]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
Merge remote-tracking branch 'moduleh/module.h-split'
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #define DEBUG 0
59 #define dprintk(x...) ((void)(DEBUG && printk(x)))
60
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
64
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
67
68 static void md_print_devices(void);
69
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
71 static struct workqueue_struct *md_wq;
72 static struct workqueue_struct *md_misc_wq;
73
74 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
75
76 /*
77  * Default number of read corrections we'll attempt on an rdev
78  * before ejecting it from the array. We divide the read error
79  * count by 2 for every hour elapsed between read errors.
80  */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84  * is 1000 KB/sec, so the extra system load does not show up that much.
85  * Increase it if you want to have more _guaranteed_ speed. Note that
86  * the RAID driver will use the maximum available bandwidth if the IO
87  * subsystem is idle. There is also an 'absolute maximum' reconstruction
88  * speed limit - in case reconstruction slows down your system despite
89  * idle IO detection.
90  *
91  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92  * or /sys/block/mdX/md/sync_speed_{min,max}
93  */
94
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(mddev_t *mddev)
98 {
99         return mddev->sync_speed_min ?
100                 mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102
103 static inline int speed_max(mddev_t *mddev)
104 {
105         return mddev->sync_speed_max ?
106                 mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108
109 static struct ctl_table_header *raid_table_header;
110
111 static ctl_table raid_table[] = {
112         {
113                 .procname       = "speed_limit_min",
114                 .data           = &sysctl_speed_limit_min,
115                 .maxlen         = sizeof(int),
116                 .mode           = S_IRUGO|S_IWUSR,
117                 .proc_handler   = proc_dointvec,
118         },
119         {
120                 .procname       = "speed_limit_max",
121                 .data           = &sysctl_speed_limit_max,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         { }
127 };
128
129 static ctl_table raid_dir_table[] = {
130         {
131                 .procname       = "raid",
132                 .maxlen         = 0,
133                 .mode           = S_IRUGO|S_IXUGO,
134                 .child          = raid_table,
135         },
136         { }
137 };
138
139 static ctl_table raid_root_table[] = {
140         {
141                 .procname       = "dev",
142                 .maxlen         = 0,
143                 .mode           = 0555,
144                 .child          = raid_dir_table,
145         },
146         {  }
147 };
148
149 static const struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /* bio_clone_mddev
154  * like bio_clone, but with a local bio set
155  */
156
157 static void mddev_bio_destructor(struct bio *bio)
158 {
159         mddev_t *mddev, **mddevp;
160
161         mddevp = (void*)bio;
162         mddev = mddevp[-1];
163
164         bio_free(bio, mddev->bio_set);
165 }
166
167 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
168                             mddev_t *mddev)
169 {
170         struct bio *b;
171         mddev_t **mddevp;
172
173         if (!mddev || !mddev->bio_set)
174                 return bio_alloc(gfp_mask, nr_iovecs);
175
176         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
177                              mddev->bio_set);
178         if (!b)
179                 return NULL;
180         mddevp = (void*)b;
181         mddevp[-1] = mddev;
182         b->bi_destructor = mddev_bio_destructor;
183         return b;
184 }
185 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
186
187 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
188                             mddev_t *mddev)
189 {
190         struct bio *b;
191         mddev_t **mddevp;
192
193         if (!mddev || !mddev->bio_set)
194                 return bio_clone(bio, gfp_mask);
195
196         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
197                              mddev->bio_set);
198         if (!b)
199                 return NULL;
200         mddevp = (void*)b;
201         mddevp[-1] = mddev;
202         b->bi_destructor = mddev_bio_destructor;
203         __bio_clone(b, bio);
204         if (bio_integrity(bio)) {
205                 int ret;
206
207                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
208
209                 if (ret < 0) {
210                         bio_put(b);
211                         return NULL;
212                 }
213         }
214
215         return b;
216 }
217 EXPORT_SYMBOL_GPL(bio_clone_mddev);
218
219 void md_trim_bio(struct bio *bio, int offset, int size)
220 {
221         /* 'bio' is a cloned bio which we need to trim to match
222          * the given offset and size.
223          * This requires adjusting bi_sector, bi_size, and bi_io_vec
224          */
225         int i;
226         struct bio_vec *bvec;
227         int sofar = 0;
228
229         size <<= 9;
230         if (offset == 0 && size == bio->bi_size)
231                 return;
232
233         bio->bi_sector += offset;
234         bio->bi_size = size;
235         offset <<= 9;
236         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
237
238         while (bio->bi_idx < bio->bi_vcnt &&
239                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
240                 /* remove this whole bio_vec */
241                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
242                 bio->bi_idx++;
243         }
244         if (bio->bi_idx < bio->bi_vcnt) {
245                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
246                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
247         }
248         /* avoid any complications with bi_idx being non-zero*/
249         if (bio->bi_idx) {
250                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
251                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
252                 bio->bi_vcnt -= bio->bi_idx;
253                 bio->bi_idx = 0;
254         }
255         /* Make sure vcnt and last bv are not too big */
256         bio_for_each_segment(bvec, bio, i) {
257                 if (sofar + bvec->bv_len > size)
258                         bvec->bv_len = size - sofar;
259                 if (bvec->bv_len == 0) {
260                         bio->bi_vcnt = i;
261                         break;
262                 }
263                 sofar += bvec->bv_len;
264         }
265 }
266 EXPORT_SYMBOL_GPL(md_trim_bio);
267
268 /*
269  * We have a system wide 'event count' that is incremented
270  * on any 'interesting' event, and readers of /proc/mdstat
271  * can use 'poll' or 'select' to find out when the event
272  * count increases.
273  *
274  * Events are:
275  *  start array, stop array, error, add device, remove device,
276  *  start build, activate spare
277  */
278 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
279 static atomic_t md_event_count;
280 void md_new_event(mddev_t *mddev)
281 {
282         atomic_inc(&md_event_count);
283         wake_up(&md_event_waiters);
284 }
285 EXPORT_SYMBOL_GPL(md_new_event);
286
287 /* Alternate version that can be called from interrupts
288  * when calling sysfs_notify isn't needed.
289  */
290 static void md_new_event_inintr(mddev_t *mddev)
291 {
292         atomic_inc(&md_event_count);
293         wake_up(&md_event_waiters);
294 }
295
296 /*
297  * Enables to iterate over all existing md arrays
298  * all_mddevs_lock protects this list.
299  */
300 static LIST_HEAD(all_mddevs);
301 static DEFINE_SPINLOCK(all_mddevs_lock);
302
303
304 /*
305  * iterates through all used mddevs in the system.
306  * We take care to grab the all_mddevs_lock whenever navigating
307  * the list, and to always hold a refcount when unlocked.
308  * Any code which breaks out of this loop while own
309  * a reference to the current mddev and must mddev_put it.
310  */
311 #define for_each_mddev(mddev,tmp)                                       \
312                                                                         \
313         for (({ spin_lock(&all_mddevs_lock);                            \
314                 tmp = all_mddevs.next;                                  \
315                 mddev = NULL;});                                        \
316              ({ if (tmp != &all_mddevs)                                 \
317                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
318                 spin_unlock(&all_mddevs_lock);                          \
319                 if (mddev) mddev_put(mddev);                            \
320                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
321                 tmp != &all_mddevs;});                                  \
322              ({ spin_lock(&all_mddevs_lock);                            \
323                 tmp = tmp->next;})                                      \
324                 )
325
326
327 /* Rather than calling directly into the personality make_request function,
328  * IO requests come here first so that we can check if the device is
329  * being suspended pending a reconfiguration.
330  * We hold a refcount over the call to ->make_request.  By the time that
331  * call has finished, the bio has been linked into some internal structure
332  * and so is visible to ->quiesce(), so we don't need the refcount any more.
333  */
334 static int md_make_request(struct request_queue *q, struct bio *bio)
335 {
336         const int rw = bio_data_dir(bio);
337         mddev_t *mddev = q->queuedata;
338         int rv;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return 0;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         rv = mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379
380         return rv;
381 }
382
383 /* mddev_suspend makes sure no new requests are submitted
384  * to the device, and that any requests that have been submitted
385  * are completely handled.
386  * Once ->stop is called and completes, the module will be completely
387  * unused.
388  */
389 void mddev_suspend(mddev_t *mddev)
390 {
391         BUG_ON(mddev->suspended);
392         mddev->suspended = 1;
393         synchronize_rcu();
394         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
395         mddev->pers->quiesce(mddev, 1);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(mddev_t *mddev)
400 {
401         mddev->suspended = 0;
402         wake_up(&mddev->sb_wait);
403         mddev->pers->quiesce(mddev, 0);
404
405         md_wakeup_thread(mddev->thread);
406         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 }
408 EXPORT_SYMBOL_GPL(mddev_resume);
409
410 int mddev_congested(mddev_t *mddev, int bits)
411 {
412         return mddev->suspended;
413 }
414 EXPORT_SYMBOL(mddev_congested);
415
416 /*
417  * Generic flush handling for md
418  */
419
420 static void md_end_flush(struct bio *bio, int err)
421 {
422         mdk_rdev_t *rdev = bio->bi_private;
423         mddev_t *mddev = rdev->mddev;
424
425         rdev_dec_pending(rdev, mddev);
426
427         if (atomic_dec_and_test(&mddev->flush_pending)) {
428                 /* The pre-request flush has finished */
429                 queue_work(md_wq, &mddev->flush_work);
430         }
431         bio_put(bio);
432 }
433
434 static void md_submit_flush_data(struct work_struct *ws);
435
436 static void submit_flushes(struct work_struct *ws)
437 {
438         mddev_t *mddev = container_of(ws, mddev_t, flush_work);
439         mdk_rdev_t *rdev;
440
441         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442         atomic_set(&mddev->flush_pending, 1);
443         rcu_read_lock();
444         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
445                 if (rdev->raid_disk >= 0 &&
446                     !test_bit(Faulty, &rdev->flags)) {
447                         /* Take two references, one is dropped
448                          * when request finishes, one after
449                          * we reclaim rcu_read_lock
450                          */
451                         struct bio *bi;
452                         atomic_inc(&rdev->nr_pending);
453                         atomic_inc(&rdev->nr_pending);
454                         rcu_read_unlock();
455                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
456                         bi->bi_end_io = md_end_flush;
457                         bi->bi_private = rdev;
458                         bi->bi_bdev = rdev->bdev;
459                         atomic_inc(&mddev->flush_pending);
460                         submit_bio(WRITE_FLUSH, bi);
461                         rcu_read_lock();
462                         rdev_dec_pending(rdev, mddev);
463                 }
464         rcu_read_unlock();
465         if (atomic_dec_and_test(&mddev->flush_pending))
466                 queue_work(md_wq, &mddev->flush_work);
467 }
468
469 static void md_submit_flush_data(struct work_struct *ws)
470 {
471         mddev_t *mddev = container_of(ws, mddev_t, flush_work);
472         struct bio *bio = mddev->flush_bio;
473
474         if (bio->bi_size == 0)
475                 /* an empty barrier - all done */
476                 bio_endio(bio, 0);
477         else {
478                 bio->bi_rw &= ~REQ_FLUSH;
479                 if (mddev->pers->make_request(mddev, bio))
480                         generic_make_request(bio);
481         }
482
483         mddev->flush_bio = NULL;
484         wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(mddev_t *mddev, struct bio *bio)
488 {
489         spin_lock_irq(&mddev->write_lock);
490         wait_event_lock_irq(mddev->sb_wait,
491                             !mddev->flush_bio,
492                             mddev->write_lock, /*nothing*/);
493         mddev->flush_bio = bio;
494         spin_unlock_irq(&mddev->write_lock);
495
496         INIT_WORK(&mddev->flush_work, submit_flushes);
497         queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 /* Support for plugging.
502  * This mirrors the plugging support in request_queue, but does not
503  * require having a whole queue or request structures.
504  * We allocate an md_plug_cb for each md device and each thread it gets
505  * plugged on.  This links tot the private plug_handle structure in the
506  * personality data where we keep a count of the number of outstanding
507  * plugs so other code can see if a plug is active.
508  */
509 struct md_plug_cb {
510         struct blk_plug_cb cb;
511         mddev_t *mddev;
512 };
513
514 static void plugger_unplug(struct blk_plug_cb *cb)
515 {
516         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518                 md_wakeup_thread(mdcb->mddev->thread);
519         kfree(mdcb);
520 }
521
522 /* Check that an unplug wakeup will come shortly.
523  * If not, wakeup the md thread immediately
524  */
525 int mddev_check_plugged(mddev_t *mddev)
526 {
527         struct blk_plug *plug = current->plug;
528         struct md_plug_cb *mdcb;
529
530         if (!plug)
531                 return 0;
532
533         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534                 if (mdcb->cb.callback == plugger_unplug &&
535                     mdcb->mddev == mddev) {
536                         /* Already on the list, move to top */
537                         if (mdcb != list_first_entry(&plug->cb_list,
538                                                     struct md_plug_cb,
539                                                     cb.list))
540                                 list_move(&mdcb->cb.list, &plug->cb_list);
541                         return 1;
542                 }
543         }
544         /* Not currently on the callback list */
545         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546         if (!mdcb)
547                 return 0;
548
549         mdcb->mddev = mddev;
550         mdcb->cb.callback = plugger_unplug;
551         atomic_inc(&mddev->plug_cnt);
552         list_add(&mdcb->cb.list, &plug->cb_list);
553         return 1;
554 }
555 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556
557 static inline mddev_t *mddev_get(mddev_t *mddev)
558 {
559         atomic_inc(&mddev->active);
560         return mddev;
561 }
562
563 static void mddev_delayed_delete(struct work_struct *ws);
564
565 static void mddev_put(mddev_t *mddev)
566 {
567         struct bio_set *bs = NULL;
568
569         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570                 return;
571         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572             mddev->ctime == 0 && !mddev->hold_active) {
573                 /* Array is not configured at all, and not held active,
574                  * so destroy it */
575                 list_del(&mddev->all_mddevs);
576                 bs = mddev->bio_set;
577                 mddev->bio_set = NULL;
578                 if (mddev->gendisk) {
579                         /* We did a probe so need to clean up.  Call
580                          * queue_work inside the spinlock so that
581                          * flush_workqueue() after mddev_find will
582                          * succeed in waiting for the work to be done.
583                          */
584                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585                         queue_work(md_misc_wq, &mddev->del_work);
586                 } else
587                         kfree(mddev);
588         }
589         spin_unlock(&all_mddevs_lock);
590         if (bs)
591                 bioset_free(bs);
592 }
593
594 void mddev_init(mddev_t *mddev)
595 {
596         mutex_init(&mddev->open_mutex);
597         mutex_init(&mddev->reconfig_mutex);
598         mutex_init(&mddev->bitmap_info.mutex);
599         INIT_LIST_HEAD(&mddev->disks);
600         INIT_LIST_HEAD(&mddev->all_mddevs);
601         init_timer(&mddev->safemode_timer);
602         atomic_set(&mddev->active, 1);
603         atomic_set(&mddev->openers, 0);
604         atomic_set(&mddev->active_io, 0);
605         atomic_set(&mddev->plug_cnt, 0);
606         spin_lock_init(&mddev->write_lock);
607         atomic_set(&mddev->flush_pending, 0);
608         init_waitqueue_head(&mddev->sb_wait);
609         init_waitqueue_head(&mddev->recovery_wait);
610         mddev->reshape_position = MaxSector;
611         mddev->resync_min = 0;
612         mddev->resync_max = MaxSector;
613         mddev->level = LEVEL_NONE;
614 }
615 EXPORT_SYMBOL_GPL(mddev_init);
616
617 static mddev_t * mddev_find(dev_t unit)
618 {
619         mddev_t *mddev, *new = NULL;
620
621         if (unit && MAJOR(unit) != MD_MAJOR)
622                 unit &= ~((1<<MdpMinorShift)-1);
623
624  retry:
625         spin_lock(&all_mddevs_lock);
626
627         if (unit) {
628                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
629                         if (mddev->unit == unit) {
630                                 mddev_get(mddev);
631                                 spin_unlock(&all_mddevs_lock);
632                                 kfree(new);
633                                 return mddev;
634                         }
635
636                 if (new) {
637                         list_add(&new->all_mddevs, &all_mddevs);
638                         spin_unlock(&all_mddevs_lock);
639                         new->hold_active = UNTIL_IOCTL;
640                         return new;
641                 }
642         } else if (new) {
643                 /* find an unused unit number */
644                 static int next_minor = 512;
645                 int start = next_minor;
646                 int is_free = 0;
647                 int dev = 0;
648                 while (!is_free) {
649                         dev = MKDEV(MD_MAJOR, next_minor);
650                         next_minor++;
651                         if (next_minor > MINORMASK)
652                                 next_minor = 0;
653                         if (next_minor == start) {
654                                 /* Oh dear, all in use. */
655                                 spin_unlock(&all_mddevs_lock);
656                                 kfree(new);
657                                 return NULL;
658                         }
659                                 
660                         is_free = 1;
661                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
662                                 if (mddev->unit == dev) {
663                                         is_free = 0;
664                                         break;
665                                 }
666                 }
667                 new->unit = dev;
668                 new->md_minor = MINOR(dev);
669                 new->hold_active = UNTIL_STOP;
670                 list_add(&new->all_mddevs, &all_mddevs);
671                 spin_unlock(&all_mddevs_lock);
672                 return new;
673         }
674         spin_unlock(&all_mddevs_lock);
675
676         new = kzalloc(sizeof(*new), GFP_KERNEL);
677         if (!new)
678                 return NULL;
679
680         new->unit = unit;
681         if (MAJOR(unit) == MD_MAJOR)
682                 new->md_minor = MINOR(unit);
683         else
684                 new->md_minor = MINOR(unit) >> MdpMinorShift;
685
686         mddev_init(new);
687
688         goto retry;
689 }
690
691 static inline int mddev_lock(mddev_t * mddev)
692 {
693         return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 }
695
696 static inline int mddev_is_locked(mddev_t *mddev)
697 {
698         return mutex_is_locked(&mddev->reconfig_mutex);
699 }
700
701 static inline int mddev_trylock(mddev_t * mddev)
702 {
703         return mutex_trylock(&mddev->reconfig_mutex);
704 }
705
706 static struct attribute_group md_redundancy_group;
707
708 static void mddev_unlock(mddev_t * mddev)
709 {
710         if (mddev->to_remove) {
711                 /* These cannot be removed under reconfig_mutex as
712                  * an access to the files will try to take reconfig_mutex
713                  * while holding the file unremovable, which leads to
714                  * a deadlock.
715                  * So hold set sysfs_active while the remove in happeing,
716                  * and anything else which might set ->to_remove or my
717                  * otherwise change the sysfs namespace will fail with
718                  * -EBUSY if sysfs_active is still set.
719                  * We set sysfs_active under reconfig_mutex and elsewhere
720                  * test it under the same mutex to ensure its correct value
721                  * is seen.
722                  */
723                 struct attribute_group *to_remove = mddev->to_remove;
724                 mddev->to_remove = NULL;
725                 mddev->sysfs_active = 1;
726                 mutex_unlock(&mddev->reconfig_mutex);
727
728                 if (mddev->kobj.sd) {
729                         if (to_remove != &md_redundancy_group)
730                                 sysfs_remove_group(&mddev->kobj, to_remove);
731                         if (mddev->pers == NULL ||
732                             mddev->pers->sync_request == NULL) {
733                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
734                                 if (mddev->sysfs_action)
735                                         sysfs_put(mddev->sysfs_action);
736                                 mddev->sysfs_action = NULL;
737                         }
738                 }
739                 mddev->sysfs_active = 0;
740         } else
741                 mutex_unlock(&mddev->reconfig_mutex);
742
743         md_wakeup_thread(mddev->thread);
744 }
745
746 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
747 {
748         mdk_rdev_t *rdev;
749
750         list_for_each_entry(rdev, &mddev->disks, same_set)
751                 if (rdev->desc_nr == nr)
752                         return rdev;
753
754         return NULL;
755 }
756
757 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
758 {
759         mdk_rdev_t *rdev;
760
761         list_for_each_entry(rdev, &mddev->disks, same_set)
762                 if (rdev->bdev->bd_dev == dev)
763                         return rdev;
764
765         return NULL;
766 }
767
768 static struct mdk_personality *find_pers(int level, char *clevel)
769 {
770         struct mdk_personality *pers;
771         list_for_each_entry(pers, &pers_list, list) {
772                 if (level != LEVEL_NONE && pers->level == level)
773                         return pers;
774                 if (strcmp(pers->name, clevel)==0)
775                         return pers;
776         }
777         return NULL;
778 }
779
780 /* return the offset of the super block in 512byte sectors */
781 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
782 {
783         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
784         return MD_NEW_SIZE_SECTORS(num_sectors);
785 }
786
787 static int alloc_disk_sb(mdk_rdev_t * rdev)
788 {
789         if (rdev->sb_page)
790                 MD_BUG();
791
792         rdev->sb_page = alloc_page(GFP_KERNEL);
793         if (!rdev->sb_page) {
794                 printk(KERN_ALERT "md: out of memory.\n");
795                 return -ENOMEM;
796         }
797
798         return 0;
799 }
800
801 static void free_disk_sb(mdk_rdev_t * rdev)
802 {
803         if (rdev->sb_page) {
804                 put_page(rdev->sb_page);
805                 rdev->sb_loaded = 0;
806                 rdev->sb_page = NULL;
807                 rdev->sb_start = 0;
808                 rdev->sectors = 0;
809         }
810         if (rdev->bb_page) {
811                 put_page(rdev->bb_page);
812                 rdev->bb_page = NULL;
813         }
814 }
815
816
817 static void super_written(struct bio *bio, int error)
818 {
819         mdk_rdev_t *rdev = bio->bi_private;
820         mddev_t *mddev = rdev->mddev;
821
822         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
823                 printk("md: super_written gets error=%d, uptodate=%d\n",
824                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
825                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
826                 md_error(mddev, rdev);
827         }
828
829         if (atomic_dec_and_test(&mddev->pending_writes))
830                 wake_up(&mddev->sb_wait);
831         bio_put(bio);
832 }
833
834 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
835                    sector_t sector, int size, struct page *page)
836 {
837         /* write first size bytes of page to sector of rdev
838          * Increment mddev->pending_writes before returning
839          * and decrement it on completion, waking up sb_wait
840          * if zero is reached.
841          * If an error occurred, call md_error
842          */
843         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
844
845         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
846         bio->bi_sector = sector;
847         bio_add_page(bio, page, size, 0);
848         bio->bi_private = rdev;
849         bio->bi_end_io = super_written;
850
851         atomic_inc(&mddev->pending_writes);
852         submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
853 }
854
855 void md_super_wait(mddev_t *mddev)
856 {
857         /* wait for all superblock writes that were scheduled to complete */
858         DEFINE_WAIT(wq);
859         for(;;) {
860                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
861                 if (atomic_read(&mddev->pending_writes)==0)
862                         break;
863                 schedule();
864         }
865         finish_wait(&mddev->sb_wait, &wq);
866 }
867
868 static void bi_complete(struct bio *bio, int error)
869 {
870         complete((struct completion*)bio->bi_private);
871 }
872
873 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
874                  struct page *page, int rw, bool metadata_op)
875 {
876         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
877         struct completion event;
878         int ret;
879
880         rw |= REQ_SYNC;
881
882         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
883                 rdev->meta_bdev : rdev->bdev;
884         if (metadata_op)
885                 bio->bi_sector = sector + rdev->sb_start;
886         else
887                 bio->bi_sector = sector + rdev->data_offset;
888         bio_add_page(bio, page, size, 0);
889         init_completion(&event);
890         bio->bi_private = &event;
891         bio->bi_end_io = bi_complete;
892         submit_bio(rw, bio);
893         wait_for_completion(&event);
894
895         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
896         bio_put(bio);
897         return ret;
898 }
899 EXPORT_SYMBOL_GPL(sync_page_io);
900
901 static int read_disk_sb(mdk_rdev_t * rdev, int size)
902 {
903         char b[BDEVNAME_SIZE];
904         if (!rdev->sb_page) {
905                 MD_BUG();
906                 return -EINVAL;
907         }
908         if (rdev->sb_loaded)
909                 return 0;
910
911
912         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
913                 goto fail;
914         rdev->sb_loaded = 1;
915         return 0;
916
917 fail:
918         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
919                 bdevname(rdev->bdev,b));
920         return -EINVAL;
921 }
922
923 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
924 {
925         return  sb1->set_uuid0 == sb2->set_uuid0 &&
926                 sb1->set_uuid1 == sb2->set_uuid1 &&
927                 sb1->set_uuid2 == sb2->set_uuid2 &&
928                 sb1->set_uuid3 == sb2->set_uuid3;
929 }
930
931 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
932 {
933         int ret;
934         mdp_super_t *tmp1, *tmp2;
935
936         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
937         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
938
939         if (!tmp1 || !tmp2) {
940                 ret = 0;
941                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
942                 goto abort;
943         }
944
945         *tmp1 = *sb1;
946         *tmp2 = *sb2;
947
948         /*
949          * nr_disks is not constant
950          */
951         tmp1->nr_disks = 0;
952         tmp2->nr_disks = 0;
953
954         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
955 abort:
956         kfree(tmp1);
957         kfree(tmp2);
958         return ret;
959 }
960
961
962 static u32 md_csum_fold(u32 csum)
963 {
964         csum = (csum & 0xffff) + (csum >> 16);
965         return (csum & 0xffff) + (csum >> 16);
966 }
967
968 static unsigned int calc_sb_csum(mdp_super_t * sb)
969 {
970         u64 newcsum = 0;
971         u32 *sb32 = (u32*)sb;
972         int i;
973         unsigned int disk_csum, csum;
974
975         disk_csum = sb->sb_csum;
976         sb->sb_csum = 0;
977
978         for (i = 0; i < MD_SB_BYTES/4 ; i++)
979                 newcsum += sb32[i];
980         csum = (newcsum & 0xffffffff) + (newcsum>>32);
981
982
983 #ifdef CONFIG_ALPHA
984         /* This used to use csum_partial, which was wrong for several
985          * reasons including that different results are returned on
986          * different architectures.  It isn't critical that we get exactly
987          * the same return value as before (we always csum_fold before
988          * testing, and that removes any differences).  However as we
989          * know that csum_partial always returned a 16bit value on
990          * alphas, do a fold to maximise conformity to previous behaviour.
991          */
992         sb->sb_csum = md_csum_fold(disk_csum);
993 #else
994         sb->sb_csum = disk_csum;
995 #endif
996         return csum;
997 }
998
999
1000 /*
1001  * Handle superblock details.
1002  * We want to be able to handle multiple superblock formats
1003  * so we have a common interface to them all, and an array of
1004  * different handlers.
1005  * We rely on user-space to write the initial superblock, and support
1006  * reading and updating of superblocks.
1007  * Interface methods are:
1008  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1009  *      loads and validates a superblock on dev.
1010  *      if refdev != NULL, compare superblocks on both devices
1011  *    Return:
1012  *      0 - dev has a superblock that is compatible with refdev
1013  *      1 - dev has a superblock that is compatible and newer than refdev
1014  *          so dev should be used as the refdev in future
1015  *     -EINVAL superblock incompatible or invalid
1016  *     -othererror e.g. -EIO
1017  *
1018  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1019  *      Verify that dev is acceptable into mddev.
1020  *       The first time, mddev->raid_disks will be 0, and data from
1021  *       dev should be merged in.  Subsequent calls check that dev
1022  *       is new enough.  Return 0 or -EINVAL
1023  *
1024  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1025  *     Update the superblock for rdev with data in mddev
1026  *     This does not write to disc.
1027  *
1028  */
1029
1030 struct super_type  {
1031         char                *name;
1032         struct module       *owner;
1033         int                 (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1034                                           int minor_version);
1035         int                 (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1036         void                (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1037         unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
1038                                                 sector_t num_sectors);
1039 };
1040
1041 /*
1042  * Check that the given mddev has no bitmap.
1043  *
1044  * This function is called from the run method of all personalities that do not
1045  * support bitmaps. It prints an error message and returns non-zero if mddev
1046  * has a bitmap. Otherwise, it returns 0.
1047  *
1048  */
1049 int md_check_no_bitmap(mddev_t *mddev)
1050 {
1051         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1052                 return 0;
1053         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1054                 mdname(mddev), mddev->pers->name);
1055         return 1;
1056 }
1057 EXPORT_SYMBOL(md_check_no_bitmap);
1058
1059 /*
1060  * load_super for 0.90.0 
1061  */
1062 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1063 {
1064         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1065         mdp_super_t *sb;
1066         int ret;
1067
1068         /*
1069          * Calculate the position of the superblock (512byte sectors),
1070          * it's at the end of the disk.
1071          *
1072          * It also happens to be a multiple of 4Kb.
1073          */
1074         rdev->sb_start = calc_dev_sboffset(rdev);
1075
1076         ret = read_disk_sb(rdev, MD_SB_BYTES);
1077         if (ret) return ret;
1078
1079         ret = -EINVAL;
1080
1081         bdevname(rdev->bdev, b);
1082         sb = page_address(rdev->sb_page);
1083
1084         if (sb->md_magic != MD_SB_MAGIC) {
1085                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1086                        b);
1087                 goto abort;
1088         }
1089
1090         if (sb->major_version != 0 ||
1091             sb->minor_version < 90 ||
1092             sb->minor_version > 91) {
1093                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1094                         sb->major_version, sb->minor_version,
1095                         b);
1096                 goto abort;
1097         }
1098
1099         if (sb->raid_disks <= 0)
1100                 goto abort;
1101
1102         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1103                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1104                         b);
1105                 goto abort;
1106         }
1107
1108         rdev->preferred_minor = sb->md_minor;
1109         rdev->data_offset = 0;
1110         rdev->sb_size = MD_SB_BYTES;
1111         rdev->badblocks.shift = -1;
1112
1113         if (sb->level == LEVEL_MULTIPATH)
1114                 rdev->desc_nr = -1;
1115         else
1116                 rdev->desc_nr = sb->this_disk.number;
1117
1118         if (!refdev) {
1119                 ret = 1;
1120         } else {
1121                 __u64 ev1, ev2;
1122                 mdp_super_t *refsb = page_address(refdev->sb_page);
1123                 if (!uuid_equal(refsb, sb)) {
1124                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1125                                 b, bdevname(refdev->bdev,b2));
1126                         goto abort;
1127                 }
1128                 if (!sb_equal(refsb, sb)) {
1129                         printk(KERN_WARNING "md: %s has same UUID"
1130                                " but different superblock to %s\n",
1131                                b, bdevname(refdev->bdev, b2));
1132                         goto abort;
1133                 }
1134                 ev1 = md_event(sb);
1135                 ev2 = md_event(refsb);
1136                 if (ev1 > ev2)
1137                         ret = 1;
1138                 else 
1139                         ret = 0;
1140         }
1141         rdev->sectors = rdev->sb_start;
1142
1143         if (rdev->sectors < sb->size * 2 && sb->level > 1)
1144                 /* "this cannot possibly happen" ... */
1145                 ret = -EINVAL;
1146
1147  abort:
1148         return ret;
1149 }
1150
1151 /*
1152  * validate_super for 0.90.0
1153  */
1154 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1155 {
1156         mdp_disk_t *desc;
1157         mdp_super_t *sb = page_address(rdev->sb_page);
1158         __u64 ev1 = md_event(sb);
1159
1160         rdev->raid_disk = -1;
1161         clear_bit(Faulty, &rdev->flags);
1162         clear_bit(In_sync, &rdev->flags);
1163         clear_bit(WriteMostly, &rdev->flags);
1164
1165         if (mddev->raid_disks == 0) {
1166                 mddev->major_version = 0;
1167                 mddev->minor_version = sb->minor_version;
1168                 mddev->patch_version = sb->patch_version;
1169                 mddev->external = 0;
1170                 mddev->chunk_sectors = sb->chunk_size >> 9;
1171                 mddev->ctime = sb->ctime;
1172                 mddev->utime = sb->utime;
1173                 mddev->level = sb->level;
1174                 mddev->clevel[0] = 0;
1175                 mddev->layout = sb->layout;
1176                 mddev->raid_disks = sb->raid_disks;
1177                 mddev->dev_sectors = sb->size * 2;
1178                 mddev->events = ev1;
1179                 mddev->bitmap_info.offset = 0;
1180                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1181
1182                 if (mddev->minor_version >= 91) {
1183                         mddev->reshape_position = sb->reshape_position;
1184                         mddev->delta_disks = sb->delta_disks;
1185                         mddev->new_level = sb->new_level;
1186                         mddev->new_layout = sb->new_layout;
1187                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1188                 } else {
1189                         mddev->reshape_position = MaxSector;
1190                         mddev->delta_disks = 0;
1191                         mddev->new_level = mddev->level;
1192                         mddev->new_layout = mddev->layout;
1193                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1194                 }
1195
1196                 if (sb->state & (1<<MD_SB_CLEAN))
1197                         mddev->recovery_cp = MaxSector;
1198                 else {
1199                         if (sb->events_hi == sb->cp_events_hi && 
1200                                 sb->events_lo == sb->cp_events_lo) {
1201                                 mddev->recovery_cp = sb->recovery_cp;
1202                         } else
1203                                 mddev->recovery_cp = 0;
1204                 }
1205
1206                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1207                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1208                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1209                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1210
1211                 mddev->max_disks = MD_SB_DISKS;
1212
1213                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1214                     mddev->bitmap_info.file == NULL)
1215                         mddev->bitmap_info.offset =
1216                                 mddev->bitmap_info.default_offset;
1217
1218         } else if (mddev->pers == NULL) {
1219                 /* Insist on good event counter while assembling, except
1220                  * for spares (which don't need an event count) */
1221                 ++ev1;
1222                 if (sb->disks[rdev->desc_nr].state & (
1223                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1224                         if (ev1 < mddev->events) 
1225                                 return -EINVAL;
1226         } else if (mddev->bitmap) {
1227                 /* if adding to array with a bitmap, then we can accept an
1228                  * older device ... but not too old.
