]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
85e6786653ea17e485b9ec1bd1fec94159d97e3e
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         bio->bi_sector += offset;
198         bio->bi_size = size;
199         offset <<= 9;
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         while (bio->bi_idx < bio->bi_vcnt &&
203                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204                 /* remove this whole bio_vec */
205                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206                 bio->bi_idx++;
207         }
208         if (bio->bi_idx < bio->bi_vcnt) {
209                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211         }
212         /* avoid any complications with bi_idx being non-zero*/
213         if (bio->bi_idx) {
214                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216                 bio->bi_vcnt -= bio->bi_idx;
217                 bio->bi_idx = 0;
218         }
219         /* Make sure vcnt and last bv are not too big */
220         bio_for_each_segment(bvec, bio, i) {
221                 if (sofar + bvec->bv_len > size)
222                         bvec->bv_len = size - sofar;
223                 if (bvec->bv_len == 0) {
224                         bio->bi_vcnt = i;
225                         break;
226                 }
227                 sofar += bvec->bv_len;
228         }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246         atomic_inc(&md_event_count);
247         wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256         atomic_inc(&md_event_count);
257         wake_up(&md_event_waiters);
258 }
259
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)                                     \
276                                                                         \
277         for (({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = all_mddevs.next;                                 \
279                 _mddev = NULL;});                                       \
280              ({ if (_tmp != &all_mddevs)                                \
281                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282                 spin_unlock(&all_mddevs_lock);                          \
283                 if (_mddev) mddev_put(_mddev);                          \
284                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
285                 _tmp != &all_mddevs;});                                 \
286              ({ spin_lock(&all_mddevs_lock);                            \
287                 _tmp = _tmp->next;})                                    \
288                 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300         const int rw = bio_data_dir(bio);
301         struct mddev *mddev = q->queuedata;
302         int cpu;
303         unsigned int sectors;
304
305         if (mddev == NULL || mddev->pers == NULL
306             || !mddev->ready) {
307                 bio_io_error(bio);
308                 return;
309         }
310         smp_rmb(); /* Ensure implications of  'active' are visible */
311         rcu_read_lock();
312         if (mddev->suspended) {
313                 DEFINE_WAIT(__wait);
314                 for (;;) {
315                         prepare_to_wait(&mddev->sb_wait, &__wait,
316                                         TASK_UNINTERRUPTIBLE);
317                         if (!mddev->suspended)
318                                 break;
319                         rcu_read_unlock();
320                         schedule();
321                         rcu_read_lock();
322                 }
323                 finish_wait(&mddev->sb_wait, &__wait);
324         }
325         atomic_inc(&mddev->active_io);
326         rcu_read_unlock();
327
328         /*
329          * save the sectors now since our bio can
330          * go away inside make_request
331          */
332         sectors = bio_sectors(bio);
333         mddev->pers->make_request(mddev, bio);
334
335         cpu = part_stat_lock();
336         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338         part_stat_unlock();
339
340         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341                 wake_up(&mddev->sb_wait);
342 }
343
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352         BUG_ON(mddev->suspended);
353         mddev->suspended = 1;
354         synchronize_rcu();
355         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356         mddev->pers->quiesce(mddev, 1);
357
358         del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361
362 void mddev_resume(struct mddev *mddev)
363 {
364         mddev->suspended = 0;
365         wake_up(&mddev->sb_wait);
366         mddev->pers->quiesce(mddev, 0);
367
368         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369         md_wakeup_thread(mddev->thread);
370         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376         return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379
380 /*
381  * Generic flush handling for md
382  */
383
384 static void md_end_flush(struct bio *bio, int err)
385 {
386         struct md_rdev *rdev = bio->bi_private;
387         struct mddev *mddev = rdev->mddev;
388
389         rdev_dec_pending(rdev, mddev);
390
391         if (atomic_dec_and_test(&mddev->flush_pending)) {
392                 /* The pre-request flush has finished */
393                 queue_work(md_wq, &mddev->flush_work);
394         }
395         bio_put(bio);
396 }
397
398 static void md_submit_flush_data(struct work_struct *ws);
399
400 static void submit_flushes(struct work_struct *ws)
401 {
402         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403         struct md_rdev *rdev;
404
405         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406         atomic_set(&mddev->flush_pending, 1);
407         rcu_read_lock();
408         rdev_for_each_rcu(rdev, mddev)
409                 if (rdev->raid_disk >= 0 &&
410                     !test_bit(Faulty, &rdev->flags)) {
411                         /* Take two references, one is dropped
412                          * when request finishes, one after
413                          * we reclaim rcu_read_lock
414                          */
415                         struct bio *bi;
416                         atomic_inc(&rdev->nr_pending);
417                         atomic_inc(&rdev->nr_pending);
418                         rcu_read_unlock();
419                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420                         bi->bi_end_io = md_end_flush;
421                         bi->bi_private = rdev;
422                         bi->bi_bdev = rdev->bdev;
423                         atomic_inc(&mddev->flush_pending);
424                         submit_bio(WRITE_FLUSH, bi);
425                         rcu_read_lock();
426                         rdev_dec_pending(rdev, mddev);
427                 }
428         rcu_read_unlock();
429         if (atomic_dec_and_test(&mddev->flush_pending))
430                 queue_work(md_wq, &mddev->flush_work);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436         struct bio *bio = mddev->flush_bio;
437
438         if (bio->bi_size == 0)
439                 /* an empty barrier - all done */
440                 bio_endio(bio, 0);
441         else {
442                 bio->bi_rw &= ~REQ_FLUSH;
443                 mddev->pers->make_request(mddev, bio);
444         }
445
446         mddev->flush_bio = NULL;
447         wake_up(&mddev->sb_wait);
448 }
449
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452         spin_lock_irq(&mddev->write_lock);
453         wait_event_lock_irq(mddev->sb_wait,
454                             !mddev->flush_bio,
455                             mddev->write_lock, /*nothing*/);
456         mddev->flush_bio = bio;
457         spin_unlock_irq(&mddev->write_lock);
458
459         INIT_WORK(&mddev->flush_work, submit_flushes);
460         queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466         struct mddev *mddev = cb->data;
467         md_wakeup_thread(mddev->thread);
468         kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474         atomic_inc(&mddev->active);
475         return mddev;
476 }
477
478 static void mddev_delayed_delete(struct work_struct *ws);
479
480 static void mddev_put(struct mddev *mddev)
481 {
482         struct bio_set *bs = NULL;
483
484         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485                 return;
486         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487             mddev->ctime == 0 && !mddev->hold_active) {
488                 /* Array is not configured at all, and not held active,
489                  * so destroy it */
490                 list_del_init(&mddev->all_mddevs);
491                 bs = mddev->bio_set;
492                 mddev->bio_set = NULL;
493                 if (mddev->gendisk) {
494                         /* We did a probe so need to clean up.  Call
495                          * queue_work inside the spinlock so that
496                          * flush_workqueue() after mddev_find will
497                          * succeed in waiting for the work to be done.
498                          */
499                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500                         queue_work(md_misc_wq, &mddev->del_work);
501                 } else
502                         kfree(mddev);
503         }
504         spin_unlock(&all_mddevs_lock);
505         if (bs)
506                 bioset_free(bs);
507 }
508
509 void mddev_init(struct mddev *mddev)
510 {
511         mutex_init(&mddev->open_mutex);
512         mutex_init(&mddev->reconfig_mutex);
513         mutex_init(&mddev->bitmap_info.mutex);
514         INIT_LIST_HEAD(&mddev->disks);
515         INIT_LIST_HEAD(&mddev->all_mddevs);
516         init_timer(&mddev->safemode_timer);
517         atomic_set(&mddev->active, 1);
518         atomic_set(&mddev->openers, 0);
519         atomic_set(&mddev->active_io, 0);
520         spin_lock_init(&mddev->write_lock);
521         atomic_set(&mddev->flush_pending, 0);
522         init_waitqueue_head(&mddev->sb_wait);
523         init_waitqueue_head(&mddev->recovery_wait);
524         mddev->reshape_position = MaxSector;
525         mddev->reshape_backwards = 0;
526         mddev->resync_min = 0;
527         mddev->resync_max = MaxSector;
528         mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531
532 static struct mddev * mddev_find(dev_t unit)
533 {
534         struct mddev *mddev, *new = NULL;
535
536         if (unit && MAJOR(unit) != MD_MAJOR)
537                 unit &= ~((1<<MdpMinorShift)-1);
538
539  retry:
540         spin_lock(&all_mddevs_lock);
541
542         if (unit) {
543                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544                         if (mddev->unit == unit) {
545                                 mddev_get(mddev);
546                                 spin_unlock(&all_mddevs_lock);
547                                 kfree(new);
548                                 return mddev;
549                         }
550
551                 if (new) {
552                         list_add(&new->all_mddevs, &all_mddevs);
553                         spin_unlock(&all_mddevs_lock);
554                         new->hold_active = UNTIL_IOCTL;
555                         return new;
556                 }
557         } else if (new) {
558                 /* find an unused unit number */
559                 static int next_minor = 512;
560                 int start = next_minor;
561                 int is_free = 0;
562                 int dev = 0;
563                 while (!is_free) {
564                         dev = MKDEV(MD_MAJOR, next_minor);
565                         next_minor++;
566                         if (next_minor > MINORMASK)
567                                 next_minor = 0;
568                         if (next_minor == start) {
569                                 /* Oh dear, all in use. */
570                                 spin_unlock(&all_mddevs_lock);
571                                 kfree(new);
572                                 return NULL;
573                         }
574                                 
575                         is_free = 1;
576                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577                                 if (mddev->unit == dev) {
578                                         is_free = 0;
579                                         break;
580                                 }
581                 }
582                 new->unit = dev;
583                 new->md_minor = MINOR(dev);
584                 new->hold_active = UNTIL_STOP;
585                 list_add(&new->all_mddevs, &all_mddevs);
586                 spin_unlock(&all_mddevs_lock);
587                 return new;
588         }
589         spin_unlock(&all_mddevs_lock);
590
591         new = kzalloc(sizeof(*new), GFP_KERNEL);
592         if (!new)
593                 return NULL;
594
595         new->unit = unit;
596         if (MAJOR(unit) == MD_MAJOR)
597                 new->md_minor = MINOR(unit);
598         else
599                 new->md_minor = MINOR(unit) >> MdpMinorShift;
600
601         mddev_init(new);
602
603         goto retry;
604 }
605
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608         return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613         return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618         return mutex_trylock(&mddev->reconfig_mutex);
619 }
620
621 static struct attribute_group md_redundancy_group;
622
623 static void mddev_unlock(struct mddev * mddev)
624 {
625         if (mddev->to_remove) {
626                 /* These cannot be removed under reconfig_mutex as
627                  * an access to the files will try to take reconfig_mutex
628                  * while holding the file unremovable, which leads to
629                  * a deadlock.
630                  * So hold set sysfs_active while the remove in happeing,
631                  * and anything else which might set ->to_remove or my
632                  * otherwise change the sysfs namespace will fail with
633                  * -EBUSY if sysfs_active is still set.
634                  * We set sysfs_active under reconfig_mutex and elsewhere
635                  * test it under the same mutex to ensure its correct value
636                  * is seen.
637                  */
638                 struct attribute_group *to_remove = mddev->to_remove;
639                 mddev->to_remove = NULL;
640                 mddev->sysfs_active = 1;
641                 mutex_unlock(&mddev->reconfig_mutex);
642
643                 if (mddev->kobj.sd) {
644                         if (to_remove != &md_redundancy_group)
645                                 sysfs_remove_group(&mddev->kobj, to_remove);
646                         if (mddev->pers == NULL ||
647                             mddev->pers->sync_request == NULL) {
648                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649                                 if (mddev->sysfs_action)
650                                         sysfs_put(mddev->sysfs_action);
651                                 mddev->sysfs_action = NULL;
652                         }
653                 }
654                 mddev->sysfs_active = 0;
655         } else
656                 mutex_unlock(&mddev->reconfig_mutex);
657
658         /* As we've dropped the mutex we need a spinlock to
659          * make sure the thread doesn't disappear
660          */
661         spin_lock(&pers_lock);
662         md_wakeup_thread(mddev->thread);
663         spin_unlock(&pers_lock);
664 }
665
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each(rdev, mddev)
671                 if (rdev->desc_nr == nr)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679         struct md_rdev *rdev;
680
681         rdev_for_each_rcu(rdev, mddev)
682                 if (rdev->desc_nr == nr)
683                         return rdev;
684
685         return NULL;
686 }
687
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690         struct md_rdev *rdev;
691
692         rdev_for_each(rdev, mddev)
693                 if (rdev->bdev->bd_dev == dev)
694                         return rdev;
695
696         return NULL;
697 }
698
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701         struct md_rdev *rdev;
702
703         rdev_for_each_rcu(rdev, mddev)
704                 if (rdev->bdev->bd_dev == dev)
705                         return rdev;
706
707         return NULL;
708 }
709
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712         struct md_personality *pers;
713         list_for_each_entry(pers, &pers_list, list) {
714                 if (level != LEVEL_NONE && pers->level == level)
715                         return pers;
716                 if (strcmp(pers->name, clevel)==0)
717                         return pers;
718         }
719         return NULL;
720 }
721
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726         return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731         if (rdev->sb_page)
732                 MD_BUG();
733
734         rdev->sb_page = alloc_page(GFP_KERNEL);
735         if (!rdev->sb_page) {
736                 printk(KERN_ALERT "md: out of memory.\n");
737                 return -ENOMEM;
738         }
739
740         return 0;
741 }
742
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745         if (rdev->sb_page) {
746                 put_page(rdev->sb_page);
747                 rdev->sb_loaded = 0;
748                 rdev->sb_page = NULL;
749                 rdev->sb_start = 0;
750                 rdev->sectors = 0;
751         }
752         if (rdev->bb_page) {
753                 put_page(rdev->bb_page);
754                 rdev->bb_page = NULL;
755         }
756         kfree(rdev->badblocks.page);
757         rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760
761 static void super_written(struct bio *bio, int error)
762 {
763         struct md_rdev *rdev = bio->bi_private;
764         struct mddev *mddev = rdev->mddev;
765
766         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767                 printk("md: super_written gets error=%d, uptodate=%d\n",
768                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770                 md_error(mddev, rdev);
771         }
772
773         if (atomic_dec_and_test(&mddev->pending_writes))
774                 wake_up(&mddev->sb_wait);
775         bio_put(bio);
776 }
777
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779                    sector_t sector, int size, struct page *page)
780 {
781         /* write first size bytes of page to sector of rdev
782          * Increment mddev->pending_writes before returning
783          * and decrement it on completion, waking up sb_wait
784          * if zero is reached.
785          * If an error occurred, call md_error
786          */
787         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788
789         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790         bio->bi_sector = sector;
791         bio_add_page(bio, page, size, 0);
792         bio->bi_private = rdev;
793         bio->bi_end_io = super_written;
794
795         atomic_inc(&mddev->pending_writes);
796         submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798
799 void md_super_wait(struct mddev *mddev)
800 {
801         /* wait for all superblock writes that were scheduled to complete */
802         DEFINE_WAIT(wq);
803         for(;;) {
804                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805                 if (atomic_read(&mddev->pending_writes)==0)
806                         break;
807                 schedule();
808         }
809         finish_wait(&mddev->sb_wait, &wq);
810 }
811
812 static void bi_complete(struct bio *bio, int error)
813 {
814         complete((struct completion*)bio->bi_private);
815 }
816
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818                  struct page *page, int rw, bool metadata_op)
819 {
820         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821         struct completion event;
822         int ret;
823
824         rw |= REQ_SYNC;
825
826         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827                 rdev->meta_bdev : rdev->bdev;
828         if (metadata_op)
829                 bio->bi_sector = sector + rdev->sb_start;
830         else if (rdev->mddev->reshape_position != MaxSector &&
831                  (rdev->mddev->reshape_backwards ==
832                   (sector >= rdev->mddev->reshape_position)))
833                 bio->bi_sector = sector + rdev->new_data_offset;
834         else
835                 bio->bi_sector = sector + rdev->data_offset;
836         bio_add_page(bio, page, size, 0);
837         init_completion(&event);
838         bio->bi_private = &event;
839         bio->bi_end_io = bi_complete;
840         submit_bio(rw, bio);
841         wait_for_completion(&event);
842
843         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844         bio_put(bio);
845         return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851         char b[BDEVNAME_SIZE];
852         if (!rdev->sb_page) {
853                 MD_BUG();
854                 return -EINVAL;
855         }
856         if (rdev->sb_loaded)
857                 return 0;
858
859
860         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861                 goto fail;
862         rdev->sb_loaded = 1;
863         return 0;
864
865 fail:
866         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867                 bdevname(rdev->bdev,b));
868         return -EINVAL;
869 }
870
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873         return  sb1->set_uuid0 == sb2->set_uuid0 &&
874                 sb1->set_uuid1 == sb2->set_uuid1 &&
875                 sb1->set_uuid2 == sb2->set_uuid2 &&
876                 sb1->set_uuid3 == sb2->set_uuid3;
877 }
878
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881         int ret;
882         mdp_super_t *tmp1, *tmp2;
883
884         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886
887         if (!tmp1 || !tmp2) {
888                 ret = 0;
889                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890                 goto abort;
891         }
892
893         *tmp1 = *sb1;
894         *tmp2 = *sb2;
895
896         /*
897          * nr_disks is not constant
898          */
899         tmp1->nr_disks = 0;
900         tmp2->nr_disks = 0;
901
902         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904         kfree(tmp1);
905         kfree(tmp2);
906         return ret;
907 }
908
909
910 static u32 md_csum_fold(u32 csum)
911 {
912         csum = (csum & 0xffff) + (csum >> 16);
913         return (csum & 0xffff) + (csum >> 16);
914 }
915
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918         u64 newcsum = 0;
919         u32 *sb32 = (u32*)sb;
920         int i;
921         unsigned int disk_csum, csum;
922
923         disk_csum = sb->sb_csum;
924         sb->sb_csum = 0;
925
926         for (i = 0; i < MD_SB_BYTES/4 ; i++)
927                 newcsum += sb32[i];
928         csum = (newcsum & 0xffffffff) + (newcsum>>32);
929
930
931 #ifdef CONFIG_ALPHA
932         /* This used to use csum_partial, which was wrong for several
933          * reasons including that different results are returned on
934          * different architectures.  It isn't critical that we get exactly
935          * the same return value as before (we always csum_fold before
936          * testing, and that removes any differences).  However as we
937          * know that csum_partial always returned a 16bit value on
938          * alphas, do a fold to maximise conformity to previous behaviour.
939          */
940         sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942         sb->sb_csum = disk_csum;
943 #endif
944         return csum;
945 }
946
947
948 /*
949  * Handle superblock details.
950  * We want to be able to handle multiple superblock formats
951  * so we have a common interface to them all, and an array of
952  * different handlers.
953  * We rely on user-space to write the initial superblock, and support
954  * reading and updating of superblocks.
955  * Interface methods are:
956  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957  *      loads and validates a superblock on dev.
958  *      if refdev != NULL, compare superblocks on both devices
959  *    Return:
960  *      0 - dev has a superblock that is compatible with refdev
961  *      1 - dev has a superblock that is compatible and newer than refdev
962  *          so dev should be used as the refdev in future
963  *     -EINVAL superblock incompatible or invalid
964  *     -othererror e.g. -EIO
965  *
966  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
967  *      Verify that dev is acceptable into mddev.
968  *       The first time, mddev->raid_disks will be 0, and data from
969  *       dev should be merged in.  Subsequent calls check that dev
970  *       is new enough.  Return 0 or -EINVAL
971  *
972  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
973  *     Update the superblock for rdev with data in mddev
974  *     This does not write to disc.
975  *
976  */
977
978 struct super_type  {
979         char                *name;
980         struct module       *owner;
981         int                 (*load_super)(struct md_rdev *rdev,
982                                           struct md_rdev *refdev,
983                                           int minor_version);
984         int                 (*validate_super)(struct mddev *mddev,
985                                               struct md_rdev *rdev);
986         void                (*sync_super)(struct mddev *mddev,
987                                           struct md_rdev *rdev);
988         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
989                                                 sector_t num_sectors);
990         int                 (*allow_new_offset)(struct md_rdev *rdev,
991                                                 unsigned long long new_offset);
992 };
993
994 /*
995  * Check that the given mddev has no bitmap.
996  *
997  * This function is called from the run method of all personalities that do not
998  * support bitmaps. It prints an error message and returns non-zero if mddev
999  * has a bitmap. Otherwise, it returns 0.
1000  *
1001  */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005                 return 0;
1006         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007                 mdname(mddev), mddev->pers->name);
1008         return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011
1012 /*
1013  * load_super for 0.90.0 
1014  */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018         mdp_super_t *sb;
1019         int ret;
1020
1021         /*
1022          * Calculate the position of the superblock (512byte sectors),
1023          * it's at the end of the disk.
1024          *
1025          * It also happens to be a multiple of 4Kb.
1026          */
1027         rdev->sb_start = calc_dev_sboffset(rdev);
1028
1029         ret = read_disk_sb(rdev, MD_SB_BYTES);
1030         if (ret) return ret;
1031
1032         ret = -EINVAL;
1033
1034         bdevname(rdev->bdev, b);
1035         sb = page_address(rdev->sb_page);
1036
1037         if (sb->md_magic != MD_SB_MAGIC) {
1038                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039                        b);
1040                 goto abort;
1041         }
1042
1043         if (sb->major_version != 0 ||
1044             sb->minor_version < 90 ||
1045             sb->minor_version > 91) {
1046                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047                         sb->major_version, sb->minor_version,
1048                         b);
1049                 goto abort;
1050         }
1051
1052         if (sb->raid_disks <= 0)
1053                 goto abort;
1054
1055         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057                         b);
1058                 goto abort;
1059         }
1060
1061         rdev->preferred_minor = sb->md_minor;
1062         rdev->data_offset = 0;
1063         rdev->new_data_offset = 0;
1064         rdev->sb_size = MD_SB_BYTES;
1065         rdev->badblocks.shift = -1;
1066
1067         if (sb->level == LEVEL_MULTIPATH)
1068                 rdev->desc_nr = -1;
1069         else
1070                 rdev->desc_nr = sb->this_disk.number;
1071
1072         if (!refdev) {
1073                 ret = 1;
1074         } else {
1075                 __u64 ev1, ev2;
1076                 mdp_super_t *refsb = page_address(refdev->sb_page);
1077                 if (!uuid_equal(refsb, sb)) {
1078                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079                                 b, bdevname(refdev->bdev,b2));
1080                         goto abort;
1081                 }
1082                 if (!sb_equal(refsb, sb)) {
1083                         printk(KERN_WARNING "md: %s has same UUID"
1084                                " but different superblock to %s\n",
1085                                b, bdevname(refdev->bdev, b2));
1086                         goto abort;
1087                 }
1088                 ev1 = md_event(sb);
1089                 ev2 = md_event(refsb);
1090                 if (ev1 > ev2)
1091                         ret = 1;
1092                 else 
1093                         ret = 0;
1094         }
1095         rdev->sectors = rdev->sb_start;
1096         /* Limit to 4TB as metadata cannot record more than that.
1097          * (not needed for Linear and RAID0 as metadata doesn't
1098          * record this size)
1099          */
1100         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101                 rdev->sectors = (2ULL << 32) - 2;
1102
1103         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104                 /* "this cannot possibly happen" ... */
1105                 ret = -EINVAL;
1106
1107  abort:
1108         return ret;
1109 }
1110
1111 /*
1112  * validate_super for 0.90.0
1113  */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116         mdp_disk_t *desc;
1117         mdp_super_t *sb = page_address(rdev->sb_page);
1118         __u64 ev1 = md_event(sb);
1119
1120         rdev->raid_disk = -1;
1121         clear_bit(Faulty, &rdev->flags);
1122         clear_bit(In_sync, &rdev->flags);
1123         clear_bit(WriteMostly, &rdev->flags);
1124
1125         if (mddev->raid_disks == 0) {
1126                 mddev->major_version = 0;
1127                 mddev->minor_version = sb->minor_version;
1128                 mddev->patch_version = sb->patch_version;
1129                 mddev->external = 0;
1130                 mddev->chunk_sectors = sb->chunk_size >> 9;
1131                 mddev->ctime = sb->ctime;
1132                 mddev->utime = sb->utime;
1133                 mddev->level = sb->level;
1134                 mddev->clevel[0] = 0;
1135                 mddev->layout = sb->layout;
1136                 mddev->raid_disks = sb->raid_disks;
1137                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138                 mddev->events = ev1;
1139                 mddev->bitmap_info.offset = 0;
1140                 mddev->bitmap_info.space = 0;
1141                 /* bitmap can use 60 K after the 4K superblocks */
1142                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144                 mddev->reshape_backwards = 0;
1145
1146                 if (mddev->minor_version >= 91) {
1147                         mddev->reshape_position = sb->reshape_position;
1148                         mddev->delta_disks = sb->delta_disks;
1149                         mddev->new_level = sb->new_level;
1150                         mddev->new_layout = sb->new_layout;
1151                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152                         if (mddev->delta_disks < 0)
1153                                 mddev->reshape_backwards = 1;
1154                 } else {
1155                         mddev->reshape_position = MaxSector;
1156                         mddev->delta_disks = 0;
1157                         mddev->new_level = mddev->level;
1158                         mddev->new_layout = mddev->layout;
1159                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1160                 }
1161
1162                 if (sb->state & (1<<MD_SB_CLEAN))
1163                         mddev->recovery_cp = MaxSector;
1164                 else {
1165                         if (sb->events_hi == sb->cp_events_hi && 
1166                                 sb->events_lo == sb->cp_events_lo) {
1167                                 mddev->recovery_cp = sb->recovery_cp;
1168                         } else
1169                                 mddev->recovery_cp = 0;
1170                 }
1171
1172                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177                 mddev->max_disks = MD_SB_DISKS;
1178
1179                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180                     mddev->bitmap_info.file == NULL) {
1181                         mddev->bitmap_info.offset =
1182                                 mddev->bitmap_info.default_offset;
1183                         mddev->bitmap_info.space =
1184                                 mddev->bitmap_info.space;
1185                 }
1186
1187         } else if (mddev->pers == NULL) {
1188                 /* Insist on good event counter while assembling, except
1189                  * for spares (which don't need an event count) */
1190                 ++ev1;
1191                 if (sb->disks[rdev->desc_nr].state & (
1192                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193                         if (ev1 < mddev->events) 
1194                                 return -EINVAL;
1195         } else if (mddev->bitmap) {
1196                 /* if adding to array with a bitmap, then we can accept an
1197                  * older device ... but not too old.
1198                  */
1199                 if (ev1 < mddev->bitmap->events_cleared)
1200                         return 0;
1201         } else {
1202                 if (ev1 < mddev->events)
1203                         /* just a hot-add of a new device, leave raid_disk at -1 */
1204                         return 0;
1205         }
1206
1207         if (mddev->level != LEVEL_MULTIPATH) {
1208                 desc = sb->disks + rdev->desc_nr;
1209
1210                 if (desc->state & (1<<MD_DISK_FAULTY))
1211                         set_bit(Faulty, &rdev->flags);
1212                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213                             desc->raid_disk < mddev->raid_disks */) {
1214                         set_bit(In_sync, &rdev->flags);
1215                         rdev->raid_disk = desc->raid_disk;
1216                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217                         /* active but not in sync implies recovery up to
1218                          * reshape position.  We don't know exactly where
1219                          * that is, so set to zero for now */
1220                         if (mddev->minor_version >= 91) {
1221                                 rdev->recovery_offset = 0;
1222                                 rdev->raid_disk = desc->raid_disk;
1223                         }
1224                 }
1225                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226                         set_bit(WriteMostly, &rdev->flags);
1227         } else /* MULTIPATH are always insync */
1228                 set_bit(In_sync, &rdev->flags);
1229         return 0;
1230 }
1231
1232 /*
1233  * sync_super for 0.90.0
1234  */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237         mdp_super_t *sb;
1238         struct md_rdev *rdev2;
1239         int next_spare = mddev->raid_disks;
1240
1241
1242         /* make rdev->sb match mddev data..
1243          *
1244          * 1/ zero out disks
1245          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246          * 3/ any empty disks < next_spare become removed
1247          *
1248          * disks[0] gets initialised to REMOVED because
1249          * we cannot be sure from other fields if it has
1250          * been initialised or not.
1251          */
1252         int i;
1253         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254
1255         rdev->sb_size = MD_SB_BYTES;
1256
1257         sb = page_address(rdev->sb_page);
1258
1259         memset(sb, 0, sizeof(*sb));
1260
1261         sb->md_magic = MD_SB_MAGIC;
1262         sb->major_version = mddev->major_version;
1263         sb->patch_version = mddev->patch_version;
1264         sb->gvalid_words  = 0; /* ignored */
1265         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269
1270         sb->ctime = mddev->ctime;
1271         sb->level = mddev->level;
1272         sb->size = mddev->dev_sectors / 2;
1273         sb->raid_disks = mddev->raid_disks;
1274         sb->md_minor = mddev->md_minor;
1275         sb->not_persistent = 0;
1276         sb->utime = mddev->utime;
1277         sb->state = 0;
1278         sb->events_hi = (mddev->events>>32);
1279         sb->events_lo = (u32)mddev->events;
1280
1281         if (mddev->reshape_position == MaxSector)
1282                 sb->minor_version = 90;
1283         else {
1284                 sb->minor_version = 91;
1285                 sb->reshape_position = mddev->reshape_position;
1286                 sb->new_level = mddev->new_level;
1287                 sb->delta_disks = mddev->delta_disks;
1288                 sb->new_layout = mddev->new_layout;
1289                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1290         }
1291         mddev->minor_version = sb->minor_version;
1292         if (mddev->in_sync)
1293         {
1294                 sb->recovery_cp = mddev->recovery_cp;
1295                 sb->cp_events_hi = (mddev->events>>32);
1296                 sb->cp_events_lo = (u32)mddev->events;
1297                 if (mddev->recovery_cp == MaxSector)
1298                         sb->state = (1<< MD_SB_CLEAN);
1299         } else
1300                 sb->recovery_cp = 0;
1301
1302         sb->layout = mddev->layout;
1303         sb->chunk_size = mddev->chunk_sectors << 9;
1304
1305         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307
1308         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309         rdev_for_each(rdev2, mddev) {
1310                 mdp_disk_t *d;
1311                 int desc_nr;
1312                 int is_active = test_bit(In_sync, &rdev2->flags);
1313
1314                 if (rdev2->raid_disk >= 0 &&
1315                     sb->minor_version >= 91)
1316                         /* we have nowhere to store the recovery_offset,
1317                          * but if it is not below the reshape_position,
1318                          * we can piggy-back on that.
1319                          */
1320                         is_active = 1;
1321                 if (rdev2->raid_disk < 0 ||
1322                     test_bit(Faulty, &rdev2->flags))
1323                         is_active = 0;
1324                 if (is_active)
1325                         desc_nr = rdev2->raid_disk;
1326                 else
1327                         desc_nr = next_spare++;
1328                 rdev2->desc_nr = desc_nr;
1329                 d = &sb->disks[rdev2->desc_nr];
1330                 nr_disks++;
1331                 d->number = rdev2->desc_nr;
1332                 d->major = MAJOR(rdev2->bdev->bd_dev);
1333                 d->minor = MINOR(rdev2->bdev->bd_dev);
1334                 if (is_active)
1335                         d->raid_disk = rdev2->raid_disk;
1336                 else
1337                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1338                 if (test_bit(Faulty, &rdev2->flags))
1339                         d->state = (1<<MD_DISK_FAULTY);
1340                 else if (is_active) {
1341                         d->state = (1<<MD_DISK_ACTIVE);
1342                         if (test_bit(In_sync, &rdev2->flags))
1343                                 d->state |= (1<<MD_DISK_SYNC);
1344                         active++;
1345                         working++;
1346                 } else {
1347                         d->state = 0;
1348                         spare++;
1349                         working++;
1350                 }
1351                 if (test_bit(WriteMostly, &rdev2->flags))
1352                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353         }
1354         /* now set the "removed" and "faulty" bits on any missing devices */
1355         for (i=0 ; i < mddev->raid_disks ; i++) {
1356                 mdp_disk_t *d = &sb->disks[i];
1357                 if (d->state == 0 && d->number == 0) {
1358                         d->number = i;
1359                         d->raid_disk = i;
1360                         d->state = (1<<MD_DISK_REMOVED);
1361                         d->state |= (1<<MD_DISK_FAULTY);
1362                         failed++;
1363                 }
1364         }
1365         sb->nr_disks = nr_disks;
1366         sb->active_disks = active;
1367         sb->working_disks = working;
1368         sb->failed_disks = failed;
1369         sb->spare_disks = spare;
1370
1371         sb->this_disk = sb->disks[rdev->desc_nr];
1372         sb->sb_csum = calc_sb_csum(sb);
1373 }
1374
1375 /*
1376  * rdev_size_change for 0.90.0
1377  */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382                 return 0; /* component must fit device */
1383         if (rdev->mddev->bitmap_info.offset)
1384                 return 0; /* can't move bitmap */
1385         rdev->sb_start = calc_dev_sboffset(rdev);
1386         if (!num_sectors || num_sectors > rdev->sb_start)
1387                 num_sectors = rdev->sb_start;
1388         /* Limit to 4TB as metadata cannot record more than that.
