
5171 {
5172         struct gendisk *disk = mddev->gendisk;
5173
5174         /* Complain if it has no devices */
5175         if (list_empty(&mddev->disks))
5176                 return -ENXIO;
5177         if (!mddev->pers)
5178                 return -EINVAL;
5179         if (!mddev->ro)
5180                 return -EBUSY;
5181         mddev->safemode = 0;
5182         mddev->ro = 0;
5183         set_disk_ro(disk, 0);
5184         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5185                 mdname(mddev));
5186         /* Kick recovery or resync if necessary */
5187         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5188         md_wakeup_thread(mddev->thread);
5189         md_wakeup_thread(mddev->sync_thread);
5190         sysfs_notify_dirent_safe(mddev->sysfs_state);
5191         return 0;
5192 }
5193
5194 /* similar to deny_write_access, but accounts for our holding a reference
5195  * to the file ourselves */
5196 static int deny_bitmap_write_access(struct file * file)
5197 {
5198         struct inode *inode = file->f_mapping->host;
5199
5200         spin_lock(&inode->i_lock);
5201         if (atomic_read(&inode->i_writecount) > 1) {
5202                 spin_unlock(&inode->i_lock);
5203                 return -ETXTBSY;
5204         }
5205         atomic_set(&inode->i_writecount, -1);
5206         spin_unlock(&inode->i_lock);
5207
5208         return 0;
5209 }
5210
5211 void restore_bitmap_write_access(struct file *file)
5212 {
5213         struct inode *inode = file->f_mapping->host;
5214
5215         spin_lock(&inode->i_lock);
5216         atomic_set(&inode->i_writecount, 1);
5217         spin_unlock(&inode->i_lock);
5218 }
5219
5220 static void md_clean(struct mddev *mddev)
5221 {
5222         mddev->array_sectors = 0;
5223         mddev->external_size = 0;
5224         mddev->dev_sectors = 0;
5225         mddev->raid_disks = 0;
5226         mddev->recovery_cp = 0;
5227         mddev->resync_min = 0;
5228         mddev->resync_max = MaxSector;
5229         mddev->reshape_position = MaxSector;
5230         mddev->external = 0;
5231         mddev->persistent = 0;
5232         mddev->level = LEVEL_NONE;
5233         mddev->clevel[0] = 0;
5234         mddev->flags = 0;
5235         mddev->ro = 0;
5236         mddev->metadata_type[0] = 0;
5237         mddev->chunk_sectors = 0;
5238         mddev->ctime = mddev->utime = 0;
5239         mddev->layout = 0;
5240         mddev->max_disks = 0;
5241         mddev->events = 0;
5242         mddev->can_decrease_events = 0;
5243         mddev->delta_disks = 0;
5244         mddev->reshape_backwards = 0;
5245         mddev->new_level = LEVEL_NONE;
5246         mddev->new_layout = 0;
5247         mddev->new_chunk_sectors = 0;
5248         mddev->curr_resync = 0;
5249         atomic64_set(&mddev->resync_mismatches, 0);
5250         mddev->suspend_lo = mddev->suspend_hi = 0;
5251         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5252         mddev->recovery = 0;
5253         mddev->in_sync = 0;
5254         mddev->changed = 0;
5255         mddev->degraded = 0;
5256         mddev->safemode = 0;
5257         mddev->merge_check_needed = 0;
5258         mddev->bitmap_info.offset = 0;
5259         mddev->bitmap_info.default_offset = 0;
5260         mddev->bitmap_info.default_space = 0;
5261         mddev->bitmap_info.chunksize = 0;
5262         mddev->bitmap_info.daemon_sleep = 0;
5263         mddev->bitmap_info.max_write_behind = 0;
5264 }
5265
5266 static void __md_stop_writes(struct mddev *mddev)
5267 {
5268         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5269         if (mddev->sync_thread) {
5270                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5271                 md_reap_sync_thread(mddev);
5272         }
5273
5274         del_timer_sync(&mddev->safemode_timer);
5275
5276         bitmap_flush(mddev);
5277         md_super_wait(mddev);
5278
5279         if (mddev->ro == 0 &&
5280             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5281                 /* mark array as shutdown cleanly */
5282                 mddev->in_sync = 1;
5283                 md_update_sb(mddev, 1);
5284         }
5285 }
5286
5287 void md_stop_writes(struct mddev *mddev)
5288 {
5289         mddev_lock_nointr(mddev);
5290         __md_stop_writes(mddev);
5291         mddev_unlock(mddev);
5292 }
5293 EXPORT_SYMBOL_GPL(md_stop_writes);
5294
5295 static void __md_stop(struct mddev *mddev)
5296 {
5297         mddev->ready = 0;
5298         mddev->pers->stop(mddev);
5299         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5300                 mddev->to_remove = &md_redundancy_group;
5301         module_put(mddev->pers->owner);
5302         mddev->pers = NULL;
5303         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5304 }
5305
5306 void md_stop(struct mddev *mddev)
5307 {
5308         /* stop the array and free an attached data structures.
5309          * This is called from dm-raid
5310          */
5311         __md_stop(mddev);
5312         bitmap_destroy(mddev);
5313         if (mddev->bio_set)
5314                 bioset_free(mddev->bio_set);
5315 }
5316
5317 EXPORT_SYMBOL_GPL(md_stop);
5318
5319 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5320 {
5321         int err = 0;
5322         int did_freeze = 0;
5323
5324         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5325                 did_freeze = 1;
5326                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5327                 md_wakeup_thread(mddev->thread);
5328         }
5329         if (mddev->sync_thread) {
5330                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5331                 /* Thread might be blocked waiting for metadata update
5332                  * which will now never happen */
5333                 wake_up_process(mddev->sync_thread->tsk);
5334         }
5335         mddev_unlock(mddev);
5336         wait_event(resync_wait, mddev->sync_thread == NULL);
5337         mddev_lock_nointr(mddev);
5338
5339         mutex_lock(&mddev->open_mutex);
5340         if (atomic_read(&mddev->openers) > !!bdev ||
5341             mddev->sync_thread ||
5342             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5343                 printk("md: %s still in use.\n",mdname(mddev));
5344                 if (did_freeze) {
5345                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5346                         md_wakeup_thread(mddev->thread);
5347                 }
5348                 err = -EBUSY;
5349                 goto out;
5350         }
5351         if (mddev->pers) {
5352                 __md_stop_writes(mddev);
5353
5354                 err  = -ENXIO;
5355                 if (mddev->ro==1)
5356                         goto out;
5357                 mddev->ro = 1;
5358                 set_disk_ro(mddev->gendisk, 1);
5359                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5360                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5361                 err = 0;
5362         }
5363 out:
5364         mutex_unlock(&mddev->open_mutex);
5365         return err;
5366 }
5367
5368 /* mode:
5369  *   0 - completely stop and dis-assemble array
5370  *   2 - stop but do not disassemble array
5371  */
5372 static int do_md_stop(struct mddev * mddev, int mode,
5373                       struct block_device *bdev)
5374 {
5375         struct gendisk *disk = mddev->gendisk;
5376         struct md_rdev *rdev;
5377         int did_freeze = 0;
5378
5379         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5380                 did_freeze = 1;
5381                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5382                 md_wakeup_thread(mddev->thread);
5383         }
5384         if (mddev->sync_thread) {
5385                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5386                 /* Thread might be blocked waiting for metadata update
5387                  * which will now never happen */
5388                 wake_up_process(mddev->sync_thread->tsk);
5389         }
5390         mddev_unlock(mddev);
5391         wait_event(resync_wait, mddev->sync_thread == NULL);
5392         mddev_lock_nointr(mddev);
5393
5394         mutex_lock(&mddev->open_mutex);
5395         if (atomic_read(&mddev->openers) > !!bdev ||
5396             mddev->sysfs_active ||
5397             mddev->sync_thread ||
5398             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5399                 printk("md: %s still in use.\n",mdname(mddev));
5400                 mutex_unlock(&mddev->open_mutex);
5401                 if (did_freeze) {
5402                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5403                         md_wakeup_thread(mddev->thread);
5404                 }
5405                 return -EBUSY;
5406         }
5407         if (mddev->pers) {
5408                 if (mddev->ro)
5409                         set_disk_ro(disk, 0);
5410
5411                 __md_stop_writes(mddev);
5412                 __md_stop(mddev);
5413                 mddev->queue->merge_bvec_fn = NULL;
5414                 mddev->queue->backing_dev_info.congested_fn = NULL;
5415
5416                 /* tell userspace to handle 'inactive' */
5417                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5418
5419                 rdev_for_each(rdev, mddev)
5420                         if (rdev->raid_disk >= 0)
5421                                 sysfs_unlink_rdev(mddev, rdev);
5422
5423                 set_capacity(disk, 0);
5424                 mutex_unlock(&mddev->open_mutex);
5425                 mddev->changed = 1;
5426                 revalidate_disk(disk);
5427
5428                 if (mddev->ro)
5429                         mddev->ro = 0;
5430         } else
5431                 mutex_unlock(&mddev->open_mutex);
5432         /*
5433          * Free resources if final stop
5434          */
5435         if (mode == 0) {
5436                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5437
5438                 bitmap_destroy(mddev);
5439                 if (mddev->bitmap_info.file) {
5440                         restore_bitmap_write_access(mddev->bitmap_info.file);
5441                         fput(mddev->bitmap_info.file);
5442                         mddev->bitmap_info.file = NULL;
5443                 }
5444                 mddev->bitmap_info.offset = 0;
5445
5446                 export_array(mddev);
5447
5448                 md_clean(mddev);
5449                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5450                 if (mddev->hold_active == UNTIL_STOP)
5451                         mddev->hold_active = 0;
5452         }
5453         blk_integrity_unregister(disk);
5454         md_new_event(mddev);
5455         sysfs_notify_dirent_safe(mddev->sysfs_state);
5456         return 0;
5457 }
5458
5459 #ifndef MODULE
5460 static void autorun_array(struct mddev *mddev)
5461 {
5462         struct md_rdev *rdev;
5463         int err;
5464
5465         if (list_empty(&mddev->disks))
5466                 return;
5467
5468         printk(KERN_INFO "md: running: ");
5469
5470         rdev_for_each(rdev, mddev) {
5471                 char b[BDEVNAME_SIZE];
5472                 printk("<%s>", bdevname(rdev->bdev,b));
5473         }
5474         printk("\n");
5475
5476         err = do_md_run(mddev);
5477         if (err) {
5478                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5479                 do_md_stop(mddev, 0, NULL);
5480         }
5481 }
5482
5483 /*
5484  * lets try to run arrays based on all disks that have arrived
5485  * until now. (those are in pending_raid_disks)
5486  *
5487  * the method: pick the first pending disk, collect all disks with
5488  * the same UUID, remove all from the pending list and put them into
5489  * the 'same_array' list. Then order this list based on superblock
5490  * update time (freshest comes first), kick out 'old' disks and
5491  * compare superblocks. If everything's fine then run it.
5492  *
5493  * If "unit" is allocated, then bump its reference count
5494  */
5495 static void autorun_devices(int part)
5496 {
5497         struct md_rdev *rdev0, *rdev, *tmp;
5498         struct mddev *mddev;
5499         char b[BDEVNAME_SIZE];
5500
5501         printk(KERN_INFO "md: autorun ...\n");
5502         while (!list_empty(&pending_raid_disks)) {
5503                 int unit;
5504                 dev_t dev;
5505                 LIST_HEAD(candidates);
5506                 rdev0 = list_entry(pending_raid_disks.next,
5507                                          struct md_rdev, same_set);
5508
5509                 printk(KERN_INFO "md: considering %s ...\n",
5510                         bdevname(rdev0->bdev,b));
5511                 INIT_LIST_HEAD(&candidates);
5512                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5513                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5514                                 printk(KERN_INFO "md:  adding %s ...\n",
5515                                         bdevname(rdev->bdev,b));
5516                                 list_move(&rdev->same_set, &candidates);
5517                         }
5518                 /*
5519                  * now we have a set of devices, with all of them having
5520                  * mostly sane superblocks. It's time to allocate the
5521                  * mddev.
5522                  */
5523                 if (part) {
5524                         dev = MKDEV(mdp_major,
5525                                     rdev0->preferred_minor << MdpMinorShift);
5526                         unit = MINOR(dev) >> MdpMinorShift;
5527                 } else {
5528                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5529                         unit = MINOR(dev);
5530                 }
5531                 if (rdev0->preferred_minor != unit) {
5532                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5533                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5534                         break;
5535                 }
5536
5537                 md_probe(dev, NULL, NULL);
5538                 mddev = mddev_find(dev);
5539                 if (!mddev || !mddev->gendisk) {
5540                         if (mddev)
5541                                 mddev_put(mddev);
5542                         printk(KERN_ERR
5543                                 "md: cannot allocate memory for md drive.\n");
5544                         break;
5545                 }
5546                 if (mddev_lock(mddev)) 
5547                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5548                                mdname(mddev));
5549                 else if (mddev->raid_disks || mddev->major_version
5550                          || !list_empty(&mddev->disks)) {
5551                         printk(KERN_WARNING 
5552                                 "md: %s already running, cannot run %s\n",
5553                                 mdname(mddev), bdevname(rdev0->bdev,b));
5554                         mddev_unlock(mddev);
5555                 } else {
5556                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5557                         mddev->persistent = 1;
5558                         rdev_for_each_list(rdev, tmp, &candidates) {
5559                                 list_del_init(&rdev->same_set);
5560                                 if (bind_rdev_to_array(rdev, mddev))
5561                                         export_rdev(rdev);
5562                         }
5563                         autorun_array(mddev);
5564                         mddev_unlock(mddev);
5565                 }
5566                 /* on success, candidates will be empty, on error
5567                  * it won't...