1229                  */
1230                 if (ev1 < mddev->bitmap->events_cleared)
1231                         return 0;
1232         } else {
1233                 if (ev1 < mddev->events)
1234                         /* just a hot-add of a new device, leave raid_disk at -1 */
1235                         return 0;
1236         }
1237
1238         if (mddev->level != LEVEL_MULTIPATH) {
1239                 desc = sb->disks + rdev->desc_nr;
1240
1241                 if (desc->state & (1<<MD_DISK_FAULTY))
1242                         set_bit(Faulty, &rdev->flags);
1243                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1244                             desc->raid_disk < mddev->raid_disks */) {
1245                         set_bit(In_sync, &rdev->flags);
1246                         rdev->raid_disk = desc->raid_disk;
1247                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1248                         /* active but not in sync implies recovery up to
1249                          * reshape position.  We don't know exactly where
1250                          * that is, so set to zero for now */
1251                         if (mddev->minor_version >= 91) {
1252                                 rdev->recovery_offset = 0;
1253                                 rdev->raid_disk = desc->raid_disk;
1254                         }
1255                 }
1256                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1257                         set_bit(WriteMostly, &rdev->flags);
1258         } else /* MULTIPATH are always insync */
1259                 set_bit(In_sync, &rdev->flags);
1260         return 0;
1261 }
1262
1263 /*
1264  * sync_super for 0.90.0
1265  */
1266 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1267 {
1268         mdp_super_t *sb;
1269         mdk_rdev_t *rdev2;
1270         int next_spare = mddev->raid_disks;
1271
1272
1273         /* make rdev->sb match mddev data..
1274          *
1275          * 1/ zero out disks
1276          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1277          * 3/ any empty disks < next_spare become removed
1278          *
1279          * disks[0] gets initialised to REMOVED because
1280          * we cannot be sure from other fields if it has
1281          * been initialised or not.
1282          */
1283         int i;
1284         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1285
1286         rdev->sb_size = MD_SB_BYTES;
1287
1288         sb = page_address(rdev->sb_page);
1289
1290         memset(sb, 0, sizeof(*sb));
1291
1292         sb->md_magic = MD_SB_MAGIC;
1293         sb->major_version = mddev->major_version;
1294         sb->patch_version = mddev->patch_version;
1295         sb->gvalid_words  = 0; /* ignored */
1296         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1297         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1298         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1299         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1300
1301         sb->ctime = mddev->ctime;
1302         sb->level = mddev->level;
1303         sb->size = mddev->dev_sectors / 2;
1304         sb->raid_disks = mddev->raid_disks;
1305         sb->md_minor = mddev->md_minor;
1306         sb->not_persistent = 0;
1307         sb->utime = mddev->utime;
1308         sb->state = 0;
1309         sb->events_hi = (mddev->events>>32);
1310         sb->events_lo = (u32)mddev->events;
1311
1312         if (mddev->reshape_position == MaxSector)
1313                 sb->minor_version = 90;
1314         else {
1315                 sb->minor_version = 91;
1316                 sb->reshape_position = mddev->reshape_position;
1317                 sb->new_level = mddev->new_level;
1318                 sb->delta_disks = mddev->delta_disks;
1319                 sb->new_layout = mddev->new_layout;
1320                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1321         }
1322         mddev->minor_version = sb->minor_version;
1323         if (mddev->in_sync)
1324         {
1325                 sb->recovery_cp = mddev->recovery_cp;
1326                 sb->cp_events_hi = (mddev->events>>32);
1327                 sb->cp_events_lo = (u32)mddev->events;
1328                 if (mddev->recovery_cp == MaxSector)
1329                         sb->state = (1<< MD_SB_CLEAN);
1330         } else
1331                 sb->recovery_cp = 0;
1332
1333         sb->layout = mddev->layout;
1334         sb->chunk_size = mddev->chunk_sectors << 9;
1335
1336         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1337                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1338
1339         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1340         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1341                 mdp_disk_t *d;
1342                 int desc_nr;
1343                 int is_active = test_bit(In_sync, &rdev2->flags);
1344
1345                 if (rdev2->raid_disk >= 0 &&
1346                     sb->minor_version >= 91)
1347                         /* we have nowhere to store the recovery_offset,
1348                          * but if it is not below the reshape_position,
1349                          * we can piggy-back on that.
1350                          */
1351                         is_active = 1;
1352                 if (rdev2->raid_disk < 0 ||
1353                     test_bit(Faulty, &rdev2->flags))
1354                         is_active = 0;
1355                 if (is_active)
1356                         desc_nr = rdev2->raid_disk;
1357                 else
1358                         desc_nr = next_spare++;
1359                 rdev2->desc_nr = desc_nr;
1360                 d = &sb->disks[rdev2->desc_nr];
1361                 nr_disks++;
1362                 d->number = rdev2->desc_nr;
1363                 d->major = MAJOR(rdev2->bdev->bd_dev);
1364                 d->minor = MINOR(rdev2->bdev->bd_dev);
1365                 if (is_active)
1366                         d->raid_disk = rdev2->raid_disk;
1367                 else
1368                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1369                 if (test_bit(Faulty, &rdev2->flags))
1370                         d->state = (1<<MD_DISK_FAULTY);
1371                 else if (is_active) {
1372                         d->state = (1<<MD_DISK_ACTIVE);
1373                         if (test_bit(In_sync, &rdev2->flags))
1374                                 d->state |= (1<<MD_DISK_SYNC);
1375                         active++;
1376                         working++;
1377                 } else {
1378                         d->state = 0;
1379                         spare++;
1380                         working++;
1381                 }
1382                 if (test_bit(WriteMostly, &rdev2->flags))
1383                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1384         }
1385         /* now set the "removed" and "faulty" bits on any missing devices */
1386         for (i=0 ; i < mddev->raid_disks ; i++) {
1387                 mdp_disk_t *d = &sb->disks[i];
1388                 if (d->state == 0 && d->number == 0) {
1389                         d->number = i;
1390                         d->raid_disk = i;
1391                         d->state = (1<<MD_DISK_REMOVED);
1392                         d->state |= (1<<MD_DISK_FAULTY);
1393                         failed++;
1394                 }
1395         }
1396         sb->nr_disks = nr_disks;
1397         sb->active_disks = active;
1398         sb->working_disks = working;
1399         sb->failed_disks = failed;
1400         sb->spare_disks = spare;
1401
1402         sb->this_disk = sb->disks[rdev->desc_nr];
1403         sb->sb_csum = calc_sb_csum(sb);
1404 }
1405
1406 /*
1407  * rdev_size_change for 0.90.0
1408  */
1409 static unsigned long long
1410 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1411 {
1412         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1413                 return 0; /* component must fit device */
1414         if (rdev->mddev->bitmap_info.offset)
1415                 return 0; /* can't move bitmap */
1416         rdev->sb_start = calc_dev_sboffset(rdev);
1417         if (!num_sectors || num_sectors > rdev->sb_start)
1418                 num_sectors = rdev->sb_start;
1419         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1420                        rdev->sb_page);
1421         md_super_wait(rdev->mddev);
1422         return num_sectors;
1423 }
1424
1425
1426 /*
1427  * version 1 superblock
1428  */
1429
1430 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1431 {
1432         __le32 disk_csum;
1433         u32 csum;
1434         unsigned long long newcsum;
1435         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1436         __le32 *isuper = (__le32*)sb;
1437         int i;
1438
1439         disk_csum = sb->sb_csum;
1440         sb->sb_csum = 0;
1441         newcsum = 0;
1442         for (i=0; size>=4; size -= 4 )
1443                 newcsum += le32_to_cpu(*isuper++);
1444
1445         if (size == 2)
1446                 newcsum += le16_to_cpu(*(__le16*) isuper);
1447
1448         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1449         sb->sb_csum = disk_csum;
1450         return cpu_to_le32(csum);
1451 }
1452
1453 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1454                             int acknowledged);
1455 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1456 {
1457         struct mdp_superblock_1 *sb;
1458         int ret;
1459         sector_t sb_start;
1460         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1461         int bmask;
1462
1463         /*
1464          * Calculate the position of the superblock in 512byte sectors.
1465          * It is always aligned to a 4K boundary and
1466          * depeding on minor_version, it can be:
1467          * 0: At least 8K, but less than 12K, from end of device
1468          * 1: At start of device
1469          * 2: 4K from start of device.
1470          */
1471         switch(minor_version) {
1472         case 0:
1473                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1474                 sb_start -= 8*2;
1475                 sb_start &= ~(sector_t)(4*2-1);
1476                 break;
1477         case 1:
1478                 sb_start = 0;
1479                 break;
1480         case 2:
1481                 sb_start = 8;
1482                 break;
1483         default:
1484                 return -EINVAL;
1485         }
1486         rdev->sb_start = sb_start;
1487
1488         /* superblock is rarely larger than 1K, but it can be larger,
1489          * and it is safe to read 4k, so we do that
1490          */
1491         ret = read_disk_sb(rdev, 4096);
1492         if (ret) return ret;
1493
1494
1495         sb = page_address(rdev->sb_page);
1496
1497         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1498             sb->major_version != cpu_to_le32(1) ||
1499             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1500             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1501             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1502                 return -EINVAL;
1503
1504         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1505                 printk("md: invalid superblock checksum on %s\n",
1506                         bdevname(rdev->bdev,b));
1507                 return -EINVAL;
1508         }
1509         if (le64_to_cpu(sb->data_size) < 10) {
1510                 printk("md: data_size too small on %s\n",
1511                        bdevname(rdev->bdev,b));
1512                 return -EINVAL;
1513         }
1514
1515         rdev->preferred_minor = 0xffff;
1516         rdev->data_offset = le64_to_cpu(sb->data_offset);
1517         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1518
1519         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1520         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1521         if (rdev->sb_size & bmask)
1522                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1523
1524         if (minor_version
1525             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1526                 return -EINVAL;
1527
1528         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1529                 rdev->desc_nr = -1;
1530         else
1531                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1532
1533         if (!rdev->bb_page) {
1534                 rdev->bb_page = alloc_page(GFP_KERNEL);
1535                 if (!rdev->bb_page)
1536                         return -ENOMEM;
1537         }
1538         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1539             rdev->badblocks.count == 0) {
1540                 /* need to load the bad block list.
1541                  * Currently we limit it to one page.
1542                  */
1543                 s32 offset;
1544                 sector_t bb_sector;
1545                 u64 *bbp;
1546                 int i;
1547                 int sectors = le16_to_cpu(sb->bblog_size);
1548                 if (sectors > (PAGE_SIZE / 512))
1549                         return -EINVAL;
1550                 offset = le32_to_cpu(sb->bblog_offset);
1551                 if (offset == 0)
1552                         return -EINVAL;
1553                 bb_sector = (long long)offset;
1554                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1555                                   rdev->bb_page, READ, true))
1556                         return -EIO;
1557                 bbp = (u64 *)page_address(rdev->bb_page);
1558                 rdev->badblocks.shift = sb->bblog_shift;
1559                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1560                         u64 bb = le64_to_cpu(*bbp);
1561                         int count = bb & (0x3ff);
1562                         u64 sector = bb >> 10;
1563                         sector <<= sb->bblog_shift;
1564                         count <<= sb->bblog_shift;
1565                         if (bb + 1 == 0)
1566                                 break;
1567                         if (md_set_badblocks(&rdev->badblocks,
1568                                              sector, count, 1) == 0)
1569                                 return -EINVAL;
1570                 }
1571         } else if (sb->bblog_offset == 0)
1572                 rdev->badblocks.shift = -1;
1573
1574         if (!refdev) {
1575                 ret = 1;
1576         } else {
1577                 __u64 ev1, ev2;
1578                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1579
1580                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1581                     sb->level != refsb->level ||
1582                     sb->layout != refsb->layout ||
1583                     sb->chunksize != refsb->chunksize) {
1584                         printk(KERN_WARNING "md: %s has strangely different"
1585                                 " superblock to %s\n",
1586                                 bdevname(rdev->bdev,b),
1587                                 bdevname(refdev->bdev,b2));
1588                         return -EINVAL;
1589                 }
1590                 ev1 = le64_to_cpu(sb->events);
1591                 ev2 = le64_to_cpu(refsb->events);
1592
1593                 if (ev1 > ev2)
1594                         ret = 1;
1595                 else
1596                         ret = 0;
1597         }
1598         if (minor_version)
1599                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1600                         le64_to_cpu(sb->data_offset);
1601         else
1602                 rdev->sectors = rdev->sb_start;
1603         if (rdev->sectors < le64_to_cpu(sb->data_size))
1604                 return -EINVAL;
1605         rdev->sectors = le64_to_cpu(sb->data_size);
1606         if (le64_to_cpu(sb->size) > rdev->sectors)
1607                 return -EINVAL;
1608         return ret;
1609 }
1610
1611 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1612 {
1613         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1614         __u64 ev1 = le64_to_cpu(sb->events);
1615
1616         rdev->raid_disk = -1;
1617         clear_bit(Faulty, &rdev->flags);
1618         clear_bit(In_sync, &rdev->flags);
1619         clear_bit(WriteMostly, &rdev->flags);
1620
1621         if (mddev->raid_disks == 0) {
1622                 mddev->major_version = 1;
1623                 mddev->patch_version = 0;
1624                 mddev->external = 0;
1625                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1626                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1627                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1628                 mddev->level = le32_to_cpu(sb->level);
1629                 mddev->clevel[0] = 0;
1630                 mddev->layout = le32_to_cpu(sb->layout);
1631                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1632                 mddev->dev_sectors = le64_to_cpu(sb->size);
1633                 mddev->events = ev1;
1634                 mddev->bitmap_info.offset = 0;
1635                 mddev->bitmap_info.default_offset = 1024 >> 9;
1636                 
1637                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1638                 memcpy(mddev->uuid, sb->set_uuid, 16);
1639
1640                 mddev->max_disks =  (4096-256)/2;
1641
1642                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1643                     mddev->bitmap_info.file == NULL )
1644                         mddev->bitmap_info.offset =
1645                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1646
1647                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1648                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1649                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1650                         mddev->new_level = le32_to_cpu(sb->new_level);
1651                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1652                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1653                 } else {
1654                         mddev->reshape_position = MaxSector;
1655                         mddev->delta_disks = 0;
1656                         mddev->new_level = mddev->level;
1657                         mddev->new_layout = mddev->layout;
1658                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1659                 }
1660
1661         } else if (mddev->pers == NULL) {
1662                 /* Insist of good event counter while assembling, except for
1663                  * spares (which don't need an event count) */
1664                 ++ev1;
1665                 if (rdev->desc_nr >= 0 &&
1666                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1667                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1668                         if (ev1 < mddev->events)
1669                                 return -EINVAL;
1670         } else if (mddev->bitmap) {
1671                 /* If adding to array with a bitmap, then we can accept an
1672                  * older device, but not too old.
1673                  */
1674                 if (ev1 < mddev->bitmap->events_cleared)
1675                         return 0;
1676         } else {
1677                 if (ev1 < mddev->events)
1678                         /* just a hot-add of a new device, leave raid_disk at -1 */
1679                         return 0;
1680         }
1681         if (mddev->level != LEVEL_MULTIPATH) {
1682                 int role;
1683                 if (rdev->desc_nr < 0 ||
1684                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1685                         role = 0xffff;
1686                         rdev->desc_nr = -1;
1687                 } else
1688                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1689                 switch(role) {
1690                 case 0xffff: /* spare */
1691                         break;
1692                 case 0xfffe: /* faulty */
1693                         set_bit(Faulty, &rdev->flags);
1694                         break;
1695                 default:
1696                         if ((le32_to_cpu(sb->feature_map) &
1697                              MD_FEATURE_RECOVERY_OFFSET))
1698                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1699                         else
1700                                 set_bit(In_sync, &rdev->flags);
1701                         rdev->raid_disk = role;
1702                         break;
1703                 }
1704                 if (sb->devflags & WriteMostly1)
1705                         set_bit(WriteMostly, &rdev->flags);
1706         } else /* MULTIPATH are always insync */
1707                 set_bit(In_sync, &rdev->flags);
1708
1709         return 0;
1710 }
1711
1712 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1713 {
1714         struct mdp_superblock_1 *sb;
1715         mdk_rdev_t *rdev2;
1716         int max_dev, i;
1717         /* make rdev->sb match mddev and rdev data. */
1718
1719         sb = page_address(rdev->sb_page);
1720
1721         sb->feature_map = 0;
1722         sb->pad0 = 0;
1723         sb->recovery_offset = cpu_to_le64(0);
1724         memset(sb->pad1, 0, sizeof(sb->pad1));
1725         memset(sb->pad3, 0, sizeof(sb->pad3));
1726
1727         sb->utime = cpu_to_le64((__u64)mddev->utime);
1728         sb->events = cpu_to_le64(mddev->events);
1729         if (mddev->in_sync)
1730                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1731         else
1732                 sb->resync_offset = cpu_to_le64(0);
1733
1734         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1735
1736         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1737         sb->size = cpu_to_le64(mddev->dev_sectors);
1738         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1739         sb->level = cpu_to_le32(mddev->level);
1740         sb->layout = cpu_to_le32(mddev->layout);
1741
1742         if (test_bit(WriteMostly, &rdev->flags))
1743                 sb->devflags |= WriteMostly1;
1744         else
1745                 sb->devflags &= ~WriteMostly1;
1746
1747         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1748                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1749                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1750         }
1751
1752         if (rdev->raid_disk >= 0 &&
1753             !test_bit(In_sync, &rdev->flags)) {
1754                 sb->feature_map |=
1755                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1756                 sb->recovery_offset =
1757                         cpu_to_le64(rdev->recovery_offset);
1758         }
1759
1760         if (mddev->reshape_position != MaxSector) {
1761                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1762                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1763                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1764                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1765                 sb->new_level = cpu_to_le32(mddev->new_level);
1766                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1767         }
1768
1769         if (rdev->badblocks.count == 0)
1770                 /* Nothing to do for bad blocks*/ ;
1771         else if (sb->bblog_offset == 0)
1772                 /* Cannot record bad blocks on this device */
1773                 md_error(mddev, rdev);
1774         else {
1775                 struct badblocks *bb = &rdev->badblocks;
1776                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1777                 u64 *p = bb->page;
1778                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1779                 if (bb->changed) {
1780                         unsigned seq;
1781
1782 retry:
1783                         seq = read_seqbegin(&bb->lock);
1784
1785                         memset(bbp, 0xff, PAGE_SIZE);
1786
1787                         for (i = 0 ; i < bb->count ; i++) {
1788                                 u64 internal_bb = *p++;
1789                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1790                                                 | BB_LEN(internal_bb));
1791                                 *bbp++ = cpu_to_le64(store_bb);
1792                         }
1793                         if (read_seqretry(&bb->lock, seq))
1794                                 goto retry;
1795
1796                         bb->sector = (rdev->sb_start +
1797                                       (int)le32_to_cpu(sb->bblog_offset));
1798                         bb->size = le16_to_cpu(sb->bblog_size);
1799                         bb->changed = 0;
1800                 }
1801         }
1802
1803         max_dev = 0;
1804         list_for_each_entry(rdev2, &mddev->disks, same_set)
1805                 if (rdev2->desc_nr+1 > max_dev)
1806                         max_dev = rdev2->desc_nr+1;
1807
1808         if (max_dev > le32_to_cpu(sb->max_dev)) {
1809                 int bmask;
1810                 sb->max_dev = cpu_to_le32(max_dev);
1811                 rdev->sb_size = max_dev * 2 + 256;
1812                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1813                 if (rdev->sb_size & bmask)
1814                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1815         } else
1816                 max_dev = le32_to_cpu(sb->max_dev);
1817
1818         for (i=0; i<max_dev;i++)
1819                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1820         
1821         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1822                 i = rdev2->desc_nr;
1823                 if (test_bit(Faulty, &rdev2->flags))
1824                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1825                 else if (test_bit(In_sync, &rdev2->flags))
1826                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827                 else if (rdev2->raid_disk >= 0)
1828                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1829                 else
1830                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1831         }
1832
1833         sb->sb_csum = calc_sb_1_csum(sb);
1834 }
1835
1836 static unsigned long long
1837 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1838 {
1839         struct mdp_superblock_1 *sb;
1840         sector_t max_sectors;
1841         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1842                 return 0; /* component must fit device */
1843         if (rdev->sb_start < rdev->data_offset) {
1844                 /* minor versions 1 and 2; superblock before data */
1845                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846                 max_sectors -= rdev->data_offset;
1847                 if (!num_sectors || num_sectors > max_sectors)
1848                         num_sectors = max_sectors;
1849         } else if (rdev->mddev->bitmap_info.offset) {
1850                 /* minor version 0 with bitmap we can't move */
1851                 return 0;
1852         } else {
1853                 /* minor version 0; superblock after data */
1854                 sector_t sb_start;
1855                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856                 sb_start &= ~(sector_t)(4*2 - 1);
1857                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858                 if (!num_sectors || num_sectors > max_sectors)
1859                         num_sectors = max_sectors;
1860                 rdev->sb_start = sb_start;
1861         }
1862         sb = page_address(rdev->sb_page);
1863         sb->data_size = cpu_to_le64(num_sectors);
1864         sb->super_offset = rdev->sb_start;
1865         sb->sb_csum = calc_sb_1_csum(sb);
1866         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867                        rdev->sb_page);
1868         md_super_wait(rdev->mddev);
1869         return num_sectors;
1870 }
1871
1872 static struct super_type super_types[] = {
1873         [0] = {
1874                 .name   = "0.90.0",
1875                 .owner  = THIS_MODULE,
1876                 .load_super         = super_90_load,
1877                 .validate_super     = super_90_validate,
1878                 .sync_super         = super_90_sync,
1879                 .rdev_size_change   = super_90_rdev_size_change,
1880         },
1881         [1] = {
1882                 .name   = "md-1",
1883                 .owner  = THIS_MODULE,
1884                 .load_super         = super_1_load,
1885                 .validate_super     = super_1_validate,
1886                 .sync_super         = super_1_sync,
1887                 .rdev_size_change   = super_1_rdev_size_change,
1888         },
1889 };
1890
1891 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1892 {
1893         if (mddev->sync_super) {
1894                 mddev->sync_super(mddev, rdev);
1895                 return;
1896         }
1897
1898         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1899
1900         super_types[mddev->major_version].sync_super(mddev, rdev);
1901 }
1902
1903 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1904 {
1905         mdk_rdev_t *rdev, *rdev2;
1906
1907         rcu_read_lock();
1908         rdev_for_each_rcu(rdev, mddev1)
1909                 rdev_for_each_rcu(rdev2, mddev2)
1910                         if (rdev->bdev->bd_contains ==
1911                             rdev2->bdev->bd_contains) {
1912                                 rcu_read_unlock();
1913                                 return 1;
1914                         }
1915         rcu_read_unlock();
1916         return 0;
1917 }
1918
1919 static LIST_HEAD(pending_raid_disks);
1920
1921 /*
1922  * Try to register data integrity profile for an mddev
1923  *
1924  * This is called when an array is started and after a disk has been kicked
1925  * from the array. It only succeeds if all working and active component devices
1926  * are integrity capable with matching profiles.
1927  */
1928 int md_integrity_register(mddev_t *mddev)
1929 {
1930         mdk_rdev_t *rdev, *reference = NULL;
1931
1932         if (list_empty(&mddev->disks))
1933                 return 0; /* nothing to do */
1934         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1935                 return 0; /* shouldn't register, or already is */
1936         list_for_each_entry(rdev, &mddev->disks, same_set) {
1937                 /* skip spares and non-functional disks */
1938                 if (test_bit(Faulty, &rdev->flags))
1939                         continue;
1940                 if (rdev->raid_disk < 0)
1941                         continue;
1942                 if (!reference) {
1943                         /* Use the first rdev as the reference */
1944                         reference = rdev;
1945                         continue;
1946                 }
1947                 /* does this rdev's profile match the reference profile? */
1948                 if (blk_integrity_compare(reference->bdev->bd_disk,
1949                                 rdev->bdev->bd_disk) < 0)
1950                         return -EINVAL;
1951         }
1952         if (!reference || !bdev_get_integrity(reference->bdev))
1953                 return 0;
1954         /*
1955          * All component devices are integrity capable and have matching
1956          * profiles, register the common profile for the md device.
1957          */
1958         if (blk_integrity_register(mddev->gendisk,
1959                         bdev_get_integrity(reference->bdev)) != 0) {
1960                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1961                         mdname(mddev));
1962                 return -EINVAL;
1963         }
1964         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1965         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1966                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1967                        mdname(mddev));
1968                 return -EINVAL;
1969         }
1970         return 0;
1971 }
1972 EXPORT_SYMBOL(md_integrity_register);
1973
1974 /* Disable data integrity if non-capable/non-matching disk is being added */
1975 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1976 {
1977         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1978         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1979
1980         if (!bi_mddev) /* nothing to do */
1981                 return;
1982         if (rdev->raid_disk < 0) /* skip spares */
1983                 return;
1984         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1985                                              rdev->bdev->bd_disk) >= 0)
1986                 return;
1987         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1988         blk_integrity_unregister(mddev->gendisk);
1989 }
1990 EXPORT_SYMBOL(md_integrity_add_rdev);
1991
1992 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1993 {
1994         char b[BDEVNAME_SIZE];
1995         struct kobject *ko;
1996         char *s;
1997         int err;
1998
1999         if (rdev->mddev) {
2000                 MD_BUG();
2001                 return -EINVAL;
2002         }
2003
2004         /* prevent duplicates */
2005         if (find_rdev(mddev, rdev->bdev->bd_dev))
2006                 return -EEXIST;
2007
2008         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2009         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2010                         rdev->sectors < mddev->dev_sectors)) {
2011                 if (mddev->pers) {
2012                         /* Cannot change size, so fail
2013                          * If mddev->level <= 0, then we don't care
2014                          * about aligning sizes (e.g. linear)
2015                          */
2016                         if (mddev->level > 0)
2017                                 return -ENOSPC;
2018                 } else
2019                         mddev->dev_sectors = rdev->sectors;
2020         }
2021
2022         /* Verify rdev->desc_nr is unique.
2023          * If it is -1, assign a free number, else
2024          * check number is not in use
2025          */
2026         if (rdev->desc_nr < 0) {
2027                 int choice = 0;
2028                 if (mddev->pers) choice = mddev->raid_disks;
2029                 while (find_rdev_nr(mddev, choice))
2030                         choice++;
2031                 rdev->desc_nr = choice;
2032         } else {
2033                 if (find_rdev_nr(mddev, rdev->desc_nr))
2034                         return -EBUSY;
2035         }
2036         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2037                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2038                        mdname(mddev), mddev->max_disks);
2039                 return -EBUSY;
2040         }
2041         bdevname(rdev->bdev,b);
2042         while ( (s=strchr(b, '/')) != NULL)
2043                 *s = '!';
2044
2045         rdev->mddev = mddev;
2046         printk(KERN_INFO "md: bind<%s>\n", b);
2047
2048         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2049                 goto fail;
2050
2051         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2052         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2053                 /* failure here is OK */;
2054         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2055
2056         list_add_rcu(&rdev->same_set, &mddev->disks);
2057         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2058
2059         /* May as well allow recovery to be retried once */
2060         mddev->recovery_disabled++;
2061
2062         return 0;
2063
2064  fail:
2065         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2066                b, mdname(mddev));
2067         return err;
2068 }
2069
2070 static void md_delayed_delete(struct work_struct *ws)
2071 {
2072         mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2073         kobject_del(&rdev->kobj);
2074         kobject_put(&rdev->kobj);
2075 }
2076
2077 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2078 {
2079         char b[BDEVNAME_SIZE];
2080         if (!rdev->mddev) {
2081                 MD_BUG();
2082                 return;
2083         }
2084         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2085         list_del_rcu(&rdev->same_set);
2086         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2087         rdev->mddev = NULL;
2088         sysfs_remove_link(&rdev->kobj, "block");
2089         sysfs_put(rdev->sysfs_state);
2090         rdev->sysfs_state = NULL;
2091         kfree(rdev->badblocks.page);
2092         rdev->badblocks.count = 0;
2093         rdev->badblocks.page = NULL;
2094         /* We need to delay this, otherwise we can deadlock when
2095          * writing to 'remove' to "dev/state".  We also need
2096          * to delay it due to rcu usage.
2097          */
2098         synchronize_rcu();
2099         INIT_WORK(&rdev->del_work, md_delayed_delete);
2100         kobject_get(&rdev->kobj);
2101         queue_work(md_misc_wq, &rdev->del_work);
2102 }
2103
2104 /*
2105  * prevent the device from being mounted, repartitioned or
2106  * otherwise reused by a RAID array (or any other kernel
2107  * subsystem), by bd_claiming the device.