1389          * 4TB == 2^32 KB, or 2*2^32 sectors.
1390          */
1391         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392                 num_sectors = (2ULL << 32) - 2;
1393         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394                        rdev->sb_page);
1395         md_super_wait(rdev->mddev);
1396         return num_sectors;
1397 }
1398
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402         /* non-zero offset changes not possible with v0.90 */
1403         return new_offset == 0;
1404 }
1405
1406 /*
1407  * version 1 superblock
1408  */
1409
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412         __le32 disk_csum;
1413         u32 csum;
1414         unsigned long long newcsum;
1415         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416         __le32 *isuper = (__le32*)sb;
1417         int i;
1418
1419         disk_csum = sb->sb_csum;
1420         sb->sb_csum = 0;
1421         newcsum = 0;
1422         for (i=0; size>=4; size -= 4 )
1423                 newcsum += le32_to_cpu(*isuper++);
1424
1425         if (size == 2)
1426                 newcsum += le16_to_cpu(*(__le16*) isuper);
1427
1428         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429         sb->sb_csum = disk_csum;
1430         return cpu_to_le32(csum);
1431 }
1432
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434                             int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437         struct mdp_superblock_1 *sb;
1438         int ret;
1439         sector_t sb_start;
1440         sector_t sectors;
1441         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442         int bmask;
1443
1444         /*
1445          * Calculate the position of the superblock in 512byte sectors.
1446          * It is always aligned to a 4K boundary and
1447          * depeding on minor_version, it can be:
1448          * 0: At least 8K, but less than 12K, from end of device
1449          * 1: At start of device
1450          * 2: 4K from start of device.
1451          */
1452         switch(minor_version) {
1453         case 0:
1454                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455                 sb_start -= 8*2;
1456                 sb_start &= ~(sector_t)(4*2-1);
1457                 break;
1458         case 1:
1459                 sb_start = 0;
1460                 break;
1461         case 2:
1462                 sb_start = 8;
1463                 break;
1464         default:
1465                 return -EINVAL;
1466         }
1467         rdev->sb_start = sb_start;
1468
1469         /* superblock is rarely larger than 1K, but it can be larger,
1470          * and it is safe to read 4k, so we do that
1471          */
1472         ret = read_disk_sb(rdev, 4096);
1473         if (ret) return ret;
1474
1475
1476         sb = page_address(rdev->sb_page);
1477
1478         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479             sb->major_version != cpu_to_le32(1) ||
1480             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483                 return -EINVAL;
1484
1485         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486                 printk("md: invalid superblock checksum on %s\n",
1487                         bdevname(rdev->bdev,b));
1488                 return -EINVAL;
1489         }
1490         if (le64_to_cpu(sb->data_size) < 10) {
1491                 printk("md: data_size too small on %s\n",
1492                        bdevname(rdev->bdev,b));
1493                 return -EINVAL;
1494         }
1495         if (sb->pad0 ||
1496             sb->pad3[0] ||
1497             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498                 /* Some padding is non-zero, might be a new feature */
1499                 return -EINVAL;
1500
1501         rdev->preferred_minor = 0xffff;
1502         rdev->data_offset = le64_to_cpu(sb->data_offset);
1503         rdev->new_data_offset = rdev->data_offset;
1504         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508
1509         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511         if (rdev->sb_size & bmask)
1512                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513
1514         if (minor_version
1515             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516                 return -EINVAL;
1517         if (minor_version
1518             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519                 return -EINVAL;
1520
1521         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522                 rdev->desc_nr = -1;
1523         else
1524                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525
1526         if (!rdev->bb_page) {
1527                 rdev->bb_page = alloc_page(GFP_KERNEL);
1528                 if (!rdev->bb_page)
1529                         return -ENOMEM;
1530         }
1531         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532             rdev->badblocks.count == 0) {
1533                 /* need to load the bad block list.
1534                  * Currently we limit it to one page.
1535                  */
1536                 s32 offset;
1537                 sector_t bb_sector;
1538                 u64 *bbp;
1539                 int i;
1540                 int sectors = le16_to_cpu(sb->bblog_size);
1541                 if (sectors > (PAGE_SIZE / 512))
1542                         return -EINVAL;
1543                 offset = le32_to_cpu(sb->bblog_offset);
1544                 if (offset == 0)
1545                         return -EINVAL;
1546                 bb_sector = (long long)offset;
1547                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548                                   rdev->bb_page, READ, true))
1549                         return -EIO;
1550                 bbp = (u64 *)page_address(rdev->bb_page);
1551                 rdev->badblocks.shift = sb->bblog_shift;
1552                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553                         u64 bb = le64_to_cpu(*bbp);
1554                         int count = bb & (0x3ff);
1555                         u64 sector = bb >> 10;
1556                         sector <<= sb->bblog_shift;
1557                         count <<= sb->bblog_shift;
1558                         if (bb + 1 == 0)
1559                                 break;
1560                         if (md_set_badblocks(&rdev->badblocks,
1561                                              sector, count, 1) == 0)
1562                                 return -EINVAL;
1563                 }
1564         } else if (sb->bblog_offset == 0)
1565                 rdev->badblocks.shift = -1;
1566
1567         if (!refdev) {
1568                 ret = 1;
1569         } else {
1570                 __u64 ev1, ev2;
1571                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572
1573                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574                     sb->level != refsb->level ||
1575                     sb->layout != refsb->layout ||
1576                     sb->chunksize != refsb->chunksize) {
1577                         printk(KERN_WARNING "md: %s has strangely different"
1578                                 " superblock to %s\n",
1579                                 bdevname(rdev->bdev,b),
1580                                 bdevname(refdev->bdev,b2));
1581                         return -EINVAL;
1582                 }
1583                 ev1 = le64_to_cpu(sb->events);
1584                 ev2 = le64_to_cpu(refsb->events);
1585
1586                 if (ev1 > ev2)
1587                         ret = 1;
1588                 else
1589                         ret = 0;
1590         }
1591         if (minor_version) {
1592                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593                 sectors -= rdev->data_offset;
1594         } else
1595                 sectors = rdev->sb_start;
1596         if (sectors < le64_to_cpu(sb->data_size))
1597                 return -EINVAL;
1598         rdev->sectors = le64_to_cpu(sb->data_size);
1599         return ret;
1600 }
1601
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605         __u64 ev1 = le64_to_cpu(sb->events);
1606
1607         rdev->raid_disk = -1;
1608         clear_bit(Faulty, &rdev->flags);
1609         clear_bit(In_sync, &rdev->flags);
1610         clear_bit(WriteMostly, &rdev->flags);
1611
1612         if (mddev->raid_disks == 0) {
1613                 mddev->major_version = 1;
1614                 mddev->patch_version = 0;
1615                 mddev->external = 0;
1616                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1617                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1618                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1619                 mddev->level = le32_to_cpu(sb->level);
1620                 mddev->clevel[0] = 0;
1621                 mddev->layout = le32_to_cpu(sb->layout);
1622                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1623                 mddev->dev_sectors = le64_to_cpu(sb->size);
1624                 mddev->events = ev1;
1625                 mddev->bitmap_info.offset = 0;
1626                 mddev->bitmap_info.space = 0;
1627                 /* Default location for bitmap is 1K after superblock
1628                  * using 3K - total of 4K
1629                  */
1630                 mddev->bitmap_info.default_offset = 1024 >> 9;
1631                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1632                 mddev->reshape_backwards = 0;
1633
1634                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1635                 memcpy(mddev->uuid, sb->set_uuid, 16);
1636
1637                 mddev->max_disks =  (4096-256)/2;
1638
1639                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1640                     mddev->bitmap_info.file == NULL) {
1641                         mddev->bitmap_info.offset =
1642                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1643                         /* Metadata doesn't record how much space is available.
1644                          * For 1.0, we assume we can use up to the superblock
1645                          * if before, else to 4K beyond superblock.
1646                          * For others, assume no change is possible.
1647                          */
1648                         if (mddev->minor_version > 0)
1649                                 mddev->bitmap_info.space = 0;
1650                         else if (mddev->bitmap_info.offset > 0)
1651                                 mddev->bitmap_info.space =
1652                                         8 - mddev->bitmap_info.offset;
1653                         else
1654                                 mddev->bitmap_info.space =
1655                                         -mddev->bitmap_info.offset;
1656                 }
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                         if (mddev->delta_disks < 0 ||
1665                             (mddev->delta_disks == 0 &&
1666                              (le32_to_cpu(sb->feature_map)
1667                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1668                                 mddev->reshape_backwards = 1;
1669                 } else {
1670                         mddev->reshape_position = MaxSector;
1671                         mddev->delta_disks = 0;
1672                         mddev->new_level = mddev->level;
1673                         mddev->new_layout = mddev->layout;
1674                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1675                 }
1676
1677         } else if (mddev->pers == NULL) {
1678                 /* Insist of good event counter while assembling, except for
1679                  * spares (which don't need an event count) */
1680                 ++ev1;
1681                 if (rdev->desc_nr >= 0 &&
1682                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1683                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1684                         if (ev1 < mddev->events)
1685                                 return -EINVAL;
1686         } else if (mddev->bitmap) {
1687                 /* If adding to array with a bitmap, then we can accept an
1688                  * older device, but not too old.
1689                  */
1690                 if (ev1 < mddev->bitmap->events_cleared)
1691                         return 0;
1692         } else {
1693                 if (ev1 < mddev->events)
1694                         /* just a hot-add of a new device, leave raid_disk at -1 */
1695                         return 0;
1696         }
1697         if (mddev->level != LEVEL_MULTIPATH) {
1698                 int role;
1699                 if (rdev->desc_nr < 0 ||
1700                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701                         role = 0xffff;
1702                         rdev->desc_nr = -1;
1703                 } else
1704                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1705                 switch(role) {
1706                 case 0xffff: /* spare */
1707                         break;
1708                 case 0xfffe: /* faulty */
1709                         set_bit(Faulty, &rdev->flags);
1710                         break;
1711                 default:
1712                         if ((le32_to_cpu(sb->feature_map) &
1713                              MD_FEATURE_RECOVERY_OFFSET))
1714                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1715                         else
1716                                 set_bit(In_sync, &rdev->flags);
1717                         rdev->raid_disk = role;
1718                         break;
1719                 }
1720                 if (sb->devflags & WriteMostly1)
1721                         set_bit(WriteMostly, &rdev->flags);
1722                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1723                         set_bit(Replacement, &rdev->flags);
1724         } else /* MULTIPATH are always insync */
1725                 set_bit(In_sync, &rdev->flags);
1726
1727         return 0;
1728 }
1729
1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1731 {
1732         struct mdp_superblock_1 *sb;
1733         struct md_rdev *rdev2;
1734         int max_dev, i;
1735         /* make rdev->sb match mddev and rdev data. */
1736
1737         sb = page_address(rdev->sb_page);
1738
1739         sb->feature_map = 0;
1740         sb->pad0 = 0;
1741         sb->recovery_offset = cpu_to_le64(0);
1742         memset(sb->pad3, 0, sizeof(sb->pad3));
1743
1744         sb->utime = cpu_to_le64((__u64)mddev->utime);
1745         sb->events = cpu_to_le64(mddev->events);
1746         if (mddev->in_sync)
1747                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748         else
1749                 sb->resync_offset = cpu_to_le64(0);
1750
1751         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752
1753         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754         sb->size = cpu_to_le64(mddev->dev_sectors);
1755         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756         sb->level = cpu_to_le32(mddev->level);
1757         sb->layout = cpu_to_le32(mddev->layout);
1758
1759         if (test_bit(WriteMostly, &rdev->flags))
1760                 sb->devflags |= WriteMostly1;
1761         else
1762                 sb->devflags &= ~WriteMostly1;
1763         sb->data_offset = cpu_to_le64(rdev->data_offset);
1764         sb->data_size = cpu_to_le64(rdev->sectors);
1765
1766         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1767                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1768                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1769         }
1770
1771         if (rdev->raid_disk >= 0 &&
1772             !test_bit(In_sync, &rdev->flags)) {
1773                 sb->feature_map |=
1774                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1775                 sb->recovery_offset =
1776                         cpu_to_le64(rdev->recovery_offset);
1777         }
1778         if (test_bit(Replacement, &rdev->flags))
1779                 sb->feature_map |=
1780                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1781
1782         if (mddev->reshape_position != MaxSector) {
1783                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1784                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1785                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1786                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1787                 sb->new_level = cpu_to_le32(mddev->new_level);
1788                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1789                 if (mddev->delta_disks == 0 &&
1790                     mddev->reshape_backwards)
1791                         sb->feature_map
1792                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1793                 if (rdev->new_data_offset != rdev->data_offset) {
1794                         sb->feature_map
1795                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1796                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1797                                                              - rdev->data_offset));
1798                 }
1799         }
1800
1801         if (rdev->badblocks.count == 0)
1802                 /* Nothing to do for bad blocks*/ ;
1803         else if (sb->bblog_offset == 0)
1804                 /* Cannot record bad blocks on this device */
1805                 md_error(mddev, rdev);
1806         else {
1807                 struct badblocks *bb = &rdev->badblocks;
1808                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1809                 u64 *p = bb->page;
1810                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1811                 if (bb->changed) {
1812                         unsigned seq;
1813
1814 retry:
1815                         seq = read_seqbegin(&bb->lock);
1816
1817                         memset(bbp, 0xff, PAGE_SIZE);
1818
1819                         for (i = 0 ; i < bb->count ; i++) {
1820                                 u64 internal_bb = *p++;
1821                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1822                                                 | BB_LEN(internal_bb));
1823                                 *bbp++ = cpu_to_le64(store_bb);
1824                         }
1825                         bb->changed = 0;
1826                         if (read_seqretry(&bb->lock, seq))
1827                                 goto retry;
1828
1829                         bb->sector = (rdev->sb_start +
1830                                       (int)le32_to_cpu(sb->bblog_offset));
1831                         bb->size = le16_to_cpu(sb->bblog_size);
1832                 }
1833         }
1834
1835         max_dev = 0;
1836         rdev_for_each(rdev2, mddev)
1837                 if (rdev2->desc_nr+1 > max_dev)
1838                         max_dev = rdev2->desc_nr+1;
1839
1840         if (max_dev > le32_to_cpu(sb->max_dev)) {
1841                 int bmask;
1842                 sb->max_dev = cpu_to_le32(max_dev);
1843                 rdev->sb_size = max_dev * 2 + 256;
1844                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1845                 if (rdev->sb_size & bmask)
1846                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1847         } else
1848                 max_dev = le32_to_cpu(sb->max_dev);
1849
1850         for (i=0; i<max_dev;i++)
1851                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1852         
1853         rdev_for_each(rdev2, mddev) {
1854                 i = rdev2->desc_nr;
1855                 if (test_bit(Faulty, &rdev2->flags))
1856                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1857                 else if (test_bit(In_sync, &rdev2->flags))
1858                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859                 else if (rdev2->raid_disk >= 0)
1860                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1861                 else
1862                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1863         }
1864
1865         sb->sb_csum = calc_sb_1_csum(sb);
1866 }
1867
1868 static unsigned long long
1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1870 {
1871         struct mdp_superblock_1 *sb;
1872         sector_t max_sectors;
1873         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1874                 return 0; /* component must fit device */
1875         if (rdev->data_offset != rdev->new_data_offset)
1876                 return 0; /* too confusing */
1877         if (rdev->sb_start < rdev->data_offset) {
1878                 /* minor versions 1 and 2; superblock before data */
1879                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1880                 max_sectors -= rdev->data_offset;
1881                 if (!num_sectors || num_sectors > max_sectors)
1882                         num_sectors = max_sectors;
1883         } else if (rdev->mddev->bitmap_info.offset) {
1884                 /* minor version 0 with bitmap we can't move */
1885                 return 0;
1886         } else {
1887                 /* minor version 0; superblock after data */
1888                 sector_t sb_start;
1889                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1890                 sb_start &= ~(sector_t)(4*2 - 1);
1891                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1892                 if (!num_sectors || num_sectors > max_sectors)
1893                         num_sectors = max_sectors;
1894                 rdev->sb_start = sb_start;
1895         }
1896         sb = page_address(rdev->sb_page);
1897         sb->data_size = cpu_to_le64(num_sectors);
1898         sb->super_offset = rdev->sb_start;
1899         sb->sb_csum = calc_sb_1_csum(sb);
1900         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1901                        rdev->sb_page);
1902         md_super_wait(rdev->mddev);
1903         return num_sectors;
1904
1905 }
1906
1907 static int
1908 super_1_allow_new_offset(struct md_rdev *rdev,
1909                          unsigned long long new_offset)
1910 {
1911         /* All necessary checks on new >= old have been done */
1912         struct bitmap *bitmap;
1913         if (new_offset >= rdev->data_offset)
1914                 return 1;
1915
1916         /* with 1.0 metadata, there is no metadata to tread on
1917          * so we can always move back */
1918         if (rdev->mddev->minor_version == 0)
1919                 return 1;
1920
1921         /* otherwise we must be sure not to step on
1922          * any metadata, so stay:
1923          * 36K beyond start of superblock
1924          * beyond end of badblocks
1925          * beyond write-intent bitmap
1926          */
1927         if (rdev->sb_start + (32+4)*2 > new_offset)
1928                 return 0;
1929         bitmap = rdev->mddev->bitmap;
1930         if (bitmap && !rdev->mddev->bitmap_info.file &&
1931             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1932             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1933                 return 0;
1934         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1935                 return 0;
1936
1937         return 1;
1938 }
1939
1940 static struct super_type super_types[] = {
1941         [0] = {
1942                 .name   = "0.90.0",
1943                 .owner  = THIS_MODULE,
1944                 .load_super         = super_90_load,
1945                 .validate_super     = super_90_validate,
1946                 .sync_super         = super_90_sync,
1947                 .rdev_size_change   = super_90_rdev_size_change,
1948                 .allow_new_offset   = super_90_allow_new_offset,
1949         },
1950         [1] = {
1951                 .name   = "md-1",
1952                 .owner  = THIS_MODULE,
1953                 .load_super         = super_1_load,
1954                 .validate_super     = super_1_validate,
1955                 .sync_super         = super_1_sync,
1956                 .rdev_size_change   = super_1_rdev_size_change,
1957                 .allow_new_offset   = super_1_allow_new_offset,
1958         },
1959 };
1960
1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1962 {
1963         if (mddev->sync_super) {
1964                 mddev->sync_super(mddev, rdev);
1965                 return;
1966         }
1967
1968         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1969
1970         super_types[mddev->major_version].sync_super(mddev, rdev);
1971 }
1972
1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1974 {
1975         struct md_rdev *rdev, *rdev2;
1976
1977         rcu_read_lock();
1978         rdev_for_each_rcu(rdev, mddev1)
1979                 rdev_for_each_rcu(rdev2, mddev2)
1980                         if (rdev->bdev->bd_contains ==
1981                             rdev2->bdev->bd_contains) {
1982                                 rcu_read_unlock();
1983                                 return 1;
1984                         }
1985         rcu_read_unlock();
1986         return 0;
1987 }
1988
1989 static LIST_HEAD(pending_raid_disks);
1990
1991 /*
1992  * Try to register data integrity profile for an mddev
1993  *
1994  * This is called when an array is started and after a disk has been kicked
1995  * from the array. It only succeeds if all working and active component devices
1996  * are integrity capable with matching profiles.
1997  */
1998 int md_integrity_register(struct mddev *mddev)
1999 {
2000         struct md_rdev *rdev, *reference = NULL;
2001
2002         if (list_empty(&mddev->disks))
2003                 return 0; /* nothing to do */
2004         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2005                 return 0; /* shouldn't register, or already is */
2006         rdev_for_each(rdev, mddev) {
2007                 /* skip spares and non-functional disks */
2008                 if (test_bit(Faulty, &rdev->flags))
2009                         continue;
2010                 if (rdev->raid_disk < 0)
2011                         continue;
2012                 if (!reference) {
2013                         /* Use the first rdev as the reference */
2014                         reference = rdev;
2015                         continue;
2016                 }
2017                 /* does this rdev's profile match the reference profile? */
2018                 if (blk_integrity_compare(reference->bdev->bd_disk,
2019                                 rdev->bdev->bd_disk) < 0)
2020                         return -EINVAL;
2021         }
2022         if (!reference || !bdev_get_integrity(reference->bdev))
2023                 return 0;
2024         /*
2025          * All component devices are integrity capable and have matching
2026          * profiles, register the common profile for the md device.
2027          */
2028         if (blk_integrity_register(mddev->gendisk,
2029                         bdev_get_integrity(reference->bdev)) != 0) {
2030                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2031                         mdname(mddev));
2032                 return -EINVAL;
2033         }
2034         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2035         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2036                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2037                        mdname(mddev));
2038                 return -EINVAL;
2039         }
2040         return 0;
2041 }
2042 EXPORT_SYMBOL(md_integrity_register);
2043
2044 /* Disable data integrity if non-capable/non-matching disk is being added */
2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047         struct blk_integrity *bi_rdev;
2048         struct blk_integrity *bi_mddev;
2049
2050         if (!mddev->gendisk)
2051                 return;
2052
2053         bi_rdev = bdev_get_integrity(rdev->bdev);
2054         bi_mddev = blk_get_integrity(mddev->gendisk);
2055
2056         if (!bi_mddev) /* nothing to do */
2057                 return;
2058         if (rdev->raid_disk < 0) /* skip spares */
2059                 return;
2060         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2061                                              rdev->bdev->bd_disk) >= 0)
2062                 return;
2063         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2064         blk_integrity_unregister(mddev->gendisk);
2065 }
2066 EXPORT_SYMBOL(md_integrity_add_rdev);
2067
2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2069 {
2070         char b[BDEVNAME_SIZE];
2071         struct kobject *ko;
2072         char *s;
2073         int err;
2074
2075         if (rdev->mddev) {
2076                 MD_BUG();
2077                 return -EINVAL;
2078         }
2079
2080         /* prevent duplicates */
2081         if (find_rdev(mddev, rdev->bdev->bd_dev))
2082                 return -EEXIST;
2083
2084         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2085         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2086                         rdev->sectors < mddev->dev_sectors)) {
2087                 if (mddev->pers) {
2088                         /* Cannot change size, so fail
2089                          * If mddev->level <= 0, then we don't care
2090                          * about aligning sizes (e.g. linear)
2091                          */
2092                         if (mddev->level > 0)
2093                                 return -ENOSPC;
2094                 } else
2095                         mddev->dev_sectors = rdev->sectors;
2096         }
2097
2098         /* Verify rdev->desc_nr is unique.
2099          * If it is -1, assign a free number, else
2100          * check number is not in use
2101          */
2102         if (rdev->desc_nr < 0) {
2103                 int choice = 0;
2104                 if (mddev->pers) choice = mddev->raid_disks;
2105                 while (find_rdev_nr(mddev, choice))
2106                         choice++;
2107                 rdev->desc_nr = choice;
2108         } else {
2109                 if (find_rdev_nr(mddev, rdev->desc_nr))
2110                         return -EBUSY;
2111         }
2112         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2113                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2114                        mdname(mddev), mddev->max_disks);
2115                 return -EBUSY;
2116         }
2117         bdevname(rdev->bdev,b);
2118         while ( (s=strchr(b, '/')) != NULL)
2119                 *s = '!';
2120
2121         rdev->mddev = mddev;
2122         printk(KERN_INFO "md: bind<%s>\n", b);
2123
2124         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2125                 goto fail;
2126
2127         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2128         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2129                 /* failure here is OK */;
2130         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2131
2132         list_add_rcu(&rdev->same_set, &mddev->disks);
2133         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2134
2135         /* May as well allow recovery to be retried once */
2136         mddev->recovery_disabled++;
2137
2138         return 0;
2139
2140  fail:
2141         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2142                b, mdname(mddev));
2143         return err;
2144 }
2145
2146 static void md_delayed_delete(struct work_struct *ws)
2147 {
2148         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2149         kobject_del(&rdev->kobj);
2150         kobject_put(&rdev->kobj);
2151 }
2152
2153 static void unbind_rdev_from_array(struct md_rdev * rdev)
2154 {
2155         char b[BDEVNAME_SIZE];
2156         if (!rdev->mddev) {
2157                 MD_BUG();
2158                 return;
2159         }
2160         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2161         list_del_rcu(&rdev->same_set);
2162         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2163         rdev->mddev = NULL;
2164         sysfs_remove_link(&rdev->kobj, "block");
2165         sysfs_put(rdev->sysfs_state);
2166         rdev->sysfs_state = NULL;
2167         rdev->badblocks.count = 0;
2168         /* We need to delay this, otherwise we can deadlock when
2169          * writing to 'remove' to "dev/state".  We also need
2170          * to delay it due to rcu usage.
2171          */
2172         synchronize_rcu();
2173         INIT_WORK(&rdev->del_work, md_delayed_delete);
2174         kobject_get(&rdev->kobj);
2175         queue_work(md_misc_wq, &rdev->del_work);
2176 }
2177
2178 /*
2179  * prevent the device from being mounted, repartitioned or
2180  * otherwise reused by a RAID array (or any other kernel
2181  * subsystem), by bd_claiming the device.
2182  */
2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2184 {
2185         int err = 0;
2186         struct block_device *bdev;
2187         char b[BDEVNAME_SIZE];
2188
2189         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2190                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2191         if (IS_ERR(bdev)) {
2192                 printk(KERN_ERR "md: could not open %s.\n",
2193                         __bdevname(dev, b));
2194                 return PTR_ERR(bdev);
2195         }
2196         rdev->bdev = bdev;
2197         return err;
2198 }
2199
2200 static void unlock_rdev(struct md_rdev *rdev)
2201 {
2202         struct block_device *bdev = rdev->bdev;
2203         rdev->bdev = NULL;
2204         if (!bdev)
2205                 MD_BUG();
2206         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2207 }
2208
2209 void md_autodetect_dev(dev_t dev);
2210
2211 static void export_rdev(struct md_rdev * rdev)
2212 {
2213         char b[BDEVNAME_SIZE];
2214         printk(KERN_INFO "md: export_rdev(%s)\n",
2215                 bdevname(rdev->bdev,b));
2216         if (rdev->mddev)
2217                 MD_BUG();
2218         md_rdev_clear(rdev);
2219 #ifndef MODULE
2220         if (test_bit(AutoDetected, &rdev->flags))
2221                 md_autodetect_dev(rdev->bdev->bd_dev);
2222 #endif
2223         unlock_rdev(rdev);
2224         kobject_put(&rdev->kobj);
2225 }
2226
2227 static void kick_rdev_from_array(struct md_rdev * rdev)
2228 {
2229         unbind_rdev_from_array(rdev);
2230         export_rdev(rdev);
2231 }
2232
2233 static void export_array(struct mddev *mddev)
2234 {
2235         struct md_rdev *rdev, *tmp;
2236
2237         rdev_for_each_safe(rdev, tmp, mddev) {
2238                 if (!rdev->mddev) {
2239                         MD_BUG();
2240                         continue;
2241                 }
2242                 kick_rdev_from_array(rdev);
2243         }
2244         if (!list_empty(&mddev->disks))
2245                 MD_BUG();
2246         mddev->raid_disks = 0;
2247         mddev->major_version = 0;
2248 }
2249
2250 static void print_desc(mdp_disk_t *desc)
2251 {
2252         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2253                 desc->major,desc->minor,desc->raid_disk,desc->state);
2254 }
2255
2256 static void print_sb_90(mdp_super_t *sb)
2257 {
2258         int i;
2259
2260         printk(KERN_INFO 
2261                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2262                 sb->major_version, sb->minor_version, sb->patch_version,
2263                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2264                 sb->ctime);
2265         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2266                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2267                 sb->md_minor, sb->layout, sb->chunk_size);
2268         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2269                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2270                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2271                 sb->failed_disks, sb->spare_disks,
2272                 sb->sb_csum, (unsigned long)sb->events_lo);
2273
2274         printk(KERN_INFO);
2275         for (i = 0; i < MD_SB_DISKS; i++) {
2276                 mdp_disk_t *desc;
2277
2278                 desc = sb->disks + i;
2279                 if (desc->number || desc->major || desc->minor ||
2280                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2281                         printk("     D %2d: ", i);
2282                         print_desc(desc);
2283                 }
2284         }
2285         printk(KERN_INFO "md:     THIS: ");
2286         print_desc(&sb->this_disk);
2287 }
2288
2289 static void print_sb_1(struct mdp_superblock_1 *sb)
2290 {
2291         __u8 *uuid;
2292
2293         uuid = sb->set_uuid;
2294         printk(KERN_INFO
2295                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2296                "md:    Name: \"%s\" CT:%llu\n",
2297                 le32_to_cpu(sb->major_version),
2298                 le32_to_cpu(sb->feature_map),
2299                 uuid,
2300                 sb->set_name,
2301                 (unsigned long long)le64_to_cpu(sb->ctime)
2302                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2303
2304         uuid = sb->device_uuid;
2305         printk(KERN_INFO
2306                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2307                         " RO:%llu\n"
2308                "md:     Dev:%08x UUID: %pU\n"
2309                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2310                "md:         (MaxDev:%u) \n",
2311                 le32_to_cpu(sb->level),
2312                 (unsigned long long)le64_to_cpu(sb->size),
2313                 le32_to_cpu(sb->raid_disks),
2314                 le32_to_cpu(sb->layout),
2315                 le32_to_cpu(sb->chunksize),
2316                 (unsigned long long)le64_to_cpu(sb->data_offset),
2317                 (unsigned long long)le64_to_cpu(sb->data_size),
2318                 (unsigned long long)le64_to_cpu(sb->super_offset),
2319                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2320                 le32_to_cpu(sb->dev_number),
2321                 uuid,
2322                 sb->devflags,
2323                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2324                 (unsigned long long)le64_to_cpu(sb->events),
2325                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2326                 le32_to_cpu(sb->sb_csum),
2327                 le32_to_cpu(sb->max_dev)
2328                 );
2329 }
2330
2331 static void print_rdev(struct md_rdev *rdev, int major_version)
2332 {
2333         char b[BDEVNAME_SIZE];
2334         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2335                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2336                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2337                 rdev->desc_nr);
2338         if (rdev->sb_loaded) {
2339                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2340                 switch (major_version) {
2341                 case 0:
2342                         print_sb_90(page_address(rdev->sb_page));
2343                         break;
2344                 case 1:
2345                         print_sb_1(page_address(rdev->sb_page));
2346                         break;
2347                 }
2348         } else
2349                 printk(KERN_INFO "md: no rdev superblock!\n");
2350 }
2351
2352 static void md_print_devices(void)
2353 {
2354         struct list_head *tmp;
2355         struct md_rdev *rdev;
2356         struct mddev *mddev;
2357         char b[BDEVNAME_SIZE];
2358
2359         printk("\n");
2360         printk("md:     **********************************\n");
2361         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2362         printk("md:     **********************************\n");
2363         for_each_mddev(mddev, tmp) {
2364
2365                 if (mddev->bitmap)
2366                         bitmap_print_sb(mddev->bitmap);
2367                 else
2368                         printk("%s: ", mdname(mddev));
2369                 rdev_for_each(rdev, mddev)
2370                         printk("<%s>", bdevname(rdev->bdev,b));
2371                 printk("\n");
2372
2373                 rdev_for_each(rdev, mddev)
2374                         print_rdev(rdev, mddev->major_version);
2375         }
2376         printk("md:     **********************************\n");
2377         printk("\n");
2378 }
2379
2380
2381 static void sync_sbs(struct mddev * mddev, int nospares)
2382 {
2383         /* Update each superblock (in-memory image), but
2384          * if we are allowed to, skip spares which already
2385          * have the right event counter, or have one earlier
2386          * (which would mean they aren't being marked as dirty
2387          * with the rest of the array)
2388          */
2389         struct md_rdev *rdev;
2390         rdev_for_each(rdev, mddev) {
2391                 if (rdev->sb_events == mddev->events ||
2392                     (nospares &&
2393                      rdev->raid_disk < 0 &&
2394                      rdev->sb_events+1 == mddev->events)) {
2395                         /* Don't update this superblock */
2396                         rdev->sb_loaded = 2;
2397                 } else {
2398                         sync_super(mddev, rdev);
2399                         rdev->sb_loaded = 1;
2400                 }
2401         }
2402 }
2403
2404 static void md_update_sb(struct mddev * mddev, int force_change)
2405 {
2406         struct md_rdev *rdev;
2407         int sync_req;
2408         int nospares = 0;
2409         int any_badblocks_changed = 0;
2410
2411 repeat:
2412         /* First make sure individual recovery_offsets are correct */
2413         rdev_for_each(rdev, mddev) {
2414                 if (rdev->raid_disk >= 0 &&
2415                     mddev->delta_disks >= 0 &&
2416                     !test_bit(In_sync, &rdev->flags) &&
2417                     mddev->curr_resync_completed > rdev->recovery_offset)
2418                                 rdev->recovery_offset = mddev->curr_resync_completed;
2419
2420         }       
2421         if (!mddev->persistent) {
2422                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2423                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2424                 if (!mddev->external) {
2425                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2426                         rdev_for_each(rdev, mddev) {
2427                                 if (rdev->badblocks.changed) {
2428                                         rdev->badblocks.changed = 0;
2429                                         md_ack_all_badblocks(&rdev->badblocks);
2430                                         md_error(mddev, rdev);
2431                                 }
2432                                 clear_bit(Blocked, &rdev->flags);
2433                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2434                                 wake_up(&rdev->blocked_wait);
2435                         }
2436                 }
2437                 wake_up(&mddev->sb_wait);
2438                 return;
2439         }
2440
2441         spin_lock_irq(&mddev->write_lock);
2442
2443         mddev->utime = get_seconds();
2444
2445         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2446                 force_change = 1;
2447         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2448                 /* just a clean<-> dirty transition, possibly leave spares alone,
2449                  * though if events isn't the right even/odd, we will have to do
2450                  * spares after all
2451                  */
2452                 nospares = 1;
2453         if (force_change)
2454                 nospares = 0;
2455         if (mddev->degraded)
2456                 /* If the array is degraded, then skipping spares is both
2457                  * dangerous and fairly pointless.