5568                  */
5569                 rdev_for_each_list(rdev, tmp, &candidates) {
5570                         list_del_init(&rdev->same_set);
5571                         export_rdev(rdev);
5572                 }
5573                 mddev_put(mddev);
5574         }
5575         printk(KERN_INFO "md: ... autorun DONE.\n");
5576 }
5577 #endif /* !MODULE */
5578
5579 static int get_version(void __user * arg)
5580 {
5581         mdu_version_t ver;
5582
5583         ver.major = MD_MAJOR_VERSION;
5584         ver.minor = MD_MINOR_VERSION;
5585         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5586
5587         if (copy_to_user(arg, &ver, sizeof(ver)))
5588                 return -EFAULT;
5589
5590         return 0;
5591 }
5592
5593 static int get_array_info(struct mddev * mddev, void __user * arg)
5594 {
5595         mdu_array_info_t info;
5596         int nr,working,insync,failed,spare;
5597         struct md_rdev *rdev;
5598
5599         nr = working = insync = failed = spare = 0;
5600         rcu_read_lock();
5601         rdev_for_each_rcu(rdev, mddev) {
5602                 nr++;
5603                 if (test_bit(Faulty, &rdev->flags))
5604                         failed++;
5605                 else {
5606                         working++;
5607                         if (test_bit(In_sync, &rdev->flags))
5608                                 insync++;       
5609                         else
5610                                 spare++;
5611                 }
5612         }
5613         rcu_read_unlock();
5614
5615         info.major_version = mddev->major_version;
5616         info.minor_version = mddev->minor_version;
5617         info.patch_version = MD_PATCHLEVEL_VERSION;
5618         info.ctime         = mddev->ctime;
5619         info.level         = mddev->level;
5620         info.size          = mddev->dev_sectors / 2;
5621         if (info.size != mddev->dev_sectors / 2) /* overflow */
5622                 info.size = -1;
5623         info.nr_disks      = nr;
5624         info.raid_disks    = mddev->raid_disks;
5625         info.md_minor      = mddev->md_minor;
5626         info.not_persistent= !mddev->persistent;
5627
5628         info.utime         = mddev->utime;
5629         info.state         = 0;
5630         if (mddev->in_sync)
5631                 info.state = (1<<MD_SB_CLEAN);
5632         if (mddev->bitmap && mddev->bitmap_info.offset)
5633                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5634         info.active_disks  = insync;
5635         info.working_disks = working;
5636         info.failed_disks  = failed;
5637         info.spare_disks   = spare;
5638
5639         info.layout        = mddev->layout;
5640         info.chunk_size    = mddev->chunk_sectors << 9;
5641
5642         if (copy_to_user(arg, &info, sizeof(info)))
5643                 return -EFAULT;
5644
5645         return 0;
5646 }
5647
5648 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5649 {
5650         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5651         char *ptr, *buf = NULL;
5652         int err = -ENOMEM;
5653
5654         file = kmalloc(sizeof(*file), GFP_NOIO);
5655
5656         if (!file)
5657                 goto out;
5658
5659         /* bitmap disabled, zero the first byte and copy out */
5660         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5661                 file->pathname[0] = '\0';
5662                 goto copy_out;
5663         }
5664
5665         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5666         if (!buf)
5667                 goto out;
5668
5669         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5670                      buf, sizeof(file->pathname));
5671         if (IS_ERR(ptr))
5672                 goto out;
5673
5674         strcpy(file->pathname, ptr);
5675
5676 copy_out:
5677         err = 0;
5678         if (copy_to_user(arg, file, sizeof(*file)))
5679                 err = -EFAULT;
5680 out:
5681         kfree(buf);
5682         kfree(file);
5683         return err;
5684 }
5685
5686 static int get_disk_info(struct mddev * mddev, void __user * arg)
5687 {
5688         mdu_disk_info_t info;
5689         struct md_rdev *rdev;
5690
5691         if (copy_from_user(&info, arg, sizeof(info)))
5692                 return -EFAULT;
5693
5694         rcu_read_lock();
5695         rdev = find_rdev_nr_rcu(mddev, info.number);
5696         if (rdev) {
5697                 info.major = MAJOR(rdev->bdev->bd_dev);
5698                 info.minor = MINOR(rdev->bdev->bd_dev);
5699                 info.raid_disk = rdev->raid_disk;
5700                 info.state = 0;
5701                 if (test_bit(Faulty, &rdev->flags))
5702                         info.state |= (1<<MD_DISK_FAULTY);
5703                 else if (test_bit(In_sync, &rdev->flags)) {
5704                         info.state |= (1<<MD_DISK_ACTIVE);
5705                         info.state |= (1<<MD_DISK_SYNC);
5706                 }
5707                 if (test_bit(WriteMostly, &rdev->flags))
5708                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5709         } else {
5710                 info.major = info.minor = 0;
5711                 info.raid_disk = -1;
5712                 info.state = (1<<MD_DISK_REMOVED);
5713         }
5714         rcu_read_unlock();
5715
5716         if (copy_to_user(arg, &info, sizeof(info)))
5717                 return -EFAULT;
5718
5719         return 0;
5720 }
5721
5722 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5723 {
5724         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5725         struct md_rdev *rdev;
5726         dev_t dev = MKDEV(info->major,info->minor);
5727
5728         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5729                 return -EOVERFLOW;
5730
5731         if (!mddev->raid_disks) {
5732                 int err;
5733                 /* expecting a device which has a superblock */
5734                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5735                 if (IS_ERR(rdev)) {
5736                         printk(KERN_WARNING 
5737                                 "md: md_import_device returned %ld\n",
5738                                 PTR_ERR(rdev));
5739                         return PTR_ERR(rdev);
5740                 }
5741                 if (!list_empty(&mddev->disks)) {
5742                         struct md_rdev *rdev0
5743                                 = list_entry(mddev->disks.next,
5744                                              struct md_rdev, same_set);
5745                         err = super_types[mddev->major_version]
5746                                 .load_super(rdev, rdev0, mddev->minor_version);
5747                         if (err < 0) {
5748                                 printk(KERN_WARNING 
5749                                         "md: %s has different UUID to %s\n",
5750                                         bdevname(rdev->bdev,b), 
5751                                         bdevname(rdev0->bdev,b2));
5752                                 export_rdev(rdev);
5753                                 return -EINVAL;
5754                         }
5755                 }
5756                 err = bind_rdev_to_array(rdev, mddev);
5757                 if (err)
5758                         export_rdev(rdev);
5759                 return err;
5760         }
5761
5762         /*
5763          * add_new_disk can be used once the array is assembled
5764          * to add "hot spares".  They must already have a superblock
5765          * written
5766          */
5767         if (mddev->pers) {
5768                 int err;
5769                 if (!mddev->pers->hot_add_disk) {
5770                         printk(KERN_WARNING 
5771                                 "%s: personality does not support diskops!\n",
5772                                mdname(mddev));
5773                         return -EINVAL;
5774                 }
5775                 if (mddev->persistent)
5776                         rdev = md_import_device(dev, mddev->major_version,
5777                                                 mddev->minor_version);
5778                 else
5779                         rdev = md_import_device(dev, -1, -1);
5780                 if (IS_ERR(rdev)) {
5781                         printk(KERN_WARNING 
5782                                 "md: md_import_device returned %ld\n",
5783                                 PTR_ERR(rdev));
5784                         return PTR_ERR(rdev);
5785                 }
5786                 /* set saved_raid_disk if appropriate */
5787                 if (!mddev->persistent) {
5788                         if (info->state & (1<<MD_DISK_SYNC)  &&
5789                             info->raid_disk < mddev->raid_disks) {
5790                                 rdev->raid_disk = info->raid_disk;
5791                                 set_bit(In_sync, &rdev->flags);
5792                                 clear_bit(Bitmap_sync, &rdev->flags);
5793                         } else
5794                                 rdev->raid_disk = -1;
5795                         rdev->saved_raid_disk = rdev->raid_disk;
5796                 } else
5797                         super_types[mddev->major_version].
5798                                 validate_super(mddev, rdev);
5799                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5800                      rdev->raid_disk != info->raid_disk) {
5801                         /* This was a hot-add request, but events doesn't
5802                          * match, so reject it.
5803                          */
5804                         export_rdev(rdev);
5805                         return -EINVAL;
5806                 }
5807
5808                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5809                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5810                         set_bit(WriteMostly, &rdev->flags);
5811                 else
5812                         clear_bit(WriteMostly, &rdev->flags);
5813
5814                 rdev->raid_disk = -1;
5815                 err = bind_rdev_to_array(rdev, mddev);
5816                 if (!err && !mddev->pers->hot_remove_disk) {
5817                         /* If there is hot_add_disk but no hot_remove_disk
5818                          * then added disks for geometry changes,
5819                          * and should be added immediately.
5820                          */
5821                         super_types[mddev->major_version].
5822                                 validate_super(mddev, rdev);
5823                         err = mddev->pers->hot_add_disk(mddev, rdev);
5824                         if (err)
5825                                 unbind_rdev_from_array(rdev);
5826                 }
5827                 if (err)
5828                         export_rdev(rdev);
5829                 else
5830                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5831
5832                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5833                 if (mddev->degraded)
5834                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5835                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5836                 if (!err)
5837                         md_new_event(mddev);
5838                 md_wakeup_thread(mddev->thread);
5839                 return err;
5840         }
5841
5842         /* otherwise, add_new_disk is only allowed
5843          * for major_version==0 superblocks
5844          */
5845         if (mddev->major_version != 0) {
5846                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5847                        mdname(mddev));
5848                 return -EINVAL;
5849         }
5850
5851         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5852                 int err;
5853                 rdev = md_import_device(dev, -1, 0);
5854                 if (IS_ERR(rdev)) {
5855                         printk(KERN_WARNING 
5856                                 "md: error, md_import_device() returned %ld\n",
5857                                 PTR_ERR(rdev));
5858                         return PTR_ERR(rdev);
5859                 }
5860                 rdev->desc_nr = info->number;
5861                 if (info->raid_disk < mddev->raid_disks)
5862                         rdev->raid_disk = info->raid_disk;
5863                 else
5864                         rdev->raid_disk = -1;
5865
5866                 if (rdev->raid_disk < mddev->raid_disks)
5867                         if (info->state & (1<<MD_DISK_SYNC))
5868                                 set_bit(In_sync, &rdev->flags);
5869
5870                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5871                         set_bit(WriteMostly, &rdev->flags);
5872
5873                 if (!mddev->persistent) {
5874                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5875                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5876                 } else
5877                         rdev->sb_start = calc_dev_sboffset(rdev);
5878                 rdev->sectors = rdev->sb_start;
5879
5880                 err = bind_rdev_to_array(rdev, mddev);
5881                 if (err) {
5882                         export_rdev(rdev);
5883                         return err;
5884                 }
5885         }
5886
5887         return 0;
5888 }
5889
5890 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5891 {
5892         char b[BDEVNAME_SIZE];
5893         struct md_rdev *rdev;
5894
5895         rdev = find_rdev(mddev, dev);
5896         if (!rdev)
5897                 return -ENXIO;
5898
5899         clear_bit(Blocked, &rdev->flags);
5900         remove_and_add_spares(mddev, rdev);
5901
5902         if (rdev->raid_disk >= 0)
5903                 goto busy;
5904
5905         kick_rdev_from_array(rdev);
5906         md_update_sb(mddev, 1);
5907         md_new_event(mddev);
5908
5909         return 0;
5910 busy:
5911         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5912                 bdevname(rdev->bdev,b), mdname(mddev));
5913         return -EBUSY;
5914 }
5915
5916 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5917 {
5918         char b[BDEVNAME_SIZE];
5919         int err;
5920         struct md_rdev *rdev;
5921
5922         if (!mddev->pers)
5923                 return -ENODEV;
5924
5925         if (mddev->major_version != 0) {
5926                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5927                         " version-0 superblocks.\n",
5928                         mdname(mddev));
5929                 return -EINVAL;
5930         }
5931         if (!mddev->pers->hot_add_disk) {
5932                 printk(KERN_WARNING 
5933                         "%s: personality does not support diskops!\n",
5934                         mdname(mddev));
5935                 return -EINVAL;
5936         }
5937
5938         rdev = md_import_device(dev, -1, 0);
5939         if (IS_ERR(rdev)) {
5940                 printk(KERN_WARNING 
5941                         "md: error, md_import_device() returned %ld\n",
5942                         PTR_ERR(rdev));
5943                 return -EINVAL;
5944         }
5945
5946         if (mddev->persistent)
5947                 rdev->sb_start = calc_dev_sboffset(rdev);
5948         else
5949                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5950
5951         rdev->sectors = rdev->sb_start;
5952
5953         if (test_bit(Faulty, &rdev->flags)) {
5954                 printk(KERN_WARNING 
5955                         "md: can not hot-add faulty %s disk to %s!\n",
5956                         bdevname(rdev->bdev,b), mdname(mddev));
5957                 err = -EINVAL;
5958                 goto abort_export;
5959         }
5960         clear_bit(In_sync, &rdev->flags);
5961         rdev->desc_nr = -1;
5962         rdev->saved_raid_disk = -1;
5963         err = bind_rdev_to_array(rdev, mddev);
5964         if (err)
5965                 goto abort_export;
5966
5967         /*
5968          * The rest should better be atomic, we can have disk failures
5969          * noticed in interrupt contexts ...
5970          */
5971
5972         rdev->raid_disk = -1;
5973
5974         md_update_sb(mddev, 1);
5975
5976         /*
5977          * Kick recovery, maybe this spare has to be added to the
5978          * array immediately.
5979          */
5980         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5981         md_wakeup_thread(mddev->thread);
5982         md_new_event(mddev);
5983         return 0;
5984
5985 abort_export:
5986         export_rdev(rdev);
5987         return err;
5988 }
5989
5990 static int set_bitmap_file(struct mddev *mddev, int fd)
5991 {
5992         int err;
5993
5994         if (mddev->pers) {
5995                 if (!mddev->pers->quiesce)
5996                         return -EBUSY;
5997                 if (mddev->recovery || mddev->sync_thread)
5998                         return -EBUSY;
5999                 /* we should be able to change the bitmap.. */
6000         }
6001
6002
6003         if (fd >= 0) {
6004                 if (mddev->bitmap)
6005                         return -EEXIST; /* cannot add when bitmap is present */
6006                 mddev->bitmap_info.file = fget(fd);
6007
6008                 if (mddev->bitmap_info.file == NULL) {
6009                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6010                                mdname(mddev));
6011                         return -EBADF;
6012                 }
6013
6014                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6015                 if (err) {
6016                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6017                                mdname(mddev));
6018                         fput(mddev->bitmap_info.file);
6019                         mddev->bitmap_info.file = NULL;
6020                         return err;
6021                 }
6022                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6023         } else if (mddev->bitmap == NULL)
6024                 return -ENOENT; /* cannot remove what isn't there */
6025         err = 0;
6026         if (mddev->pers) {
6027                 mddev->pers->quiesce(mddev, 1);
6028                 if (fd >= 0) {
6029                         err = bitmap_create(mddev);
6030                         if (!err)
6031                                 err = bitmap_load(mddev);
6032                 }
6033                 if (fd < 0 || err) {
6034                         bitmap_destroy(mddev);
6035                         fd = -1; /* make sure to put the file */
6036                 }
6037                 mddev->pers->quiesce(mddev, 0);
6038         }
6039         if (fd < 0) {
6040                 if (mddev->bitmap_info.file) {
6041                         restore_bitmap_write_access(mddev->bitmap_info.file);
6042                         fput(mddev->bitmap_info.file);
6043                 }
6044                 mddev->bitmap_info.file = NULL;
6045         }
6046
6047         return err;
6048 }
6049
6050 /*
6051  * set_array_info is used two different ways
6052  * The original usage is when creating a new array.