2108  */
2109 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2110 {
2111         int err = 0;
2112         struct block_device *bdev;
2113         char b[BDEVNAME_SIZE];
2114
2115         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2116                                  shared ? (mdk_rdev_t *)lock_rdev : rdev);
2117         if (IS_ERR(bdev)) {
2118                 printk(KERN_ERR "md: could not open %s.\n",
2119                         __bdevname(dev, b));
2120                 return PTR_ERR(bdev);
2121         }
2122         rdev->bdev = bdev;
2123         return err;
2124 }
2125
2126 static void unlock_rdev(mdk_rdev_t *rdev)
2127 {
2128         struct block_device *bdev = rdev->bdev;
2129         rdev->bdev = NULL;
2130         if (!bdev)
2131                 MD_BUG();
2132         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2133 }
2134
2135 void md_autodetect_dev(dev_t dev);
2136
2137 static void export_rdev(mdk_rdev_t * rdev)
2138 {
2139         char b[BDEVNAME_SIZE];
2140         printk(KERN_INFO "md: export_rdev(%s)\n",
2141                 bdevname(rdev->bdev,b));
2142         if (rdev->mddev)
2143                 MD_BUG();
2144         free_disk_sb(rdev);
2145 #ifndef MODULE
2146         if (test_bit(AutoDetected, &rdev->flags))
2147                 md_autodetect_dev(rdev->bdev->bd_dev);
2148 #endif
2149         unlock_rdev(rdev);
2150         kobject_put(&rdev->kobj);
2151 }
2152
2153 static void kick_rdev_from_array(mdk_rdev_t * rdev)
2154 {
2155         unbind_rdev_from_array(rdev);
2156         export_rdev(rdev);
2157 }
2158
2159 static void export_array(mddev_t *mddev)
2160 {
2161         mdk_rdev_t *rdev, *tmp;
2162
2163         rdev_for_each(rdev, tmp, mddev) {
2164                 if (!rdev->mddev) {
2165                         MD_BUG();
2166                         continue;
2167                 }
2168                 kick_rdev_from_array(rdev);
2169         }
2170         if (!list_empty(&mddev->disks))
2171                 MD_BUG();
2172         mddev->raid_disks = 0;
2173         mddev->major_version = 0;
2174 }
2175
2176 static void print_desc(mdp_disk_t *desc)
2177 {
2178         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2179                 desc->major,desc->minor,desc->raid_disk,desc->state);
2180 }
2181
2182 static void print_sb_90(mdp_super_t *sb)
2183 {
2184         int i;
2185
2186         printk(KERN_INFO 
2187                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2188                 sb->major_version, sb->minor_version, sb->patch_version,
2189                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2190                 sb->ctime);
2191         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2192                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2193                 sb->md_minor, sb->layout, sb->chunk_size);
2194         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2195                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2196                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2197                 sb->failed_disks, sb->spare_disks,
2198                 sb->sb_csum, (unsigned long)sb->events_lo);
2199
2200         printk(KERN_INFO);
2201         for (i = 0; i < MD_SB_DISKS; i++) {
2202                 mdp_disk_t *desc;
2203
2204                 desc = sb->disks + i;
2205                 if (desc->number || desc->major || desc->minor ||
2206                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2207                         printk("     D %2d: ", i);
2208                         print_desc(desc);
2209                 }
2210         }
2211         printk(KERN_INFO "md:     THIS: ");
2212         print_desc(&sb->this_disk);
2213 }
2214
2215 static void print_sb_1(struct mdp_superblock_1 *sb)
2216 {
2217         __u8 *uuid;
2218
2219         uuid = sb->set_uuid;
2220         printk(KERN_INFO
2221                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2222                "md:    Name: \"%s\" CT:%llu\n",
2223                 le32_to_cpu(sb->major_version),
2224                 le32_to_cpu(sb->feature_map),
2225                 uuid,
2226                 sb->set_name,
2227                 (unsigned long long)le64_to_cpu(sb->ctime)
2228                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2229
2230         uuid = sb->device_uuid;
2231         printk(KERN_INFO
2232                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2233                         " RO:%llu\n"
2234                "md:     Dev:%08x UUID: %pU\n"
2235                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2236                "md:         (MaxDev:%u) \n",
2237                 le32_to_cpu(sb->level),
2238                 (unsigned long long)le64_to_cpu(sb->size),
2239                 le32_to_cpu(sb->raid_disks),
2240                 le32_to_cpu(sb->layout),
2241                 le32_to_cpu(sb->chunksize),
2242                 (unsigned long long)le64_to_cpu(sb->data_offset),
2243                 (unsigned long long)le64_to_cpu(sb->data_size),
2244                 (unsigned long long)le64_to_cpu(sb->super_offset),
2245                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2246                 le32_to_cpu(sb->dev_number),
2247                 uuid,
2248                 sb->devflags,
2249                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2250                 (unsigned long long)le64_to_cpu(sb->events),
2251                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2252                 le32_to_cpu(sb->sb_csum),
2253                 le32_to_cpu(sb->max_dev)
2254                 );
2255 }
2256
2257 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2258 {
2259         char b[BDEVNAME_SIZE];
2260         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2261                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2262                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2263                 rdev->desc_nr);
2264         if (rdev->sb_loaded) {
2265                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2266                 switch (major_version) {
2267                 case 0:
2268                         print_sb_90(page_address(rdev->sb_page));
2269                         break;
2270                 case 1:
2271                         print_sb_1(page_address(rdev->sb_page));
2272                         break;
2273                 }
2274         } else
2275                 printk(KERN_INFO "md: no rdev superblock!\n");
2276 }
2277
2278 static void md_print_devices(void)
2279 {
2280         struct list_head *tmp;
2281         mdk_rdev_t *rdev;
2282         mddev_t *mddev;
2283         char b[BDEVNAME_SIZE];
2284
2285         printk("\n");
2286         printk("md:     **********************************\n");
2287         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2288         printk("md:     **********************************\n");
2289         for_each_mddev(mddev, tmp) {
2290
2291                 if (mddev->bitmap)
2292                         bitmap_print_sb(mddev->bitmap);
2293                 else
2294                         printk("%s: ", mdname(mddev));
2295                 list_for_each_entry(rdev, &mddev->disks, same_set)
2296                         printk("<%s>", bdevname(rdev->bdev,b));
2297                 printk("\n");
2298
2299                 list_for_each_entry(rdev, &mddev->disks, same_set)
2300                         print_rdev(rdev, mddev->major_version);
2301         }
2302         printk("md:     **********************************\n");
2303         printk("\n");
2304 }
2305
2306
2307 static void sync_sbs(mddev_t * mddev, int nospares)
2308 {
2309         /* Update each superblock (in-memory image), but
2310          * if we are allowed to, skip spares which already
2311          * have the right event counter, or have one earlier
2312          * (which would mean they aren't being marked as dirty
2313          * with the rest of the array)
2314          */
2315         mdk_rdev_t *rdev;
2316         list_for_each_entry(rdev, &mddev->disks, same_set) {
2317                 if (rdev->sb_events == mddev->events ||
2318                     (nospares &&
2319                      rdev->raid_disk < 0 &&
2320                      rdev->sb_events+1 == mddev->events)) {
2321                         /* Don't update this superblock */
2322                         rdev->sb_loaded = 2;
2323                 } else {
2324                         sync_super(mddev, rdev);
2325                         rdev->sb_loaded = 1;
2326                 }
2327         }
2328 }
2329
2330 static void md_update_sb(mddev_t * mddev, int force_change)
2331 {
2332         mdk_rdev_t *rdev;
2333         int sync_req;
2334         int nospares = 0;
2335         int any_badblocks_changed = 0;
2336
2337 repeat:
2338         /* First make sure individual recovery_offsets are correct */
2339         list_for_each_entry(rdev, &mddev->disks, same_set) {
2340                 if (rdev->raid_disk >= 0 &&
2341                     mddev->delta_disks >= 0 &&
2342                     !test_bit(In_sync, &rdev->flags) &&
2343                     mddev->curr_resync_completed > rdev->recovery_offset)
2344                                 rdev->recovery_offset = mddev->curr_resync_completed;
2345
2346         }       
2347         if (!mddev->persistent) {
2348                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2349                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2350                 if (!mddev->external) {
2351                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2352                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2353                                 if (rdev->badblocks.changed) {
2354                                         md_ack_all_badblocks(&rdev->badblocks);
2355                                         md_error(mddev, rdev);
2356                                 }
2357                                 clear_bit(Blocked, &rdev->flags);
2358                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2359                                 wake_up(&rdev->blocked_wait);
2360                         }
2361                 }
2362                 wake_up(&mddev->sb_wait);
2363                 return;
2364         }
2365
2366         spin_lock_irq(&mddev->write_lock);
2367
2368         mddev->utime = get_seconds();
2369
2370         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2371                 force_change = 1;
2372         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2373                 /* just a clean<-> dirty transition, possibly leave spares alone,
2374                  * though if events isn't the right even/odd, we will have to do
2375                  * spares after all
2376                  */
2377                 nospares = 1;
2378         if (force_change)
2379                 nospares = 0;
2380         if (mddev->degraded)
2381                 /* If the array is degraded, then skipping spares is both
2382                  * dangerous and fairly pointless.
2383                  * Dangerous because a device that was removed from the array
2384                  * might have a event_count that still looks up-to-date,
2385                  * so it can be re-added without a resync.
2386                  * Pointless because if there are any spares to skip,
2387                  * then a recovery will happen and soon that array won't
2388                  * be degraded any more and the spare can go back to sleep then.
2389                  */
2390                 nospares = 0;
2391
2392         sync_req = mddev->in_sync;
2393
2394         /* If this is just a dirty<->clean transition, and the array is clean
2395          * and 'events' is odd, we can roll back to the previous clean state */
2396         if (nospares
2397             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2398             && mddev->can_decrease_events
2399             && mddev->events != 1) {
2400                 mddev->events--;
2401                 mddev->can_decrease_events = 0;
2402         } else {
2403                 /* otherwise we have to go forward and ... */
2404                 mddev->events ++;
2405                 mddev->can_decrease_events = nospares;
2406         }
2407
2408         if (!mddev->events) {
2409                 /*
2410                  * oops, this 64-bit counter should never wrap.
2411                  * Either we are in around ~1 trillion A.C., assuming
2412                  * 1 reboot per second, or we have a bug:
2413                  */
2414                 MD_BUG();
2415                 mddev->events --;
2416         }
2417
2418         list_for_each_entry(rdev, &mddev->disks, same_set) {
2419                 if (rdev->badblocks.changed)
2420                         any_badblocks_changed++;
2421                 if (test_bit(Faulty, &rdev->flags))
2422                         set_bit(FaultRecorded, &rdev->flags);
2423         }
2424
2425         sync_sbs(mddev, nospares);
2426         spin_unlock_irq(&mddev->write_lock);
2427
2428         dprintk(KERN_INFO 
2429                 "md: updating %s RAID superblock on device (in sync %d)\n",
2430                 mdname(mddev),mddev->in_sync);
2431
2432         bitmap_update_sb(mddev->bitmap);
2433         list_for_each_entry(rdev, &mddev->disks, same_set) {
2434                 char b[BDEVNAME_SIZE];
2435                 dprintk(KERN_INFO "md: ");
2436                 if (rdev->sb_loaded != 1)
2437                         continue; /* no noise on spare devices */
2438                 if (test_bit(Faulty, &rdev->flags))
2439                         dprintk("(skipping faulty ");
2440
2441                 dprintk("%s ", bdevname(rdev->bdev,b));
2442                 if (!test_bit(Faulty, &rdev->flags)) {
2443                         md_super_write(mddev,rdev,
2444                                        rdev->sb_start, rdev->sb_size,
2445                                        rdev->sb_page);
2446                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2447                                 bdevname(rdev->bdev,b),
2448                                 (unsigned long long)rdev->sb_start);
2449                         rdev->sb_events = mddev->events;
2450                         if (rdev->badblocks.size) {
2451                                 md_super_write(mddev, rdev,
2452                                                rdev->badblocks.sector,
2453                                                rdev->badblocks.size << 9,
2454                                                rdev->bb_page);
2455                                 rdev->badblocks.size = 0;
2456                         }
2457
2458                 } else
2459                         dprintk(")\n");
2460                 if (mddev->level == LEVEL_MULTIPATH)
2461                         /* only need to write one superblock... */
2462                         break;
2463         }
2464         md_super_wait(mddev);
2465         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2466
2467         spin_lock_irq(&mddev->write_lock);
2468         if (mddev->in_sync != sync_req ||
2469             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2470                 /* have to write it out again */
2471                 spin_unlock_irq(&mddev->write_lock);
2472                 goto repeat;
2473         }
2474         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2475         spin_unlock_irq(&mddev->write_lock);
2476         wake_up(&mddev->sb_wait);
2477         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2478                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2479
2480         list_for_each_entry(rdev, &mddev->disks, same_set) {
2481                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2482                         clear_bit(Blocked, &rdev->flags);
2483
2484                 if (any_badblocks_changed)
2485                         md_ack_all_badblocks(&rdev->badblocks);
2486                 clear_bit(BlockedBadBlocks, &rdev->flags);
2487                 wake_up(&rdev->blocked_wait);
2488         }
2489 }
2490
2491 /* words written to sysfs files may, or may not, be \n terminated.
2492  * We want to accept with case. For this we use cmd_match.
2493  */
2494 static int cmd_match(const char *cmd, const char *str)
2495 {
2496         /* See if cmd, written into a sysfs file, matches
2497          * str.  They must either be the same, or cmd can
2498          * have a trailing newline
2499          */
2500         while (*cmd && *str && *cmd == *str) {
2501                 cmd++;
2502                 str++;
2503         }
2504         if (*cmd == '\n')
2505                 cmd++;
2506         if (*str || *cmd)
2507                 return 0;
2508         return 1;
2509 }
2510
2511 struct rdev_sysfs_entry {
2512         struct attribute attr;
2513         ssize_t (*show)(mdk_rdev_t *, char *);
2514         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2515 };
2516
2517 static ssize_t
2518 state_show(mdk_rdev_t *rdev, char *page)
2519 {
2520         char *sep = "";
2521         size_t len = 0;
2522
2523         if (test_bit(Faulty, &rdev->flags) ||
2524             rdev->badblocks.unacked_exist) {
2525                 len+= sprintf(page+len, "%sfaulty",sep);
2526                 sep = ",";
2527         }
2528         if (test_bit(In_sync, &rdev->flags)) {
2529                 len += sprintf(page+len, "%sin_sync",sep);
2530                 sep = ",";
2531         }
2532         if (test_bit(WriteMostly, &rdev->flags)) {
2533                 len += sprintf(page+len, "%swrite_mostly",sep);
2534                 sep = ",";
2535         }
2536         if (test_bit(Blocked, &rdev->flags) ||
2537             rdev->badblocks.unacked_exist) {
2538                 len += sprintf(page+len, "%sblocked", sep);
2539                 sep = ",";
2540         }
2541         if (!test_bit(Faulty, &rdev->flags) &&
2542             !test_bit(In_sync, &rdev->flags)) {
2543                 len += sprintf(page+len, "%sspare", sep);
2544                 sep = ",";
2545         }
2546         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2547                 len += sprintf(page+len, "%swrite_error", sep);
2548                 sep = ",";
2549         }
2550         return len+sprintf(page+len, "\n");
2551 }
2552
2553 static ssize_t
2554 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2555 {
2556         /* can write
2557          *  faulty  - simulates an error
2558          *  remove  - disconnects the device
2559          *  writemostly - sets write_mostly
2560          *  -writemostly - clears write_mostly
2561          *  blocked - sets the Blocked flags
2562          *  -blocked - clears the Blocked and possibly simulates an error
2563          *  insync - sets Insync providing device isn't active
2564          *  write_error - sets WriteErrorSeen
2565          *  -write_error - clears WriteErrorSeen
2566          */
2567         int err = -EINVAL;
2568         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2569                 md_error(rdev->mddev, rdev);
2570                 if (test_bit(Faulty, &rdev->flags))
2571                         err = 0;
2572                 else
2573                         err = -EBUSY;
2574         } else if (cmd_match(buf, "remove")) {
2575                 if (rdev->raid_disk >= 0)
2576                         err = -EBUSY;
2577                 else {
2578                         mddev_t *mddev = rdev->mddev;
2579                         kick_rdev_from_array(rdev);
2580                         if (mddev->pers)
2581                                 md_update_sb(mddev, 1);
2582                         md_new_event(mddev);
2583                         err = 0;
2584                 }
2585         } else if (cmd_match(buf, "writemostly")) {
2586                 set_bit(WriteMostly, &rdev->flags);
2587                 err = 0;
2588         } else if (cmd_match(buf, "-writemostly")) {
2589                 clear_bit(WriteMostly, &rdev->flags);
2590                 err = 0;
2591         } else if (cmd_match(buf, "blocked")) {
2592                 set_bit(Blocked, &rdev->flags);
2593                 err = 0;
2594         } else if (cmd_match(buf, "-blocked")) {
2595                 if (!test_bit(Faulty, &rdev->flags) &&
2596                     test_bit(BlockedBadBlocks, &rdev->flags)) {
2597                         /* metadata handler doesn't understand badblocks,
2598                          * so we need to fail the device
2599                          */
2600                         md_error(rdev->mddev, rdev);
2601                 }
2602                 clear_bit(Blocked, &rdev->flags);
2603                 clear_bit(BlockedBadBlocks, &rdev->flags);
2604                 wake_up(&rdev->blocked_wait);
2605                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2606                 md_wakeup_thread(rdev->mddev->thread);
2607
2608                 err = 0;
2609         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2610                 set_bit(In_sync, &rdev->flags);
2611                 err = 0;
2612         } else if (cmd_match(buf, "write_error")) {
2613                 set_bit(WriteErrorSeen, &rdev->flags);
2614                 err = 0;
2615         } else if (cmd_match(buf, "-write_error")) {
2616                 clear_bit(WriteErrorSeen, &rdev->flags);
2617                 err = 0;
2618         }
2619         if (!err)
2620                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2621         return err ? err : len;
2622 }
2623 static struct rdev_sysfs_entry rdev_state =
2624 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2625
2626 static ssize_t
2627 errors_show(mdk_rdev_t *rdev, char *page)
2628 {
2629         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2630 }
2631
2632 static ssize_t
2633 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2634 {
2635         char *e;
2636         unsigned long n = simple_strtoul(buf, &e, 10);
2637         if (*buf && (*e == 0 || *e == '\n')) {
2638                 atomic_set(&rdev->corrected_errors, n);
2639                 return len;
2640         }
2641         return -EINVAL;
2642 }
2643 static struct rdev_sysfs_entry rdev_errors =
2644 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2645
2646 static ssize_t
2647 slot_show(mdk_rdev_t *rdev, char *page)
2648 {
2649         if (rdev->raid_disk < 0)
2650                 return sprintf(page, "none\n");
2651         else
2652                 return sprintf(page, "%d\n", rdev->raid_disk);
2653 }
2654
2655 static ssize_t
2656 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2657 {
2658         char *e;
2659         int err;
2660         int slot = simple_strtoul(buf, &e, 10);
2661         if (strncmp(buf, "none", 4)==0)
2662                 slot = -1;
2663         else if (e==buf || (*e && *e!= '\n'))
2664                 return -EINVAL;
2665         if (rdev->mddev->pers && slot == -1) {
2666                 /* Setting 'slot' on an active array requires also
2667                  * updating the 'rd%d' link, and communicating
2668                  * with the personality with ->hot_*_disk.
2669                  * For now we only support removing
2670                  * failed/spare devices.  This normally happens automatically,
2671                  * but not when the metadata is externally managed.
2672                  */
2673                 if (rdev->raid_disk == -1)
2674                         return -EEXIST;
2675                 /* personality does all needed checks */
2676                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2677                         return -EINVAL;
2678                 err = rdev->mddev->pers->
2679                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2680                 if (err)
2681                         return err;
2682                 sysfs_unlink_rdev(rdev->mddev, rdev);
2683                 rdev->raid_disk = -1;
2684                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2685                 md_wakeup_thread(rdev->mddev->thread);
2686         } else if (rdev->mddev->pers) {
2687                 mdk_rdev_t *rdev2;
2688                 /* Activating a spare .. or possibly reactivating
2689                  * if we ever get bitmaps working here.
2690                  */
2691
2692                 if (rdev->raid_disk != -1)
2693                         return -EBUSY;
2694
2695                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2696                         return -EBUSY;
2697
2698                 if (rdev->mddev->pers->hot_add_disk == NULL)
2699                         return -EINVAL;
2700
2701                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2702                         if (rdev2->raid_disk == slot)
2703                                 return -EEXIST;
2704
2705                 if (slot >= rdev->mddev->raid_disks &&
2706                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2707                         return -ENOSPC;
2708
2709                 rdev->raid_disk = slot;
2710                 if (test_bit(In_sync, &rdev->flags))
2711                         rdev->saved_raid_disk = slot;
2712                 else
2713                         rdev->saved_raid_disk = -1;
2714                 err = rdev->mddev->pers->
2715                         hot_add_disk(rdev->mddev, rdev);
2716                 if (err) {
2717                         rdev->raid_disk = -1;
2718                         return err;
2719                 } else
2720                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2721                 if (sysfs_link_rdev(rdev->mddev, rdev))
2722                         /* failure here is OK */;
2723                 /* don't wakeup anyone, leave that to userspace. */
2724         } else {
2725                 if (slot >= rdev->mddev->raid_disks &&
2726                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2727                         return -ENOSPC;
2728                 rdev->raid_disk = slot;
2729                 /* assume it is working */
2730                 clear_bit(Faulty, &rdev->flags);
2731                 clear_bit(WriteMostly, &rdev->flags);
2732                 set_bit(In_sync, &rdev->flags);
2733                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2734         }
2735         return len;
2736 }
2737
2738
2739 static struct rdev_sysfs_entry rdev_slot =
2740 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2741
2742 static ssize_t
2743 offset_show(mdk_rdev_t *rdev, char *page)
2744 {
2745         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2746 }
2747
2748 static ssize_t
2749 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2750 {
2751         char *e;
2752         unsigned long long offset = simple_strtoull(buf, &e, 10);
2753         if (e==buf || (*e && *e != '\n'))
2754                 return -EINVAL;
2755         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2756                 return -EBUSY;
2757         if (rdev->sectors && rdev->mddev->external)
2758                 /* Must set offset before size, so overlap checks
2759                  * can be sane */
2760                 return -EBUSY;
2761         rdev->data_offset = offset;
2762         return len;
2763 }
2764
2765 static struct rdev_sysfs_entry rdev_offset =
2766 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2767
2768 static ssize_t
2769 rdev_size_show(mdk_rdev_t *rdev, char *page)
2770 {
2771         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2772 }
2773
2774 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2775 {
2776         /* check if two start/length pairs overlap */
2777         if (s1+l1 <= s2)
2778                 return 0;
2779         if (s2+l2 <= s1)
2780                 return 0;
2781         return 1;
2782 }
2783
2784 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2785 {
2786         unsigned long long blocks;
2787         sector_t new;
2788
2789         if (strict_strtoull(buf, 10, &blocks) < 0)
2790                 return -EINVAL;
2791
2792         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2793                 return -EINVAL; /* sector conversion overflow */
2794
2795         new = blocks * 2;
2796         if (new != blocks * 2)
2797                 return -EINVAL; /* unsigned long long to sector_t overflow */
2798
2799         *sectors = new;
2800         return 0;
2801 }
2802
2803 static ssize_t
2804 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2805 {
2806         mddev_t *my_mddev = rdev->mddev;
2807         sector_t oldsectors = rdev->sectors;
2808         sector_t sectors;
2809
2810         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2811                 return -EINVAL;
2812         if (my_mddev->pers && rdev->raid_disk >= 0) {
2813                 if (my_mddev->persistent) {
2814                         sectors = super_types[my_mddev->major_version].
2815                                 rdev_size_change(rdev, sectors);
2816                         if (!sectors)
2817                                 return -EBUSY;
2818                 } else if (!sectors)
2819                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2820                                 rdev->data_offset;
2821         }
2822         if (sectors < my_mddev->dev_sectors)
2823                 return -EINVAL; /* component must fit device */
2824
2825         rdev->sectors = sectors;
2826         if (sectors > oldsectors && my_mddev->external) {
2827                 /* need to check that all other rdevs with the same ->bdev
2828                  * do not overlap.  We need to unlock the mddev to avoid
2829                  * a deadlock.  We have already changed rdev->sectors, and if
2830                  * we have to change it back, we will have the lock again.
2831                  */
2832                 mddev_t *mddev;
2833                 int overlap = 0;
2834                 struct list_head *tmp;
2835
2836                 mddev_unlock(my_mddev);
2837                 for_each_mddev(mddev, tmp) {
2838                         mdk_rdev_t *rdev2;
2839
2840                         mddev_lock(mddev);
2841                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2842                                 if (rdev->bdev == rdev2->bdev &&
2843                                     rdev != rdev2 &&
2844                                     overlaps(rdev->data_offset, rdev->sectors,
2845                                              rdev2->data_offset,
2846                                              rdev2->sectors)) {
2847                                         overlap = 1;
2848                                         break;
2849                                 }
2850                         mddev_unlock(mddev);
2851                         if (overlap) {
2852                                 mddev_put(mddev);
2853                                 break;
2854                         }
2855                 }
2856                 mddev_lock(my_mddev);
2857                 if (overlap) {
2858                         /* Someone else could have slipped in a size
2859                          * change here, but doing so is just silly.
2860                          * We put oldsectors back because we *know* it is
2861                          * safe, and trust userspace not to race with
2862                          * itself
2863                          */
2864                         rdev->sectors = oldsectors;
2865                         return -EBUSY;
2866                 }
2867         }
2868         return len;
2869 }
2870
2871 static struct rdev_sysfs_entry rdev_size =
2872 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2873
2874
2875 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2876 {
2877         unsigned long long recovery_start = rdev->recovery_offset;
2878
2879         if (test_bit(In_sync, &rdev->flags) ||
2880             recovery_start == MaxSector)
2881                 return sprintf(page, "none\n");
2882
2883         return sprintf(page, "%llu\n", recovery_start);
2884 }
2885
2886 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2887 {
2888         unsigned long long recovery_start;
2889
2890         if (cmd_match(buf, "none"))
2891                 recovery_start = MaxSector;
2892         else if (strict_strtoull(buf, 10, &recovery_start))
2893                 return -EINVAL;
2894
2895         if (rdev->mddev->pers &&
2896             rdev->raid_disk >= 0)
2897                 return -EBUSY;
2898
2899         rdev->recovery_offset = recovery_start;
2900         if (recovery_start == MaxSector)
2901                 set_bit(In_sync, &rdev->flags);
2902         else
2903                 clear_bit(In_sync, &rdev->flags);
2904         return len;
2905 }
2906
2907 static struct rdev_sysfs_entry rdev_recovery_start =
2908 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2909
2910
2911 static ssize_t
2912 badblocks_show(struct badblocks *bb, char *page, int unack);
2913 static ssize_t
2914 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2915
2916 static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2917 {
2918         return badblocks_show(&rdev->badblocks, page, 0);
2919 }
2920 static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2921 {
2922         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2923         /* Maybe that ack was all we needed */
2924         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2925                 wake_up(&rdev->blocked_wait);
2926         return rv;
2927 }
2928 static struct rdev_sysfs_entry rdev_bad_blocks =
2929 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2930
2931
2932 static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2933 {
2934         return badblocks_show(&rdev->badblocks, page, 1);
2935 }
2936 static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2937 {
2938         return badblocks_store(&rdev->badblocks, page, len, 1);
2939 }
2940 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2941 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2942
2943 static struct attribute *rdev_default_attrs[] = {
2944         &rdev_state.attr,
2945         &rdev_errors.attr,
2946         &rdev_slot.attr,
2947         &rdev_offset.attr,
2948         &rdev_size.attr,
2949         &rdev_recovery_start.attr,
2950         &rdev_bad_blocks.attr,
2951         &rdev_unack_bad_blocks.attr,
2952         NULL,
2953 };
2954 static ssize_t
2955 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2956 {
2957         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2958         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2959         mddev_t *mddev = rdev->mddev;
2960         ssize_t rv;
2961
2962         if (!entry->show)
2963                 return -EIO;
2964
2965         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2966         if (!rv) {
2967                 if (rdev->mddev == NULL)
2968                         rv = -EBUSY;
2969                 else
2970                         rv = entry->show(rdev, page);
2971                 mddev_unlock(mddev);
2972         }
2973         return rv;
2974 }
2975
2976 static ssize_t
2977 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2978               const char *page, size_t length)
2979 {
2980         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2981         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2982         ssize_t rv;
2983         mddev_t *mddev = rdev->mddev;
2984
2985         if (!entry->store)
2986                 return -EIO;
2987         if (!capable(CAP_SYS_ADMIN))
2988                 return -EACCES;
2989         rv = mddev ? mddev_lock(mddev): -EBUSY;
2990         if (!rv) {
2991                 if (rdev->mddev == NULL)
2992                         rv = -EBUSY;
2993                 else
2994                         rv = entry->store(rdev, page, length);
2995                 mddev_unlock(mddev);
2996         }
2997         return rv;
2998 }
2999
3000 static void rdev_free(struct kobject *ko)
3001 {
3002         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
3003         kfree(rdev);
3004 }
3005 static const struct sysfs_ops rdev_sysfs_ops = {
3006         .show           = rdev_attr_show,
3007         .store          = rdev_attr_store,
3008 };
3009 static struct kobj_type rdev_ktype = {
3010         .release        = rdev_free,
3011         .sysfs_ops      = &rdev_sysfs_ops,
3012         .default_attrs  = rdev_default_attrs,
3013 };
3014
3015 int md_rdev_init(mdk_rdev_t *rdev)
3016 {
3017         rdev->desc_nr = -1;
3018         rdev->saved_raid_disk = -1;
3019         rdev->raid_disk = -1;
3020         rdev->flags = 0;
3021         rdev->data_offset = 0;
3022         rdev->sb_events = 0;
3023         rdev->last_read_error.tv_sec  = 0;
3024         rdev->last_read_error.tv_nsec = 0;
3025         rdev->sb_loaded = 0;
3026         rdev->bb_page = NULL;
3027         atomic_set(&rdev->nr_pending, 0);
3028         atomic_set(&rdev->read_errors, 0);
3029         atomic_set(&rdev->corrected_errors, 0);
3030
3031         INIT_LIST_HEAD(&rdev->same_set);
3032         init_waitqueue_head(&rdev->blocked_wait);
3033
3034         /* Add space to store bad block list.
3035          * This reserves the space even on arrays where it cannot
3036          * be used - I wonder if that matters
3037          */
3038         rdev->badblocks.count = 0;
3039         rdev->badblocks.shift = 0;
3040         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3041         seqlock_init(&rdev->badblocks.lock);
3042         if (rdev->badblocks.page == NULL)
3043                 return -ENOMEM;
3044
3045         return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(md_rdev_init);
3048 /*
3049  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3050  *
3051  * mark the device faulty if:
3052  *
3053  *   - the device is nonexistent (zero size)
3054  *   - the device has no valid superblock
3055  *
3056  * a faulty rdev _never_ has rdev->sb set.
3057  */
3058 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3059 {
3060         char b[BDEVNAME_SIZE];
3061         int err;
3062         mdk_rdev_t *rdev;
3063         sector_t size;
3064
3065         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3066         if (!rdev) {
3067                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3068                 return ERR_PTR(-ENOMEM);
3069         }
3070
3071         err = md_rdev_init(rdev);
3072         if (err)
3073                 goto abort_free;
3074         err = alloc_disk_sb(rdev);
3075         if (err)
3076                 goto abort_free;
3077
3078         err = lock_rdev(rdev, newdev, super_format == -2);
3079         if (err)
3080                 goto abort_free;
3081
3082         kobject_init(&rdev->kobj, &rdev_ktype);
3083
3084         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3085         if (!size) {
3086                 printk(KERN_WARNING 
3087                         "md: %s has zero or unknown size, marking faulty!\n",
3088                         bdevname(rdev->bdev,b));
3089                 err = -EINVAL;
3090                 goto abort_free;
3091         }
3092
3093         if (super_format >= 0) {
3094                 err = super_types[super_format].
3095                         load_super(rdev, NULL, super_minor);
3096                 if (err == -EINVAL) {
3097                         printk(KERN_WARNING
3098                                 "md: %s does not have a valid v%d.%d "
3099                                "superblock, not importing!\n",
3100                                 bdevname(rdev->bdev,b),
3101                                super_format, super_minor);
3102                         goto abort_free;
3103                 }
3104                 if (err < 0) {
3105                         printk(KERN_WARNING 
3106                                 "md: could not read %s's sb, not importing!\n",
3107                                 bdevname(rdev->bdev,b));
3108                         goto abort_free;
3109                 }
3110         }
3111         if (super_format == -1)
3112                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3113                 rdev->badblocks.shift = -1;
3114
3115         return rdev;
3116
3117 abort_free:
3118         if (rdev->bdev)
3119                 unlock_rdev(rdev);
3120         free_disk_sb(rdev);
3121         kfree(rdev->badblocks.page);
3122         kfree(rdev);
3123         return ERR_PTR(err);
3124 }
3125
3126 /*
3127  * Check a full RAID array for plausibility
3128  */
3129
3130
3131 static void analyze_sbs(mddev_t * mddev)
3132 {
3133         int i;
3134         mdk_rdev_t *rdev, *freshest, *tmp;
3135         char b[BDEVNAME_SIZE];
3136
3137         freshest = NULL;
3138         rdev_for_each(rdev, tmp, mddev)
3139                 switch (super_types[mddev->major_version].
3140                         load_super(rdev, freshest, mddev->minor_version)) {
3141                 case 1:
3142                         freshest = rdev;
3143                         break;
3144                 case 0:
3145                         break;
3146                 default:
3147                         printk( KERN_ERR \
3148                                 "md: fatal superblock inconsistency in %s"
3149                                 " -- removing from array\n", 
3150                                 bdevname(rdev->bdev,b));
3151                         kick_rdev_from_array(rdev);
3152                 }
3153
3154
3155         super_types[mddev->major_version].