2458                  * Dangerous because a device that was removed from the array
2459                  * might have a event_count that still looks up-to-date,
2460                  * so it can be re-added without a resync.
2461                  * Pointless because if there are any spares to skip,
2462                  * then a recovery will happen and soon that array won't
2463                  * be degraded any more and the spare can go back to sleep then.
2464                  */
2465                 nospares = 0;
2466
2467         sync_req = mddev->in_sync;
2468
2469         /* If this is just a dirty<->clean transition, and the array is clean
2470          * and 'events' is odd, we can roll back to the previous clean state */
2471         if (nospares
2472             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2473             && mddev->can_decrease_events
2474             && mddev->events != 1) {
2475                 mddev->events--;
2476                 mddev->can_decrease_events = 0;
2477         } else {
2478                 /* otherwise we have to go forward and ... */
2479                 mddev->events ++;
2480                 mddev->can_decrease_events = nospares;
2481         }
2482
2483         if (!mddev->events) {
2484                 /*
2485                  * oops, this 64-bit counter should never wrap.
2486                  * Either we are in around ~1 trillion A.C., assuming
2487                  * 1 reboot per second, or we have a bug:
2488                  */
2489                 MD_BUG();
2490                 mddev->events --;
2491         }
2492
2493         rdev_for_each(rdev, mddev) {
2494                 if (rdev->badblocks.changed)
2495                         any_badblocks_changed++;
2496                 if (test_bit(Faulty, &rdev->flags))
2497                         set_bit(FaultRecorded, &rdev->flags);
2498         }
2499
2500         sync_sbs(mddev, nospares);
2501         spin_unlock_irq(&mddev->write_lock);
2502
2503         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2504                  mdname(mddev), mddev->in_sync);
2505
2506         bitmap_update_sb(mddev->bitmap);
2507         rdev_for_each(rdev, mddev) {
2508                 char b[BDEVNAME_SIZE];
2509
2510                 if (rdev->sb_loaded != 1)
2511                         continue; /* no noise on spare devices */
2512
2513                 if (!test_bit(Faulty, &rdev->flags) &&
2514                     rdev->saved_raid_disk == -1) {
2515                         md_super_write(mddev,rdev,
2516                                        rdev->sb_start, rdev->sb_size,
2517                                        rdev->sb_page);
2518                         pr_debug("md: (write) %s's sb offset: %llu\n",
2519                                  bdevname(rdev->bdev, b),
2520                                  (unsigned long long)rdev->sb_start);
2521                         rdev->sb_events = mddev->events;
2522                         if (rdev->badblocks.size) {
2523                                 md_super_write(mddev, rdev,
2524                                                rdev->badblocks.sector,
2525                                                rdev->badblocks.size << 9,
2526                                                rdev->bb_page);
2527                                 rdev->badblocks.size = 0;
2528                         }
2529
2530                 } else if (test_bit(Faulty, &rdev->flags))
2531                         pr_debug("md: %s (skipping faulty)\n",
2532                                  bdevname(rdev->bdev, b));
2533                 else
2534                         pr_debug("(skipping incremental s/r ");
2535
2536                 if (mddev->level == LEVEL_MULTIPATH)
2537                         /* only need to write one superblock... */
2538                         break;
2539         }
2540         md_super_wait(mddev);
2541         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2542
2543         spin_lock_irq(&mddev->write_lock);
2544         if (mddev->in_sync != sync_req ||
2545             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2546                 /* have to write it out again */
2547                 spin_unlock_irq(&mddev->write_lock);
2548                 goto repeat;
2549         }
2550         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2551         spin_unlock_irq(&mddev->write_lock);
2552         wake_up(&mddev->sb_wait);
2553         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2554                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2555
2556         rdev_for_each(rdev, mddev) {
2557                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2558                         clear_bit(Blocked, &rdev->flags);
2559
2560                 if (any_badblocks_changed)
2561                         md_ack_all_badblocks(&rdev->badblocks);
2562                 clear_bit(BlockedBadBlocks, &rdev->flags);
2563                 wake_up(&rdev->blocked_wait);
2564         }
2565 }
2566
2567 /* words written to sysfs files may, or may not, be \n terminated.
2568  * We want to accept with case. For this we use cmd_match.
2569  */
2570 static int cmd_match(const char *cmd, const char *str)
2571 {
2572         /* See if cmd, written into a sysfs file, matches
2573          * str.  They must either be the same, or cmd can
2574          * have a trailing newline
2575          */
2576         while (*cmd && *str && *cmd == *str) {
2577                 cmd++;
2578                 str++;
2579         }
2580         if (*cmd == '\n')
2581                 cmd++;
2582         if (*str || *cmd)
2583                 return 0;
2584         return 1;
2585 }
2586
2587 struct rdev_sysfs_entry {
2588         struct attribute attr;
2589         ssize_t (*show)(struct md_rdev *, char *);
2590         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2591 };
2592
2593 static ssize_t
2594 state_show(struct md_rdev *rdev, char *page)
2595 {
2596         char *sep = "";
2597         size_t len = 0;
2598
2599         if (test_bit(Faulty, &rdev->flags) ||
2600             rdev->badblocks.unacked_exist) {
2601                 len+= sprintf(page+len, "%sfaulty",sep);
2602                 sep = ",";
2603         }
2604         if (test_bit(In_sync, &rdev->flags)) {
2605                 len += sprintf(page+len, "%sin_sync",sep);
2606                 sep = ",";
2607         }
2608         if (test_bit(WriteMostly, &rdev->flags)) {
2609                 len += sprintf(page+len, "%swrite_mostly",sep);
2610                 sep = ",";
2611         }
2612         if (test_bit(Blocked, &rdev->flags) ||
2613             (rdev->badblocks.unacked_exist
2614              && !test_bit(Faulty, &rdev->flags))) {
2615                 len += sprintf(page+len, "%sblocked", sep);
2616                 sep = ",";
2617         }
2618         if (!test_bit(Faulty, &rdev->flags) &&
2619             !test_bit(In_sync, &rdev->flags)) {
2620                 len += sprintf(page+len, "%sspare", sep);
2621                 sep = ",";
2622         }
2623         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2624                 len += sprintf(page+len, "%swrite_error", sep);
2625                 sep = ",";
2626         }
2627         if (test_bit(WantReplacement, &rdev->flags)) {
2628                 len += sprintf(page+len, "%swant_replacement", sep);
2629                 sep = ",";
2630         }
2631         if (test_bit(Replacement, &rdev->flags)) {
2632                 len += sprintf(page+len, "%sreplacement", sep);
2633                 sep = ",";
2634         }
2635
2636         return len+sprintf(page+len, "\n");
2637 }
2638
2639 static ssize_t
2640 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2641 {
2642         /* can write
2643          *  faulty  - simulates an error
2644          *  remove  - disconnects the device
2645          *  writemostly - sets write_mostly
2646          *  -writemostly - clears write_mostly
2647          *  blocked - sets the Blocked flags
2648          *  -blocked - clears the Blocked and possibly simulates an error
2649          *  insync - sets Insync providing device isn't active
2650          *  write_error - sets WriteErrorSeen
2651          *  -write_error - clears WriteErrorSeen
2652          */
2653         int err = -EINVAL;
2654         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2655                 md_error(rdev->mddev, rdev);
2656                 if (test_bit(Faulty, &rdev->flags))
2657                         err = 0;
2658                 else
2659                         err = -EBUSY;
2660         } else if (cmd_match(buf, "remove")) {
2661                 if (rdev->raid_disk >= 0)
2662                         err = -EBUSY;
2663                 else {
2664                         struct mddev *mddev = rdev->mddev;
2665                         kick_rdev_from_array(rdev);
2666                         if (mddev->pers)
2667                                 md_update_sb(mddev, 1);
2668                         md_new_event(mddev);
2669                         err = 0;
2670                 }
2671         } else if (cmd_match(buf, "writemostly")) {
2672                 set_bit(WriteMostly, &rdev->flags);
2673                 err = 0;
2674         } else if (cmd_match(buf, "-writemostly")) {
2675                 clear_bit(WriteMostly, &rdev->flags);
2676                 err = 0;
2677         } else if (cmd_match(buf, "blocked")) {
2678                 set_bit(Blocked, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "-blocked")) {
2681                 if (!test_bit(Faulty, &rdev->flags) &&
2682                     rdev->badblocks.unacked_exist) {
2683                         /* metadata handler doesn't understand badblocks,
2684                          * so we need to fail the device
2685                          */
2686                         md_error(rdev->mddev, rdev);
2687                 }
2688                 clear_bit(Blocked, &rdev->flags);
2689                 clear_bit(BlockedBadBlocks, &rdev->flags);
2690                 wake_up(&rdev->blocked_wait);
2691                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2692                 md_wakeup_thread(rdev->mddev->thread);
2693
2694                 err = 0;
2695         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2696                 set_bit(In_sync, &rdev->flags);
2697                 err = 0;
2698         } else if (cmd_match(buf, "write_error")) {
2699                 set_bit(WriteErrorSeen, &rdev->flags);
2700                 err = 0;
2701         } else if (cmd_match(buf, "-write_error")) {
2702                 clear_bit(WriteErrorSeen, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "want_replacement")) {
2705                 /* Any non-spare device that is not a replacement can
2706                  * become want_replacement at any time, but we then need to
2707                  * check if recovery is needed.
2708                  */
2709                 if (rdev->raid_disk >= 0 &&
2710                     !test_bit(Replacement, &rdev->flags))
2711                         set_bit(WantReplacement, &rdev->flags);
2712                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2713                 md_wakeup_thread(rdev->mddev->thread);
2714                 err = 0;
2715         } else if (cmd_match(buf, "-want_replacement")) {
2716                 /* Clearing 'want_replacement' is always allowed.
2717                  * Once replacements starts it is too late though.
2718                  */
2719                 err = 0;
2720                 clear_bit(WantReplacement, &rdev->flags);
2721         } else if (cmd_match(buf, "replacement")) {
2722                 /* Can only set a device as a replacement when array has not
2723                  * yet been started.  Once running, replacement is automatic
2724                  * from spares, or by assigning 'slot'.
2725                  */
2726                 if (rdev->mddev->pers)
2727                         err = -EBUSY;
2728                 else {
2729                         set_bit(Replacement, &rdev->flags);
2730                         err = 0;
2731                 }
2732         } else if (cmd_match(buf, "-replacement")) {
2733                 /* Similarly, can only clear Replacement before start */
2734                 if (rdev->mddev->pers)
2735                         err = -EBUSY;
2736                 else {
2737                         clear_bit(Replacement, &rdev->flags);
2738                         err = 0;
2739                 }
2740         }
2741         if (!err)
2742                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2743         return err ? err : len;
2744 }
2745 static struct rdev_sysfs_entry rdev_state =
2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2747
2748 static ssize_t
2749 errors_show(struct md_rdev *rdev, char *page)
2750 {
2751         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2752 }
2753
2754 static ssize_t
2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757         char *e;
2758         unsigned long n = simple_strtoul(buf, &e, 10);
2759         if (*buf && (*e == 0 || *e == '\n')) {
2760                 atomic_set(&rdev->corrected_errors, n);
2761                 return len;
2762         }
2763         return -EINVAL;
2764 }
2765 static struct rdev_sysfs_entry rdev_errors =
2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2767
2768 static ssize_t
2769 slot_show(struct md_rdev *rdev, char *page)
2770 {
2771         if (rdev->raid_disk < 0)
2772                 return sprintf(page, "none\n");
2773         else
2774                 return sprintf(page, "%d\n", rdev->raid_disk);
2775 }
2776
2777 static ssize_t
2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780         char *e;
2781         int err;
2782         int slot = simple_strtoul(buf, &e, 10);
2783         if (strncmp(buf, "none", 4)==0)
2784                 slot = -1;
2785         else if (e==buf || (*e && *e!= '\n'))
2786                 return -EINVAL;
2787         if (rdev->mddev->pers && slot == -1) {
2788                 /* Setting 'slot' on an active array requires also
2789                  * updating the 'rd%d' link, and communicating
2790                  * with the personality with ->hot_*_disk.
2791                  * For now we only support removing
2792                  * failed/spare devices.  This normally happens automatically,
2793                  * but not when the metadata is externally managed.
2794                  */
2795                 if (rdev->raid_disk == -1)
2796                         return -EEXIST;
2797                 /* personality does all needed checks */
2798                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2799                         return -EINVAL;
2800                 err = rdev->mddev->pers->
2801                         hot_remove_disk(rdev->mddev, rdev);
2802                 if (err)
2803                         return err;
2804                 sysfs_unlink_rdev(rdev->mddev, rdev);
2805                 rdev->raid_disk = -1;
2806                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807                 md_wakeup_thread(rdev->mddev->thread);
2808         } else if (rdev->mddev->pers) {
2809                 /* Activating a spare .. or possibly reactivating
2810                  * if we ever get bitmaps working here.
2811                  */
2812
2813                 if (rdev->raid_disk != -1)
2814                         return -EBUSY;
2815
2816                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817                         return -EBUSY;
2818
2819                 if (rdev->mddev->pers->hot_add_disk == NULL)
2820                         return -EINVAL;
2821
2822                 if (slot >= rdev->mddev->raid_disks &&
2823                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824                         return -ENOSPC;
2825
2826                 rdev->raid_disk = slot;
2827                 if (test_bit(In_sync, &rdev->flags))
2828                         rdev->saved_raid_disk = slot;
2829                 else
2830                         rdev->saved_raid_disk = -1;
2831                 clear_bit(In_sync, &rdev->flags);
2832                 err = rdev->mddev->pers->
2833                         hot_add_disk(rdev->mddev, rdev);
2834                 if (err) {
2835                         rdev->raid_disk = -1;
2836                         return err;
2837                 } else
2838                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2839                 if (sysfs_link_rdev(rdev->mddev, rdev))
2840                         /* failure here is OK */;
2841                 /* don't wakeup anyone, leave that to userspace. */
2842         } else {
2843                 if (slot >= rdev->mddev->raid_disks &&
2844                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845                         return -ENOSPC;
2846                 rdev->raid_disk = slot;
2847                 /* assume it is working */
2848                 clear_bit(Faulty, &rdev->flags);
2849                 clear_bit(WriteMostly, &rdev->flags);
2850                 set_bit(In_sync, &rdev->flags);
2851                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2852         }
2853         return len;
2854 }
2855
2856
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869         unsigned long long offset;
2870         if (strict_strtoull(buf, 10, &offset) < 0)
2871                 return -EINVAL;
2872         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873                 return -EBUSY;
2874         if (rdev->sectors && rdev->mddev->external)
2875                 /* Must set offset before size, so overlap checks
2876                  * can be sane */
2877                 return -EBUSY;
2878         rdev->data_offset = offset;
2879         rdev->new_data_offset = offset;
2880         return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888         return sprintf(page, "%llu\n",
2889                        (unsigned long long)rdev->new_data_offset);
2890 }
2891
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893                                 const char *buf, size_t len)
2894 {
2895         unsigned long long new_offset;
2896         struct mddev *mddev = rdev->mddev;
2897
2898         if (strict_strtoull(buf, 10, &new_offset) < 0)
2899                 return -EINVAL;
2900
2901         if (mddev->sync_thread)
2902                 return -EBUSY;
2903         if (new_offset == rdev->data_offset)
2904                 /* reset is always permitted */
2905                 ;
2906         else if (new_offset > rdev->data_offset) {
2907                 /* must not push array size beyond rdev_sectors */
2908                 if (new_offset - rdev->data_offset
2909                     + mddev->dev_sectors > rdev->sectors)
2910                                 return -E2BIG;
2911         }
2912         /* Metadata worries about other space details. */
2913
2914         /* decreasing the offset is inconsistent with a backwards
2915          * reshape.
2916          */
2917         if (new_offset < rdev->data_offset &&
2918             mddev->reshape_backwards)
2919                 return -EINVAL;
2920         /* Increasing offset is inconsistent with forwards
2921          * reshape.  reshape_direction should be set to
2922          * 'backwards' first.
2923          */
2924         if (new_offset > rdev->data_offset &&
2925             !mddev->reshape_backwards)
2926                 return -EINVAL;
2927
2928         if (mddev->pers && mddev->persistent &&
2929             !super_types[mddev->major_version]
2930             .allow_new_offset(rdev, new_offset))
2931                 return -E2BIG;
2932         rdev->new_data_offset = new_offset;
2933         if (new_offset > rdev->data_offset)
2934                 mddev->reshape_backwards = 1;
2935         else if (new_offset < rdev->data_offset)
2936                 mddev->reshape_backwards = 0;
2937
2938         return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951         /* check if two start/length pairs overlap */
2952         if (s1+l1 <= s2)
2953                 return 0;
2954         if (s2+l2 <= s1)
2955                 return 0;
2956         return 1;
2957 }
2958
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961         unsigned long long blocks;
2962         sector_t new;
2963
2964         if (strict_strtoull(buf, 10, &blocks) < 0)
2965                 return -EINVAL;
2966
2967         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968                 return -EINVAL; /* sector conversion overflow */
2969
2970         new = blocks * 2;
2971         if (new != blocks * 2)
2972                 return -EINVAL; /* unsigned long long to sector_t overflow */
2973
2974         *sectors = new;
2975         return 0;
2976 }
2977
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981         struct mddev *my_mddev = rdev->mddev;
2982         sector_t oldsectors = rdev->sectors;
2983         sector_t sectors;
2984
2985         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986                 return -EINVAL;
2987         if (rdev->data_offset != rdev->new_data_offset)
2988                 return -EINVAL; /* too confusing */
2989         if (my_mddev->pers && rdev->raid_disk >= 0) {
2990                 if (my_mddev->persistent) {
2991                         sectors = super_types[my_mddev->major_version].
2992                                 rdev_size_change(rdev, sectors);
2993                         if (!sectors)
2994                                 return -EBUSY;
2995                 } else if (!sectors)
2996                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997                                 rdev->data_offset;
2998         }
2999         if (sectors < my_mddev->dev_sectors)
3000                 return -EINVAL; /* component must fit device */
3001
3002         rdev->sectors = sectors;
3003         if (sectors > oldsectors && my_mddev->external) {
3004                 /* need to check that all other rdevs with the same ->bdev
3005                  * do not overlap.  We need to unlock the mddev to avoid
3006                  * a deadlock.  We have already changed rdev->sectors, and if
3007                  * we have to change it back, we will have the lock again.
3008                  */
3009                 struct mddev *mddev;
3010                 int overlap = 0;
3011                 struct list_head *tmp;
3012
3013                 mddev_unlock(my_mddev);
3014                 for_each_mddev(mddev, tmp) {
3015                         struct md_rdev *rdev2;
3016
3017                         mddev_lock(mddev);
3018                         rdev_for_each(rdev2, mddev)
3019                                 if (rdev->bdev == rdev2->bdev &&
3020                                     rdev != rdev2 &&
3021                                     overlaps(rdev->data_offset, rdev->sectors,
3022                                              rdev2->data_offset,
3023                                              rdev2->sectors)) {
3024                                         overlap = 1;
3025                                         break;
3026                                 }
3027                         mddev_unlock(mddev);
3028                         if (overlap) {
3029                                 mddev_put(mddev);
3030                                 break;
3031                         }
3032                 }
3033                 mddev_lock(my_mddev);
3034                 if (overlap) {
3035                         /* Someone else could have slipped in a size
3036                          * change here, but doing so is just silly.
3037                          * We put oldsectors back because we *know* it is
3038                          * safe, and trust userspace not to race with
3039                          * itself
3040                          */
3041                         rdev->sectors = oldsectors;
3042                         return -EBUSY;
3043                 }
3044         }
3045         return len;
3046 }
3047
3048 static struct rdev_sysfs_entry rdev_size =
3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3050
3051
3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3053 {
3054         unsigned long long recovery_start = rdev->recovery_offset;
3055
3056         if (test_bit(In_sync, &rdev->flags) ||
3057             recovery_start == MaxSector)
3058                 return sprintf(page, "none\n");
3059
3060         return sprintf(page, "%llu\n", recovery_start);
3061 }
3062
3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3064 {
3065         unsigned long long recovery_start;
3066
3067         if (cmd_match(buf, "none"))
3068                 recovery_start = MaxSector;
3069         else if (strict_strtoull(buf, 10, &recovery_start))
3070                 return -EINVAL;
3071
3072         if (rdev->mddev->pers &&
3073             rdev->raid_disk >= 0)
3074                 return -EBUSY;
3075
3076         rdev->recovery_offset = recovery_start;
3077         if (recovery_start == MaxSector)
3078                 set_bit(In_sync, &rdev->flags);
3079         else
3080                 clear_bit(In_sync, &rdev->flags);
3081         return len;
3082 }
3083
3084 static struct rdev_sysfs_entry rdev_recovery_start =
3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3086
3087
3088 static ssize_t
3089 badblocks_show(struct badblocks *bb, char *page, int unack);
3090 static ssize_t
3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3092
3093 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3094 {
3095         return badblocks_show(&rdev->badblocks, page, 0);
3096 }
3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3098 {
3099         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3100         /* Maybe that ack was all we needed */
3101         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3102                 wake_up(&rdev->blocked_wait);
3103         return rv;
3104 }
3105 static struct rdev_sysfs_entry rdev_bad_blocks =
3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3107
3108
3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3110 {
3111         return badblocks_show(&rdev->badblocks, page, 1);
3112 }
3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3114 {
3115         return badblocks_store(&rdev->badblocks, page, len, 1);
3116 }
3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3119
3120 static struct attribute *rdev_default_attrs[] = {
3121         &rdev_state.attr,
3122         &rdev_errors.attr,
3123         &rdev_slot.attr,
3124         &rdev_offset.attr,
3125         &rdev_new_offset.attr,
3126         &rdev_size.attr,
3127         &rdev_recovery_start.attr,
3128         &rdev_bad_blocks.attr,
3129         &rdev_unack_bad_blocks.attr,
3130         NULL,
3131 };
3132 static ssize_t
3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3134 {
3135         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3136         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3137         struct mddev *mddev = rdev->mddev;
3138         ssize_t rv;
3139
3140         if (!entry->show)
3141                 return -EIO;
3142
3143         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3144         if (!rv) {
3145                 if (rdev->mddev == NULL)
3146                         rv = -EBUSY;
3147                 else
3148                         rv = entry->show(rdev, page);
3149                 mddev_unlock(mddev);
3150         }
3151         return rv;
3152 }
3153
3154 static ssize_t
3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3156               const char *page, size_t length)
3157 {
3158         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3159         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3160         ssize_t rv;
3161         struct mddev *mddev = rdev->mddev;
3162
3163         if (!entry->store)
3164                 return -EIO;
3165         if (!capable(CAP_SYS_ADMIN))
3166                 return -EACCES;
3167         rv = mddev ? mddev_lock(mddev): -EBUSY;
3168         if (!rv) {
3169                 if (rdev->mddev == NULL)
3170                         rv = -EBUSY;
3171                 else
3172                         rv = entry->store(rdev, page, length);
3173                 mddev_unlock(mddev);
3174         }
3175         return rv;
3176 }
3177
3178 static void rdev_free(struct kobject *ko)
3179 {
3180         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3181         kfree(rdev);
3182 }
3183 static const struct sysfs_ops rdev_sysfs_ops = {
3184         .show           = rdev_attr_show,
3185         .store          = rdev_attr_store,
3186 };
3187 static struct kobj_type rdev_ktype = {
3188         .release        = rdev_free,
3189         .sysfs_ops      = &rdev_sysfs_ops,
3190         .default_attrs  = rdev_default_attrs,
3191 };
3192
3193 int md_rdev_init(struct md_rdev *rdev)
3194 {
3195         rdev->desc_nr = -1;
3196         rdev->saved_raid_disk = -1;
3197         rdev->raid_disk = -1;
3198         rdev->flags = 0;
3199         rdev->data_offset = 0;
3200         rdev->new_data_offset = 0;
3201         rdev->sb_events = 0;
3202         rdev->last_read_error.tv_sec  = 0;
3203         rdev->last_read_error.tv_nsec = 0;
3204         rdev->sb_loaded = 0;
3205         rdev->bb_page = NULL;
3206         atomic_set(&rdev->nr_pending, 0);
3207         atomic_set(&rdev->read_errors, 0);
3208         atomic_set(&rdev->corrected_errors, 0);
3209
3210         INIT_LIST_HEAD(&rdev->same_set);
3211         init_waitqueue_head(&rdev->blocked_wait);
3212
3213         /* Add space to store bad block list.
3214          * This reserves the space even on arrays where it cannot
3215          * be used - I wonder if that matters
3216          */
3217         rdev->badblocks.count = 0;
3218         rdev->badblocks.shift = 0;
3219         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3220         seqlock_init(&rdev->badblocks.lock);
3221         if (rdev->badblocks.page == NULL)
3222                 return -ENOMEM;
3223
3224         return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(md_rdev_init);
3227 /*
3228  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3229  *
3230  * mark the device faulty if:
3231  *
3232  *   - the device is nonexistent (zero size)
3233  *   - the device has no valid superblock
3234  *
3235  * a faulty rdev _never_ has rdev->sb set.
3236  */
3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3238 {
3239         char b[BDEVNAME_SIZE];
3240         int err;
3241         struct md_rdev *rdev;
3242         sector_t size;
3243
3244         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3245         if (!rdev) {
3246                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3247                 return ERR_PTR(-ENOMEM);
3248         }
3249
3250         err = md_rdev_init(rdev);
3251         if (err)
3252                 goto abort_free;
3253         err = alloc_disk_sb(rdev);
3254         if (err)
3255                 goto abort_free;
3256
3257         err = lock_rdev(rdev, newdev, super_format == -2);
3258         if (err)
3259                 goto abort_free;
3260
3261         kobject_init(&rdev->kobj, &rdev_ktype);
3262
3263         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3264         if (!size) {
3265                 printk(KERN_WARNING 
3266                         "md: %s has zero or unknown size, marking faulty!\n",
3267                         bdevname(rdev->bdev,b));
3268                 err = -EINVAL;
3269                 goto abort_free;
3270         }
3271
3272         if (super_format >= 0) {
3273                 err = super_types[super_format].
3274                         load_super(rdev, NULL, super_minor);
3275                 if (err == -EINVAL) {
3276                         printk(KERN_WARNING
3277                                 "md: %s does not have a valid v%d.%d "
3278                                "superblock, not importing!\n",
3279                                 bdevname(rdev->bdev,b),
3280                                super_format, super_minor);
3281                         goto abort_free;
3282                 }
3283                 if (err < 0) {
3284                         printk(KERN_WARNING 
3285                                 "md: could not read %s's sb, not importing!\n",
3286                                 bdevname(rdev->bdev,b));
3287                         goto abort_free;
3288                 }
3289         }
3290         if (super_format == -1)
3291                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3292                 rdev->badblocks.shift = -1;
3293
3294         return rdev;
3295
3296 abort_free:
3297         if (rdev->bdev)
3298                 unlock_rdev(rdev);
3299         md_rdev_clear(rdev);
3300         kfree(rdev);
3301         return ERR_PTR(err);
3302 }
3303
3304 /*
3305  * Check a full RAID array for plausibility
3306  */
3307
3308
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311         int i;
3312         struct md_rdev *rdev, *freshest, *tmp;
3313         char b[BDEVNAME_SIZE];
3314
3315         freshest = NULL;
3316         rdev_for_each_safe(rdev, tmp, mddev)
3317                 switch (super_types[mddev->major_version].
3318                         load_super(rdev, freshest, mddev->minor_version)) {
3319                 case 1:
3320                         freshest = rdev;
3321                         break;
3322                 case 0:
3323                         break;
3324                 default:
3325                         printk( KERN_ERR \
3326                                 "md: fatal superblock inconsistency in %s"
3327                                 " -- removing from array\n", 
3328                                 bdevname(rdev->bdev,b));
3329                         kick_rdev_from_array(rdev);
3330                 }
3331
3332
3333         super_types[mddev->major_version].
3334                 validate_super(mddev, freshest);
3335
3336         i = 0;
3337         rdev_for_each_safe(rdev, tmp, mddev) {
3338                 if (mddev->max_disks &&
3339                     (rdev->desc_nr >= mddev->max_disks ||
3340                      i > mddev->max_disks)) {
3341                         printk(KERN_WARNING
3342                                "md: %s: %s: only %d devices permitted\n",
3343                                mdname(mddev), bdevname(rdev->bdev, b),
3344                                mddev->max_disks);
3345                         kick_rdev_from_array(rdev);
3346                         continue;
3347                 }
3348                 if (rdev != freshest)
3349                         if (super_types[mddev->major_version].
3350                             validate_super(mddev, rdev)) {
3351                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3352                                         " from array!\n",
3353                                         bdevname(rdev->bdev,b));
3354                                 kick_rdev_from_array(rdev);
3355                                 continue;
3356                         }
3357                 if (mddev->level == LEVEL_MULTIPATH) {
3358                         rdev->desc_nr = i++;
3359                         rdev->raid_disk = rdev->desc_nr;
3360                         set_bit(In_sync, &rdev->flags);
3361                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362                         rdev->raid_disk = -1;
3363                         clear_bit(In_sync, &rdev->flags);
3364                 }
3365         }
3366 }
3367
3368 /* Read a fixed-point number.
3369  * Numbers in sysfs attributes should be in "standard" units where
3370  * possible, so time should be in seconds.
3371  * However we internally use a a much smaller unit such as 
3372  * milliseconds or jiffies.
3373  * This function takes a decimal number with a possible fractional
3374  * component, and produces an integer which is the result of
3375  * multiplying that number by 10^'scale'.
3376  * all without any floating-point arithmetic.
3377  */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380         unsigned long result = 0;
3381         long decimals = -1;
3382         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383                 if (*cp == '.')
