]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
MD: fix info output for journal disk
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         blk_queue_split(q, &bio, q->bio_split);
261
262         if (mddev == NULL || mddev->pers == NULL
263             || !mddev->ready) {
264                 bio_io_error(bio);
265                 return;
266         }
267         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268                 if (bio_sectors(bio) != 0)
269                         bio->bi_error = -EROFS;
270                 bio_endio(bio);
271                 return;
272         }
273         smp_rmb(); /* Ensure implications of  'active' are visible */
274         rcu_read_lock();
275         if (mddev->suspended) {
276                 DEFINE_WAIT(__wait);
277                 for (;;) {
278                         prepare_to_wait(&mddev->sb_wait, &__wait,
279                                         TASK_UNINTERRUPTIBLE);
280                         if (!mddev->suspended)
281                                 break;
282                         rcu_read_unlock();
283                         schedule();
284                         rcu_read_lock();
285                 }
286                 finish_wait(&mddev->sb_wait, &__wait);
287         }
288         atomic_inc(&mddev->active_io);
289         rcu_read_unlock();
290
291         /*
292          * save the sectors now since our bio can
293          * go away inside make_request
294          */
295         sectors = bio_sectors(bio);
296         mddev->pers->make_request(mddev, bio);
297
298         cpu = part_stat_lock();
299         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301         part_stat_unlock();
302
303         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304                 wake_up(&mddev->sb_wait);
305 }
306
307 /* mddev_suspend makes sure no new requests are submitted
308  * to the device, and that any requests that have been submitted
309  * are completely handled.
310  * Once mddev_detach() is called and completes, the module will be
311  * completely unused.
312  */
313 void mddev_suspend(struct mddev *mddev)
314 {
315         BUG_ON(mddev->suspended);
316         mddev->suspended = 1;
317         synchronize_rcu();
318         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319         mddev->pers->quiesce(mddev, 1);
320
321         del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324
325 void mddev_resume(struct mddev *mddev)
326 {
327         mddev->suspended = 0;
328         wake_up(&mddev->sb_wait);
329         mddev->pers->quiesce(mddev, 0);
330
331         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332         md_wakeup_thread(mddev->thread);
333         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339         struct md_personality *pers = mddev->pers;
340         int ret = 0;
341
342         rcu_read_lock();
343         if (mddev->suspended)
344                 ret = 1;
345         else if (pers && pers->congested)
346                 ret = pers->congested(mddev, bits);
347         rcu_read_unlock();
348         return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353         struct mddev *mddev = data;
354         return mddev_congested(mddev, bits);
355 }
356
357 /*
358  * Generic flush handling for md
359  */
360
361 static void md_end_flush(struct bio *bio)
362 {
363         struct md_rdev *rdev = bio->bi_private;
364         struct mddev *mddev = rdev->mddev;
365
366         rdev_dec_pending(rdev, mddev);
367
368         if (atomic_dec_and_test(&mddev->flush_pending)) {
369                 /* The pre-request flush has finished */
370                 queue_work(md_wq, &mddev->flush_work);
371         }
372         bio_put(bio);
373 }
374
375 static void md_submit_flush_data(struct work_struct *ws);
376
377 static void submit_flushes(struct work_struct *ws)
378 {
379         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380         struct md_rdev *rdev;
381
382         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383         atomic_set(&mddev->flush_pending, 1);
384         rcu_read_lock();
385         rdev_for_each_rcu(rdev, mddev)
386                 if (rdev->raid_disk >= 0 &&
387                     !test_bit(Faulty, &rdev->flags)) {
388                         /* Take two references, one is dropped
389                          * when request finishes, one after
390                          * we reclaim rcu_read_lock
391                          */
392                         struct bio *bi;
393                         atomic_inc(&rdev->nr_pending);
394                         atomic_inc(&rdev->nr_pending);
395                         rcu_read_unlock();
396                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397                         bi->bi_end_io = md_end_flush;
398                         bi->bi_private = rdev;
399                         bi->bi_bdev = rdev->bdev;
400                         atomic_inc(&mddev->flush_pending);
401                         submit_bio(WRITE_FLUSH, bi);
402                         rcu_read_lock();
403                         rdev_dec_pending(rdev, mddev);
404                 }
405         rcu_read_unlock();
406         if (atomic_dec_and_test(&mddev->flush_pending))
407                 queue_work(md_wq, &mddev->flush_work);
408 }
409
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413         struct bio *bio = mddev->flush_bio;
414
415         if (bio->bi_iter.bi_size == 0)
416                 /* an empty barrier - all done */
417                 bio_endio(bio);
418         else {
419                 bio->bi_rw &= ~REQ_FLUSH;
420                 mddev->pers->make_request(mddev, bio);
421         }
422
423         mddev->flush_bio = NULL;
424         wake_up(&mddev->sb_wait);
425 }
426
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429         spin_lock_irq(&mddev->lock);
430         wait_event_lock_irq(mddev->sb_wait,
431                             !mddev->flush_bio,
432                             mddev->lock);
433         mddev->flush_bio = bio;
434         spin_unlock_irq(&mddev->lock);
435
436         INIT_WORK(&mddev->flush_work, submit_flushes);
437         queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443         struct mddev *mddev = cb->data;
444         md_wakeup_thread(mddev->thread);
445         kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451         atomic_inc(&mddev->active);
452         return mddev;
453 }
454
455 static void mddev_delayed_delete(struct work_struct *ws);
456
457 static void mddev_put(struct mddev *mddev)
458 {
459         struct bio_set *bs = NULL;
460
461         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462                 return;
463         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464             mddev->ctime == 0 && !mddev->hold_active) {
465                 /* Array is not configured at all, and not held active,
466                  * so destroy it */
467                 list_del_init(&mddev->all_mddevs);
468                 bs = mddev->bio_set;
469                 mddev->bio_set = NULL;
470                 if (mddev->gendisk) {
471                         /* We did a probe so need to clean up.  Call
472                          * queue_work inside the spinlock so that
473                          * flush_workqueue() after mddev_find will
474                          * succeed in waiting for the work to be done.
475                          */
476                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477                         queue_work(md_misc_wq, &mddev->del_work);
478                 } else
479                         kfree(mddev);
480         }
481         spin_unlock(&all_mddevs_lock);
482         if (bs)
483                 bioset_free(bs);
484 }
485
486 static void md_safemode_timeout(unsigned long data);
487
488 void mddev_init(struct mddev *mddev)
489 {
490         mutex_init(&mddev->open_mutex);
491         mutex_init(&mddev->reconfig_mutex);
492         mutex_init(&mddev->bitmap_info.mutex);
493         INIT_LIST_HEAD(&mddev->disks);
494         INIT_LIST_HEAD(&mddev->all_mddevs);
495         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496                     (unsigned long) mddev);
497         atomic_set(&mddev->active, 1);
498         atomic_set(&mddev->openers, 0);
499         atomic_set(&mddev->active_io, 0);
500         spin_lock_init(&mddev->lock);
501         atomic_set(&mddev->flush_pending, 0);
502         init_waitqueue_head(&mddev->sb_wait);
503         init_waitqueue_head(&mddev->recovery_wait);
504         mddev->reshape_position = MaxSector;
505         mddev->reshape_backwards = 0;
506         mddev->last_sync_action = "none";
507         mddev->resync_min = 0;
508         mddev->resync_max = MaxSector;
509         mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512
513 static struct mddev *mddev_find(dev_t unit)
514 {
515         struct mddev *mddev, *new = NULL;
516
517         if (unit && MAJOR(unit) != MD_MAJOR)
518                 unit &= ~((1<<MdpMinorShift)-1);
519
520  retry:
521         spin_lock(&all_mddevs_lock);
522
523         if (unit) {
524                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525                         if (mddev->unit == unit) {
526                                 mddev_get(mddev);
527                                 spin_unlock(&all_mddevs_lock);
528                                 kfree(new);
529                                 return mddev;
530                         }
531
532                 if (new) {
533                         list_add(&new->all_mddevs, &all_mddevs);
534                         spin_unlock(&all_mddevs_lock);
535                         new->hold_active = UNTIL_IOCTL;
536                         return new;
537                 }
538         } else if (new) {
539                 /* find an unused unit number */
540                 static int next_minor = 512;
541                 int start = next_minor;
542                 int is_free = 0;
543                 int dev = 0;
544                 while (!is_free) {
545                         dev = MKDEV(MD_MAJOR, next_minor);
546                         next_minor++;
547                         if (next_minor > MINORMASK)
548                                 next_minor = 0;
549                         if (next_minor == start) {
550                                 /* Oh dear, all in use. */
551                                 spin_unlock(&all_mddevs_lock);
552                                 kfree(new);
553                                 return NULL;
554                         }
555
556                         is_free = 1;
557                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558                                 if (mddev->unit == dev) {
559                                         is_free = 0;
560                                         break;
561                                 }
562                 }
563                 new->unit = dev;
564                 new->md_minor = MINOR(dev);
565                 new->hold_active = UNTIL_STOP;
566                 list_add(&new->all_mddevs, &all_mddevs);
567                 spin_unlock(&all_mddevs_lock);
568                 return new;
569         }
570         spin_unlock(&all_mddevs_lock);
571
572         new = kzalloc(sizeof(*new), GFP_KERNEL);
573         if (!new)
574                 return NULL;
575
576         new->unit = unit;
577         if (MAJOR(unit) == MD_MAJOR)
578                 new->md_minor = MINOR(unit);
579         else
580                 new->md_minor = MINOR(unit) >> MdpMinorShift;
581
582         mddev_init(new);
583
584         goto retry;
585 }
586
587 static struct attribute_group md_redundancy_group;
588
589 void mddev_unlock(struct mddev *mddev)
590 {
591         if (mddev->to_remove) {
592                 /* These cannot be removed under reconfig_mutex as
593                  * an access to the files will try to take reconfig_mutex
594                  * while holding the file unremovable, which leads to
595                  * a deadlock.
596                  * So hold set sysfs_active while the remove in happeing,
597                  * and anything else which might set ->to_remove or my
598                  * otherwise change the sysfs namespace will fail with
599                  * -EBUSY if sysfs_active is still set.
600                  * We set sysfs_active under reconfig_mutex and elsewhere
601                  * test it under the same mutex to ensure its correct value
602                  * is seen.
603                  */
604                 struct attribute_group *to_remove = mddev->to_remove;
605                 mddev->to_remove = NULL;
606                 mddev->sysfs_active = 1;
607                 mutex_unlock(&mddev->reconfig_mutex);
608
609                 if (mddev->kobj.sd) {
610                         if (to_remove != &md_redundancy_group)
611                                 sysfs_remove_group(&mddev->kobj, to_remove);
612                         if (mddev->pers == NULL ||
613                             mddev->pers->sync_request == NULL) {
614                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615                                 if (mddev->sysfs_action)
616                                         sysfs_put(mddev->sysfs_action);
617                                 mddev->sysfs_action = NULL;
618                         }
619                 }
620                 mddev->sysfs_active = 0;
621         } else
622                 mutex_unlock(&mddev->reconfig_mutex);
623
624         /* As we've dropped the mutex we need a spinlock to
625          * make sure the thread doesn't disappear
626          */
627         spin_lock(&pers_lock);
628         md_wakeup_thread(mddev->thread);
629         spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635         struct md_rdev *rdev;
636
637         rdev_for_each_rcu(rdev, mddev)
638                 if (rdev->desc_nr == nr)
639                         return rdev;
640
641         return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647         struct md_rdev *rdev;
648
649         rdev_for_each(rdev, mddev)
650                 if (rdev->bdev->bd_dev == dev)
651                         return rdev;
652
653         return NULL;
654 }
655
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658         struct md_rdev *rdev;
659
660         rdev_for_each_rcu(rdev, mddev)
661                 if (rdev->bdev->bd_dev == dev)
662                         return rdev;
663
664         return NULL;
665 }
666
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669         struct md_personality *pers;
670         list_for_each_entry(pers, &pers_list, list) {
671                 if (level != LEVEL_NONE && pers->level == level)
672                         return pers;
673                 if (strcmp(pers->name, clevel)==0)
674                         return pers;
675         }
676         return NULL;
677 }
678
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683         return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688         rdev->sb_page = alloc_page(GFP_KERNEL);
689         if (!rdev->sb_page) {
690                 printk(KERN_ALERT "md: out of memory.\n");
691                 return -ENOMEM;
692         }
693
694         return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699         if (rdev->sb_page) {
700                 put_page(rdev->sb_page);
701                 rdev->sb_loaded = 0;
702                 rdev->sb_page = NULL;
703                 rdev->sb_start = 0;
704                 rdev->sectors = 0;
705         }
706         if (rdev->bb_page) {
707                 put_page(rdev->bb_page);
708                 rdev->bb_page = NULL;
709         }
710         kfree(rdev->badblocks.page);
711         rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio)
716 {
717         struct md_rdev *rdev = bio->bi_private;
718         struct mddev *mddev = rdev->mddev;
719
720         if (bio->bi_error) {
721                 printk("md: super_written gets error=%d\n", bio->bi_error);
722                 md_error(mddev, rdev);
723         }
724
725         if (atomic_dec_and_test(&mddev->pending_writes))
726                 wake_up(&mddev->sb_wait);
727         bio_put(bio);
728 }
729
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731                    sector_t sector, int size, struct page *page)
732 {
733         /* write first size bytes of page to sector of rdev
734          * Increment mddev->pending_writes before returning
735          * and decrement it on completion, waking up sb_wait
736          * if zero is reached.
737          * If an error occurred, call md_error
738          */
739         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740
741         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742         bio->bi_iter.bi_sector = sector;
743         bio_add_page(bio, page, size, 0);
744         bio->bi_private = rdev;
745         bio->bi_end_io = super_written;
746
747         atomic_inc(&mddev->pending_writes);
748         submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750
751 void md_super_wait(struct mddev *mddev)
752 {
753         /* wait for all superblock writes that were scheduled to complete */
754         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758                  struct page *page, int rw, bool metadata_op)
759 {
760         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761         int ret;
762
763         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764                 rdev->meta_bdev : rdev->bdev;
765         if (metadata_op)
766                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
767         else if (rdev->mddev->reshape_position != MaxSector &&
768                  (rdev->mddev->reshape_backwards ==
769                   (sector >= rdev->mddev->reshape_position)))
770                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771         else
772                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
773         bio_add_page(bio, page, size, 0);
774         submit_bio_wait(rw, bio);
775
776         ret = !bio->bi_error;
777         bio_put(bio);
778         return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784         char b[BDEVNAME_SIZE];
785
786         if (rdev->sb_loaded)
787                 return 0;
788
789         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790                 goto fail;
791         rdev->sb_loaded = 1;
792         return 0;
793
794 fail:
795         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796                 bdevname(rdev->bdev,b));
797         return -EINVAL;
798 }
799
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802         return  sb1->set_uuid0 == sb2->set_uuid0 &&
803                 sb1->set_uuid1 == sb2->set_uuid1 &&
804                 sb1->set_uuid2 == sb2->set_uuid2 &&
805                 sb1->set_uuid3 == sb2->set_uuid3;
806 }
807
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810         int ret;
811         mdp_super_t *tmp1, *tmp2;
812
813         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815
816         if (!tmp1 || !tmp2) {
817                 ret = 0;
818                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819                 goto abort;
820         }
821
822         *tmp1 = *sb1;
823         *tmp2 = *sb2;
824
825         /*
826          * nr_disks is not constant
827          */
828         tmp1->nr_disks = 0;
829         tmp2->nr_disks = 0;
830
831         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833         kfree(tmp1);
834         kfree(tmp2);
835         return ret;
836 }
837
838 static u32 md_csum_fold(u32 csum)
839 {
840         csum = (csum & 0xffff) + (csum >> 16);
841         return (csum & 0xffff) + (csum >> 16);
842 }
843
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846         u64 newcsum = 0;
847         u32 *sb32 = (u32*)sb;
848         int i;
849         unsigned int disk_csum, csum;
850
851         disk_csum = sb->sb_csum;
852         sb->sb_csum = 0;
853
854         for (i = 0; i < MD_SB_BYTES/4 ; i++)
855                 newcsum += sb32[i];
856         csum = (newcsum & 0xffffffff) + (newcsum>>32);
857
858 #ifdef CONFIG_ALPHA
859         /* This used to use csum_partial, which was wrong for several
860          * reasons including that different results are returned on
861          * different architectures.  It isn't critical that we get exactly
862          * the same return value as before (we always csum_fold before
863          * testing, and that removes any differences).  However as we
864          * know that csum_partial always returned a 16bit value on
865          * alphas, do a fold to maximise conformity to previous behaviour.