3156                 validate_super(mddev, freshest);
3157
3158         i = 0;
3159         rdev_for_each(rdev, tmp, mddev) {
3160                 if (mddev->max_disks &&
3161                     (rdev->desc_nr >= mddev->max_disks ||
3162                      i > mddev->max_disks)) {
3163                         printk(KERN_WARNING
3164                                "md: %s: %s: only %d devices permitted\n",
3165                                mdname(mddev), bdevname(rdev->bdev, b),
3166                                mddev->max_disks);
3167                         kick_rdev_from_array(rdev);
3168                         continue;
3169                 }
3170                 if (rdev != freshest)
3171                         if (super_types[mddev->major_version].
3172                             validate_super(mddev, rdev)) {
3173                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3174                                         " from array!\n",
3175                                         bdevname(rdev->bdev,b));
3176                                 kick_rdev_from_array(rdev);
3177                                 continue;
3178                         }
3179                 if (mddev->level == LEVEL_MULTIPATH) {
3180                         rdev->desc_nr = i++;
3181                         rdev->raid_disk = rdev->desc_nr;
3182                         set_bit(In_sync, &rdev->flags);
3183                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3184                         rdev->raid_disk = -1;
3185                         clear_bit(In_sync, &rdev->flags);
3186                 }
3187         }
3188 }
3189
3190 /* Read a fixed-point number.
3191  * Numbers in sysfs attributes should be in "standard" units where
3192  * possible, so time should be in seconds.
3193  * However we internally use a a much smaller unit such as 
3194  * milliseconds or jiffies.
3195  * This function takes a decimal number with a possible fractional
3196  * component, and produces an integer which is the result of
3197  * multiplying that number by 10^'scale'.
3198  * all without any floating-point arithmetic.
3199  */
3200 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3201 {
3202         unsigned long result = 0;
3203         long decimals = -1;
3204         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3205                 if (*cp == '.')
3206                         decimals = 0;
3207                 else if (decimals < scale) {
3208                         unsigned int value;
3209                         value = *cp - '0';
3210                         result = result * 10 + value;
3211                         if (decimals >= 0)
3212                                 decimals++;
3213                 }
3214                 cp++;
3215         }
3216         if (*cp == '\n')
3217                 cp++;
3218         if (*cp)
3219                 return -EINVAL;
3220         if (decimals < 0)
3221                 decimals = 0;
3222         while (decimals < scale) {
3223                 result *= 10;
3224                 decimals ++;
3225         }
3226         *res = result;
3227         return 0;
3228 }
3229
3230
3231 static void md_safemode_timeout(unsigned long data);
3232
3233 static ssize_t
3234 safe_delay_show(mddev_t *mddev, char *page)
3235 {
3236         int msec = (mddev->safemode_delay*1000)/HZ;
3237         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3238 }
3239 static ssize_t
3240 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3241 {
3242         unsigned long msec;
3243
3244         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3245                 return -EINVAL;
3246         if (msec == 0)
3247                 mddev->safemode_delay = 0;
3248         else {
3249                 unsigned long old_delay = mddev->safemode_delay;
3250                 mddev->safemode_delay = (msec*HZ)/1000;
3251                 if (mddev->safemode_delay == 0)
3252                         mddev->safemode_delay = 1;
3253                 if (mddev->safemode_delay < old_delay)
3254                         md_safemode_timeout((unsigned long)mddev);
3255         }
3256         return len;
3257 }
3258 static struct md_sysfs_entry md_safe_delay =
3259 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3260
3261 static ssize_t
3262 level_show(mddev_t *mddev, char *page)
3263 {
3264         struct mdk_personality *p = mddev->pers;
3265         if (p)
3266                 return sprintf(page, "%s\n", p->name);
3267         else if (mddev->clevel[0])
3268                 return sprintf(page, "%s\n", mddev->clevel);
3269         else if (mddev->level != LEVEL_NONE)
3270                 return sprintf(page, "%d\n", mddev->level);
3271         else
3272                 return 0;
3273 }
3274
3275 static ssize_t
3276 level_store(mddev_t *mddev, const char *buf, size_t len)
3277 {
3278         char clevel[16];
3279         ssize_t rv = len;
3280         struct mdk_personality *pers;
3281         long level;
3282         void *priv;
3283         mdk_rdev_t *rdev;
3284
3285         if (mddev->pers == NULL) {
3286                 if (len == 0)
3287                         return 0;
3288                 if (len >= sizeof(mddev->clevel))
3289                         return -ENOSPC;
3290                 strncpy(mddev->clevel, buf, len);
3291                 if (mddev->clevel[len-1] == '\n')
3292                         len--;
3293                 mddev->clevel[len] = 0;
3294                 mddev->level = LEVEL_NONE;
3295                 return rv;
3296         }
3297
3298         /* request to change the personality.  Need to ensure:
3299          *  - array is not engaged in resync/recovery/reshape
3300          *  - old personality can be suspended
3301          *  - new personality will access other array.
3302          */
3303
3304         if (mddev->sync_thread ||
3305             mddev->reshape_position != MaxSector ||
3306             mddev->sysfs_active)
3307                 return -EBUSY;
3308
3309         if (!mddev->pers->quiesce) {
3310                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3311                        mdname(mddev), mddev->pers->name);
3312                 return -EINVAL;
3313         }
3314
3315         /* Now find the new personality */
3316         if (len == 0 || len >= sizeof(clevel))
3317                 return -EINVAL;
3318         strncpy(clevel, buf, len);
3319         if (clevel[len-1] == '\n')
3320                 len--;
3321         clevel[len] = 0;
3322         if (strict_strtol(clevel, 10, &level))
3323                 level = LEVEL_NONE;
3324
3325         if (request_module("md-%s", clevel) != 0)
3326                 request_module("md-level-%s", clevel);
3327         spin_lock(&pers_lock);
3328         pers = find_pers(level, clevel);
3329         if (!pers || !try_module_get(pers->owner)) {
3330                 spin_unlock(&pers_lock);
3331                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3332                 return -EINVAL;
3333         }
3334         spin_unlock(&pers_lock);
3335
3336         if (pers == mddev->pers) {
3337                 /* Nothing to do! */
3338                 module_put(pers->owner);
3339                 return rv;
3340         }
3341         if (!pers->takeover) {
3342                 module_put(pers->owner);
3343                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3344                        mdname(mddev), clevel);
3345                 return -EINVAL;
3346         }
3347
3348         list_for_each_entry(rdev, &mddev->disks, same_set)
3349                 rdev->new_raid_disk = rdev->raid_disk;
3350
3351         /* ->takeover must set new_* and/or delta_disks
3352          * if it succeeds, and may set them when it fails.
3353          */
3354         priv = pers->takeover(mddev);
3355         if (IS_ERR(priv)) {
3356                 mddev->new_level = mddev->level;
3357                 mddev->new_layout = mddev->layout;
3358                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3359                 mddev->raid_disks -= mddev->delta_disks;
3360                 mddev->delta_disks = 0;
3361                 module_put(pers->owner);
3362                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3363                        mdname(mddev), clevel);
3364                 return PTR_ERR(priv);
3365         }
3366
3367         /* Looks like we have a winner */
3368         mddev_suspend(mddev);
3369         mddev->pers->stop(mddev);
3370         
3371         if (mddev->pers->sync_request == NULL &&
3372             pers->sync_request != NULL) {
3373                 /* need to add the md_redundancy_group */
3374                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3375                         printk(KERN_WARNING
3376                                "md: cannot register extra attributes for %s\n",
3377                                mdname(mddev));
3378                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3379         }               
3380         if (mddev->pers->sync_request != NULL &&
3381             pers->sync_request == NULL) {
3382                 /* need to remove the md_redundancy_group */
3383                 if (mddev->to_remove == NULL)
3384                         mddev->to_remove = &md_redundancy_group;
3385         }
3386
3387         if (mddev->pers->sync_request == NULL &&
3388             mddev->external) {
3389                 /* We are converting from a no-redundancy array
3390                  * to a redundancy array and metadata is managed
3391                  * externally so we need to be sure that writes
3392                  * won't block due to a need to transition
3393                  *      clean->dirty
3394                  * until external management is started.
3395                  */
3396                 mddev->in_sync = 0;
3397                 mddev->safemode_delay = 0;
3398                 mddev->safemode = 0;
3399         }
3400
3401         list_for_each_entry(rdev, &mddev->disks, same_set) {
3402                 if (rdev->raid_disk < 0)
3403                         continue;
3404                 if (rdev->new_raid_disk >= mddev->raid_disks)
3405                         rdev->new_raid_disk = -1;
3406                 if (rdev->new_raid_disk == rdev->raid_disk)
3407                         continue;
3408                 sysfs_unlink_rdev(mddev, rdev);
3409         }
3410         list_for_each_entry(rdev, &mddev->disks, same_set) {
3411                 if (rdev->raid_disk < 0)
3412                         continue;
3413                 if (rdev->new_raid_disk == rdev->raid_disk)
3414                         continue;
3415                 rdev->raid_disk = rdev->new_raid_disk;
3416                 if (rdev->raid_disk < 0)
3417                         clear_bit(In_sync, &rdev->flags);
3418                 else {
3419                         if (sysfs_link_rdev(mddev, rdev))
3420                                 printk(KERN_WARNING "md: cannot register rd%d"
3421                                        " for %s after level change\n",
3422                                        rdev->raid_disk, mdname(mddev));
3423                 }
3424         }
3425
3426         module_put(mddev->pers->owner);
3427         mddev->pers = pers;
3428         mddev->private = priv;
3429         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3430         mddev->level = mddev->new_level;
3431         mddev->layout = mddev->new_layout;
3432         mddev->chunk_sectors = mddev->new_chunk_sectors;
3433         mddev->delta_disks = 0;
3434         mddev->degraded = 0;
3435         if (mddev->pers->sync_request == NULL) {
3436                 /* this is now an array without redundancy, so
3437                  * it must always be in_sync
3438                  */
3439                 mddev->in_sync = 1;
3440                 del_timer_sync(&mddev->safemode_timer);
3441         }
3442         pers->run(mddev);
3443         mddev_resume(mddev);
3444         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3445         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3446         md_wakeup_thread(mddev->thread);
3447         sysfs_notify(&mddev->kobj, NULL, "level");
3448         md_new_event(mddev);
3449         return rv;
3450 }
3451
3452 static struct md_sysfs_entry md_level =
3453 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3454
3455
3456 static ssize_t
3457 layout_show(mddev_t *mddev, char *page)
3458 {
3459         /* just a number, not meaningful for all levels */
3460         if (mddev->reshape_position != MaxSector &&
3461             mddev->layout != mddev->new_layout)
3462                 return sprintf(page, "%d (%d)\n",
3463                                mddev->new_layout, mddev->layout);
3464         return sprintf(page, "%d\n", mddev->layout);
3465 }
3466
3467 static ssize_t
3468 layout_store(mddev_t *mddev, const char *buf, size_t len)
3469 {
3470         char *e;
3471         unsigned long n = simple_strtoul(buf, &e, 10);
3472
3473         if (!*buf || (*e && *e != '\n'))
3474                 return -EINVAL;
3475
3476         if (mddev->pers) {
3477                 int err;
3478                 if (mddev->pers->check_reshape == NULL)
3479                         return -EBUSY;
3480                 mddev->new_layout = n;
3481                 err = mddev->pers->check_reshape(mddev);
3482                 if (err) {
3483                         mddev->new_layout = mddev->layout;
3484                         return err;
3485                 }
3486         } else {
3487                 mddev->new_layout = n;
3488                 if (mddev->reshape_position == MaxSector)
3489                         mddev->layout = n;
3490         }
3491         return len;
3492 }
3493 static struct md_sysfs_entry md_layout =
3494 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3495
3496
3497 static ssize_t
3498 raid_disks_show(mddev_t *mddev, char *page)
3499 {
3500         if (mddev->raid_disks == 0)
3501                 return 0;
3502         if (mddev->reshape_position != MaxSector &&
3503             mddev->delta_disks != 0)
3504                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3505                                mddev->raid_disks - mddev->delta_disks);
3506         return sprintf(page, "%d\n", mddev->raid_disks);
3507 }
3508
3509 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3510
3511 static ssize_t
3512 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3513 {
3514         char *e;
3515         int rv = 0;
3516         unsigned long n = simple_strtoul(buf, &e, 10);
3517
3518         if (!*buf || (*e && *e != '\n'))
3519                 return -EINVAL;
3520
3521         if (mddev->pers)
3522                 rv = update_raid_disks(mddev, n);
3523         else if (mddev->reshape_position != MaxSector) {
3524                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3525                 mddev->delta_disks = n - olddisks;
3526                 mddev->raid_disks = n;
3527         } else
3528                 mddev->raid_disks = n;
3529         return rv ? rv : len;
3530 }
3531 static struct md_sysfs_entry md_raid_disks =
3532 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3533
3534 static ssize_t
3535 chunk_size_show(mddev_t *mddev, char *page)
3536 {
3537         if (mddev->reshape_position != MaxSector &&
3538             mddev->chunk_sectors != mddev->new_chunk_sectors)
3539                 return sprintf(page, "%d (%d)\n",
3540                                mddev->new_chunk_sectors << 9,
3541                                mddev->chunk_sectors << 9);
3542         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3543 }
3544
3545 static ssize_t
3546 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3547 {
3548         char *e;
3549         unsigned long n = simple_strtoul(buf, &e, 10);
3550
3551         if (!*buf || (*e && *e != '\n'))
3552                 return -EINVAL;
3553
3554         if (mddev->pers) {
3555                 int err;
3556                 if (mddev->pers->check_reshape == NULL)
3557                         return -EBUSY;
3558                 mddev->new_chunk_sectors = n >> 9;
3559                 err = mddev->pers->check_reshape(mddev);
3560                 if (err) {
3561                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3562                         return err;
3563                 }
3564         } else {
3565                 mddev->new_chunk_sectors = n >> 9;
3566                 if (mddev->reshape_position == MaxSector)
3567                         mddev->chunk_sectors = n >> 9;
3568         }
3569         return len;
3570 }
3571 static struct md_sysfs_entry md_chunk_size =
3572 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3573
3574 static ssize_t
3575 resync_start_show(mddev_t *mddev, char *page)
3576 {
3577         if (mddev->recovery_cp == MaxSector)
3578                 return sprintf(page, "none\n");
3579         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3580 }
3581
3582 static ssize_t
3583 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3584 {
3585         char *e;
3586         unsigned long long n = simple_strtoull(buf, &e, 10);
3587
3588         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3589                 return -EBUSY;
3590         if (cmd_match(buf, "none"))
3591                 n = MaxSector;
3592         else if (!*buf || (*e && *e != '\n'))
3593                 return -EINVAL;
3594
3595         mddev->recovery_cp = n;
3596         return len;
3597 }
3598 static struct md_sysfs_entry md_resync_start =
3599 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3600
3601 /*
3602  * The array state can be:
3603  *
3604  * clear
3605  *     No devices, no size, no level
3606  *     Equivalent to STOP_ARRAY ioctl
3607  * inactive
3608  *     May have some settings, but array is not active
3609  *        all IO results in error
3610  *     When written, doesn't tear down array, but just stops it
3611  * suspended (not supported yet)
3612  *     All IO requests will block. The array can be reconfigured.
3613  *     Writing this, if accepted, will block until array is quiescent
3614  * readonly
3615  *     no resync can happen.  no superblocks get written.
3616  *     write requests fail
3617  * read-auto
3618  *     like readonly, but behaves like 'clean' on a write request.
3619  *
3620  * clean - no pending writes, but otherwise active.
3621  *     When written to inactive array, starts without resync
3622  *     If a write request arrives then
3623  *       if metadata is known, mark 'dirty' and switch to 'active'.
3624  *       if not known, block and switch to write-pending
3625  *     If written to an active array that has pending writes, then fails.
3626  * active
3627  *     fully active: IO and resync can be happening.
3628  *     When written to inactive array, starts with resync
3629  *
3630  * write-pending
3631  *     clean, but writes are blocked waiting for 'active' to be written.
3632  *
3633  * active-idle
3634  *     like active, but no writes have been seen for a while (100msec).
3635  *
3636  */
3637 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3638                    write_pending, active_idle, bad_word};
3639 static char *array_states[] = {
3640         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3641         "write-pending", "active-idle", NULL };
3642
3643 static int match_word(const char *word, char **list)
3644 {
3645         int n;
3646         for (n=0; list[n]; n++)
3647                 if (cmd_match(word, list[n]))
3648                         break;
3649         return n;
3650 }
3651
3652 static ssize_t
3653 array_state_show(mddev_t *mddev, char *page)
3654 {
3655         enum array_state st = inactive;
3656
3657         if (mddev->pers)
3658                 switch(mddev->ro) {
3659                 case 1:
3660                         st = readonly;
3661                         break;
3662                 case 2:
3663                         st = read_auto;
3664                         break;
3665                 case 0:
3666                         if (mddev->in_sync)
3667                                 st = clean;
3668                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3669                                 st = write_pending;
3670                         else if (mddev->safemode)
3671                                 st = active_idle;
3672                         else
3673                                 st = active;
3674                 }
3675         else {
3676                 if (list_empty(&mddev->disks) &&
3677                     mddev->raid_disks == 0 &&
3678                     mddev->dev_sectors == 0)
3679                         st = clear;
3680                 else
3681                         st = inactive;
3682         }
3683         return sprintf(page, "%s\n", array_states[st]);
3684 }
3685
3686 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3687 static int md_set_readonly(mddev_t * mddev, int is_open);
3688 static int do_md_run(mddev_t * mddev);
3689 static int restart_array(mddev_t *mddev);
3690
3691 static ssize_t
3692 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3693 {
3694         int err = -EINVAL;
3695         enum array_state st = match_word(buf, array_states);
3696         switch(st) {
3697         case bad_word:
3698                 break;
3699         case clear:
3700                 /* stopping an active array */
3701                 if (atomic_read(&mddev->openers) > 0)
3702                         return -EBUSY;
3703                 err = do_md_stop(mddev, 0, 0);
3704                 break;
3705         case inactive:
3706                 /* stopping an active array */
3707                 if (mddev->pers) {
3708                         if (atomic_read(&mddev->openers) > 0)
3709                                 return -EBUSY;
3710                         err = do_md_stop(mddev, 2, 0);
3711                 } else
3712                         err = 0; /* already inactive */
3713                 break;
3714         case suspended:
3715                 break; /* not supported yet */
3716         case readonly:
3717                 if (mddev->pers)
3718                         err = md_set_readonly(mddev, 0);
3719                 else {
3720                         mddev->ro = 1;
3721                         set_disk_ro(mddev->gendisk, 1);
3722                         err = do_md_run(mddev);
3723                 }
3724                 break;
3725         case read_auto:
3726                 if (mddev->pers) {
3727                         if (mddev->ro == 0)
3728                                 err = md_set_readonly(mddev, 0);
3729                         else if (mddev->ro == 1)
3730                                 err = restart_array(mddev);
3731                         if (err == 0) {
3732                                 mddev->ro = 2;
3733                                 set_disk_ro(mddev->gendisk, 0);
3734                         }
3735                 } else {
3736                         mddev->ro = 2;
3737                         err = do_md_run(mddev);
3738                 }
3739                 break;
3740         case clean:
3741                 if (mddev->pers) {
3742                         restart_array(mddev);
3743                         spin_lock_irq(&mddev->write_lock);
3744                         if (atomic_read(&mddev->writes_pending) == 0) {
3745                                 if (mddev->in_sync == 0) {
3746                                         mddev->in_sync = 1;
3747                                         if (mddev->safemode == 1)
3748                                                 mddev->safemode = 0;
3749                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3750                                 }
3751                                 err = 0;
3752                         } else
3753                                 err = -EBUSY;
3754                         spin_unlock_irq(&mddev->write_lock);
3755                 } else
3756                         err = -EINVAL;
3757                 break;
3758         case active:
3759                 if (mddev->pers) {
3760                         restart_array(mddev);
3761                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3762                         wake_up(&mddev->sb_wait);
3763                         err = 0;
3764                 } else {
3765                         mddev->ro = 0;
3766                         set_disk_ro(mddev->gendisk, 0);
3767                         err = do_md_run(mddev);
3768                 }
3769                 break;
3770         case write_pending:
3771         case active_idle:
3772                 /* these cannot be set */
3773                 break;
3774         }
3775         if (err)
3776                 return err;
3777         else {
3778                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3779                 return len;
3780         }
3781 }
3782 static struct md_sysfs_entry md_array_state =
3783 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3784
3785 static ssize_t
3786 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3787         return sprintf(page, "%d\n",
3788                        atomic_read(&mddev->max_corr_read_errors));
3789 }
3790
3791 static ssize_t
3792 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3793 {
3794         char *e;
3795         unsigned long n = simple_strtoul(buf, &e, 10);
3796
3797         if (*buf && (*e == 0 || *e == '\n')) {
3798                 atomic_set(&mddev->max_corr_read_errors, n);
3799                 return len;
3800         }
3801         return -EINVAL;
3802 }
3803
3804 static struct md_sysfs_entry max_corr_read_errors =
3805 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3806         max_corrected_read_errors_store);
3807
3808 static ssize_t
3809 null_show(mddev_t *mddev, char *page)
3810 {
3811         return -EINVAL;
3812 }
3813
3814 static ssize_t
3815 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3816 {
3817         /* buf must be %d:%d\n? giving major and minor numbers */
3818         /* The new device is added to the array.
3819          * If the array has a persistent superblock, we read the
3820          * superblock to initialise info and check validity.
3821          * Otherwise, only checking done is that in bind_rdev_to_array,
3822          * which mainly checks size.
3823          */
3824         char *e;
3825         int major = simple_strtoul(buf, &e, 10);
3826         int minor;
3827         dev_t dev;
3828         mdk_rdev_t *rdev;
3829         int err;
3830
3831         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3832                 return -EINVAL;
3833         minor = simple_strtoul(e+1, &e, 10);
3834         if (*e && *e != '\n')
3835                 return -EINVAL;
3836         dev = MKDEV(major, minor);
3837         if (major != MAJOR(dev) ||
3838             minor != MINOR(dev))
3839                 return -EOVERFLOW;
3840
3841
3842         if (mddev->persistent) {
3843                 rdev = md_import_device(dev, mddev->major_version,
3844                                         mddev->minor_version);
3845                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3846                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3847                                                        mdk_rdev_t, same_set);
3848                         err = super_types[mddev->major_version]
3849                                 .load_super(rdev, rdev0, mddev->minor_version);
3850                         if (err < 0)
3851                                 goto out;
3852                 }
3853         } else if (mddev->external)
3854                 rdev = md_import_device(dev, -2, -1);
3855         else
3856                 rdev = md_import_device(dev, -1, -1);
3857
3858         if (IS_ERR(rdev))
3859                 return PTR_ERR(rdev);
3860         err = bind_rdev_to_array(rdev, mddev);
3861  out:
3862         if (err)
3863                 export_rdev(rdev);
3864         return err ? err : len;
3865 }
3866
3867 static struct md_sysfs_entry md_new_device =
3868 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3869
3870 static ssize_t
3871 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3872 {
3873         char *end;
3874         unsigned long chunk, end_chunk;
3875
3876         if (!mddev->bitmap)
3877                 goto out;
3878         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3879         while (*buf) {
3880                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3881                 if (buf == end) break;
3882                 if (*end == '-') { /* range */
3883                         buf = end + 1;
3884                         end_chunk = simple_strtoul(buf, &end, 0);
3885                         if (buf == end) break;
3886                 }
3887                 if (*end && !isspace(*end)) break;
3888                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3889                 buf = skip_spaces(end);
3890         }
3891         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3892 out:
3893         return len;
3894 }
3895
3896 static struct md_sysfs_entry md_bitmap =
3897 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3898
3899 static ssize_t
3900 size_show(mddev_t *mddev, char *page)
3901 {
3902         return sprintf(page, "%llu\n",
3903                 (unsigned long long)mddev->dev_sectors / 2);
3904 }
3905
3906 static int update_size(mddev_t *mddev, sector_t num_sectors);
3907
3908 static ssize_t
3909 size_store(mddev_t *mddev, const char *buf, size_t len)
3910 {
3911         /* If array is inactive, we can reduce the component size, but
3912          * not increase it (except from 0).
3913          * If array is active, we can try an on-line resize
3914          */
3915         sector_t sectors;
3916         int err = strict_blocks_to_sectors(buf, &sectors);
3917
3918         if (err < 0)
3919                 return err;
3920         if (mddev->pers) {
3921                 err = update_size(mddev, sectors);
3922                 md_update_sb(mddev, 1);
3923         } else {
3924                 if (mddev->dev_sectors == 0 ||
3925                     mddev->dev_sectors > sectors)
3926                         mddev->dev_sectors = sectors;
3927                 else
3928                         err = -ENOSPC;
3929         }
3930         return err ? err : len;
3931 }
3932
3933 static struct md_sysfs_entry md_size =
3934 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3935
3936
3937 /* Metdata version.
3938  * This is one of
3939  *   'none' for arrays with no metadata (good luck...)
3940  *   'external' for arrays with externally managed metadata,
3941  * or N.M for internally known formats
3942  */
3943 static ssize_t
3944 metadata_show(mddev_t *mddev, char *page)
3945 {
3946         if (mddev->persistent)
3947                 return sprintf(page, "%d.%d\n",
3948                                mddev->major_version, mddev->minor_version);
3949         else if (mddev->external)
3950                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3951         else
3952                 return sprintf(page, "none\n");
3953 }
3954
3955 static ssize_t
3956 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3957 {
3958         int major, minor;
3959         char *e;
3960         /* Changing the details of 'external' metadata is
3961          * always permitted.  Otherwise there must be
3962          * no devices attached to the array.
3963          */
3964         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3965                 ;
3966         else if (!list_empty(&mddev->disks))
3967                 return -EBUSY;
3968
3969         if (cmd_match(buf, "none")) {
3970                 mddev->persistent = 0;
3971                 mddev->external = 0;
3972                 mddev->major_version = 0;
3973                 mddev->minor_version = 90;
3974                 return len;
3975         }
3976         if (strncmp(buf, "external:", 9) == 0) {
3977                 size_t namelen = len-9;
3978                 if (namelen >= sizeof(mddev->metadata_type))
3979                         namelen = sizeof(mddev->metadata_type)-1;
3980                 strncpy(mddev->metadata_type, buf+9, namelen);
3981                 mddev->metadata_type[namelen] = 0;
3982                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3983                         mddev->metadata_type[--namelen] = 0;
3984                 mddev->persistent = 0;
3985                 mddev->external = 1;
3986                 mddev->major_version = 0;
3987                 mddev->minor_version = 90;
3988                 return len;
3989         }
3990         major = simple_strtoul(buf, &e, 10);
3991         if (e==buf || *e != '.')