3384                         decimals = 0;
3385                 else if (decimals < scale) {
3386                         unsigned int value;
3387                         value = *cp - '0';
3388                         result = result * 10 + value;
3389                         if (decimals >= 0)
3390                                 decimals++;
3391                 }
3392                 cp++;
3393         }
3394         if (*cp == '\n')
3395                 cp++;
3396         if (*cp)
3397                 return -EINVAL;
3398         if (decimals < 0)
3399                 decimals = 0;
3400         while (decimals < scale) {
3401                 result *= 10;
3402                 decimals ++;
3403         }
3404         *res = result;
3405         return 0;
3406 }
3407
3408
3409 static void md_safemode_timeout(unsigned long data);
3410
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414         int msec = (mddev->safemode_delay*1000)/HZ;
3415         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420         unsigned long msec;
3421
3422         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423                 return -EINVAL;
3424         if (msec == 0)
3425                 mddev->safemode_delay = 0;
3426         else {
3427                 unsigned long old_delay = mddev->safemode_delay;
3428                 mddev->safemode_delay = (msec*HZ)/1000;
3429                 if (mddev->safemode_delay == 0)
3430                         mddev->safemode_delay = 1;
3431                 if (mddev->safemode_delay < old_delay)
3432                         md_safemode_timeout((unsigned long)mddev);
3433         }
3434         return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442         struct md_personality *p = mddev->pers;
3443         if (p)
3444                 return sprintf(page, "%s\n", p->name);
3445         else if (mddev->clevel[0])
3446                 return sprintf(page, "%s\n", mddev->clevel);
3447         else if (mddev->level != LEVEL_NONE)
3448                 return sprintf(page, "%d\n", mddev->level);
3449         else
3450                 return 0;
3451 }
3452
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456         char clevel[16];
3457         ssize_t rv = len;
3458         struct md_personality *pers;
3459         long level;
3460         void *priv;
3461         struct md_rdev *rdev;
3462
3463         if (mddev->pers == NULL) {
3464                 if (len == 0)
3465                         return 0;
3466                 if (len >= sizeof(mddev->clevel))
3467                         return -ENOSPC;
3468                 strncpy(mddev->clevel, buf, len);
3469                 if (mddev->clevel[len-1] == '\n')
3470                         len--;
3471                 mddev->clevel[len] = 0;
3472                 mddev->level = LEVEL_NONE;
3473                 return rv;
3474         }
3475
3476         /* request to change the personality.  Need to ensure:
3477          *  - array is not engaged in resync/recovery/reshape
3478          *  - old personality can be suspended
3479          *  - new personality will access other array.
3480          */
3481
3482         if (mddev->sync_thread ||
3483             mddev->reshape_position != MaxSector ||
3484             mddev->sysfs_active)
3485                 return -EBUSY;
3486
3487         if (!mddev->pers->quiesce) {
3488                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489                        mdname(mddev), mddev->pers->name);
3490                 return -EINVAL;
3491         }
3492
3493         /* Now find the new personality */
3494         if (len == 0 || len >= sizeof(clevel))
3495                 return -EINVAL;
3496         strncpy(clevel, buf, len);
3497         if (clevel[len-1] == '\n')
3498                 len--;
3499         clevel[len] = 0;
3500         if (strict_strtol(clevel, 10, &level))
3501                 level = LEVEL_NONE;
3502
3503         if (request_module("md-%s", clevel) != 0)
3504                 request_module("md-level-%s", clevel);
3505         spin_lock(&pers_lock);
3506         pers = find_pers(level, clevel);
3507         if (!pers || !try_module_get(pers->owner)) {
3508                 spin_unlock(&pers_lock);
3509                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510                 return -EINVAL;
3511         }
3512         spin_unlock(&pers_lock);
3513
3514         if (pers == mddev->pers) {
3515                 /* Nothing to do! */
3516                 module_put(pers->owner);
3517                 return rv;
3518         }
3519         if (!pers->takeover) {
3520                 module_put(pers->owner);
3521                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522                        mdname(mddev), clevel);
3523                 return -EINVAL;
3524         }
3525
3526         rdev_for_each(rdev, mddev)
3527                 rdev->new_raid_disk = rdev->raid_disk;
3528
3529         /* ->takeover must set new_* and/or delta_disks
3530          * if it succeeds, and may set them when it fails.
3531          */
3532         priv = pers->takeover(mddev);
3533         if (IS_ERR(priv)) {
3534                 mddev->new_level = mddev->level;
3535                 mddev->new_layout = mddev->layout;
3536                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3537                 mddev->raid_disks -= mddev->delta_disks;
3538                 mddev->delta_disks = 0;
3539                 mddev->reshape_backwards = 0;
3540                 module_put(pers->owner);
3541                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542                        mdname(mddev), clevel);
3543                 return PTR_ERR(priv);
3544         }
3545
3546         /* Looks like we have a winner */
3547         mddev_suspend(mddev);
3548         mddev->pers->stop(mddev);
3549         
3550         if (mddev->pers->sync_request == NULL &&
3551             pers->sync_request != NULL) {
3552                 /* need to add the md_redundancy_group */
3553                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554                         printk(KERN_WARNING
3555                                "md: cannot register extra attributes for %s\n",
3556                                mdname(mddev));
3557                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558         }               
3559         if (mddev->pers->sync_request != NULL &&
3560             pers->sync_request == NULL) {
3561                 /* need to remove the md_redundancy_group */
3562                 if (mddev->to_remove == NULL)
3563                         mddev->to_remove = &md_redundancy_group;
3564         }
3565
3566         if (mddev->pers->sync_request == NULL &&
3567             mddev->external) {
3568                 /* We are converting from a no-redundancy array
3569                  * to a redundancy array and metadata is managed
3570                  * externally so we need to be sure that writes
3571                  * won't block due to a need to transition
3572                  *      clean->dirty
3573                  * until external management is started.
3574                  */
3575                 mddev->in_sync = 0;
3576                 mddev->safemode_delay = 0;
3577                 mddev->safemode = 0;
3578         }
3579
3580         rdev_for_each(rdev, mddev) {
3581                 if (rdev->raid_disk < 0)
3582                         continue;
3583                 if (rdev->new_raid_disk >= mddev->raid_disks)
3584                         rdev->new_raid_disk = -1;
3585                 if (rdev->new_raid_disk == rdev->raid_disk)
3586                         continue;
3587                 sysfs_unlink_rdev(mddev, rdev);
3588         }
3589         rdev_for_each(rdev, mddev) {
3590                 if (rdev->raid_disk < 0)
3591                         continue;
3592                 if (rdev->new_raid_disk == rdev->raid_disk)
3593                         continue;
3594                 rdev->raid_disk = rdev->new_raid_disk;
3595                 if (rdev->raid_disk < 0)
3596                         clear_bit(In_sync, &rdev->flags);
3597                 else {
3598                         if (sysfs_link_rdev(mddev, rdev))
3599                                 printk(KERN_WARNING "md: cannot register rd%d"
3600                                        " for %s after level change\n",
3601                                        rdev->raid_disk, mdname(mddev));
3602                 }
3603         }
3604
3605         module_put(mddev->pers->owner);
3606         mddev->pers = pers;
3607         mddev->private = priv;
3608         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609         mddev->level = mddev->new_level;
3610         mddev->layout = mddev->new_layout;
3611         mddev->chunk_sectors = mddev->new_chunk_sectors;
3612         mddev->delta_disks = 0;
3613         mddev->reshape_backwards = 0;
3614         mddev->degraded = 0;
3615         if (mddev->pers->sync_request == NULL) {
3616                 /* this is now an array without redundancy, so
3617                  * it must always be in_sync
3618                  */
3619                 mddev->in_sync = 1;
3620                 del_timer_sync(&mddev->safemode_timer);
3621         }
3622         pers->run(mddev);
3623         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624         mddev_resume(mddev);
3625         sysfs_notify(&mddev->kobj, NULL, "level");
3626         md_new_event(mddev);
3627         return rv;
3628 }
3629
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632
3633
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637         /* just a number, not meaningful for all levels */
3638         if (mddev->reshape_position != MaxSector &&
3639             mddev->layout != mddev->new_layout)
3640                 return sprintf(page, "%d (%d)\n",
3641                                mddev->new_layout, mddev->layout);
3642         return sprintf(page, "%d\n", mddev->layout);
3643 }
3644
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648         char *e;
3649         unsigned long n = simple_strtoul(buf, &e, 10);
3650
3651         if (!*buf || (*e && *e != '\n'))
3652                 return -EINVAL;
3653
3654         if (mddev->pers) {
3655                 int err;
3656                 if (mddev->pers->check_reshape == NULL)
3657                         return -EBUSY;
3658                 mddev->new_layout = n;
3659                 err = mddev->pers->check_reshape(mddev);
3660                 if (err) {
3661                         mddev->new_layout = mddev->layout;
3662                         return err;
3663                 }
3664         } else {
3665                 mddev->new_layout = n;
3666                 if (mddev->reshape_position == MaxSector)
3667                         mddev->layout = n;
3668         }
3669         return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678         if (mddev->raid_disks == 0)
3679                 return 0;
3680         if (mddev->reshape_position != MaxSector &&
3681             mddev->delta_disks != 0)
3682                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683                                mddev->raid_disks - mddev->delta_disks);
3684         return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692         char *e;
3693         int rv = 0;
3694         unsigned long n = simple_strtoul(buf, &e, 10);
3695
3696         if (!*buf || (*e && *e != '\n'))
3697                 return -EINVAL;
3698
3699         if (mddev->pers)
3700                 rv = update_raid_disks(mddev, n);
3701         else if (mddev->reshape_position != MaxSector) {
3702                 struct md_rdev *rdev;
3703                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3704
3705                 rdev_for_each(rdev, mddev) {
3706                         if (olddisks < n &&
3707                             rdev->data_offset < rdev->new_data_offset)
3708                                 return -EINVAL;
3709                         if (olddisks > n &&
3710                             rdev->data_offset > rdev->new_data_offset)
3711                                 return -EINVAL;
3712                 }
3713                 mddev->delta_disks = n - olddisks;
3714                 mddev->raid_disks = n;
3715                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3716         } else
3717                 mddev->raid_disks = n;
3718         return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726         if (mddev->reshape_position != MaxSector &&
3727             mddev->chunk_sectors != mddev->new_chunk_sectors)
3728                 return sprintf(page, "%d (%d)\n",
3729                                mddev->new_chunk_sectors << 9,
3730                                mddev->chunk_sectors << 9);
3731         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737         char *e;
3738         unsigned long n = simple_strtoul(buf, &e, 10);
3739
3740         if (!*buf || (*e && *e != '\n'))
3741                 return -EINVAL;
3742
3743         if (mddev->pers) {
3744                 int err;
3745                 if (mddev->pers->check_reshape == NULL)
3746                         return -EBUSY;
3747                 mddev->new_chunk_sectors = n >> 9;
3748                 err = mddev->pers->check_reshape(mddev);
3749                 if (err) {
3750                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3751                         return err;
3752                 }
3753         } else {
3754                 mddev->new_chunk_sectors = n >> 9;
3755                 if (mddev->reshape_position == MaxSector)
3756                         mddev->chunk_sectors = n >> 9;
3757         }
3758         return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766         if (mddev->recovery_cp == MaxSector)
3767                 return sprintf(page, "none\n");
3768         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774         char *e;
3775         unsigned long long n = simple_strtoull(buf, &e, 10);
3776
3777         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778                 return -EBUSY;
3779         if (cmd_match(buf, "none"))
3780                 n = MaxSector;
3781         else if (!*buf || (*e && *e != '\n'))
3782                 return -EINVAL;
3783
3784         mddev->recovery_cp = n;
3785         return len;
3786 }
3787 static struct md_sysfs_entry md_resync_start =
3788 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3789
3790 /*
3791  * The array state can be:
3792  *
3793  * clear
3794  *     No devices, no size, no level
3795  *     Equivalent to STOP_ARRAY ioctl
3796  * inactive
3797  *     May have some settings, but array is not active
3798  *        all IO results in error
3799  *     When written, doesn't tear down array, but just stops it
3800  * suspended (not supported yet)
3801  *     All IO requests will block. The array can be reconfigured.
3802  *     Writing this, if accepted, will block until array is quiescent
3803  * readonly
3804  *     no resync can happen.  no superblocks get written.
3805  *     write requests fail
3806  * read-auto
3807  *     like readonly, but behaves like 'clean' on a write request.
3808  *
3809  * clean - no pending writes, but otherwise active.
3810  *     When written to inactive array, starts without resync
3811  *     If a write request arrives then
3812  *       if metadata is known, mark 'dirty' and switch to 'active'.
3813  *       if not known, block and switch to write-pending
3814  *     If written to an active array that has pending writes, then fails.
3815  * active
3816  *     fully active: IO and resync can be happening.
3817  *     When written to inactive array, starts with resync
3818  *
3819  * write-pending
3820  *     clean, but writes are blocked waiting for 'active' to be written.
3821  *
3822  * active-idle
3823  *     like active, but no writes have been seen for a while (100msec).
3824  *
3825  */
3826 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3827                    write_pending, active_idle, bad_word};
3828 static char *array_states[] = {
3829         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3830         "write-pending", "active-idle", NULL };
3831
3832 static int match_word(const char *word, char **list)
3833 {
3834         int n;
3835         for (n=0; list[n]; n++)
3836                 if (cmd_match(word, list[n]))
3837                         break;
3838         return n;
3839 }
3840
3841 static ssize_t
3842 array_state_show(struct mddev *mddev, char *page)
3843 {
3844         enum array_state st = inactive;
3845
3846         if (mddev->pers)
3847                 switch(mddev->ro) {
3848                 case 1:
3849                         st = readonly;
3850                         break;
3851                 case 2:
3852                         st = read_auto;
3853                         break;
3854                 case 0:
3855                         if (mddev->in_sync)
3856                                 st = clean;
3857                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3858                                 st = write_pending;
3859                         else if (mddev->safemode)
3860                                 st = active_idle;
3861                         else
3862                                 st = active;
3863                 }
3864         else {
3865                 if (list_empty(&mddev->disks) &&
3866                     mddev->raid_disks == 0 &&
3867                     mddev->dev_sectors == 0)
3868                         st = clear;
3869                 else
3870                         st = inactive;
3871         }
3872         return sprintf(page, "%s\n", array_states[st]);
3873 }
3874
3875 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3876 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3877 static int do_md_run(struct mddev * mddev);
3878 static int restart_array(struct mddev *mddev);
3879
3880 static ssize_t
3881 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3882 {
3883         int err = -EINVAL;
3884         enum array_state st = match_word(buf, array_states);
3885         switch(st) {
3886         case bad_word:
3887                 break;
3888         case clear:
3889                 /* stopping an active array */
3890                 err = do_md_stop(mddev, 0, NULL);
3891                 break;
3892         case inactive:
3893                 /* stopping an active array */
3894                 if (mddev->pers)
3895                         err = do_md_stop(mddev, 2, NULL);
3896                 else
3897                         err = 0; /* already inactive */
3898                 break;
3899         case suspended:
3900                 break; /* not supported yet */
3901         case readonly:
3902                 if (mddev->pers)
3903                         err = md_set_readonly(mddev, NULL);
3904                 else {
3905                         mddev->ro = 1;
3906                         set_disk_ro(mddev->gendisk, 1);
3907                         err = do_md_run(mddev);
3908                 }
3909                 break;
3910         case read_auto:
3911                 if (mddev->pers) {
3912                         if (mddev->ro == 0)
3913                                 err = md_set_readonly(mddev, NULL);
3914                         else if (mddev->ro == 1)
3915                                 err = restart_array(mddev);
3916                         if (err == 0) {
3917                                 mddev->ro = 2;
3918                                 set_disk_ro(mddev->gendisk, 0);
3919                         }
3920                 } else {
3921                         mddev->ro = 2;
3922                         err = do_md_run(mddev);
3923                 }
3924                 break;
3925         case clean:
3926                 if (mddev->pers) {
3927                         restart_array(mddev);
3928                         spin_lock_irq(&mddev->write_lock);
3929                         if (atomic_read(&mddev->writes_pending) == 0) {
3930                                 if (mddev->in_sync == 0) {
3931                                         mddev->in_sync = 1;
3932                                         if (mddev->safemode == 1)
3933                                                 mddev->safemode = 0;
3934                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3935                                 }
3936                                 err = 0;
3937                         } else
3938                                 err = -EBUSY;
3939                         spin_unlock_irq(&mddev->write_lock);
3940                 } else
3941                         err = -EINVAL;
3942                 break;
3943         case active:
3944                 if (mddev->pers) {
3945                         restart_array(mddev);
3946                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3947                         wake_up(&mddev->sb_wait);
3948                         err = 0;
3949                 } else {
3950                         mddev->ro = 0;
3951                         set_disk_ro(mddev->gendisk, 0);
3952                         err = do_md_run(mddev);
3953                 }
3954                 break;
3955         case write_pending:
3956         case active_idle:
3957                 /* these cannot be set */
3958                 break;
3959         }
3960         if (err)
3961                 return err;
3962         else {
3963                 if (mddev->hold_active == UNTIL_IOCTL)
3964                         mddev->hold_active = 0;
3965                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3966                 return len;
3967         }
3968 }
3969 static struct md_sysfs_entry md_array_state =
3970 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3971
3972 static ssize_t
3973 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3974         return sprintf(page, "%d\n",
3975                        atomic_read(&mddev->max_corr_read_errors));
3976 }
3977
3978 static ssize_t
3979 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3980 {
3981         char *e;
3982         unsigned long n = simple_strtoul(buf, &e, 10);
3983
3984         if (*buf && (*e == 0 || *e == '\n')) {
3985                 atomic_set(&mddev->max_corr_read_errors, n);
3986                 return len;
3987         }
3988         return -EINVAL;
3989 }
3990
3991 static struct md_sysfs_entry max_corr_read_errors =
3992 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3993         max_corrected_read_errors_store);
3994
3995 static ssize_t
3996 null_show(struct mddev *mddev, char *page)
3997 {
3998         return -EINVAL;
3999 }
4000
4001 static ssize_t
4002 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4003 {
4004         /* buf must be %d:%d\n? giving major and minor numbers */
4005         /* The new device is added to the array.
4006          * If the array has a persistent superblock, we read the
4007          * superblock to initialise info and check validity.
4008          * Otherwise, only checking done is that in bind_rdev_to_array,
4009          * which mainly checks size.
4010          */
4011         char *e;
4012         int major = simple_strtoul(buf, &e, 10);
4013         int minor;
4014         dev_t dev;
4015         struct md_rdev *rdev;
4016         int err;
4017
4018         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4019                 return -EINVAL;
4020         minor = simple_strtoul(e+1, &e, 10);
4021         if (*e && *e != '\n')
4022                 return -EINVAL;
4023         dev = MKDEV(major, minor);
4024         if (major != MAJOR(dev) ||
4025             minor != MINOR(dev))
4026                 return -EOVERFLOW;
4027
4028
4029         if (mddev->persistent) {
4030                 rdev = md_import_device(dev, mddev->major_version,
4031                                         mddev->minor_version);
4032                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4033                         struct md_rdev *rdev0
4034                                 = list_entry(mddev->disks.next,
4035                                              struct md_rdev, same_set);
4036                         err = super_types[mddev->major_version]
4037                                 .load_super(rdev, rdev0, mddev->minor_version);
4038                         if (err < 0)
4039                                 goto out;
4040                 }
4041         } else if (mddev->external)
4042                 rdev = md_import_device(dev, -2, -1);
4043         else
4044                 rdev = md_import_device(dev, -1, -1);
4045
4046         if (IS_ERR(rdev))
4047                 return PTR_ERR(rdev);
4048         err = bind_rdev_to_array(rdev, mddev);
4049  out:
4050         if (err)
4051                 export_rdev(rdev);
4052         return err ? err : len;
4053 }
4054
4055 static struct md_sysfs_entry md_new_device =
4056 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4057
4058 static ssize_t
4059 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4060 {
4061         char *end;
4062         unsigned long chunk, end_chunk;
4063
4064         if (!mddev->bitmap)
4065                 goto out;
4066         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4067         while (*buf) {
4068                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4069                 if (buf == end) break;
4070                 if (*end == '-') { /* range */
4071                         buf = end + 1;
4072                         end_chunk = simple_strtoul(buf, &end, 0);
4073                         if (buf == end) break;
4074                 }
4075                 if (*end && !isspace(*end)) break;
4076                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4077                 buf = skip_spaces(end);
4078         }
4079         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4080 out:
4081         return len;
4082 }
4083
4084 static struct md_sysfs_entry md_bitmap =
4085 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4086
4087 static ssize_t
4088 size_show(struct mddev *mddev, char *page)
4089 {
4090         return sprintf(page, "%llu\n",
4091                 (unsigned long long)mddev->dev_sectors / 2);
4092 }
4093
4094 static int update_size(struct mddev *mddev, sector_t num_sectors);
4095
4096 static ssize_t
4097 size_store(struct mddev *mddev, const char *buf, size_t len)
4098 {
4099         /* If array is inactive, we can reduce the component size, but
4100          * not increase it (except from 0).
4101          * If array is active, we can try an on-line resize
4102          */
4103         sector_t sectors;
4104         int err = strict_blocks_to_sectors(buf, &sectors);
4105
4106         if (err < 0)
4107                 return err;
4108         if (mddev->pers) {
4109                 err = update_size(mddev, sectors);
4110                 md_update_sb(mddev, 1);
4111         } else {
4112                 if (mddev->dev_sectors == 0 ||
4113                     mddev->dev_sectors > sectors)
4114                         mddev->dev_sectors = sectors;
4115                 else
4116                         err = -ENOSPC;
4117         }
4118         return err ? err : len;
4119 }
4120
4121 static struct md_sysfs_entry md_size =
4122 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4123
4124
4125 /* Metdata version.
4126  * This is one of
4127  *   'none' for arrays with no metadata (good luck...)
4128  *   'external' for arrays with externally managed metadata,
4129  * or N.M for internally known formats
4130  */
4131 static ssize_t
4132 metadata_show(struct mddev *mddev, char *page)
4133 {
4134         if (mddev->persistent)
4135                 return sprintf(page, "%d.%d\n",
4136                                mddev->major_version, mddev->minor_version);
4137         else if (mddev->external)
4138                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4139         else
4140                 return sprintf(page, "none\n");
4141 }
4142
4143 static ssize_t
4144 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4145 {
4146         int major, minor;
4147         char *e;
4148         /* Changing the details of 'external' metadata is
4149          * always permitted.  Otherwise there must be
4150          * no devices attached to the array.
4151          */
4152         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4153                 ;
4154         else if (!list_empty(&mddev->disks))
4155                 return -EBUSY;
4156
4157         if (cmd_match(buf, "none")) {
4158                 mddev->persistent = 0;
4159                 mddev->external = 0;
4160                 mddev->major_version = 0;
4161                 mddev->minor_version = 90;
4162                 return len;
4163         }
4164         if (strncmp(buf, "external:", 9) == 0) {
4165                 size_t namelen = len-9;
4166                 if (namelen >= sizeof(mddev->metadata_type))
4167                         namelen = sizeof(mddev->metadata_type)-1;
4168                 strncpy(mddev->metadata_type, buf+9, namelen);
4169                 mddev->metadata_type[namelen] = 0;
4170                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4171                         mddev->metadata_type[--namelen] = 0;
4172                 mddev->persistent = 0;
4173                 mddev->external = 1;
4174                 mddev->major_version = 0;
4175                 mddev->minor_version = 90;
4176                 return len;
4177         }
4178         major = simple_strtoul(buf, &e, 10);
4179         if (e==buf || *e != '.')
4180                 return -EINVAL;
4181         buf = e+1;
4182         minor = simple_strtoul(buf, &e, 10);
4183         if (e==buf || (*e && *e != '\n') )
4184                 return -EINVAL;
4185         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4186                 return -ENOENT;
4187         mddev->major_version = major;
4188         mddev->minor_version = minor;
4189         mddev->persistent = 1;
4190         mddev->external = 0;
4191         return len;
4192 }
4193
4194 static struct md_sysfs_entry md_metadata =
4195 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4196
4197 static ssize_t
4198 action_show(struct mddev *mddev, char *page)
4199 {
4200         char *type = "idle";
4201         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4202                 type = "frozen";
4203         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4204             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4205                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4206                         type = "reshape";
4207                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4208                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4209                                 type = "resync";
4210                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4211                                 type = "check";
4212                         else
4213                                 type = "repair";
4214                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4215                         type = "recover";
4216         }
4217         return sprintf(page, "%s\n", type);
4218 }
4219
4220 static void reap_sync_thread(struct mddev *mddev);
4221
4222 static ssize_t
4223 action_store(struct mddev *mddev, const char *page, size_t len)
4224 {
4225         if (!mddev->pers || !mddev->pers->sync_request)
4226                 return -EINVAL;
4227
4228         if (cmd_match(page, "frozen"))
4229                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4230         else
4231                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232
4233         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4234                 if (mddev->sync_thread) {
4235                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236                         reap_sync_thread(mddev);
4237                 }
4238         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240                 return -EBUSY;
4241         else if (cmd_match(page, "resync"))
4242                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4243         else if (cmd_match(page, "recover")) {
4244                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4245                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4246         } else if (cmd_match(page, "reshape")) {
4247                 int err;
4248                 if (mddev->pers->start_reshape == NULL)
4249                         return -EINVAL;
4250                 err = mddev->pers->start_reshape(mddev);
4251                 if (err)
4252                         return err;
4253                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4254         } else {
4255                 if (cmd_match(page, "check"))
4256                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4257                 else if (!cmd_match(page, "repair"))
4258                         return -EINVAL;
4259                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4260                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4261         }
4262         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4263         md_wakeup_thread(mddev->thread);
4264         sysfs_notify_dirent_safe(mddev->sysfs_action);
4265         return len;
4266 }
4267
4268 static ssize_t
4269 mismatch_cnt_show(struct mddev *mddev, char *page)
4270 {
4271         return sprintf(page, "%llu\n",
4272                        (unsigned long long) mddev->resync_mismatches);
4273 }
4274
4275 static struct md_sysfs_entry md_scan_mode =
4276 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4277
4278
4279 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4280
4281 static ssize_t
4282 sync_min_show(struct mddev *mddev, char *page)
4283 {
4284         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4285                        mddev->sync_speed_min ? "local": "system");
4286 }
4287
4288 static ssize_t
4289 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4290 {
4291         int min;
4292         char *e;
4293         if (strncmp(buf, "system", 6)==0) {
4294                 mddev->sync_speed_min = 0;
4295                 return len;
4296         }
4297         min = simple_strtoul(buf, &e, 10);
4298         if (buf == e || (*e && *e != '\n') || min <= 0)
4299                 return -EINVAL;
4300         mddev->sync_speed_min = min;
4301         return len;
4302 }
4303
4304 static struct md_sysfs_entry md_sync_min =
4305 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4306
4307 static ssize_t
4308 sync_max_show(struct mddev *mddev, char *page)
4309 {
4310         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4311                        mddev->sync_speed_max ? "local": "system");
4312 }
4313
4314 static ssize_t
4315 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4316 {
4317         int max;
4318         char *e;
4319         if (strncmp(buf, "system", 6)==0) {
4320                 mddev->sync_speed_max = 0;
4321                 return len;
4322         }
4323         max = simple_strtoul(buf, &e, 10);
4324         if (buf == e || (*e && *e != '\n') || max <= 0)
4325                 return -EINVAL;
4326         mddev->sync_speed_max = max;
4327         return len;
4328 }
4329
4330 static struct md_sysfs_entry md_sync_max =
4331 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4332
4333 static ssize_t
4334 degraded_show(struct mddev *mddev, char *page)
4335 {
4336         return sprintf(page, "%d\n", mddev->degraded);
4337 }
4338 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4339
4340 static ssize_t
4341 sync_force_parallel_show(struct mddev *mddev, char *page)
4342 {
4343         return sprintf(page, "%d\n", mddev->parallel_resync);
4344 }
4345
4346 static ssize_t
4347 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4348 {
4349         long n;
4350
4351         if (strict_strtol(buf, 10, &n))
4352                 return -EINVAL;
4353
4354         if (n != 0 && n != 1)
4355                 return -EINVAL;
4356
4357         mddev->parallel_resync = n;
4358
4359         if (mddev->sync_thread)
4360                 wake_up(&resync_wait);
4361
4362         return len;
4363 }
4364
4365 /* force parallel resync, even with shared block devices */
4366 static struct md_sysfs_entry md_sync_force_parallel =
4367 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4368        sync_force_parallel_show, sync_force_parallel_store);
4369
4370 static ssize_t
4371 sync_speed_show(struct mddev *mddev, char *page)
4372 {
4373         unsigned long resync, dt, db;
4374         if (mddev->curr_resync == 0)
4375                 return sprintf(page, "none\n");
4376         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4377         dt = (jiffies - mddev->resync_mark) / HZ;
4378         if (!dt) dt++;
4379         db = resync - mddev->resync_mark_cnt;
4380         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4381 }
4382
4383 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4384
4385 static ssize_t
4386 sync_completed_show(struct mddev *mddev, char *page)
4387 {
4388         unsigned long long max_sectors, resync;
4389
4390         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4391                 return sprintf(page, "none\n");
4392
4393         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4394             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4395                 max_sectors = mddev->resync_max_sectors;
4396         else
4397                 max_sectors = mddev->dev_sectors;
4398
4399         resync = mddev->curr_resync_completed;
4400         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4401 }
4402
4403 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4404
4405 static ssize_t
4406 min_sync_show(struct mddev *mddev, char *page)
4407 {
4408         return sprintf(page, "%llu\n",
4409                        (unsigned long long)mddev->resync_min);
4410 }
4411 static ssize_t
4412 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4413 {
4414         unsigned long long min;
4415         if (strict_strtoull(buf, 10, &min))
4416                 return -EINVAL;
4417         if (min > mddev->resync_max)
4418                 return -EINVAL;
4419         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4420                 return -EBUSY;
4421
4422         /* Must be a multiple of chunk_size */
4423         if (mddev->chunk_sectors) {
4424                 sector_t temp = min;
4425                 if (sector_div(temp, mddev->chunk_sectors))
4426                         return -EINVAL;
4427         }
4428         mddev->resync_min = min;
4429
4430         return len;
4431 }
4432
4433 static struct md_sysfs_entry md_min_sync =
4434 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4435
4436 static ssize_t
4437 max_sync_show(struct mddev *mddev, char *page)
4438 {
4439         if (mddev->resync_max == MaxSector)
4440                 return sprintf(page, "max\n");
4441         else
4442                 return sprintf(page, "%llu\n",
4443                                (unsigned long long)mddev->resync_max);
4444 }
4445 static ssize_t
4446 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4447 {
4448         if (strncmp(buf, "max", 3) == 0)
4449                 mddev->resync_max = MaxSector;
4450         else {
4451                 unsigned long long max;
4452                 if (strict_strtoull(buf, 10, &max))
4453                         return -EINVAL;
4454                 if (max < mddev->resync_min)
4455                         return -EINVAL;
4456                 if (max < mddev->resync_max &&
4457                     mddev->ro == 0 &&
4458                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4459                         return -EBUSY;
4460
4461                 /* Must be a multiple of chunk_size */
4462                 if (mddev->chunk_sectors) {
4463                         sector_t temp = max;
4464                         if (sector_div(temp, mddev->chunk_sectors))
4465                                 return -EINVAL;
4466                 }
4467                 mddev->resync_max = max;
4468         }
4469         wake_up(&mddev->recovery_wait);
4470         return len;
4471 }
4472
4473 static struct md_sysfs_entry md_max_sync =
4474 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4475
4476 static ssize_t
4477 suspend_lo_show(struct mddev *mddev, char *page)
4478 {
4479         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4480 }
4481
4482 static ssize_t
4483 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4484 {
4485         char *e;
4486         unsigned long long new = simple_strtoull(buf, &e, 10);
4487         unsigned long long old = mddev->suspend_lo;
4488
4489         if (mddev->pers == NULL || 
4490             mddev->pers->quiesce == NULL)
4491                 return -EINVAL;
4492         if (buf == e || (*e && *e != '\n'))
4493                 return -EINVAL;
4494
4495         mddev->suspend_lo = new;
4496         if (new >= old)
4497                 /* Shrinking suspended region */
4498                 mddev->pers->quiesce(mddev, 2);
4499         else {
4500                 /* Expanding suspended region - need to wait */
4501                 mddev->pers->quiesce(mddev, 1);
4502                 mddev->pers->quiesce(mddev, 0);
4503         }
4504         return len;
4505 }
4506 static struct md_sysfs_entry md_suspend_lo =
4507 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4508
4509
4510 static ssize_t
4511 suspend_hi_show(struct mddev *mddev, char *page)
4512 {
4513         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4514 }
4515
4516 static ssize_t
4517 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4518 {
4519         char *e;
4520         unsigned long long new = simple_strtoull(buf, &e, 10);
4521         unsigned long long old = mddev->suspend_hi;
4522
4523         if (mddev->pers == NULL ||
4524             mddev->pers->quiesce == NULL)
4525                 return -EINVAL;
4526         if (buf == e || (*e && *e != '\n'))
4527                 return -EINVAL;
4528
4529         mddev->suspend_hi = new;
4530         if (new <= old)
4531                 /* Shrinking suspended region */
4532                 mddev->pers->quiesce(mddev, 2);
4533         else {
4534                 /* Expanding suspended region - need to wait */
4535                 mddev->pers->quiesce(mddev, 1);
4536                 mddev->pers->quiesce(mddev, 0);
4537         }
4538         return len;
4539 }
4540 static struct md_sysfs_entry md_suspend_hi =
4541 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4542
4543 static ssize_t
4544 reshape_position_show(struct mddev *mddev, char *page)
4545 {
4546         if (mddev->reshape_position != MaxSector)
4547                 return sprintf(page, "%llu\n",
4548                                (unsigned long long)mddev->reshape_position);
4549         strcpy(page, "none\n");
4550         return 5;
4551 }
4552
4553 static ssize_t
4554 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4555 {
4556         struct md_rdev *rdev;
4557         char *e;
4558         unsigned long long new = simple_strtoull(buf, &e, 10);
4559         if (mddev->pers)
4560                 return -EBUSY;
4561         if (buf == e || (*e && *e != '\n'))
4562                 return -EINVAL;
4563         mddev->reshape_position = new;
4564         mddev->delta_disks = 0;
4565         mddev->reshape_backwards = 0;
4566         mddev->new_level = mddev->level;
4567         mddev->new_layout = mddev->layout;
4568         mddev->new_chunk_sectors = mddev->chunk_sectors;
4569         rdev_for_each(rdev, mddev)
4570                 rdev->new_data_offset = rdev->data_offset;
4571         return len;
4572 }
4573
4574 static struct md_sysfs_entry md_reshape_position =
4575 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4576        reshape_position_store);
4577
4578 static ssize_t
4579 reshape_direction_show(struct mddev *mddev, char *page)
4580 {
4581         return sprintf(page, "%s\n",
4582                        mddev->reshape_backwards ? "backwards" : "forwards");
4583 }
4584
4585 static ssize_t
4586 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4587 {
4588         int backwards = 0;
4589         if (cmd_match(buf, "forwards"))
4590                 backwards = 0;
4591         else if (cmd_match(buf, "backwards"))
4592                 backwards = 1;
4593         else
4594                 return -EINVAL;
4595         if (mddev->reshape_backwards == backwards)
4596                 return len;
4597
4598         /* check if we are allowed to change */
4599         if (mddev->delta_disks)
4600                 return -EBUSY;
4601
4602         if (mddev->persistent &&
4603             mddev->major_version == 0)
4604                 return -EINVAL;
4605
4606         mddev->reshape_backwards = backwards;
4607         return len;
4608 }
4609
4610 static struct md_sysfs_entry md_reshape_direction =
4611 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4612        reshape_direction_store);
4613
4614 static ssize_t
4615 array_size_show(struct mddev *mddev, char *page)
4616 {
4617         if (mddev->external_size)
4618                 return sprintf(page, "%llu\n",
4619                                (unsigned long long)mddev->array_sectors/2);
4620         else
4621                 return sprintf(page, "default\n");
4622 }
4623
4624 static ssize_t
4625 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4626 {
4627         sector_t sectors;
4628
4629         if (strncmp(buf, "default", 7) == 0) {
4630                 if (mddev->pers)
4631                         sectors = mddev->pers->size(mddev, 0, 0);
4632                 else
4633                         sectors = mddev->array_sectors;
4634
4635                 mddev->external_size = 0;
4636         } else {
4637                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4638                         return -EINVAL;
4639                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4640                         return -E2BIG;
4641
4642                 mddev->external_size = 1;
4643         }
4644
4645         mddev->array_sectors = sectors;
4646         if (mddev->pers) {
4647                 set_capacity(mddev->gendisk, mddev->array_sectors);
4648                 revalidate_disk(mddev->gendisk);
4649         }
4650         return len;
4651 }
4652
4653 static struct md_sysfs_entry md_array_size =
4654 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4655        array_size_store);
4656
4657 static struct attribute *md_default_attrs[] = {
4658         &md_level.attr,
4659         &md_layout.attr,
4660         &md_raid_disks.attr,
4661         &md_chunk_size.attr,
4662         &md_size.attr,
4663         &md_resync_start.attr,
4664         &md_metadata.attr,
4665         &md_new_device.attr,
4666         &md_safe_delay.attr,
4667         &md_array_state.attr,
4668         &md_reshape_position.attr,
4669         &md_reshape_direction.attr,
4670         &md_array_size.attr,
4671         &max_corr_read_errors.attr,
4672         NULL,
4673 };
4674
4675 static struct attribute *md_redundancy_attrs[] = {
4676         &md_scan_mode.attr,
4677         &md_mismatches.attr,
4678         &md_sync_min.attr,
4679         &md_sync_max.attr,
4680         &md_sync_speed.attr,
4681         &md_sync_force_parallel.attr,
4682         &md_sync_completed.attr,
4683         &md_min_sync.attr,
4684         &md_max_sync.attr,
4685         &md_suspend_lo.attr,
4686         &md_suspend_hi.attr,
4687         &md_bitmap.attr,
4688         &md_degraded.attr,
4689         NULL,
4690 };
4691 static struct attribute_group md_redundancy_group = {
4692         .name = NULL,
4693         .attrs = md_redundancy_attrs,
4694 };
4695
4696
4697 static ssize_t
4698 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4699 {
4700         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4701         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4702         ssize_t rv;
4703
4704         if (!entry->show)
4705                 return -EIO;
4706         spin_lock(&all_mddevs_lock);
4707         if (list_empty(&mddev->all_mddevs)) {
4708                 spin_unlock(&all_mddevs_lock);
4709                 return -EBUSY;
4710         }
4711         mddev_get(mddev);
4712         spin_unlock(&all_mddevs_lock);
4713
4714         rv = mddev_lock(mddev);
4715         if (!rv) {
4716                 rv = entry->show(mddev, page);
4717                 mddev_unlock(mddev);
4718         }
4719         mddev_put(mddev);
4720         return rv;
4721 }
4722
4723 static ssize_t
4724 md_attr_store(struct kobject *kobj, struct attribute *attr,
4725               const char *page, size_t length)
4726 {
4727         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4728         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4729         ssize_t rv;
4730
4731         if (!entry->store)
4732                 return -EIO;
4733         if (!capable(CAP_SYS_ADMIN))
4734                 return -EACCES;
4735         spin_lock(&all_mddevs_lock);
4736         if (list_empty(&mddev->all_mddevs)) {
4737                 spin_unlock(&all_mddevs_lock);
4738                 return -EBUSY;
4739         }
4740         mddev_get(mddev);
4741         spin_unlock(&all_mddevs_lock);
4742         rv = mddev_lock(mddev);
4743         if (!rv) {
4744                 rv = entry->store(mddev, page, length);
4745                 mddev_unlock(mddev);
4746         }
4747         mddev_put(mddev);
4748         return rv;
4749 }
4750
4751 static void md_free(struct kobject *ko)
4752 {
4753         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4754
4755         if (mddev->sysfs_state)
4756                 sysfs_put(mddev->sysfs_state);
4757
4758         if (mddev->gendisk) {
4759                 del_gendisk(mddev->gendisk);
4760                 put_disk(mddev->gendisk);
4761         }
4762         if (mddev->queue)
4763                 blk_cleanup_queue(mddev->queue);
4764
4765         kfree(mddev);
4766 }
4767
4768 static const struct sysfs_ops md_sysfs_ops = {
4769         .show   = md_attr_show,
4770         .store  = md_attr_store,
4771 };
4772 static struct kobj_type md_ktype = {
4773         .release        = md_free,
4774         .sysfs_ops      = &md_sysfs_ops,
4775         .default_attrs  = md_default_attrs,
4776 };
4777
4778 int mdp_major = 0;
4779
4780 static void mddev_delayed_delete(struct work_struct *ws)
4781 {
4782         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4783
4784         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4785         kobject_del(&mddev->kobj);
4786         kobject_put(&mddev->kobj);
4787 }
4788
4789 static int md_alloc(dev_t dev, char *name)
4790 {
4791         static DEFINE_MUTEX(disks_mutex);
4792         struct mddev *mddev = mddev_find(dev);
4793         struct gendisk *disk;
4794         int partitioned;
4795         int shift;
4796         int unit;
4797         int error;
4798
4799         if (!mddev)
4800                 return -ENODEV;
4801
4802         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4803         shift = partitioned ? MdpMinorShift : 0;
4804         unit = MINOR(mddev->unit) >> shift;
4805
4806         /* wait for any previous instance of this device to be
4807          * completely removed (mddev_delayed_delete).