866          */
867         sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869         sb->sb_csum = disk_csum;
870 #endif
871         return csum;
872 }
873
874 /*
875  * Handle superblock details.
876  * We want to be able to handle multiple superblock formats
877  * so we have a common interface to them all, and an array of
878  * different handlers.
879  * We rely on user-space to write the initial superblock, and support
880  * reading and updating of superblocks.
881  * Interface methods are:
882  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883  *      loads and validates a superblock on dev.
884  *      if refdev != NULL, compare superblocks on both devices
885  *    Return:
886  *      0 - dev has a superblock that is compatible with refdev
887  *      1 - dev has a superblock that is compatible and newer than refdev
888  *          so dev should be used as the refdev in future
889  *     -EINVAL superblock incompatible or invalid
890  *     -othererror e.g. -EIO
891  *
892  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
893  *      Verify that dev is acceptable into mddev.
894  *       The first time, mddev->raid_disks will be 0, and data from
895  *       dev should be merged in.  Subsequent calls check that dev
896  *       is new enough.  Return 0 or -EINVAL
897  *
898  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
899  *     Update the superblock for rdev with data in mddev
900  *     This does not write to disc.
901  *
902  */
903
904 struct super_type  {
905         char                *name;
906         struct module       *owner;
907         int                 (*load_super)(struct md_rdev *rdev,
908                                           struct md_rdev *refdev,
909                                           int minor_version);
910         int                 (*validate_super)(struct mddev *mddev,
911                                               struct md_rdev *rdev);
912         void                (*sync_super)(struct mddev *mddev,
913                                           struct md_rdev *rdev);
914         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
915                                                 sector_t num_sectors);
916         int                 (*allow_new_offset)(struct md_rdev *rdev,
917                                                 unsigned long long new_offset);
918 };
919
920 /*
921  * Check that the given mddev has no bitmap.
922  *
923  * This function is called from the run method of all personalities that do not
924  * support bitmaps. It prints an error message and returns non-zero if mddev
925  * has a bitmap. Otherwise, it returns 0.
926  *
927  */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931                 return 0;
932         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933                 mdname(mddev), mddev->pers->name);
934         return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937
938 /*
939  * load_super for 0.90.0
940  */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944         mdp_super_t *sb;
945         int ret;
946
947         /*
948          * Calculate the position of the superblock (512byte sectors),
949          * it's at the end of the disk.
950          *
951          * It also happens to be a multiple of 4Kb.
952          */
953         rdev->sb_start = calc_dev_sboffset(rdev);
954
955         ret = read_disk_sb(rdev, MD_SB_BYTES);
956         if (ret) return ret;
957
958         ret = -EINVAL;
959
960         bdevname(rdev->bdev, b);
961         sb = page_address(rdev->sb_page);
962
963         if (sb->md_magic != MD_SB_MAGIC) {
964                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965                        b);
966                 goto abort;
967         }
968
969         if (sb->major_version != 0 ||
970             sb->minor_version < 90 ||
971             sb->minor_version > 91) {
972                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973                         sb->major_version, sb->minor_version,
974                         b);
975                 goto abort;
976         }
977
978         if (sb->raid_disks <= 0)
979                 goto abort;
980
981         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983                         b);
984                 goto abort;
985         }
986
987         rdev->preferred_minor = sb->md_minor;
988         rdev->data_offset = 0;
989         rdev->new_data_offset = 0;
990         rdev->sb_size = MD_SB_BYTES;
991         rdev->badblocks.shift = -1;
992
993         if (sb->level == LEVEL_MULTIPATH)
994                 rdev->desc_nr = -1;
995         else
996                 rdev->desc_nr = sb->this_disk.number;
997
998         if (!refdev) {
999                 ret = 1;
1000         } else {
1001                 __u64 ev1, ev2;
1002                 mdp_super_t *refsb = page_address(refdev->sb_page);
1003                 if (!uuid_equal(refsb, sb)) {
1004                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005                                 b, bdevname(refdev->bdev,b2));
1006                         goto abort;
1007                 }
1008                 if (!sb_equal(refsb, sb)) {
1009                         printk(KERN_WARNING "md: %s has same UUID"
1010                                " but different superblock to %s\n",
1011                                b, bdevname(refdev->bdev, b2));
1012                         goto abort;
1013                 }
1014                 ev1 = md_event(sb);
1015                 ev2 = md_event(refsb);
1016                 if (ev1 > ev2)
1017                         ret = 1;
1018                 else
1019                         ret = 0;
1020         }
1021         rdev->sectors = rdev->sb_start;
1022         /* Limit to 4TB as metadata cannot record more than that.
1023          * (not needed for Linear and RAID0 as metadata doesn't
1024          * record this size)
1025          */
1026         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027                 rdev->sectors = (2ULL << 32) - 2;
1028
1029         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030                 /* "this cannot possibly happen" ... */
1031                 ret = -EINVAL;
1032
1033  abort:
1034         return ret;
1035 }
1036
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042         mdp_disk_t *desc;
1043         mdp_super_t *sb = page_address(rdev->sb_page);
1044         __u64 ev1 = md_event(sb);
1045
1046         rdev->raid_disk = -1;
1047         clear_bit(Faulty, &rdev->flags);
1048         clear_bit(In_sync, &rdev->flags);
1049         clear_bit(Bitmap_sync, &rdev->flags);
1050         clear_bit(WriteMostly, &rdev->flags);
1051
1052         if (mddev->raid_disks == 0) {
1053                 mddev->major_version = 0;
1054                 mddev->minor_version = sb->minor_version;
1055                 mddev->patch_version = sb->patch_version;
1056                 mddev->external = 0;
1057                 mddev->chunk_sectors = sb->chunk_size >> 9;
1058                 mddev->ctime = sb->ctime;
1059                 mddev->utime = sb->utime;
1060                 mddev->level = sb->level;
1061                 mddev->clevel[0] = 0;
1062                 mddev->layout = sb->layout;
1063                 mddev->raid_disks = sb->raid_disks;
1064                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065                 mddev->events = ev1;
1066                 mddev->bitmap_info.offset = 0;
1067                 mddev->bitmap_info.space = 0;
1068                 /* bitmap can use 60 K after the 4K superblocks */
1069                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071                 mddev->reshape_backwards = 0;
1072
1073                 if (mddev->minor_version >= 91) {
1074                         mddev->reshape_position = sb->reshape_position;
1075                         mddev->delta_disks = sb->delta_disks;
1076                         mddev->new_level = sb->new_level;
1077                         mddev->new_layout = sb->new_layout;
1078                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079                         if (mddev->delta_disks < 0)
1080                                 mddev->reshape_backwards = 1;
1081                 } else {
1082                         mddev->reshape_position = MaxSector;
1083                         mddev->delta_disks = 0;
1084                         mddev->new_level = mddev->level;
1085                         mddev->new_layout = mddev->layout;
1086                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1087                 }
1088
1089                 if (sb->state & (1<<MD_SB_CLEAN))
1090                         mddev->recovery_cp = MaxSector;
1091                 else {
1092                         if (sb->events_hi == sb->cp_events_hi &&
1093                                 sb->events_lo == sb->cp_events_lo) {
1094                                 mddev->recovery_cp = sb->recovery_cp;
1095                         } else
1096                                 mddev->recovery_cp = 0;
1097                 }
1098
1099                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103
1104                 mddev->max_disks = MD_SB_DISKS;
1105
1106                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107                     mddev->bitmap_info.file == NULL) {
1108                         mddev->bitmap_info.offset =
1109                                 mddev->bitmap_info.default_offset;
1110                         mddev->bitmap_info.space =
1111                                 mddev->bitmap_info.default_space;
1112                 }
1113
1114         } else if (mddev->pers == NULL) {
1115                 /* Insist on good event counter while assembling, except
1116                  * for spares (which don't need an event count) */
1117                 ++ev1;
1118                 if (sb->disks[rdev->desc_nr].state & (
1119                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120                         if (ev1 < mddev->events)
1121                                 return -EINVAL;
1122         } else if (mddev->bitmap) {
1123                 /* if adding to array with a bitmap, then we can accept an
1124                  * older device ... but not too old.
1125                  */
1126                 if (ev1 < mddev->bitmap->events_cleared)
1127                         return 0;
1128                 if (ev1 < mddev->events)
1129                         set_bit(Bitmap_sync, &rdev->flags);
1130         } else {
1131                 if (ev1 < mddev->events)
1132                         /* just a hot-add of a new device, leave raid_disk at -1 */
1133                         return 0;
1134         }
1135
1136         if (mddev->level != LEVEL_MULTIPATH) {
1137                 desc = sb->disks + rdev->desc_nr;
1138
1139                 if (desc->state & (1<<MD_DISK_FAULTY))
1140                         set_bit(Faulty, &rdev->flags);
1141                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142                             desc->raid_disk < mddev->raid_disks */) {
1143                         set_bit(In_sync, &rdev->flags);
1144                         rdev->raid_disk = desc->raid_disk;
1145                         rdev->saved_raid_disk = desc->raid_disk;
1146                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147                         /* active but not in sync implies recovery up to
1148                          * reshape position.  We don't know exactly where
1149                          * that is, so set to zero for now */
1150                         if (mddev->minor_version >= 91) {
1151                                 rdev->recovery_offset = 0;
1152                                 rdev->raid_disk = desc->raid_disk;
1153                         }
1154                 }
1155                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156                         set_bit(WriteMostly, &rdev->flags);
1157         } else /* MULTIPATH are always insync */
1158                 set_bit(In_sync, &rdev->flags);
1159         return 0;
1160 }
1161
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167         mdp_super_t *sb;
1168         struct md_rdev *rdev2;
1169         int next_spare = mddev->raid_disks;
1170
1171         /* make rdev->sb match mddev data..
1172          *
1173          * 1/ zero out disks
1174          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175          * 3/ any empty disks < next_spare become removed
1176          *
1177          * disks[0] gets initialised to REMOVED because
1178          * we cannot be sure from other fields if it has
1179          * been initialised or not.
1180          */
1181         int i;
1182         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183
1184         rdev->sb_size = MD_SB_BYTES;
1185
1186         sb = page_address(rdev->sb_page);
1187
1188         memset(sb, 0, sizeof(*sb));
1189
1190         sb->md_magic = MD_SB_MAGIC;
1191         sb->major_version = mddev->major_version;
1192         sb->patch_version = mddev->patch_version;
1193         sb->gvalid_words  = 0; /* ignored */
1194         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198
1199         sb->ctime = mddev->ctime;
1200         sb->level = mddev->level;
1201         sb->size = mddev->dev_sectors / 2;
1202         sb->raid_disks = mddev->raid_disks;
1203         sb->md_minor = mddev->md_minor;
1204         sb->not_persistent = 0;
1205         sb->utime = mddev->utime;
1206         sb->state = 0;
1207         sb->events_hi = (mddev->events>>32);
1208         sb->events_lo = (u32)mddev->events;
1209
1210         if (mddev->reshape_position == MaxSector)
1211                 sb->minor_version = 90;
1212         else {
1213                 sb->minor_version = 91;
1214                 sb->reshape_position = mddev->reshape_position;
1215                 sb->new_level = mddev->new_level;
1216                 sb->delta_disks = mddev->delta_disks;
1217                 sb->new_layout = mddev->new_layout;
1218                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1219         }
1220         mddev->minor_version = sb->minor_version;
1221         if (mddev->in_sync)
1222         {
1223                 sb->recovery_cp = mddev->recovery_cp;
1224                 sb->cp_events_hi = (mddev->events>>32);
1225                 sb->cp_events_lo = (u32)mddev->events;
1226                 if (mddev->recovery_cp == MaxSector)
1227                         sb->state = (1<< MD_SB_CLEAN);
1228         } else
1229                 sb->recovery_cp = 0;
1230
1231         sb->layout = mddev->layout;
1232         sb->chunk_size = mddev->chunk_sectors << 9;
1233
1234         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236
1237         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238         rdev_for_each(rdev2, mddev) {
1239                 mdp_disk_t *d;
1240                 int desc_nr;
1241                 int is_active = test_bit(In_sync, &rdev2->flags);
1242
1243                 if (rdev2->raid_disk >= 0 &&
1244                     sb->minor_version >= 91)
1245                         /* we have nowhere to store the recovery_offset,
1246                          * but if it is not below the reshape_position,
1247                          * we can piggy-back on that.
1248                          */
1249                         is_active = 1;
1250                 if (rdev2->raid_disk < 0 ||
1251                     test_bit(Faulty, &rdev2->flags))
1252                         is_active = 0;
1253                 if (is_active)
1254                         desc_nr = rdev2->raid_disk;
1255                 else
1256                         desc_nr = next_spare++;
1257                 rdev2->desc_nr = desc_nr;
1258                 d = &sb->disks[rdev2->desc_nr];
1259                 nr_disks++;
1260                 d->number = rdev2->desc_nr;
1261                 d->major = MAJOR(rdev2->bdev->bd_dev);
1262                 d->minor = MINOR(rdev2->bdev->bd_dev);
1263                 if (is_active)
1264                         d->raid_disk = rdev2->raid_disk;
1265                 else
1266                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1267                 if (test_bit(Faulty, &rdev2->flags))
1268                         d->state = (1<<MD_DISK_FAULTY);
1269                 else if (is_active) {
1270                         d->state = (1<<MD_DISK_ACTIVE);
1271                         if (test_bit(In_sync, &rdev2->flags))
1272                                 d->state |= (1<<MD_DISK_SYNC);
1273                         active++;
1274                         working++;
1275                 } else {
1276                         d->state = 0;
1277                         spare++;
1278                         working++;
1279                 }
1280                 if (test_bit(WriteMostly, &rdev2->flags))
1281                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282         }
1283         /* now set the "removed" and "faulty" bits on any missing devices */
1284         for (i=0 ; i < mddev->raid_disks ; i++) {
1285                 mdp_disk_t *d = &sb->disks[i];
1286                 if (d->state == 0 && d->number == 0) {
1287                         d->number = i;
1288                         d->raid_disk = i;
1289                         d->state = (1<<MD_DISK_REMOVED);
1290                         d->state |= (1<<MD_DISK_FAULTY);
1291                         failed++;
1292                 }
1293         }
1294         sb->nr_disks = nr_disks;
1295         sb->active_disks = active;
1296         sb->working_disks = working;
1297         sb->failed_disks = failed;
1298         sb->spare_disks = spare;
1299
1300         sb->this_disk = sb->disks[rdev->desc_nr];
1301         sb->sb_csum = calc_sb_csum(sb);
1302 }
1303
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311                 return 0; /* component must fit device */
1312         if (rdev->mddev->bitmap_info.offset)
1313                 return 0; /* can't move bitmap */
1314         rdev->sb_start = calc_dev_sboffset(rdev);
1315         if (!num_sectors || num_sectors > rdev->sb_start)
1316                 num_sectors = rdev->sb_start;
1317         /* Limit to 4TB as metadata cannot record more than that.