6053  * In this usage, raid_disks is > 0 and it together with
6054  *  level, size, not_persistent,layout,chunksize determine the
6055  *  shape of the array.
6056  *  This will always create an array with a type-0.90.0 superblock.
6057  * The newer usage is when assembling an array.
6058  *  In this case raid_disks will be 0, and the major_version field is
6059  *  use to determine which style super-blocks are to be found on the devices.
6060  *  The minor and patch _version numbers are also kept incase the
6061  *  super_block handler wishes to interpret them.
6062  */
6063 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6064 {
6065
6066         if (info->raid_disks == 0) {
6067                 /* just setting version number for superblock loading */
6068                 if (info->major_version < 0 ||
6069                     info->major_version >= ARRAY_SIZE(super_types) ||
6070                     super_types[info->major_version].name == NULL) {
6071                         /* maybe try to auto-load a module? */
6072                         printk(KERN_INFO 
6073                                 "md: superblock version %d not known\n",
6074                                 info->major_version);
6075                         return -EINVAL;
6076                 }
6077                 mddev->major_version = info->major_version;
6078                 mddev->minor_version = info->minor_version;
6079                 mddev->patch_version = info->patch_version;
6080                 mddev->persistent = !info->not_persistent;
6081                 /* ensure mddev_put doesn't delete this now that there
6082                  * is some minimal configuration.
6083                  */
6084                 mddev->ctime         = get_seconds();
6085                 return 0;
6086         }
6087         mddev->major_version = MD_MAJOR_VERSION;
6088         mddev->minor_version = MD_MINOR_VERSION;
6089         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6090         mddev->ctime         = get_seconds();
6091
6092         mddev->level         = info->level;
6093         mddev->clevel[0]     = 0;
6094         mddev->dev_sectors   = 2 * (sector_t)info->size;
6095         mddev->raid_disks    = info->raid_disks;
6096         /* don't set md_minor, it is determined by which /dev/md* was
6097          * openned
6098          */
6099         if (info->state & (1<<MD_SB_CLEAN))
6100                 mddev->recovery_cp = MaxSector;
6101         else
6102                 mddev->recovery_cp = 0;
6103         mddev->persistent    = ! info->not_persistent;
6104         mddev->external      = 0;
6105
6106         mddev->layout        = info->layout;
6107         mddev->chunk_sectors = info->chunk_size >> 9;
6108
6109         mddev->max_disks     = MD_SB_DISKS;
6110
6111         if (mddev->persistent)
6112                 mddev->flags         = 0;
6113         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6114
6115         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6116         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6117         mddev->bitmap_info.offset = 0;
6118
6119         mddev->reshape_position = MaxSector;
6120
6121         /*
6122          * Generate a 128 bit UUID
6123          */
6124         get_random_bytes(mddev->uuid, 16);
6125
6126         mddev->new_level = mddev->level;
6127         mddev->new_chunk_sectors = mddev->chunk_sectors;
6128         mddev->new_layout = mddev->layout;
6129         mddev->delta_disks = 0;
6130         mddev->reshape_backwards = 0;
6131
6132         return 0;
6133 }
6134
6135 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6136 {
6137         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6138
6139         if (mddev->external_size)
6140                 return;
6141
6142         mddev->array_sectors = array_sectors;
6143 }
6144 EXPORT_SYMBOL(md_set_array_sectors);
6145
6146 static int update_size(struct mddev *mddev, sector_t num_sectors)
6147 {
6148         struct md_rdev *rdev;
6149         int rv;
6150         int fit = (num_sectors == 0);
6151
6152         if (mddev->pers->resize == NULL)
6153                 return -EINVAL;
6154         /* The "num_sectors" is the number of sectors of each device that
6155          * is used.  This can only make sense for arrays with redundancy.
6156          * linear and raid0 always use whatever space is available. We can only
6157          * consider changing this number if no resync or reconstruction is
6158          * happening, and if the new size is acceptable. It must fit before the
6159          * sb_start or, if that is <data_offset, it must fit before the size
6160          * of each device.  If num_sectors is zero, we find the largest size
6161          * that fits.
6162          */
6163         if (mddev->sync_thread)
6164                 return -EBUSY;
6165
6166         rdev_for_each(rdev, mddev) {
6167                 sector_t avail = rdev->sectors;
6168
6169                 if (fit && (num_sectors == 0 || num_sectors > avail))
6170                         num_sectors = avail;
6171                 if (avail < num_sectors)
6172                         return -ENOSPC;
6173         }
6174         rv = mddev->pers->resize(mddev, num_sectors);
6175         if (!rv)
6176                 revalidate_disk(mddev->gendisk);
6177         return rv;
6178 }
6179
6180 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6181 {
6182         int rv;
6183         struct md_rdev *rdev;
6184         /* change the number of raid disks */
6185         if (mddev->pers->check_reshape == NULL)
6186                 return -EINVAL;
6187         if (raid_disks <= 0 ||
6188             (mddev->max_disks && raid_disks >= mddev->max_disks))
6189                 return -EINVAL;
6190         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6191                 return -EBUSY;
6192
6193         rdev_for_each(rdev, mddev) {
6194                 if (mddev->raid_disks < raid_disks &&
6195                     rdev->data_offset < rdev->new_data_offset)
6196                         return -EINVAL;
6197                 if (mddev->raid_disks > raid_disks &&
6198                     rdev->data_offset > rdev->new_data_offset)
6199                         return -EINVAL;
6200         }
6201
6202         mddev->delta_disks = raid_disks - mddev->raid_disks;
6203         if (mddev->delta_disks < 0)
6204                 mddev->reshape_backwards = 1;
6205         else if (mddev->delta_disks > 0)
6206                 mddev->reshape_backwards = 0;
6207
6208         rv = mddev->pers->check_reshape(mddev);
6209         if (rv < 0) {
6210                 mddev->delta_disks = 0;
6211                 mddev->reshape_backwards = 0;
6212         }
6213         return rv;
6214 }
6215
6216
6217 /*
6218  * update_array_info is used to change the configuration of an
6219  * on-line array.
6220  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6221  * fields in the info are checked against the array.
6222  * Any differences that cannot be handled will cause an error.
6223  * Normally, only one change can be managed at a time.
6224  */
6225 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6226 {
6227         int rv = 0;
6228         int cnt = 0;
6229         int state = 0;
6230
6231         /* calculate expected state,ignoring low bits */
6232         if (mddev->bitmap && mddev->bitmap_info.offset)
6233                 state |= (1 << MD_SB_BITMAP_PRESENT);
6234
6235         if (mddev->major_version != info->major_version ||
6236             mddev->minor_version != info->minor_version ||
6237 /*          mddev->patch_version != info->patch_version || */
6238             mddev->ctime         != info->ctime         ||
6239             mddev->level         != info->level         ||
6240 /*          mddev->layout        != info->layout        || */
6241             !mddev->persistent   != info->not_persistent||
6242             mddev->chunk_sectors != info->chunk_size >> 9 ||
6243             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6244             ((state^info->state) & 0xfffffe00)
6245                 )
6246                 return -EINVAL;
6247         /* Check there is only one change */
6248         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6249                 cnt++;
6250         if (mddev->raid_disks != info->raid_disks)
6251                 cnt++;
6252         if (mddev->layout != info->layout)
6253                 cnt++;
6254         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6255                 cnt++;
6256         if (cnt == 0)
6257                 return 0;
6258         if (cnt > 1)
6259                 return -EINVAL;
6260
6261         if (mddev->layout != info->layout) {
6262                 /* Change layout
6263                  * we don't need to do anything at the md level, the
6264                  * personality will take care of it all.
6265                  */
6266                 if (mddev->pers->check_reshape == NULL)
6267                         return -EINVAL;
6268                 else {
6269                         mddev->new_layout = info->layout;
6270                         rv = mddev->pers->check_reshape(mddev);
6271                         if (rv)
6272                                 mddev->new_layout = mddev->layout;
6273                         return rv;
6274                 }
6275         }
6276         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6277                 rv = update_size(mddev, (sector_t)info->size * 2);
6278
6279         if (mddev->raid_disks    != info->raid_disks)
6280                 rv = update_raid_disks(mddev, info->raid_disks);
6281
6282         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6283                 if (mddev->pers->quiesce == NULL)
6284                         return -EINVAL;
6285                 if (mddev->recovery || mddev->sync_thread)
6286                         return -EBUSY;
6287                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6288                         /* add the bitmap */
6289                         if (mddev->bitmap)
6290                                 return -EEXIST;
6291                         if (mddev->bitmap_info.default_offset == 0)
6292                                 return -EINVAL;
6293                         mddev->bitmap_info.offset =
6294                                 mddev->bitmap_info.default_offset;
6295                         mddev->bitmap_info.space =
6296                                 mddev->bitmap_info.default_space;
6297                         mddev->pers->quiesce(mddev, 1);
6298                         rv = bitmap_create(mddev);
6299                         if (!rv)
6300                                 rv = bitmap_load(mddev);
6301                         if (rv)
6302                                 bitmap_destroy(mddev);
6303                         mddev->pers->quiesce(mddev, 0);
6304                 } else {
6305                         /* remove the bitmap */
6306                         if (!mddev->bitmap)
6307                                 return -ENOENT;
6308                         if (mddev->bitmap->storage.file)
6309                                 return -EINVAL;
6310                         mddev->pers->quiesce(mddev, 1);
6311                         bitmap_destroy(mddev);
6312                         mddev->pers->quiesce(mddev, 0);
6313                         mddev->bitmap_info.offset = 0;
6314                 }
6315         }
6316         md_update_sb(mddev, 1);
6317         return rv;
6318 }
6319
6320 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6321 {
6322         struct md_rdev *rdev;
6323         int err = 0;
6324
6325         if (mddev->pers == NULL)
6326                 return -ENODEV;
6327
6328         rcu_read_lock();
6329         rdev = find_rdev_rcu(mddev, dev);
6330         if (!rdev)
6331                 err =  -ENODEV;
6332         else {
6333                 md_error(mddev, rdev);
6334                 if (!test_bit(Faulty, &rdev->flags))
6335                         err = -EBUSY;
6336         }
6337         rcu_read_unlock();
6338         return err;
6339 }
6340
6341 /*
6342  * We have a problem here : there is no easy way to give a CHS
6343  * virtual geometry. We currently pretend that we have a 2 heads
6344  * 4 sectors (with a BIG number of cylinders...). This drives
6345  * dosfs just mad... ;-)
6346  */
6347 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6348 {
6349         struct mddev *mddev = bdev->bd_disk->private_data;
6350
6351         geo->heads = 2;
6352         geo->sectors = 4;
6353         geo->cylinders = mddev->array_sectors / 8;
6354         return 0;
6355 }
6356
6357 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6358                         unsigned int cmd, unsigned long arg)
6359 {
6360         int err = 0;
6361         void __user *argp = (void __user *)arg;
6362         struct mddev *mddev = NULL;
6363         int ro;
6364
6365         switch (cmd) {
6366         case RAID_VERSION:
6367         case GET_ARRAY_INFO:
6368         case GET_DISK_INFO:
6369                 break;
6370         default:
6371                 if (!capable(CAP_SYS_ADMIN))
6372                         return -EACCES;
6373         }
6374
6375         /*
6376          * Commands dealing with the RAID driver but not any
6377          * particular array:
6378          */
6379         switch (cmd) {
6380         case RAID_VERSION:
6381                 err = get_version(argp);
6382                 goto done;
6383
6384         case PRINT_RAID_DEBUG:
6385                 err = 0;
6386                 md_print_devices();
6387                 goto done;
6388
6389 #ifndef MODULE
6390         case RAID_AUTORUN:
6391                 err = 0;
6392                 autostart_arrays(arg);
6393                 goto done;
6394 #endif
6395         default:;
6396         }
6397
6398         /*
6399          * Commands creating/starting a new array:
6400          */
6401
6402         mddev = bdev->bd_disk->private_data;
6403
6404         if (!mddev) {
6405                 BUG();
6406                 goto abort;
6407         }
6408
6409         /* Some actions do not requires the mutex */
6410         switch (cmd) {
6411         case GET_ARRAY_INFO:
6412                 if (!mddev->raid_disks && !mddev->external)
6413                         err = -ENODEV;
6414                 else
6415                         err = get_array_info(mddev, argp);
6416                 goto abort;
6417
6418         case GET_DISK_INFO:
6419                 if (!mddev->raid_disks && !mddev->external)
6420                         err = -ENODEV;
6421                 else
6422                         err = get_disk_info(mddev, argp);
6423                 goto abort;
6424
6425         case SET_DISK_FAULTY:
6426                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6427                 goto abort;
6428         }
6429
6430         if (cmd == ADD_NEW_DISK)
6431                 /* need to ensure md_delayed_delete() has completed */
6432                 flush_workqueue(md_misc_wq);
6433
6434         if (cmd == HOT_REMOVE_DISK)
6435                 /* need to ensure recovery thread has run */
6436                 wait_event_interruptible_timeout(mddev->sb_wait,
6437                                                  !test_bit(MD_RECOVERY_NEEDED,
6438                                                            &mddev->flags),
6439                                                  msecs_to_jiffies(5000));
6440         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6441                 /* Need to flush page cache, and ensure no-one else opens
6442                  * and writes
6443                  */
6444                 mutex_lock(&mddev->open_mutex);
6445                 if (atomic_read(&mddev->openers) > 1) {
6446                         mutex_unlock(&mddev->open_mutex);
6447                         err = -EBUSY;
6448                         goto abort;
6449                 }
6450                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6451                 mutex_unlock(&mddev->open_mutex);
6452                 sync_blockdev(bdev);
6453         }
6454         err = mddev_lock(mddev);
6455         if (err) {
6456                 printk(KERN_INFO 
6457                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6458                         err, cmd);
6459                 goto abort;
6460         }
6461
6462         if (cmd == SET_ARRAY_INFO) {
6463                 mdu_array_info_t info;
6464                 if (!arg)
6465                         memset(&info, 0, sizeof(info));
6466                 else if (copy_from_user(&info, argp, sizeof(info))) {
6467                         err = -EFAULT;
6468                         goto abort_unlock;
6469                 }
6470                 if (mddev->pers) {
6471                         err = update_array_info(mddev, &info);
6472                         if (err) {
6473                                 printk(KERN_WARNING "md: couldn't update"
6474                                        " array info. %d\n", err);
6475                                 goto abort_unlock;
6476                         }
6477                         goto done_unlock;
6478                 }
6479                 if (!list_empty(&mddev->disks)) {
6480                         printk(KERN_WARNING
6481                                "md: array %s already has disks!\n",
6482                                mdname(mddev));
6483                         err = -EBUSY;
6484                         goto abort_unlock;
6485                 }
6486                 if (mddev->raid_disks) {
6487                         printk(KERN_WARNING
6488                                "md: array %s already initialised!\n",
6489                                mdname(mddev));
6490                         err = -EBUSY;
6491                         goto abort_unlock;
6492                 }
6493                 err = set_array_info(mddev, &info);
6494                 if (err) {
6495                         printk(KERN_WARNING "md: couldn't set"
6496                                " array info. %d\n", err);
6497                         goto abort_unlock;
6498                 }
6499                 goto done_unlock;
6500         }
6501
6502         /*
6503          * Commands querying/configuring an existing array:
6504          */
6505         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6506          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6507         if ((!mddev->raid_disks && !mddev->external)
6508             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6509             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6510             && cmd != GET_BITMAP_FILE) {
6511                 err = -ENODEV;
6512                 goto abort_unlock;
6513         }
6514
6515         /*
6516          * Commands even a read-only array can execute:
6517          */
6518         switch (cmd) {
6519         case GET_BITMAP_FILE:
6520                 err = get_bitmap_file(mddev, argp);
6521                 goto done_unlock;
6522
6523         case RESTART_ARRAY_RW:
6524                 err = restart_array(mddev);
6525                 goto done_unlock;
6526
6527         case STOP_ARRAY:
6528                 err = do_md_stop(mddev, 0, bdev);
6529                 goto done_unlock;
6530
6531         case STOP_ARRAY_RO:
6532                 err = md_set_readonly(mddev, bdev);
6533                 goto done_unlock;
6534
6535         case HOT_REMOVE_DISK:
6536                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6537                 goto done_unlock;
6538
6539         case ADD_NEW_DISK:
6540                 /* We can support ADD_NEW_DISK on read-only arrays
6541                  * on if we are re-adding a preexisting device.