4808          */
4809         flush_workqueue(md_misc_wq);
4810
4811         mutex_lock(&disks_mutex);
4812         error = -EEXIST;
4813         if (mddev->gendisk)
4814                 goto abort;
4815
4816         if (name) {
4817                 /* Need to ensure that 'name' is not a duplicate.
4818                  */
4819                 struct mddev *mddev2;
4820                 spin_lock(&all_mddevs_lock);
4821
4822                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4823                         if (mddev2->gendisk &&
4824                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4825                                 spin_unlock(&all_mddevs_lock);
4826                                 goto abort;
4827                         }
4828                 spin_unlock(&all_mddevs_lock);
4829         }
4830
4831         error = -ENOMEM;
4832         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4833         if (!mddev->queue)
4834                 goto abort;
4835         mddev->queue->queuedata = mddev;
4836
4837         blk_queue_make_request(mddev->queue, md_make_request);
4838         blk_set_stacking_limits(&mddev->queue->limits);
4839
4840         disk = alloc_disk(1 << shift);
4841         if (!disk) {
4842                 blk_cleanup_queue(mddev->queue);
4843                 mddev->queue = NULL;
4844                 goto abort;
4845         }
4846         disk->major = MAJOR(mddev->unit);
4847         disk->first_minor = unit << shift;
4848         if (name)
4849                 strcpy(disk->disk_name, name);
4850         else if (partitioned)
4851                 sprintf(disk->disk_name, "md_d%d", unit);
4852         else
4853                 sprintf(disk->disk_name, "md%d", unit);
4854         disk->fops = &md_fops;
4855         disk->private_data = mddev;
4856         disk->queue = mddev->queue;
4857         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4858         /* Allow extended partitions.  This makes the
4859          * 'mdp' device redundant, but we can't really
4860          * remove it now.
4861          */
4862         disk->flags |= GENHD_FL_EXT_DEVT;
4863         mddev->gendisk = disk;
4864         /* As soon as we call add_disk(), another thread could get
4865          * through to md_open, so make sure it doesn't get too far
4866          */
4867         mutex_lock(&mddev->open_mutex);
4868         add_disk(disk);
4869
4870         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4871                                      &disk_to_dev(disk)->kobj, "%s", "md");
4872         if (error) {
4873                 /* This isn't possible, but as kobject_init_and_add is marked
4874                  * __must_check, we must do something with the result
4875                  */
4876                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4877                        disk->disk_name);
4878                 error = 0;
4879         }
4880         if (mddev->kobj.sd &&
4881             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4882                 printk(KERN_DEBUG "pointless warning\n");
4883         mutex_unlock(&mddev->open_mutex);
4884  abort:
4885         mutex_unlock(&disks_mutex);
4886         if (!error && mddev->kobj.sd) {
4887                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4888                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4889         }
4890         mddev_put(mddev);
4891         return error;
4892 }
4893
4894 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4895 {
4896         md_alloc(dev, NULL);
4897         return NULL;
4898 }
4899
4900 static int add_named_array(const char *val, struct kernel_param *kp)
4901 {
4902         /* val must be "md_*" where * is not all digits.
4903          * We allocate an array with a large free minor number, and
4904          * set the name to val.  val must not already be an active name.
4905          */
4906         int len = strlen(val);
4907         char buf[DISK_NAME_LEN];
4908
4909         while (len && val[len-1] == '\n')
4910                 len--;
4911         if (len >= DISK_NAME_LEN)
4912                 return -E2BIG;
4913         strlcpy(buf, val, len+1);
4914         if (strncmp(buf, "md_", 3) != 0)
4915                 return -EINVAL;
4916         return md_alloc(0, buf);
4917 }
4918
4919 static void md_safemode_timeout(unsigned long data)
4920 {
4921         struct mddev *mddev = (struct mddev *) data;
4922
4923         if (!atomic_read(&mddev->writes_pending)) {
4924                 mddev->safemode = 1;
4925                 if (mddev->external)
4926                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4927         }
4928         md_wakeup_thread(mddev->thread);
4929 }
4930
4931 static int start_dirty_degraded;
4932
4933 int md_run(struct mddev *mddev)
4934 {
4935         int err;
4936         struct md_rdev *rdev;
4937         struct md_personality *pers;
4938
4939         if (list_empty(&mddev->disks))
4940                 /* cannot run an array with no devices.. */
4941                 return -EINVAL;
4942
4943         if (mddev->pers)
4944                 return -EBUSY;
4945         /* Cannot run until previous stop completes properly */
4946         if (mddev->sysfs_active)
4947                 return -EBUSY;
4948
4949         /*
4950          * Analyze all RAID superblock(s)
4951          */
4952         if (!mddev->raid_disks) {
4953                 if (!mddev->persistent)
4954                         return -EINVAL;
4955                 analyze_sbs(mddev);
4956         }
4957
4958         if (mddev->level != LEVEL_NONE)
4959                 request_module("md-level-%d", mddev->level);
4960         else if (mddev->clevel[0])
4961                 request_module("md-%s", mddev->clevel);
4962
4963         /*
4964          * Drop all container device buffers, from now on
4965          * the only valid external interface is through the md
4966          * device.
4967          */
4968         rdev_for_each(rdev, mddev) {
4969                 if (test_bit(Faulty, &rdev->flags))
4970                         continue;
4971                 sync_blockdev(rdev->bdev);
4972                 invalidate_bdev(rdev->bdev);
4973
4974                 /* perform some consistency tests on the device.
4975                  * We don't want the data to overlap the metadata,
4976                  * Internal Bitmap issues have been handled elsewhere.
4977                  */
4978                 if (rdev->meta_bdev) {
4979                         /* Nothing to check */;
4980                 } else if (rdev->data_offset < rdev->sb_start) {
4981                         if (mddev->dev_sectors &&
4982                             rdev->data_offset + mddev->dev_sectors
4983                             > rdev->sb_start) {
4984                                 printk("md: %s: data overlaps metadata\n",
4985                                        mdname(mddev));
4986                                 return -EINVAL;
4987                         }
4988                 } else {
4989                         if (rdev->sb_start + rdev->sb_size/512
4990                             > rdev->data_offset) {
4991                                 printk("md: %s: metadata overlaps data\n",
4992                                        mdname(mddev));
4993                                 return -EINVAL;
4994                         }
4995                 }
4996                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4997         }
4998
4999         if (mddev->bio_set == NULL)
5000                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5001
5002         spin_lock(&pers_lock);
5003         pers = find_pers(mddev->level, mddev->clevel);
5004         if (!pers || !try_module_get(pers->owner)) {
5005                 spin_unlock(&pers_lock);
5006                 if (mddev->level != LEVEL_NONE)
5007                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5008                                mddev->level);
5009                 else
5010                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5011                                mddev->clevel);
5012                 return -EINVAL;
5013         }
5014         mddev->pers = pers;
5015         spin_unlock(&pers_lock);
5016         if (mddev->level != pers->level) {
5017                 mddev->level = pers->level;
5018                 mddev->new_level = pers->level;
5019         }
5020         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5021
5022         if (mddev->reshape_position != MaxSector &&
5023             pers->start_reshape == NULL) {
5024                 /* This personality cannot handle reshaping... */
5025                 mddev->pers = NULL;
5026                 module_put(pers->owner);
5027                 return -EINVAL;
5028         }
5029
5030         if (pers->sync_request) {
5031                 /* Warn if this is a potentially silly
5032                  * configuration.
5033                  */
5034                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5035                 struct md_rdev *rdev2;
5036                 int warned = 0;
5037
5038                 rdev_for_each(rdev, mddev)
5039                         rdev_for_each(rdev2, mddev) {
5040                                 if (rdev < rdev2 &&
5041                                     rdev->bdev->bd_contains ==
5042                                     rdev2->bdev->bd_contains) {
5043                                         printk(KERN_WARNING
5044                                                "%s: WARNING: %s appears to be"
5045                                                " on the same physical disk as"
5046                                                " %s.\n",
5047                                                mdname(mddev),
5048                                                bdevname(rdev->bdev,b),
5049                                                bdevname(rdev2->bdev,b2));
5050                                         warned = 1;
5051                                 }
5052                         }
5053
5054                 if (warned)
5055                         printk(KERN_WARNING
5056                                "True protection against single-disk"
5057                                " failure might be compromised.\n");
5058         }
5059
5060         mddev->recovery = 0;
5061         /* may be over-ridden by personality */
5062         mddev->resync_max_sectors = mddev->dev_sectors;
5063
5064         mddev->ok_start_degraded = start_dirty_degraded;
5065
5066         if (start_readonly && mddev->ro == 0)
5067                 mddev->ro = 2; /* read-only, but switch on first write */
5068
5069         err = mddev->pers->run(mddev);
5070         if (err)
5071                 printk(KERN_ERR "md: pers->run() failed ...\n");
5072         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5073                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5074                           " but 'external_size' not in effect?\n", __func__);
5075                 printk(KERN_ERR
5076                        "md: invalid array_size %llu > default size %llu\n",
5077                        (unsigned long long)mddev->array_sectors / 2,
5078                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5079                 err = -EINVAL;
5080                 mddev->pers->stop(mddev);
5081         }
5082         if (err == 0 && mddev->pers->sync_request &&
5083             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5084                 err = bitmap_create(mddev);
5085                 if (err) {
5086                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5087                                mdname(mddev), err);
5088                         mddev->pers->stop(mddev);
5089                 }
5090         }
5091         if (err) {
5092                 module_put(mddev->pers->owner);
5093                 mddev->pers = NULL;
5094                 bitmap_destroy(mddev);
5095                 return err;
5096         }
5097         if (mddev->pers->sync_request) {
5098                 if (mddev->kobj.sd &&
5099                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5100                         printk(KERN_WARNING
5101                                "md: cannot register extra attributes for %s\n",
5102                                mdname(mddev));
5103                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5104         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5105                 mddev->ro = 0;
5106
5107         atomic_set(&mddev->writes_pending,0);
5108         atomic_set(&mddev->max_corr_read_errors,
5109                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5110         mddev->safemode = 0;
5111         mddev->safemode_timer.function = md_safemode_timeout;
5112         mddev->safemode_timer.data = (unsigned long) mddev;
5113         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5114         mddev->in_sync = 1;
5115         smp_wmb();
5116         mddev->ready = 1;
5117         rdev_for_each(rdev, mddev)
5118                 if (rdev->raid_disk >= 0)
5119                         if (sysfs_link_rdev(mddev, rdev))
5120                                 /* failure here is OK */;
5121         
5122         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5123         
5124         if (mddev->flags)
5125                 md_update_sb(mddev, 0);
5126
5127         md_new_event(mddev);
5128         sysfs_notify_dirent_safe(mddev->sysfs_state);
5129         sysfs_notify_dirent_safe(mddev->sysfs_action);
5130         sysfs_notify(&mddev->kobj, NULL, "degraded");
5131         return 0;
5132 }
5133 EXPORT_SYMBOL_GPL(md_run);
5134
5135 static int do_md_run(struct mddev *mddev)
5136 {
5137         int err;
5138
5139         err = md_run(mddev);
5140         if (err)
5141                 goto out;
5142         err = bitmap_load(mddev);
5143         if (err) {
5144                 bitmap_destroy(mddev);
5145                 goto out;
5146         }
5147
5148         md_wakeup_thread(mddev->thread);
5149         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5150
5151         set_capacity(mddev->gendisk, mddev->array_sectors);
5152         revalidate_disk(mddev->gendisk);
5153         mddev->changed = 1;
5154         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5155 out:
5156         return err;
5157 }
5158
5159 static int restart_array(struct mddev *mddev)
5160 {
5161         struct gendisk *disk = mddev->gendisk;
5162
5163         /* Complain if it has no devices */
5164         if (list_empty(&mddev->disks))
5165                 return -ENXIO;
5166         if (!mddev->pers)
5167                 return -EINVAL;
5168         if (!mddev->ro)
5169                 return -EBUSY;
5170         mddev->safemode = 0;
5171         mddev->ro = 0;
5172         set_disk_ro(disk, 0);
5173         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5174                 mdname(mddev));
5175         /* Kick recovery or resync if necessary */
5176         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177         md_wakeup_thread(mddev->thread);
5178         md_wakeup_thread(mddev->sync_thread);
5179         sysfs_notify_dirent_safe(mddev->sysfs_state);
5180         return 0;
5181 }
5182
5183 /* similar to deny_write_access, but accounts for our holding a reference
5184  * to the file ourselves */
5185 static int deny_bitmap_write_access(struct file * file)
5186 {
5187         struct inode *inode = file->f_mapping->host;
5188
5189         spin_lock(&inode->i_lock);
5190         if (atomic_read(&inode->i_writecount) > 1) {
5191                 spin_unlock(&inode->i_lock);
5192                 return -ETXTBSY;
5193         }
5194         atomic_set(&inode->i_writecount, -1);
5195         spin_unlock(&inode->i_lock);
5196
5197         return 0;
5198 }
5199
5200 void restore_bitmap_write_access(struct file *file)
5201 {
5202         struct inode *inode = file->f_mapping->host;
5203
5204         spin_lock(&inode->i_lock);
5205         atomic_set(&inode->i_writecount, 1);
5206         spin_unlock(&inode->i_lock);
5207 }
5208
5209 static void md_clean(struct mddev *mddev)
5210 {
5211         mddev->array_sectors = 0;
5212         mddev->external_size = 0;
5213         mddev->dev_sectors = 0;
5214         mddev->raid_disks = 0;
5215         mddev->recovery_cp = 0;
5216         mddev->resync_min = 0;
5217         mddev->resync_max = MaxSector;
5218         mddev->reshape_position = MaxSector;
5219         mddev->external = 0;
5220         mddev->persistent = 0;
5221         mddev->level = LEVEL_NONE;
5222         mddev->clevel[0] = 0;
5223         mddev->flags = 0;
5224         mddev->ro = 0;
5225         mddev->metadata_type[0] = 0;
5226         mddev->chunk_sectors = 0;
5227         mddev->ctime = mddev->utime = 0;
5228         mddev->layout = 0;
5229         mddev->max_disks = 0;
5230         mddev->events = 0;
5231         mddev->can_decrease_events = 0;
5232         mddev->delta_disks = 0;
5233         mddev->reshape_backwards = 0;
5234         mddev->new_level = LEVEL_NONE;
5235         mddev->new_layout = 0;
5236         mddev->new_chunk_sectors = 0;
5237         mddev->curr_resync = 0;
5238         mddev->resync_mismatches = 0;
5239         mddev->suspend_lo = mddev->suspend_hi = 0;
5240         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5241         mddev->recovery = 0;
5242         mddev->in_sync = 0;
5243         mddev->changed = 0;
5244         mddev->degraded = 0;
5245         mddev->safemode = 0;
5246         mddev->merge_check_needed = 0;
5247         mddev->bitmap_info.offset = 0;
5248         mddev->bitmap_info.default_offset = 0;
5249         mddev->bitmap_info.default_space = 0;
5250         mddev->bitmap_info.chunksize = 0;
5251         mddev->bitmap_info.daemon_sleep = 0;
5252         mddev->bitmap_info.max_write_behind = 0;
5253 }
5254
5255 static void __md_stop_writes(struct mddev *mddev)
5256 {
5257         if (mddev->sync_thread) {
5258                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5259                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5260                 reap_sync_thread(mddev);
5261         }
5262
5263         del_timer_sync(&mddev->safemode_timer);
5264
5265         bitmap_flush(mddev);
5266         md_super_wait(mddev);
5267
5268         if (!mddev->in_sync || mddev->flags) {
5269                 /* mark array as shutdown cleanly */
5270                 mddev->in_sync = 1;
5271                 md_update_sb(mddev, 1);
5272         }
5273 }
5274
5275 void md_stop_writes(struct mddev *mddev)
5276 {
5277         mddev_lock(mddev);
5278         __md_stop_writes(mddev);
5279         mddev_unlock(mddev);
5280 }
5281 EXPORT_SYMBOL_GPL(md_stop_writes);
5282
5283 void md_stop(struct mddev *mddev)
5284 {
5285         mddev->ready = 0;
5286         mddev->pers->stop(mddev);
5287         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5288                 mddev->to_remove = &md_redundancy_group;
5289         module_put(mddev->pers->owner);
5290         mddev->pers = NULL;
5291         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5292 }
5293 EXPORT_SYMBOL_GPL(md_stop);
5294
5295 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5296 {
5297         int err = 0;
5298         mutex_lock(&mddev->open_mutex);
5299         if (atomic_read(&mddev->openers) > !!bdev) {
5300                 printk("md: %s still in use.\n",mdname(mddev));
5301                 err = -EBUSY;
5302                 goto out;
5303         }
5304         if (bdev)
5305                 sync_blockdev(bdev);
5306         if (mddev->pers) {
5307                 __md_stop_writes(mddev);
5308
5309                 err  = -ENXIO;
5310                 if (mddev->ro==1)
5311                         goto out;
5312                 mddev->ro = 1;
5313                 set_disk_ro(mddev->gendisk, 1);
5314                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5315                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5316                 err = 0;        
5317         }
5318 out:
5319         mutex_unlock(&mddev->open_mutex);
5320         return err;
5321 }
5322
5323 /* mode:
5324  *   0 - completely stop and dis-assemble array
5325  *   2 - stop but do not disassemble array
5326  */
5327 static int do_md_stop(struct mddev * mddev, int mode,
5328                       struct block_device *bdev)
5329 {
5330         struct gendisk *disk = mddev->gendisk;
5331         struct md_rdev *rdev;
5332
5333         mutex_lock(&mddev->open_mutex);
5334         if (atomic_read(&mddev->openers) > !!bdev ||
5335             mddev->sysfs_active) {
5336                 printk("md: %s still in use.\n",mdname(mddev));
5337                 mutex_unlock(&mddev->open_mutex);
5338                 return -EBUSY;
5339         }
5340         if (bdev)
5341                 /* It is possible IO was issued on some other
5342                  * open file which was closed before we took ->open_mutex.
5343                  * As that was not the last close __blkdev_put will not
5344                  * have called sync_blockdev, so we must.
5345                  */
5346                 sync_blockdev(bdev);
5347
5348         if (mddev->pers) {
5349                 if (mddev->ro)
5350                         set_disk_ro(disk, 0);
5351
5352                 __md_stop_writes(mddev);
5353                 md_stop(mddev);
5354                 mddev->queue->merge_bvec_fn = NULL;
5355                 mddev->queue->backing_dev_info.congested_fn = NULL;
5356
5357                 /* tell userspace to handle 'inactive' */
5358                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5359
5360                 rdev_for_each(rdev, mddev)
5361                         if (rdev->raid_disk >= 0)
5362                                 sysfs_unlink_rdev(mddev, rdev);
5363
5364                 set_capacity(disk, 0);
5365                 mutex_unlock(&mddev->open_mutex);
5366                 mddev->changed = 1;
5367                 revalidate_disk(disk);
5368
5369                 if (mddev->ro)
5370                         mddev->ro = 0;
5371         } else
5372                 mutex_unlock(&mddev->open_mutex);
5373         /*
5374          * Free resources if final stop
5375          */
5376         if (mode == 0) {
5377                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5378
5379                 bitmap_destroy(mddev);
5380                 if (mddev->bitmap_info.file) {
5381                         restore_bitmap_write_access(mddev->bitmap_info.file);
5382                         fput(mddev->bitmap_info.file);
5383                         mddev->bitmap_info.file = NULL;
5384                 }
5385                 mddev->bitmap_info.offset = 0;
5386
5387                 export_array(mddev);
5388
5389                 md_clean(mddev);
5390                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5391                 if (mddev->hold_active == UNTIL_STOP)
5392                         mddev->hold_active = 0;
5393         }
5394         blk_integrity_unregister(disk);
5395         md_new_event(mddev);
5396         sysfs_notify_dirent_safe(mddev->sysfs_state);
5397         return 0;
5398 }
5399
5400 #ifndef MODULE
5401 static void autorun_array(struct mddev *mddev)
5402 {
5403         struct md_rdev *rdev;
5404         int err;
5405
5406         if (list_empty(&mddev->disks))
5407                 return;
5408
5409         printk(KERN_INFO "md: running: ");
5410
5411         rdev_for_each(rdev, mddev) {
5412                 char b[BDEVNAME_SIZE];
5413                 printk("<%s>", bdevname(rdev->bdev,b));
5414         }
5415         printk("\n");
5416
5417         err = do_md_run(mddev);
5418         if (err) {
5419                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5420                 do_md_stop(mddev, 0, NULL);
5421         }
5422 }
5423
5424 /*
5425  * lets try to run arrays based on all disks that have arrived
5426  * until now. (those are in pending_raid_disks)
5427  *
5428  * the method: pick the first pending disk, collect all disks with
5429  * the same UUID, remove all from the pending list and put them into
5430  * the 'same_array' list. Then order this list based on superblock
5431  * update time (freshest comes first), kick out 'old' disks and
5432  * compare superblocks. If everything's fine then run it.
5433  *
5434  * If "unit" is allocated, then bump its reference count
5435  */
5436 static void autorun_devices(int part)
5437 {
5438         struct md_rdev *rdev0, *rdev, *tmp;
5439         struct mddev *mddev;
5440         char b[BDEVNAME_SIZE];
5441
5442         printk(KERN_INFO "md: autorun ...\n");
5443         while (!list_empty(&pending_raid_disks)) {
5444                 int unit;
5445                 dev_t dev;
5446                 LIST_HEAD(candidates);
5447                 rdev0 = list_entry(pending_raid_disks.next,
5448                                          struct md_rdev, same_set);
5449
5450                 printk(KERN_INFO "md: considering %s ...\n",
5451                         bdevname(rdev0->bdev,b));
5452                 INIT_LIST_HEAD(&candidates);
5453                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5454                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5455                                 printk(KERN_INFO "md:  adding %s ...\n",
5456                                         bdevname(rdev->bdev,b));
5457                                 list_move(&rdev->same_set, &candidates);
5458                         }
5459                 /*
5460                  * now we have a set of devices, with all of them having
5461                  * mostly sane superblocks. It's time to allocate the
5462                  * mddev.
5463                  */
5464                 if (part) {
5465                         dev = MKDEV(mdp_major,
5466                                     rdev0->preferred_minor << MdpMinorShift);
5467                         unit = MINOR(dev) >> MdpMinorShift;
5468                 } else {
5469                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5470                         unit = MINOR(dev);
5471                 }
5472                 if (rdev0->preferred_minor != unit) {
5473                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5474                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5475                         break;
5476                 }
5477
5478                 md_probe(dev, NULL, NULL);
5479                 mddev = mddev_find(dev);
5480                 if (!mddev || !mddev->gendisk) {
5481                         if (mddev)
5482                                 mddev_put(mddev);
5483                         printk(KERN_ERR
5484                                 "md: cannot allocate memory for md drive.\n");
5485                         break;
5486                 }
5487                 if (mddev_lock(mddev)) 
5488                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5489                                mdname(mddev));
5490                 else if (mddev->raid_disks || mddev->major_version
5491                          || !list_empty(&mddev->disks)) {
5492                         printk(KERN_WARNING 
5493                                 "md: %s already running, cannot run %s\n",
5494                                 mdname(mddev), bdevname(rdev0->bdev,b));
5495                         mddev_unlock(mddev);
5496                 } else {
5497                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5498                         mddev->persistent = 1;
5499                         rdev_for_each_list(rdev, tmp, &candidates) {
5500                                 list_del_init(&rdev->same_set);
5501                                 if (bind_rdev_to_array(rdev, mddev))
5502                                         export_rdev(rdev);
5503                         }
5504                         autorun_array(mddev);
5505                         mddev_unlock(mddev);
5506                 }
5507                 /* on success, candidates will be empty, on error
5508                  * it won't...