3992                 return -EINVAL;
3993         buf = e+1;
3994         minor = simple_strtoul(buf, &e, 10);
3995         if (e==buf || (*e && *e != '\n') )
3996                 return -EINVAL;
3997         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3998                 return -ENOENT;
3999         mddev->major_version = major;
4000         mddev->minor_version = minor;
4001         mddev->persistent = 1;
4002         mddev->external = 0;
4003         return len;
4004 }
4005
4006 static struct md_sysfs_entry md_metadata =
4007 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4008
4009 static ssize_t
4010 action_show(mddev_t *mddev, char *page)
4011 {
4012         char *type = "idle";
4013         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4014                 type = "frozen";
4015         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4016             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4017                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4018                         type = "reshape";
4019                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4020                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4021                                 type = "resync";
4022                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4023                                 type = "check";
4024                         else
4025                                 type = "repair";
4026                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4027                         type = "recover";
4028         }
4029         return sprintf(page, "%s\n", type);
4030 }
4031
4032 static void reap_sync_thread(mddev_t *mddev);
4033
4034 static ssize_t
4035 action_store(mddev_t *mddev, const char *page, size_t len)
4036 {
4037         if (!mddev->pers || !mddev->pers->sync_request)
4038                 return -EINVAL;
4039
4040         if (cmd_match(page, "frozen"))
4041                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4042         else
4043                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4044
4045         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4046                 if (mddev->sync_thread) {
4047                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4048                         reap_sync_thread(mddev);
4049                 }
4050         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4051                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4052                 return -EBUSY;
4053         else if (cmd_match(page, "resync"))
4054                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4055         else if (cmd_match(page, "recover")) {
4056                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4057                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4058         } else if (cmd_match(page, "reshape")) {
4059                 int err;
4060                 if (mddev->pers->start_reshape == NULL)
4061                         return -EINVAL;
4062                 err = mddev->pers->start_reshape(mddev);
4063                 if (err)
4064                         return err;
4065                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4066         } else {
4067                 if (cmd_match(page, "check"))
4068                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4069                 else if (!cmd_match(page, "repair"))
4070                         return -EINVAL;
4071                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4072                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4073         }
4074         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075         md_wakeup_thread(mddev->thread);
4076         sysfs_notify_dirent_safe(mddev->sysfs_action);
4077         return len;
4078 }
4079
4080 static ssize_t
4081 mismatch_cnt_show(mddev_t *mddev, char *page)
4082 {
4083         return sprintf(page, "%llu\n",
4084                        (unsigned long long) mddev->resync_mismatches);
4085 }
4086
4087 static struct md_sysfs_entry md_scan_mode =
4088 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4089
4090
4091 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4092
4093 static ssize_t
4094 sync_min_show(mddev_t *mddev, char *page)
4095 {
4096         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4097                        mddev->sync_speed_min ? "local": "system");
4098 }
4099
4100 static ssize_t
4101 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4102 {
4103         int min;
4104         char *e;
4105         if (strncmp(buf, "system", 6)==0) {
4106                 mddev->sync_speed_min = 0;
4107                 return len;
4108         }
4109         min = simple_strtoul(buf, &e, 10);
4110         if (buf == e || (*e && *e != '\n') || min <= 0)
4111                 return -EINVAL;
4112         mddev->sync_speed_min = min;
4113         return len;
4114 }
4115
4116 static struct md_sysfs_entry md_sync_min =
4117 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4118
4119 static ssize_t
4120 sync_max_show(mddev_t *mddev, char *page)
4121 {
4122         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4123                        mddev->sync_speed_max ? "local": "system");
4124 }
4125
4126 static ssize_t
4127 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4128 {
4129         int max;
4130         char *e;
4131         if (strncmp(buf, "system", 6)==0) {
4132                 mddev->sync_speed_max = 0;
4133                 return len;
4134         }
4135         max = simple_strtoul(buf, &e, 10);
4136         if (buf == e || (*e && *e != '\n') || max <= 0)
4137                 return -EINVAL;
4138         mddev->sync_speed_max = max;
4139         return len;
4140 }
4141
4142 static struct md_sysfs_entry md_sync_max =
4143 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4144
4145 static ssize_t
4146 degraded_show(mddev_t *mddev, char *page)
4147 {
4148         return sprintf(page, "%d\n", mddev->degraded);
4149 }
4150 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4151
4152 static ssize_t
4153 sync_force_parallel_show(mddev_t *mddev, char *page)
4154 {
4155         return sprintf(page, "%d\n", mddev->parallel_resync);
4156 }
4157
4158 static ssize_t
4159 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4160 {
4161         long n;
4162
4163         if (strict_strtol(buf, 10, &n))
4164                 return -EINVAL;
4165
4166         if (n != 0 && n != 1)
4167                 return -EINVAL;
4168
4169         mddev->parallel_resync = n;
4170
4171         if (mddev->sync_thread)
4172                 wake_up(&resync_wait);
4173
4174         return len;
4175 }
4176
4177 /* force parallel resync, even with shared block devices */
4178 static struct md_sysfs_entry md_sync_force_parallel =
4179 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4180        sync_force_parallel_show, sync_force_parallel_store);
4181
4182 static ssize_t
4183 sync_speed_show(mddev_t *mddev, char *page)
4184 {
4185         unsigned long resync, dt, db;
4186         if (mddev->curr_resync == 0)
4187                 return sprintf(page, "none\n");
4188         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4189         dt = (jiffies - mddev->resync_mark) / HZ;
4190         if (!dt) dt++;
4191         db = resync - mddev->resync_mark_cnt;
4192         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4193 }
4194
4195 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4196
4197 static ssize_t
4198 sync_completed_show(mddev_t *mddev, char *page)
4199 {
4200         unsigned long long max_sectors, resync;
4201
4202         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4203                 return sprintf(page, "none\n");
4204
4205         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4206                 max_sectors = mddev->resync_max_sectors;
4207         else
4208                 max_sectors = mddev->dev_sectors;
4209
4210         resync = mddev->curr_resync_completed;
4211         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4212 }
4213
4214 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4215
4216 static ssize_t
4217 min_sync_show(mddev_t *mddev, char *page)
4218 {
4219         return sprintf(page, "%llu\n",
4220                        (unsigned long long)mddev->resync_min);
4221 }
4222 static ssize_t
4223 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4224 {
4225         unsigned long long min;
4226         if (strict_strtoull(buf, 10, &min))
4227                 return -EINVAL;
4228         if (min > mddev->resync_max)
4229                 return -EINVAL;
4230         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4231                 return -EBUSY;
4232
4233         /* Must be a multiple of chunk_size */
4234         if (mddev->chunk_sectors) {
4235                 sector_t temp = min;
4236                 if (sector_div(temp, mddev->chunk_sectors))
4237                         return -EINVAL;
4238         }
4239         mddev->resync_min = min;
4240
4241         return len;
4242 }
4243
4244 static struct md_sysfs_entry md_min_sync =
4245 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4246
4247 static ssize_t
4248 max_sync_show(mddev_t *mddev, char *page)
4249 {
4250         if (mddev->resync_max == MaxSector)
4251                 return sprintf(page, "max\n");
4252         else
4253                 return sprintf(page, "%llu\n",
4254                                (unsigned long long)mddev->resync_max);
4255 }
4256 static ssize_t
4257 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4258 {
4259         if (strncmp(buf, "max", 3) == 0)
4260                 mddev->resync_max = MaxSector;
4261         else {
4262                 unsigned long long max;
4263                 if (strict_strtoull(buf, 10, &max))
4264                         return -EINVAL;
4265                 if (max < mddev->resync_min)
4266                         return -EINVAL;
4267                 if (max < mddev->resync_max &&
4268                     mddev->ro == 0 &&
4269                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4270                         return -EBUSY;
4271
4272                 /* Must be a multiple of chunk_size */
4273                 if (mddev->chunk_sectors) {
4274                         sector_t temp = max;
4275                         if (sector_div(temp, mddev->chunk_sectors))
4276                                 return -EINVAL;
4277                 }
4278                 mddev->resync_max = max;
4279         }
4280         wake_up(&mddev->recovery_wait);
4281         return len;
4282 }
4283
4284 static struct md_sysfs_entry md_max_sync =
4285 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4286
4287 static ssize_t
4288 suspend_lo_show(mddev_t *mddev, char *page)
4289 {
4290         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4291 }
4292
4293 static ssize_t
4294 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4295 {
4296         char *e;
4297         unsigned long long new = simple_strtoull(buf, &e, 10);
4298         unsigned long long old = mddev->suspend_lo;
4299
4300         if (mddev->pers == NULL || 
4301             mddev->pers->quiesce == NULL)
4302                 return -EINVAL;
4303         if (buf == e || (*e && *e != '\n'))
4304                 return -EINVAL;
4305
4306         mddev->suspend_lo = new;
4307         if (new >= old)
4308                 /* Shrinking suspended region */
4309                 mddev->pers->quiesce(mddev, 2);
4310         else {
4311                 /* Expanding suspended region - need to wait */
4312                 mddev->pers->quiesce(mddev, 1);
4313                 mddev->pers->quiesce(mddev, 0);
4314         }
4315         return len;
4316 }
4317 static struct md_sysfs_entry md_suspend_lo =
4318 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4319
4320
4321 static ssize_t
4322 suspend_hi_show(mddev_t *mddev, char *page)
4323 {
4324         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4325 }
4326
4327 static ssize_t
4328 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4329 {
4330         char *e;
4331         unsigned long long new = simple_strtoull(buf, &e, 10);
4332         unsigned long long old = mddev->suspend_hi;
4333
4334         if (mddev->pers == NULL ||
4335             mddev->pers->quiesce == NULL)
4336                 return -EINVAL;
4337         if (buf == e || (*e && *e != '\n'))
4338                 return -EINVAL;
4339
4340         mddev->suspend_hi = new;
4341         if (new <= old)
4342                 /* Shrinking suspended region */
4343                 mddev->pers->quiesce(mddev, 2);
4344         else {
4345                 /* Expanding suspended region - need to wait */
4346                 mddev->pers->quiesce(mddev, 1);
4347                 mddev->pers->quiesce(mddev, 0);
4348         }
4349         return len;
4350 }
4351 static struct md_sysfs_entry md_suspend_hi =
4352 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4353
4354 static ssize_t
4355 reshape_position_show(mddev_t *mddev, char *page)
4356 {
4357         if (mddev->reshape_position != MaxSector)
4358                 return sprintf(page, "%llu\n",
4359                                (unsigned long long)mddev->reshape_position);
4360         strcpy(page, "none\n");
4361         return 5;
4362 }
4363
4364 static ssize_t
4365 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4366 {
4367         char *e;
4368         unsigned long long new = simple_strtoull(buf, &e, 10);
4369         if (mddev->pers)
4370                 return -EBUSY;
4371         if (buf == e || (*e && *e != '\n'))
4372                 return -EINVAL;
4373         mddev->reshape_position = new;
4374         mddev->delta_disks = 0;
4375         mddev->new_level = mddev->level;
4376         mddev->new_layout = mddev->layout;
4377         mddev->new_chunk_sectors = mddev->chunk_sectors;
4378         return len;
4379 }
4380
4381 static struct md_sysfs_entry md_reshape_position =
4382 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4383        reshape_position_store);
4384
4385 static ssize_t
4386 array_size_show(mddev_t *mddev, char *page)
4387 {
4388         if (mddev->external_size)
4389                 return sprintf(page, "%llu\n",
4390                                (unsigned long long)mddev->array_sectors/2);
4391         else
4392                 return sprintf(page, "default\n");
4393 }
4394
4395 static ssize_t
4396 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4397 {
4398         sector_t sectors;
4399
4400         if (strncmp(buf, "default", 7) == 0) {
4401                 if (mddev->pers)
4402                         sectors = mddev->pers->size(mddev, 0, 0);
4403                 else
4404                         sectors = mddev->array_sectors;
4405
4406                 mddev->external_size = 0;
4407         } else {
4408                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4409                         return -EINVAL;
4410                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4411                         return -E2BIG;
4412
4413                 mddev->external_size = 1;
4414         }
4415
4416         mddev->array_sectors = sectors;
4417         if (mddev->pers) {
4418                 set_capacity(mddev->gendisk, mddev->array_sectors);
4419                 revalidate_disk(mddev->gendisk);
4420         }
4421         return len;
4422 }
4423
4424 static struct md_sysfs_entry md_array_size =
4425 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4426        array_size_store);
4427
4428 static struct attribute *md_default_attrs[] = {
4429         &md_level.attr,
4430         &md_layout.attr,
4431         &md_raid_disks.attr,
4432         &md_chunk_size.attr,
4433         &md_size.attr,
4434         &md_resync_start.attr,
4435         &md_metadata.attr,
4436         &md_new_device.attr,
4437         &md_safe_delay.attr,
4438         &md_array_state.attr,
4439         &md_reshape_position.attr,
4440         &md_array_size.attr,
4441         &max_corr_read_errors.attr,
4442         NULL,
4443 };
4444
4445 static struct attribute *md_redundancy_attrs[] = {
4446         &md_scan_mode.attr,
4447         &md_mismatches.attr,
4448         &md_sync_min.attr,
4449         &md_sync_max.attr,
4450         &md_sync_speed.attr,
4451         &md_sync_force_parallel.attr,
4452         &md_sync_completed.attr,
4453         &md_min_sync.attr,
4454         &md_max_sync.attr,
4455         &md_suspend_lo.attr,
4456         &md_suspend_hi.attr,
4457         &md_bitmap.attr,
4458         &md_degraded.attr,
4459         NULL,
4460 };
4461 static struct attribute_group md_redundancy_group = {
4462         .name = NULL,
4463         .attrs = md_redundancy_attrs,
4464 };
4465
4466
4467 static ssize_t
4468 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4469 {
4470         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4471         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4472         ssize_t rv;
4473
4474         if (!entry->show)
4475                 return -EIO;
4476         rv = mddev_lock(mddev);
4477         if (!rv) {
4478                 rv = entry->show(mddev, page);
4479                 mddev_unlock(mddev);
4480         }
4481         return rv;
4482 }
4483
4484 static ssize_t
4485 md_attr_store(struct kobject *kobj, struct attribute *attr,
4486               const char *page, size_t length)
4487 {
4488         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4489         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4490         ssize_t rv;
4491
4492         if (!entry->store)
4493                 return -EIO;
4494         if (!capable(CAP_SYS_ADMIN))
4495                 return -EACCES;
4496         rv = mddev_lock(mddev);
4497         if (mddev->hold_active == UNTIL_IOCTL)
4498                 mddev->hold_active = 0;
4499         if (!rv) {
4500                 rv = entry->store(mddev, page, length);
4501                 mddev_unlock(mddev);
4502         }
4503         return rv;
4504 }
4505
4506 static void md_free(struct kobject *ko)
4507 {
4508         mddev_t *mddev = container_of(ko, mddev_t, kobj);
4509
4510         if (mddev->sysfs_state)
4511                 sysfs_put(mddev->sysfs_state);
4512
4513         if (mddev->gendisk) {
4514                 del_gendisk(mddev->gendisk);
4515                 put_disk(mddev->gendisk);
4516         }
4517         if (mddev->queue)
4518                 blk_cleanup_queue(mddev->queue);
4519
4520         kfree(mddev);
4521 }
4522
4523 static const struct sysfs_ops md_sysfs_ops = {
4524         .show   = md_attr_show,
4525         .store  = md_attr_store,
4526 };
4527 static struct kobj_type md_ktype = {
4528         .release        = md_free,
4529         .sysfs_ops      = &md_sysfs_ops,
4530         .default_attrs  = md_default_attrs,
4531 };
4532
4533 int mdp_major = 0;
4534
4535 static void mddev_delayed_delete(struct work_struct *ws)
4536 {
4537         mddev_t *mddev = container_of(ws, mddev_t, del_work);
4538
4539         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4540         kobject_del(&mddev->kobj);
4541         kobject_put(&mddev->kobj);
4542 }
4543
4544 static int md_alloc(dev_t dev, char *name)
4545 {
4546         static DEFINE_MUTEX(disks_mutex);
4547         mddev_t *mddev = mddev_find(dev);
4548         struct gendisk *disk;
4549         int partitioned;
4550         int shift;
4551         int unit;
4552         int error;
4553
4554         if (!mddev)
4555                 return -ENODEV;
4556
4557         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4558         shift = partitioned ? MdpMinorShift : 0;
4559         unit = MINOR(mddev->unit) >> shift;
4560
4561         /* wait for any previous instance of this device to be
4562          * completely removed (mddev_delayed_delete).
4563          */
4564         flush_workqueue(md_misc_wq);
4565
4566         mutex_lock(&disks_mutex);
4567         error = -EEXIST;
4568         if (mddev->gendisk)
4569                 goto abort;
4570
4571         if (name) {
4572                 /* Need to ensure that 'name' is not a duplicate.
4573                  */
4574                 mddev_t *mddev2;
4575                 spin_lock(&all_mddevs_lock);
4576
4577                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4578                         if (mddev2->gendisk &&
4579                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4580                                 spin_unlock(&all_mddevs_lock);
4581                                 goto abort;
4582                         }
4583                 spin_unlock(&all_mddevs_lock);
4584         }
4585
4586         error = -ENOMEM;
4587         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4588         if (!mddev->queue)
4589                 goto abort;
4590         mddev->queue->queuedata = mddev;
4591
4592         blk_queue_make_request(mddev->queue, md_make_request);
4593
4594         disk = alloc_disk(1 << shift);
4595         if (!disk) {
4596                 blk_cleanup_queue(mddev->queue);
4597                 mddev->queue = NULL;
4598                 goto abort;
4599         }
4600         disk->major = MAJOR(mddev->unit);
4601         disk->first_minor = unit << shift;
4602         if (name)
4603                 strcpy(disk->disk_name, name);
4604         else if (partitioned)
4605                 sprintf(disk->disk_name, "md_d%d", unit);
4606         else
4607                 sprintf(disk->disk_name, "md%d", unit);
4608         disk->fops = &md_fops;
4609         disk->private_data = mddev;
4610         disk->queue = mddev->queue;
4611         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4612         /* Allow extended partitions.  This makes the
4613          * 'mdp' device redundant, but we can't really
4614          * remove it now.
4615          */
4616         disk->flags |= GENHD_FL_EXT_DEVT;
4617         mddev->gendisk = disk;
4618         /* As soon as we call add_disk(), another thread could get
4619          * through to md_open, so make sure it doesn't get too far
4620          */
4621         mutex_lock(&mddev->open_mutex);
4622         add_disk(disk);
4623
4624         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4625                                      &disk_to_dev(disk)->kobj, "%s", "md");
4626         if (error) {
4627                 /* This isn't possible, but as kobject_init_and_add is marked
4628                  * __must_check, we must do something with the result
4629                  */
4630                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4631                        disk->disk_name);
4632                 error = 0;
4633         }
4634         if (mddev->kobj.sd &&
4635             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4636                 printk(KERN_DEBUG "pointless warning\n");
4637         mutex_unlock(&mddev->open_mutex);
4638  abort:
4639         mutex_unlock(&disks_mutex);
4640         if (!error && mddev->kobj.sd) {
4641                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4642                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4643         }
4644         mddev_put(mddev);
4645         return error;
4646 }
4647
4648 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4649 {
4650         md_alloc(dev, NULL);
4651         return NULL;
4652 }
4653
4654 static int add_named_array(const char *val, struct kernel_param *kp)
4655 {
4656         /* val must be "md_*" where * is not all digits.
4657          * We allocate an array with a large free minor number, and
4658          * set the name to val.  val must not already be an active name.
4659          */
4660         int len = strlen(val);
4661         char buf[DISK_NAME_LEN];
4662
4663         while (len && val[len-1] == '\n')
4664                 len--;
4665         if (len >= DISK_NAME_LEN)
4666                 return -E2BIG;
4667         strlcpy(buf, val, len+1);
4668         if (strncmp(buf, "md_", 3) != 0)
4669                 return -EINVAL;
4670         return md_alloc(0, buf);
4671 }
4672
4673 static void md_safemode_timeout(unsigned long data)
4674 {
4675         mddev_t *mddev = (mddev_t *) data;
4676
4677         if (!atomic_read(&mddev->writes_pending)) {
4678                 mddev->safemode = 1;
4679                 if (mddev->external)
4680                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4681         }
4682         md_wakeup_thread(mddev->thread);
4683 }
4684
4685 static int start_dirty_degraded;
4686
4687 int md_run(mddev_t *mddev)
4688 {
4689         int err;
4690         mdk_rdev_t *rdev;
4691         struct mdk_personality *pers;
4692
4693         if (list_empty(&mddev->disks))
4694                 /* cannot run an array with no devices.. */
4695                 return -EINVAL;
4696
4697         if (mddev->pers)
4698                 return -EBUSY;
4699         /* Cannot run until previous stop completes properly */
4700         if (mddev->sysfs_active)
4701                 return -EBUSY;
4702
4703         /*
4704          * Analyze all RAID superblock(s)
4705          */
4706         if (!mddev->raid_disks) {
4707                 if (!mddev->persistent)
4708                         return -EINVAL;
4709                 analyze_sbs(mddev);
4710         }
4711
4712         if (mddev->level != LEVEL_NONE)
4713                 request_module("md-level-%d", mddev->level);
4714         else if (mddev->clevel[0])
4715                 request_module("md-%s", mddev->clevel);
4716
4717         /*
4718          * Drop all container device buffers, from now on
4719          * the only valid external interface is through the md
4720          * device.
4721          */
4722         list_for_each_entry(rdev, &mddev->disks, same_set) {
4723                 if (test_bit(Faulty, &rdev->flags))
4724                         continue;
4725                 sync_blockdev(rdev->bdev);
4726                 invalidate_bdev(rdev->bdev);
4727
4728                 /* perform some consistency tests on the device.
4729                  * We don't want the data to overlap the metadata,
4730                  * Internal Bitmap issues have been handled elsewhere.
4731                  */
4732                 if (rdev->meta_bdev) {
4733                         /* Nothing to check */;
4734                 } else if (rdev->data_offset < rdev->sb_start) {
4735                         if (mddev->dev_sectors &&
4736                             rdev->data_offset + mddev->dev_sectors
4737                             > rdev->sb_start) {
4738                                 printk("md: %s: data overlaps metadata\n",
4739                                        mdname(mddev));
4740                                 return -EINVAL;
4741                         }
4742                 } else {
4743                         if (rdev->sb_start + rdev->sb_size/512
4744                             > rdev->data_offset) {
4745                                 printk("md: %s: metadata overlaps data\n",
4746                                        mdname(mddev));
4747                                 return -EINVAL;
4748                         }
4749                 }
4750                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4751         }
4752
4753         if (mddev->bio_set == NULL)
4754                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4755                                                sizeof(mddev_t *));
4756
4757         spin_lock(&pers_lock);
4758         pers = find_pers(mddev->level, mddev->clevel);
4759         if (!pers || !try_module_get(pers->owner)) {
4760                 spin_unlock(&pers_lock);
4761                 if (mddev->level != LEVEL_NONE)
4762                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4763                                mddev->level);
4764                 else
4765                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4766                                mddev->clevel);
4767                 return -EINVAL;
4768         }
4769         mddev->pers = pers;
4770         spin_unlock(&pers_lock);
4771         if (mddev->level != pers->level) {
4772                 mddev->level = pers->level;
4773                 mddev->new_level = pers->level;
4774         }
4775         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4776
4777         if (mddev->reshape_position != MaxSector &&
4778             pers->start_reshape == NULL) {
4779                 /* This personality cannot handle reshaping... */
4780                 mddev->pers = NULL;
4781                 module_put(pers->owner);
4782                 return -EINVAL;
4783         }
4784
4785         if (pers->sync_request) {
4786                 /* Warn if this is a potentially silly
4787                  * configuration.
4788                  */
4789                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4790                 mdk_rdev_t *rdev2;
4791                 int warned = 0;
4792
4793                 list_for_each_entry(rdev, &mddev->disks, same_set)
4794                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4795                                 if (rdev < rdev2 &&
4796                                     rdev->bdev->bd_contains ==
4797                                     rdev2->bdev->bd_contains) {
4798                                         printk(KERN_WARNING
4799                                                "%s: WARNING: %s appears to be"
4800                                                " on the same physical disk as"
4801                                                " %s.\n",
4802                                                mdname(mddev),
4803                                                bdevname(rdev->bdev,b),
4804                                                bdevname(rdev2->bdev,b2));
4805                                         warned = 1;
4806                                 }
4807                         }
4808
4809                 if (warned)
4810                         printk(KERN_WARNING
4811                                "True protection against single-disk"
4812                                " failure might be compromised.\n");
4813         }
4814
4815         mddev->recovery = 0;
4816         /* may be over-ridden by personality */
4817         mddev->resync_max_sectors = mddev->dev_sectors;
4818
4819         mddev->ok_start_degraded = start_dirty_degraded;
4820
4821         if (start_readonly && mddev->ro == 0)
4822                 mddev->ro = 2; /* read-only, but switch on first write */
4823
4824         err = mddev->pers->run(mddev);
4825         if (err)
4826                 printk(KERN_ERR "md: pers->run() failed ...\n");
4827         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4828                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4829                           " but 'external_size' not in effect?\n", __func__);
4830                 printk(KERN_ERR
4831                        "md: invalid array_size %llu > default size %llu\n",
4832                        (unsigned long long)mddev->array_sectors / 2,
4833                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4834                 err = -EINVAL;
4835                 mddev->pers->stop(mddev);
4836         }
4837         if (err == 0 && mddev->pers->sync_request) {
4838                 err = bitmap_create(mddev);
4839                 if (err) {
4840                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4841                                mdname(mddev), err);
4842                         mddev->pers->stop(mddev);
4843                 }
4844         }
4845         if (err) {
4846                 module_put(mddev->pers->owner);
4847                 mddev->pers = NULL;
4848                 bitmap_destroy(mddev);
4849                 return err;
4850         }
4851         if (mddev->pers->sync_request) {
4852                 if (mddev->kobj.sd &&
4853                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4854                         printk(KERN_WARNING
4855                                "md: cannot register extra attributes for %s\n",
4856                                mdname(mddev));
4857                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4858         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4859                 mddev->ro = 0;
4860
4861         atomic_set(&mddev->writes_pending,0);
4862         atomic_set(&mddev->max_corr_read_errors,
4863                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4864         mddev->safemode = 0;
4865         mddev->safemode_timer.function = md_safemode_timeout;
4866         mddev->safemode_timer.data = (unsigned long) mddev;
4867         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4868         mddev->in_sync = 1;
4869         smp_wmb();
4870         mddev->ready = 1;
4871         list_for_each_entry(rdev, &mddev->disks, same_set)
4872                 if (rdev->raid_disk >= 0)
4873                         if (sysfs_link_rdev(mddev, rdev))
4874                                 /* failure here is OK */;
4875         
4876         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4877         
4878         if (mddev->flags)
4879                 md_update_sb(mddev, 0);
4880
4881         md_new_event(mddev);
4882         sysfs_notify_dirent_safe(mddev->sysfs_state);
4883         sysfs_notify_dirent_safe(mddev->sysfs_action);
4884         sysfs_notify(&mddev->kobj, NULL, "degraded");
4885         return 0;
4886 }
4887 EXPORT_SYMBOL_GPL(md_run);
4888
4889 static int do_md_run(mddev_t *mddev)
4890 {
4891         int err;
4892
4893         err = md_run(mddev);
4894         if (err)
4895                 goto out;
4896         err = bitmap_load(mddev);
4897         if (err) {
4898                 bitmap_destroy(mddev);
4899                 goto out;
4900         }
4901
4902         md_wakeup_thread(mddev->thread);
4903         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4904
4905         set_capacity(mddev->gendisk, mddev->array_sectors);
4906         revalidate_disk(mddev->gendisk);
4907         mddev->changed = 1;
4908         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4909 out:
4910         return err;
4911 }
4912
4913 static int restart_array(mddev_t *mddev)
4914 {
4915         struct gendisk *disk = mddev->gendisk;
4916
4917         /* Complain if it has no devices */
4918         if (list_empty(&mddev->disks))
4919                 return -ENXIO;
4920         if (!mddev->pers)
4921                 return -EINVAL;
4922         if (!mddev->ro)
4923                 return -EBUSY;
4924         mddev->safemode = 0;
4925         mddev->ro = 0;
4926         set_disk_ro(disk, 0);
4927         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4928                 mdname(mddev));
4929         /* Kick recovery or resync if necessary */
4930         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4931         md_wakeup_thread(mddev->thread);
4932         md_wakeup_thread(mddev->sync_thread);
4933         sysfs_notify_dirent_safe(mddev->sysfs_state);
4934         return 0;
4935 }
4936
4937 /* similar to deny_write_access, but accounts for our holding a reference
4938  * to the file ourselves */
4939 static int deny_bitmap_write_access(struct file * file)
4940 {
4941         struct inode *inode = file->f_mapping->host;
4942
4943         spin_lock(&inode->i_lock);
4944         if (atomic_read(&inode->i_writecount) > 1) {
4945                 spin_unlock(&inode->i_lock);
4946                 return -ETXTBSY;
4947         }
4948         atomic_set(&inode->i_writecount, -1);
4949         spin_unlock(&inode->i_lock);
4950
4951         return 0;
4952 }
4953
4954 void restore_bitmap_write_access(struct file *file)
4955 {
4956         struct inode *inode = file->f_mapping->host;
4957
4958         spin_lock(&inode->i_lock);
4959         atomic_set(&inode->i_writecount, 1);
4960         spin_unlock(&inode->i_lock);
4961 }
4962
4963 static void md_clean(mddev_t *mddev)
4964 {
4965         mddev->array_sectors = 0;
4966         mddev->external_size = 0;
4967         mddev->dev_sectors = 0;
4968         mddev->raid_disks = 0;
4969         mddev->recovery_cp = 0;
4970         mddev->resync_min = 0;
4971         mddev->resync_max = MaxSector;
4972         mddev->reshape_position = MaxSector;
4973         mddev->external = 0;
4974         mddev->persistent = 0;
4975         mddev->level = LEVEL_NONE;
4976         mddev->clevel[0] = 0;
4977         mddev->flags = 0;
4978         mddev->ro = 0;
4979         mddev->metadata_type[0] = 0;
4980         mddev->chunk_sectors = 0;
4981         mddev->ctime = mddev->utime = 0;
4982         mddev->layout = 0;
4983         mddev->max_disks = 0;
4984         mddev->events = 0;
4985         mddev->can_decrease_events = 0;
4986         mddev->delta_disks = 0;
4987         mddev->new_level = LEVEL_NONE;
4988         mddev->new_layout = 0;
4989         mddev->new_chunk_sectors = 0;
4990         mddev->curr_resync = 0;
4991         mddev->resync_mismatches = 0;
4992         mddev->suspend_lo = mddev->suspend_hi = 0;
4993         mddev->sync_speed_min = mddev->sync_speed_max = 0;
4994         mddev->recovery = 0;
4995         mddev->in_sync = 0;
4996         mddev->changed = 0;
4997         mddev->degraded = 0;
4998         mddev->safemode = 0;
4999         mddev->bitmap_info.offset = 0;
5000         mddev->bitmap_info.default_offset = 0;
5001         mddev->bitmap_info.chunksize = 0;
5002         mddev->bitmap_info.daemon_sleep = 0;
5003         mddev->bitmap_info.max_write_behind = 0;
5004 }
5005
5006 static void __md_stop_writes(mddev_t *mddev)
5007 {
5008         if (mddev->sync_thread) {
5009                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5010                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5011                 reap_sync_thread(mddev);
5012         }
5013
5014         del_timer_sync(&mddev->safemode_timer);
5015
5016         bitmap_flush(mddev);
5017         md_super_wait(mddev);
5018
5019         if (!mddev->in_sync || mddev->flags) {
5020                 /* mark array as shutdown cleanly */
5021                 mddev->in_sync = 1;
5022                 md_update_sb(mddev, 1);
5023         }
5024 }
5025
5026 void md_stop_writes(mddev_t *mddev)
5027 {
5028         mddev_lock(mddev);
5029         __md_stop_writes(mddev);
5030         mddev_unlock(mddev);
5031 }
5032 EXPORT_SYMBOL_GPL(md_stop_writes);
5033
5034 void md_stop(mddev_t *mddev)
5035 {
5036         mddev->ready = 0;
5037         mddev->pers->stop(mddev);
5038         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5039                 mddev->to_remove = &md_redundancy_group;
5040         module_put(mddev->pers->owner);
5041         mddev->pers = NULL;
5042         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5043 }
5044 EXPORT_SYMBOL_GPL(md_stop);
5045
5046 static int md_set_readonly(mddev_t *mddev, int is_open)
5047 {
5048         int err = 0;
5049         mutex_lock(&mddev->open_mutex);
5050         if (atomic_read(&mddev->openers) > is_open) {
5051                 printk("md: %s still in use.\n",mdname(mddev));
5052                 err = -EBUSY;
5053                 goto out;
5054         }
5055         if (mddev->pers) {
5056                 __md_stop_writes(mddev);
5057
5058                 err  = -ENXIO;
5059                 if (mddev->ro==1)
5060                         goto out;
5061                 mddev->ro = 1;
5062                 set_disk_ro(mddev->gendisk, 1);
5063                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5064                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5065                 err = 0;        
5066         }
5067 out:
5068         mutex_unlock(&mddev->open_mutex);
5069         return err;
5070 }
5071
5072 /* mode:
5073  *   0 - completely stop and dis-assemble array
5074  *   2 - stop but do not disassemble array
5075  */
5076 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5077 {
5078         struct gendisk *disk = mddev->gendisk;
5079         mdk_rdev_t *rdev;
5080
5081         mutex_lock(&mddev->open_mutex);
5082         if (atomic_read(&mddev->openers) > is_open ||
5083             mddev->sysfs_active) {
5084                 printk("md: %s still in use.\n",mdname(mddev));
5085                 mutex_unlock(&mddev->open_mutex);
5086                 return -EBUSY;
5087         }
5088
5089         if (mddev->pers) {
5090                 if (mddev->ro)
5091                         set_disk_ro(disk, 0);
5092
5093                 __md_stop_writes(mddev);
5094                 md_stop(mddev);
5095                 mddev->queue->merge_bvec_fn = NULL;
5096                 mddev->queue->backing_dev_info.congested_fn = NULL;
5097
5098                 /* tell userspace to handle 'inactive' */
5099                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5100
5101                 list_for_each_entry(rdev, &mddev->disks, same_set)
5102                         if (rdev->raid_disk >= 0)
5103                                 sysfs_unlink_rdev(mddev, rdev);
5104
5105                 set_capacity(disk, 0);
5106                 mutex_unlock(&mddev->open_mutex);
5107                 mddev->changed = 1;
5108                 revalidate_disk(disk);
5109
5110                 if (mddev->ro)
5111                         mddev->ro = 0;
5112         } else
5113                 mutex_unlock(&mddev->open_mutex);
5114         /*
5115          * Free resources if final stop
5116          */
5117         if (mode == 0) {
5118                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5119
5120                 bitmap_destroy(mddev);
5121                 if (mddev->bitmap_info.file) {
5122                         restore_bitmap_write_access(mddev->bitmap_info.file);
5123                         fput(mddev->bitmap_info.file);
5124                         mddev->bitmap_info.file = NULL;
5125                 }
5126                 mddev->bitmap_info.offset = 0;
5127
5128                 export_array(mddev);
5129
5130                 md_clean(mddev);
5131                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5132                 if (mddev->hold_active == UNTIL_STOP)
5133                         mddev->hold_active = 0;
5134         }
5135         blk_integrity_unregister(disk);
5136         md_new_event(mddev);
5137         sysfs_notify_dirent_safe(mddev->sysfs_state);
5138         return 0;
5139 }
5140
5141 #ifndef MODULE
5142 static void autorun_array(mddev_t *mddev)
5143 {
5144         mdk_rdev_t *rdev;
5145         int err;
5146
5147         if (list_empty(&mddev->disks))
5148                 return;
5149
5150         printk(KERN_INFO "md: running: ");
5151
5152         list_for_each_entry(rdev, &mddev->disks, same_set) {
5153                 char b[BDEVNAME_SIZE];
5154                 printk("<%s>", bdevname(rdev->bdev,b));
5155         }
5156         printk("\n");
5157
5158         err = do_md_run(mddev);
5159         if (err) {
5160                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5161                 do_md_stop(mddev, 0, 0);
5162         }
5163 }
5164
5165 /*
5166  * lets try to run arrays based on all disks that have arrived
5167  * until now. (those are in pending_raid_disks)
5168  *
5169  * the method: pick the first pending disk, collect all disks with
5170  * the same UUID, remove all from the pending list and put them into
5171  * the 'same_array' list. Then order this list based on superblock
5172  * update time (freshest comes first), kick out 'old' disks and
5173  * compare superblocks. If everything's fine then run it.
5174  *
5175  * If "unit" is allocated, then bump its reference count
5176  */
5177 static void autorun_devices(int part)
5178 {
5179         mdk_rdev_t *rdev0, *rdev, *tmp;
5180         mddev_t *mddev;
5181         char b[BDEVNAME_SIZE];
5182
5183         printk(KERN_INFO "md: autorun ...\n");
5184         while (!list_empty(&pending_raid_disks)) {
5185                 int unit;
5186                 dev_t dev;
5187                 LIST_HEAD(candidates);
5188                 rdev0 = list_entry(pending_raid_disks.next,
5189                                          mdk_rdev_t, same_set);
5190
5191                 printk(KERN_INFO "md: considering %s ...\n",
5192                         bdevname(rdev0->bdev,b));
5193                 INIT_LIST_HEAD(&candidates);
5194                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5195                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5196                                 printk(KERN_INFO "md:  adding %s ...\n",
5197                                         bdevname(rdev->bdev,b));
5198                                 list_move(&rdev->same_set, &candidates);
5199                         }
5200                 /*
5201                  * now we have a set of devices, with all of them having
5202                  * mostly sane superblocks. It's time to allocate the
5203                  * mddev.