6542                  * So require mddev->pers and MD_DISK_SYNC.
6543                  */
6544                 if (mddev->pers) {
6545                         mdu_disk_info_t info;
6546                         if (copy_from_user(&info, argp, sizeof(info)))
6547                                 err = -EFAULT;
6548                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6549                                 /* Need to clear read-only for this */
6550                                 break;
6551                         else
6552                                 err = add_new_disk(mddev, &info);
6553                         goto done_unlock;
6554                 }
6555                 break;
6556
6557         case BLKROSET:
6558                 if (get_user(ro, (int __user *)(arg))) {
6559                         err = -EFAULT;
6560                         goto done_unlock;
6561                 }
6562                 err = -EINVAL;
6563
6564                 /* if the bdev is going readonly the value of mddev->ro
6565                  * does not matter, no writes are coming
6566                  */
6567                 if (ro)
6568                         goto done_unlock;
6569
6570                 /* are we are already prepared for writes? */
6571                 if (mddev->ro != 1)
6572                         goto done_unlock;
6573
6574                 /* transitioning to readauto need only happen for
6575                  * arrays that call md_write_start
6576                  */
6577                 if (mddev->pers) {
6578                         err = restart_array(mddev);
6579                         if (err == 0) {
6580                                 mddev->ro = 2;
6581                                 set_disk_ro(mddev->gendisk, 0);
6582                         }
6583                 }
6584                 goto done_unlock;
6585         }
6586
6587         /*
6588          * The remaining ioctls are changing the state of the
6589          * superblock, so we do not allow them on read-only arrays.
6590          * However non-MD ioctls (e.g. get-size) will still come through
6591          * here and hit the 'default' below, so only disallow
6592          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6593          */
6594         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6595                 if (mddev->ro == 2) {
6596                         mddev->ro = 0;
6597                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6598                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6599                         /* mddev_unlock will wake thread */
6600                         /* If a device failed while we were read-only, we
6601                          * need to make sure the metadata is updated now.
6602                          */
6603                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6604                                 mddev_unlock(mddev);
6605                                 wait_event(mddev->sb_wait,
6606                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6607                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6608                                 mddev_lock_nointr(mddev);
6609                         }
6610                 } else {
6611                         err = -EROFS;
6612                         goto abort_unlock;
6613                 }
6614         }
6615
6616         switch (cmd) {
6617         case ADD_NEW_DISK:
6618         {
6619                 mdu_disk_info_t info;
6620                 if (copy_from_user(&info, argp, sizeof(info)))
6621                         err = -EFAULT;
6622                 else
6623                         err = add_new_disk(mddev, &info);
6624                 goto done_unlock;
6625         }
6626
6627         case HOT_ADD_DISK:
6628                 err = hot_add_disk(mddev, new_decode_dev(arg));
6629                 goto done_unlock;
6630
6631         case RUN_ARRAY:
6632                 err = do_md_run(mddev);
6633                 goto done_unlock;
6634
6635         case SET_BITMAP_FILE:
6636                 err = set_bitmap_file(mddev, (int)arg);
6637                 goto done_unlock;
6638
6639         default:
6640                 err = -EINVAL;
6641                 goto abort_unlock;
6642         }
6643
6644 done_unlock:
6645 abort_unlock:
6646         if (mddev->hold_active == UNTIL_IOCTL &&
6647             err != -EINVAL)
6648                 mddev->hold_active = 0;
6649         mddev_unlock(mddev);
6650
6651         return err;
6652 done:
6653         if (err)
6654                 MD_BUG();
6655 abort:
6656         return err;
6657 }
6658 #ifdef CONFIG_COMPAT
6659 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6660                     unsigned int cmd, unsigned long arg)
6661 {
6662         switch (cmd) {
6663         case HOT_REMOVE_DISK:
6664         case HOT_ADD_DISK:
6665         case SET_DISK_FAULTY:
6666         case SET_BITMAP_FILE:
6667                 /* These take in integer arg, do not convert */
6668                 break;
6669         default:
6670                 arg = (unsigned long)compat_ptr(arg);
6671                 break;
6672         }
6673
6674         return md_ioctl(bdev, mode, cmd, arg);
6675 }
6676 #endif /* CONFIG_COMPAT */
6677
6678 static int md_open(struct block_device *bdev, fmode_t mode)
6679 {
6680         /*
6681          * Succeed if we can lock the mddev, which confirms that
6682          * it isn't being stopped right now.
6683          */
6684         struct mddev *mddev = mddev_find(bdev->bd_dev);
6685         int err;
6686
6687         if (!mddev)
6688                 return -ENODEV;
6689
6690         if (mddev->gendisk != bdev->bd_disk) {
6691                 /* we are racing with mddev_put which is discarding this
6692                  * bd_disk.
6693                  */
6694                 mddev_put(mddev);
6695                 /* Wait until bdev->bd_disk is definitely gone */
6696                 flush_workqueue(md_misc_wq);
6697                 /* Then retry the open from the top */
6698                 return -ERESTARTSYS;
6699         }
6700         BUG_ON(mddev != bdev->bd_disk->private_data);
6701
6702         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6703                 goto out;
6704
6705         err = 0;
6706         atomic_inc(&mddev->openers);
6707         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6708         mutex_unlock(&mddev->open_mutex);
6709
6710         check_disk_change(bdev);
6711  out:
6712         return err;
6713 }
6714
6715 static void md_release(struct gendisk *disk, fmode_t mode)
6716 {
6717         struct mddev *mddev = disk->private_data;
6718
6719         BUG_ON(!mddev);
6720         atomic_dec(&mddev->openers);
6721         mddev_put(mddev);
6722 }
6723
6724 static int md_media_changed(struct gendisk *disk)
6725 {
6726         struct mddev *mddev = disk->private_data;
6727
6728         return mddev->changed;
6729 }
6730
6731 static int md_revalidate(struct gendisk *disk)
6732 {
6733         struct mddev *mddev = disk->private_data;
6734
6735         mddev->changed = 0;
6736         return 0;
6737 }
6738 static const struct block_device_operations md_fops =
6739 {
6740         .owner          = THIS_MODULE,
6741         .open           = md_open,
6742         .release        = md_release,
6743         .ioctl          = md_ioctl,
6744 #ifdef CONFIG_COMPAT
6745         .compat_ioctl   = md_compat_ioctl,
6746 #endif
6747         .getgeo         = md_getgeo,
6748         .media_changed  = md_media_changed,
6749         .revalidate_disk= md_revalidate,
6750 };
6751
6752 static int md_thread(void * arg)
6753 {
6754         struct md_thread *thread = arg;
6755
6756         /*
6757          * md_thread is a 'system-thread', it's priority should be very
6758          * high. We avoid resource deadlocks individually in each
6759          * raid personality. (RAID5 does preallocation) We also use RR and
6760          * the very same RT priority as kswapd, thus we will never get
6761          * into a priority inversion deadlock.
6762          *
6763          * we definitely have to have equal or higher priority than
6764          * bdflush, otherwise bdflush will deadlock if there are too
6765          * many dirty RAID5 blocks.
6766          */
6767
6768         allow_signal(SIGKILL);
6769         while (!kthread_should_stop()) {
6770
6771                 /* We need to wait INTERRUPTIBLE so that
6772                  * we don't add to the load-average.
6773                  * That means we need to be sure no signals are
6774                  * pending
6775                  */
6776                 if (signal_pending(current))
6777                         flush_signals(current);
6778
6779                 wait_event_interruptible_timeout
6780                         (thread->wqueue,
6781                          test_bit(THREAD_WAKEUP, &thread->flags)
6782                          || kthread_should_stop(),
6783                          thread->timeout);
6784
6785                 clear_bit(THREAD_WAKEUP, &thread->flags);
6786                 if (!kthread_should_stop())
6787                         thread->run(thread);
6788         }
6789
6790         return 0;
6791 }
6792
6793 void md_wakeup_thread(struct md_thread *thread)
6794 {
6795         if (thread) {
6796                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6797                 set_bit(THREAD_WAKEUP, &thread->flags);
6798                 wake_up(&thread->wqueue);
6799         }
6800 }
6801
6802 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6803                 struct mddev *mddev, const char *name)
6804 {
6805         struct md_thread *thread;
6806
6807         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6808         if (!thread)
6809                 return NULL;
6810
6811         init_waitqueue_head(&thread->wqueue);
6812
6813         thread->run = run;
6814         thread->mddev = mddev;
6815         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6816         thread->tsk = kthread_run(md_thread, thread,
6817                                   "%s_%s",
6818                                   mdname(thread->mddev),
6819                                   name);
6820         if (IS_ERR(thread->tsk)) {
6821                 kfree(thread);
6822                 return NULL;
6823         }
6824         return thread;
6825 }
6826
6827 void md_unregister_thread(struct md_thread **threadp)
6828 {
6829         struct md_thread *thread = *threadp;
6830         if (!thread)
6831                 return;
6832         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6833         /* Locking ensures that mddev_unlock does not wake_up a
6834          * non-existent thread
6835          */
6836         spin_lock(&pers_lock);
6837         *threadp = NULL;
6838         spin_unlock(&pers_lock);
6839
6840         kthread_stop(thread->tsk);
6841         kfree(thread);
6842 }
6843
6844 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6845 {
6846         if (!mddev) {
6847                 MD_BUG();
6848                 return;
6849         }
6850
6851         if (!rdev || test_bit(Faulty, &rdev->flags))
6852                 return;
6853
6854         if (!mddev->pers || !mddev->pers->error_handler)
6855                 return;
6856         mddev->pers->error_handler(mddev,rdev);
6857         if (mddev->degraded)
6858                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6859         sysfs_notify_dirent_safe(rdev->sysfs_state);
6860         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6861         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6862         md_wakeup_thread(mddev->thread);
6863         if (mddev->event_work.func)
6864                 queue_work(md_misc_wq, &mddev->event_work);
6865         md_new_event_inintr(mddev);
6866 }
6867
6868 /* seq_file implementation /proc/mdstat */
6869
6870 static void status_unused(struct seq_file *seq)
6871 {
6872         int i = 0;
6873         struct md_rdev *rdev;
6874
6875         seq_printf(seq, "unused devices: ");
6876
6877         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6878                 char b[BDEVNAME_SIZE];
6879                 i++;
6880                 seq_printf(seq, "%s ",
6881                               bdevname(rdev->bdev,b));
6882         }
6883         if (!i)
6884                 seq_printf(seq, "<none>");
6885
6886         seq_printf(seq, "\n");
6887 }
6888
6889
6890 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6891 {
6892         sector_t max_sectors, resync, res;
6893         unsigned long dt, db;
6894         sector_t rt;
6895         int scale;
6896         unsigned int per_milli;
6897
6898         if (mddev->curr_resync <= 3)
6899                 resync = 0;
6900         else
6901                 resync = mddev->curr_resync
6902                         - atomic_read(&mddev->recovery_active);
6903
6904         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6905             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6906                 max_sectors = mddev->resync_max_sectors;
6907         else
6908                 max_sectors = mddev->dev_sectors;
6909
6910         /*
6911          * Should not happen.
6912          */
6913         if (!max_sectors) {
6914                 MD_BUG();
6915                 return;
6916         }
6917         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6918          * in a sector_t, and (max_sectors>>scale) will fit in a
6919          * u32, as those are the requirements for sector_div.