5509                  */
5510                 rdev_for_each_list(rdev, tmp, &candidates) {
5511                         list_del_init(&rdev->same_set);
5512                         export_rdev(rdev);
5513                 }
5514                 mddev_put(mddev);
5515         }
5516         printk(KERN_INFO "md: ... autorun DONE.\n");
5517 }
5518 #endif /* !MODULE */
5519
5520 static int get_version(void __user * arg)
5521 {
5522         mdu_version_t ver;
5523
5524         ver.major = MD_MAJOR_VERSION;
5525         ver.minor = MD_MINOR_VERSION;
5526         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5527
5528         if (copy_to_user(arg, &ver, sizeof(ver)))
5529                 return -EFAULT;
5530
5531         return 0;
5532 }
5533
5534 static int get_array_info(struct mddev * mddev, void __user * arg)
5535 {
5536         mdu_array_info_t info;
5537         int nr,working,insync,failed,spare;
5538         struct md_rdev *rdev;
5539
5540         nr = working = insync = failed = spare = 0;
5541         rcu_read_lock();
5542         rdev_for_each_rcu(rdev, mddev) {
5543                 nr++;
5544                 if (test_bit(Faulty, &rdev->flags))
5545                         failed++;
5546                 else {
5547                         working++;
5548                         if (test_bit(In_sync, &rdev->flags))
5549                                 insync++;       
5550                         else
5551                                 spare++;
5552                 }
5553         }
5554         rcu_read_unlock();
5555
5556         info.major_version = mddev->major_version;
5557         info.minor_version = mddev->minor_version;
5558         info.patch_version = MD_PATCHLEVEL_VERSION;
5559         info.ctime         = mddev->ctime;
5560         info.level         = mddev->level;
5561         info.size          = mddev->dev_sectors / 2;
5562         if (info.size != mddev->dev_sectors / 2) /* overflow */
5563                 info.size = -1;
5564         info.nr_disks      = nr;
5565         info.raid_disks    = mddev->raid_disks;
5566         info.md_minor      = mddev->md_minor;
5567         info.not_persistent= !mddev->persistent;
5568
5569         info.utime         = mddev->utime;
5570         info.state         = 0;
5571         if (mddev->in_sync)
5572                 info.state = (1<<MD_SB_CLEAN);
5573         if (mddev->bitmap && mddev->bitmap_info.offset)
5574                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5575         info.active_disks  = insync;
5576         info.working_disks = working;
5577         info.failed_disks  = failed;
5578         info.spare_disks   = spare;
5579
5580         info.layout        = mddev->layout;
5581         info.chunk_size    = mddev->chunk_sectors << 9;
5582
5583         if (copy_to_user(arg, &info, sizeof(info)))
5584                 return -EFAULT;
5585
5586         return 0;
5587 }
5588
5589 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5590 {
5591         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5592         char *ptr, *buf = NULL;
5593         int err = -ENOMEM;
5594
5595         if (md_allow_write(mddev))
5596                 file = kmalloc(sizeof(*file), GFP_NOIO);
5597         else
5598                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5599
5600         if (!file)
5601                 goto out;
5602
5603         /* bitmap disabled, zero the first byte and copy out */
5604         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5605                 file->pathname[0] = '\0';
5606                 goto copy_out;
5607         }
5608
5609         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5610         if (!buf)
5611                 goto out;
5612
5613         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5614                      buf, sizeof(file->pathname));
5615         if (IS_ERR(ptr))
5616                 goto out;
5617
5618         strcpy(file->pathname, ptr);
5619
5620 copy_out:
5621         err = 0;
5622         if (copy_to_user(arg, file, sizeof(*file)))
5623                 err = -EFAULT;
5624 out:
5625         kfree(buf);
5626         kfree(file);
5627         return err;
5628 }
5629
5630 static int get_disk_info(struct mddev * mddev, void __user * arg)
5631 {
5632         mdu_disk_info_t info;
5633         struct md_rdev *rdev;
5634
5635         if (copy_from_user(&info, arg, sizeof(info)))
5636                 return -EFAULT;
5637
5638         rcu_read_lock();
5639         rdev = find_rdev_nr_rcu(mddev, info.number);
5640         if (rdev) {
5641                 info.major = MAJOR(rdev->bdev->bd_dev);
5642                 info.minor = MINOR(rdev->bdev->bd_dev);
5643                 info.raid_disk = rdev->raid_disk;
5644                 info.state = 0;
5645                 if (test_bit(Faulty, &rdev->flags))
5646                         info.state |= (1<<MD_DISK_FAULTY);
5647                 else if (test_bit(In_sync, &rdev->flags)) {
5648                         info.state |= (1<<MD_DISK_ACTIVE);
5649                         info.state |= (1<<MD_DISK_SYNC);
5650                 }
5651                 if (test_bit(WriteMostly, &rdev->flags))
5652                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5653         } else {
5654                 info.major = info.minor = 0;
5655                 info.raid_disk = -1;
5656                 info.state = (1<<MD_DISK_REMOVED);
5657         }
5658         rcu_read_unlock();
5659
5660         if (copy_to_user(arg, &info, sizeof(info)))
5661                 return -EFAULT;
5662
5663         return 0;
5664 }
5665
5666 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5667 {
5668         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5669         struct md_rdev *rdev;
5670         dev_t dev = MKDEV(info->major,info->minor);
5671
5672         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5673                 return -EOVERFLOW;
5674
5675         if (!mddev->raid_disks) {
5676                 int err;
5677                 /* expecting a device which has a superblock */
5678                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5679                 if (IS_ERR(rdev)) {
5680                         printk(KERN_WARNING 
5681                                 "md: md_import_device returned %ld\n",
5682                                 PTR_ERR(rdev));
5683                         return PTR_ERR(rdev);
5684                 }
5685                 if (!list_empty(&mddev->disks)) {
5686                         struct md_rdev *rdev0
5687                                 = list_entry(mddev->disks.next,
5688                                              struct md_rdev, same_set);
5689                         err = super_types[mddev->major_version]
5690                                 .load_super(rdev, rdev0, mddev->minor_version);
5691                         if (err < 0) {
5692                                 printk(KERN_WARNING 
5693                                         "md: %s has different UUID to %s\n",
5694                                         bdevname(rdev->bdev,b), 
5695                                         bdevname(rdev0->bdev,b2));
5696                                 export_rdev(rdev);
5697                                 return -EINVAL;
5698                         }
5699                 }
5700                 err = bind_rdev_to_array(rdev, mddev);
5701                 if (err)
5702                         export_rdev(rdev);
5703                 return err;
5704         }
5705
5706         /*
5707          * add_new_disk can be used once the array is assembled
5708          * to add "hot spares".  They must already have a superblock
5709          * written
5710          */
5711         if (mddev->pers) {
5712                 int err;
5713                 if (!mddev->pers->hot_add_disk) {
5714                         printk(KERN_WARNING 
5715                                 "%s: personality does not support diskops!\n",
5716                                mdname(mddev));
5717                         return -EINVAL;
5718                 }
5719                 if (mddev->persistent)
5720                         rdev = md_import_device(dev, mddev->major_version,
5721                                                 mddev->minor_version);
5722                 else
5723                         rdev = md_import_device(dev, -1, -1);
5724                 if (IS_ERR(rdev)) {
5725                         printk(KERN_WARNING 
5726                                 "md: md_import_device returned %ld\n",
5727                                 PTR_ERR(rdev));
5728                         return PTR_ERR(rdev);
5729                 }
5730                 /* set saved_raid_disk if appropriate */
5731                 if (!mddev->persistent) {
5732                         if (info->state & (1<<MD_DISK_SYNC)  &&
5733                             info->raid_disk < mddev->raid_disks) {
5734                                 rdev->raid_disk = info->raid_disk;
5735                                 set_bit(In_sync, &rdev->flags);
5736                         } else
5737                                 rdev->raid_disk = -1;
5738                 } else
5739                         super_types[mddev->major_version].
5740                                 validate_super(mddev, rdev);
5741                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5742                      rdev->raid_disk != info->raid_disk) {
5743                         /* This was a hot-add request, but events doesn't
5744                          * match, so reject it.
5745                          */
5746                         export_rdev(rdev);
5747                         return -EINVAL;
5748                 }
5749
5750                 if (test_bit(In_sync, &rdev->flags))
5751                         rdev->saved_raid_disk = rdev->raid_disk;
5752                 else
5753                         rdev->saved_raid_disk = -1;
5754
5755                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5756                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5757                         set_bit(WriteMostly, &rdev->flags);
5758                 else
5759                         clear_bit(WriteMostly, &rdev->flags);
5760
5761                 rdev->raid_disk = -1;
5762                 err = bind_rdev_to_array(rdev, mddev);
5763                 if (!err && !mddev->pers->hot_remove_disk) {
5764                         /* If there is hot_add_disk but no hot_remove_disk
5765                          * then added disks for geometry changes,
5766                          * and should be added immediately.
5767                          */
5768                         super_types[mddev->major_version].
5769                                 validate_super(mddev, rdev);
5770                         err = mddev->pers->hot_add_disk(mddev, rdev);
5771                         if (err)
5772                                 unbind_rdev_from_array(rdev);
5773                 }
5774                 if (err)
5775                         export_rdev(rdev);
5776                 else
5777                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5778
5779                 md_update_sb(mddev, 1);
5780                 if (mddev->degraded)
5781                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5782                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5783                 if (!err)
5784                         md_new_event(mddev);
5785                 md_wakeup_thread(mddev->thread);
5786                 return err;
5787         }
5788
5789         /* otherwise, add_new_disk is only allowed
5790          * for major_version==0 superblocks
5791          */
5792         if (mddev->major_version != 0) {
5793                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5794                        mdname(mddev));
5795                 return -EINVAL;
5796         }
5797
5798         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5799                 int err;
5800                 rdev = md_import_device(dev, -1, 0);
5801                 if (IS_ERR(rdev)) {
5802                         printk(KERN_WARNING 
5803                                 "md: error, md_import_device() returned %ld\n",
5804                                 PTR_ERR(rdev));
5805                         return PTR_ERR(rdev);
5806                 }
5807                 rdev->desc_nr = info->number;
5808                 if (info->raid_disk < mddev->raid_disks)
5809                         rdev->raid_disk = info->raid_disk;
5810                 else
5811                         rdev->raid_disk = -1;
5812
5813                 if (rdev->raid_disk < mddev->raid_disks)
5814                         if (info->state & (1<<MD_DISK_SYNC))
5815                                 set_bit(In_sync, &rdev->flags);
5816
5817                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5818                         set_bit(WriteMostly, &rdev->flags);
5819
5820                 if (!mddev->persistent) {
5821                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5822                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5823                 } else
5824                         rdev->sb_start = calc_dev_sboffset(rdev);
5825                 rdev->sectors = rdev->sb_start;
5826
5827                 err = bind_rdev_to_array(rdev, mddev);
5828                 if (err) {
5829                         export_rdev(rdev);
5830                         return err;
5831                 }
5832         }
5833
5834         return 0;
5835 }
5836
5837 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5838 {
5839         char b[BDEVNAME_SIZE];
5840         struct md_rdev *rdev;
5841
5842         rdev = find_rdev(mddev, dev);
5843         if (!rdev)
5844                 return -ENXIO;
5845
5846         if (rdev->raid_disk >= 0)
5847                 goto busy;
5848
5849         kick_rdev_from_array(rdev);
5850         md_update_sb(mddev, 1);
5851         md_new_event(mddev);
5852
5853         return 0;
5854 busy:
5855         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5856                 bdevname(rdev->bdev,b), mdname(mddev));
5857         return -EBUSY;
5858 }
5859
5860 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5861 {
5862         char b[BDEVNAME_SIZE];
5863         int err;
5864         struct md_rdev *rdev;
5865
5866         if (!mddev->pers)
5867                 return -ENODEV;
5868
5869         if (mddev->major_version != 0) {
5870                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5871                         " version-0 superblocks.\n",
5872                         mdname(mddev));
5873                 return -EINVAL;
5874         }
5875         if (!mddev->pers->hot_add_disk) {
5876                 printk(KERN_WARNING 
5877                         "%s: personality does not support diskops!\n",
5878                         mdname(mddev));
5879                 return -EINVAL;
5880         }
5881
5882         rdev = md_import_device(dev, -1, 0);
5883         if (IS_ERR(rdev)) {
5884                 printk(KERN_WARNING 
5885                         "md: error, md_import_device() returned %ld\n",
5886                         PTR_ERR(rdev));
5887                 return -EINVAL;
5888         }
5889
5890         if (mddev->persistent)
5891                 rdev->sb_start = calc_dev_sboffset(rdev);
5892         else
5893                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5894
5895         rdev->sectors = rdev->sb_start;
5896
5897         if (test_bit(Faulty, &rdev->flags)) {
5898                 printk(KERN_WARNING 
5899                         "md: can not hot-add faulty %s disk to %s!\n",
5900                         bdevname(rdev->bdev,b), mdname(mddev));
5901                 err = -EINVAL;
5902                 goto abort_export;
5903         }
5904         clear_bit(In_sync, &rdev->flags);
5905         rdev->desc_nr = -1;
5906         rdev->saved_raid_disk = -1;
5907         err = bind_rdev_to_array(rdev, mddev);
5908         if (err)
5909                 goto abort_export;
5910
5911         /*
5912          * The rest should better be atomic, we can have disk failures
5913          * noticed in interrupt contexts ...
5914          */
5915
5916         rdev->raid_disk = -1;
5917
5918         md_update_sb(mddev, 1);
5919
5920         /*
5921          * Kick recovery, maybe this spare has to be added to the
5922          * array immediately.
5923          */
5924         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5925         md_wakeup_thread(mddev->thread);
5926         md_new_event(mddev);
5927         return 0;
5928
5929 abort_export:
5930         export_rdev(rdev);
5931         return err;
5932 }
5933
5934 static int set_bitmap_file(struct mddev *mddev, int fd)
5935 {
5936         int err;
5937
5938         if (mddev->pers) {
5939                 if (!mddev->pers->quiesce)
5940                         return -EBUSY;
5941                 if (mddev->recovery || mddev->sync_thread)
5942                         return -EBUSY;
5943                 /* we should be able to change the bitmap.. */
5944         }
5945
5946
5947         if (fd >= 0) {
5948                 if (mddev->bitmap)
5949                         return -EEXIST; /* cannot add when bitmap is present */
5950                 mddev->bitmap_info.file = fget(fd);
5951
5952                 if (mddev->bitmap_info.file == NULL) {
5953                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5954                                mdname(mddev));
5955                         return -EBADF;
5956                 }
5957
5958                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5959                 if (err) {
5960                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5961                                mdname(mddev));
5962                         fput(mddev->bitmap_info.file);
5963                         mddev->bitmap_info.file = NULL;
5964                         return err;
5965                 }
5966                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5967         } else if (mddev->bitmap == NULL)
5968                 return -ENOENT; /* cannot remove what isn't there */
5969         err = 0;
5970         if (mddev->pers) {
5971                 mddev->pers->quiesce(mddev, 1);
5972                 if (fd >= 0) {
5973                         err = bitmap_create(mddev);
5974                         if (!err)
5975                                 err = bitmap_load(mddev);
5976                 }
5977                 if (fd < 0 || err) {
5978                         bitmap_destroy(mddev);
5979                         fd = -1; /* make sure to put the file */
5980                 }
5981                 mddev->pers->quiesce(mddev, 0);
5982         }
5983         if (fd < 0) {
5984                 if (mddev->bitmap_info.file) {
5985                         restore_bitmap_write_access(mddev->bitmap_info.file);
5986                         fput(mddev->bitmap_info.file);
5987                 }
5988                 mddev->bitmap_info.file = NULL;
5989         }
5990
5991         return err;
5992 }
5993
5994 /*
5995  * set_array_info is used two different ways
5996  * The original usage is when creating a new array.
5997  * In this usage, raid_disks is > 0 and it together with
5998  *  level, size, not_persistent,layout,chunksize determine the
5999  *  shape of the array.
6000  *  This will always create an array with a type-0.90.0 superblock.
6001  * The newer usage is when assembling an array.
6002  *  In this case raid_disks will be 0, and the major_version field is
6003  *  use to determine which style super-blocks are to be found on the devices.
6004  *  The minor and patch _version numbers are also kept incase the
6005  *  super_block handler wishes to interpret them.
6006  */
6007 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6008 {
6009
6010         if (info->raid_disks == 0) {
6011                 /* just setting version number for superblock loading */
6012                 if (info->major_version < 0 ||
6013                     info->major_version >= ARRAY_SIZE(super_types) ||
6014                     super_types[info->major_version].name == NULL) {
6015                         /* maybe try to auto-load a module? */
6016                         printk(KERN_INFO 
6017                                 "md: superblock version %d not known\n",
6018                                 info->major_version);
6019                         return -EINVAL;
6020                 }
6021                 mddev->major_version = info->major_version;
6022                 mddev->minor_version = info->minor_version;
6023                 mddev->patch_version = info->patch_version;
6024                 mddev->persistent = !info->not_persistent;
6025                 /* ensure mddev_put doesn't delete this now that there
6026                  * is some minimal configuration.
6027                  */
6028                 mddev->ctime         = get_seconds();
6029                 return 0;
6030         }
6031         mddev->major_version = MD_MAJOR_VERSION;
6032         mddev->minor_version = MD_MINOR_VERSION;
6033         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6034         mddev->ctime         = get_seconds();
6035
6036         mddev->level         = info->level;
6037         mddev->clevel[0]     = 0;
6038         mddev->dev_sectors   = 2 * (sector_t)info->size;
6039         mddev->raid_disks    = info->raid_disks;
6040         /* don't set md_minor, it is determined by which /dev/md* was
6041          * openned
6042          */
6043         if (info->state & (1<<MD_SB_CLEAN))
6044                 mddev->recovery_cp = MaxSector;
6045         else
6046                 mddev->recovery_cp = 0;
6047         mddev->persistent    = ! info->not_persistent;
6048         mddev->external      = 0;
6049
6050         mddev->layout        = info->layout;
6051         mddev->chunk_sectors = info->chunk_size >> 9;
6052
6053         mddev->max_disks     = MD_SB_DISKS;
6054
6055         if (mddev->persistent)
6056                 mddev->flags         = 0;
6057         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6058
6059         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6060         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6061         mddev->bitmap_info.offset = 0;
6062
6063         mddev->reshape_position = MaxSector;
6064
6065         /*
6066          * Generate a 128 bit UUID
6067          */
6068         get_random_bytes(mddev->uuid, 16);
6069
6070         mddev->new_level = mddev->level;
6071         mddev->new_chunk_sectors = mddev->chunk_sectors;
6072         mddev->new_layout = mddev->layout;
6073         mddev->delta_disks = 0;
6074         mddev->reshape_backwards = 0;
6075
6076         return 0;
6077 }
6078
6079 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6080 {
6081         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6082
6083         if (mddev->external_size)
6084                 return;
6085
6086         mddev->array_sectors = array_sectors;
6087 }
6088 EXPORT_SYMBOL(md_set_array_sectors);
6089
6090 static int update_size(struct mddev *mddev, sector_t num_sectors)
6091 {
6092         struct md_rdev *rdev;
6093         int rv;
6094         int fit = (num_sectors == 0);
6095
6096         if (mddev->pers->resize == NULL)
6097                 return -EINVAL;
6098         /* The "num_sectors" is the number of sectors of each device that
6099          * is used.  This can only make sense for arrays with redundancy.
6100          * linear and raid0 always use whatever space is available. We can only
6101          * consider changing this number if no resync or reconstruction is
6102          * happening, and if the new size is acceptable. It must fit before the
6103          * sb_start or, if that is <data_offset, it must fit before the size
6104          * of each device.  If num_sectors is zero, we find the largest size
6105          * that fits.
6106          */
6107         if (mddev->sync_thread)
6108                 return -EBUSY;
6109
6110         rdev_for_each(rdev, mddev) {
6111                 sector_t avail = rdev->sectors;
6112
6113                 if (fit && (num_sectors == 0 || num_sectors > avail))
6114                         num_sectors = avail;
6115                 if (avail < num_sectors)
6116                         return -ENOSPC;
6117         }
6118         rv = mddev->pers->resize(mddev, num_sectors);
6119         if (!rv)
6120                 revalidate_disk(mddev->gendisk);
6121         return rv;
6122 }
6123
6124 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6125 {
6126         int rv;
6127         struct md_rdev *rdev;
6128         /* change the number of raid disks */
6129         if (mddev->pers->check_reshape == NULL)
6130                 return -EINVAL;
6131         if (raid_disks <= 0 ||
6132             (mddev->max_disks && raid_disks >= mddev->max_disks))
6133                 return -EINVAL;
6134         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6135                 return -EBUSY;
6136
6137         rdev_for_each(rdev, mddev) {
6138                 if (mddev->raid_disks < raid_disks &&
6139                     rdev->data_offset < rdev->new_data_offset)
6140                         return -EINVAL;
6141                 if (mddev->raid_disks > raid_disks &&
6142                     rdev->data_offset > rdev->new_data_offset)
6143                         return -EINVAL;
6144         }
6145
6146         mddev->delta_disks = raid_disks - mddev->raid_disks;
6147         if (mddev->delta_disks < 0)
6148                 mddev->reshape_backwards = 1;
6149         else if (mddev->delta_disks > 0)
6150                 mddev->reshape_backwards = 0;
6151
6152         rv = mddev->pers->check_reshape(mddev);
6153         if (rv < 0) {
6154                 mddev->delta_disks = 0;
6155                 mddev->reshape_backwards = 0;
6156         }
6157         return rv;
6158 }
6159
6160
6161 /*
6162  * update_array_info is used to change the configuration of an
6163  * on-line array.
6164  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6165  * fields in the info are checked against the array.
6166  * Any differences that cannot be handled will cause an error.
6167  * Normally, only one change can be managed at a time.
6168  */
6169 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6170 {
6171         int rv = 0;
6172         int cnt = 0;
6173         int state = 0;
6174
6175         /* calculate expected state,ignoring low bits */
6176         if (mddev->bitmap && mddev->bitmap_info.offset)
6177                 state |= (1 << MD_SB_BITMAP_PRESENT);
6178
6179         if (mddev->major_version != info->major_version ||
6180             mddev->minor_version != info->minor_version ||
6181 /*          mddev->patch_version != info->patch_version || */
6182             mddev->ctime         != info->ctime         ||
6183             mddev->level         != info->level         ||
6184 /*          mddev->layout        != info->layout        || */
6185             !mddev->persistent   != info->not_persistent||
6186             mddev->chunk_sectors != info->chunk_size >> 9 ||
6187             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6188             ((state^info->state) & 0xfffffe00)
6189                 )
6190                 return -EINVAL;
6191         /* Check there is only one change */
6192         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6193                 cnt++;
6194         if (mddev->raid_disks != info->raid_disks)
6195                 cnt++;
6196         if (mddev->layout != info->layout)
6197                 cnt++;
6198         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6199                 cnt++;
6200         if (cnt == 0)
6201                 return 0;
6202         if (cnt > 1)
6203                 return -EINVAL;
6204
6205         if (mddev->layout != info->layout) {
6206                 /* Change layout
6207                  * we don't need to do anything at the md level, the
6208                  * personality will take care of it all.
6209                  */
6210                 if (mddev->pers->check_reshape == NULL)
6211                         return -EINVAL;
6212                 else {
6213                         mddev->new_layout = info->layout;
6214                         rv = mddev->pers->check_reshape(mddev);
6215                         if (rv)
6216                                 mddev->new_layout = mddev->layout;
6217                         return rv;
6218                 }
6219         }
6220         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6221                 rv = update_size(mddev, (sector_t)info->size * 2);
6222
6223         if (mddev->raid_disks    != info->raid_disks)
6224                 rv = update_raid_disks(mddev, info->raid_disks);
6225
6226         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6227                 if (mddev->pers->quiesce == NULL)
6228                         return -EINVAL;
6229                 if (mddev->recovery || mddev->sync_thread)
6230                         return -EBUSY;
6231                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6232                         /* add the bitmap */
6233                         if (mddev->bitmap)
6234                                 return -EEXIST;
6235                         if (mddev->bitmap_info.default_offset == 0)
6236                                 return -EINVAL;
6237                         mddev->bitmap_info.offset =
6238                                 mddev->bitmap_info.default_offset;
6239                         mddev->bitmap_info.space =
6240                                 mddev->bitmap_info.default_space;
6241                         mddev->pers->quiesce(mddev, 1);
6242                         rv = bitmap_create(mddev);
6243                         if (!rv)
6244                                 rv = bitmap_load(mddev);
6245                         if (rv)
6246                                 bitmap_destroy(mddev);
6247                         mddev->pers->quiesce(mddev, 0);
6248                 } else {
6249                         /* remove the bitmap */
6250                         if (!mddev->bitmap)
6251                                 return -ENOENT;
6252                         if (mddev->bitmap->storage.file)
6253                                 return -EINVAL;
6254                         mddev->pers->quiesce(mddev, 1);
6255                         bitmap_destroy(mddev);
6256                         mddev->pers->quiesce(mddev, 0);
6257                         mddev->bitmap_info.offset = 0;
6258                 }
6259         }
6260         md_update_sb(mddev, 1);
6261         return rv;
6262 }
6263
6264 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6265 {
6266         struct md_rdev *rdev;
6267         int err = 0;
6268
6269         if (mddev->pers == NULL)
6270                 return -ENODEV;
6271
6272         rcu_read_lock();
6273         rdev = find_rdev_rcu(mddev, dev);
6274         if (!rdev)
6275                 err =  -ENODEV;
6276         else {
6277                 md_error(mddev, rdev);
6278                 if (!test_bit(Faulty, &rdev->flags))
6279                         err = -EBUSY;
6280         }
6281         rcu_read_unlock();
6282         return err;
6283 }
6284
6285 /*
6286  * We have a problem here : there is no easy way to give a CHS
6287  * virtual geometry. We currently pretend that we have a 2 heads
6288  * 4 sectors (with a BIG number of cylinders...). This drives
6289  * dosfs just mad... ;-)
6290  */
6291 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6292 {
6293         struct mddev *mddev = bdev->bd_disk->private_data;
6294
6295         geo->heads = 2;
6296         geo->sectors = 4;
6297         geo->cylinders = mddev->array_sectors / 8;
6298         return 0;
6299 }
6300
6301 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6302                         unsigned int cmd, unsigned long arg)
6303 {
6304         int err = 0;
6305         void __user *argp = (void __user *)arg;
6306         struct mddev *mddev = NULL;
6307         int ro;
6308
6309         switch (cmd) {
6310         case RAID_VERSION:
6311         case GET_ARRAY_INFO:
6312         case GET_DISK_INFO:
6313                 break;
6314         default:
6315                 if (!capable(CAP_SYS_ADMIN))
6316                         return -EACCES;
6317         }
6318
6319         /*
6320          * Commands dealing with the RAID driver but not any
6321          * particular array:
6322          */
6323         switch (cmd)
6324         {
6325                 case RAID_VERSION:
6326                         err = get_version(argp);
6327                         goto done;
6328
6329                 case PRINT_RAID_DEBUG:
6330                         err = 0;
6331                         md_print_devices();
6332                         goto done;
6333
6334 #ifndef MODULE
6335                 case RAID_AUTORUN:
6336                         err = 0;
6337                         autostart_arrays(arg);
6338                         goto done;
6339 #endif
6340                 default:;
6341         }
6342
6343         /*
6344          * Commands creating/starting a new array:
6345          */
6346
6347         mddev = bdev->bd_disk->private_data;
6348
6349         if (!mddev) {
6350                 BUG();
6351                 goto abort;
6352         }
6353
6354         /* Some actions do not requires the mutex */
6355         switch (cmd) {
6356         case GET_ARRAY_INFO:
6357                 if (!mddev->raid_disks && !mddev->external)
6358                         err = -ENODEV;
6359                 else
6360                         err = get_array_info(mddev, argp);
6361                 goto abort;
6362
6363         case GET_DISK_INFO:
6364                 if (!mddev->raid_disks && !mddev->external)
6365                         err = -ENODEV;
6366                 else
6367                         err = get_disk_info(mddev, argp);
6368                 goto abort;
6369
6370         case SET_DISK_FAULTY:
6371                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6372                 goto abort;
6373         }
6374
6375         err = mddev_lock(mddev);
6376         if (err) {
6377                 printk(KERN_INFO 
6378                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6379                         err, cmd);
6380                 goto abort;
6381         }
6382
6383         switch (cmd)
6384         {
6385                 case SET_ARRAY_INFO:
6386                         {
6387                                 mdu_array_info_t info;
6388                                 if (!arg)
6389                                         memset(&info, 0, sizeof(info));
6390                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6391                                         err = -EFAULT;
6392                                         goto abort_unlock;
6393                                 }
6394                                 if (mddev->pers) {
6395                                         err = update_array_info(mddev, &info);
6396                                         if (err) {
6397                                                 printk(KERN_WARNING "md: couldn't update"
6398                                                        " array info. %d\n", err);
6399                                                 goto abort_unlock;
6400                                         }
6401                                         goto done_unlock;
6402                                 }
6403                                 if (!list_empty(&mddev->disks)) {
6404                                         printk(KERN_WARNING
6405                                                "md: array %s already has disks!\n",
6406                                                mdname(mddev));
6407                                         err = -EBUSY;
6408                                         goto abort_unlock;
6409                                 }
6410                                 if (mddev->raid_disks) {
6411                                         printk(KERN_WARNING
6412                                                "md: array %s already initialised!\n",
6413                                                mdname(mddev));
6414                                         err = -EBUSY;
6415                                         goto abort_unlock;
6416                                 }
6417                                 err = set_array_info(mddev, &info);
6418                                 if (err) {
6419                                         printk(KERN_WARNING "md: couldn't set"
6420                                                " array info. %d\n", err);
6421                                         goto abort_unlock;
6422                                 }
6423                         }
6424                         goto done_unlock;
6425
6426                 default:;
6427         }
6428
6429         /*
6430          * Commands querying/configuring an existing array:
6431          */
6432         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6433          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6434         if ((!mddev->raid_disks && !mddev->external)
6435             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6436             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6437             && cmd != GET_BITMAP_FILE) {
6438                 err = -ENODEV;
6439                 goto abort_unlock;
6440         }
6441
6442         /*
6443          * Commands even a read-only array can execute:
6444          */
6445         switch (cmd)
6446         {
6447                 case GET_BITMAP_FILE:
6448                         err = get_bitmap_file(mddev, argp);
6449                         goto done_unlock;
6450
6451                 case RESTART_ARRAY_RW:
6452                         err = restart_array(mddev);
6453                         goto done_unlock;
6454
6455                 case STOP_ARRAY:
6456                         err = do_md_stop(mddev, 0, bdev);
6457                         goto done_unlock;
6458
6459                 case STOP_ARRAY_RO:
6460                         err = md_set_readonly(mddev, bdev);
6461                         goto done_unlock;
6462
6463                 case BLKROSET:
6464                         if (get_user(ro, (int __user *)(arg))) {
6465                                 err = -EFAULT;
6466                                 goto done_unlock;
6467                         }
6468                         err = -EINVAL;
6469
6470                         /* if the bdev is going readonly the value of mddev->ro
6471                          * does not matter, no writes are coming
6472                          */
6473                         if (ro)
6474                                 goto done_unlock;
6475
6476                         /* are we are already prepared for writes? */
6477                         if (mddev->ro != 1)
6478                                 goto done_unlock;
6479
6480                         /* transitioning to readauto need only happen for
6481                          * arrays that call md_write_start
6482                          */
6483                         if (mddev->pers) {
6484                                 err = restart_array(mddev);
6485                                 if (err == 0) {
6486                                         mddev->ro = 2;
6487                                         set_disk_ro(mddev->gendisk, 0);
6488                                 }
6489                         }
6490                         goto done_unlock;
6491         }
6492
6493         /*
6494          * The remaining ioctls are changing the state of the
6495          * superblock, so we do not allow them on read-only arrays.