1318          * 4TB == 2^32 KB, or 2*2^32 sectors.
1319          */
1320         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321                 num_sectors = (2ULL << 32) - 2;
1322         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323                        rdev->sb_page);
1324         md_super_wait(rdev->mddev);
1325         return num_sectors;
1326 }
1327
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331         /* non-zero offset changes not possible with v0.90 */
1332         return new_offset == 0;
1333 }
1334
1335 /*
1336  * version 1 superblock
1337  */
1338
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341         __le32 disk_csum;
1342         u32 csum;
1343         unsigned long long newcsum;
1344         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345         __le32 *isuper = (__le32*)sb;
1346
1347         disk_csum = sb->sb_csum;
1348         sb->sb_csum = 0;
1349         newcsum = 0;
1350         for (; size >= 4; size -= 4)
1351                 newcsum += le32_to_cpu(*isuper++);
1352
1353         if (size == 2)
1354                 newcsum += le16_to_cpu(*(__le16*) isuper);
1355
1356         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357         sb->sb_csum = disk_csum;
1358         return cpu_to_le32(csum);
1359 }
1360
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362                             int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365         struct mdp_superblock_1 *sb;
1366         int ret;
1367         sector_t sb_start;
1368         sector_t sectors;
1369         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370         int bmask;
1371
1372         /*
1373          * Calculate the position of the superblock in 512byte sectors.
1374          * It is always aligned to a 4K boundary and
1375          * depeding on minor_version, it can be:
1376          * 0: At least 8K, but less than 12K, from end of device
1377          * 1: At start of device
1378          * 2: 4K from start of device.
1379          */
1380         switch(minor_version) {
1381         case 0:
1382                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383                 sb_start -= 8*2;
1384                 sb_start &= ~(sector_t)(4*2-1);
1385                 break;
1386         case 1:
1387                 sb_start = 0;
1388                 break;
1389         case 2:
1390                 sb_start = 8;
1391                 break;
1392         default:
1393                 return -EINVAL;
1394         }
1395         rdev->sb_start = sb_start;
1396
1397         /* superblock is rarely larger than 1K, but it can be larger,
1398          * and it is safe to read 4k, so we do that
1399          */
1400         ret = read_disk_sb(rdev, 4096);
1401         if (ret) return ret;
1402
1403         sb = page_address(rdev->sb_page);
1404
1405         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406             sb->major_version != cpu_to_le32(1) ||
1407             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410                 return -EINVAL;
1411
1412         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413                 printk("md: invalid superblock checksum on %s\n",
1414                         bdevname(rdev->bdev,b));
1415                 return -EINVAL;
1416         }
1417         if (le64_to_cpu(sb->data_size) < 10) {
1418                 printk("md: data_size too small on %s\n",
1419                        bdevname(rdev->bdev,b));
1420                 return -EINVAL;
1421         }
1422         if (sb->pad0 ||
1423             sb->pad3[0] ||
1424             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425                 /* Some padding is non-zero, might be a new feature */
1426                 return -EINVAL;
1427
1428         rdev->preferred_minor = 0xffff;
1429         rdev->data_offset = le64_to_cpu(sb->data_offset);
1430         rdev->new_data_offset = rdev->data_offset;
1431         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435
1436         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438         if (rdev->sb_size & bmask)
1439                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440
1441         if (minor_version
1442             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443                 return -EINVAL;
1444         if (minor_version
1445             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446                 return -EINVAL;
1447
1448         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449                 rdev->desc_nr = -1;
1450         else
1451                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452
1453         if (!rdev->bb_page) {
1454                 rdev->bb_page = alloc_page(GFP_KERNEL);
1455                 if (!rdev->bb_page)
1456                         return -ENOMEM;
1457         }
1458         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459             rdev->badblocks.count == 0) {
1460                 /* need to load the bad block list.
1461                  * Currently we limit it to one page.
1462                  */
1463                 s32 offset;
1464                 sector_t bb_sector;
1465                 u64 *bbp;
1466                 int i;
1467                 int sectors = le16_to_cpu(sb->bblog_size);
1468                 if (sectors > (PAGE_SIZE / 512))
1469                         return -EINVAL;
1470                 offset = le32_to_cpu(sb->bblog_offset);
1471                 if (offset == 0)
1472                         return -EINVAL;
1473                 bb_sector = (long long)offset;
1474                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475                                   rdev->bb_page, READ, true))
1476                         return -EIO;
1477                 bbp = (u64 *)page_address(rdev->bb_page);
1478                 rdev->badblocks.shift = sb->bblog_shift;
1479                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480                         u64 bb = le64_to_cpu(*bbp);
1481                         int count = bb & (0x3ff);
1482                         u64 sector = bb >> 10;
1483                         sector <<= sb->bblog_shift;
1484                         count <<= sb->bblog_shift;
1485                         if (bb + 1 == 0)
1486                                 break;
1487                         if (md_set_badblocks(&rdev->badblocks,
1488                                              sector, count, 1) == 0)
1489                                 return -EINVAL;
1490                 }
1491         } else if (sb->bblog_offset != 0)
1492                 rdev->badblocks.shift = 0;
1493
1494         if (!refdev) {
1495                 ret = 1;
1496         } else {
1497                 __u64 ev1, ev2;
1498                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499
1500                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501                     sb->level != refsb->level ||
1502                     sb->layout != refsb->layout ||
1503                     sb->chunksize != refsb->chunksize) {
1504                         printk(KERN_WARNING "md: %s has strangely different"
1505                                 " superblock to %s\n",
1506                                 bdevname(rdev->bdev,b),
1507                                 bdevname(refdev->bdev,b2));
1508                         return -EINVAL;
1509                 }
1510                 ev1 = le64_to_cpu(sb->events);
1511                 ev2 = le64_to_cpu(refsb->events);
1512
1513                 if (ev1 > ev2)
1514                         ret = 1;
1515                 else
1516                         ret = 0;
1517         }
1518         if (minor_version) {
1519                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520                 sectors -= rdev->data_offset;
1521         } else
1522                 sectors = rdev->sb_start;
1523         if (sectors < le64_to_cpu(sb->data_size))
1524                 return -EINVAL;
1525         rdev->sectors = le64_to_cpu(sb->data_size);
1526         return ret;
1527 }
1528
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532         __u64 ev1 = le64_to_cpu(sb->events);
1533
1534         rdev->raid_disk = -1;
1535         clear_bit(Faulty, &rdev->flags);
1536         clear_bit(In_sync, &rdev->flags);
1537         clear_bit(Bitmap_sync, &rdev->flags);
1538         clear_bit(WriteMostly, &rdev->flags);
1539
1540         if (mddev->raid_disks == 0) {
1541                 mddev->major_version = 1;
1542                 mddev->patch_version = 0;
1543                 mddev->external = 0;
1544                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547                 mddev->level = le32_to_cpu(sb->level);
1548                 mddev->clevel[0] = 0;
1549                 mddev->layout = le32_to_cpu(sb->layout);
1550                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551                 mddev->dev_sectors = le64_to_cpu(sb->size);
1552                 mddev->events = ev1;
1553                 mddev->bitmap_info.offset = 0;
1554                 mddev->bitmap_info.space = 0;
1555                 /* Default location for bitmap is 1K after superblock
1556                  * using 3K - total of 4K
1557                  */
1558                 mddev->bitmap_info.default_offset = 1024 >> 9;
1559                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560                 mddev->reshape_backwards = 0;
1561
1562                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563                 memcpy(mddev->uuid, sb->set_uuid, 16);
1564
1565                 mddev->max_disks =  (4096-256)/2;
1566
1567                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568                     mddev->bitmap_info.file == NULL) {
1569                         mddev->bitmap_info.offset =
1570                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1571                         /* Metadata doesn't record how much space is available.
1572                          * For 1.0, we assume we can use up to the superblock
1573                          * if before, else to 4K beyond superblock.
1574                          * For others, assume no change is possible.
1575                          */
1576                         if (mddev->minor_version > 0)
1577                                 mddev->bitmap_info.space = 0;
1578                         else if (mddev->bitmap_info.offset > 0)
1579                                 mddev->bitmap_info.space =
1580                                         8 - mddev->bitmap_info.offset;
1581                         else
1582                                 mddev->bitmap_info.space =
1583                                         -mddev->bitmap_info.offset;
1584                 }
1585
1586                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589                         mddev->new_level = le32_to_cpu(sb->new_level);
1590                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1591                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592                         if (mddev->delta_disks < 0 ||
1593                             (mddev->delta_disks == 0 &&
1594                              (le32_to_cpu(sb->feature_map)
1595                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1596                                 mddev->reshape_backwards = 1;
1597                 } else {
1598                         mddev->reshape_position = MaxSector;
1599                         mddev->delta_disks = 0;
1600                         mddev->new_level = mddev->level;
1601                         mddev->new_layout = mddev->layout;
1602                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1603                 }
1604
1605         } else if (mddev->pers == NULL) {
1606                 /* Insist of good event counter while assembling, except for
1607                  * spares (which don't need an event count) */
1608                 ++ev1;
1609                 if (rdev->desc_nr >= 0 &&
1610                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX)
1612                         if (ev1 < mddev->events)
1613                                 return -EINVAL;
1614         } else if (mddev->bitmap) {
1615                 /* If adding to array with a bitmap, then we can accept an
1616                  * older device, but not too old.
1617                  */
1618                 if (ev1 < mddev->bitmap->events_cleared)
1619                         return 0;
1620                 if (ev1 < mddev->events)
1621                         set_bit(Bitmap_sync, &rdev->flags);
1622         } else {
1623                 if (ev1 < mddev->events)
1624                         /* just a hot-add of a new device, leave raid_disk at -1 */
1625                         return 0;
1626         }
1627         if (mddev->level != LEVEL_MULTIPATH) {
1628                 int role;
1629                 if (rdev->desc_nr < 0 ||
1630                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1631                         role = MD_DISK_ROLE_SPARE;
1632                         rdev->desc_nr = -1;
1633                 } else
1634                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1635                 switch(role) {
1636                 case MD_DISK_ROLE_SPARE: /* spare */
1637                         break;
1638                 case MD_DISK_ROLE_FAULTY: /* faulty */
1639                         set_bit(Faulty, &rdev->flags);
1640                         break;
1641                 case MD_DISK_ROLE_JOURNAL: /* journal device */
1642                         if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1643                                 /* journal device without journal feature */
1644                                 printk(KERN_WARNING
1645                                   "md: journal device provided without journal feature, ignoring the device\n");
1646                                 return -EINVAL;
1647                         }
1648                         set_bit(Journal, &rdev->flags);
1649                         rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1650                         if (mddev->recovery_cp == MaxSector)
1651                                 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1652                         break;
1653                 default:
1654                         rdev->saved_raid_disk = role;
1655                         if ((le32_to_cpu(sb->feature_map) &
1656                              MD_FEATURE_RECOVERY_OFFSET)) {
1657                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1658                                 if (!(le32_to_cpu(sb->feature_map) &
1659                                       MD_FEATURE_RECOVERY_BITMAP))
1660                                         rdev->saved_raid_disk = -1;
1661                         } else
1662                                 set_bit(In_sync, &rdev->flags);
1663                         rdev->raid_disk = role;
1664                         break;
1665                 }
1666                 if (sb->devflags & WriteMostly1)
1667                         set_bit(WriteMostly, &rdev->flags);
1668                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1669                         set_bit(Replacement, &rdev->flags);
1670         } else /* MULTIPATH are always insync */
1671                 set_bit(In_sync, &rdev->flags);
1672
1673         return 0;
1674 }
1675
1676 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1677 {
1678         struct mdp_superblock_1 *sb;
1679         struct md_rdev *rdev2;
1680         int max_dev, i;
1681         /* make rdev->sb match mddev and rdev data. */
1682
1683         sb = page_address(rdev->sb_page);
1684
1685         sb->feature_map = 0;
1686         sb->pad0 = 0;
1687         sb->recovery_offset = cpu_to_le64(0);
1688         memset(sb->pad3, 0, sizeof(sb->pad3));
1689
1690         sb->utime = cpu_to_le64((__u64)mddev->utime);
1691         sb->events = cpu_to_le64(mddev->events);
1692         if (mddev->in_sync)
1693                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1694         else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1695                 sb->resync_offset = cpu_to_le64(MaxSector);
1696         else
1697                 sb->resync_offset = cpu_to_le64(0);
1698
1699         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1700
1701         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1702         sb->size = cpu_to_le64(mddev->dev_sectors);
1703         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1704         sb->level = cpu_to_le32(mddev->level);
1705         sb->layout = cpu_to_le32(mddev->layout);
1706
1707         if (test_bit(WriteMostly, &rdev->flags))
1708                 sb->devflags |= WriteMostly1;
1709         else
1710                 sb->devflags &= ~WriteMostly1;
1711         sb->data_offset = cpu_to_le64(rdev->data_offset);
1712         sb->data_size = cpu_to_le64(rdev->sectors);
1713
1714         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1715                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1716                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1717         }
1718
1719         if (rdev->raid_disk >= 0 &&
1720             !test_bit(In_sync, &rdev->flags)) {
1721                 sb->feature_map |=
1722                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1723                 sb->recovery_offset =
1724                         cpu_to_le64(rdev->recovery_offset);
1725                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1726                         sb->feature_map |=
1727                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1728         }
1729         /* Note: recovery_offset and journal_tail share space  */
1730         if (test_bit(Journal, &rdev->flags))
1731                 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1732         if (test_bit(Replacement, &rdev->flags))
1733                 sb->feature_map |=
1734                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1735
1736         if (mddev->reshape_position != MaxSector) {
1737                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1738                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1739                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1740                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1741                 sb->new_level = cpu_to_le32(mddev->new_level);
1742                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1743                 if (mddev->delta_disks == 0 &&
1744                     mddev->reshape_backwards)
1745                         sb->feature_map
1746                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1747                 if (rdev->new_data_offset != rdev->data_offset) {
1748                         sb->feature_map
1749                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1750                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1751                                                              - rdev->data_offset));
1752                 }
1753         }
1754
1755         if (mddev_is_clustered(mddev))
1756                 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1757
1758         if (rdev->badblocks.count == 0)
1759                 /* Nothing to do for bad blocks*/ ;
1760         else if (sb->bblog_offset == 0)
1761                 /* Cannot record bad blocks on this device */
1762                 md_error(mddev, rdev);
1763         else {
1764                 struct badblocks *bb = &rdev->badblocks;
1765                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1766                 u64 *p = bb->page;
1767                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1768                 if (bb->changed) {
1769                         unsigned seq;
1770
1771 retry:
1772                         seq = read_seqbegin(&bb->lock);
1773
1774                         memset(bbp, 0xff, PAGE_SIZE);
1775
1776                         for (i = 0 ; i < bb->count ; i++) {
1777                                 u64 internal_bb = p[i];
1778                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1779                                                 | BB_LEN(internal_bb));
1780                                 bbp[i] = cpu_to_le64(store_bb);
1781                         }
1782                         bb->changed = 0;
1783                         if (read_seqretry(&bb->lock, seq))
1784                                 goto retry;
1785
1786                         bb->sector = (rdev->sb_start +
1787                                       (int)le32_to_cpu(sb->bblog_offset));
1788                         bb->size = le16_to_cpu(sb->bblog_size);
1789                 }
1790         }
1791
1792         max_dev = 0;
1793         rdev_for_each(rdev2, mddev)
1794                 if (rdev2->desc_nr+1 > max_dev)
1795                         max_dev = rdev2->desc_nr+1;
1796
1797         if (max_dev > le32_to_cpu(sb->max_dev)) {
1798                 int bmask;
1799                 sb->max_dev = cpu_to_le32(max_dev);
1800                 rdev->sb_size = max_dev * 2 + 256;
1801                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1802                 if (rdev->sb_size & bmask)
1803                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1804         } else
1805                 max_dev = le32_to_cpu(sb->max_dev);
1806
1807         for (i=0; i<max_dev;i++)
1808                 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1809
1810         rdev_for_each(rdev2, mddev) {