6920          * Thus 'scale' must be at least 10
6921          */
6922         scale = 10;
6923         if (sizeof(sector_t) > sizeof(unsigned long)) {
6924                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6925                         scale++;
6926         }
6927         res = (resync>>scale)*1000;
6928         sector_div(res, (u32)((max_sectors>>scale)+1));
6929
6930         per_milli = res;
6931         {
6932                 int i, x = per_milli/50, y = 20-x;
6933                 seq_printf(seq, "[");
6934                 for (i = 0; i < x; i++)
6935                         seq_printf(seq, "=");
6936                 seq_printf(seq, ">");
6937                 for (i = 0; i < y; i++)
6938                         seq_printf(seq, ".");
6939                 seq_printf(seq, "] ");
6940         }
6941         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6942                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6943                     "reshape" :
6944                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6945                      "check" :
6946                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6947                       "resync" : "recovery"))),
6948                    per_milli/10, per_milli % 10,
6949                    (unsigned long long) resync/2,
6950                    (unsigned long long) max_sectors/2);
6951
6952         /*
6953          * dt: time from mark until now
6954          * db: blocks written from mark until now
6955          * rt: remaining time
6956          *
6957          * rt is a sector_t, so could be 32bit or 64bit.
6958          * So we divide before multiply in case it is 32bit and close
6959          * to the limit.
6960          * We scale the divisor (db) by 32 to avoid losing precision
6961          * near the end of resync when the number of remaining sectors
6962          * is close to 'db'.
6963          * We then divide rt by 32 after multiplying by db to compensate.
6964          * The '+1' avoids division by zero if db is very small.
6965          */
6966         dt = ((jiffies - mddev->resync_mark) / HZ);
6967         if (!dt) dt++;
6968         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6969                 - mddev->resync_mark_cnt;
6970
6971         rt = max_sectors - resync;    /* number of remaining sectors */
6972         sector_div(rt, db/32+1);
6973         rt *= dt;
6974         rt >>= 5;
6975
6976         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6977                    ((unsigned long)rt % 60)/6);
6978
6979         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6980 }
6981
6982 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6983 {
6984         struct list_head *tmp;
6985         loff_t l = *pos;
6986         struct mddev *mddev;
6987
6988         if (l >= 0x10000)
6989                 return NULL;
6990         if (!l--)
6991                 /* header */
6992                 return (void*)1;
6993
6994         spin_lock(&all_mddevs_lock);
6995         list_for_each(tmp,&all_mddevs)
6996                 if (!l--) {
6997                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6998                         mddev_get(mddev);
6999                         spin_unlock(&all_mddevs_lock);
7000                         return mddev;
7001                 }
7002         spin_unlock(&all_mddevs_lock);
7003         if (!l--)
7004                 return (void*)2;/* tail */
7005         return NULL;
7006 }
7007
7008 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7009 {
7010         struct list_head *tmp;
7011         struct mddev *next_mddev, *mddev = v;
7012         
7013         ++*pos;
7014         if (v == (void*)2)
7015                 return NULL;
7016
7017         spin_lock(&all_mddevs_lock);
7018         if (v == (void*)1)
7019                 tmp = all_mddevs.next;
7020         else
7021                 tmp = mddev->all_mddevs.next;
7022         if (tmp != &all_mddevs)
7023                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7024         else {
7025                 next_mddev = (void*)2;
7026                 *pos = 0x10000;
7027         }               
7028         spin_unlock(&all_mddevs_lock);
7029
7030         if (v != (void*)1)
7031                 mddev_put(mddev);
7032         return next_mddev;
7033
7034 }
7035
7036 static void md_seq_stop(struct seq_file *seq, void *v)
7037 {
7038         struct mddev *mddev = v;
7039
7040         if (mddev && v != (void*)1 && v != (void*)2)
7041                 mddev_put(mddev);
7042 }
7043
7044 static int md_seq_show(struct seq_file *seq, void *v)
7045 {
7046         struct mddev *mddev = v;
7047         sector_t sectors;
7048         struct md_rdev *rdev;
7049
7050         if (v == (void*)1) {
7051                 struct md_personality *pers;
7052                 seq_printf(seq, "Personalities : ");
7053                 spin_lock(&pers_lock);
7054                 list_for_each_entry(pers, &pers_list, list)
7055                         seq_printf(seq, "[%s] ", pers->name);
7056
7057                 spin_unlock(&pers_lock);
7058                 seq_printf(seq, "\n");
7059                 seq->poll_event = atomic_read(&md_event_count);
7060                 return 0;
7061         }
7062         if (v == (void*)2) {
7063                 status_unused(seq);
7064                 return 0;
7065         }
7066
7067         if (mddev_lock(mddev) < 0)
7068                 return -EINTR;
7069
7070         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7071                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7072                                                 mddev->pers ? "" : "in");
7073                 if (mddev->pers) {
7074                         if (mddev->ro==1)
7075                                 seq_printf(seq, " (read-only)");
7076                         if (mddev->ro==2)
7077                                 seq_printf(seq, " (auto-read-only)");
7078                         seq_printf(seq, " %s", mddev->pers->name);
7079                 }
7080
7081                 sectors = 0;
7082                 rdev_for_each(rdev, mddev) {
7083                         char b[BDEVNAME_SIZE];
7084                         seq_printf(seq, " %s[%d]",
7085                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7086                         if (test_bit(WriteMostly, &rdev->flags))
7087                                 seq_printf(seq, "(W)");
7088                         if (test_bit(Faulty, &rdev->flags)) {
7089                                 seq_printf(seq, "(F)");
7090                                 continue;
7091                         }
7092                         if (rdev->raid_disk < 0)
7093                                 seq_printf(seq, "(S)"); /* spare */
7094                         if (test_bit(Replacement, &rdev->flags))
7095                                 seq_printf(seq, "(R)");
7096                         sectors += rdev->sectors;
7097                 }
7098
7099                 if (!list_empty(&mddev->disks)) {
7100                         if (mddev->pers)
7101                                 seq_printf(seq, "\n      %llu blocks",
7102                                            (unsigned long long)
7103                                            mddev->array_sectors / 2);
7104                         else
7105                                 seq_printf(seq, "\n      %llu blocks",
7106                                            (unsigned long long)sectors / 2);
7107                 }
7108                 if (mddev->persistent) {
7109                         if (mddev->major_version != 0 ||
7110                             mddev->minor_version != 90) {
7111                                 seq_printf(seq," super %d.%d",
7112                                            mddev->major_version,
7113                                            mddev->minor_version);
7114                         }
7115                 } else if (mddev->external)
7116                         seq_printf(seq, " super external:%s",
7117                                    mddev->metadata_type);
7118                 else
7119                         seq_printf(seq, " super non-persistent");
7120
7121                 if (mddev->pers) {
7122                         mddev->pers->status(seq, mddev);
7123                         seq_printf(seq, "\n      ");
7124                         if (mddev->pers->sync_request) {
7125                                 if (mddev->curr_resync > 2) {
7126                                         status_resync(seq, mddev);
7127                                         seq_printf(seq, "\n      ");
7128                                 } else if (mddev->curr_resync >= 1)
7129                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7130                                 else if (mddev->recovery_cp < MaxSector)
7131                                         seq_printf(seq, "\tresync=PENDING\n      ");
7132                         }
7133                 } else
7134                         seq_printf(seq, "\n       ");
7135
7136                 bitmap_status(seq, mddev->bitmap);
7137
7138                 seq_printf(seq, "\n");
7139         }
7140         mddev_unlock(mddev);
7141         
7142         return 0;
7143 }
7144
7145 static const struct seq_operations md_seq_ops = {
7146         .start  = md_seq_start,
7147         .next   = md_seq_next,
7148         .stop   = md_seq_stop,
7149         .show   = md_seq_show,
7150 };
7151
7152 static int md_seq_open(struct inode *inode, struct file *file)
7153 {
7154         struct seq_file *seq;
7155         int error;
7156
7157         error = seq_open(file, &md_seq_ops);
7158         if (error)
7159                 return error;
7160
7161         seq = file->private_data;
7162         seq->poll_event = atomic_read(&md_event_count);
7163         return error;
7164 }
7165
7166 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7167 {
7168         struct seq_file *seq = filp->private_data;
7169         int mask;
7170
7171         poll_wait(filp, &md_event_waiters, wait);
7172
7173         /* always allow read */
7174         mask = POLLIN | POLLRDNORM;
7175
7176         if (seq->poll_event != atomic_read(&md_event_count))
7177                 mask |= POLLERR | POLLPRI;
7178         return mask;
7179 }
7180
7181 static const struct file_operations md_seq_fops = {
7182         .owner          = THIS_MODULE,
7183         .open           = md_seq_open,
7184         .read           = seq_read,
7185         .llseek         = seq_lseek,
7186         .release        = seq_release_private,
7187         .poll           = mdstat_poll,
7188 };
7189
7190 int register_md_personality(struct md_personality *p)
7191 {
7192         spin_lock(&pers_lock);
7193         list_add_tail(&p->list, &pers_list);
7194         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7195         spin_unlock(&pers_lock);
7196         return 0;
7197 }
7198
7199 int unregister_md_personality(struct md_personality *p)
7200 {
7201         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7202         spin_lock(&pers_lock);
7203         list_del_init(&p->list);
7204         spin_unlock(&pers_lock);
7205         return 0;
7206 }
7207
7208 static int is_mddev_idle(struct mddev *mddev, int init)
7209 {
7210         struct md_rdev * rdev;
7211         int idle;
7212         int curr_events;
7213
7214         idle = 1;
7215         rcu_read_lock();
7216         rdev_for_each_rcu(rdev, mddev) {
7217                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7218                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7219                               (int)part_stat_read(&disk->part0, sectors[1]) -
7220                               atomic_read(&disk->sync_io);
7221                 /* sync IO will cause sync_io to increase before the disk_stats
7222                  * as sync_io is counted when a request starts, and
7223                  * disk_stats is counted when it completes.
7224                  * So resync activity will cause curr_events to be smaller than
7225                  * when there was no such activity.
7226                  * non-sync IO will cause disk_stat to increase without
7227                  * increasing sync_io so curr_events will (eventually)
7228                  * be larger than it was before.  Once it becomes
7229                  * substantially larger, the test below will cause
7230                  * the array to appear non-idle, and resync will slow
7231                  * down.
7232                  * If there is a lot of outstanding resync activity when
7233                  * we set last_event to curr_events, then all that activity
7234                  * completing might cause the array to appear non-idle
7235                  * and resync will be slowed down even though there might
7236                  * not have been non-resync activity.  This will only
7237                  * happen once though.  'last_events' will soon reflect
7238                  * the state where there is little or no outstanding
7239                  * resync requests, and further resync activity will
7240                  * always make curr_events less than last_events.
7241                  *
7242                  */
7243                 if (init || curr_events - rdev->last_events > 64) {
7244                         rdev->last_events = curr_events;
7245                         idle = 0;
7246                 }
7247         }
7248         rcu_read_unlock();
7249         return idle;
7250 }
7251
7252 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7253 {
7254         /* another "blocks" (512byte) blocks have been synced */
7255         atomic_sub(blocks, &mddev->recovery_active);
7256         wake_up(&mddev->recovery_wait);
7257         if (!ok) {
7258                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7259                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7260                 md_wakeup_thread(mddev->thread);
7261                 // stop recovery, signal do_sync ....
7262         }
7263 }
7264
7265
7266 /* md_write_start(mddev, bi)
7267  * If we need to update some array metadata (e.g. 'active' flag
7268  * in superblock) before writing, schedule a superblock update
7269  * and wait for it to complete.
7270  */
7271 void md_write_start(struct mddev *mddev, struct bio *bi)
7272 {
7273         int did_change = 0;
7274         if (bio_data_dir(bi) != WRITE)
7275                 return;
7276
7277         BUG_ON(mddev->ro == 1);
7278         if (mddev->ro == 2) {
7279                 /* need to switch to read/write */
7280                 mddev->ro = 0;
7281                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7282                 md_wakeup_thread(mddev->thread);
7283                 md_wakeup_thread(mddev->sync_thread);
7284                 did_change = 1;
7285         }
7286         atomic_inc(&mddev->writes_pending);
7287         if (mddev->safemode == 1)
7288                 mddev->safemode = 0;
7289         if (mddev->in_sync) {
7290                 spin_lock_irq(&mddev->write_lock);
7291                 if (mddev->in_sync) {
7292                         mddev->in_sync = 0;
7293                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7294                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7295                         md_wakeup_thread(mddev->thread);
7296                         did_change = 1;
7297                 }
7298                 spin_unlock_irq(&mddev->write_lock);
7299         }
7300         if (did_change)
7301                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7302         wait_event(mddev->sb_wait,
7303                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7304 }
7305
7306 void md_write_end(struct mddev *mddev)
7307 {
7308         if (atomic_dec_and_test(&mddev->writes_pending)) {
7309                 if (mddev->safemode == 2)
7310                         md_wakeup_thread(mddev->thread);
7311                 else if (mddev->safemode_delay)
7312                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7313         }
7314 }
7315
7316 /* md_allow_write(mddev)
7317  * Calling this ensures that the array is marked 'active' so that writes
7318  * may proceed without blocking.  It is important to call this before
7319  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7320  * Must be called with mddev_lock held.
7321  *
7322  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7323  * is dropped, so return -EAGAIN after notifying userspace.
7324  */
7325 int md_allow_write(struct mddev *mddev)
7326 {
7327         if (!mddev->pers)
7328                 return 0;
7329         if (mddev->ro)
7330                 return 0;
7331         if (!mddev->pers->sync_request)
7332                 return 0;
7333
7334         spin_lock_irq(&mddev->write_lock);
7335         if (mddev->in_sync) {
7336                 mddev->in_sync = 0;
7337                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7338                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7339                 if (mddev->safemode_delay &&
7340                     mddev->safemode == 0)
7341                         mddev->safemode = 1;
7342                 spin_unlock_irq(&mddev->write_lock);
7343                 md_update_sb(mddev, 0);
7344                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7345         } else
7346                 spin_unlock_irq(&mddev->write_lock);
7347
7348         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7349                 return -EAGAIN;
7350         else
7351                 return 0;
7352 }
7353 EXPORT_SYMBOL_GPL(md_allow_write);
7354
7355 #define SYNC_MARKS      10
7356 #define SYNC_MARK_STEP  (3*HZ)
7357 #define UPDATE_FREQUENCY (5*60*HZ)
7358 void md_do_sync(struct md_thread *thread)
7359 {
7360         struct mddev *mddev = thread->mddev;
7361         struct mddev *mddev2;
7362         unsigned int currspeed = 0,
7363                  window;
7364         sector_t max_sectors,j, io_sectors;
7365         unsigned long mark[SYNC_MARKS];
7366         unsigned long update_time;
7367         sector_t mark_cnt[SYNC_MARKS];
7368         int last_mark,m;
7369         struct list_head *tmp;
7370         sector_t last_check;
7371         int skipped = 0;
7372         struct md_rdev *rdev;
7373         char *desc, *action = NULL;
7374         struct blk_plug plug;
7375
7376         /* just incase thread restarts... */
7377         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7378                 return;
7379         if (mddev->ro) /* never try to sync a read-only array */
7380                 return;
7381
7382         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7383                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7384                         desc = "data-check";
7385                         action = "check";
7386                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7387                         desc = "requested-resync";
7388                         action = "repair";
7389                 } else
7390                         desc = "resync";
7391         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7392                 desc = "reshape";
7393         else
7394                 desc = "recovery";
7395
7396         mddev->last_sync_action = action ?: desc;
7397
7398         /* we overload curr_resync somewhat here.