6496          * However non-MD ioctls (e.g. get-size) will still come through
6497          * here and hit the 'default' below, so only disallow
6498          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6499          */
6500         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6501                 if (mddev->ro == 2) {
6502                         mddev->ro = 0;
6503                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6504                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6505                         md_wakeup_thread(mddev->thread);
6506                 } else {
6507                         err = -EROFS;
6508                         goto abort_unlock;
6509                 }
6510         }
6511
6512         switch (cmd)
6513         {
6514                 case ADD_NEW_DISK:
6515                 {
6516                         mdu_disk_info_t info;
6517                         if (copy_from_user(&info, argp, sizeof(info)))
6518                                 err = -EFAULT;
6519                         else
6520                                 err = add_new_disk(mddev, &info);
6521                         goto done_unlock;
6522                 }
6523
6524                 case HOT_REMOVE_DISK:
6525                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6526                         goto done_unlock;
6527
6528                 case HOT_ADD_DISK:
6529                         err = hot_add_disk(mddev, new_decode_dev(arg));
6530                         goto done_unlock;
6531
6532                 case RUN_ARRAY:
6533                         err = do_md_run(mddev);
6534                         goto done_unlock;
6535
6536                 case SET_BITMAP_FILE:
6537                         err = set_bitmap_file(mddev, (int)arg);
6538                         goto done_unlock;
6539
6540                 default:
6541                         err = -EINVAL;
6542                         goto abort_unlock;
6543         }
6544
6545 done_unlock:
6546 abort_unlock:
6547         if (mddev->hold_active == UNTIL_IOCTL &&
6548             err != -EINVAL)
6549                 mddev->hold_active = 0;
6550         mddev_unlock(mddev);
6551
6552         return err;
6553 done:
6554         if (err)
6555                 MD_BUG();
6556 abort:
6557         return err;
6558 }
6559 #ifdef CONFIG_COMPAT
6560 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6561                     unsigned int cmd, unsigned long arg)
6562 {
6563         switch (cmd) {
6564         case HOT_REMOVE_DISK:
6565         case HOT_ADD_DISK:
6566         case SET_DISK_FAULTY:
6567         case SET_BITMAP_FILE:
6568                 /* These take in integer arg, do not convert */
6569                 break;
6570         default:
6571                 arg = (unsigned long)compat_ptr(arg);
6572                 break;
6573         }
6574
6575         return md_ioctl(bdev, mode, cmd, arg);
6576 }
6577 #endif /* CONFIG_COMPAT */
6578
6579 static int md_open(struct block_device *bdev, fmode_t mode)
6580 {
6581         /*
6582          * Succeed if we can lock the mddev, which confirms that
6583          * it isn't being stopped right now.
6584          */
6585         struct mddev *mddev = mddev_find(bdev->bd_dev);
6586         int err;
6587
6588         if (!mddev)
6589                 return -ENODEV;
6590
6591         if (mddev->gendisk != bdev->bd_disk) {
6592                 /* we are racing with mddev_put which is discarding this
6593                  * bd_disk.
6594                  */
6595                 mddev_put(mddev);
6596                 /* Wait until bdev->bd_disk is definitely gone */
6597                 flush_workqueue(md_misc_wq);
6598                 /* Then retry the open from the top */
6599                 return -ERESTARTSYS;
6600         }
6601         BUG_ON(mddev != bdev->bd_disk->private_data);
6602
6603         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6604                 goto out;
6605
6606         err = 0;
6607         atomic_inc(&mddev->openers);
6608         mutex_unlock(&mddev->open_mutex);
6609
6610         check_disk_change(bdev);
6611  out:
6612         return err;
6613 }
6614
6615 static int md_release(struct gendisk *disk, fmode_t mode)
6616 {
6617         struct mddev *mddev = disk->private_data;
6618
6619         BUG_ON(!mddev);
6620         atomic_dec(&mddev->openers);
6621         mddev_put(mddev);
6622
6623         return 0;
6624 }
6625
6626 static int md_media_changed(struct gendisk *disk)
6627 {
6628         struct mddev *mddev = disk->private_data;
6629
6630         return mddev->changed;
6631 }
6632
6633 static int md_revalidate(struct gendisk *disk)
6634 {
6635         struct mddev *mddev = disk->private_data;
6636
6637         mddev->changed = 0;
6638         return 0;
6639 }
6640 static const struct block_device_operations md_fops =
6641 {
6642         .owner          = THIS_MODULE,
6643         .open           = md_open,
6644         .release        = md_release,
6645         .ioctl          = md_ioctl,
6646 #ifdef CONFIG_COMPAT
6647         .compat_ioctl   = md_compat_ioctl,
6648 #endif
6649         .getgeo         = md_getgeo,
6650         .media_changed  = md_media_changed,
6651         .revalidate_disk= md_revalidate,
6652 };
6653
6654 static int md_thread(void * arg)
6655 {
6656         struct md_thread *thread = arg;
6657
6658         /*
6659          * md_thread is a 'system-thread', it's priority should be very
6660          * high. We avoid resource deadlocks individually in each
6661          * raid personality. (RAID5 does preallocation) We also use RR and
6662          * the very same RT priority as kswapd, thus we will never get
6663          * into a priority inversion deadlock.
6664          *
6665          * we definitely have to have equal or higher priority than
6666          * bdflush, otherwise bdflush will deadlock if there are too
6667          * many dirty RAID5 blocks.
6668          */
6669
6670         allow_signal(SIGKILL);
6671         while (!kthread_should_stop()) {
6672
6673                 /* We need to wait INTERRUPTIBLE so that
6674                  * we don't add to the load-average.
6675                  * That means we need to be sure no signals are
6676                  * pending
6677                  */
6678                 if (signal_pending(current))
6679                         flush_signals(current);
6680
6681                 wait_event_interruptible_timeout
6682                         (thread->wqueue,
6683                          test_bit(THREAD_WAKEUP, &thread->flags)
6684                          || kthread_should_stop(),
6685                          thread->timeout);
6686
6687                 clear_bit(THREAD_WAKEUP, &thread->flags);
6688                 if (!kthread_should_stop())
6689                         thread->run(thread);
6690         }
6691
6692         return 0;
6693 }
6694
6695 void md_wakeup_thread(struct md_thread *thread)
6696 {
6697         if (thread) {
6698                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6699                 set_bit(THREAD_WAKEUP, &thread->flags);
6700                 wake_up(&thread->wqueue);
6701         }
6702 }
6703
6704 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6705                 struct mddev *mddev, const char *name)
6706 {
6707         struct md_thread *thread;
6708
6709         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6710         if (!thread)
6711                 return NULL;
6712
6713         init_waitqueue_head(&thread->wqueue);
6714
6715         thread->run = run;
6716         thread->mddev = mddev;
6717         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6718         thread->tsk = kthread_run(md_thread, thread,
6719                                   "%s_%s",
6720                                   mdname(thread->mddev),
6721                                   name);
6722         if (IS_ERR(thread->tsk)) {
6723                 kfree(thread);
6724                 return NULL;
6725         }
6726         return thread;
6727 }
6728
6729 void md_unregister_thread(struct md_thread **threadp)
6730 {
6731         struct md_thread *thread = *threadp;
6732         if (!thread)
6733                 return;
6734         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6735         /* Locking ensures that mddev_unlock does not wake_up a
6736          * non-existent thread
6737          */
6738         spin_lock(&pers_lock);
6739         *threadp = NULL;
6740         spin_unlock(&pers_lock);
6741
6742         kthread_stop(thread->tsk);
6743         kfree(thread);
6744 }
6745
6746 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6747 {
6748         if (!mddev) {
6749                 MD_BUG();
6750                 return;
6751         }
6752
6753         if (!rdev || test_bit(Faulty, &rdev->flags))
6754                 return;
6755
6756         if (!mddev->pers || !mddev->pers->error_handler)
6757                 return;
6758         mddev->pers->error_handler(mddev,rdev);
6759         if (mddev->degraded)
6760                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6761         sysfs_notify_dirent_safe(rdev->sysfs_state);
6762         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6763         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6764         md_wakeup_thread(mddev->thread);
6765         if (mddev->event_work.func)
6766                 queue_work(md_misc_wq, &mddev->event_work);
6767         md_new_event_inintr(mddev);
6768 }
6769
6770 /* seq_file implementation /proc/mdstat */
6771
6772 static void status_unused(struct seq_file *seq)
6773 {
6774         int i = 0;
6775         struct md_rdev *rdev;
6776
6777         seq_printf(seq, "unused devices: ");
6778
6779         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6780                 char b[BDEVNAME_SIZE];
6781                 i++;
6782                 seq_printf(seq, "%s ",
6783                               bdevname(rdev->bdev,b));
6784         }
6785         if (!i)
6786                 seq_printf(seq, "<none>");
6787
6788         seq_printf(seq, "\n");
6789 }
6790
6791
6792 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6793 {
6794         sector_t max_sectors, resync, res;
6795         unsigned long dt, db;
6796         sector_t rt;
6797         int scale;
6798         unsigned int per_milli;
6799
6800         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6801
6802         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6803             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6804                 max_sectors = mddev->resync_max_sectors;
6805         else
6806                 max_sectors = mddev->dev_sectors;
6807
6808         /*
6809          * Should not happen.
6810          */
6811         if (!max_sectors) {
6812                 MD_BUG();
6813                 return;
6814         }
6815         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6816          * in a sector_t, and (max_sectors>>scale) will fit in a
6817          * u32, as those are the requirements for sector_div.
6818          * Thus 'scale' must be at least 10
6819          */
6820         scale = 10;
6821         if (sizeof(sector_t) > sizeof(unsigned long)) {
6822                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6823                         scale++;
6824         }
6825         res = (resync>>scale)*1000;
6826         sector_div(res, (u32)((max_sectors>>scale)+1));
6827
6828         per_milli = res;
6829         {
6830                 int i, x = per_milli/50, y = 20-x;
6831                 seq_printf(seq, "[");
6832                 for (i = 0; i < x; i++)
6833                         seq_printf(seq, "=");
6834                 seq_printf(seq, ">");
6835                 for (i = 0; i < y; i++)
6836                         seq_printf(seq, ".");
6837                 seq_printf(seq, "] ");
6838         }
6839         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6840                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6841                     "reshape" :
6842                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6843                      "check" :
6844                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6845                       "resync" : "recovery"))),
6846                    per_milli/10, per_milli % 10,
6847                    (unsigned long long) resync/2,
6848                    (unsigned long long) max_sectors/2);
6849
6850         /*
6851          * dt: time from mark until now
6852          * db: blocks written from mark until now
6853          * rt: remaining time
6854          *
6855          * rt is a sector_t, so could be 32bit or 64bit.
6856          * So we divide before multiply in case it is 32bit and close
6857          * to the limit.
6858          * We scale the divisor (db) by 32 to avoid losing precision
6859          * near the end of resync when the number of remaining sectors
6860          * is close to 'db'.
6861          * We then divide rt by 32 after multiplying by db to compensate.
6862          * The '+1' avoids division by zero if db is very small.
6863          */
6864         dt = ((jiffies - mddev->resync_mark) / HZ);
6865         if (!dt) dt++;
6866         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6867                 - mddev->resync_mark_cnt;
6868
6869         rt = max_sectors - resync;    /* number of remaining sectors */
6870         sector_div(rt, db/32+1);
6871         rt *= dt;
6872         rt >>= 5;
6873
6874         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6875                    ((unsigned long)rt % 60)/6);
6876
6877         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6878 }
6879
6880 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6881 {
6882         struct list_head *tmp;
6883         loff_t l = *pos;
6884         struct mddev *mddev;
6885
6886         if (l >= 0x10000)
6887                 return NULL;
6888         if (!l--)
6889                 /* header */
6890                 return (void*)1;
6891
6892         spin_lock(&all_mddevs_lock);
6893         list_for_each(tmp,&all_mddevs)
6894                 if (!l--) {
6895                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6896                         mddev_get(mddev);
6897                         spin_unlock(&all_mddevs_lock);
6898                         return mddev;
6899                 }
6900         spin_unlock(&all_mddevs_lock);
6901         if (!l--)
6902                 return (void*)2;/* tail */
6903         return NULL;
6904 }
6905
6906 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6907 {
6908         struct list_head *tmp;
6909         struct mddev *next_mddev, *mddev = v;
6910         
6911         ++*pos;
6912         if (v == (void*)2)
6913                 return NULL;
6914
6915         spin_lock(&all_mddevs_lock);
6916         if (v == (void*)1)
6917                 tmp = all_mddevs.next;
6918         else
6919                 tmp = mddev->all_mddevs.next;
6920         if (tmp != &all_mddevs)
6921                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6922         else {
6923                 next_mddev = (void*)2;
6924                 *pos = 0x10000;
6925         }               
6926         spin_unlock(&all_mddevs_lock);
6927
6928         if (v != (void*)1)
6929                 mddev_put(mddev);
6930         return next_mddev;
6931
6932 }
6933
6934 static void md_seq_stop(struct seq_file *seq, void *v)
6935 {
6936         struct mddev *mddev = v;
6937
6938         if (mddev && v != (void*)1 && v != (void*)2)
6939                 mddev_put(mddev);
6940 }
6941
6942 static int md_seq_show(struct seq_file *seq, void *v)
6943 {
6944         struct mddev *mddev = v;
6945         sector_t sectors;
6946         struct md_rdev *rdev;
6947
6948         if (v == (void*)1) {
6949                 struct md_personality *pers;
6950                 seq_printf(seq, "Personalities : ");
6951                 spin_lock(&pers_lock);
6952                 list_for_each_entry(pers, &pers_list, list)
6953                         seq_printf(seq, "[%s] ", pers->name);
6954
6955                 spin_unlock(&pers_lock);
6956                 seq_printf(seq, "\n");
6957                 seq->poll_event = atomic_read(&md_event_count);
6958                 return 0;
6959         }
6960         if (v == (void*)2) {
6961                 status_unused(seq);
6962                 return 0;
6963         }
6964
6965         if (mddev_lock(mddev) < 0)
6966                 return -EINTR;
6967
6968         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6969                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6970                                                 mddev->pers ? "" : "in");
6971                 if (mddev->pers) {
6972                         if (mddev->ro==1)
6973                                 seq_printf(seq, " (read-only)");
6974                         if (mddev->ro==2)
6975                                 seq_printf(seq, " (auto-read-only)");
6976                         seq_printf(seq, " %s", mddev->pers->name);
6977                 }
6978
6979                 sectors = 0;
6980                 rdev_for_each(rdev, mddev) {
6981                         char b[BDEVNAME_SIZE];
6982                         seq_printf(seq, " %s[%d]",
6983                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6984                         if (test_bit(WriteMostly, &rdev->flags))
6985                                 seq_printf(seq, "(W)");
6986                         if (test_bit(Faulty, &rdev->flags)) {
6987                                 seq_printf(seq, "(F)");
6988                                 continue;
6989                         }
6990                         if (rdev->raid_disk < 0)
6991                                 seq_printf(seq, "(S)"); /* spare */
6992                         if (test_bit(Replacement, &rdev->flags))
6993                                 seq_printf(seq, "(R)");
6994                         sectors += rdev->sectors;
6995                 }
6996
6997                 if (!list_empty(&mddev->disks)) {
6998                         if (mddev->pers)
6999                                 seq_printf(seq, "\n      %llu blocks",
7000                                            (unsigned long long)
7001                                            mddev->array_sectors / 2);
7002                         else
7003                                 seq_printf(seq, "\n      %llu blocks",
7004                                            (unsigned long long)sectors / 2);
7005                 }
7006                 if (mddev->persistent) {
7007                         if (mddev->major_version != 0 ||
7008                             mddev->minor_version != 90) {
7009                                 seq_printf(seq," super %d.%d",
7010                                            mddev->major_version,
7011                                            mddev->minor_version);
7012                         }
7013                 } else if (mddev->external)
7014                         seq_printf(seq, " super external:%s",
7015                                    mddev->metadata_type);
7016                 else
7017                         seq_printf(seq, " super non-persistent");
7018
7019                 if (mddev->pers) {
7020                         mddev->pers->status(seq, mddev);
7021                         seq_printf(seq, "\n      ");
7022                         if (mddev->pers->sync_request) {
7023                                 if (mddev->curr_resync > 2) {
7024                                         status_resync(seq, mddev);
7025                                         seq_printf(seq, "\n      ");
7026                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7027                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7028                                 else if (mddev->recovery_cp < MaxSector)
7029                                         seq_printf(seq, "\tresync=PENDING\n      ");
7030                         }
7031                 } else
7032                         seq_printf(seq, "\n       ");
7033
7034                 bitmap_status(seq, mddev->bitmap);
7035
7036                 seq_printf(seq, "\n");
7037         }
7038         mddev_unlock(mddev);
7039         
7040         return 0;
7041 }
7042
7043 static const struct seq_operations md_seq_ops = {
7044         .start  = md_seq_start,
7045         .next   = md_seq_next,
7046         .stop   = md_seq_stop,
7047         .show   = md_seq_show,
7048 };
7049
7050 static int md_seq_open(struct inode *inode, struct file *file)
7051 {
7052         struct seq_file *seq;
7053         int error;
7054
7055         error = seq_open(file, &md_seq_ops);
7056         if (error)
7057                 return error;
7058
7059         seq = file->private_data;
7060         seq->poll_event = atomic_read(&md_event_count);
7061         return error;
7062 }
7063
7064 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7065 {
7066         struct seq_file *seq = filp->private_data;
7067         int mask;
7068
7069         poll_wait(filp, &md_event_waiters, wait);
7070
7071         /* always allow read */
7072         mask = POLLIN | POLLRDNORM;
7073
7074         if (seq->poll_event != atomic_read(&md_event_count))
7075                 mask |= POLLERR | POLLPRI;
7076         return mask;
7077 }
7078
7079 static const struct file_operations md_seq_fops = {
7080         .owner          = THIS_MODULE,
7081         .open           = md_seq_open,
7082         .read           = seq_read,
7083         .llseek         = seq_lseek,
7084         .release        = seq_release_private,
7085         .poll           = mdstat_poll,
7086 };
7087
7088 int register_md_personality(struct md_personality *p)
7089 {
7090         spin_lock(&pers_lock);
7091         list_add_tail(&p->list, &pers_list);
7092         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7093         spin_unlock(&pers_lock);
7094         return 0;
7095 }
7096
7097 int unregister_md_personality(struct md_personality *p)
7098 {
7099         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7100         spin_lock(&pers_lock);
7101         list_del_init(&p->list);
7102         spin_unlock(&pers_lock);
7103         return 0;
7104 }
7105
7106 static int is_mddev_idle(struct mddev *mddev, int init)
7107 {
7108         struct md_rdev * rdev;
7109         int idle;
7110         int curr_events;
7111
7112         idle = 1;
7113         rcu_read_lock();
7114         rdev_for_each_rcu(rdev, mddev) {
7115                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7116                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7117                               (int)part_stat_read(&disk->part0, sectors[1]) -
7118                               atomic_read(&disk->sync_io);
7119                 /* sync IO will cause sync_io to increase before the disk_stats
7120                  * as sync_io is counted when a request starts, and
7121                  * disk_stats is counted when it completes.
7122                  * So resync activity will cause curr_events to be smaller than
7123                  * when there was no such activity.
7124                  * non-sync IO will cause disk_stat to increase without
7125                  * increasing sync_io so curr_events will (eventually)
7126                  * be larger than it was before.  Once it becomes
7127                  * substantially larger, the test below will cause
7128                  * the array to appear non-idle, and resync will slow
7129                  * down.
7130                  * If there is a lot of outstanding resync activity when
7131                  * we set last_event to curr_events, then all that activity
7132                  * completing might cause the array to appear non-idle
7133                  * and resync will be slowed down even though there might
7134                  * not have been non-resync activity.  This will only
7135                  * happen once though.  'last_events' will soon reflect
7136                  * the state where there is little or no outstanding
7137                  * resync requests, and further resync activity will
7138                  * always make curr_events less than last_events.
7139                  *
7140                  */
7141                 if (init || curr_events - rdev->last_events > 64) {
7142                         rdev->last_events = curr_events;
7143                         idle = 0;
7144                 }
7145         }
7146         rcu_read_unlock();
7147         return idle;
7148 }
7149
7150 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7151 {
7152         /* another "blocks" (512byte) blocks have been synced */
7153         atomic_sub(blocks, &mddev->recovery_active);
7154         wake_up(&mddev->recovery_wait);
7155         if (!ok) {
7156                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7157                 md_wakeup_thread(mddev->thread);
7158                 // stop recovery, signal do_sync ....
7159         }
7160 }
7161
7162
7163 /* md_write_start(mddev, bi)
7164  * If we need to update some array metadata (e.g. 'active' flag
7165  * in superblock) before writing, schedule a superblock update
7166  * and wait for it to complete.
7167  */
7168 void md_write_start(struct mddev *mddev, struct bio *bi)
7169 {
7170         int did_change = 0;
7171         if (bio_data_dir(bi) != WRITE)
7172                 return;
7173
7174         BUG_ON(mddev->ro == 1);
7175         if (mddev->ro == 2) {
7176                 /* need to switch to read/write */
7177                 mddev->ro = 0;
7178                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7179                 md_wakeup_thread(mddev->thread);
7180                 md_wakeup_thread(mddev->sync_thread);
7181                 did_change = 1;
7182         }
7183         atomic_inc(&mddev->writes_pending);
7184         if (mddev->safemode == 1)
7185                 mddev->safemode = 0;
7186         if (mddev->in_sync) {
7187                 spin_lock_irq(&mddev->write_lock);
7188                 if (mddev->in_sync) {
7189                         mddev->in_sync = 0;
7190                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7191                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7192                         md_wakeup_thread(mddev->thread);
7193                         did_change = 1;
7194                 }
7195                 spin_unlock_irq(&mddev->write_lock);
7196         }
7197         if (did_change)
7198                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7199         wait_event(mddev->sb_wait,
7200                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7201 }
7202
7203 void md_write_end(struct mddev *mddev)
7204 {
7205         if (atomic_dec_and_test(&mddev->writes_pending)) {
7206                 if (mddev->safemode == 2)
7207                         md_wakeup_thread(mddev->thread);
7208                 else if (mddev->safemode_delay)
7209                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7210         }
7211 }
7212
7213 /* md_allow_write(mddev)
7214  * Calling this ensures that the array is marked 'active' so that writes
7215  * may proceed without blocking.  It is important to call this before
7216  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7217  * Must be called with mddev_lock held.
7218  *
7219  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7220  * is dropped, so return -EAGAIN after notifying userspace.
7221  */
7222 int md_allow_write(struct mddev *mddev)
7223 {
7224         if (!mddev->pers)
7225                 return 0;
7226         if (mddev->ro)
7227                 return 0;
7228         if (!mddev->pers->sync_request)
7229                 return 0;
7230
7231         spin_lock_irq(&mddev->write_lock);
7232         if (mddev->in_sync) {
7233                 mddev->in_sync = 0;
7234                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7236                 if (mddev->safemode_delay &&
7237                     mddev->safemode == 0)
7238                         mddev->safemode = 1;
7239                 spin_unlock_irq(&mddev->write_lock);
7240                 md_update_sb(mddev, 0);
7241                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7242         } else
7243                 spin_unlock_irq(&mddev->write_lock);
7244
7245         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7246                 return -EAGAIN;
7247         else
7248                 return 0;
7249 }
7250 EXPORT_SYMBOL_GPL(md_allow_write);
7251
7252 #define SYNC_MARKS      10
7253 #define SYNC_MARK_STEP  (3*HZ)
7254 void md_do_sync(struct md_thread *thread)
7255 {
7256         struct mddev *mddev = thread->mddev;
7257         struct mddev *mddev2;
7258         unsigned int currspeed = 0,
7259                  window;
7260         sector_t max_sectors,j, io_sectors;
7261         unsigned long mark[SYNC_MARKS];
7262         sector_t mark_cnt[SYNC_MARKS];
7263         int last_mark,m;
7264         struct list_head *tmp;
7265         sector_t last_check;
7266         int skipped = 0;
7267         struct md_rdev *rdev;
7268         char *desc;
7269         struct blk_plug plug;
7270
7271         /* just incase thread restarts... */
7272         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7273                 return;
7274         if (mddev->ro) /* never try to sync a read-only array */
7275                 return;
7276
7277         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7278                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7279                         desc = "data-check";
7280                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7281                         desc = "requested-resync";
7282                 else
7283                         desc = "resync";
7284         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7285                 desc = "reshape";
7286         else
7287                 desc = "recovery";
7288
7289         /* we overload curr_resync somewhat here.
7290          * 0 == not engaged in resync at all
7291          * 2 == checking that there is no conflict with another sync
7292          * 1 == like 2, but have yielded to allow conflicting resync to
7293          *              commense
7294          * other == active in resync - this many blocks
7295          *
7296          * Before starting a resync we must have set curr_resync to
7297          * 2, and then checked that every "conflicting" array has curr_resync
7298          * less than ours.  When we find one that is the same or higher
7299          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7300          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7301          * This will mean we have to start checking from the beginning again.
7302          *
7303          */
7304
7305         do {
7306                 mddev->curr_resync = 2;
7307
7308         try_again:
7309                 if (kthread_should_stop())
7310                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7311
7312                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7313                         goto skip;
7314                 for_each_mddev(mddev2, tmp) {
7315                         if (mddev2 == mddev)
7316                                 continue;
7317                         if (!mddev->parallel_resync
7318                         &&  mddev2->curr_resync
7319                         &&  match_mddev_units(mddev, mddev2)) {
7320                                 DEFINE_WAIT(wq);
7321                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7322                                         /* arbitrarily yield */
7323                                         mddev->curr_resync = 1;
7324                                         wake_up(&resync_wait);
7325                                 }
7326                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7327                                         /* no need to wait here, we can wait the next
7328                                          * time 'round when curr_resync == 2
7329                                          */
7330                                         continue;
7331                                 /* We need to wait 'interruptible' so as not to
7332                                  * contribute to the load average, and not to
7333                                  * be caught by 'softlockup'
7334                                  */
7335                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7336                                 if (!kthread_should_stop() &&
7337                                     mddev2->curr_resync >= mddev->curr_resync) {
7338                                         printk(KERN_INFO "md: delaying %s of %s"
7339                                                " until %s has finished (they"
7340                                                " share one or more physical units)\n",
7341                                                desc, mdname(mddev), mdname(mddev2));
7342                                         mddev_put(mddev2);
7343                                         if (signal_pending(current))
7344                                                 flush_signals(current);
7345                                         schedule();
7346                                         finish_wait(&resync_wait, &wq);
7347                                         goto try_again;
7348                                 }
7349                                 finish_wait(&resync_wait, &wq);
7350                         }
7351                 }
7352         } while (mddev->curr_resync < 2);
7353
7354         j = 0;
7355         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7356                 /* resync follows the size requested by the personality,
7357                  * which defaults to physical size, but can be virtual size
7358                  */
7359                 max_sectors = mddev->resync_max_sectors;
7360                 mddev->resync_mismatches = 0;
7361                 /* we don't use the checkpoint if there's a bitmap */
7362                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7363                         j = mddev->resync_min;
7364                 else if (!mddev->bitmap)
7365                         j = mddev->recovery_cp;
7366
7367         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7368                 max_sectors = mddev->resync_max_sectors;
7369         else {
7370                 /* recovery follows the physical size of devices */
7371                 max_sectors = mddev->dev_sectors;
7372                 j = MaxSector;
7373                 rcu_read_lock();
7374                 rdev_for_each_rcu(rdev, mddev)
7375                         if (rdev->raid_disk >= 0 &&
7376                             !test_bit(Faulty, &rdev->flags) &&
7377                             !test_bit(In_sync, &rdev->flags) &&
7378                             rdev->recovery_offset < j)
7379                                 j = rdev->recovery_offset;
7380                 rcu_read_unlock();
7381         }
7382
7383         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7384         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7385                 " %d KB/sec/disk.\n", speed_min(mddev));
7386         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7387                "(but not more than %d KB/sec) for %s.\n",
7388                speed_max(mddev), desc);
7389
7390         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7391
7392         io_sectors = 0;
7393         for (m = 0; m < SYNC_MARKS; m++) {
7394                 mark[m] = jiffies;
7395                 mark_cnt[m] = io_sectors;
7396         }
7397         last_mark = 0;
7398         mddev->resync_mark = mark[last_mark];
7399         mddev->resync_mark_cnt = mark_cnt[last_mark];
7400
7401         /*
7402          * Tune reconstruction:
7403          */
7404         window = 32*(PAGE_SIZE/512);
7405         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7406                 window/2, (unsigned long long)max_sectors/2);
7407
7408         atomic_set(&mddev->recovery_active, 0);
7409         last_check = 0;
7410
7411         if (j>2) {
7412                 printk(KERN_INFO 
7413                        "md: resuming %s of %s from checkpoint.\n",
7414                        desc, mdname(mddev));
7415                 mddev->curr_resync = j;
7416         }
7417         mddev->curr_resync_completed = j;
7418
7419         blk_start_plug(&plug);
7420         while (j < max_sectors) {
7421                 sector_t sectors;
7422
7423                 skipped = 0;
7424
7425                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7426                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7427                       (mddev->curr_resync - mddev->curr_resync_completed)
7428                       > (max_sectors >> 4)) ||
7429                      (j - mddev->curr_resync_completed)*2
7430                      >= mddev->resync_max - mddev->curr_resync_completed
7431                             )) {
7432                         /* time to update curr_resync_completed */
7433                         wait_event(mddev->recovery_wait,
7434                                    atomic_read(&mddev->recovery_active) == 0);
7435                         mddev->curr_resync_completed = j;
7436                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7437                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7438                 }
7439
7440                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7441                         /* As this condition is controlled by user-space,
7442                          * we can block indefinitely, so use '_interruptible'
7443                          * to avoid triggering warnings.
7444                          */
7445                         flush_signals(current); /* just in case */
7446                         wait_event_interruptible(mddev->recovery_wait,
7447                                                  mddev->resync_max > j
7448                                                  || kthread_should_stop());
7449                 }
7450
7451                 if (kthread_should_stop())
7452                         goto interrupted;
7453
7454                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7455                                                   currspeed < speed_min(mddev));
7456                 if (sectors == 0) {
7457                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7458                         goto out;
7459                 }
7460
7461                 if (!skipped) { /* actual IO requested */
7462                         io_sectors += sectors;
7463                         atomic_add(sectors, &mddev->recovery_active);
7464                 }
7465
7466                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7467                         break;
7468
7469                 j += sectors;
7470                 if (j>1) mddev->curr_resync = j;
7471                 mddev->curr_mark_cnt = io_sectors;
7472                 if (last_check == 0)
7473                         /* this is the earliest that rebuild will be
7474                          * visible in /proc/mdstat
7475                          */
7476                         md_new_event(mddev);
7477
7478                 if (last_check + window > io_sectors || j == max_sectors)
7479                         continue;
7480
7481                 last_check = io_sectors;
7482         repeat:
7483                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7484                         /* step marks */
7485                         int next = (last_mark+1) % SYNC_MARKS;
7486
7487                         mddev->resync_mark = mark[next];
7488                         mddev->resync_mark_cnt = mark_cnt[next];
7489                         mark[next] = jiffies;
7490                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7491                         last_mark = next;
7492                 }
7493
7494
7495                 if (kthread_should_stop())
7496                         goto interrupted;
7497
7498
7499                 /*
7500                  * this loop exits only if either when we are slower than
7501                  * the 'hard' speed limit, or the system was IO-idle for
7502                  * a jiffy.
7503                  * the system might be non-idle CPU-wise, but we only care
7504                  * about not overloading the IO subsystem. (things like an
7505                  * e2fsck being done on the RAID array should execute fast)
7506                  */
7507                 cond_resched();
7508
7509                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7510                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7511
7512                 if (currspeed > speed_min(mddev)) {
7513                         if ((currspeed > speed_max(mddev)) ||
7514                                         !is_mddev_idle(mddev, 0)) {
7515                                 msleep(500);
7516                                 goto repeat;
7517                         }
7518                 }
7519         }
7520         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7521         /*
7522          * this also signals 'finished resyncing' to md_stop
7523          */
7524  out:
7525         blk_finish_plug(&plug);
7526         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7527
7528         /* tell personality that we are finished */
7529         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7530
7531         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7532             mddev->curr_resync > 2) {
7533                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7534                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7535                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7536                                         printk(KERN_INFO
7537                                                "md: checkpointing %s of %s.\n",
7538                                                desc, mdname(mddev));
7539                                         mddev->recovery_cp =
7540                                                 mddev->curr_resync_completed;
7541                                 }
7542                         } else
7543                                 mddev->recovery_cp = MaxSector;
7544                 } else {
7545                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7546                                 mddev->curr_resync = MaxSector;
7547                         rcu_read_lock();
7548                         rdev_for_each_rcu(rdev, mddev)
7549                                 if (rdev->raid_disk >= 0 &&
7550                                     mddev->delta_disks >= 0 &&
7551                                     !test_bit(Faulty, &rdev->flags) &&
7552                                     !test_bit(In_sync, &rdev->flags) &&
7553                                     rdev->recovery_offset < mddev->curr_resync)
7554                                         rdev->recovery_offset = mddev->curr_resync;
7555                         rcu_read_unlock();
7556                 }
7557         }
7558  skip:
7559         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7560
7561         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7562                 /* We completed so min/max setting can be forgotten if used. */
7563                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7564                         mddev->resync_min = 0;
7565                 mddev->resync_max = MaxSector;
7566         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7567                 mddev->resync_min = mddev->curr_resync_completed;
7568         mddev->curr_resync = 0;
7569         wake_up(&resync_wait);
7570         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7571         md_wakeup_thread(mddev->thread);
7572         return;
7573
7574  interrupted:
7575         /*
7576          * got a signal, exit.