5204                  */
5205                 if (part) {
5206                         dev = MKDEV(mdp_major,
5207                                     rdev0->preferred_minor << MdpMinorShift);
5208                         unit = MINOR(dev) >> MdpMinorShift;
5209                 } else {
5210                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5211                         unit = MINOR(dev);
5212                 }
5213                 if (rdev0->preferred_minor != unit) {
5214                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5215                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5216                         break;
5217                 }
5218
5219                 md_probe(dev, NULL, NULL);
5220                 mddev = mddev_find(dev);
5221                 if (!mddev || !mddev->gendisk) {
5222                         if (mddev)
5223                                 mddev_put(mddev);
5224                         printk(KERN_ERR
5225                                 "md: cannot allocate memory for md drive.\n");
5226                         break;
5227                 }
5228                 if (mddev_lock(mddev)) 
5229                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5230                                mdname(mddev));
5231                 else if (mddev->raid_disks || mddev->major_version
5232                          || !list_empty(&mddev->disks)) {
5233                         printk(KERN_WARNING 
5234                                 "md: %s already running, cannot run %s\n",
5235                                 mdname(mddev), bdevname(rdev0->bdev,b));
5236                         mddev_unlock(mddev);
5237                 } else {
5238                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5239                         mddev->persistent = 1;
5240                         rdev_for_each_list(rdev, tmp, &candidates) {
5241                                 list_del_init(&rdev->same_set);
5242                                 if (bind_rdev_to_array(rdev, mddev))
5243                                         export_rdev(rdev);
5244                         }
5245                         autorun_array(mddev);
5246                         mddev_unlock(mddev);
5247                 }
5248                 /* on success, candidates will be empty, on error
5249                  * it won't...
5250                  */
5251                 rdev_for_each_list(rdev, tmp, &candidates) {
5252                         list_del_init(&rdev->same_set);
5253                         export_rdev(rdev);
5254                 }
5255                 mddev_put(mddev);
5256         }
5257         printk(KERN_INFO "md: ... autorun DONE.\n");
5258 }
5259 #endif /* !MODULE */
5260
5261 static int get_version(void __user * arg)
5262 {
5263         mdu_version_t ver;
5264
5265         ver.major = MD_MAJOR_VERSION;
5266         ver.minor = MD_MINOR_VERSION;
5267         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5268
5269         if (copy_to_user(arg, &ver, sizeof(ver)))
5270                 return -EFAULT;
5271
5272         return 0;
5273 }
5274
5275 static int get_array_info(mddev_t * mddev, void __user * arg)
5276 {
5277         mdu_array_info_t info;
5278         int nr,working,insync,failed,spare;
5279         mdk_rdev_t *rdev;
5280
5281         nr=working=insync=failed=spare=0;
5282         list_for_each_entry(rdev, &mddev->disks, same_set) {
5283                 nr++;
5284                 if (test_bit(Faulty, &rdev->flags))
5285                         failed++;
5286                 else {
5287                         working++;
5288                         if (test_bit(In_sync, &rdev->flags))
5289                                 insync++;       
5290                         else
5291                                 spare++;
5292                 }
5293         }
5294
5295         info.major_version = mddev->major_version;
5296         info.minor_version = mddev->minor_version;
5297         info.patch_version = MD_PATCHLEVEL_VERSION;
5298         info.ctime         = mddev->ctime;
5299         info.level         = mddev->level;
5300         info.size          = mddev->dev_sectors / 2;
5301         if (info.size != mddev->dev_sectors / 2) /* overflow */
5302                 info.size = -1;
5303         info.nr_disks      = nr;
5304         info.raid_disks    = mddev->raid_disks;
5305         info.md_minor      = mddev->md_minor;
5306         info.not_persistent= !mddev->persistent;
5307
5308         info.utime         = mddev->utime;
5309         info.state         = 0;
5310         if (mddev->in_sync)
5311                 info.state = (1<<MD_SB_CLEAN);
5312         if (mddev->bitmap && mddev->bitmap_info.offset)
5313                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5314         info.active_disks  = insync;
5315         info.working_disks = working;
5316         info.failed_disks  = failed;
5317         info.spare_disks   = spare;
5318
5319         info.layout        = mddev->layout;
5320         info.chunk_size    = mddev->chunk_sectors << 9;
5321
5322         if (copy_to_user(arg, &info, sizeof(info)))
5323                 return -EFAULT;
5324
5325         return 0;
5326 }
5327
5328 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5329 {
5330         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5331         char *ptr, *buf = NULL;
5332         int err = -ENOMEM;
5333
5334         if (md_allow_write(mddev))
5335                 file = kmalloc(sizeof(*file), GFP_NOIO);
5336         else
5337                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5338
5339         if (!file)
5340                 goto out;
5341
5342         /* bitmap disabled, zero the first byte and copy out */
5343         if (!mddev->bitmap || !mddev->bitmap->file) {
5344                 file->pathname[0] = '\0';
5345                 goto copy_out;
5346         }
5347
5348         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5349         if (!buf)
5350                 goto out;
5351
5352         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5353         if (IS_ERR(ptr))
5354                 goto out;
5355
5356         strcpy(file->pathname, ptr);
5357
5358 copy_out:
5359         err = 0;
5360         if (copy_to_user(arg, file, sizeof(*file)))
5361                 err = -EFAULT;
5362 out:
5363         kfree(buf);
5364         kfree(file);
5365         return err;
5366 }
5367
5368 static int get_disk_info(mddev_t * mddev, void __user * arg)
5369 {
5370         mdu_disk_info_t info;
5371         mdk_rdev_t *rdev;
5372
5373         if (copy_from_user(&info, arg, sizeof(info)))
5374                 return -EFAULT;
5375
5376         rdev = find_rdev_nr(mddev, info.number);
5377         if (rdev) {
5378                 info.major = MAJOR(rdev->bdev->bd_dev);
5379                 info.minor = MINOR(rdev->bdev->bd_dev);
5380                 info.raid_disk = rdev->raid_disk;
5381                 info.state = 0;
5382                 if (test_bit(Faulty, &rdev->flags))
5383                         info.state |= (1<<MD_DISK_FAULTY);
5384                 else if (test_bit(In_sync, &rdev->flags)) {
5385                         info.state |= (1<<MD_DISK_ACTIVE);
5386                         info.state |= (1<<MD_DISK_SYNC);
5387                 }
5388                 if (test_bit(WriteMostly, &rdev->flags))
5389                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5390         } else {
5391                 info.major = info.minor = 0;
5392                 info.raid_disk = -1;
5393                 info.state = (1<<MD_DISK_REMOVED);
5394         }
5395
5396         if (copy_to_user(arg, &info, sizeof(info)))
5397                 return -EFAULT;
5398
5399         return 0;
5400 }
5401
5402 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5403 {
5404         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5405         mdk_rdev_t *rdev;
5406         dev_t dev = MKDEV(info->major,info->minor);
5407
5408         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5409                 return -EOVERFLOW;
5410
5411         if (!mddev->raid_disks) {
5412                 int err;
5413                 /* expecting a device which has a superblock */
5414                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5415                 if (IS_ERR(rdev)) {
5416                         printk(KERN_WARNING 
5417                                 "md: md_import_device returned %ld\n",
5418                                 PTR_ERR(rdev));
5419                         return PTR_ERR(rdev);
5420                 }
5421                 if (!list_empty(&mddev->disks)) {
5422                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5423                                                         mdk_rdev_t, same_set);
5424                         err = super_types[mddev->major_version]
5425                                 .load_super(rdev, rdev0, mddev->minor_version);
5426                         if (err < 0) {
5427                                 printk(KERN_WARNING 
5428                                         "md: %s has different UUID to %s\n",
5429                                         bdevname(rdev->bdev,b), 
5430                                         bdevname(rdev0->bdev,b2));
5431                                 export_rdev(rdev);
5432                                 return -EINVAL;
5433                         }
5434                 }
5435                 err = bind_rdev_to_array(rdev, mddev);
5436                 if (err)
5437                         export_rdev(rdev);
5438                 return err;
5439         }
5440
5441         /*
5442          * add_new_disk can be used once the array is assembled
5443          * to add "hot spares".  They must already have a superblock
5444          * written
5445          */
5446         if (mddev->pers) {
5447                 int err;
5448                 if (!mddev->pers->hot_add_disk) {
5449                         printk(KERN_WARNING 
5450                                 "%s: personality does not support diskops!\n",
5451                                mdname(mddev));
5452                         return -EINVAL;
5453                 }
5454                 if (mddev->persistent)
5455                         rdev = md_import_device(dev, mddev->major_version,
5456                                                 mddev->minor_version);
5457                 else
5458                         rdev = md_import_device(dev, -1, -1);
5459                 if (IS_ERR(rdev)) {
5460                         printk(KERN_WARNING 
5461                                 "md: md_import_device returned %ld\n",
5462                                 PTR_ERR(rdev));
5463                         return PTR_ERR(rdev);
5464                 }
5465                 /* set saved_raid_disk if appropriate */
5466                 if (!mddev->persistent) {
5467                         if (info->state & (1<<MD_DISK_SYNC)  &&
5468                             info->raid_disk < mddev->raid_disks) {
5469                                 rdev->raid_disk = info->raid_disk;
5470                                 set_bit(In_sync, &rdev->flags);
5471                         } else
5472                                 rdev->raid_disk = -1;
5473                 } else
5474                         super_types[mddev->major_version].
5475                                 validate_super(mddev, rdev);
5476                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5477                     (!test_bit(In_sync, &rdev->flags) ||
5478                      rdev->raid_disk != info->raid_disk)) {
5479                         /* This was a hot-add request, but events doesn't
5480                          * match, so reject it.
5481                          */
5482                         export_rdev(rdev);
5483                         return -EINVAL;
5484                 }
5485
5486                 if (test_bit(In_sync, &rdev->flags))
5487                         rdev->saved_raid_disk = rdev->raid_disk;
5488                 else
5489                         rdev->saved_raid_disk = -1;
5490
5491                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5492                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5493                         set_bit(WriteMostly, &rdev->flags);
5494                 else
5495                         clear_bit(WriteMostly, &rdev->flags);
5496
5497                 rdev->raid_disk = -1;
5498                 err = bind_rdev_to_array(rdev, mddev);
5499                 if (!err && !mddev->pers->hot_remove_disk) {
5500                         /* If there is hot_add_disk but no hot_remove_disk
5501                          * then added disks for geometry changes,
5502                          * and should be added immediately.
5503                          */
5504                         super_types[mddev->major_version].
5505                                 validate_super(mddev, rdev);
5506                         err = mddev->pers->hot_add_disk(mddev, rdev);
5507                         if (err)
5508                                 unbind_rdev_from_array(rdev);
5509                 }
5510                 if (err)
5511                         export_rdev(rdev);
5512                 else
5513                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5514
5515                 md_update_sb(mddev, 1);
5516                 if (mddev->degraded)
5517                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5518                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5519                 if (!err)
5520                         md_new_event(mddev);
5521                 md_wakeup_thread(mddev->thread);
5522                 return err;
5523         }
5524
5525         /* otherwise, add_new_disk is only allowed
5526          * for major_version==0 superblocks
5527          */
5528         if (mddev->major_version != 0) {
5529                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5530                        mdname(mddev));
5531                 return -EINVAL;
5532         }
5533
5534         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5535                 int err;
5536                 rdev = md_import_device(dev, -1, 0);
5537                 if (IS_ERR(rdev)) {
5538                         printk(KERN_WARNING 
5539                                 "md: error, md_import_device() returned %ld\n",
5540                                 PTR_ERR(rdev));
5541                         return PTR_ERR(rdev);
5542                 }
5543                 rdev->desc_nr = info->number;
5544                 if (info->raid_disk < mddev->raid_disks)
5545                         rdev->raid_disk = info->raid_disk;
5546                 else
5547                         rdev->raid_disk = -1;
5548
5549                 if (rdev->raid_disk < mddev->raid_disks)
5550                         if (info->state & (1<<MD_DISK_SYNC))
5551                                 set_bit(In_sync, &rdev->flags);
5552
5553                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5554                         set_bit(WriteMostly, &rdev->flags);
5555
5556                 if (!mddev->persistent) {
5557                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5558                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5559                 } else
5560                         rdev->sb_start = calc_dev_sboffset(rdev);
5561                 rdev->sectors = rdev->sb_start;
5562
5563                 err = bind_rdev_to_array(rdev, mddev);
5564                 if (err) {
5565                         export_rdev(rdev);
5566                         return err;
5567                 }
5568         }
5569
5570         return 0;
5571 }
5572
5573 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5574 {
5575         char b[BDEVNAME_SIZE];
5576         mdk_rdev_t *rdev;
5577
5578         rdev = find_rdev(mddev, dev);
5579         if (!rdev)
5580                 return -ENXIO;
5581
5582         if (rdev->raid_disk >= 0)
5583                 goto busy;
5584
5585         kick_rdev_from_array(rdev);
5586         md_update_sb(mddev, 1);
5587         md_new_event(mddev);
5588
5589         return 0;
5590 busy:
5591         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5592                 bdevname(rdev->bdev,b), mdname(mddev));
5593         return -EBUSY;
5594 }
5595
5596 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5597 {
5598         char b[BDEVNAME_SIZE];
5599         int err;
5600         mdk_rdev_t *rdev;
5601
5602         if (!mddev->pers)
5603                 return -ENODEV;
5604
5605         if (mddev->major_version != 0) {
5606                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5607                         " version-0 superblocks.\n",
5608                         mdname(mddev));
5609                 return -EINVAL;
5610         }
5611         if (!mddev->pers->hot_add_disk) {
5612                 printk(KERN_WARNING 
5613                         "%s: personality does not support diskops!\n",
5614                         mdname(mddev));
5615                 return -EINVAL;
5616         }
5617
5618         rdev = md_import_device(dev, -1, 0);
5619         if (IS_ERR(rdev)) {
5620                 printk(KERN_WARNING 
5621                         "md: error, md_import_device() returned %ld\n",
5622                         PTR_ERR(rdev));
5623                 return -EINVAL;
5624         }
5625
5626         if (mddev->persistent)
5627                 rdev->sb_start = calc_dev_sboffset(rdev);
5628         else
5629                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5630
5631         rdev->sectors = rdev->sb_start;
5632
5633         if (test_bit(Faulty, &rdev->flags)) {
5634                 printk(KERN_WARNING 
5635                         "md: can not hot-add faulty %s disk to %s!\n",
5636                         bdevname(rdev->bdev,b), mdname(mddev));
5637                 err = -EINVAL;
5638                 goto abort_export;
5639         }
5640         clear_bit(In_sync, &rdev->flags);
5641         rdev->desc_nr = -1;
5642         rdev->saved_raid_disk = -1;
5643         err = bind_rdev_to_array(rdev, mddev);
5644         if (err)
5645                 goto abort_export;
5646
5647         /*
5648          * The rest should better be atomic, we can have disk failures
5649          * noticed in interrupt contexts ...
5650          */
5651
5652         rdev->raid_disk = -1;
5653
5654         md_update_sb(mddev, 1);
5655
5656         /*
5657          * Kick recovery, maybe this spare has to be added to the
5658          * array immediately.
5659          */
5660         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5661         md_wakeup_thread(mddev->thread);
5662         md_new_event(mddev);
5663         return 0;
5664
5665 abort_export:
5666         export_rdev(rdev);
5667         return err;
5668 }
5669
5670 static int set_bitmap_file(mddev_t *mddev, int fd)
5671 {
5672         int err;
5673
5674         if (mddev->pers) {
5675                 if (!mddev->pers->quiesce)
5676                         return -EBUSY;
5677                 if (mddev->recovery || mddev->sync_thread)
5678                         return -EBUSY;
5679                 /* we should be able to change the bitmap.. */
5680         }
5681
5682
5683         if (fd >= 0) {
5684                 if (mddev->bitmap)
5685                         return -EEXIST; /* cannot add when bitmap is present */
5686                 mddev->bitmap_info.file = fget(fd);
5687
5688                 if (mddev->bitmap_info.file == NULL) {
5689                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5690                                mdname(mddev));
5691                         return -EBADF;
5692                 }
5693
5694                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5695                 if (err) {
5696                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5697                                mdname(mddev));
5698                         fput(mddev->bitmap_info.file);
5699                         mddev->bitmap_info.file = NULL;
5700                         return err;
5701                 }
5702                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5703         } else if (mddev->bitmap == NULL)
5704                 return -ENOENT; /* cannot remove what isn't there */
5705         err = 0;
5706         if (mddev->pers) {
5707                 mddev->pers->quiesce(mddev, 1);
5708                 if (fd >= 0) {
5709                         err = bitmap_create(mddev);
5710                         if (!err)
5711                                 err = bitmap_load(mddev);
5712                 }
5713                 if (fd < 0 || err) {
5714                         bitmap_destroy(mddev);
5715                         fd = -1; /* make sure to put the file */
5716                 }
5717                 mddev->pers->quiesce(mddev, 0);
5718         }
5719         if (fd < 0) {
5720                 if (mddev->bitmap_info.file) {
5721                         restore_bitmap_write_access(mddev->bitmap_info.file);
5722                         fput(mddev->bitmap_info.file);
5723                 }
5724                 mddev->bitmap_info.file = NULL;
5725         }
5726
5727         return err;
5728 }
5729
5730 /*
5731  * set_array_info is used two different ways
5732  * The original usage is when creating a new array.
5733  * In this usage, raid_disks is > 0 and it together with
5734  *  level, size, not_persistent,layout,chunksize determine the
5735  *  shape of the array.
5736  *  This will always create an array with a type-0.90.0 superblock.
5737  * The newer usage is when assembling an array.
5738  *  In this case raid_disks will be 0, and the major_version field is
5739  *  use to determine which style super-blocks are to be found on the devices.
5740  *  The minor and patch _version numbers are also kept incase the
5741  *  super_block handler wishes to interpret them.
5742  */
5743 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5744 {
5745
5746         if (info->raid_disks == 0) {
5747                 /* just setting version number for superblock loading */
5748                 if (info->major_version < 0 ||
5749                     info->major_version >= ARRAY_SIZE(super_types) ||
5750                     super_types[info->major_version].name == NULL) {
5751                         /* maybe try to auto-load a module? */
5752                         printk(KERN_INFO 
5753                                 "md: superblock version %d not known\n",
5754                                 info->major_version);
5755                         return -EINVAL;
5756                 }
5757                 mddev->major_version = info->major_version;
5758                 mddev->minor_version = info->minor_version;
5759                 mddev->patch_version = info->patch_version;
5760                 mddev->persistent = !info->not_persistent;
5761                 /* ensure mddev_put doesn't delete this now that there
5762                  * is some minimal configuration.
5763                  */
5764                 mddev->ctime         = get_seconds();
5765                 return 0;
5766         }
5767         mddev->major_version = MD_MAJOR_VERSION;
5768         mddev->minor_version = MD_MINOR_VERSION;
5769         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5770         mddev->ctime         = get_seconds();
5771
5772         mddev->level         = info->level;
5773         mddev->clevel[0]     = 0;
5774         mddev->dev_sectors   = 2 * (sector_t)info->size;
5775         mddev->raid_disks    = info->raid_disks;
5776         /* don't set md_minor, it is determined by which /dev/md* was
5777          * openned
5778          */
5779         if (info->state & (1<<MD_SB_CLEAN))
5780                 mddev->recovery_cp = MaxSector;
5781         else
5782                 mddev->recovery_cp = 0;
5783         mddev->persistent    = ! info->not_persistent;
5784         mddev->external      = 0;
5785
5786         mddev->layout        = info->layout;
5787         mddev->chunk_sectors = info->chunk_size >> 9;
5788
5789         mddev->max_disks     = MD_SB_DISKS;
5790
5791         if (mddev->persistent)
5792                 mddev->flags         = 0;
5793         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5794
5795         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5796         mddev->bitmap_info.offset = 0;
5797
5798         mddev->reshape_position = MaxSector;
5799
5800         /*
5801          * Generate a 128 bit UUID
5802          */
5803         get_random_bytes(mddev->uuid, 16);
5804
5805         mddev->new_level = mddev->level;
5806         mddev->new_chunk_sectors = mddev->chunk_sectors;
5807         mddev->new_layout = mddev->layout;
5808         mddev->delta_disks = 0;
5809
5810         return 0;
5811 }
5812
5813 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5814 {
5815         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5816
5817         if (mddev->external_size)
5818                 return;
5819
5820         mddev->array_sectors = array_sectors;
5821 }
5822 EXPORT_SYMBOL(md_set_array_sectors);
5823
5824 static int update_size(mddev_t *mddev, sector_t num_sectors)
5825 {
5826         mdk_rdev_t *rdev;
5827         int rv;
5828         int fit = (num_sectors == 0);
5829
5830         if (mddev->pers->resize == NULL)
5831                 return -EINVAL;
5832         /* The "num_sectors" is the number of sectors of each device that
5833          * is used.  This can only make sense for arrays with redundancy.
5834          * linear and raid0 always use whatever space is available. We can only
5835          * consider changing this number if no resync or reconstruction is
5836          * happening, and if the new size is acceptable. It must fit before the
5837          * sb_start or, if that is <data_offset, it must fit before the size
5838          * of each device.  If num_sectors is zero, we find the largest size
5839          * that fits.
5840          */
5841         if (mddev->sync_thread)
5842                 return -EBUSY;
5843         if (mddev->bitmap)
5844                 /* Sorry, cannot grow a bitmap yet, just remove it,
5845                  * grow, and re-add.
5846                  */
5847                 return -EBUSY;
5848         list_for_each_entry(rdev, &mddev->disks, same_set) {
5849                 sector_t avail = rdev->sectors;
5850
5851                 if (fit && (num_sectors == 0 || num_sectors > avail))
5852                         num_sectors = avail;
5853                 if (avail < num_sectors)
5854                         return -ENOSPC;
5855         }
5856         rv = mddev->pers->resize(mddev, num_sectors);
5857         if (!rv)
5858                 revalidate_disk(mddev->gendisk);
5859         return rv;
5860 }
5861
5862 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5863 {
5864         int rv;
5865         /* change the number of raid disks */
5866         if (mddev->pers->check_reshape == NULL)
5867                 return -EINVAL;
5868         if (raid_disks <= 0 ||
5869             (mddev->max_disks && raid_disks >= mddev->max_disks))
5870                 return -EINVAL;
5871         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5872                 return -EBUSY;
5873         mddev->delta_disks = raid_disks - mddev->raid_disks;
5874
5875         rv = mddev->pers->check_reshape(mddev);
5876         if (rv < 0)
5877                 mddev->delta_disks = 0;
5878         return rv;
5879 }
5880
5881
5882 /*
5883  * update_array_info is used to change the configuration of an
5884  * on-line array.
5885  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5886  * fields in the info are checked against the array.
5887  * Any differences that cannot be handled will cause an error.
5888  * Normally, only one change can be managed at a time.
5889  */
5890 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5891 {
5892         int rv = 0;
5893         int cnt = 0;
5894         int state = 0;
5895
5896         /* calculate expected state,ignoring low bits */
5897         if (mddev->bitmap && mddev->bitmap_info.offset)
5898                 state |= (1 << MD_SB_BITMAP_PRESENT);
5899
5900         if (mddev->major_version != info->major_version ||
5901             mddev->minor_version != info->minor_version ||
5902 /*          mddev->patch_version != info->patch_version || */
5903             mddev->ctime         != info->ctime         ||
5904             mddev->level         != info->level         ||
5905 /*          mddev->layout        != info->layout        || */
5906             !mddev->persistent   != info->not_persistent||
5907             mddev->chunk_sectors != info->chunk_size >> 9 ||
5908             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5909             ((state^info->state) & 0xfffffe00)
5910                 )
5911                 return -EINVAL;
5912         /* Check there is only one change */
5913         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5914                 cnt++;
5915         if (mddev->raid_disks != info->raid_disks)
5916                 cnt++;
5917         if (mddev->layout != info->layout)
5918                 cnt++;
5919         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5920                 cnt++;
5921         if (cnt == 0)
5922                 return 0;
5923         if (cnt > 1)
5924                 return -EINVAL;
5925
5926         if (mddev->layout != info->layout) {
5927                 /* Change layout
5928                  * we don't need to do anything at the md level, the
5929                  * personality will take care of it all.
5930                  */
5931                 if (mddev->pers->check_reshape == NULL)
5932                         return -EINVAL;
5933                 else {
5934                         mddev->new_layout = info->layout;
5935                         rv = mddev->pers->check_reshape(mddev);
5936                         if (rv)
5937                                 mddev->new_layout = mddev->layout;
5938                         return rv;
5939                 }
5940         }
5941         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5942                 rv = update_size(mddev, (sector_t)info->size * 2);
5943
5944         if (mddev->raid_disks    != info->raid_disks)
5945                 rv = update_raid_disks(mddev, info->raid_disks);
5946
5947         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5948                 if (mddev->pers->quiesce == NULL)
5949                         return -EINVAL;
5950                 if (mddev->recovery || mddev->sync_thread)
5951                         return -EBUSY;
5952                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5953                         /* add the bitmap */
5954                         if (mddev->bitmap)
5955                                 return -EEXIST;
5956                         if (mddev->bitmap_info.default_offset == 0)
5957                                 return -EINVAL;
5958                         mddev->bitmap_info.offset =
5959                                 mddev->bitmap_info.default_offset;
5960                         mddev->pers->quiesce(mddev, 1);
5961                         rv = bitmap_create(mddev);
5962                         if (!rv)
5963                                 rv = bitmap_load(mddev);
5964                         if (rv)
5965                                 bitmap_destroy(mddev);
5966                         mddev->pers->quiesce(mddev, 0);
5967                 } else {
5968                         /* remove the bitmap */
5969                         if (!mddev->bitmap)
5970                                 return -ENOENT;
5971                         if (mddev->bitmap->file)
5972                                 return -EINVAL;
5973                         mddev->pers->quiesce(mddev, 1);
5974                         bitmap_destroy(mddev);
5975                         mddev->pers->quiesce(mddev, 0);
5976                         mddev->bitmap_info.offset = 0;
5977                 }
5978         }
5979         md_update_sb(mddev, 1);
5980         return rv;
5981 }
5982
5983 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5984 {
5985         mdk_rdev_t *rdev;
5986
5987         if (mddev->pers == NULL)
5988                 return -ENODEV;
5989
5990         rdev = find_rdev(mddev, dev);
5991         if (!rdev)
5992                 return -ENODEV;
5993
5994         md_error(mddev, rdev);
5995         if (!test_bit(Faulty, &rdev->flags))
5996                 return -EBUSY;
5997         return 0;
5998 }
5999
6000 /*
6001  * We have a problem here : there is no easy way to give a CHS
6002  * virtual geometry. We currently pretend that we have a 2 heads
6003  * 4 sectors (with a BIG number of cylinders...). This drives
6004  * dosfs just mad... ;-)
6005  */
6006 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6007 {
6008         mddev_t *mddev = bdev->bd_disk->private_data;
6009
6010         geo->heads = 2;
6011         geo->sectors = 4;
6012         geo->cylinders = mddev->array_sectors / 8;
6013         return 0;
6014 }
6015
6016 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6017                         unsigned int cmd, unsigned long arg)
6018 {
6019         int err = 0;
6020         void __user *argp = (void __user *)arg;
6021         mddev_t *mddev = NULL;
6022         int ro;
6023
6024         if (!capable(CAP_SYS_ADMIN))
6025                 return -EACCES;
6026
6027         /*
6028          * Commands dealing with the RAID driver but not any
6029          * particular array:
6030          */
6031         switch (cmd)
6032         {
6033                 case RAID_VERSION:
6034                         err = get_version(argp);
6035                         goto done;
6036
6037                 case PRINT_RAID_DEBUG:
6038                         err = 0;
6039                         md_print_devices();
6040                         goto done;
6041
6042 #ifndef MODULE
6043                 case RAID_AUTORUN:
6044                         err = 0;
6045                         autostart_arrays(arg);
6046                         goto done;
6047 #endif
6048                 default:;
6049         }
6050
6051         /*
6052          * Commands creating/starting a new array:
6053          */
6054
6055         mddev = bdev->bd_disk->private_data;
6056
6057         if (!mddev) {
6058                 BUG();
6059                 goto abort;
6060         }
6061
6062         err = mddev_lock(mddev);
6063         if (err) {
6064                 printk(KERN_INFO 
6065                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6066                         err, cmd);
6067                 goto abort;
6068         }
6069
6070         switch (cmd)
6071         {
6072                 case SET_ARRAY_INFO:
6073                         {
6074                                 mdu_array_info_t info;
6075                                 if (!arg)
6076                                         memset(&info, 0, sizeof(info));
6077                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6078                                         err = -EFAULT;
6079                                         goto abort_unlock;
6080                                 }
6081                                 if (mddev->pers) {
6082                                         err = update_array_info(mddev, &info);
6083                                         if (err) {
6084                                                 printk(KERN_WARNING "md: couldn't update"
6085                                                        " array info. %d\n", err);
6086                                                 goto abort_unlock;
6087                                         }
6088                                         goto done_unlock;
6089                                 }
6090                                 if (!list_empty(&mddev->disks)) {
6091                                         printk(KERN_WARNING
6092                                                "md: array %s already has disks!\n",
6093                                                mdname(mddev));
6094                                         err = -EBUSY;
6095                                         goto abort_unlock;
6096                                 }
6097                                 if (mddev->raid_disks) {
6098                                         printk(KERN_WARNING
6099                                                "md: array %s already initialised!\n",
6100                                                mdname(mddev));
6101                                         err = -EBUSY;
6102                                         goto abort_unlock;
6103                                 }
6104                                 err = set_array_info(mddev, &info);
6105                                 if (err) {
6106                                         printk(KERN_WARNING "md: couldn't set"
6107                                                " array info. %d\n", err);
6108                                         goto abort_unlock;
6109                                 }
6110                         }
6111                         goto done_unlock;
6112
6113                 default:;
6114         }
6115
6116         /*
6117          * Commands querying/configuring an existing array:
6118          */
6119         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6120          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6121         if ((!mddev->raid_disks && !mddev->external)
6122             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6123             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6124             && cmd != GET_BITMAP_FILE) {
6125                 err = -ENODEV;
6126                 goto abort_unlock;
6127         }
6128
6129         /*
6130          * Commands even a read-only array can execute:
6131          */
6132         switch (cmd)
6133         {
6134                 case GET_ARRAY_INFO:
6135                         err = get_array_info(mddev, argp);
6136                         goto done_unlock;
6137
6138                 case GET_BITMAP_FILE:
6139                         err = get_bitmap_file(mddev, argp);
6140                         goto done_unlock;
6141
6142                 case GET_DISK_INFO:
6143                         err = get_disk_info(mddev, argp);
6144                         goto done_unlock;
6145
6146                 case RESTART_ARRAY_RW:
6147                         err = restart_array(mddev);
6148                         goto done_unlock;
6149
6150                 case STOP_ARRAY:
6151                         err = do_md_stop(mddev, 0, 1);
6152                         goto done_unlock;
6153
6154                 case STOP_ARRAY_RO:
6155                         err = md_set_readonly(mddev, 1);
6156                         goto done_unlock;
6157
6158                 case BLKROSET:
6159                         if (get_user(ro, (int __user *)(arg))) {
6160                                 err = -EFAULT;
6161                                 goto done_unlock;
6162                         }
6163                         err = -EINVAL;
6164
6165                         /* if the bdev is going readonly the value of mddev->ro
6166                          * does not matter, no writes are coming
6167                          */
6168                         if (ro)
6169                                 goto done_unlock;
6170
6171                         /* are we are already prepared for writes? */
6172                         if (mddev->ro != 1)
6173                                 goto done_unlock;
6174
6175                         /* transitioning to readauto need only happen for
6176                          * arrays that call md_write_start
6177                          */
6178                         if (mddev->pers) {
6179                                 err = restart_array(mddev);
6180                                 if (err == 0) {
6181                                         mddev->ro = 2;
6182                                         set_disk_ro(mddev->gendisk, 0);
6183                                 }
6184                         }
6185                         goto done_unlock;
6186         }
6187
6188         /*
6189          * The remaining ioctls are changing the state of the
6190          * superblock, so we do not allow them on read-only arrays.