7399          * 0 == not engaged in resync at all
7400          * 2 == checking that there is no conflict with another sync
7401          * 1 == like 2, but have yielded to allow conflicting resync to
7402          *              commense
7403          * other == active in resync - this many blocks
7404          *
7405          * Before starting a resync we must have set curr_resync to
7406          * 2, and then checked that every "conflicting" array has curr_resync
7407          * less than ours.  When we find one that is the same or higher
7408          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7409          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7410          * This will mean we have to start checking from the beginning again.
7411          *
7412          */
7413
7414         do {
7415                 mddev->curr_resync = 2;
7416
7417         try_again:
7418                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7419                         goto skip;
7420                 for_each_mddev(mddev2, tmp) {
7421                         if (mddev2 == mddev)
7422                                 continue;
7423                         if (!mddev->parallel_resync
7424                         &&  mddev2->curr_resync
7425                         &&  match_mddev_units(mddev, mddev2)) {
7426                                 DEFINE_WAIT(wq);
7427                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7428                                         /* arbitrarily yield */
7429                                         mddev->curr_resync = 1;
7430                                         wake_up(&resync_wait);
7431                                 }
7432                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7433                                         /* no need to wait here, we can wait the next
7434                                          * time 'round when curr_resync == 2
7435                                          */
7436                                         continue;
7437                                 /* We need to wait 'interruptible' so as not to
7438                                  * contribute to the load average, and not to
7439                                  * be caught by 'softlockup'
7440                                  */
7441                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7442                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7443                                     mddev2->curr_resync >= mddev->curr_resync) {
7444                                         printk(KERN_INFO "md: delaying %s of %s"
7445                                                " until %s has finished (they"
7446                                                " share one or more physical units)\n",
7447                                                desc, mdname(mddev), mdname(mddev2));
7448                                         mddev_put(mddev2);
7449                                         if (signal_pending(current))
7450                                                 flush_signals(current);
7451                                         schedule();
7452                                         finish_wait(&resync_wait, &wq);
7453                                         goto try_again;
7454                                 }
7455                                 finish_wait(&resync_wait, &wq);
7456                         }
7457                 }
7458         } while (mddev->curr_resync < 2);
7459
7460         j = 0;
7461         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7462                 /* resync follows the size requested by the personality,
7463                  * which defaults to physical size, but can be virtual size
7464                  */
7465                 max_sectors = mddev->resync_max_sectors;
7466                 atomic64_set(&mddev->resync_mismatches, 0);
7467                 /* we don't use the checkpoint if there's a bitmap */
7468                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7469                         j = mddev->resync_min;
7470                 else if (!mddev->bitmap)
7471                         j = mddev->recovery_cp;
7472
7473         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7474                 max_sectors = mddev->resync_max_sectors;
7475         else {
7476                 /* recovery follows the physical size of devices */
7477                 max_sectors = mddev->dev_sectors;
7478                 j = MaxSector;
7479                 rcu_read_lock();
7480                 rdev_for_each_rcu(rdev, mddev)
7481                         if (rdev->raid_disk >= 0 &&
7482                             !test_bit(Faulty, &rdev->flags) &&
7483                             !test_bit(In_sync, &rdev->flags) &&
7484                             rdev->recovery_offset < j)
7485                                 j = rdev->recovery_offset;
7486                 rcu_read_unlock();
7487         }
7488
7489         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7490         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7491                 " %d KB/sec/disk.\n", speed_min(mddev));
7492         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7493                "(but not more than %d KB/sec) for %s.\n",
7494                speed_max(mddev), desc);
7495
7496         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7497
7498         io_sectors = 0;
7499         for (m = 0; m < SYNC_MARKS; m++) {
7500                 mark[m] = jiffies;
7501                 mark_cnt[m] = io_sectors;
7502         }
7503         last_mark = 0;
7504         mddev->resync_mark = mark[last_mark];
7505         mddev->resync_mark_cnt = mark_cnt[last_mark];
7506
7507         /*
7508          * Tune reconstruction:
7509          */
7510         window = 32*(PAGE_SIZE/512);
7511         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7512                 window/2, (unsigned long long)max_sectors/2);
7513
7514         atomic_set(&mddev->recovery_active, 0);
7515         last_check = 0;
7516
7517         if (j>2) {
7518                 printk(KERN_INFO
7519                        "md: resuming %s of %s from checkpoint.\n",
7520                        desc, mdname(mddev));
7521                 mddev->curr_resync = j;
7522         } else
7523                 mddev->curr_resync = 3; /* no longer delayed */
7524         mddev->curr_resync_completed = j;
7525         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7526         md_new_event(mddev);
7527         update_time = jiffies;
7528
7529         blk_start_plug(&plug);
7530         while (j < max_sectors) {
7531                 sector_t sectors;
7532
7533                 skipped = 0;
7534
7535                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7536                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7537                       (mddev->curr_resync - mddev->curr_resync_completed)
7538                       > (max_sectors >> 4)) ||
7539                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7540                      (j - mddev->curr_resync_completed)*2
7541                      >= mddev->resync_max - mddev->curr_resync_completed
7542                             )) {
7543                         /* time to update curr_resync_completed */
7544                         wait_event(mddev->recovery_wait,
7545                                    atomic_read(&mddev->recovery_active) == 0);
7546                         mddev->curr_resync_completed = j;
7547                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7548                             j > mddev->recovery_cp)
7549                                 mddev->recovery_cp = j;
7550                         update_time = jiffies;
7551                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7552                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7553                 }
7554
7555                 while (j >= mddev->resync_max &&
7556                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7557                         /* As this condition is controlled by user-space,
7558                          * we can block indefinitely, so use '_interruptible'
7559                          * to avoid triggering warnings.
7560                          */
7561                         flush_signals(current); /* just in case */
7562                         wait_event_interruptible(mddev->recovery_wait,
7563                                                  mddev->resync_max > j
7564                                                  || test_bit(MD_RECOVERY_INTR,
7565                                                              &mddev->recovery));
7566                 }
7567
7568                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7569                         break;
7570
7571                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7572                                                   currspeed < speed_min(mddev));
7573                 if (sectors == 0) {
7574                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7575                         break;
7576                 }
7577
7578                 if (!skipped) { /* actual IO requested */
7579                         io_sectors += sectors;
7580                         atomic_add(sectors, &mddev->recovery_active);
7581                 }
7582
7583                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7584                         break;
7585
7586                 j += sectors;
7587                 if (j > 2)
7588                         mddev->curr_resync = j;
7589                 mddev->curr_mark_cnt = io_sectors;
7590                 if (last_check == 0)
7591                         /* this is the earliest that rebuild will be
7592                          * visible in /proc/mdstat
7593                          */
7594                         md_new_event(mddev);
7595
7596                 if (last_check + window > io_sectors || j == max_sectors)
7597                         continue;
7598
7599                 last_check = io_sectors;
7600         repeat:
7601                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7602                         /* step marks */
7603                         int next = (last_mark+1) % SYNC_MARKS;
7604
7605                         mddev->resync_mark = mark[next];
7606                         mddev->resync_mark_cnt = mark_cnt[next];
7607                         mark[next] = jiffies;
7608                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7609                         last_mark = next;
7610                 }
7611
7612                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7613                         break;
7614
7615                 /*
7616                  * this loop exits only if either when we are slower than
7617                  * the 'hard' speed limit, or the system was IO-idle for
7618                  * a jiffy.
7619                  * the system might be non-idle CPU-wise, but we only care
7620                  * about not overloading the IO subsystem. (things like an
7621                  * e2fsck being done on the RAID array should execute fast)
7622                  */
7623                 cond_resched();
7624
7625                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7626                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7627
7628                 if (currspeed > speed_min(mddev)) {
7629                         if ((currspeed > speed_max(mddev)) ||
7630                                         !is_mddev_idle(mddev, 0)) {
7631                                 msleep(500);
7632                                 goto repeat;
7633                         }
7634                 }
7635         }
7636         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7637                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7638                ? "interrupted" : "done");
7639         /*
7640          * this also signals 'finished resyncing' to md_stop
7641          */
7642         blk_finish_plug(&plug);
7643         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7644
7645         /* tell personality that we are finished */
7646         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7647
7648         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7649             mddev->curr_resync > 2) {
7650                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7651                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7652                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7653                                         printk(KERN_INFO
7654                                                "md: checkpointing %s of %s.\n",
7655                                                desc, mdname(mddev));
7656                                         if (test_bit(MD_RECOVERY_ERROR,
7657                                                 &mddev->recovery))
7658                                                 mddev->recovery_cp =
7659                                                         mddev->curr_resync_completed;
7660                                         else
7661                                                 mddev->recovery_cp =
7662                                                         mddev->curr_resync;
7663                                 }
7664                         } else
7665                                 mddev->recovery_cp = MaxSector;
7666                 } else {
7667                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7668                                 mddev->curr_resync = MaxSector;
7669                         rcu_read_lock();
7670                         rdev_for_each_rcu(rdev, mddev)
7671                                 if (rdev->raid_disk >= 0 &&
7672                                     mddev->delta_disks >= 0 &&
7673                                     !test_bit(Faulty, &rdev->flags) &&
7674                                     !test_bit(In_sync, &rdev->flags) &&
7675                                     rdev->recovery_offset < mddev->curr_resync)
7676                                         rdev->recovery_offset = mddev->curr_resync;
7677                         rcu_read_unlock();
7678                 }
7679         }
7680  skip:
7681         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7682
7683         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7684                 /* We completed so min/max setting can be forgotten if used. */
7685                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7686                         mddev->resync_min = 0;
7687                 mddev->resync_max = MaxSector;
7688         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7689                 mddev->resync_min = mddev->curr_resync_completed;
7690         mddev->curr_resync = 0;
7691         wake_up(&resync_wait);
7692         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7693         md_wakeup_thread(mddev->thread);
7694         return;
7695 }
7696 EXPORT_SYMBOL_GPL(md_do_sync);
7697
7698 static int remove_and_add_spares(struct mddev *mddev,
7699                                  struct md_rdev *this)
7700 {
7701         struct md_rdev *rdev;
7702         int spares = 0;
7703         int removed = 0;
7704
7705         rdev_for_each(rdev, mddev)
7706                 if ((this == NULL || rdev == this) &&
7707                     rdev->raid_disk >= 0 &&
7708                     !test_bit(Blocked, &rdev->flags) &&
7709                     (test_bit(Faulty, &rdev->flags) ||
7710                      ! test_bit(In_sync, &rdev->flags)) &&
7711                     atomic_read(&rdev->nr_pending)==0) {
7712                         if (mddev->pers->hot_remove_disk(
7713                                     mddev, rdev) == 0) {
7714                                 sysfs_unlink_rdev(mddev, rdev);
7715                                 rdev->raid_disk = -1;
7716                                 removed++;
7717                         }
7718                 }
7719         if (removed && mddev->kobj.sd)
7720                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7721
7722         if (this)
7723                 goto no_add;
7724
7725         rdev_for_each(rdev, mddev) {
7726                 if (rdev->raid_disk >= 0 &&
7727                     !test_bit(In_sync, &rdev->flags) &&
7728                     !test_bit(Faulty, &rdev->flags))
7729                         spares++;
7730                 if (rdev->raid_disk >= 0)
7731                         continue;
7732                 if (test_bit(Faulty, &rdev->flags))
7733                         continue;
7734                 if (mddev->ro &&
7735                     ! (rdev->saved_raid_disk >= 0 &&
7736                        !test_bit(Bitmap_sync, &rdev->flags)))
7737                         continue;
7738
7739                 if (rdev->saved_raid_disk < 0)
7740                         rdev->recovery_offset = 0;
7741                 if (mddev->pers->
7742                     hot_add_disk(mddev, rdev) == 0) {
7743                         if (sysfs_link_rdev(mddev, rdev))
7744                                 /* failure here is OK */;
7745                         spares++;
7746                         md_new_event(mddev);
7747                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7748                 }
7749         }
7750 no_add:
7751         if (removed)
7752                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7753         return spares;
7754 }
7755
7756 /*
7757  * This routine is regularly called by all per-raid-array threads to
7758  * deal with generic issues like resync and super-block update.
7759  * Raid personalities that don't have a thread (linear/raid0) do not
7760  * need this as they never do any recovery or update the superblock.
7761  *
7762  * It does not do any resync itself, but rather "forks" off other threads
7763  * to do that as needed.
7764  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7765  * "->recovery" and create a thread at ->sync_thread.
7766  * When the thread finishes it sets MD_RECOVERY_DONE
7767  * and wakeups up this thread which will reap the thread and finish up.
7768  * This thread also removes any faulty devices (with nr_pending == 0).
7769  *
7770  * The overall approach is:
7771  *  1/ if the superblock needs updating, update it.
7772  *  2/ If a recovery thread is running, don't do anything else.
7773  *  3/ If recovery has finished, clean up, possibly marking spares active.
7774  *  4/ If there are any faulty devices, remove them.
7775  *  5/ If array is degraded, try to add spares devices
7776  *  6/ If array has spares or is not in-sync, start a resync thread.