7577          */
7578         printk(KERN_INFO
7579                "md: md_do_sync() got signal ... exiting\n");
7580         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7581         goto out;
7582
7583 }
7584 EXPORT_SYMBOL_GPL(md_do_sync);
7585
7586 static int remove_and_add_spares(struct mddev *mddev)
7587 {
7588         struct md_rdev *rdev;
7589         int spares = 0;
7590         int removed = 0;
7591
7592         mddev->curr_resync_completed = 0;
7593
7594         rdev_for_each(rdev, mddev)
7595                 if (rdev->raid_disk >= 0 &&
7596                     !test_bit(Blocked, &rdev->flags) &&
7597                     (test_bit(Faulty, &rdev->flags) ||
7598                      ! test_bit(In_sync, &rdev->flags)) &&
7599                     atomic_read(&rdev->nr_pending)==0) {
7600                         if (mddev->pers->hot_remove_disk(
7601                                     mddev, rdev) == 0) {
7602                                 sysfs_unlink_rdev(mddev, rdev);
7603                                 rdev->raid_disk = -1;
7604                                 removed++;
7605                         }
7606                 }
7607         if (removed)
7608                 sysfs_notify(&mddev->kobj, NULL,
7609                              "degraded");
7610
7611
7612         rdev_for_each(rdev, mddev) {
7613                 if (rdev->raid_disk >= 0 &&
7614                     !test_bit(In_sync, &rdev->flags) &&
7615                     !test_bit(Faulty, &rdev->flags))
7616                         spares++;
7617                 if (rdev->raid_disk < 0
7618                     && !test_bit(Faulty, &rdev->flags)) {
7619                         rdev->recovery_offset = 0;
7620                         if (mddev->pers->
7621                             hot_add_disk(mddev, rdev) == 0) {
7622                                 if (sysfs_link_rdev(mddev, rdev))
7623                                         /* failure here is OK */;
7624                                 spares++;
7625                                 md_new_event(mddev);
7626                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7627                         }
7628                 }
7629         }
7630         return spares;
7631 }
7632
7633 static void reap_sync_thread(struct mddev *mddev)
7634 {
7635         struct md_rdev *rdev;
7636
7637         /* resync has finished, collect result */
7638         md_unregister_thread(&mddev->sync_thread);
7639         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7640             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7641                 /* success...*/
7642                 /* activate any spares */
7643                 if (mddev->pers->spare_active(mddev))
7644                         sysfs_notify(&mddev->kobj, NULL,
7645                                      "degraded");
7646         }
7647         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7648             mddev->pers->finish_reshape)
7649                 mddev->pers->finish_reshape(mddev);
7650
7651         /* If array is no-longer degraded, then any saved_raid_disk
7652          * information must be scrapped.  Also if any device is now
7653          * In_sync we must scrape the saved_raid_disk for that device
7654          * do the superblock for an incrementally recovered device
7655          * written out.
7656          */
7657         rdev_for_each(rdev, mddev)
7658                 if (!mddev->degraded ||
7659                     test_bit(In_sync, &rdev->flags))
7660                         rdev->saved_raid_disk = -1;
7661
7662         md_update_sb(mddev, 1);
7663         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7664         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7665         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7666         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7667         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7668         /* flag recovery needed just to double check */
7669         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7670         sysfs_notify_dirent_safe(mddev->sysfs_action);
7671         md_new_event(mddev);
7672         if (mddev->event_work.func)
7673                 queue_work(md_misc_wq, &mddev->event_work);
7674 }
7675
7676 /*
7677  * This routine is regularly called by all per-raid-array threads to
7678  * deal with generic issues like resync and super-block update.
7679  * Raid personalities that don't have a thread (linear/raid0) do not
7680  * need this as they never do any recovery or update the superblock.
7681  *
7682  * It does not do any resync itself, but rather "forks" off other threads
7683  * to do that as needed.
7684  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7685  * "->recovery" and create a thread at ->sync_thread.
7686  * When the thread finishes it sets MD_RECOVERY_DONE
7687  * and wakeups up this thread which will reap the thread and finish up.
7688  * This thread also removes any faulty devices (with nr_pending == 0).
7689  *
7690  * The overall approach is:
7691  *  1/ if the superblock needs updating, update it.
7692  *  2/ If a recovery thread is running, don't do anything else.
7693  *  3/ If recovery has finished, clean up, possibly marking spares active.
7694  *  4/ If there are any faulty devices, remove them.
7695  *  5/ If array is degraded, try to add spares devices
7696  *  6/ If array has spares or is not in-sync, start a resync thread.
7697  */
7698 void md_check_recovery(struct mddev *mddev)
7699 {
7700         if (mddev->suspended)
7701                 return;
7702
7703         if (mddev->bitmap)
7704                 bitmap_daemon_work(mddev);
7705
7706         if (signal_pending(current)) {
7707                 if (mddev->pers->sync_request && !mddev->external) {
7708                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7709                                mdname(mddev));
7710                         mddev->safemode = 2;
7711                 }
7712                 flush_signals(current);
7713         }
7714
7715         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7716                 return;
7717         if ( ! (
7718                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7719                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7720                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7721                 (mddev->external == 0 && mddev->safemode == 1) ||
7722                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7723                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7724                 ))
7725                 return;
7726
7727         if (mddev_trylock(mddev)) {
7728                 int spares = 0;
7729
7730                 if (mddev->ro) {
7731                         /* Only thing we do on a ro array is remove
7732                          * failed devices.
7733                          */
7734                         struct md_rdev *rdev;
7735                         rdev_for_each(rdev, mddev)
7736                                 if (rdev->raid_disk >= 0 &&
7737                                     !test_bit(Blocked, &rdev->flags) &&
7738                                     test_bit(Faulty, &rdev->flags) &&
7739                                     atomic_read(&rdev->nr_pending)==0) {
7740                                         if (mddev->pers->hot_remove_disk(
7741                                                     mddev, rdev) == 0) {
7742                                                 sysfs_unlink_rdev(mddev, rdev);
7743                                                 rdev->raid_disk = -1;
7744                                         }
7745                                 }
7746                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7747                         goto unlock;
7748                 }
7749
7750                 if (!mddev->external) {
7751                         int did_change = 0;
7752                         spin_lock_irq(&mddev->write_lock);
7753                         if (mddev->safemode &&
7754                             !atomic_read(&mddev->writes_pending) &&
7755                             !mddev->in_sync &&
7756                             mddev->recovery_cp == MaxSector) {
7757                                 mddev->in_sync = 1;
7758                                 did_change = 1;
7759                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7760                         }
7761                         if (mddev->safemode == 1)
7762                                 mddev->safemode = 0;
7763                         spin_unlock_irq(&mddev->write_lock);
7764                         if (did_change)
7765                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7766                 }
7767
7768                 if (mddev->flags)
7769                         md_update_sb(mddev, 0);
7770
7771                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7772                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7773                         /* resync/recovery still happening */
7774                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7775                         goto unlock;
7776                 }
7777                 if (mddev->sync_thread) {
7778                         reap_sync_thread(mddev);
7779                         goto unlock;
7780                 }
7781                 /* Set RUNNING before clearing NEEDED to avoid
7782                  * any transients in the value of "sync_action".
7783                  */
7784                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7785                 /* Clear some bits that don't mean anything, but
7786                  * might be left set
7787                  */
7788                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7789                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7790
7791                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7792                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7793                         goto unlock;
7794                 /* no recovery is running.
7795                  * remove any failed drives, then
7796                  * add spares if possible.
7797                  * Spare are also removed and re-added, to allow
7798                  * the personality to fail the re-add.
7799                  */
7800
7801                 if (mddev->reshape_position != MaxSector) {
7802                         if (mddev->pers->check_reshape == NULL ||
7803                             mddev->pers->check_reshape(mddev) != 0)
7804                                 /* Cannot proceed */
7805                                 goto unlock;
7806                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7807                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7808                 } else if ((spares = remove_and_add_spares(mddev))) {
7809                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7810                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7811                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7812                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7813                 } else if (mddev->recovery_cp < MaxSector) {
7814                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7815                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7816                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7817                         /* nothing to be done ... */
7818                         goto unlock;
7819
7820                 if (mddev->pers->sync_request) {
7821                         if (spares) {
7822                                 /* We are adding a device or devices to an array
7823                                  * which has the bitmap stored on all devices.
7824                                  * So make sure all bitmap pages get written
7825                                  */
7826                                 bitmap_write_all(mddev->bitmap);
7827                         }
7828                         mddev->sync_thread = md_register_thread(md_do_sync,
7829                                                                 mddev,
7830                                                                 "resync");
7831                         if (!mddev->sync_thread) {
7832                                 printk(KERN_ERR "%s: could not start resync"
7833                                         " thread...\n", 
7834                                         mdname(mddev));
7835                                 /* leave the spares where they are, it shouldn't hurt */
7836                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7837                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7838                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7839                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7840                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7841                         } else
7842                                 md_wakeup_thread(mddev->sync_thread);
7843                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7844                         md_new_event(mddev);
7845                 }
7846         unlock:
7847                 if (!mddev->sync_thread) {
7848                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7849                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7850                                                &mddev->recovery))
7851                                 if (mddev->sysfs_action)
7852                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7853                 }
7854                 mddev_unlock(mddev);
7855         }
7856 }
7857
7858 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7859 {
7860         sysfs_notify_dirent_safe(rdev->sysfs_state);
7861         wait_event_timeout(rdev->blocked_wait,
7862                            !test_bit(Blocked, &rdev->flags) &&
7863                            !test_bit(BlockedBadBlocks, &rdev->flags),
7864                            msecs_to_jiffies(5000));
7865         rdev_dec_pending(rdev, mddev);
7866 }
7867 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7868
7869 void md_finish_reshape(struct mddev *mddev)
7870 {
7871         /* called be personality module when reshape completes. */
7872         struct md_rdev *rdev;
7873
7874         rdev_for_each(rdev, mddev) {
7875                 if (rdev->data_offset > rdev->new_data_offset)
7876                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7877                 else
7878                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7879                 rdev->data_offset = rdev->new_data_offset;
7880         }
7881 }
7882 EXPORT_SYMBOL(md_finish_reshape);
7883
7884 /* Bad block management.
7885  * We can record which blocks on each device are 'bad' and so just
7886  * fail those blocks, or that stripe, rather than the whole device.
7887  * Entries in the bad-block table are 64bits wide.  This comprises:
7888  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7889  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7890  *  A 'shift' can be set so that larger blocks are tracked and
7891  *  consequently larger devices can be covered.
7892  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7893  *
7894  * Locking of the bad-block table uses a seqlock so md_is_badblock
7895  * might need to retry if it is very unlucky.
7896  * We will sometimes want to check for bad blocks in a bi_end_io function,
7897  * so we use the write_seqlock_irq variant.
7898  *
7899  * When looking for a bad block we specify a range and want to
7900  * know if any block in the range is bad.  So we binary-search
7901  * to the last range that starts at-or-before the given endpoint,
7902  * (or "before the sector after the target range")
7903  * then see if it ends after the given start.
7904  * We return
7905  *  0 if there are no known bad blocks in the range
7906  *  1 if there are known bad block which are all acknowledged
7907  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7908  * plus the start/length of the first bad section we overlap.
7909  */
7910 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7911                    sector_t *first_bad, int *bad_sectors)
7912 {
7913         int hi;
7914         int lo = 0;
7915         u64 *p = bb->page;
7916         int rv = 0;
7917         sector_t target = s + sectors;
7918         unsigned seq;
7919
7920         if (bb->shift > 0) {
7921                 /* round the start down, and the end up */
7922                 s >>= bb->shift;
7923                 target += (1<<bb->shift) - 1;
7924                 target >>= bb->shift;
7925                 sectors = target - s;
7926         }
7927         /* 'target' is now the first block after the bad range */
7928
7929 retry:
7930         seq = read_seqbegin(&bb->lock);
7931
7932         hi = bb->count;
7933
7934         /* Binary search between lo and hi for 'target'
7935          * i.e. for the last range that starts before 'target'
7936          */
7937         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7938          * are known not to be the last range before target.
7939          * VARIANT: hi-lo is the number of possible
7940          * ranges, and decreases until it reaches 1
7941          */
7942         while (hi - lo > 1) {
7943                 int mid = (lo + hi) / 2;
7944                 sector_t a = BB_OFFSET(p[mid]);
7945                 if (a < target)
7946                         /* This could still be the one, earlier ranges
7947                          * could not. */
7948                         lo = mid;
7949                 else
7950                         /* This and later ranges are definitely out. */
7951                         hi = mid;
7952         }
7953         /* 'lo' might be the last that started before target, but 'hi' isn't */
7954         if (hi > lo) {
7955                 /* need to check all range that end after 's' to see if
7956                  * any are unacknowledged.
7957                  */
7958                 while (lo >= 0 &&
7959                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7960                         if (BB_OFFSET(p[lo]) < target) {
7961                                 /* starts before the end, and finishes after
7962                                  * the start, so they must overlap
7963                                  */
7964                                 if (rv != -1 && BB_ACK(p[lo]))
7965                                         rv = 1;
7966                                 else
7967                                         rv = -1;
7968                                 *first_bad = BB_OFFSET(p[lo]);
7969                                 *bad_sectors = BB_LEN(p[lo]);
7970                         }
7971                         lo--;
7972                 }
7973         }
7974
7975         if (read_seqretry(&bb->lock, seq))
7976                 goto retry;
7977
7978         return rv;
7979 }
7980 EXPORT_SYMBOL_GPL(md_is_badblock);
7981
7982 /*
7983  * Add a range of bad blocks to the table.
7984  * This might extend the table, or might contract it
7985  * if two adjacent ranges can be merged.
7986  * We binary-search to find the 'insertion' point, then
7987  * decide how best to handle it.
7988  */
7989 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7990                             int acknowledged)
7991 {
7992         u64 *p;
7993         int lo, hi;
7994         int rv = 1;
7995
7996         if (bb->shift < 0)
7997                 /* badblocks are disabled */
7998                 return 0;
7999
8000         if (bb->shift) {
8001                 /* round the start down, and the end up */
8002                 sector_t next = s + sectors;
8003                 s >>= bb->shift;
8004                 next += (1<<bb->shift) - 1;
8005                 next >>= bb->shift;
8006                 sectors = next - s;
8007         }
8008
8009         write_seqlock_irq(&bb->lock);
8010
8011         p = bb->page;
8012         lo = 0;
8013         hi = bb->count;
8014         /* Find the last range that starts at-or-before 's' */
8015         while (hi - lo > 1) {
8016                 int mid = (lo + hi) / 2;
8017                 sector_t a = BB_OFFSET(p[mid]);
8018                 if (a <= s)
8019                         lo = mid;
8020                 else
8021                         hi = mid;
8022         }
8023         if (hi > lo && BB_OFFSET(p[lo]) > s)
8024                 hi = lo;
8025
8026         if (hi > lo) {
8027                 /* we found a range that might merge with the start
8028                  * of our new range
8029                  */
8030                 sector_t a = BB_OFFSET(p[lo]);
8031                 sector_t e = a + BB_LEN(p[lo]);
8032                 int ack = BB_ACK(p[lo]);
8033                 if (e >= s) {
8034                         /* Yes, we can merge with a previous range */
8035                         if (s == a && s + sectors >= e)
8036                                 /* new range covers old */
8037                                 ack = acknowledged;
8038                         else
8039                                 ack = ack && acknowledged;
8040
8041                         if (e < s + sectors)
8042                                 e = s + sectors;
8043                         if (e - a <= BB_MAX_LEN) {
8044                                 p[lo] = BB_MAKE(a, e-a, ack);
8045                                 s = e;
8046                         } else {
8047                                 /* does not all fit in one range,
8048                                  * make p[lo] maximal
8049                                  */
8050                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8051                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8052                                 s = a + BB_MAX_LEN;
8053                         }
8054                         sectors = e - s;
8055                 }
8056         }
8057         if (sectors && hi < bb->count) {
8058                 /* 'hi' points to the first range that starts after 's'.
8059                  * Maybe we can merge with the start of that range */
8060                 sector_t a = BB_OFFSET(p[hi]);
8061                 sector_t e = a + BB_LEN(p[hi]);
8062                 int ack = BB_ACK(p[hi]);
8063                 if (a <= s + sectors) {
8064                         /* merging is possible */
8065                         if (e <= s + sectors) {
8066                                 /* full overlap */
8067                                 e = s + sectors;
8068                                 ack = acknowledged;
8069                         } else
8070                                 ack = ack && acknowledged;
8071
8072                         a = s;
8073                         if (e - a <= BB_MAX_LEN) {
8074                                 p[hi] = BB_MAKE(a, e-a, ack);
8075                                 s = e;
8076                         } else {
8077                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8078                                 s = a + BB_MAX_LEN;
8079                         }
8080                         sectors = e - s;
8081                         lo = hi;
8082                         hi++;
8083                 }
8084         }
8085         if (sectors == 0 && hi < bb->count) {
8086                 /* we might be able to combine lo and hi */
8087                 /* Note: 's' is at the end of 'lo' */
8088                 sector_t a = BB_OFFSET(p[hi]);
8089                 int lolen = BB_LEN(p[lo]);
8090                 int hilen = BB_LEN(p[hi]);
8091                 int newlen = lolen + hilen - (s - a);
8092                 if (s >= a && newlen < BB_MAX_LEN) {
8093                         /* yes, we can combine them */
8094                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8095                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8096                         memmove(p + hi, p + hi + 1,
8097                                 (bb->count - hi - 1) * 8);
8098                         bb->count--;
8099                 }
8100         }
8101         while (sectors) {
8102                 /* didn't merge (it all).
8103                  * Need to add a range just before 'hi' */
8104                 if (bb->count >= MD_MAX_BADBLOCKS) {
8105                         /* No room for more */
8106                         rv = 0;
8107                         break;
8108                 } else {
8109                         int this_sectors = sectors;
8110                         memmove(p + hi + 1, p + hi,
8111                                 (bb->count - hi) * 8);
8112                         bb->count++;
8113
8114                         if (this_sectors > BB_MAX_LEN)
8115                                 this_sectors = BB_MAX_LEN;
8116                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8117                         sectors -= this_sectors;
8118                         s += this_sectors;
8119                 }
8120         }
8121
8122         bb->changed = 1;
8123         if (!acknowledged)
8124                 bb->unacked_exist = 1;
8125         write_sequnlock_irq(&bb->lock);
8126
8127         return rv;
8128 }
8129
8130 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8131                        int is_new)
8132 {
8133         int rv;
8134         if (is_new)
8135                 s += rdev->new_data_offset;
8136         else
8137                 s += rdev->data_offset;
8138         rv = md_set_badblocks(&rdev->badblocks,
8139                               s, sectors, 0);
8140         if (rv) {
8141                 /* Make sure they get written out promptly */
8142                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8143                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8144                 md_wakeup_thread(rdev->mddev->thread);
8145         }
8146         return rv;
8147 }
8148 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8149
8150 /*
8151  * Remove a range of bad blocks from the table.
8152  * This may involve extending the table if we spilt a region,
8153  * but it must not fail.  So if the table becomes full, we just
8154  * drop the remove request.
8155  */
8156 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8157 {
8158         u64 *p;
8159         int lo, hi;
8160         sector_t target = s + sectors;
8161         int rv = 0;
8162
8163         if (bb->shift > 0) {
8164                 /* When clearing we round the start up and the end down.
8165                  * This should not matter as the shift should align with
8166                  * the block size and no rounding should ever be needed.
8167                  * However it is better the think a block is bad when it
8168                  * isn't than to think a block is not bad when it is.
8169                  */
8170                 s += (1<<bb->shift) - 1;
8171                 s >>= bb->shift;
8172                 target >>= bb->shift;
8173                 sectors = target - s;
8174         }
8175
8176         write_seqlock_irq(&bb->lock);
8177
8178         p = bb->page;
8179         lo = 0;
8180         hi = bb->count;
8181         /* Find the last range that starts before 'target' */
8182         while (hi - lo > 1) {
8183                 int mid = (lo + hi) / 2;
8184                 sector_t a = BB_OFFSET(p[mid]);
8185                 if (a < target)
8186                         lo = mid;
8187                 else
8188                         hi = mid;
8189         }
8190         if (hi > lo) {
8191                 /* p[lo] is the last range that could overlap the
8192                  * current range.  Earlier ranges could also overlap,
8193                  * but only this one can overlap the end of the range.
8194                  */
8195                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8196                         /* Partial overlap, leave the tail of this range */
8197                         int ack = BB_ACK(p[lo]);
8198                         sector_t a = BB_OFFSET(p[lo]);
8199                         sector_t end = a + BB_LEN(p[lo]);
8200
8201                         if (a < s) {
8202                                 /* we need to split this range */
8203                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8204                                         rv = 0;
8205                                         goto out;
8206                                 }
8207                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8208                                 bb->count++;
8209                                 p[lo] = BB_MAKE(a, s-a, ack);
8210                                 lo++;
8211                         }
8212                         p[lo] = BB_MAKE(target, end - target, ack);
8213                         /* there is no longer an overlap */
8214                         hi = lo;
8215                         lo--;
8216                 }
8217                 while (lo >= 0 &&
8218                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8219                         /* This range does overlap */
8220                         if (BB_OFFSET(p[lo]) < s) {
8221                                 /* Keep the early parts of this range. */
8222                                 int ack = BB_ACK(p[lo]);
8223                                 sector_t start = BB_OFFSET(p[lo]);
8224                                 p[lo] = BB_MAKE(start, s - start, ack);
8225                                 /* now low doesn't overlap, so.. */
8226                                 break;
8227                         }
8228                         lo--;
8229                 }
8230                 /* 'lo' is strictly before, 'hi' is strictly after,
8231                  * anything between needs to be discarded
8232                  */
8233                 if (hi - lo > 1) {
8234                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8235                         bb->count -= (hi - lo - 1);
8236                 }
8237         }
8238
8239         bb->changed = 1;
8240 out:
8241         write_sequnlock_irq(&bb->lock);
8242         return rv;
8243 }
8244
8245 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8246                          int is_new)
8247 {
8248         if (is_new)
8249                 s += rdev->new_data_offset;
8250         else
8251                 s += rdev->data_offset;
8252         return md_clear_badblocks(&rdev->badblocks,
8253                                   s, sectors);
8254 }
8255 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8256
8257 /*
8258  * Acknowledge all bad blocks in a list.
8259  * This only succeeds if ->changed is clear.  It is used by
8260  * in-kernel metadata updates
8261  */
8262 void md_ack_all_badblocks(struct badblocks *bb)
8263 {
8264         if (bb->page == NULL || bb->changed)
8265                 /* no point even trying */
8266                 return;
8267         write_seqlock_irq(&bb->lock);
8268
8269         if (bb->changed == 0 && bb->unacked_exist) {
8270                 u64 *p = bb->page;
8271                 int i;
8272                 for (i = 0; i < bb->count ; i++) {
8273                         if (!BB_ACK(p[i])) {
8274                                 sector_t start = BB_OFFSET(p[i]);
8275                                 int len = BB_LEN(p[i]);
8276                                 p[i] = BB_MAKE(start, len, 1);
8277                         }
8278                 }
8279                 bb->unacked_exist = 0;
8280         }
8281         write_sequnlock_irq(&bb->lock);
8282 }
8283 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8284
8285 /* sysfs access to bad-blocks list.
8286  * We present two files.
8287  * 'bad-blocks' lists sector numbers and lengths of ranges that
8288  *    are recorded as bad.  The list is truncated to fit within
8289  *    the one-page limit of sysfs.
8290  *    Writing "sector length" to this file adds an acknowledged
8291  *    bad block list.
8292  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8293  *    been acknowledged.  Writing to this file adds bad blocks
8294  *    without acknowledging them.  This is largely for testing.
8295  */
8296
8297 static ssize_t
8298 badblocks_show(struct badblocks *bb, char *page, int unack)
8299 {
8300         size_t len;
8301         int i;
8302         u64 *p = bb->page;
8303         unsigned seq;
8304
8305         if (bb->shift < 0)
8306                 return 0;
8307
8308 retry:
8309         seq = read_seqbegin(&bb->lock);
8310
8311         len = 0;
8312         i = 0;
8313
8314         while (len < PAGE_SIZE && i < bb->count) {
8315                 sector_t s = BB_OFFSET(p[i]);
8316                 unsigned int length = BB_LEN(p[i]);
8317                 int ack = BB_ACK(p[i]);
8318                 i++;
8319
8320                 if (unack && ack)
8321                         continue;
8322
8323                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8324                                 (unsigned long long)s << bb->shift,
8325                                 length << bb->shift);
8326         }
8327         if (unack && len == 0)
8328                 bb->unacked_exist = 0;
8329
8330         if (read_seqretry(&bb->lock, seq))
8331                 goto retry;
8332
8333         return len;
8334 }
8335
8336 #define DO_DEBUG 1
8337
8338 static ssize_t
8339 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8340 {
8341         unsigned long long sector;
8342         int length;
8343         char newline;
8344 #ifdef DO_DEBUG
8345         /* Allow clearing via sysfs *only* for testing/debugging.
8346          * Normally only a successful write may clear a badblock
8347          */
8348         int clear = 0;
8349         if (page[0] == '-') {
8350                 clear = 1;
8351                 page++;
8352         }
8353 #endif /* DO_DEBUG */
8354
8355         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8356         case 3:
8357                 if (newline != '\n')
8358                         return -EINVAL;
8359         case 2:
8360                 if (length <= 0)
8361                         return -EINVAL;
8362                 break;
8363         default:
8364                 return -EINVAL;
8365         }
8366
8367 #ifdef DO_DEBUG
8368         if (clear) {
8369                 md_clear_badblocks(bb, sector, length);
8370                 return len;
8371         }
8372 #endif /* DO_DEBUG */
8373         if (md_set_badblocks(bb, sector, length, !unack))
8374                 return len;
8375         else
8376                 return -ENOSPC;
8377 }
8378
8379 static int md_notify_reboot(struct notifier_block *this,
8380                             unsigned long code, void *x)
8381 {
8382         struct list_head *tmp;
8383         struct mddev *mddev;
8384         int need_delay = 0;
8385
8386         for_each_mddev(mddev, tmp) {
8387                 if (mddev_trylock(mddev)) {
8388                         if (mddev->pers)
8389                                 __md_stop_writes(mddev);
8390                         mddev->safemode = 2;
8391                         mddev_unlock(mddev);
8392                 }
8393                 need_delay = 1;
8394         }
8395         /*
8396          * certain more exotic SCSI devices are known to be
8397          * volatile wrt too early system reboots. While the
8398          * right place to handle this issue is the given
8399          * driver, we do want to have a safe RAID driver ...
8400          */
8401         if (need_delay)
8402                 mdelay(1000*1);
8403
8404         return NOTIFY_DONE;
8405 }
8406
8407 static struct notifier_block md_notifier = {
8408         .notifier_call  = md_notify_reboot,
8409         .next           = NULL,
8410         .priority       = INT_MAX, /* before any real devices */
8411 };
8412
8413 static void md_geninit(void)
8414 {
8415         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8416
8417         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8418 }
8419
8420 static int __init md_init(void)
8421 {
8422         int ret = -ENOMEM;
8423
8424         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8425         if (!md_wq)
8426                 goto err_wq;
8427
8428         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8429         if (!md_misc_wq)
8430                 goto err_misc_wq;
8431
8432         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8433                 goto err_md;
8434
8435         if ((ret = register_blkdev(0, "mdp")) < 0)
8436                 goto err_mdp;
8437         mdp_major = ret;
8438
8439         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8440                             md_probe, NULL, NULL);
8441         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8442                             md_probe, NULL, NULL);
8443
8444         register_reboot_notifier(&md_notifier);
8445         raid_table_header = register_sysctl_table(raid_root_table);
8446
8447         md_geninit();
8448         return 0;
8449
8450 err_mdp:
8451         unregister_blkdev(MD_MAJOR, "md");
8452 err_md:
8453         destroy_workqueue(md_misc_wq);
8454 err_misc_wq:
8455         destroy_workqueue(md_wq);
8456 err_wq:
8457         return ret;
8458 }
8459
8460 #ifndef MODULE
8461
8462 /*
8463  * Searches all registered partitions for autorun RAID arrays
8464  * at boot time.
8465  */
8466
8467 static LIST_HEAD(all_detected_devices);
8468 struct detected_devices_node {
8469         struct list_head list;
8470         dev_t dev;
8471 };
8472
8473 void md_autodetect_dev(dev_t dev)
8474 {
8475         struct detected_devices_node *node_detected_dev;
8476
8477         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8478         if (node_detected_dev) {
8479                 node_detected_dev->dev = dev;
8480                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8481         } else {
8482                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8483                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8484         }
8485 }
8486
8487
8488 static void autostart_arrays(int part)
8489 {
8490         struct md_rdev *rdev;
8491         struct detected_devices_node *node_detected_dev;
8492         dev_t dev;
8493         int i_scanned, i_passed;
8494
8495         i_scanned = 0;
8496         i_passed = 0;
8497
8498         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8499
8500         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8501                 i_scanned++;
8502                 node_detected_dev = list_entry(all_detected_devices.next,
8503                                         struct detected_devices_node, list);
8504                 list_del(&node_detected_dev->list);
8505                 dev = node_detected_dev->dev;
8506                 kfree(node_detected_dev);
8507                 rdev = md_import_device(dev,0, 90);
8508                 if (IS_ERR(rdev))
8509                         continue;
8510
8511                 if (test_bit(Faulty, &rdev->flags)) {
8512                         MD_BUG();
8513                         continue;
8514                 }
8515                 set_bit(AutoDetected, &rdev->flags);
8516                 list_add(&rdev->same_set, &pending_raid_disks);
8517                 i_passed++;
8518         }
8519
8520         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8521                                                 i_scanned, i_passed);
8522
8523         autorun_devices(part);
8524 }
8525
8526 #endif /* !MODULE */
8527
8528 static __exit void md_exit(void)
8529 {
8530         struct mddev *mddev;
8531         struct list_head *tmp;
8532
8533         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8534         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8535
8536         unregister_blkdev(MD_MAJOR,"md");
8537         unregister_blkdev(mdp_major, "mdp");
8538         unregister_reboot_notifier(&md_notifier);
8539         unregister_sysctl_table(raid_table_header);
8540         remove_proc_entry("mdstat", NULL);
8541         for_each_mddev(mddev, tmp) {
8542                 export_array(mddev);
8543                 mddev->hold_active = 0;
8544         }
8545         destroy_workqueue(md_misc_wq);
8546         destroy_workqueue(md_wq);
8547 }
8548
8549 subsys_initcall(md_init);
8550 module_exit(md_exit)
8551
8552 static int get_ro(char *buffer, struct kernel_param *kp)
8553 {
8554         return sprintf(buffer, "%d", start_readonly);
8555 }
8556 static int set_ro(const char *val, struct kernel_param *kp)
8557 {
8558         char *e;
8559         int num = simple_strtoul(val, &e, 10);
8560         if (*val && (*e == '\0' || *e == '\n')) {
8561                 start_readonly = num;
8562                 return 0;
8563         }
8564         return -EINVAL;
8565 }
8566
8567 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8568 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8569
8570 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8571
8572 EXPORT_SYMBOL(register_md_personality);
8573 EXPORT_SYMBOL(unregister_md_personality);
8574 EXPORT_SYMBOL(md_error);
8575 EXPORT_SYMBOL(md_done_sync);
8576 EXPORT_SYMBOL(md_write_start);
8577 EXPORT_SYMBOL(md_write_end);
8578 EXPORT_SYMBOL(md_register_thread);
8579 EXPORT_SYMBOL(md_unregister_thread);
8580 EXPORT_SYMBOL(md_wakeup_thread);
8581 EXPORT_SYMBOL(md_check_recovery);
8582 MODULE_LICENSE("GPL");
8583 MODULE_DESCRIPTION("MD RAID framework");
8584 MODULE_ALIAS("md");
8585 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);