6191          * However non-MD ioctls (e.g. get-size) will still come through
6192          * here and hit the 'default' below, so only disallow
6193          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6194          */
6195         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6196                 if (mddev->ro == 2) {
6197                         mddev->ro = 0;
6198                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6199                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6200                         md_wakeup_thread(mddev->thread);
6201                 } else {
6202                         err = -EROFS;
6203                         goto abort_unlock;
6204                 }
6205         }
6206
6207         switch (cmd)
6208         {
6209                 case ADD_NEW_DISK:
6210                 {
6211                         mdu_disk_info_t info;
6212                         if (copy_from_user(&info, argp, sizeof(info)))
6213                                 err = -EFAULT;
6214                         else
6215                                 err = add_new_disk(mddev, &info);
6216                         goto done_unlock;
6217                 }
6218
6219                 case HOT_REMOVE_DISK:
6220                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6221                         goto done_unlock;
6222
6223                 case HOT_ADD_DISK:
6224                         err = hot_add_disk(mddev, new_decode_dev(arg));
6225                         goto done_unlock;
6226
6227                 case SET_DISK_FAULTY:
6228                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6229                         goto done_unlock;
6230
6231                 case RUN_ARRAY:
6232                         err = do_md_run(mddev);
6233                         goto done_unlock;
6234
6235                 case SET_BITMAP_FILE:
6236                         err = set_bitmap_file(mddev, (int)arg);
6237                         goto done_unlock;
6238
6239                 default:
6240                         err = -EINVAL;
6241                         goto abort_unlock;
6242         }
6243
6244 done_unlock:
6245 abort_unlock:
6246         if (mddev->hold_active == UNTIL_IOCTL &&
6247             err != -EINVAL)
6248                 mddev->hold_active = 0;
6249         mddev_unlock(mddev);
6250
6251         return err;
6252 done:
6253         if (err)
6254                 MD_BUG();
6255 abort:
6256         return err;
6257 }
6258 #ifdef CONFIG_COMPAT
6259 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6260                     unsigned int cmd, unsigned long arg)
6261 {
6262         switch (cmd) {
6263         case HOT_REMOVE_DISK:
6264         case HOT_ADD_DISK:
6265         case SET_DISK_FAULTY:
6266         case SET_BITMAP_FILE:
6267                 /* These take in integer arg, do not convert */
6268                 break;
6269         default:
6270                 arg = (unsigned long)compat_ptr(arg);
6271                 break;
6272         }
6273
6274         return md_ioctl(bdev, mode, cmd, arg);
6275 }
6276 #endif /* CONFIG_COMPAT */
6277
6278 static int md_open(struct block_device *bdev, fmode_t mode)
6279 {
6280         /*
6281          * Succeed if we can lock the mddev, which confirms that
6282          * it isn't being stopped right now.
6283          */
6284         mddev_t *mddev = mddev_find(bdev->bd_dev);
6285         int err;
6286
6287         if (mddev->gendisk != bdev->bd_disk) {
6288                 /* we are racing with mddev_put which is discarding this
6289                  * bd_disk.
6290                  */
6291                 mddev_put(mddev);
6292                 /* Wait until bdev->bd_disk is definitely gone */
6293                 flush_workqueue(md_misc_wq);
6294                 /* Then retry the open from the top */
6295                 return -ERESTARTSYS;
6296         }
6297         BUG_ON(mddev != bdev->bd_disk->private_data);
6298
6299         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6300                 goto out;
6301
6302         err = 0;
6303         atomic_inc(&mddev->openers);
6304         mutex_unlock(&mddev->open_mutex);
6305
6306         check_disk_change(bdev);
6307  out:
6308         return err;
6309 }
6310
6311 static int md_release(struct gendisk *disk, fmode_t mode)
6312 {
6313         mddev_t *mddev = disk->private_data;
6314
6315         BUG_ON(!mddev);
6316         atomic_dec(&mddev->openers);
6317         mddev_put(mddev);
6318
6319         return 0;
6320 }
6321
6322 static int md_media_changed(struct gendisk *disk)
6323 {
6324         mddev_t *mddev = disk->private_data;
6325
6326         return mddev->changed;
6327 }
6328
6329 static int md_revalidate(struct gendisk *disk)
6330 {
6331         mddev_t *mddev = disk->private_data;
6332
6333         mddev->changed = 0;
6334         return 0;
6335 }
6336 static const struct block_device_operations md_fops =
6337 {
6338         .owner          = THIS_MODULE,
6339         .open           = md_open,
6340         .release        = md_release,
6341         .ioctl          = md_ioctl,
6342 #ifdef CONFIG_COMPAT
6343         .compat_ioctl   = md_compat_ioctl,
6344 #endif
6345         .getgeo         = md_getgeo,
6346         .media_changed  = md_media_changed,
6347         .revalidate_disk= md_revalidate,
6348 };
6349
6350 static int md_thread(void * arg)
6351 {
6352         mdk_thread_t *thread = arg;
6353
6354         /*
6355          * md_thread is a 'system-thread', it's priority should be very
6356          * high. We avoid resource deadlocks individually in each
6357          * raid personality. (RAID5 does preallocation) We also use RR and
6358          * the very same RT priority as kswapd, thus we will never get
6359          * into a priority inversion deadlock.
6360          *
6361          * we definitely have to have equal or higher priority than
6362          * bdflush, otherwise bdflush will deadlock if there are too
6363          * many dirty RAID5 blocks.
6364          */
6365
6366         allow_signal(SIGKILL);
6367         while (!kthread_should_stop()) {
6368
6369                 /* We need to wait INTERRUPTIBLE so that
6370                  * we don't add to the load-average.
6371                  * That means we need to be sure no signals are
6372                  * pending
6373                  */
6374                 if (signal_pending(current))
6375                         flush_signals(current);
6376
6377                 wait_event_interruptible_timeout
6378                         (thread->wqueue,
6379                          test_bit(THREAD_WAKEUP, &thread->flags)
6380                          || kthread_should_stop(),
6381                          thread->timeout);
6382
6383                 clear_bit(THREAD_WAKEUP, &thread->flags);
6384                 if (!kthread_should_stop())
6385                         thread->run(thread->mddev);
6386         }
6387
6388         return 0;
6389 }
6390
6391 void md_wakeup_thread(mdk_thread_t *thread)
6392 {
6393         if (thread) {
6394                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6395                 set_bit(THREAD_WAKEUP, &thread->flags);
6396                 wake_up(&thread->wqueue);
6397         }
6398 }
6399
6400 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6401                                  const char *name)
6402 {
6403         mdk_thread_t *thread;
6404
6405         thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6406         if (!thread)
6407                 return NULL;
6408
6409         init_waitqueue_head(&thread->wqueue);
6410
6411         thread->run = run;
6412         thread->mddev = mddev;
6413         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6414         thread->tsk = kthread_run(md_thread, thread,
6415                                   "%s_%s",
6416                                   mdname(thread->mddev),
6417                                   name ?: mddev->pers->name);
6418         if (IS_ERR(thread->tsk)) {
6419                 kfree(thread);
6420                 return NULL;
6421         }
6422         return thread;
6423 }
6424
6425 void md_unregister_thread(mdk_thread_t *thread)
6426 {
6427         if (!thread)
6428                 return;
6429         dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6430
6431         kthread_stop(thread->tsk);
6432         kfree(thread);
6433 }
6434
6435 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6436 {
6437         if (!mddev) {
6438                 MD_BUG();
6439                 return;
6440         }
6441
6442         if (!rdev || test_bit(Faulty, &rdev->flags))
6443                 return;
6444
6445         if (!mddev->pers || !mddev->pers->error_handler)
6446                 return;
6447         mddev->pers->error_handler(mddev,rdev);
6448         if (mddev->degraded)
6449                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6450         sysfs_notify_dirent_safe(rdev->sysfs_state);
6451         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6452         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6453         md_wakeup_thread(mddev->thread);
6454         if (mddev->event_work.func)
6455                 queue_work(md_misc_wq, &mddev->event_work);
6456         md_new_event_inintr(mddev);
6457 }
6458
6459 /* seq_file implementation /proc/mdstat */
6460
6461 static void status_unused(struct seq_file *seq)
6462 {
6463         int i = 0;
6464         mdk_rdev_t *rdev;
6465
6466         seq_printf(seq, "unused devices: ");
6467
6468         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6469                 char b[BDEVNAME_SIZE];
6470                 i++;
6471                 seq_printf(seq, "%s ",
6472                               bdevname(rdev->bdev,b));
6473         }
6474         if (!i)
6475                 seq_printf(seq, "<none>");
6476
6477         seq_printf(seq, "\n");
6478 }
6479
6480
6481 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6482 {
6483         sector_t max_sectors, resync, res;
6484         unsigned long dt, db;
6485         sector_t rt;
6486         int scale;
6487         unsigned int per_milli;
6488
6489         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6490
6491         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6492                 max_sectors = mddev->resync_max_sectors;
6493         else
6494                 max_sectors = mddev->dev_sectors;
6495
6496         /*
6497          * Should not happen.
6498          */
6499         if (!max_sectors) {
6500                 MD_BUG();
6501                 return;
6502         }
6503         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6504          * in a sector_t, and (max_sectors>>scale) will fit in a
6505          * u32, as those are the requirements for sector_div.
6506          * Thus 'scale' must be at least 10
6507          */
6508         scale = 10;
6509         if (sizeof(sector_t) > sizeof(unsigned long)) {
6510                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6511                         scale++;
6512         }
6513         res = (resync>>scale)*1000;
6514         sector_div(res, (u32)((max_sectors>>scale)+1));
6515
6516         per_milli = res;
6517         {
6518                 int i, x = per_milli/50, y = 20-x;
6519                 seq_printf(seq, "[");
6520                 for (i = 0; i < x; i++)
6521                         seq_printf(seq, "=");
6522                 seq_printf(seq, ">");
6523                 for (i = 0; i < y; i++)
6524                         seq_printf(seq, ".");
6525                 seq_printf(seq, "] ");
6526         }
6527         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6528                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6529                     "reshape" :
6530                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6531                      "check" :
6532                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6533                       "resync" : "recovery"))),
6534                    per_milli/10, per_milli % 10,
6535                    (unsigned long long) resync/2,
6536                    (unsigned long long) max_sectors/2);
6537
6538         /*
6539          * dt: time from mark until now
6540          * db: blocks written from mark until now
6541          * rt: remaining time
6542          *
6543          * rt is a sector_t, so could be 32bit or 64bit.
6544          * So we divide before multiply in case it is 32bit and close
6545          * to the limit.
6546          * We scale the divisor (db) by 32 to avoid losing precision
6547          * near the end of resync when the number of remaining sectors
6548          * is close to 'db'.
6549          * We then divide rt by 32 after multiplying by db to compensate.
6550          * The '+1' avoids division by zero if db is very small.
6551          */
6552         dt = ((jiffies - mddev->resync_mark) / HZ);
6553         if (!dt) dt++;
6554         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6555                 - mddev->resync_mark_cnt;
6556
6557         rt = max_sectors - resync;    /* number of remaining sectors */
6558         sector_div(rt, db/32+1);
6559         rt *= dt;
6560         rt >>= 5;
6561
6562         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6563                    ((unsigned long)rt % 60)/6);
6564
6565         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6566 }
6567
6568 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6569 {
6570         struct list_head *tmp;
6571         loff_t l = *pos;
6572         mddev_t *mddev;
6573
6574         if (l >= 0x10000)
6575                 return NULL;
6576         if (!l--)
6577                 /* header */
6578                 return (void*)1;
6579
6580         spin_lock(&all_mddevs_lock);
6581         list_for_each(tmp,&all_mddevs)
6582                 if (!l--) {
6583                         mddev = list_entry(tmp, mddev_t, all_mddevs);
6584                         mddev_get(mddev);
6585                         spin_unlock(&all_mddevs_lock);
6586                         return mddev;
6587                 }
6588         spin_unlock(&all_mddevs_lock);
6589         if (!l--)
6590                 return (void*)2;/* tail */
6591         return NULL;
6592 }
6593
6594 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6595 {
6596         struct list_head *tmp;
6597         mddev_t *next_mddev, *mddev = v;
6598         
6599         ++*pos;
6600         if (v == (void*)2)
6601                 return NULL;
6602
6603         spin_lock(&all_mddevs_lock);
6604         if (v == (void*)1)
6605                 tmp = all_mddevs.next;
6606         else
6607                 tmp = mddev->all_mddevs.next;
6608         if (tmp != &all_mddevs)
6609                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6610         else {
6611                 next_mddev = (void*)2;
6612                 *pos = 0x10000;
6613         }               
6614         spin_unlock(&all_mddevs_lock);
6615
6616         if (v != (void*)1)
6617                 mddev_put(mddev);
6618         return next_mddev;
6619
6620 }
6621
6622 static void md_seq_stop(struct seq_file *seq, void *v)
6623 {
6624         mddev_t *mddev = v;
6625
6626         if (mddev && v != (void*)1 && v != (void*)2)
6627                 mddev_put(mddev);
6628 }
6629
6630 static int md_seq_show(struct seq_file *seq, void *v)
6631 {
6632         mddev_t *mddev = v;
6633         sector_t sectors;
6634         mdk_rdev_t *rdev;
6635         struct bitmap *bitmap;
6636
6637         if (v == (void*)1) {
6638                 struct mdk_personality *pers;
6639                 seq_printf(seq, "Personalities : ");
6640                 spin_lock(&pers_lock);
6641                 list_for_each_entry(pers, &pers_list, list)
6642                         seq_printf(seq, "[%s] ", pers->name);
6643
6644                 spin_unlock(&pers_lock);
6645                 seq_printf(seq, "\n");
6646                 seq->poll_event = atomic_read(&md_event_count);
6647                 return 0;
6648         }
6649         if (v == (void*)2) {
6650                 status_unused(seq);
6651                 return 0;
6652         }
6653
6654         if (mddev_lock(mddev) < 0)
6655                 return -EINTR;
6656
6657         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6658                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6659                                                 mddev->pers ? "" : "in");
6660                 if (mddev->pers) {
6661                         if (mddev->ro==1)
6662                                 seq_printf(seq, " (read-only)");
6663                         if (mddev->ro==2)
6664                                 seq_printf(seq, " (auto-read-only)");
6665                         seq_printf(seq, " %s", mddev->pers->name);
6666                 }
6667
6668                 sectors = 0;
6669                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6670                         char b[BDEVNAME_SIZE];
6671                         seq_printf(seq, " %s[%d]",
6672                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6673                         if (test_bit(WriteMostly, &rdev->flags))
6674                                 seq_printf(seq, "(W)");
6675                         if (test_bit(Faulty, &rdev->flags)) {
6676                                 seq_printf(seq, "(F)");
6677                                 continue;
6678                         } else if (rdev->raid_disk < 0)
6679                                 seq_printf(seq, "(S)"); /* spare */
6680                         sectors += rdev->sectors;
6681                 }
6682
6683                 if (!list_empty(&mddev->disks)) {
6684                         if (mddev->pers)
6685                                 seq_printf(seq, "\n      %llu blocks",
6686                                            (unsigned long long)
6687                                            mddev->array_sectors / 2);
6688                         else
6689                                 seq_printf(seq, "\n      %llu blocks",
6690                                            (unsigned long long)sectors / 2);
6691                 }
6692                 if (mddev->persistent) {
6693                         if (mddev->major_version != 0 ||
6694                             mddev->minor_version != 90) {
6695                                 seq_printf(seq," super %d.%d",
6696                                            mddev->major_version,
6697                                            mddev->minor_version);
6698                         }
6699                 } else if (mddev->external)
6700                         seq_printf(seq, " super external:%s",
6701                                    mddev->metadata_type);
6702                 else
6703                         seq_printf(seq, " super non-persistent");
6704
6705                 if (mddev->pers) {
6706                         mddev->pers->status(seq, mddev);
6707                         seq_printf(seq, "\n      ");
6708                         if (mddev->pers->sync_request) {
6709                                 if (mddev->curr_resync > 2) {
6710                                         status_resync(seq, mddev);
6711                                         seq_printf(seq, "\n      ");
6712                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6713                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6714                                 else if (mddev->recovery_cp < MaxSector)
6715                                         seq_printf(seq, "\tresync=PENDING\n      ");
6716                         }
6717                 } else
6718                         seq_printf(seq, "\n       ");
6719
6720                 if ((bitmap = mddev->bitmap)) {
6721                         unsigned long chunk_kb;
6722                         unsigned long flags;
6723                         spin_lock_irqsave(&bitmap->lock, flags);
6724                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6725                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6726                                 "%lu%s chunk",
6727                                 bitmap->pages - bitmap->missing_pages,
6728                                 bitmap->pages,
6729                                 (bitmap->pages - bitmap->missing_pages)
6730                                         << (PAGE_SHIFT - 10),
6731                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6732                                 chunk_kb ? "KB" : "B");
6733                         if (bitmap->file) {
6734                                 seq_printf(seq, ", file: ");
6735                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6736                         }
6737
6738                         seq_printf(seq, "\n");
6739                         spin_unlock_irqrestore(&bitmap->lock, flags);
6740                 }
6741
6742                 seq_printf(seq, "\n");
6743         }
6744         mddev_unlock(mddev);
6745         
6746         return 0;
6747 }
6748
6749 static const struct seq_operations md_seq_ops = {
6750         .start  = md_seq_start,
6751         .next   = md_seq_next,
6752         .stop   = md_seq_stop,
6753         .show   = md_seq_show,
6754 };
6755
6756 static int md_seq_open(struct inode *inode, struct file *file)
6757 {
6758         struct seq_file *seq;
6759         int error;
6760
6761         error = seq_open(file, &md_seq_ops);
6762         if (error)
6763                 return error;
6764
6765         seq = file->private_data;
6766         seq->poll_event = atomic_read(&md_event_count);
6767         return error;
6768 }
6769
6770 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6771 {
6772         struct seq_file *seq = filp->private_data;
6773         int mask;
6774
6775         poll_wait(filp, &md_event_waiters, wait);
6776
6777         /* always allow read */
6778         mask = POLLIN | POLLRDNORM;
6779
6780         if (seq->poll_event != atomic_read(&md_event_count))
6781                 mask |= POLLERR | POLLPRI;
6782         return mask;
6783 }
6784
6785 static const struct file_operations md_seq_fops = {
6786         .owner          = THIS_MODULE,
6787         .open           = md_seq_open,
6788         .read           = seq_read,
6789         .llseek         = seq_lseek,
6790         .release        = seq_release_private,
6791         .poll           = mdstat_poll,
6792 };
6793
6794 int register_md_personality(struct mdk_personality *p)
6795 {
6796         spin_lock(&pers_lock);
6797         list_add_tail(&p->list, &pers_list);
6798         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6799         spin_unlock(&pers_lock);
6800         return 0;
6801 }
6802
6803 int unregister_md_personality(struct mdk_personality *p)
6804 {
6805         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6806         spin_lock(&pers_lock);
6807         list_del_init(&p->list);
6808         spin_unlock(&pers_lock);
6809         return 0;
6810 }
6811
6812 static int is_mddev_idle(mddev_t *mddev, int init)
6813 {
6814         mdk_rdev_t * rdev;
6815         int idle;
6816         int curr_events;
6817
6818         idle = 1;
6819         rcu_read_lock();
6820         rdev_for_each_rcu(rdev, mddev) {
6821                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6822                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6823                               (int)part_stat_read(&disk->part0, sectors[1]) -
6824                               atomic_read(&disk->sync_io);
6825                 /* sync IO will cause sync_io to increase before the disk_stats
6826                  * as sync_io is counted when a request starts, and
6827                  * disk_stats is counted when it completes.
6828                  * So resync activity will cause curr_events to be smaller than
6829                  * when there was no such activity.
6830                  * non-sync IO will cause disk_stat to increase without
6831                  * increasing sync_io so curr_events will (eventually)
6832                  * be larger than it was before.  Once it becomes
6833                  * substantially larger, the test below will cause
6834                  * the array to appear non-idle, and resync will slow
6835                  * down.
6836                  * If there is a lot of outstanding resync activity when
6837                  * we set last_event to curr_events, then all that activity
6838                  * completing might cause the array to appear non-idle
6839                  * and resync will be slowed down even though there might
6840                  * not have been non-resync activity.  This will only
6841                  * happen once though.  'last_events' will soon reflect
6842                  * the state where there is little or no outstanding
6843                  * resync requests, and further resync activity will
6844                  * always make curr_events less than last_events.
6845                  *
6846                  */
6847                 if (init || curr_events - rdev->last_events > 64) {
6848                         rdev->last_events = curr_events;
6849                         idle = 0;
6850                 }
6851         }
6852         rcu_read_unlock();
6853         return idle;
6854 }
6855
6856 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6857 {
6858         /* another "blocks" (512byte) blocks have been synced */
6859         atomic_sub(blocks, &mddev->recovery_active);
6860         wake_up(&mddev->recovery_wait);
6861         if (!ok) {
6862                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6863                 md_wakeup_thread(mddev->thread);
6864                 // stop recovery, signal do_sync ....
6865         }
6866 }
6867
6868
6869 /* md_write_start(mddev, bi)
6870  * If we need to update some array metadata (e.g. 'active' flag
6871  * in superblock) before writing, schedule a superblock update
6872  * and wait for it to complete.
6873  */
6874 void md_write_start(mddev_t *mddev, struct bio *bi)
6875 {
6876         int did_change = 0;
6877         if (bio_data_dir(bi) != WRITE)
6878                 return;
6879
6880         BUG_ON(mddev->ro == 1);
6881         if (mddev->ro == 2) {
6882                 /* need to switch to read/write */
6883                 mddev->ro = 0;
6884                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6885                 md_wakeup_thread(mddev->thread);
6886                 md_wakeup_thread(mddev->sync_thread);
6887                 did_change = 1;
6888         }
6889         atomic_inc(&mddev->writes_pending);
6890         if (mddev->safemode == 1)
6891                 mddev->safemode = 0;
6892         if (mddev->in_sync) {
6893                 spin_lock_irq(&mddev->write_lock);
6894                 if (mddev->in_sync) {
6895                         mddev->in_sync = 0;
6896                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6897                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6898                         md_wakeup_thread(mddev->thread);
6899                         did_change = 1;
6900                 }
6901                 spin_unlock_irq(&mddev->write_lock);
6902         }
6903         if (did_change)
6904                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6905         wait_event(mddev->sb_wait,
6906                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6907 }
6908
6909 void md_write_end(mddev_t *mddev)
6910 {
6911         if (atomic_dec_and_test(&mddev->writes_pending)) {
6912                 if (mddev->safemode == 2)
6913                         md_wakeup_thread(mddev->thread);
6914                 else if (mddev->safemode_delay)
6915                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6916         }
6917 }
6918
6919 /* md_allow_write(mddev)
6920  * Calling this ensures that the array is marked 'active' so that writes
6921  * may proceed without blocking.  It is important to call this before
6922  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6923  * Must be called with mddev_lock held.
6924  *
6925  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6926  * is dropped, so return -EAGAIN after notifying userspace.
6927  */
6928 int md_allow_write(mddev_t *mddev)
6929 {
6930         if (!mddev->pers)
6931                 return 0;
6932         if (mddev->ro)
6933                 return 0;
6934         if (!mddev->pers->sync_request)
6935                 return 0;
6936
6937         spin_lock_irq(&mddev->write_lock);
6938         if (mddev->in_sync) {
6939                 mddev->in_sync = 0;
6940                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6941                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6942                 if (mddev->safemode_delay &&
6943                     mddev->safemode == 0)
6944                         mddev->safemode = 1;
6945                 spin_unlock_irq(&mddev->write_lock);
6946                 md_update_sb(mddev, 0);
6947                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6948         } else
6949                 spin_unlock_irq(&mddev->write_lock);
6950
6951         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6952                 return -EAGAIN;
6953         else
6954                 return 0;
6955 }
6956 EXPORT_SYMBOL_GPL(md_allow_write);
6957
6958 #define SYNC_MARKS      10
6959 #define SYNC_MARK_STEP  (3*HZ)
6960 void md_do_sync(mddev_t *mddev)
6961 {
6962         mddev_t *mddev2;
6963         unsigned int currspeed = 0,
6964                  window;
6965         sector_t max_sectors,j, io_sectors;
6966         unsigned long mark[SYNC_MARKS];
6967         sector_t mark_cnt[SYNC_MARKS];
6968         int last_mark,m;
6969         struct list_head *tmp;
6970         sector_t last_check;
6971         int skipped = 0;
6972         mdk_rdev_t *rdev;
6973         char *desc;
6974
6975         /* just incase thread restarts... */
6976         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6977                 return;
6978         if (mddev->ro) /* never try to sync a read-only array */
6979                 return;
6980
6981         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6982                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6983                         desc = "data-check";
6984                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6985                         desc = "requested-resync";
6986                 else
6987                         desc = "resync";
6988         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6989                 desc = "reshape";
6990         else
6991                 desc = "recovery";
6992
6993         /* we overload curr_resync somewhat here.
6994          * 0 == not engaged in resync at all
6995          * 2 == checking that there is no conflict with another sync
6996          * 1 == like 2, but have yielded to allow conflicting resync to
6997          *              commense
6998          * other == active in resync - this many blocks
6999          *
7000          * Before starting a resync we must have set curr_resync to
7001          * 2, and then checked that every "conflicting" array has curr_resync
7002          * less than ours.  When we find one that is the same or higher
7003          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7004          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7005          * This will mean we have to start checking from the beginning again.
7006          *
7007          */
7008
7009         do {
7010                 mddev->curr_resync = 2;
7011
7012         try_again:
7013                 if (kthread_should_stop())
7014                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7015
7016                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7017                         goto skip;
7018                 for_each_mddev(mddev2, tmp) {
7019                         if (mddev2 == mddev)
7020                                 continue;
7021                         if (!mddev->parallel_resync
7022                         &&  mddev2->curr_resync
7023                         &&  match_mddev_units(mddev, mddev2)) {
7024                                 DEFINE_WAIT(wq);
7025                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7026                                         /* arbitrarily yield */
7027                                         mddev->curr_resync = 1;
7028                                         wake_up(&resync_wait);
7029                                 }
7030                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7031                                         /* no need to wait here, we can wait the next
7032                                          * time 'round when curr_resync == 2
7033                                          */
7034                                         continue;
7035                                 /* We need to wait 'interruptible' so as not to
7036                                  * contribute to the load average, and not to
7037                                  * be caught by 'softlockup'
7038                                  */
7039                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7040                                 if (!kthread_should_stop() &&
7041                                     mddev2->curr_resync >= mddev->curr_resync) {
7042                                         printk(KERN_INFO "md: delaying %s of %s"
7043                                                " until %s has finished (they"
7044                                                " share one or more physical units)\n",
7045                                                desc, mdname(mddev), mdname(mddev2));
7046                                         mddev_put(mddev2);
7047                                         if (signal_pending(current))
7048                                                 flush_signals(current);
7049                                         schedule();
7050                                         finish_wait(&resync_wait, &wq);
7051                                         goto try_again;
7052                                 }
7053                                 finish_wait(&resync_wait, &wq);
7054                         }
7055                 }
7056         } while (mddev->curr_resync < 2);
7057
7058         j = 0;
7059         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7060                 /* resync follows the size requested by the personality,
7061                  * which defaults to physical size, but can be virtual size
7062                  */
7063                 max_sectors = mddev->resync_max_sectors;
7064                 mddev->resync_mismatches = 0;
7065                 /* we don't use the checkpoint if there's a bitmap */
7066                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7067                         j = mddev->resync_min;
7068                 else if (!mddev->bitmap)
7069                         j = mddev->recovery_cp;
7070
7071         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7072                 max_sectors = mddev->dev_sectors;
7073         else {
7074                 /* recovery follows the physical size of devices */
7075                 max_sectors = mddev->dev_sectors;
7076                 j = MaxSector;
7077                 rcu_read_lock();
7078                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7079                         if (rdev->raid_disk >= 0 &&
7080                             !test_bit(Faulty, &rdev->flags) &&
7081                             !test_bit(In_sync, &rdev->flags) &&
7082                             rdev->recovery_offset < j)
7083                                 j = rdev->recovery_offset;
7084                 rcu_read_unlock();
7085         }
7086
7087         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7088         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7089                 " %d KB/sec/disk.\n", speed_min(mddev));
7090         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7091                "(but not more than %d KB/sec) for %s.\n",
7092                speed_max(mddev), desc);
7093
7094         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7095
7096         io_sectors = 0;
7097         for (m = 0; m < SYNC_MARKS; m++) {
7098                 mark[m] = jiffies;
7099                 mark_cnt[m] = io_sectors;
7100         }
7101         last_mark = 0;
7102         mddev->resync_mark = mark[last_mark];
7103         mddev->resync_mark_cnt = mark_cnt[last_mark];
7104
7105         /*
7106          * Tune reconstruction:
7107          */
7108         window = 32*(PAGE_SIZE/512);
7109         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7110                 window/2, (unsigned long long)max_sectors/2);
7111
7112         atomic_set(&mddev->recovery_active, 0);
7113         last_check = 0;
7114
7115         if (j>2) {
7116                 printk(KERN_INFO 
7117                        "md: resuming %s of %s from checkpoint.\n",
7118                        desc, mdname(mddev));
7119                 mddev->curr_resync = j;
7120         }
7121         mddev->curr_resync_completed = j;
7122
7123         while (j < max_sectors) {
7124                 sector_t sectors;
7125
7126                 skipped = 0;
7127
7128                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7129                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7130                       (mddev->curr_resync - mddev->curr_resync_completed)
7131                       > (max_sectors >> 4)) ||
7132                      (j - mddev->curr_resync_completed)*2
7133                      >= mddev->resync_max - mddev->curr_resync_completed
7134                             )) {
7135                         /* time to update curr_resync_completed */
7136                         wait_event(mddev->recovery_wait,
7137                                    atomic_read(&mddev->recovery_active) == 0);
7138                         mddev->curr_resync_completed = j;
7139                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7140                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7141                 }
7142
7143                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7144                         /* As this condition is controlled by user-space,
7145                          * we can block indefinitely, so use '_interruptible'
7146                          * to avoid triggering warnings.
7147                          */
7148                         flush_signals(current); /* just in case */
7149                         wait_event_interruptible(mddev->recovery_wait,
7150                                                  mddev->resync_max > j
7151                                                  || kthread_should_stop());
7152                 }
7153
7154                 if (kthread_should_stop())
7155                         goto interrupted;
7156
7157                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7158                                                   currspeed < speed_min(mddev));
7159                 if (sectors == 0) {
7160                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7161                         goto out;
7162                 }
7163
7164                 if (!skipped) { /* actual IO requested */
7165                         io_sectors += sectors;
7166                         atomic_add(sectors, &mddev->recovery_active);
7167                 }
7168
7169                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7170                         break;
7171
7172                 j += sectors;
7173                 if (j>1) mddev->curr_resync = j;
7174                 mddev->curr_mark_cnt = io_sectors;
7175                 if (last_check == 0)
7176                         /* this is the earliest that rebuild will be
7177                          * visible in /proc/mdstat
7178                          */
7179                         md_new_event(mddev);
7180
7181                 if (last_check + window > io_sectors || j == max_sectors)
7182                         continue;
7183
7184                 last_check = io_sectors;
7185         repeat:
7186                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7187                         /* step marks */
7188                         int next = (last_mark+1) % SYNC_MARKS;
7189
7190                         mddev->resync_mark = mark[next];
7191                         mddev->resync_mark_cnt = mark_cnt[next];
7192                         mark[next] = jiffies;
7193                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7194                         last_mark = next;
7195                 }
7196
7197
7198                 if (kthread_should_stop())
7199                         goto interrupted;
7200
7201
7202                 /*
7203                  * this loop exits only if either when we are slower than
7204                  * the 'hard' speed limit, or the system was IO-idle for
7205                  * a jiffy.