1811                 i = rdev2->desc_nr;
1812                 if (test_bit(Faulty, &rdev2->flags))
1813                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1814                 else if (test_bit(In_sync, &rdev2->flags))
1815                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816                 else if (test_bit(Journal, &rdev2->flags)) {
1817                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1818                         sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1819                 } else if (rdev2->raid_disk >= 0)
1820                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1821                 else
1822                         sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1823         }
1824
1825         sb->sb_csum = calc_sb_1_csum(sb);
1826 }
1827
1828 static unsigned long long
1829 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1830 {
1831         struct mdp_superblock_1 *sb;
1832         sector_t max_sectors;
1833         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1834                 return 0; /* component must fit device */
1835         if (rdev->data_offset != rdev->new_data_offset)
1836                 return 0; /* too confusing */
1837         if (rdev->sb_start < rdev->data_offset) {
1838                 /* minor versions 1 and 2; superblock before data */
1839                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1840                 max_sectors -= rdev->data_offset;
1841                 if (!num_sectors || num_sectors > max_sectors)
1842                         num_sectors = max_sectors;
1843         } else if (rdev->mddev->bitmap_info.offset) {
1844                 /* minor version 0 with bitmap we can't move */
1845                 return 0;
1846         } else {
1847                 /* minor version 0; superblock after data */
1848                 sector_t sb_start;
1849                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1850                 sb_start &= ~(sector_t)(4*2 - 1);
1851                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1852                 if (!num_sectors || num_sectors > max_sectors)
1853                         num_sectors = max_sectors;
1854                 rdev->sb_start = sb_start;
1855         }
1856         sb = page_address(rdev->sb_page);
1857         sb->data_size = cpu_to_le64(num_sectors);
1858         sb->super_offset = rdev->sb_start;
1859         sb->sb_csum = calc_sb_1_csum(sb);
1860         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1861                        rdev->sb_page);
1862         md_super_wait(rdev->mddev);
1863         return num_sectors;
1864
1865 }
1866
1867 static int
1868 super_1_allow_new_offset(struct md_rdev *rdev,
1869                          unsigned long long new_offset)
1870 {
1871         /* All necessary checks on new >= old have been done */
1872         struct bitmap *bitmap;
1873         if (new_offset >= rdev->data_offset)
1874                 return 1;
1875
1876         /* with 1.0 metadata, there is no metadata to tread on
1877          * so we can always move back */
1878         if (rdev->mddev->minor_version == 0)
1879                 return 1;
1880
1881         /* otherwise we must be sure not to step on
1882          * any metadata, so stay:
1883          * 36K beyond start of superblock
1884          * beyond end of badblocks
1885          * beyond write-intent bitmap
1886          */
1887         if (rdev->sb_start + (32+4)*2 > new_offset)
1888                 return 0;
1889         bitmap = rdev->mddev->bitmap;
1890         if (bitmap && !rdev->mddev->bitmap_info.file &&
1891             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1892             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1893                 return 0;
1894         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1895                 return 0;
1896
1897         return 1;
1898 }
1899
1900 static struct super_type super_types[] = {
1901         [0] = {
1902                 .name   = "0.90.0",
1903                 .owner  = THIS_MODULE,
1904                 .load_super         = super_90_load,
1905                 .validate_super     = super_90_validate,
1906                 .sync_super         = super_90_sync,
1907                 .rdev_size_change   = super_90_rdev_size_change,
1908                 .allow_new_offset   = super_90_allow_new_offset,
1909         },
1910         [1] = {
1911                 .name   = "md-1",
1912                 .owner  = THIS_MODULE,
1913                 .load_super         = super_1_load,
1914                 .validate_super     = super_1_validate,
1915                 .sync_super         = super_1_sync,
1916                 .rdev_size_change   = super_1_rdev_size_change,
1917                 .allow_new_offset   = super_1_allow_new_offset,
1918         },
1919 };
1920
1921 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1922 {
1923         if (mddev->sync_super) {
1924                 mddev->sync_super(mddev, rdev);
1925                 return;
1926         }
1927
1928         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1929
1930         super_types[mddev->major_version].sync_super(mddev, rdev);
1931 }
1932
1933 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1934 {
1935         struct md_rdev *rdev, *rdev2;
1936
1937         rcu_read_lock();
1938         rdev_for_each_rcu(rdev, mddev1) {
1939                 if (test_bit(Faulty, &rdev->flags) ||
1940                     test_bit(Journal, &rdev->flags) ||
1941                     rdev->raid_disk == -1)
1942                         continue;
1943                 rdev_for_each_rcu(rdev2, mddev2) {
1944                         if (test_bit(Faulty, &rdev2->flags) ||
1945                             test_bit(Journal, &rdev2->flags) ||
1946                             rdev2->raid_disk == -1)
1947                                 continue;
1948                         if (rdev->bdev->bd_contains ==
1949                             rdev2->bdev->bd_contains) {
1950                                 rcu_read_unlock();
1951                                 return 1;
1952                         }
1953                 }
1954         }
1955         rcu_read_unlock();
1956         return 0;
1957 }
1958
1959 static LIST_HEAD(pending_raid_disks);
1960
1961 /*
1962  * Try to register data integrity profile for an mddev
1963  *
1964  * This is called when an array is started and after a disk has been kicked
1965  * from the array. It only succeeds if all working and active component devices
1966  * are integrity capable with matching profiles.
1967  */
1968 int md_integrity_register(struct mddev *mddev)
1969 {
1970         struct md_rdev *rdev, *reference = NULL;
1971
1972         if (list_empty(&mddev->disks))
1973                 return 0; /* nothing to do */
1974         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1975                 return 0; /* shouldn't register, or already is */
1976         rdev_for_each(rdev, mddev) {
1977                 /* skip spares and non-functional disks */
1978                 if (test_bit(Faulty, &rdev->flags))
1979                         continue;
1980                 if (rdev->raid_disk < 0)
1981                         continue;
1982                 if (!reference) {
1983                         /* Use the first rdev as the reference */
1984                         reference = rdev;
1985                         continue;
1986                 }
1987                 /* does this rdev's profile match the reference profile? */
1988                 if (blk_integrity_compare(reference->bdev->bd_disk,
1989                                 rdev->bdev->bd_disk) < 0)
1990                         return -EINVAL;
1991         }
1992         if (!reference || !bdev_get_integrity(reference->bdev))
1993                 return 0;
1994         /*
1995          * All component devices are integrity capable and have matching
1996          * profiles, register the common profile for the md device.
1997          */
1998         if (blk_integrity_register(mddev->gendisk,
1999                         bdev_get_integrity(reference->bdev)) != 0) {
2000                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2001                         mdname(mddev));
2002                 return -EINVAL;
2003         }
2004         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2005         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2006                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2007                        mdname(mddev));
2008                 return -EINVAL;
2009         }
2010         return 0;
2011 }
2012 EXPORT_SYMBOL(md_integrity_register);
2013
2014 /* Disable data integrity if non-capable/non-matching disk is being added */
2015 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2016 {
2017         struct blk_integrity *bi_rdev;
2018         struct blk_integrity *bi_mddev;
2019
2020         if (!mddev->gendisk)
2021                 return;
2022
2023         bi_rdev = bdev_get_integrity(rdev->bdev);
2024         bi_mddev = blk_get_integrity(mddev->gendisk);
2025
2026         if (!bi_mddev) /* nothing to do */
2027                 return;
2028         if (rdev->raid_disk < 0) /* skip spares */
2029                 return;
2030         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2031                                              rdev->bdev->bd_disk) >= 0)
2032                 return;
2033         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2034         blk_integrity_unregister(mddev->gendisk);
2035 }
2036 EXPORT_SYMBOL(md_integrity_add_rdev);
2037
2038 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2039 {
2040         char b[BDEVNAME_SIZE];
2041         struct kobject *ko;
2042         int err;
2043
2044         /* prevent duplicates */
2045         if (find_rdev(mddev, rdev->bdev->bd_dev))
2046                 return -EEXIST;
2047
2048         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2049         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2050                         rdev->sectors < mddev->dev_sectors)) {
2051                 if (mddev->pers) {
2052                         /* Cannot change size, so fail
2053                          * If mddev->level <= 0, then we don't care
2054                          * about aligning sizes (e.g. linear)
2055                          */
2056                         if (mddev->level > 0)
2057                                 return -ENOSPC;
2058                 } else
2059                         mddev->dev_sectors = rdev->sectors;
2060         }
2061
2062         /* Verify rdev->desc_nr is unique.
2063          * If it is -1, assign a free number, else
2064          * check number is not in use
2065          */
2066         rcu_read_lock();
2067         if (rdev->desc_nr < 0) {
2068                 int choice = 0;
2069                 if (mddev->pers)
2070                         choice = mddev->raid_disks;
2071                 while (md_find_rdev_nr_rcu(mddev, choice))
2072                         choice++;
2073                 rdev->desc_nr = choice;
2074         } else {
2075                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2076                         rcu_read_unlock();
2077                         return -EBUSY;
2078                 }
2079         }
2080         rcu_read_unlock();
2081         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2082                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2083                        mdname(mddev), mddev->max_disks);
2084                 return -EBUSY;
2085         }
2086         bdevname(rdev->bdev,b);
2087         strreplace(b, '/', '!');
2088
2089         rdev->mddev = mddev;
2090         printk(KERN_INFO "md: bind<%s>\n", b);
2091
2092         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2093                 goto fail;
2094
2095         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2096         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2097                 /* failure here is OK */;
2098         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2099
2100         list_add_rcu(&rdev->same_set, &mddev->disks);
2101         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2102
2103         /* May as well allow recovery to be retried once */
2104         mddev->recovery_disabled++;
2105
2106         return 0;
2107
2108  fail:
2109         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2110                b, mdname(mddev));
2111         return err;
2112 }
2113
2114 static void md_delayed_delete(struct work_struct *ws)
2115 {
2116         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2117         kobject_del(&rdev->kobj);
2118         kobject_put(&rdev->kobj);
2119 }
2120
2121 static void unbind_rdev_from_array(struct md_rdev *rdev)
2122 {
2123         char b[BDEVNAME_SIZE];
2124
2125         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2126         list_del_rcu(&rdev->same_set);
2127         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2128         rdev->mddev = NULL;
2129         sysfs_remove_link(&rdev->kobj, "block");
2130         sysfs_put(rdev->sysfs_state);
2131         rdev->sysfs_state = NULL;
2132         rdev->badblocks.count = 0;
2133         /* We need to delay this, otherwise we can deadlock when
2134          * writing to 'remove' to "dev/state".  We also need
2135          * to delay it due to rcu usage.
2136          */
2137         synchronize_rcu();
2138         INIT_WORK(&rdev->del_work, md_delayed_delete);
2139         kobject_get(&rdev->kobj);
2140         queue_work(md_misc_wq, &rdev->del_work);
2141 }
2142
2143 /*
2144  * prevent the device from being mounted, repartitioned or
2145  * otherwise reused by a RAID array (or any other kernel
2146  * subsystem), by bd_claiming the device.
2147  */
2148 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2149 {
2150         int err = 0;
2151         struct block_device *bdev;
2152         char b[BDEVNAME_SIZE];
2153
2154         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2155                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2156         if (IS_ERR(bdev)) {
2157                 printk(KERN_ERR "md: could not open %s.\n",
2158                         __bdevname(dev, b));
2159                 return PTR_ERR(bdev);
2160         }
2161         rdev->bdev = bdev;
2162         return err;
2163 }
2164
2165 static void unlock_rdev(struct md_rdev *rdev)
2166 {
2167         struct block_device *bdev = rdev->bdev;
2168         rdev->bdev = NULL;
2169         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2170 }
2171
2172 void md_autodetect_dev(dev_t dev);
2173
2174 static void export_rdev(struct md_rdev *rdev)
2175 {
2176         char b[BDEVNAME_SIZE];
2177
2178         printk(KERN_INFO "md: export_rdev(%s)\n",
2179                 bdevname(rdev->bdev,b));
2180         md_rdev_clear(rdev);
2181 #ifndef MODULE
2182         if (test_bit(AutoDetected, &rdev->flags))
2183                 md_autodetect_dev(rdev->bdev->bd_dev);
2184 #endif
2185         unlock_rdev(rdev);
2186         kobject_put(&rdev->kobj);
2187 }
2188
2189 void md_kick_rdev_from_array(struct md_rdev *rdev)
2190 {
2191         unbind_rdev_from_array(rdev);
2192         export_rdev(rdev);
2193 }
2194 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2195
2196 static void export_array(struct mddev *mddev)
2197 {
2198         struct md_rdev *rdev;
2199
2200         while (!list_empty(&mddev->disks)) {
2201                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2202                                         same_set);
2203                 md_kick_rdev_from_array(rdev);
2204         }
2205         mddev->raid_disks = 0;
2206         mddev->major_version = 0;
2207 }
2208
2209 static void sync_sbs(struct mddev *mddev, int nospares)
2210 {
2211         /* Update each superblock (in-memory image), but
2212          * if we are allowed to, skip spares which already
2213          * have the right event counter, or have one earlier
2214          * (which would mean they aren't being marked as dirty
2215          * with the rest of the array)
2216          */
2217         struct md_rdev *rdev;
2218         rdev_for_each(rdev, mddev) {
2219                 if (rdev->sb_events == mddev->events ||
2220                     (nospares &&
2221                      rdev->raid_disk < 0 &&
2222                      rdev->sb_events+1 == mddev->events)) {
2223                         /* Don't update this superblock */
2224                         rdev->sb_loaded = 2;
2225                 } else {
2226                         sync_super(mddev, rdev);
2227                         rdev->sb_loaded = 1;
2228                 }
2229         }
2230 }
2231
2232 static bool does_sb_need_changing(struct mddev *mddev)
2233 {
2234         struct md_rdev *rdev;
2235         struct mdp_superblock_1 *sb;
2236         int role;
2237
2238         /* Find a good rdev */
2239         rdev_for_each(rdev, mddev)
2240                 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2241                         break;
2242
2243         /* No good device found. */
2244         if (!rdev)
2245                 return false;
2246
2247         sb = page_address(rdev->sb_page);
2248         /* Check if a device has become faulty or a spare become active */
2249         rdev_for_each(rdev, mddev) {
2250                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2251                 /* Device activated? */
2252                 if (role == 0xffff && rdev->raid_disk >=0 &&
2253                     !test_bit(Faulty, &rdev->flags))
2254                         return true;
2255                 /* Device turned faulty? */
2256                 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2257                         return true;
2258         }
2259
2260         /* Check if any mddev parameters have changed */
2261         if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2262             (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2263             (mddev->layout != le64_to_cpu(sb->layout)) ||
2264             (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2265             (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2266                 return true;
2267
2268         return false;
2269 }
2270
2271 void md_update_sb(struct mddev *mddev, int force_change)
2272 {
2273         struct md_rdev *rdev;
2274         int sync_req;
2275         int nospares = 0;
2276         int any_badblocks_changed = 0;
2277         int ret = -1;
2278
2279         if (mddev->ro) {
2280                 if (force_change)
2281                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2282                 return;
2283         }
2284
2285         if (mddev_is_clustered(mddev)) {
2286                 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2287                         force_change = 1;
2288                 ret = md_cluster_ops->metadata_update_start(mddev);
2289                 /* Has someone else has updated the sb */
2290                 if (!does_sb_need_changing(mddev)) {
2291                         if (ret == 0)
2292                                 md_cluster_ops->metadata_update_cancel(mddev);
2293                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2294                         return;
2295                 }
2296         }
2297 repeat:
2298         /* First make sure individual recovery_offsets are correct */
2299         rdev_for_each(rdev, mddev) {
2300                 if (rdev->raid_disk >= 0 &&
2301                     mddev->delta_disks >= 0 &&
2302                     !test_bit(In_sync, &rdev->flags) &&
2303                     mddev->curr_resync_completed > rdev->recovery_offset)
2304                                 rdev->recovery_offset = mddev->curr_resync_completed;
2305
2306         }
2307         if (!mddev->persistent) {
2308                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2309                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2310                 if (!mddev->external) {
2311                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2312                         rdev_for_each(rdev, mddev) {
2313                                 if (rdev->badblocks.changed) {
2314                                         rdev->badblocks.changed = 0;
2315                                         md_ack_all_badblocks(&rdev->badblocks);
2316                                         md_error(mddev, rdev);
2317                                 }
2318                                 clear_bit(Blocked, &rdev->flags);
2319                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2320                                 wake_up(&rdev->blocked_wait);
2321                         }
2322                 }
2323                 wake_up(&mddev->sb_wait);
2324                 return;
2325         }
2326
2327         spin_lock(&mddev->lock);
2328
2329         mddev->utime = get_seconds();
2330
2331         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2332                 force_change = 1;
2333         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2334                 /* just a clean<-> dirty transition, possibly leave spares alone,
2335                  * though if events isn't the right even/odd, we will have to do
2336                  * spares after all
2337                  */
2338                 nospares = 1;
2339         if (force_change)
2340                 nospares = 0;
2341         if (mddev->degraded)
2342                 /* If the array is degraded, then skipping spares is both
2343                  * dangerous and fairly pointless.