7777  */
7778 void md_check_recovery(struct mddev *mddev)
7779 {
7780         if (mddev->suspended)
7781                 return;
7782
7783         if (mddev->bitmap)
7784                 bitmap_daemon_work(mddev);
7785
7786         if (signal_pending(current)) {
7787                 if (mddev->pers->sync_request && !mddev->external) {
7788                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7789                                mdname(mddev));
7790                         mddev->safemode = 2;
7791                 }
7792                 flush_signals(current);
7793         }
7794
7795         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7796                 return;
7797         if ( ! (
7798                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7799                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7800                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7801                 (mddev->external == 0 && mddev->safemode == 1) ||
7802                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7803                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7804                 ))
7805                 return;
7806
7807         if (mddev_trylock(mddev)) {
7808                 int spares = 0;
7809
7810                 if (mddev->ro) {
7811                         /* On a read-only array we can:
7812                          * - remove failed devices
7813                          * - add already-in_sync devices if the array itself
7814                          *   is in-sync.
7815                          * As we only add devices that are already in-sync,
7816                          * we can activate the spares immediately.
7817                          */
7818                         remove_and_add_spares(mddev, NULL);
7819                         /* There is no thread, but we need to call
7820                          * ->spare_active and clear saved_raid_disk
7821                          */
7822                         md_reap_sync_thread(mddev);
7823                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7824                         goto unlock;
7825                 }
7826
7827                 if (!mddev->external) {
7828                         int did_change = 0;
7829                         spin_lock_irq(&mddev->write_lock);
7830                         if (mddev->safemode &&
7831                             !atomic_read(&mddev->writes_pending) &&
7832                             !mddev->in_sync &&
7833                             mddev->recovery_cp == MaxSector) {
7834                                 mddev->in_sync = 1;
7835                                 did_change = 1;
7836                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7837                         }
7838                         if (mddev->safemode == 1)
7839                                 mddev->safemode = 0;
7840                         spin_unlock_irq(&mddev->write_lock);
7841                         if (did_change)
7842                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7843                 }
7844
7845                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7846                         md_update_sb(mddev, 0);
7847
7848                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7849                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7850                         /* resync/recovery still happening */
7851                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7852                         goto unlock;
7853                 }
7854                 if (mddev->sync_thread) {
7855                         md_reap_sync_thread(mddev);
7856                         goto unlock;
7857                 }
7858                 /* Set RUNNING before clearing NEEDED to avoid
7859                  * any transients in the value of "sync_action".
7860                  */
7861                 mddev->curr_resync_completed = 0;
7862                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7863                 /* Clear some bits that don't mean anything, but
7864                  * might be left set
7865                  */
7866                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7867                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7868
7869                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7870                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7871                         goto unlock;
7872                 /* no recovery is running.
7873                  * remove any failed drives, then
7874                  * add spares if possible.
7875                  * Spares are also removed and re-added, to allow
7876                  * the personality to fail the re-add.
7877                  */
7878
7879                 if (mddev->reshape_position != MaxSector) {
7880                         if (mddev->pers->check_reshape == NULL ||
7881                             mddev->pers->check_reshape(mddev) != 0)
7882                                 /* Cannot proceed */
7883                                 goto unlock;
7884                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7885                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7886                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7887                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7888                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7889                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7890                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7891                 } else if (mddev->recovery_cp < MaxSector) {
7892                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7893                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7894                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7895                         /* nothing to be done ... */
7896                         goto unlock;
7897
7898                 if (mddev->pers->sync_request) {
7899                         if (spares) {
7900                                 /* We are adding a device or devices to an array
7901                                  * which has the bitmap stored on all devices.
7902                                  * So make sure all bitmap pages get written
7903                                  */
7904                                 bitmap_write_all(mddev->bitmap);
7905                         }
7906                         mddev->sync_thread = md_register_thread(md_do_sync,
7907                                                                 mddev,
7908                                                                 "resync");
7909                         if (!mddev->sync_thread) {
7910                                 printk(KERN_ERR "%s: could not start resync"
7911                                         " thread...\n", 
7912                                         mdname(mddev));
7913                                 /* leave the spares where they are, it shouldn't hurt */
7914                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7915                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7916                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7917                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7918                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7919                         } else
7920                                 md_wakeup_thread(mddev->sync_thread);
7921                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7922                         md_new_event(mddev);
7923                 }
7924         unlock:
7925                 wake_up(&mddev->sb_wait);
7926
7927                 if (!mddev->sync_thread) {
7928                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7929                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7930                                                &mddev->recovery))
7931                                 if (mddev->sysfs_action)
7932                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7933                 }
7934                 mddev_unlock(mddev);
7935         }
7936 }
7937
7938 void md_reap_sync_thread(struct mddev *mddev)
7939 {
7940         struct md_rdev *rdev;
7941
7942         /* resync has finished, collect result */
7943         md_unregister_thread(&mddev->sync_thread);
7944         wake_up(&resync_wait);
7945         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7946             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7947                 /* success...*/
7948                 /* activate any spares */
7949                 if (mddev->pers->spare_active(mddev)) {
7950                         sysfs_notify(&mddev->kobj, NULL,
7951                                      "degraded");
7952                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7953                 }
7954         }
7955         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7956             mddev->pers->finish_reshape)
7957                 mddev->pers->finish_reshape(mddev);
7958
7959         /* If array is no-longer degraded, then any saved_raid_disk
7960          * information must be scrapped.
7961          */
7962         if (!mddev->degraded)
7963                 rdev_for_each(rdev, mddev)
7964                         rdev->saved_raid_disk = -1;
7965
7966         md_update_sb(mddev, 1);
7967         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7968         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7969         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7970         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7971         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7972         /* flag recovery needed just to double check */
7973         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7974         sysfs_notify_dirent_safe(mddev->sysfs_action);
7975         md_new_event(mddev);
7976         if (mddev->event_work.func)
7977                 queue_work(md_misc_wq, &mddev->event_work);
7978 }
7979
7980 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7981 {
7982         sysfs_notify_dirent_safe(rdev->sysfs_state);
7983         wait_event_timeout(rdev->blocked_wait,
7984                            !test_bit(Blocked, &rdev->flags) &&
7985                            !test_bit(BlockedBadBlocks, &rdev->flags),
7986                            msecs_to_jiffies(5000));
7987         rdev_dec_pending(rdev, mddev);
7988 }
7989 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7990
7991 void md_finish_reshape(struct mddev *mddev)
7992 {
7993         /* called be personality module when reshape completes. */
7994         struct md_rdev *rdev;
7995
7996         rdev_for_each(rdev, mddev) {
7997                 if (rdev->data_offset > rdev->new_data_offset)
7998                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7999                 else
8000                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8001                 rdev->data_offset = rdev->new_data_offset;
8002         }
8003 }
8004 EXPORT_SYMBOL(md_finish_reshape);
8005
8006 /* Bad block management.
8007  * We can record which blocks on each device are 'bad' and so just
8008  * fail those blocks, or that stripe, rather than the whole device.
8009  * Entries in the bad-block table are 64bits wide.  This comprises:
8010  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8011  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8012  *  A 'shift' can be set so that larger blocks are tracked and
8013  *  consequently larger devices can be covered.
8014  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8015  *
8016  * Locking of the bad-block table uses a seqlock so md_is_badblock
8017  * might need to retry if it is very unlucky.
8018  * We will sometimes want to check for bad blocks in a bi_end_io function,
8019  * so we use the write_seqlock_irq variant.
8020  *
8021  * When looking for a bad block we specify a range and want to
8022  * know if any block in the range is bad.  So we binary-search
8023  * to the last range that starts at-or-before the given endpoint,
8024  * (or "before the sector after the target range")
8025  * then see if it ends after the given start.
8026  * We return
8027  *  0 if there are no known bad blocks in the range
8028  *  1 if there are known bad block which are all acknowledged
8029  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8030  * plus the start/length of the first bad section we overlap.
8031  */
8032 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8033                    sector_t *first_bad, int *bad_sectors)
8034 {
8035         int hi;
8036         int lo;
8037         u64 *p = bb->page;
8038         int rv;
8039         sector_t target = s + sectors;
8040         unsigned seq;
8041
8042         if (bb->shift > 0) {
8043                 /* round the start down, and the end up */
8044                 s >>= bb->shift;
8045                 target += (1<<bb->shift) - 1;
8046                 target >>= bb->shift;
8047                 sectors = target - s;
8048         }
8049         /* 'target' is now the first block after the bad range */
8050
8051 retry:
8052         seq = read_seqbegin(&bb->lock);
8053         lo = 0;
8054         rv = 0;
8055         hi = bb->count;
8056
8057         /* Binary search between lo and hi for 'target'
8058          * i.e. for the last range that starts before 'target'
8059          */
8060         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8061          * are known not to be the last range before target.
8062          * VARIANT: hi-lo is the number of possible
8063          * ranges, and decreases until it reaches 1
8064          */
8065         while (hi - lo > 1) {
8066                 int mid = (lo + hi) / 2;
8067                 sector_t a = BB_OFFSET(p[mid]);
8068                 if (a < target)
8069                         /* This could still be the one, earlier ranges
8070                          * could not. */
8071                         lo = mid;
8072                 else
8073                         /* This and later ranges are definitely out. */
8074                         hi = mid;
8075         }
8076         /* 'lo' might be the last that started before target, but 'hi' isn't */
8077         if (hi > lo) {
8078                 /* need to check all range that end after 's' to see if
8079                  * any are unacknowledged.
8080                  */
8081                 while (lo >= 0 &&
8082                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8083                         if (BB_OFFSET(p[lo]) < target) {
8084                                 /* starts before the end, and finishes after
8085                                  * the start, so they must overlap
8086                                  */
8087                                 if (rv != -1 && BB_ACK(p[lo]))
8088                                         rv = 1;
8089                                 else
8090                                         rv = -1;
8091                                 *first_bad = BB_OFFSET(p[lo]);
8092                                 *bad_sectors = BB_LEN(p[lo]);
8093                         }
8094                         lo--;
8095                 }
8096         }
8097
8098         if (read_seqretry(&bb->lock, seq))
8099                 goto retry;
8100
8101         return rv;
8102 }
8103 EXPORT_SYMBOL_GPL(md_is_badblock);
8104
8105 /*
8106  * Add a range of bad blocks to the table.
8107  * This might extend the table, or might contract it
8108  * if two adjacent ranges can be merged.
8109  * We binary-search to find the 'insertion' point, then
8110  * decide how best to handle it.
8111  */
8112 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8113                             int acknowledged)
8114 {
8115         u64 *p;
8116         int lo, hi;
8117         int rv = 1;
8118         unsigned long flags;
8119
8120         if (bb->shift < 0)
8121                 /* badblocks are disabled */
8122                 return 0;
8123
8124         if (bb->shift) {
8125                 /* round the start down, and the end up */
8126                 sector_t next = s + sectors;
8127                 s >>= bb->shift;
8128                 next += (1<<bb->shift) - 1;
8129                 next >>= bb->shift;
8130                 sectors = next - s;
8131         }
8132
8133         write_seqlock_irqsave(&bb->lock, flags);
8134
8135         p = bb->page;
8136         lo = 0;
8137         hi = bb->count;
8138         /* Find the last range that starts at-or-before 's' */
8139         while (hi - lo > 1) {
8140                 int mid = (lo + hi) / 2;
8141                 sector_t a = BB_OFFSET(p[mid]);
8142                 if (a <= s)
8143                         lo = mid;
8144                 else
8145                         hi = mid;
8146         }
8147         if (hi > lo && BB_OFFSET(p[lo]) > s)
8148                 hi = lo;
8149
8150         if (hi > lo) {
8151                 /* we found a range that might merge with the start
8152                  * of our new range
8153                  */
8154                 sector_t a = BB_OFFSET(p[lo]);
8155                 sector_t e = a + BB_LEN(p[lo]);
8156                 int ack = BB_ACK(p[lo]);
8157                 if (e >= s) {
8158                         /* Yes, we can merge with a previous range */
8159                         if (s == a && s + sectors >= e)
8160                                 /* new range covers old */
8161                                 ack = acknowledged;
8162                         else
8163                                 ack = ack && acknowledged;
8164
8165                         if (e < s + sectors)
8166                                 e = s + sectors;
8167                         if (e - a <= BB_MAX_LEN) {
8168                                 p[lo] = BB_MAKE(a, e-a, ack);
8169                                 s = e;
8170                         } else {
8171                                 /* does not all fit in one range,
8172                                  * make p[lo] maximal
8173                                  */
8174                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8175                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8176                                 s = a + BB_MAX_LEN;
8177                         }
8178                         sectors = e - s;
8179                 }
8180         }
8181         if (sectors && hi < bb->count) {
8182                 /* 'hi' points to the first range that starts after 's'.
8183                  * Maybe we can merge with the start of that range */
8184                 sector_t a = BB_OFFSET(p[hi]);
8185                 sector_t e = a + BB_LEN(p[hi]);
8186                 int ack = BB_ACK(p[hi]);
8187                 if (a <= s + sectors) {
8188                         /* merging is possible */
8189                         if (e <= s + sectors) {
8190                                 /* full overlap */
8191                                 e = s + sectors;
8192                                 ack = acknowledged;
8193                         } else
8194                                 ack = ack && acknowledged;
8195
8196                         a = s;
8197                         if (e - a <= BB_MAX_LEN) {
8198                                 p[hi] = BB_MAKE(a, e-a, ack);
8199                                 s = e;
8200                         } else {
8201                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8202                                 s = a + BB_MAX_LEN;
8203                         }
8204                         sectors = e - s;
8205                         lo = hi;
8206                         hi++;
8207                 }
8208         }
8209         if (sectors == 0 && hi < bb->count) {
8210                 /* we might be able to combine lo and hi */
8211                 /* Note: 's' is at the end of 'lo' */
8212                 sector_t a = BB_OFFSET(p[hi]);
8213                 int lolen = BB_LEN(p[lo]);
8214                 int hilen = BB_LEN(p[hi]);
8215                 int newlen = lolen + hilen - (s - a);
8216                 if (s >= a && newlen < BB_MAX_LEN) {
8217                         /* yes, we can combine them */
8218                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8219                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8220                         memmove(p + hi, p + hi + 1,
8221                                 (bb->count - hi - 1) * 8);
8222                         bb->count--;
8223                 }
8224         }
8225         while (sectors) {
8226                 /* didn't merge (it all).