7206                  * the system might be non-idle CPU-wise, but we only care
7207                  * about not overloading the IO subsystem. (things like an
7208                  * e2fsck being done on the RAID array should execute fast)
7209                  */
7210                 cond_resched();
7211
7212                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7213                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7214
7215                 if (currspeed > speed_min(mddev)) {
7216                         if ((currspeed > speed_max(mddev)) ||
7217                                         !is_mddev_idle(mddev, 0)) {
7218                                 msleep(500);
7219                                 goto repeat;
7220                         }
7221                 }
7222         }
7223         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7224         /*
7225          * this also signals 'finished resyncing' to md_stop
7226          */
7227  out:
7228         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7229
7230         /* tell personality that we are finished */
7231         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7232
7233         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7234             mddev->curr_resync > 2) {
7235                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7236                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7237                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7238                                         printk(KERN_INFO
7239                                                "md: checkpointing %s of %s.\n",
7240                                                desc, mdname(mddev));
7241                                         mddev->recovery_cp = mddev->curr_resync;
7242                                 }
7243                         } else
7244                                 mddev->recovery_cp = MaxSector;
7245                 } else {
7246                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7247                                 mddev->curr_resync = MaxSector;
7248                         rcu_read_lock();
7249                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7250                                 if (rdev->raid_disk >= 0 &&
7251                                     mddev->delta_disks >= 0 &&
7252                                     !test_bit(Faulty, &rdev->flags) &&
7253                                     !test_bit(In_sync, &rdev->flags) &&
7254                                     rdev->recovery_offset < mddev->curr_resync)
7255                                         rdev->recovery_offset = mddev->curr_resync;
7256                         rcu_read_unlock();
7257                 }
7258         }
7259         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7260
7261  skip:
7262         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7263                 /* We completed so min/max setting can be forgotten if used. */
7264                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7265                         mddev->resync_min = 0;
7266                 mddev->resync_max = MaxSector;
7267         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7268                 mddev->resync_min = mddev->curr_resync_completed;
7269         mddev->curr_resync = 0;
7270         wake_up(&resync_wait);
7271         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7272         md_wakeup_thread(mddev->thread);
7273         return;
7274
7275  interrupted:
7276         /*
7277          * got a signal, exit.
7278          */
7279         printk(KERN_INFO
7280                "md: md_do_sync() got signal ... exiting\n");
7281         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7282         goto out;
7283
7284 }
7285 EXPORT_SYMBOL_GPL(md_do_sync);
7286
7287 static int remove_and_add_spares(mddev_t *mddev)
7288 {
7289         mdk_rdev_t *rdev;
7290         int spares = 0;
7291
7292         mddev->curr_resync_completed = 0;
7293
7294         list_for_each_entry(rdev, &mddev->disks, same_set)
7295                 if (rdev->raid_disk >= 0 &&
7296                     !test_bit(Blocked, &rdev->flags) &&
7297                     (test_bit(Faulty, &rdev->flags) ||
7298                      ! test_bit(In_sync, &rdev->flags)) &&
7299                     atomic_read(&rdev->nr_pending)==0) {
7300                         if (mddev->pers->hot_remove_disk(
7301                                     mddev, rdev->raid_disk)==0) {
7302                                 sysfs_unlink_rdev(mddev, rdev);
7303                                 rdev->raid_disk = -1;
7304                         }
7305                 }
7306
7307         if (mddev->degraded) {
7308                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7309                         if (rdev->raid_disk >= 0 &&
7310                             !test_bit(In_sync, &rdev->flags) &&
7311                             !test_bit(Faulty, &rdev->flags))
7312                                 spares++;
7313                         if (rdev->raid_disk < 0
7314                             && !test_bit(Faulty, &rdev->flags)) {
7315                                 rdev->recovery_offset = 0;
7316                                 if (mddev->pers->
7317                                     hot_add_disk(mddev, rdev) == 0) {
7318                                         if (sysfs_link_rdev(mddev, rdev))
7319                                                 /* failure here is OK */;
7320                                         spares++;
7321                                         md_new_event(mddev);
7322                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7323                                 } else
7324                                         break;
7325                         }
7326                 }
7327         }
7328         return spares;
7329 }
7330
7331 static void reap_sync_thread(mddev_t *mddev)
7332 {
7333         mdk_rdev_t *rdev;
7334
7335         /* resync has finished, collect result */
7336         md_unregister_thread(mddev->sync_thread);
7337         mddev->sync_thread = NULL;
7338         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7339             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7340                 /* success...*/
7341                 /* activate any spares */
7342                 if (mddev->pers->spare_active(mddev))
7343                         sysfs_notify(&mddev->kobj, NULL,
7344                                      "degraded");
7345         }
7346         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7347             mddev->pers->finish_reshape)
7348                 mddev->pers->finish_reshape(mddev);
7349         md_update_sb(mddev, 1);
7350
7351         /* if array is no-longer degraded, then any saved_raid_disk
7352          * information must be scrapped
7353          */
7354         if (!mddev->degraded)
7355                 list_for_each_entry(rdev, &mddev->disks, same_set)
7356                         rdev->saved_raid_disk = -1;
7357
7358         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7359         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7360         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7361         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7362         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7363         /* flag recovery needed just to double check */
7364         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7365         sysfs_notify_dirent_safe(mddev->sysfs_action);
7366         md_new_event(mddev);
7367         if (mddev->event_work.func)
7368                 queue_work(md_misc_wq, &mddev->event_work);
7369 }
7370
7371 /*
7372  * This routine is regularly called by all per-raid-array threads to
7373  * deal with generic issues like resync and super-block update.
7374  * Raid personalities that don't have a thread (linear/raid0) do not
7375  * need this as they never do any recovery or update the superblock.
7376  *
7377  * It does not do any resync itself, but rather "forks" off other threads
7378  * to do that as needed.
7379  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7380  * "->recovery" and create a thread at ->sync_thread.
7381  * When the thread finishes it sets MD_RECOVERY_DONE
7382  * and wakeups up this thread which will reap the thread and finish up.
7383  * This thread also removes any faulty devices (with nr_pending == 0).
7384  *
7385  * The overall approach is:
7386  *  1/ if the superblock needs updating, update it.
7387  *  2/ If a recovery thread is running, don't do anything else.
7388  *  3/ If recovery has finished, clean up, possibly marking spares active.
7389  *  4/ If there are any faulty devices, remove them.
7390  *  5/ If array is degraded, try to add spares devices
7391  *  6/ If array has spares or is not in-sync, start a resync thread.
7392  */
7393 void md_check_recovery(mddev_t *mddev)
7394 {
7395         if (mddev->suspended)
7396                 return;
7397
7398         if (mddev->bitmap)
7399                 bitmap_daemon_work(mddev);
7400
7401         if (signal_pending(current)) {
7402                 if (mddev->pers->sync_request && !mddev->external) {
7403                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7404                                mdname(mddev));
7405                         mddev->safemode = 2;
7406                 }
7407                 flush_signals(current);
7408         }
7409
7410         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7411                 return;
7412         if ( ! (
7413                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7414                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7415                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7416                 (mddev->external == 0 && mddev->safemode == 1) ||
7417                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7418                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7419                 ))
7420                 return;
7421
7422         if (mddev_trylock(mddev)) {
7423                 int spares = 0;
7424
7425                 if (mddev->ro) {
7426                         /* Only thing we do on a ro array is remove
7427                          * failed devices.
7428                          */
7429                         mdk_rdev_t *rdev;
7430                         list_for_each_entry(rdev, &mddev->disks, same_set)
7431                                 if (rdev->raid_disk >= 0 &&
7432                                     !test_bit(Blocked, &rdev->flags) &&
7433                                     test_bit(Faulty, &rdev->flags) &&
7434                                     atomic_read(&rdev->nr_pending)==0) {
7435                                         if (mddev->pers->hot_remove_disk(
7436                                                     mddev, rdev->raid_disk)==0) {
7437                                                 sysfs_unlink_rdev(mddev, rdev);
7438                                                 rdev->raid_disk = -1;
7439                                         }
7440                                 }
7441                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7442                         goto unlock;
7443                 }
7444
7445                 if (!mddev->external) {
7446                         int did_change = 0;
7447                         spin_lock_irq(&mddev->write_lock);
7448                         if (mddev->safemode &&
7449                             !atomic_read(&mddev->writes_pending) &&
7450                             !mddev->in_sync &&
7451                             mddev->recovery_cp == MaxSector) {
7452                                 mddev->in_sync = 1;
7453                                 did_change = 1;
7454                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7455                         }
7456                         if (mddev->safemode == 1)
7457                                 mddev->safemode = 0;
7458                         spin_unlock_irq(&mddev->write_lock);
7459                         if (did_change)
7460                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7461                 }
7462
7463                 if (mddev->flags)
7464                         md_update_sb(mddev, 0);
7465
7466                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7467                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7468                         /* resync/recovery still happening */
7469                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7470                         goto unlock;
7471                 }
7472                 if (mddev->sync_thread) {
7473                         reap_sync_thread(mddev);
7474                         goto unlock;
7475                 }
7476                 /* Set RUNNING before clearing NEEDED to avoid
7477                  * any transients in the value of "sync_action".
7478                  */
7479                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7480                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7481                 /* Clear some bits that don't mean anything, but
7482                  * might be left set
7483                  */
7484                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7485                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7486
7487                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7488                         goto unlock;
7489                 /* no recovery is running.
7490                  * remove any failed drives, then
7491                  * add spares if possible.
7492                  * Spare are also removed and re-added, to allow
7493                  * the personality to fail the re-add.
7494                  */
7495
7496                 if (mddev->reshape_position != MaxSector) {
7497                         if (mddev->pers->check_reshape == NULL ||
7498                             mddev->pers->check_reshape(mddev) != 0)
7499                                 /* Cannot proceed */
7500                                 goto unlock;
7501                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7502                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7503                 } else if ((spares = remove_and_add_spares(mddev))) {
7504                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7505                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7506                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7507                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7508                 } else if (mddev->recovery_cp < MaxSector) {
7509                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7510                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7511                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7512                         /* nothing to be done ... */
7513                         goto unlock;
7514
7515                 if (mddev->pers->sync_request) {
7516                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7517                                 /* We are adding a device or devices to an array
7518                                  * which has the bitmap stored on all devices.
7519                                  * So make sure all bitmap pages get written
7520                                  */
7521                                 bitmap_write_all(mddev->bitmap);
7522                         }
7523                         mddev->sync_thread = md_register_thread(md_do_sync,
7524                                                                 mddev,
7525                                                                 "resync");
7526                         if (!mddev->sync_thread) {
7527                                 printk(KERN_ERR "%s: could not start resync"
7528                                         " thread...\n", 
7529                                         mdname(mddev));
7530                                 /* leave the spares where they are, it shouldn't hurt */
7531                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7532                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7533                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7534                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7535                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7536                         } else
7537                                 md_wakeup_thread(mddev->sync_thread);
7538                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7539                         md_new_event(mddev);
7540                 }
7541         unlock:
7542                 if (!mddev->sync_thread) {
7543                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7544                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7545                                                &mddev->recovery))
7546                                 if (mddev->sysfs_action)
7547                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7548                 }
7549                 mddev_unlock(mddev);
7550         }
7551 }
7552
7553 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7554 {
7555         sysfs_notify_dirent_safe(rdev->sysfs_state);
7556         wait_event_timeout(rdev->blocked_wait,
7557                            !test_bit(Blocked, &rdev->flags) &&
7558                            !test_bit(BlockedBadBlocks, &rdev->flags),
7559                            msecs_to_jiffies(5000));
7560         rdev_dec_pending(rdev, mddev);
7561 }
7562 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7563
7564
7565 /* Bad block management.
7566  * We can record which blocks on each device are 'bad' and so just
7567  * fail those blocks, or that stripe, rather than the whole device.
7568  * Entries in the bad-block table are 64bits wide.  This comprises:
7569  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7570  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7571  *  A 'shift' can be set so that larger blocks are tracked and
7572  *  consequently larger devices can be covered.
7573  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7574  *
7575  * Locking of the bad-block table uses a seqlock so md_is_badblock
7576  * might need to retry if it is very unlucky.
7577  * We will sometimes want to check for bad blocks in a bi_end_io function,
7578  * so we use the write_seqlock_irq variant.
7579  *
7580  * When looking for a bad block we specify a range and want to
7581  * know if any block in the range is bad.  So we binary-search
7582  * to the last range that starts at-or-before the given endpoint,
7583  * (or "before the sector after the target range")
7584  * then see if it ends after the given start.
7585  * We return
7586  *  0 if there are no known bad blocks in the range
7587  *  1 if there are known bad block which are all acknowledged
7588  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7589  * plus the start/length of the first bad section we overlap.
7590  */
7591 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7592                    sector_t *first_bad, int *bad_sectors)
7593 {
7594         int hi;
7595         int lo = 0;
7596         u64 *p = bb->page;
7597         int rv = 0;
7598         sector_t target = s + sectors;
7599         unsigned seq;
7600
7601         if (bb->shift > 0) {
7602                 /* round the start down, and the end up */
7603                 s >>= bb->shift;
7604                 target += (1<<bb->shift) - 1;
7605                 target >>= bb->shift;
7606                 sectors = target - s;
7607         }
7608         /* 'target' is now the first block after the bad range */
7609
7610 retry:
7611         seq = read_seqbegin(&bb->lock);
7612
7613         hi = bb->count;
7614
7615         /* Binary search between lo and hi for 'target'
7616          * i.e. for the last range that starts before 'target'
7617          */
7618         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7619          * are known not to be the last range before target.
7620          * VARIANT: hi-lo is the number of possible
7621          * ranges, and decreases until it reaches 1
7622          */
7623         while (hi - lo > 1) {
7624                 int mid = (lo + hi) / 2;
7625                 sector_t a = BB_OFFSET(p[mid]);
7626                 if (a < target)
7627                         /* This could still be the one, earlier ranges
7628                          * could not. */
7629                         lo = mid;
7630                 else
7631                         /* This and later ranges are definitely out. */
7632                         hi = mid;
7633         }
7634         /* 'lo' might be the last that started before target, but 'hi' isn't */
7635         if (hi > lo) {
7636                 /* need to check all range that end after 's' to see if
7637                  * any are unacknowledged.
7638                  */
7639                 while (lo >= 0 &&
7640                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7641                         if (BB_OFFSET(p[lo]) < target) {
7642                                 /* starts before the end, and finishes after
7643                                  * the start, so they must overlap
7644                                  */
7645                                 if (rv != -1 && BB_ACK(p[lo]))
7646                                         rv = 1;
7647                                 else
7648                                         rv = -1;
7649                                 *first_bad = BB_OFFSET(p[lo]);
7650                                 *bad_sectors = BB_LEN(p[lo]);
7651                         }
7652                         lo--;
7653                 }
7654         }
7655
7656         if (read_seqretry(&bb->lock, seq))
7657                 goto retry;
7658
7659         return rv;
7660 }
7661 EXPORT_SYMBOL_GPL(md_is_badblock);
7662
7663 /*
7664  * Add a range of bad blocks to the table.
7665  * This might extend the table, or might contract it
7666  * if two adjacent ranges can be merged.
7667  * We binary-search to find the 'insertion' point, then
7668  * decide how best to handle it.
7669  */
7670 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7671                             int acknowledged)
7672 {
7673         u64 *p;
7674         int lo, hi;
7675         int rv = 1;
7676
7677         if (bb->shift < 0)
7678                 /* badblocks are disabled */
7679                 return 0;
7680
7681         if (bb->shift) {
7682                 /* round the start down, and the end up */
7683                 sector_t next = s + sectors;
7684                 s >>= bb->shift;
7685                 next += (1<<bb->shift) - 1;
7686                 next >>= bb->shift;
7687                 sectors = next - s;
7688         }
7689
7690         write_seqlock_irq(&bb->lock);
7691
7692         p = bb->page;
7693         lo = 0;
7694         hi = bb->count;
7695         /* Find the last range that starts at-or-before 's' */
7696         while (hi - lo > 1) {
7697                 int mid = (lo + hi) / 2;
7698                 sector_t a = BB_OFFSET(p[mid]);
7699                 if (a <= s)
7700                         lo = mid;
7701                 else
7702                         hi = mid;
7703         }
7704         if (hi > lo && BB_OFFSET(p[lo]) > s)
7705                 hi = lo;
7706
7707         if (hi > lo) {
7708                 /* we found a range that might merge with the start
7709                  * of our new range
7710                  */
7711                 sector_t a = BB_OFFSET(p[lo]);
7712                 sector_t e = a + BB_LEN(p[lo]);
7713                 int ack = BB_ACK(p[lo]);
7714                 if (e >= s) {
7715                         /* Yes, we can merge with a previous range */
7716                         if (s == a && s + sectors >= e)
7717                                 /* new range covers old */
7718                                 ack = acknowledged;
7719                         else
7720                                 ack = ack && acknowledged;
7721
7722                         if (e < s + sectors)
7723                                 e = s + sectors;
7724                         if (e - a <= BB_MAX_LEN) {
7725                                 p[lo] = BB_MAKE(a, e-a, ack);
7726                                 s = e;
7727                         } else {
7728                                 /* does not all fit in one range,
7729                                  * make p[lo] maximal
7730                                  */
7731                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7732                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7733                                 s = a + BB_MAX_LEN;
7734                         }
7735                         sectors = e - s;
7736                 }
7737         }
7738         if (sectors && hi < bb->count) {
7739                 /* 'hi' points to the first range that starts after 's'.
7740                  * Maybe we can merge with the start of that range */
7741                 sector_t a = BB_OFFSET(p[hi]);
7742                 sector_t e = a + BB_LEN(p[hi]);
7743                 int ack = BB_ACK(p[hi]);
7744                 if (a <= s + sectors) {
7745                         /* merging is possible */
7746                         if (e <= s + sectors) {
7747                                 /* full overlap */
7748                                 e = s + sectors;
7749                                 ack = acknowledged;
7750                         } else
7751                                 ack = ack && acknowledged;
7752
7753                         a = s;
7754                         if (e - a <= BB_MAX_LEN) {
7755                                 p[hi] = BB_MAKE(a, e-a, ack);
7756                                 s = e;
7757                         } else {
7758                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7759                                 s = a + BB_MAX_LEN;
7760                         }
7761                         sectors = e - s;
7762                         lo = hi;
7763                         hi++;
7764                 }
7765         }
7766         if (sectors == 0 && hi < bb->count) {
7767                 /* we might be able to combine lo and hi */
7768                 /* Note: 's' is at the end of 'lo' */
7769                 sector_t a = BB_OFFSET(p[hi]);
7770                 int lolen = BB_LEN(p[lo]);
7771                 int hilen = BB_LEN(p[hi]);
7772                 int newlen = lolen + hilen - (s - a);
7773                 if (s >= a && newlen < BB_MAX_LEN) {
7774                         /* yes, we can combine them */
7775                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7776                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7777                         memmove(p + hi, p + hi + 1,
7778                                 (bb->count - hi - 1) * 8);
7779                         bb->count--;
7780                 }
7781         }
7782         while (sectors) {
7783                 /* didn't merge (it all).
7784                  * Need to add a range just before 'hi' */
7785                 if (bb->count >= MD_MAX_BADBLOCKS) {
7786                         /* No room for more */
7787                         rv = 0;
7788                         break;
7789                 } else {
7790                         int this_sectors = sectors;
7791                         memmove(p + hi + 1, p + hi,
7792                                 (bb->count - hi) * 8);
7793                         bb->count++;
7794
7795                         if (this_sectors > BB_MAX_LEN)
7796                                 this_sectors = BB_MAX_LEN;
7797                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7798                         sectors -= this_sectors;
7799                         s += this_sectors;
7800                 }
7801         }
7802
7803         bb->changed = 1;
7804         if (!acknowledged)
7805                 bb->unacked_exist = 1;
7806         write_sequnlock_irq(&bb->lock);
7807
7808         return rv;
7809 }
7810
7811 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7812                        int acknowledged)
7813 {
7814         int rv = md_set_badblocks(&rdev->badblocks,
7815                                   s + rdev->data_offset, sectors, acknowledged);
7816         if (rv) {
7817                 /* Make sure they get written out promptly */
7818                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7819                 md_wakeup_thread(rdev->mddev->thread);
7820         }
7821         return rv;
7822 }
7823 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7824
7825 /*
7826  * Remove a range of bad blocks from the table.
7827  * This may involve extending the table if we spilt a region,
7828  * but it must not fail.  So if the table becomes full, we just
7829  * drop the remove request.
7830  */
7831 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7832 {
7833         u64 *p;
7834         int lo, hi;
7835         sector_t target = s + sectors;
7836         int rv = 0;
7837
7838         if (bb->shift > 0) {
7839                 /* When clearing we round the start up and the end down.
7840                  * This should not matter as the shift should align with
7841                  * the block size and no rounding should ever be needed.
7842                  * However it is better the think a block is bad when it
7843                  * isn't than to think a block is not bad when it is.
7844                  */
7845                 s += (1<<bb->shift) - 1;
7846                 s >>= bb->shift;
7847                 target >>= bb->shift;
7848                 sectors = target - s;
7849         }
7850
7851         write_seqlock_irq(&bb->lock);
7852
7853         p = bb->page;
7854         lo = 0;
7855         hi = bb->count;
7856         /* Find the last range that starts before 'target' */
7857         while (hi - lo > 1) {
7858                 int mid = (lo + hi) / 2;
7859                 sector_t a = BB_OFFSET(p[mid]);
7860                 if (a < target)
7861                         lo = mid;
7862                 else
7863                         hi = mid;
7864         }
7865         if (hi > lo) {
7866                 /* p[lo] is the last range that could overlap the
7867                  * current range.  Earlier ranges could also overlap,
7868                  * but only this one can overlap the end of the range.
7869                  */
7870                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7871                         /* Partial overlap, leave the tail of this range */
7872                         int ack = BB_ACK(p[lo]);
7873                         sector_t a = BB_OFFSET(p[lo]);
7874                         sector_t end = a + BB_LEN(p[lo]);
7875
7876                         if (a < s) {
7877                                 /* we need to split this range */
7878                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7879                                         rv = 0;
7880                                         goto out;
7881                                 }
7882                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7883                                 bb->count++;
7884                                 p[lo] = BB_MAKE(a, s-a, ack);
7885                                 lo++;
7886                         }
7887                         p[lo] = BB_MAKE(target, end - target, ack);
7888                         /* there is no longer an overlap */
7889                         hi = lo;
7890                         lo--;
7891                 }
7892                 while (lo >= 0 &&
7893                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7894                         /* This range does overlap */
7895                         if (BB_OFFSET(p[lo]) < s) {
7896                                 /* Keep the early parts of this range. */
7897                                 int ack = BB_ACK(p[lo]);
7898                                 sector_t start = BB_OFFSET(p[lo]);
7899                                 p[lo] = BB_MAKE(start, s - start, ack);
7900                                 /* now low doesn't overlap, so.. */
7901                                 break;
7902                         }
7903                         lo--;
7904                 }
7905                 /* 'lo' is strictly before, 'hi' is strictly after,
7906                  * anything between needs to be discarded
7907                  */
7908                 if (hi - lo > 1) {
7909                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7910                         bb->count -= (hi - lo - 1);
7911                 }
7912         }
7913
7914         bb->changed = 1;
7915 out:
7916         write_sequnlock_irq(&bb->lock);
7917         return rv;
7918 }
7919
7920 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7921 {
7922         return md_clear_badblocks(&rdev->badblocks,
7923                                   s + rdev->data_offset,
7924                                   sectors);
7925 }
7926 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7927
7928 /*
7929  * Acknowledge all bad blocks in a list.
7930  * This only succeeds if ->changed is clear.  It is used by
7931  * in-kernel metadata updates
7932  */
7933 void md_ack_all_badblocks(struct badblocks *bb)
7934 {
7935         if (bb->page == NULL || bb->changed)
7936                 /* no point even trying */
7937                 return;
7938         write_seqlock_irq(&bb->lock);
7939
7940         if (bb->changed == 0) {
7941                 u64 *p = bb->page;
7942                 int i;
7943                 for (i = 0; i < bb->count ; i++) {
7944                         if (!BB_ACK(p[i])) {
7945                                 sector_t start = BB_OFFSET(p[i]);
7946                                 int len = BB_LEN(p[i]);
7947                                 p[i] = BB_MAKE(start, len, 1);
7948                         }
7949                 }
7950                 bb->unacked_exist = 0;
7951         }
7952         write_sequnlock_irq(&bb->lock);
7953 }
7954 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7955
7956 /* sysfs access to bad-blocks list.
7957  * We present two files.
7958  * 'bad-blocks' lists sector numbers and lengths of ranges that
7959  *    are recorded as bad.  The list is truncated to fit within
7960  *    the one-page limit of sysfs.
7961  *    Writing "sector length" to this file adds an acknowledged
7962  *    bad block list.
7963  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7964  *    been acknowledged.  Writing to this file adds bad blocks
7965  *    without acknowledging them.  This is largely for testing.
7966  */
7967
7968 static ssize_t
7969 badblocks_show(struct badblocks *bb, char *page, int unack)
7970 {
7971         size_t len;
7972         int i;
7973         u64 *p = bb->page;
7974         unsigned seq;
7975
7976         if (bb->shift < 0)
7977                 return 0;
7978
7979 retry:
7980         seq = read_seqbegin(&bb->lock);
7981
7982         len = 0;
7983         i = 0;
7984
7985         while (len < PAGE_SIZE && i < bb->count) {
7986                 sector_t s = BB_OFFSET(p[i]);
7987                 unsigned int length = BB_LEN(p[i]);
7988                 int ack = BB_ACK(p[i]);
7989                 i++;
7990
7991                 if (unack && ack)
7992                         continue;
7993
7994                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
7995                                 (unsigned long long)s << bb->shift,
7996                                 length << bb->shift);
7997         }
7998         if (unack && len == 0)
7999                 bb->unacked_exist = 0;
8000
8001         if (read_seqretry(&bb->lock, seq))
8002                 goto retry;
8003
8004         return len;
8005 }
8006
8007 #define DO_DEBUG 1
8008
8009 static ssize_t
8010 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8011 {
8012         unsigned long long sector;
8013         int length;
8014         char newline;
8015 #ifdef DO_DEBUG
8016         /* Allow clearing via sysfs *only* for testing/debugging.
8017          * Normally only a successful write may clear a badblock
8018          */
8019         int clear = 0;
8020         if (page[0] == '-') {
8021                 clear = 1;
8022                 page++;
8023         }
8024 #endif /* DO_DEBUG */
8025
8026         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8027         case 3:
8028                 if (newline != '\n')
8029                         return -EINVAL;
8030         case 2:
8031                 if (length <= 0)
8032                         return -EINVAL;
8033                 break;
8034         default:
8035                 return -EINVAL;
8036         }
8037
8038 #ifdef DO_DEBUG
8039         if (clear) {
8040                 md_clear_badblocks(bb, sector, length);
8041                 return len;
8042         }
8043 #endif /* DO_DEBUG */
8044         if (md_set_badblocks(bb, sector, length, !unack))
8045                 return len;
8046         else
8047                 return -ENOSPC;
8048 }
8049
8050 static int md_notify_reboot(struct notifier_block *this,
8051                             unsigned long code, void *x)
8052 {
8053         struct list_head *tmp;
8054         mddev_t *mddev;
8055
8056         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8057
8058                 printk(KERN_INFO "md: stopping all md devices.\n");
8059
8060                 for_each_mddev(mddev, tmp)
8061                         if (mddev_trylock(mddev)) {
8062                                 /* Force a switch to readonly even array
8063                                  * appears to still be in use.  Hence
8064                                  * the '100'.
8065                                  */
8066                                 md_set_readonly(mddev, 100);
8067                                 mddev_unlock(mddev);
8068                         }
8069                 /*
8070                  * certain more exotic SCSI devices are known to be
8071                  * volatile wrt too early system reboots. While the
8072                  * right place to handle this issue is the given
8073                  * driver, we do want to have a safe RAID driver ...
8074                  */
8075                 mdelay(1000*1);
8076         }
8077         return NOTIFY_DONE;
8078 }
8079
8080 static struct notifier_block md_notifier = {
8081         .notifier_call  = md_notify_reboot,
8082         .next           = NULL,
8083         .priority       = INT_MAX, /* before any real devices */
8084 };
8085
8086 static void md_geninit(void)
8087 {
8088         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8089
8090         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8091 }
8092
8093 static int __init md_init(void)
8094 {
8095         int ret = -ENOMEM;
8096
8097         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8098         if (!md_wq)
8099                 goto err_wq;
8100
8101         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8102         if (!md_misc_wq)
8103                 goto err_misc_wq;
8104
8105         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8106                 goto err_md;
8107
8108         if ((ret = register_blkdev(0, "mdp")) < 0)
8109                 goto err_mdp;
8110         mdp_major = ret;
8111
8112         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8113                             md_probe, NULL, NULL);
8114         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8115                             md_probe, NULL, NULL);
8116
8117         register_reboot_notifier(&md_notifier);
8118         raid_table_header = register_sysctl_table(raid_root_table);
8119
8120         md_geninit();
8121         return 0;
8122
8123 err_mdp:
8124         unregister_blkdev(MD_MAJOR, "md");
8125 err_md:
8126         destroy_workqueue(md_misc_wq);
8127 err_misc_wq:
8128         destroy_workqueue(md_wq);
8129 err_wq:
8130         return ret;
8131 }
8132
8133 #ifndef MODULE
8134
8135 /*
8136  * Searches all registered partitions for autorun RAID arrays
8137  * at boot time.
8138  */
8139
8140 static LIST_HEAD(all_detected_devices);
8141 struct detected_devices_node {
8142         struct list_head list;
8143         dev_t dev;
8144 };
8145
8146 void md_autodetect_dev(dev_t dev)
8147 {
8148         struct detected_devices_node *node_detected_dev;
8149
8150         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8151         if (node_detected_dev) {
8152                 node_detected_dev->dev = dev;
8153                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8154         } else {
8155                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8156                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8157         }
8158 }
8159
8160
8161 static void autostart_arrays(int part)
8162 {
8163         mdk_rdev_t *rdev;
8164         struct detected_devices_node *node_detected_dev;
8165         dev_t dev;
8166         int i_scanned, i_passed;
8167
8168         i_scanned = 0;
8169         i_passed = 0;
8170
8171         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8172
8173         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8174                 i_scanned++;
8175                 node_detected_dev = list_entry(all_detected_devices.next,
8176                                         struct detected_devices_node, list);
8177                 list_del(&node_detected_dev->list);
8178                 dev = node_detected_dev->dev;
8179                 kfree(node_detected_dev);
8180                 rdev = md_import_device(dev,0, 90);
8181                 if (IS_ERR(rdev))
8182                         continue;
8183
8184                 if (test_bit(Faulty, &rdev->flags)) {
8185                         MD_BUG();
8186                         continue;
8187                 }
8188                 set_bit(AutoDetected, &rdev->flags);
8189                 list_add(&rdev->same_set, &pending_raid_disks);
8190                 i_passed++;
8191         }
8192
8193         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8194                                                 i_scanned, i_passed);
8195
8196         autorun_devices(part);
8197 }
8198
8199 #endif /* !MODULE */
8200
8201 static __exit void md_exit(void)
8202 {
8203         mddev_t *mddev;
8204         struct list_head *tmp;
8205
8206         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8207         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8208
8209         unregister_blkdev(MD_MAJOR,"md");
8210         unregister_blkdev(mdp_major, "mdp");
8211         unregister_reboot_notifier(&md_notifier);
8212         unregister_sysctl_table(raid_table_header);
8213         remove_proc_entry("mdstat", NULL);
8214         for_each_mddev(mddev, tmp) {
8215                 export_array(mddev);
8216                 mddev->hold_active = 0;
8217         }
8218         destroy_workqueue(md_misc_wq);
8219         destroy_workqueue(md_wq);
8220 }
8221
8222 subsys_initcall(md_init);
8223 module_exit(md_exit)
8224
8225 static int get_ro(char *buffer, struct kernel_param *kp)
8226 {
8227         return sprintf(buffer, "%d", start_readonly);
8228 }
8229 static int set_ro(const char *val, struct kernel_param *kp)
8230 {
8231         char *e;
8232         int num = simple_strtoul(val, &e, 10);
8233         if (*val && (*e == '\0' || *e == '\n')) {
8234                 start_readonly = num;
8235                 return 0;
8236         }
8237         return -EINVAL;
8238 }
8239
8240 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8241 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8242
8243 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8244
8245 EXPORT_SYMBOL(register_md_personality);
8246 EXPORT_SYMBOL(unregister_md_personality);
8247 EXPORT_SYMBOL(md_error);
8248 EXPORT_SYMBOL(md_done_sync);
8249 EXPORT_SYMBOL(md_write_start);
8250 EXPORT_SYMBOL(md_write_end);
8251 EXPORT_SYMBOL(md_register_thread);
8252 EXPORT_SYMBOL(md_unregister_thread);
8253 EXPORT_SYMBOL(md_wakeup_thread);
8254 EXPORT_SYMBOL(md_check_recovery);
8255 MODULE_LICENSE("GPL");
8256 MODULE_DESCRIPTION("MD RAID framework");
8257 MODULE_ALIAS("md");
8258 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);