2344                  * Dangerous because a device that was removed from the array
2345                  * might have a event_count that still looks up-to-date,
2346                  * so it can be re-added without a resync.
2347                  * Pointless because if there are any spares to skip,
2348                  * then a recovery will happen and soon that array won't
2349                  * be degraded any more and the spare can go back to sleep then.
2350                  */
2351                 nospares = 0;
2352
2353         sync_req = mddev->in_sync;
2354
2355         /* If this is just a dirty<->clean transition, and the array is clean
2356          * and 'events' is odd, we can roll back to the previous clean state */
2357         if (nospares
2358             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2359             && mddev->can_decrease_events
2360             && mddev->events != 1) {
2361                 mddev->events--;
2362                 mddev->can_decrease_events = 0;
2363         } else {
2364                 /* otherwise we have to go forward and ... */
2365                 mddev->events ++;
2366                 mddev->can_decrease_events = nospares;
2367         }
2368
2369         /*
2370          * This 64-bit counter should never wrap.
2371          * Either we are in around ~1 trillion A.C., assuming
2372          * 1 reboot per second, or we have a bug...
2373          */
2374         WARN_ON(mddev->events == 0);
2375
2376         rdev_for_each(rdev, mddev) {
2377                 if (rdev->badblocks.changed)
2378                         any_badblocks_changed++;
2379                 if (test_bit(Faulty, &rdev->flags))
2380                         set_bit(FaultRecorded, &rdev->flags);
2381         }
2382
2383         sync_sbs(mddev, nospares);
2384         spin_unlock(&mddev->lock);
2385
2386         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2387                  mdname(mddev), mddev->in_sync);
2388
2389         bitmap_update_sb(mddev->bitmap);
2390         rdev_for_each(rdev, mddev) {
2391                 char b[BDEVNAME_SIZE];
2392
2393                 if (rdev->sb_loaded != 1)
2394                         continue; /* no noise on spare devices */
2395
2396                 if (!test_bit(Faulty, &rdev->flags)) {
2397                         md_super_write(mddev,rdev,
2398                                        rdev->sb_start, rdev->sb_size,
2399                                        rdev->sb_page);
2400                         pr_debug("md: (write) %s's sb offset: %llu\n",
2401                                  bdevname(rdev->bdev, b),
2402                                  (unsigned long long)rdev->sb_start);
2403                         rdev->sb_events = mddev->events;
2404                         if (rdev->badblocks.size) {
2405                                 md_super_write(mddev, rdev,
2406                                                rdev->badblocks.sector,
2407                                                rdev->badblocks.size << 9,
2408                                                rdev->bb_page);
2409                                 rdev->badblocks.size = 0;
2410                         }
2411
2412                 } else
2413                         pr_debug("md: %s (skipping faulty)\n",
2414                                  bdevname(rdev->bdev, b));
2415
2416                 if (mddev->level == LEVEL_MULTIPATH)
2417                         /* only need to write one superblock... */
2418                         break;
2419         }
2420         md_super_wait(mddev);
2421         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2422
2423         spin_lock(&mddev->lock);
2424         if (mddev->in_sync != sync_req ||
2425             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2426                 /* have to write it out again */
2427                 spin_unlock(&mddev->lock);
2428                 goto repeat;
2429         }
2430         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2431         spin_unlock(&mddev->lock);
2432         wake_up(&mddev->sb_wait);
2433         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2434                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2435
2436         rdev_for_each(rdev, mddev) {
2437                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2438                         clear_bit(Blocked, &rdev->flags);
2439
2440                 if (any_badblocks_changed)
2441                         md_ack_all_badblocks(&rdev->badblocks);
2442                 clear_bit(BlockedBadBlocks, &rdev->flags);
2443                 wake_up(&rdev->blocked_wait);
2444         }
2445
2446         if (mddev_is_clustered(mddev) && ret == 0)
2447                 md_cluster_ops->metadata_update_finish(mddev);
2448 }
2449 EXPORT_SYMBOL(md_update_sb);
2450
2451 static int add_bound_rdev(struct md_rdev *rdev)
2452 {
2453         struct mddev *mddev = rdev->mddev;
2454         int err = 0;
2455
2456         if (!mddev->pers->hot_remove_disk) {
2457                 /* If there is hot_add_disk but no hot_remove_disk
2458                  * then added disks for geometry changes,
2459                  * and should be added immediately.
2460                  */
2461                 super_types[mddev->major_version].
2462                         validate_super(mddev, rdev);
2463                 err = mddev->pers->hot_add_disk(mddev, rdev);
2464                 if (err) {
2465                         unbind_rdev_from_array(rdev);
2466                         export_rdev(rdev);
2467                         return err;
2468                 }
2469         }
2470         sysfs_notify_dirent_safe(rdev->sysfs_state);
2471
2472         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2473         if (mddev->degraded)
2474                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2475         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2476         md_new_event(mddev);
2477         md_wakeup_thread(mddev->thread);
2478         return 0;
2479 }
2480
2481 /* words written to sysfs files may, or may not, be \n terminated.
2482  * We want to accept with case. For this we use cmd_match.
2483  */
2484 static int cmd_match(const char *cmd, const char *str)
2485 {
2486         /* See if cmd, written into a sysfs file, matches
2487          * str.  They must either be the same, or cmd can
2488          * have a trailing newline
2489          */
2490         while (*cmd && *str && *cmd == *str) {
2491                 cmd++;
2492                 str++;
2493         }
2494         if (*cmd == '\n')
2495                 cmd++;
2496         if (*str || *cmd)
2497                 return 0;
2498         return 1;
2499 }
2500
2501 struct rdev_sysfs_entry {
2502         struct attribute attr;
2503         ssize_t (*show)(struct md_rdev *, char *);
2504         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2505 };
2506
2507 static ssize_t
2508 state_show(struct md_rdev *rdev, char *page)
2509 {
2510         char *sep = "";
2511         size_t len = 0;
2512         unsigned long flags = ACCESS_ONCE(rdev->flags);
2513
2514         if (test_bit(Faulty, &flags) ||
2515             rdev->badblocks.unacked_exist) {
2516                 len+= sprintf(page+len, "%sfaulty",sep);
2517                 sep = ",";
2518         }
2519         if (test_bit(In_sync, &flags)) {
2520                 len += sprintf(page+len, "%sin_sync",sep);
2521                 sep = ",";
2522         }
2523         if (test_bit(Journal, &flags)) {
2524                 len += sprintf(page+len, "%sjournal",sep);
2525                 sep = ",";
2526         }
2527         if (test_bit(WriteMostly, &flags)) {
2528                 len += sprintf(page+len, "%swrite_mostly",sep);
2529                 sep = ",";
2530         }
2531         if (test_bit(Blocked, &flags) ||
2532             (rdev->badblocks.unacked_exist
2533              && !test_bit(Faulty, &flags))) {
2534                 len += sprintf(page+len, "%sblocked", sep);
2535                 sep = ",";
2536         }
2537         if (!test_bit(Faulty, &flags) &&
2538             !test_bit(In_sync, &flags)) {
2539                 len += sprintf(page+len, "%sspare", sep);
2540                 sep = ",";
2541         }
2542         if (test_bit(WriteErrorSeen, &flags)) {
2543                 len += sprintf(page+len, "%swrite_error", sep);
2544                 sep = ",";
2545         }
2546         if (test_bit(WantReplacement, &flags)) {
2547                 len += sprintf(page+len, "%swant_replacement", sep);
2548                 sep = ",";
2549         }
2550         if (test_bit(Replacement, &flags)) {
2551                 len += sprintf(page+len, "%sreplacement", sep);
2552                 sep = ",";
2553         }
2554
2555         return len+sprintf(page+len, "\n");
2556 }
2557
2558 static ssize_t
2559 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2560 {
2561         /* can write
2562          *  faulty  - simulates an error
2563          *  remove  - disconnects the device
2564          *  writemostly - sets write_mostly
2565          *  -writemostly - clears write_mostly
2566          *  blocked - sets the Blocked flags
2567          *  -blocked - clears the Blocked and possibly simulates an error
2568          *  insync - sets Insync providing device isn't active
2569          *  -insync - clear Insync for a device with a slot assigned,
2570          *            so that it gets rebuilt based on bitmap
2571          *  write_error - sets WriteErrorSeen
2572          *  -write_error - clears WriteErrorSeen
2573          */
2574         int err = -EINVAL;
2575         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2576                 md_error(rdev->mddev, rdev);
2577                 if (test_bit(Faulty, &rdev->flags))
2578                         err = 0;
2579                 else
2580                         err = -EBUSY;
2581         } else if (cmd_match(buf, "remove")) {
2582                 if (rdev->raid_disk >= 0)
2583                         err = -EBUSY;
2584                 else {
2585                         struct mddev *mddev = rdev->mddev;
2586                         err = 0;
2587                         if (mddev_is_clustered(mddev))
2588                                 err = md_cluster_ops->remove_disk(mddev, rdev);
2589
2590                         if (err == 0) {
2591                                 md_kick_rdev_from_array(rdev);
2592                                 if (mddev->pers)
2593                                         md_update_sb(mddev, 1);
2594                                 md_new_event(mddev);
2595                         }
2596                 }
2597         } else if (cmd_match(buf, "writemostly")) {
2598                 set_bit(WriteMostly, &rdev->flags);
2599                 err = 0;
2600         } else if (cmd_match(buf, "-writemostly")) {
2601                 clear_bit(WriteMostly, &rdev->flags);
2602                 err = 0;
2603         } else if (cmd_match(buf, "blocked")) {
2604                 set_bit(Blocked, &rdev->flags);
2605                 err = 0;
2606         } else if (cmd_match(buf, "-blocked")) {
2607                 if (!test_bit(Faulty, &rdev->flags) &&
2608                     rdev->badblocks.unacked_exist) {
2609                         /* metadata handler doesn't understand badblocks,
2610                          * so we need to fail the device
2611                          */
2612                         md_error(rdev->mddev, rdev);
2613                 }
2614                 clear_bit(Blocked, &rdev->flags);
2615                 clear_bit(BlockedBadBlocks, &rdev->flags);
2616                 wake_up(&rdev->blocked_wait);
2617                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2618                 md_wakeup_thread(rdev->mddev->thread);
2619
2620                 err = 0;
2621         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2622                 set_bit(In_sync, &rdev->flags);
2623                 err = 0;
2624         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2625                 if (rdev->mddev->pers == NULL) {
2626                         clear_bit(In_sync, &rdev->flags);
2627                         rdev->saved_raid_disk = rdev->raid_disk;
2628                         rdev->raid_disk = -1;
2629                         err = 0;
2630                 }
2631         } else if (cmd_match(buf, "write_error")) {
2632                 set_bit(WriteErrorSeen, &rdev->flags);
2633                 err = 0;
2634         } else if (cmd_match(buf, "-write_error")) {
2635                 clear_bit(WriteErrorSeen, &rdev->flags);
2636                 err = 0;
2637         } else if (cmd_match(buf, "want_replacement")) {
2638                 /* Any non-spare device that is not a replacement can
2639                  * become want_replacement at any time, but we then need to
2640                  * check if recovery is needed.
2641                  */
2642                 if (rdev->raid_disk >= 0 &&
2643                     !test_bit(Replacement, &rdev->flags))
2644                         set_bit(WantReplacement, &rdev->flags);
2645                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2646                 md_wakeup_thread(rdev->mddev->thread);
2647                 err = 0;
2648         } else if (cmd_match(buf, "-want_replacement")) {
2649                 /* Clearing 'want_replacement' is always allowed.
2650                  * Once replacements starts it is too late though.
2651                  */
2652                 err = 0;
2653                 clear_bit(WantReplacement, &rdev->flags);
2654         } else if (cmd_match(buf, "replacement")) {
2655                 /* Can only set a device as a replacement when array has not
2656                  * yet been started.  Once running, replacement is automatic
2657                  * from spares, or by assigning 'slot'.