8227                  * Need to add a range just before 'hi' */
8228                 if (bb->count >= MD_MAX_BADBLOCKS) {
8229                         /* No room for more */
8230                         rv = 0;
8231                         break;
8232                 } else {
8233                         int this_sectors = sectors;
8234                         memmove(p + hi + 1, p + hi,
8235                                 (bb->count - hi) * 8);
8236                         bb->count++;
8237
8238                         if (this_sectors > BB_MAX_LEN)
8239                                 this_sectors = BB_MAX_LEN;
8240                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8241                         sectors -= this_sectors;
8242                         s += this_sectors;
8243                 }
8244         }
8245
8246         bb->changed = 1;
8247         if (!acknowledged)
8248                 bb->unacked_exist = 1;
8249         write_sequnlock_irqrestore(&bb->lock, flags);
8250
8251         return rv;
8252 }
8253
8254 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8255                        int is_new)
8256 {
8257         int rv;
8258         if (is_new)
8259                 s += rdev->new_data_offset;
8260         else
8261                 s += rdev->data_offset;
8262         rv = md_set_badblocks(&rdev->badblocks,
8263                               s, sectors, 0);
8264         if (rv) {
8265                 /* Make sure they get written out promptly */
8266                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8267                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8268                 md_wakeup_thread(rdev->mddev->thread);
8269         }
8270         return rv;
8271 }
8272 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8273
8274 /*
8275  * Remove a range of bad blocks from the table.
8276  * This may involve extending the table if we spilt a region,
8277  * but it must not fail.  So if the table becomes full, we just
8278  * drop the remove request.
8279  */
8280 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8281 {
8282         u64 *p;
8283         int lo, hi;
8284         sector_t target = s + sectors;
8285         int rv = 0;
8286
8287         if (bb->shift > 0) {
8288                 /* When clearing we round the start up and the end down.
8289                  * This should not matter as the shift should align with
8290                  * the block size and no rounding should ever be needed.
8291                  * However it is better the think a block is bad when it
8292                  * isn't than to think a block is not bad when it is.
8293                  */
8294                 s += (1<<bb->shift) - 1;
8295                 s >>= bb->shift;
8296                 target >>= bb->shift;
8297                 sectors = target - s;
8298         }
8299
8300         write_seqlock_irq(&bb->lock);
8301
8302         p = bb->page;
8303         lo = 0;
8304         hi = bb->count;
8305         /* Find the last range that starts before 'target' */
8306         while (hi - lo > 1) {
8307                 int mid = (lo + hi) / 2;
8308                 sector_t a = BB_OFFSET(p[mid]);
8309                 if (a < target)
8310                         lo = mid;
8311                 else
8312                         hi = mid;
8313         }
8314         if (hi > lo) {
8315                 /* p[lo] is the last range that could overlap the
8316                  * current range.  Earlier ranges could also overlap,
8317                  * but only this one can overlap the end of the range.
8318                  */
8319                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8320                         /* Partial overlap, leave the tail of this range */
8321                         int ack = BB_ACK(p[lo]);
8322                         sector_t a = BB_OFFSET(p[lo]);
8323                         sector_t end = a + BB_LEN(p[lo]);
8324
8325                         if (a < s) {
8326                                 /* we need to split this range */
8327                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8328                                         rv = 0;
8329                                         goto out;
8330                                 }
8331                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8332                                 bb->count++;
8333                                 p[lo] = BB_MAKE(a, s-a, ack);
8334                                 lo++;
8335                         }
8336                         p[lo] = BB_MAKE(target, end - target, ack);
8337                         /* there is no longer an overlap */
8338                         hi = lo;
8339                         lo--;
8340                 }
8341                 while (lo >= 0 &&
8342                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8343                         /* This range does overlap */
8344                         if (BB_OFFSET(p[lo]) < s) {
8345                                 /* Keep the early parts of this range. */
8346                                 int ack = BB_ACK(p[lo]);
8347                                 sector_t start = BB_OFFSET(p[lo]);
8348                                 p[lo] = BB_MAKE(start, s - start, ack);
8349                                 /* now low doesn't overlap, so.. */
8350                                 break;
8351                         }
8352                         lo--;
8353                 }
8354                 /* 'lo' is strictly before, 'hi' is strictly after,
8355                  * anything between needs to be discarded
8356                  */
8357                 if (hi - lo > 1) {
8358                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8359                         bb->count -= (hi - lo - 1);
8360                 }
8361         }
8362
8363         bb->changed = 1;
8364 out:
8365         write_sequnlock_irq(&bb->lock);
8366         return rv;
8367 }
8368
8369 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8370                          int is_new)
8371 {
8372         if (is_new)
8373                 s += rdev->new_data_offset;
8374         else
8375                 s += rdev->data_offset;
8376         return md_clear_badblocks(&rdev->badblocks,
8377                                   s, sectors);
8378 }
8379 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8380
8381 /*
8382  * Acknowledge all bad blocks in a list.
8383  * This only succeeds if ->changed is clear.  It is used by
8384  * in-kernel metadata updates
8385  */
8386 void md_ack_all_badblocks(struct badblocks *bb)
8387 {
8388         if (bb->page == NULL || bb->changed)
8389                 /* no point even trying */
8390                 return;
8391         write_seqlock_irq(&bb->lock);
8392
8393         if (bb->changed == 0 && bb->unacked_exist) {
8394                 u64 *p = bb->page;
8395                 int i;
8396                 for (i = 0; i < bb->count ; i++) {
8397                         if (!BB_ACK(p[i])) {
8398                                 sector_t start = BB_OFFSET(p[i]);
8399                                 int len = BB_LEN(p[i]);
8400                                 p[i] = BB_MAKE(start, len, 1);
8401                         }
8402                 }
8403                 bb->unacked_exist = 0;
8404         }
8405         write_sequnlock_irq(&bb->lock);
8406 }
8407 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8408
8409 /* sysfs access to bad-blocks list.
8410  * We present two files.
8411  * 'bad-blocks' lists sector numbers and lengths of ranges that
8412  *    are recorded as bad.  The list is truncated to fit within
8413  *    the one-page limit of sysfs.
8414  *    Writing "sector length" to this file adds an acknowledged
8415  *    bad block list.
8416  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8417  *    been acknowledged.  Writing to this file adds bad blocks
8418  *    without acknowledging them.  This is largely for testing.
8419  */
8420
8421 static ssize_t
8422 badblocks_show(struct badblocks *bb, char *page, int unack)
8423 {
8424         size_t len;
8425         int i;
8426         u64 *p = bb->page;
8427         unsigned seq;
8428
8429         if (bb->shift < 0)
8430                 return 0;
8431
8432 retry:
8433         seq = read_seqbegin(&bb->lock);
8434
8435         len = 0;
8436         i = 0;
8437
8438         while (len < PAGE_SIZE && i < bb->count) {
8439                 sector_t s = BB_OFFSET(p[i]);
8440                 unsigned int length = BB_LEN(p[i]);
8441                 int ack = BB_ACK(p[i]);
8442                 i++;
8443
8444                 if (unack && ack)
8445                         continue;
8446
8447                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8448                                 (unsigned long long)s << bb->shift,
8449                                 length << bb->shift);
8450         }
8451         if (unack && len == 0)
8452                 bb->unacked_exist = 0;
8453
8454         if (read_seqretry(&bb->lock, seq))
8455                 goto retry;
8456
8457         return len;
8458 }
8459
8460 #define DO_DEBUG 1
8461
8462 static ssize_t
8463 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8464 {
8465         unsigned long long sector;
8466         int length;
8467         char newline;
8468 #ifdef DO_DEBUG
8469         /* Allow clearing via sysfs *only* for testing/debugging.
8470          * Normally only a successful write may clear a badblock
8471          */
8472         int clear = 0;
8473         if (page[0] == '-') {
8474                 clear = 1;
8475                 page++;
8476         }
8477 #endif /* DO_DEBUG */
8478
8479         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8480         case 3:
8481                 if (newline != '\n')
8482                         return -EINVAL;
8483         case 2:
8484                 if (length <= 0)
8485                         return -EINVAL;
8486                 break;
8487         default:
8488                 return -EINVAL;
8489         }
8490
8491 #ifdef DO_DEBUG
8492         if (clear) {
8493                 md_clear_badblocks(bb, sector, length);
8494                 return len;
8495         }
8496 #endif /* DO_DEBUG */
8497         if (md_set_badblocks(bb, sector, length, !unack))
8498                 return len;
8499         else
8500                 return -ENOSPC;
8501 }
8502
8503 static int md_notify_reboot(struct notifier_block *this,
8504                             unsigned long code, void *x)
8505 {
8506         struct list_head *tmp;
8507         struct mddev *mddev;
8508         int need_delay = 0;
8509
8510         for_each_mddev(mddev, tmp) {
8511                 if (mddev_trylock(mddev)) {
8512                         if (mddev->pers)
8513                                 __md_stop_writes(mddev);
8514                         mddev->safemode = 2;
8515                         mddev_unlock(mddev);
8516                 }
8517                 need_delay = 1;
8518         }
8519         /*
8520          * certain more exotic SCSI devices are known to be
8521          * volatile wrt too early system reboots. While the
8522          * right place to handle this issue is the given
8523          * driver, we do want to have a safe RAID driver ...
8524          */
8525         if (need_delay)
8526                 mdelay(1000*1);
8527
8528         return NOTIFY_DONE;
8529 }
8530
8531 static struct notifier_block md_notifier = {
8532         .notifier_call  = md_notify_reboot,
8533         .next           = NULL,
8534         .priority       = INT_MAX, /* before any real devices */
8535 };
8536
8537 static void md_geninit(void)
8538 {
8539         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8540
8541         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8542 }
8543
8544 static int __init md_init(void)
8545 {
8546         int ret = -ENOMEM;
8547
8548         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8549         if (!md_wq)
8550                 goto err_wq;
8551
8552         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8553         if (!md_misc_wq)
8554                 goto err_misc_wq;
8555
8556         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8557                 goto err_md;
8558
8559         if ((ret = register_blkdev(0, "mdp")) < 0)
8560                 goto err_mdp;
8561         mdp_major = ret;
8562
8563         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8564                             md_probe, NULL, NULL);
8565         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8566                             md_probe, NULL, NULL);
8567
8568         register_reboot_notifier(&md_notifier);
8569         raid_table_header = register_sysctl_table(raid_root_table);
8570
8571         md_geninit();
8572         return 0;
8573
8574 err_mdp:
8575         unregister_blkdev(MD_MAJOR, "md");
8576 err_md:
8577         destroy_workqueue(md_misc_wq);
8578 err_misc_wq:
8579         destroy_workqueue(md_wq);
8580 err_wq:
8581         return ret;
8582 }
8583
8584 #ifndef MODULE
8585
8586 /*
8587  * Searches all registered partitions for autorun RAID arrays
8588  * at boot time.
8589  */
8590
8591 static LIST_HEAD(all_detected_devices);
8592 struct detected_devices_node {
8593         struct list_head list;
8594         dev_t dev;
8595 };
8596
8597 void md_autodetect_dev(dev_t dev)
8598 {
8599         struct detected_devices_node *node_detected_dev;
8600
8601         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8602         if (node_detected_dev) {
8603                 node_detected_dev->dev = dev;
8604                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8605         } else {
8606                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8607                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8608         }
8609 }
8610
8611
8612 static void autostart_arrays(int part)
8613 {
8614         struct md_rdev *rdev;
8615         struct detected_devices_node *node_detected_dev;
8616         dev_t dev;
8617         int i_scanned, i_passed;
8618
8619         i_scanned = 0;
8620         i_passed = 0;
8621
8622         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8623
8624         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8625                 i_scanned++;
8626                 node_detected_dev = list_entry(all_detected_devices.next,
8627                                         struct detected_devices_node, list);
8628                 list_del(&node_detected_dev->list);
8629                 dev = node_detected_dev->dev;
8630                 kfree(node_detected_dev);
8631                 rdev = md_import_device(dev,0, 90);
8632                 if (IS_ERR(rdev))
8633                         continue;
8634
8635                 if (test_bit(Faulty, &rdev->flags)) {
8636                         MD_BUG();
8637                         continue;
8638                 }
8639                 set_bit(AutoDetected, &rdev->flags);
8640                 list_add(&rdev->same_set, &pending_raid_disks);
8641                 i_passed++;
8642         }
8643
8644         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8645                                                 i_scanned, i_passed);
8646
8647         autorun_devices(part);
8648 }
8649
8650 #endif /* !MODULE */
8651
8652 static __exit void md_exit(void)
8653 {
8654         struct mddev *mddev;
8655         struct list_head *tmp;
8656
8657         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8658         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8659
8660         unregister_blkdev(MD_MAJOR,"md");
8661         unregister_blkdev(mdp_major, "mdp");
8662         unregister_reboot_notifier(&md_notifier);
8663         unregister_sysctl_table(raid_table_header);
8664         remove_proc_entry("mdstat", NULL);
8665         for_each_mddev(mddev, tmp) {
8666                 export_array(mddev);
8667                 mddev->hold_active = 0;
8668         }
8669         destroy_workqueue(md_misc_wq);
8670         destroy_workqueue(md_wq);
8671 }
8672
8673 subsys_initcall(md_init);
8674 module_exit(md_exit)
8675
8676 static int get_ro(char *buffer, struct kernel_param *kp)
8677 {
8678         return sprintf(buffer, "%d", start_readonly);
8679 }
8680 static int set_ro(const char *val, struct kernel_param *kp)
8681 {
8682         char *e;
8683         int num = simple_strtoul(val, &e, 10);
8684         if (*val && (*e == '\0' || *e == '\n')) {
8685                 start_readonly = num;
8686                 return 0;
8687         }
8688         return -EINVAL;
8689 }
8690
8691 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8692 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8693
8694 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8695
8696 EXPORT_SYMBOL(register_md_personality);
8697 EXPORT_SYMBOL(unregister_md_personality);
8698 EXPORT_SYMBOL(md_error);
8699 EXPORT_SYMBOL(md_done_sync);
8700 EXPORT_SYMBOL(md_write_start);
8701 EXPORT_SYMBOL(md_write_end);
8702 EXPORT_SYMBOL(md_register_thread);
8703 EXPORT_SYMBOL(md_unregister_thread);
8704 EXPORT_SYMBOL(md_wakeup_thread);
8705 EXPORT_SYMBOL(md_check_recovery);
8706 EXPORT_SYMBOL(md_reap_sync_thread);
8707 MODULE_LICENSE("GPL");
8708 MODULE_DESCRIPTION("MD RAID framework");
8709 MODULE_ALIAS("md");
8710 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);