2658                  */
2659                 if (rdev->mddev->pers)
2660                         err = -EBUSY;
2661                 else {
2662                         set_bit(Replacement, &rdev->flags);
2663                         err = 0;
2664                 }
2665         } else if (cmd_match(buf, "-replacement")) {
2666                 /* Similarly, can only clear Replacement before start */
2667                 if (rdev->mddev->pers)
2668                         err = -EBUSY;
2669                 else {
2670                         clear_bit(Replacement, &rdev->flags);
2671                         err = 0;
2672                 }
2673         } else if (cmd_match(buf, "re-add")) {
2674                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2675                         /* clear_bit is performed _after_ all the devices
2676                          * have their local Faulty bit cleared. If any writes
2677                          * happen in the meantime in the local node, they
2678                          * will land in the local bitmap, which will be synced
2679                          * by this node eventually
2680                          */
2681                         if (!mddev_is_clustered(rdev->mddev) ||
2682                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2683                                 clear_bit(Faulty, &rdev->flags);
2684                                 err = add_bound_rdev(rdev);
2685                         }
2686                 } else
2687                         err = -EBUSY;
2688         }
2689         if (!err)
2690                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2691         return err ? err : len;
2692 }
2693 static struct rdev_sysfs_entry rdev_state =
2694 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2695
2696 static ssize_t
2697 errors_show(struct md_rdev *rdev, char *page)
2698 {
2699         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2700 }
2701
2702 static ssize_t
2703 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2704 {
2705         unsigned int n;
2706         int rv;
2707
2708         rv = kstrtouint(buf, 10, &n);
2709         if (rv < 0)
2710                 return rv;
2711         atomic_set(&rdev->corrected_errors, n);
2712         return len;
2713 }
2714 static struct rdev_sysfs_entry rdev_errors =
2715 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2716
2717 static ssize_t
2718 slot_show(struct md_rdev *rdev, char *page)
2719 {
2720         if (rdev->raid_disk < 0)
2721                 return sprintf(page, "none\n");
2722         else
2723                 return sprintf(page, "%d\n", rdev->raid_disk);
2724 }
2725
2726 static ssize_t
2727 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2728 {
2729         int slot;
2730         int err;
2731
2732         if (strncmp(buf, "none", 4)==0)
2733                 slot = -1;
2734         else {
2735                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2736                 if (err < 0)
2737                         return err;
2738         }
2739         if (rdev->mddev->pers && slot == -1) {
2740                 /* Setting 'slot' on an active array requires also
2741                  * updating the 'rd%d' link, and communicating
2742                  * with the personality with ->hot_*_disk.
2743                  * For now we only support removing
2744                  * failed/spare devices.  This normally happens automatically,
2745                  * but not when the metadata is externally managed.
2746                  */
2747                 if (rdev->raid_disk == -1)
2748                         return -EEXIST;
2749                 /* personality does all needed checks */
2750                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2751                         return -EINVAL;
2752                 clear_bit(Blocked, &rdev->flags);
2753                 remove_and_add_spares(rdev->mddev, rdev);
2754                 if (rdev->raid_disk >= 0)
2755                         return -EBUSY;
2756                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2757                 md_wakeup_thread(rdev->mddev->thread);
2758         } else if (rdev->mddev->pers) {
2759                 /* Activating a spare .. or possibly reactivating
2760                  * if we ever get bitmaps working here.
2761                  */
2762
2763                 if (rdev->raid_disk != -1)
2764                         return -EBUSY;
2765
2766                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2767                         return -EBUSY;
2768
2769                 if (rdev->mddev->pers->hot_add_disk == NULL)
2770                         return -EINVAL;
2771
2772                 if (slot >= rdev->mddev->raid_disks &&
2773                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2774                         return -ENOSPC;
2775
2776                 rdev->raid_disk = slot;
2777                 if (test_bit(In_sync, &rdev->flags))
2778                         rdev->saved_raid_disk = slot;
2779                 else
2780                         rdev->saved_raid_disk = -1;
2781                 clear_bit(In_sync, &rdev->flags);
2782                 clear_bit(Bitmap_sync, &rdev->flags);
2783                 remove_and_add_spares(rdev->mddev, rdev);
2784                 if (rdev->raid_disk == -1)
2785                         return -EBUSY;
2786                 /* don't wakeup anyone, leave that to userspace. */
2787         } else {
2788                 if (slot >= rdev->mddev->raid_disks &&
2789                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2790                         return -ENOSPC;
2791                 rdev->raid_disk = slot;
2792                 /* assume it is working */
2793                 clear_bit(Faulty, &rdev->flags);
2794                 clear_bit(WriteMostly, &rdev->flags);
2795                 set_bit(In_sync, &rdev->flags);
2796                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2797         }
2798         return len;
2799 }
2800
2801 static struct rdev_sysfs_entry rdev_slot =
2802 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2803
2804 static ssize_t
2805 offset_show(struct md_rdev *rdev, char *page)
2806 {
2807         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2808 }
2809
2810 static ssize_t
2811 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2812 {
2813         unsigned long long offset;
2814         if (kstrtoull(buf, 10, &offset) < 0)
2815                 return -EINVAL;
2816         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2817                 return -EBUSY;
2818         if (rdev->sectors && rdev->mddev->external)
2819                 /* Must set offset before size, so overlap checks
2820                  * can be sane */
2821                 return -EBUSY;
2822         rdev->data_offset = offset;
2823         rdev->new_data_offset = offset;
2824         return len;
2825 }
2826
2827 static struct rdev_sysfs_entry rdev_offset =
2828 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2829
2830 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2831 {
2832         return sprintf(page, "%llu\n",
2833                        (unsigned long long)rdev->new_data_offset);
2834 }
2835
2836 static ssize_t new_offset_store(struct md_rdev *rdev,
2837                                 const char *buf, size_t len)
2838 {
2839         unsigned long long new_offset;
2840         struct mddev *mddev = rdev->mddev;
2841
2842         if (kstrtoull(buf, 10, &new_offset) < 0)
2843                 return -EINVAL;
2844
2845         if (mddev->sync_thread ||
2846             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2847                 return -EBUSY;
2848         if (new_offset == rdev->data_offset)
2849                 /* reset is always permitted */
2850                 ;
2851         else if (new_offset > rdev->data_offset) {
2852                 /* must not push array size beyond rdev_sectors */
2853                 if (new_offset - rdev->data_offset
2854                     + mddev->dev_sectors > rdev->sectors)
2855                                 return -E2BIG;
2856         }
2857         /* Metadata worries about other space details. */
2858
2859         /* decreasing the offset is inconsistent with a backwards
2860          * reshape.
2861          */
2862         if (new_offset < rdev->data_offset &&
2863             mddev->reshape_backwards)
2864                 return -EINVAL;
2865         /* Increasing offset is inconsistent with forwards
2866          * reshape.  reshape_direction should be set to
2867          * 'backwards' first.
2868          */
2869         if (new_offset > rdev->data_offset &&
2870             !mddev->reshape_backwards)
2871                 return -EINVAL;
2872
2873         if (mddev->pers && mddev->persistent &&
2874             !super_types[mddev->major_version]
2875             .allow_new_offset(rdev, new_offset))
2876                 return -E2BIG;
2877         rdev->new_data_offset = new_offset;
2878         if (new_offset > rdev->data_offset)
2879                 mddev->reshape_backwards = 1;
2880         else if (new_offset < rdev->data_offset)
2881                 mddev->reshape_backwards = 0;
2882
2883         return len;
2884 }
2885 static struct rdev_sysfs_entry rdev_new_offset =
2886 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2887
2888 static ssize_t
2889 rdev_size_show(struct md_rdev *rdev, char *page)
2890 {
2891         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2892 }
2893
2894 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2895 {
2896         /* check if two start/length pairs overlap */
2897         if (s1+l1 <= s2)
2898                 return 0;
2899         if (s2+l2 <= s1)
2900                 return 0;
2901         return 1;
2902 }
2903
2904 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2905 {
2906         unsigned long long blocks;
2907         sector_t new;
2908
2909         if (kstrtoull(buf, 10, &blocks) < 0)
2910                 return -EINVAL;
2911
2912         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2913                 return -EINVAL; /* sector conversion overflow */
2914
2915         new = blocks * 2;
2916         if (new != blocks * 2)
2917                 return -EINVAL; /* unsigned long long to sector_t overflow */
2918
2919         *sectors = new;
2920         return 0;
2921 }
2922
2923 static ssize_t
2924 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2925 {
2926         struct mddev *my_mddev = rdev->mddev;
2927         sector_t oldsectors = rdev->sectors;
2928         sector_t sectors;
2929
2930         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2931                 return -EINVAL;
2932         if (rdev->data_offset != rdev->new_data_offset)
2933                 return -EINVAL; /* too confusing */
2934         if (my_mddev->pers && rdev->raid_disk >= 0) {
2935                 if (my_mddev->persistent) {
2936                         sectors = super_types[my_mddev->major_version].
2937                                 rdev_size_change(rdev, sectors);
2938                         if (!sectors)
2939                                 return -EBUSY;
2940                 } else if (!sectors)
2941                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2942                                 rdev->data_offset;
2943                 if (!my_mddev->pers->resize)
2944                         /* Cannot change size for RAID0 or Linear etc */
2945                         return -EINVAL;
2946         }
2947         if (sectors < my_mddev->dev_sectors)
2948                 return -EINVAL; /* component must fit device */
2949
2950         rdev->sectors = sectors;
2951         if (sectors > oldsectors && my_mddev->external) {
2952                 /* Need to check that all other rdevs with the same
2953                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2954                  * the rdev lists safely.
2955                  * This check does not provide a hard guarantee, it
2956                  * just helps avoid dangerous mistakes.
2957                  */
2958                 struct mddev *mddev;
2959                 int overlap = 0;
2960                 struct list_head *tmp;
2961
2962                 rcu_read_lock();
2963                 for_each_mddev(mddev, tmp) {
2964                         struct md_rdev *rdev2;
2965
2966                         rdev_for_each(rdev2, mddev)
2967                                 if (rdev->bdev == rdev2->bdev &&
2968                                     rdev != rdev2 &&
2969                                     overlaps(rdev->data_offset, rdev->sectors,
2970                                              rdev2->data_offset,
2971                                              rdev2->sectors)) {
2972                                         overlap = 1;
2973                                         break;
2974                                 }
2975                         if (overlap) {
2976                                 mddev_put(mddev);
2977                                 break;
2978                         }
2979                 }
2980                 rcu_read_unlock();
2981                 if (overlap) {
2982                         /* Someone else could have slipped in a size
2983                          * change here, but doing so is just silly.
2984                          * We put oldsectors back because we *know* it is
2985                          * safe, and trust userspace not to race with
2986                          * itself
2987                          */
2988                         rdev->sectors = oldsectors;
2989                         return -EBUSY;
2990                 }
2991         }
2992         return len;
2993 }
2994
2995 static struct rdev_sysfs_entry rdev_size =
2996 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2997
2998 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2999 {
3000         unsigned long long recovery_start = rdev->recovery_offset;
3001
3002         if (test_bit(In_sync, &rdev->flags) ||
3003             recovery_start == MaxSector)
3004                 return sprintf(page, "none\n");
3005
3006         return sprintf(page, "%llu\n", recovery_start);
3007 }
3008
3009 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3010 {
3011         unsigned long long recovery_start;
3012
3013         if (cmd_match(buf, "none"))
3014                 recovery_start = MaxSector;
3015         else if (kstrtoull(buf, 10, &recovery_start))
3016                 return -EINVAL;
3017
3018         if (rdev->mddev->pers &&
3019             rdev->raid_disk >= 0)
3020                 return -EBUSY;
3021
3022         rdev->recovery_offset = recovery_start;
3023         if (recovery_start == MaxSector)
3024                 set_bit(In_sync, &rdev->flags);
3025         else
3026                 clear_bit(In_sync, &rdev->flags);
3027         return len;
3028 }
3029
3030 static struct rdev_sysfs_entry rdev_recovery_start =
3031 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3032
3033 static ssize_t
3034 badblocks_show(struct badblocks *bb, char *page, int unack);
3035 static ssize_t
3036 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3037
3038 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3039 {
3040         return badblocks_show(&rdev->badblocks, page, 0);
3041 }
3042 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3043 {
3044         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3045         /* Maybe that ack was all we needed */
3046         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3047                 wake_up(&rdev->blocked_wait);
3048         return rv;
3049 }
3050 static struct rdev_sysfs_entry rdev_bad_blocks =
3051 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3052
3053 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3054 {
3055         return badblocks_show(&rdev->badblocks, page, 1);
3056 }
3057 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3058 {
3059         return badblocks_store(&rdev->badblocks, page, len, 1);
3060 }
3061 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3062 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3063
3064 static struct attribute *rdev_default_attrs[] = {
3065         &rdev_state.attr,
3066         &rdev_errors.attr,
3067         &rdev_slot.attr,
3068         &rdev_offset.attr,
3069         &rdev_new_offset.attr,
3070         &rdev_size.attr,
3071         &rdev_recovery_start.attr,
3072         &rdev_bad_blocks.attr,
3073         &rdev_unack_bad_blocks.attr,
3074         NULL,
3075 };
3076 static ssize_t
3077 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3078 {
3079         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3080         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3081
3082         if (!entry->show)
3083                 return -EIO;
3084         if (!rdev->mddev)
3085                 return -EBUSY;
3086         return entry->show(rdev, page);
3087 }
3088
3089 static ssize_t
3090 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3091               const char *page, size_t length)
3092 {
3093         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3094         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3095         ssize_t rv;
3096         struct mddev *mddev = rdev->mddev;
3097
3098         if (!entry->store)
3099                 return -EIO;
3100         if (!capable(CAP_SYS_ADMIN))
3101                 return -EACCES;
3102         rv = mddev ? mddev_lock(mddev): -EBUSY;
3103         if (!rv) {
3104                 if (rdev->mddev == NULL)
3105                         rv = -EBUSY;
3106                 else
3107                         rv = entry->store(rdev, page, length);
3108                 mddev_unlock(mddev);
3109         }
3110         return rv;
3111 }
3112
3113 static void rdev_free(struct kobject *ko)
3114 {
3115         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3116         kfree(rdev);
3117 }
3118 static const struct sysfs_ops rdev_sysfs_ops = {
3119         .show           = rdev_attr_show,
3120         .store          = rdev_attr_store,
3121 };
3122 static struct kobj_type rdev_ktype = {
3123         .release        = rdev_free,
3124         .sysfs_ops      = &rdev_sysfs_ops,
3125         .default_attrs  = rdev_default_attrs,
3126 };
3127
3128 int md_rdev_init(struct md_rdev *rdev)
3129 {
3130         rdev->desc_nr = -1;
3131         rdev->saved_raid_disk = -1;
3132         rdev->raid_disk = -1;
3133         rdev->flags = 0;
3134         rdev->data_offset = 0;
3135         rdev->new_data_offset = 0;
3136         rdev->sb_events = 0;
3137         rdev->last_read_error.tv_sec  = 0;
3138         rdev->last_read_error.tv_nsec = 0;
3139         rdev->sb_loaded = 0;
3140         rdev->bb_page = NULL;
3141         atomic_set(&rdev->nr_pending, 0);
3142         atomic_set(&rdev->read_errors, 0);
3143         atomic_set(&rdev->corrected_errors, 0);
3144
3145         INIT_LIST_HEAD(&rdev->same_set);
3146         init_waitqueue_head(&rdev->blocked_wait);
3147
3148         /* Add space to store bad block list.
3149          * This reserves the space even on arrays where it cannot
3150          * be used - I wonder if that matters
3151          */
3152         rdev->badblocks.count = 0;
3153         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3154         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3155         seqlock_init(&rdev->badblocks.lock);
3156         if (rdev->badblocks.page == NULL)
3157                 return -ENOMEM;
3158
3159         return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(md_rdev_init);
3162 /*
3163  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3164  *
3165  * mark the device faulty if:
3166  *
3167  *   - the device is nonexistent (zero size)
3168  *   - the device has no valid superblock
3169  *
3170  * a faulty rdev _never_ has rdev->sb set.
3171  */
3172 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3173 {
3174         char b[BDEVNAME_SIZE];
3175         int err;
3176         struct md_rdev *rdev;
3177         sector_t size;
3178
3179         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3180         if (!rdev) {
3181                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3182                 return ERR_PTR(-ENOMEM);
3183         }
3184
3185         err = md_rdev_init(rdev);
3186         if (err)
3187                 goto abort_free;
3188         err = alloc_disk_sb(rdev);
3189         if (err)
3190                 goto abort_free;
3191
3192         err = lock_rdev(rdev, newdev, super_format == -2);
3193         if (err)
3194                 goto abort_free;
3195
3196         kobject_init(&rdev->kobj, &rdev_ktype);
3197
3198         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3199         if (!size) {
3200                 printk(KERN_WARNING
3201                         "md: %s has zero or unknown size, marking faulty!\n",
3202                         bdevname(rdev->bdev,b));
3203                 err = -EINVAL;
3204                 goto abort_free;
3205         }
3206
3207         if (super_format >= 0) {
3208                 err = super_types[super_format].
3209                         load_super(rdev, NULL, super_minor);
3210                 if (err == -EINVAL) {
3211                         printk(KERN_WARNING
3212                                 "md: %s does not have a valid v%d.%d "
3213                                "superblock, not importing!\n",
3214                                 bdevname(rdev->bdev,b),
3215                                super_format, super_minor);
3216                         goto abort_free;
3217                 }
3218                 if (err < 0) {
3219                         printk(KERN_WARNING
3220                                 "md: could not read %s's sb, not importing!\n",
3221                                 bdevname(rdev->bdev,b));
3222                         goto abort_free;
3223                 }
3224         }
3225
3226         return rdev;
3227
3228 abort_free:
3229         if (rdev->bdev)
3230                 unlock_rdev(rdev);
3231         md_rdev_clear(rdev);
3232         kfree(rdev);
3233         return ERR_PTR(err);
3234 }
3235
3236 /*
3237  * Check a full RAID array for plausibility
3238  */
3239
3240 static void analyze_sbs(struct mddev *mddev)
3241 {
3242         int i;
3243         struct md_rdev *rdev, *freshest, *tmp;
3244         char b[BDEVNAME_SIZE];
3245
3246         freshest = NULL;
3247         rdev_for_each_safe(rdev, tmp, mddev)
3248                 switch (super_types[mddev->major_version].
3249                         load_super(rdev, freshest, mddev->minor_version)) {
3250                 case 1:
3251                         freshest = rdev;
3252                         break;
3253                 case 0:
3254                         break;
3255                 default:
3256                         printk( KERN_ERR \
3257                                 "md: fatal superblock inconsistency in %s"
3258                                 " -- removing from array\n",
3259                                 bdevname(rdev->bdev,b));
3260                         md_kick_rdev_from_array(rdev);
3261                 }
3262
3263         super_types[mddev->major_version].
3264                 validate_super(mddev, freshest);
3265
3266         i = 0;
3267         rdev_for_each_safe(rdev, tmp, mddev) {
3268                 if (mddev->max_disks &&
3269                     (rdev->desc_nr >= mddev->max_disks ||
3270                      i > mddev->max_disks)) {
3271                         printk(KERN_WARNING
3272                                "md: %s: %s: only %d devices permitted\n",
3273                                mdname(mddev), bdevname(rdev->bdev, b),
3274                                mddev->max_disks);
3275                         md_kick_rdev_from_array(rdev);
3276                         continue;
3277                 }
3278                 if (rdev != freshest) {
3279                         if (super_types[mddev->major_version].
3280                             validate_super(mddev, rdev)) {
3281                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3282                                         " from array!\n",
3283                                         bdevname(rdev->bdev,b));
3284                                 md_kick_rdev_from_array(rdev);
3285                                 continue;
3286                         }
3287                 }
3288                 if (mddev->level == LEVEL_MULTIPATH) {
3289                         rdev->desc_nr = i++;
3290                         rdev->raid_disk = rdev->desc_nr;
3291                         set_bit(In_sync, &rdev->flags);
3292                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3293                         rdev->raid_disk = -1;
3294                         clear_bit(In_sync, &rdev->flags);
3295                 }
3296         }
3297 }
3298
3299 /* Read a fixed-point number.
3300  * Numbers in sysfs attributes should be in "standard" units where
3301  * possible, so time should be in seconds.
3302  * However we internally use a a much smaller unit such as
3303  * milliseconds or jiffies.
3304  * This function takes a decimal number with a possible fractional
3305  * component, and produces an integer which is the result of
3306  * multiplying that number by 10^'scale'.
3307  * all without any floating-point arithmetic.
3308  */
3309 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3310 {
3311         unsigned long result = 0;
3312         long decimals = -1;
3313         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3314                 if (*cp == '.')
3315                         decimals = 0;
3316                 else if (decimals < scale) {
3317                         unsigned int value;
3318                         value = *cp - '0';
3319                         result = result * 10 + value;
3320                         if (decimals >= 0)
3321                                 decimals++;
3322                 }
3323                 cp++;
3324         }
3325         if (*cp == '\n')
3326                 cp++;
3327         if (*cp)
3328                 return -EINVAL;
3329         if (decimals < 0)
3330                 decimals = 0;
3331         while (decimals < scale) {
3332                 result *= 10;
3333                 decimals ++;
3334         }
3335         *res = result;
3336         return 0;
3337 }
3338
3339 static ssize_t
3340 safe_delay_show(struct mddev *mddev, char *page)
3341 {
3342         int msec = (mddev->safemode_delay*1000)/HZ;
3343         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3344 }
3345 static ssize_t
3346 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3347 {
3348         unsigned long msec;
3349
3350         if (mddev_is_clustered(mddev)) {
3351                 pr_info("md: Safemode is disabled for clustered mode\n");
3352                 return -EINVAL;
3353         }
3354
3355         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3356                 return -EINVAL;
3357         if (msec == 0)
3358                 mddev->safemode_delay = 0;
3359         else {
3360                 unsigned long old_delay = mddev->safemode_delay;
3361                 unsigned long new_delay = (msec*HZ)/1000;
3362
3363                 if (new_delay == 0)
3364                         new_delay = 1;
3365                 mddev->safemode_delay = new_delay;
3366                 if (new_delay < old_delay || old_delay == 0)
3367                         mod_timer(&mddev->safemode_timer, jiffies+1);
3368         }
3369         return len;
3370 }
3371 static struct md_sysfs_entry md_safe_delay =
3372 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3373
3374 static ssize_t
3375 level_show(struct mddev *mddev, char *page)
3376 {
3377         struct md_personality *p;
3378         int ret;
3379         spin_lock(&mddev->lock);
3380         p = mddev->pers;
3381         if (p)
3382                 ret = sprintf(page, "%s\n", p->name);
3383         else if (mddev->clevel[0])
3384                 ret = sprintf(page, "%s\n", mddev->clevel);
3385         else if (mddev->level != LEVEL_NONE)
3386                 ret = sprintf(page, "%d\n", mddev->level);
3387         else
3388                 ret = 0;
3389         spin_unlock(&mddev->lock);
3390         return ret;
3391 }
3392
3393 static ssize_t
3394 level_store(struct mddev *mddev, const char *buf, size_t len)
3395 {
3396         char clevel[16];
3397         ssize_t rv;
3398         size_t slen = len;
3399         struct md_personality *pers, *oldpers;
3400         long level;
3401         void *priv, *oldpriv;
3402         struct md_rdev *rdev;
3403
3404         if (slen == 0 || slen >= sizeof(clevel))
3405                 return -EINVAL;
3406
3407         rv = mddev_lock(mddev);
3408         if (rv)
3409                 return rv;
3410
3411         if (mddev->pers == NULL) {
3412                 strncpy(mddev->clevel, buf, slen);
3413                 if (mddev->clevel[slen-1] == '\n')
3414                         slen--;
3415                 mddev->clevel[slen] = 0;
3416                 mddev->level = LEVEL_NONE;
3417                 rv = len;
3418                 goto out_unlock;
3419         }
3420         rv = -EROFS;
3421         if (mddev->ro)
3422                 goto out_unlock;
3423
3424         /* request to change the personality.  Need to ensure:
3425          *  - array is not engaged in resync/recovery/reshape
3426          *  - old personality can be suspended
3427          *  - new personality will access other array.
3428          */
3429
3430         rv = -EBUSY;
3431         if (mddev->sync_thread ||
3432             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3433             mddev->reshape_position != MaxSector ||
3434             mddev->sysfs_active)
3435                 goto out_unlock;
3436
3437         rv = -EINVAL;
3438         if (!mddev->pers->quiesce) {
3439                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3440                        mdname(mddev), mddev->pers->name);
3441                 goto out_unlock;
3442         }
3443
3444         /* Now find the new personality */
3445         strncpy(clevel, buf, slen);
3446         if (clevel[slen-1] == '\n')
3447                 slen--;
3448         clevel[slen] = 0;
3449         if (kstrtol(clevel, 10, &level))
3450                 level = LEVEL_NONE;
3451
3452         if (request_module("md-%s", clevel) != 0)
3453                 request_module("md-level-%s", clevel);
3454         spin_lock(&pers_lock);
3455         pers = find_pers(level, clevel);
3456         if (!pers || !try_module_get(pers->owner)) {
3457                 spin_unlock(&pers_lock);
3458                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3459                 rv = -EINVAL;
3460                 goto out_unlock;
3461         }
3462         spin_unlock(&pers_lock);
3463
3464         if (pers == mddev->pers) {
3465                 /* Nothing to do! */
3466                 module_put(pers->owner);
3467                 rv = len;
3468                 goto out_unlock;
3469         }
3470         if (!pers->takeover) {
3471                 module_put(pers->owner);
3472                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3473                        mdname(mddev), clevel);
3474                 rv = -EINVAL;
3475                 goto out_unlock;
3476         }
3477
3478         rdev_for_each(rdev, mddev)
3479                 rdev->new_raid_disk = rdev->raid_disk;
3480
3481         /* ->takeover must set new_* and/or delta_disks
3482          * if it succeeds, and may set them when it fails.
3483          */
3484         priv = pers->takeover(mddev);
3485         if (IS_ERR(priv)) {
3486                 mddev->new_level = mddev->level;
3487                 mddev->new_layout = mddev->layout;
3488                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3489                 mddev->raid_disks -= mddev->delta_disks;
3490                 mddev->delta_disks = 0;
3491                 mddev->reshape_backwards = 0;
3492                 module_put(pers->owner);
3493                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3494                        mdname(mddev), clevel);
3495                 rv = PTR_ERR(priv);
3496                 goto out_unlock;
3497         }
3498
3499         /* Looks like we have a winner */
3500         mddev_suspend(mddev);
3501         mddev_detach(mddev);
3502
3503         spin_lock(&mddev->lock);
3504         oldpers = mddev->pers;
3505         oldpriv = mddev->private;
3506         mddev->pers = pers;
3507         mddev->private = priv;
3508         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3509         mddev->level = mddev->new_level;
3510         mddev->layout = mddev->new_layout;
3511         mddev->chunk_sectors = mddev->new_chunk_sectors;
3512         mddev->delta_disks = 0;
3513         mddev->reshape_backwards = 0;
3514         mddev->degraded = 0;
3515         spin_unlock(&mddev->lock);
3516
3517         if (oldpers->sync_request == NULL &&
3518             mddev->external) {
3519                 /* We are converting from a no-redundancy array
3520                  * to a redundancy array and metadata is managed
3521                  * externally so we need to be sure that writes
3522                  * won't block due to a need to transition
3523                  *      clean->dirty
3524                  * until external management is started.
3525                  */
3526                 mddev->in_sync = 0;
3527                 mddev->safemode_delay = 0;
3528                 mddev->safemode = 0;
3529         }
3530
3531         oldpers->free(mddev, oldpriv);
3532
3533         if (oldpers->sync_request == NULL &&
3534             pers->sync_request != NULL) {
3535                 /* need to add the md_redundancy_group */
3536                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3537                         printk(KERN_WARNING
3538                                "md: cannot register extra attributes for %s\n",
3539                                mdname(mddev));
3540                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3541         }
3542         if (oldpers->sync_request != NULL &&
3543             pers->sync_request == NULL) {
3544                 /* need to remove the md_redundancy_group */
3545                 if (mddev->to_remove == NULL)
3546                         mddev->to_remove = &md_redundancy_group;
3547         }
3548
3549         rdev_for_each(rdev, mddev) {
3550                 if (rdev->raid_disk < 0)
3551                         continue;
3552                 if (rdev->new_raid_disk >= mddev->raid_disks)
3553                         rdev->new_raid_disk = -1;
3554                 if (rdev->new_raid_disk == rdev->raid_disk)
3555                         continue;
3556                 sysfs_unlink_rdev(mddev, rdev);
3557         }
3558         rdev_for_each(rdev, mddev) {
3559                 if (rdev->raid_disk < 0)
3560                         continue;
3561                 if (rdev->new_raid_disk == rdev->raid_disk)
3562                         continue;
3563                 rdev->raid_disk = rdev->new_raid_disk;
3564                 if (rdev->raid_disk < 0)
3565                         clear_bit(In_sync, &rdev->flags);
3566                 else {
3567                         if (sysfs_link_rdev(mddev, rdev))
3568                                 printk(KERN_WARNING "md: cannot register rd%d"
3569                                        " for %s after level change\n",
3570                                        rdev->raid_disk, mdname(mddev));
3571                 }
3572         }
3573
3574         if (pers->sync_request == NULL) {
3575                 /* this is now an array without redundancy, so
3576                  * it must always be in_sync
3577                  */
3578                 mddev->in_sync = 1;
3579                 del_timer_sync(&mddev->safemode_timer);
3580         }
3581         blk_set_stacking_limits(&mddev->queue->limits);
3582         pers->run(mddev);
3583         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3584         mddev_resume(mddev);
3585         if (!mddev->thread)
3586                 md_update_sb(mddev, 1);
3587         sysfs_notify(&mddev->kobj, NULL, "level");
3588         md_new_event(mddev);
3589         rv = len;
3590 out_unlock:
3591         mddev_unlock(mddev);
3592         return rv;
3593 }
3594
3595 static struct md_sysfs_entry md_level =
3596 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3597
3598 static ssize_t
3599 layout_show(struct mddev *mddev, char *page)
3600 {
3601         /* just a number, not meaningful for all levels */
3602         if (mddev->reshape_position != MaxSector &&
3603             mddev->layout != mddev->new_layout)
3604                 return sprintf(page, "%d (%d)\n",
3605                                mddev->new_layout, mddev->layout);
3606         return sprintf(page, "%d\n", mddev->layout);
3607 }
3608
3609 static ssize_t
3610 layout_store(struct mddev *mddev, const char *buf, size_t len)
3611 {
3612         unsigned int n;
3613         int err;
3614
3615         err = kstrtouint(buf, 10, &n);
3616         if (err < 0)
3617                 return err;
3618         err = mddev_lock(mddev);
3619         if (err)
3620                 return err;
3621
3622         if (mddev->pers) {
3623                 if (mddev->pers->check_reshape == NULL)
3624                         err = -EBUSY;
3625                 else if (mddev->ro)
3626                         err = -EROFS;
3627                 else {
3628                         mddev->new_layout = n;
3629                         err = mddev->pers->check_reshape(mddev);
3630                         if (err)
3631                                 mddev->new_layout = mddev->layout;
3632                 }
3633         } else {
3634                 mddev->new_layout = n;
3635                 if (mddev->reshape_position == MaxSector)
3636                         mddev->layout = n;
3637         }
3638         mddev_unlock(mddev);
3639         return err ?: len;
3640 }
3641 static struct md_sysfs_entry md_layout =
3642 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3643
3644 static ssize_t
3645 raid_disks_show(struct mddev *mddev, char *page)
3646 {
3647         if (mddev->raid_disks == 0)
3648                 return 0;
3649         if (mddev->reshape_position != MaxSector &&
3650             mddev->delta_disks != 0)
3651                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3652                                mddev->raid_disks - mddev->delta_disks);
3653         return sprintf(page, "%d\n", mddev->raid_disks);
3654 }
3655
3656 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3657
3658 static ssize_t
3659 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3660 {
3661         unsigned int n;
3662         int err;
3663
3664         err = kstrtouint(buf, 10, &n);
3665         if (err < 0)
3666                 return err;
3667
3668         err = mddev_lock(mddev);
3669         if (err)
3670                 return err;
3671         if (mddev->pers)
3672                 err = update_raid_disks(mddev, n);
3673         else if (mddev->reshape_position != MaxSector) {
3674                 struct md_rdev *rdev;
3675                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3676
3677                 err = -EINVAL;
3678                 rdev_for_each(rdev, mddev) {
3679                         if (olddisks < n &&
3680                             rdev->data_offset < rdev->new_data_offset)
3681                                 goto out_unlock;
3682                         if (olddisks > n &&
3683                             rdev->data_offset > rdev->new_data_offset)
3684                                 goto out_unlock;
3685                 }
3686                 err = 0;
3687                 mddev->delta_disks = n - olddisks;
3688                 mddev->raid_disks = n;
3689                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3690         } else
3691                 mddev->raid_disks = n;
3692 out_unlock:
3693         mddev_unlock(mddev);
3694         return err ? err : len;
3695 }
3696 static struct md_sysfs_entry md_raid_disks =
3697 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3698
3699 static ssize_t
3700 chunk_size_show(struct mddev *mddev, char *page)
3701 {
3702         if (mddev->reshape_position != MaxSector &&
3703             mddev->chunk_sectors != mddev->new_chunk_sectors)
3704                 return sprintf(page, "%d (%d)\n",
3705                                mddev->new_chunk_sectors << 9,
3706                                mddev->chunk_sectors << 9);
3707         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3708 }
3709
3710 static ssize_t
3711 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3712 {
3713         unsigned long n;
3714         int err;
3715
3716         err = kstrtoul(buf, 10, &n);
3717         if (err < 0)
3718                 return err;
3719
3720         err = mddev_lock(mddev);
3721         if (err)
3722                 return err;
3723         if (mddev->pers) {
3724                 if (mddev->pers->check_reshape == NULL)
3725                         err = -EBUSY;
3726                 else if (mddev->ro)
3727                         err = -EROFS;
3728                 else {
3729                         mddev->new_chunk_sectors = n >> 9;
3730                         err = mddev->pers->check_reshape(mddev);
3731                         if (err)
3732                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3733                 }
3734         } else {
3735                 mddev->new_chunk_sectors = n >> 9;
3736                 if (mddev->reshape_position == MaxSector)
3737                         mddev->chunk_sectors = n >> 9;
3738         }
3739         mddev_unlock(mddev);
3740         return err ?: len;
3741 }
3742 static struct md_sysfs_entry md_chunk_size =
3743 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3744
3745 static ssize_t
3746 resync_start_show(struct mddev *mddev, char *page)
3747 {
3748         if (mddev->recovery_cp == MaxSector)
3749                 return sprintf(page, "none\n");
3750         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3751 }
3752
3753 static ssize_t
3754 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3755 {
3756         unsigned long long n;
3757         int err;
3758
3759         if (cmd_match(buf, "none"))
3760                 n = MaxSector;
3761         else {
3762                 err = kstrtoull(buf, 10, &n);
3763                 if (err < 0)
3764                         return err;
3765                 if (n != (sector_t)n)
3766                         return -EINVAL;
3767         }
3768
3769         err = mddev_lock(mddev);
3770         if (err)
3771                 return err;
3772         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3773                 err = -EBUSY;
3774
3775         if (!err) {
3776                 mddev->recovery_cp = n;
3777                 if (mddev->pers)
3778                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3779         }
3780         mddev_unlock(mddev);
3781         return err ?: len;
3782 }
3783 static struct md_sysfs_entry md_resync_start =
3784 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3785                 resync_start_show, resync_start_store);
3786
3787 /*
3788  * The array state can be:
3789  *
3790  * clear
3791  *     No devices, no size, no level
3792  *     Equivalent to STOP_ARRAY ioctl
3793  * inactive
3794  *     May have some settings, but array is not active
3795  *        all IO results in error
3796  *     When written, doesn't tear down array, but just stops it
3797  * suspended (not supported yet)
3798  *     All IO requests will block. The array can be reconfigured.
3799  *     Writing this, if accepted, will block until array is quiescent
3800  * readonly
3801  *     no resync can happen.  no superblocks get written.
3802  *     write requests fail
3803  * read-auto
3804  *     like readonly, but behaves like 'clean' on a write request.
3805  *
3806  * clean - no pending writes, but otherwise active.
3807  *     When written to inactive array, starts without resync
3808  *     If a write request arrives then
3809  *       if metadata is known, mark 'dirty' and switch to 'active'.
3810  *       if not known, block and switch to write-pending
3811  *     If written to an active array that has pending writes, then fails.
3812  * active
3813  *     fully active: IO and resync can be happening.
3814  *     When written to inactive array, starts with resync
3815  *
3816  * write-pending
3817  *     clean, but writes are blocked waiting for 'active' to be written.
3818  *
3819  * active-idle
3820  *     like active, but no writes have been seen for a while (100msec).
3821  *
3822  */
3823 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3824                    write_pending, active_idle, bad_word};
3825 static char *array_states[] = {
3826         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3827         "write-pending", "active-idle", NULL };
3828
3829 static int match_word(const char *word, char **list)
3830 {
3831         int n;
3832         for (n=0; list[n]; n++)
3833                 if (cmd_match(word, list[n]))
3834                         break;
3835         return n;
3836 }
3837
3838 static ssize_t
3839 array_state_show(struct mddev *mddev, char *page)
3840 {
3841         enum array_state st = inactive;
3842
3843         if (mddev->pers)
3844                 switch(mddev->ro) {
3845                 case 1:
3846                         st = readonly;
3847                         break;
3848                 case 2:
3849                         st = read_auto;
3850                         break;
3851                 case 0:
3852                         if (mddev->in_sync)
3853                                 st = clean;
3854                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3855                                 st = write_pending;
3856                         else if (mddev->safemode)
3857                                 st = active_idle;
3858                         else
3859                                 st = active;
3860                 }
3861         else {
3862                 if (list_empty(&mddev->disks) &&
3863                     mddev->raid_disks == 0 &&
3864                     mddev->dev_sectors == 0)
3865                         st = clear;
3866                 else
3867                         st = inactive;
3868         }
3869         return sprintf(page, "%s\n", array_states[st]);
3870 }
3871
3872 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3873 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3874 static int do_md_run(struct mddev *mddev);
3875 static int restart_array(struct mddev *mddev);
3876
3877 static ssize_t
3878 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3879 {
3880         int err;
3881         enum array_state st = match_word(buf, array_states);
3882
3883         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3884                 /* don't take reconfig_mutex when toggling between
3885                  * clean and active
3886                  */
3887                 spin_lock(&mddev->lock);
3888                 if (st == active) {
3889                         restart_array(mddev);
3890                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3891                         wake_up(&mddev->sb_wait);
3892                         err = 0;
3893                 } else /* st == clean */ {
3894                         restart_array(mddev);
3895                         if (atomic_read(&mddev->writes_pending) == 0) {
3896                                 if (mddev->in_sync == 0) {
3897                                         mddev->in_sync = 1;
3898                                         if (mddev->safemode == 1)
3899                                                 mddev->safemode = 0;
3900                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3901                                 }
3902                                 err = 0;
3903                         } else
3904                                 err = -EBUSY;
3905                 }
3906                 spin_unlock(&mddev->lock);
3907                 return err ?: len;
3908         }
3909         err = mddev_lock(mddev);
3910         if (err)
3911                 return err;
3912         err = -EINVAL;
3913         switch(st) {
3914         case bad_word:
3915                 break;
3916         case clear:
3917                 /* stopping an active array */
3918                 err = do_md_stop(mddev, 0, NULL);
3919                 break;
3920         case inactive:
3921                 /* stopping an active array */
3922                 if (mddev->pers)
3923                         err = do_md_stop(mddev, 2, NULL);
3924                 else
3925                         err = 0; /* already inactive */
3926                 break;
3927         case suspended:
3928                 break; /* not supported yet */
3929         case readonly:
3930                 if (mddev->pers)
3931                         err = md_set_readonly(mddev, NULL);
3932                 else {
3933                         mddev->ro = 1;
3934                         set_disk_ro(mddev->gendisk, 1);
3935                         err = do_md_run(mddev);
3936                 }
3937                 break;
3938         case read_auto:
3939                 if (mddev->pers) {
3940                         if (mddev->ro == 0)
3941                                 err = md_set_readonly(mddev, NULL);
3942                         else if (mddev->ro == 1)
3943                                 err = restart_array(mddev);
3944                         if (err == 0) {
3945                                 mddev->ro = 2;
3946                                 set_disk_ro(mddev->gendisk, 0);
3947                         }
3948                 } else {
3949                         mddev->ro = 2;
3950                         err = do_md_run(mddev);
3951                 }
3952                 break;
3953         case clean:
3954                 if (mddev->pers) {
3955                         restart_array(mddev);
3956                         spin_lock(&mddev->lock);
3957                         if (atomic_read(&mddev->writes_pending) == 0) {
3958                                 if (mddev->in_sync == 0) {
3959                                         mddev->in_sync = 1;
3960                                         if (mddev->safemode == 1)
3961                                                 mddev->safemode = 0;
3962                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3963                                 }
3964                                 err = 0;
3965                         } else
3966                                 err = -EBUSY;
3967                         spin_unlock(&mddev->lock);
3968                 } else
3969                         err = -EINVAL;
3970                 break;
3971         case active:
3972                 if (mddev->pers) {
3973                         restart_array(mddev);
3974                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3975                         wake_up(&mddev->sb_wait);
3976                         err = 0;
3977                 } else {
3978                         mddev->ro = 0;
3979                         set_disk_ro(mddev->gendisk, 0);
3980                         err = do_md_run(mddev);
3981                 }
3982                 break;
3983         case write_pending:
3984         case active_idle:
3985                 /* these cannot be set */
3986                 break;
3987         }
3988
3989         if (!err) {
3990                 if (mddev->hold_active == UNTIL_IOCTL)
3991                         mddev->hold_active = 0;
3992                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3993         }
3994         mddev_unlock(mddev);
3995         return err ?: len;
3996 }
3997 static struct md_sysfs_entry md_array_state =
3998 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3999
4000 static ssize_t
4001 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4002         return sprintf(page, "%d\n",
4003                        atomic_read(&mddev->max_corr_read_errors));
4004 }
4005
4006 static ssize_t
4007 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4008 {
4009         unsigned int n;
4010         int rv;
4011
4012         rv = kstrtouint(buf, 10, &n);
4013         if (rv < 0)
4014                 return rv;
4015         atomic_set(&mddev->max_corr_read_errors, n);
4016         return len;
4017 }
4018
4019 static struct md_sysfs_entry max_corr_read_errors =
4020 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4021         max_corrected_read_errors_store);
4022
4023 static ssize_t
4024 null_show(struct mddev *mddev, char *page)
4025 {
4026         return -EINVAL;
4027 }
4028
4029 static ssize_t
4030 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4031 {
4032         /* buf must be %d:%d\n? giving major and minor numbers */
4033         /* The new device is added to the array.
4034          * If the array has a persistent superblock, we read the
4035          * superblock to initialise info and check validity.
4036          * Otherwise, only checking done is that in bind_rdev_to_array,
4037          * which mainly checks size.
4038          */
4039         char *e;
4040         int major = simple_strtoul(buf, &e, 10);
4041         int minor;
4042         dev_t dev;
4043         struct md_rdev *rdev;
4044         int err;
4045
4046         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4047                 return -EINVAL;
4048         minor = simple_strtoul(e+1, &e, 10);
4049         if (*e && *e != '\n')
4050                 return -EINVAL;
4051         dev = MKDEV(major, minor);
4052         if (major != MAJOR(dev) ||
4053             minor != MINOR(dev))
4054                 return -EOVERFLOW;
4055
4056         flush_workqueue(md_misc_wq);
4057
4058         err = mddev_lock(mddev);
4059         if (err)
4060                 return err;
4061         if (mddev->persistent) {
4062                 rdev = md_import_device(dev, mddev->major_version,
4063                                         mddev->minor_version);
4064                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4065                         struct md_rdev *rdev0
4066                                 = list_entry(mddev->disks.next,
4067                                              struct md_rdev, same_set);
4068                         err = super_types[mddev->major_version]
4069                                 .load_super(rdev, rdev0, mddev->minor_version);
4070                         if (err < 0)
4071                                 goto out;
4072                 }
4073         } else if (mddev->external)
4074                 rdev = md_import_device(dev, -2, -1);
4075         else
4076                 rdev = md_import_device(dev, -1, -1);
4077
4078         if (IS_ERR(rdev)) {
4079                 mddev_unlock(mddev);
4080                 return PTR_ERR(rdev);
4081         }
4082         err = bind_rdev_to_array(rdev, mddev);
4083  out:
4084         if (err)
4085                 export_rdev(rdev);
4086         mddev_unlock(mddev);
4087         return err ? err : len;
4088 }
4089
4090 static struct md_sysfs_entry md_new_device =
4091 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4092
4093 static ssize_t
4094 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4095 {
4096         char *end;
4097         unsigned long chunk, end_chunk;
4098         int err;
4099
4100         err = mddev_lock(mddev);
4101         if (err)
4102                 return err;
4103         if (!mddev->bitmap)
4104                 goto out;
4105         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4106         while (*buf) {
4107                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4108                 if (buf == end) break;
4109                 if (*end == '-') { /* range */
4110                         buf = end + 1;
4111                         end_chunk = simple_strtoul(buf, &end, 0);
4112                         if (buf == end) break;
4113                 }
4114                 if (*end && !isspace(*end)) break;
4115                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4116                 buf = skip_spaces(end);
4117         }
4118         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4119 out:
4120         mddev_unlock(mddev);
4121         return len;
4122 }
4123
4124 static struct md_sysfs_entry md_bitmap =
4125 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4126
4127 static ssize_t
4128 size_show(struct mddev *mddev, char *page)
4129 {
4130         return sprintf(page, "%llu\n",
4131                 (unsigned long long)mddev->dev_sectors / 2);
4132 }
4133
4134 static int update_size(struct mddev *mddev, sector_t num_sectors);
4135
4136 static ssize_t
4137 size_store(struct mddev *mddev, const char *buf, size_t len)
4138 {
4139         /* If array is inactive, we can reduce the component size, but
4140          * not increase it (except from 0).
4141          * If array is active, we can try an on-line resize
4142          */
4143         sector_t sectors;
4144         int err = strict_blocks_to_sectors(buf, &sectors);
4145
4146         if (err < 0)
4147                 return err;
4148         err = mddev_lock(mddev);
4149         if (err)
4150                 return err;
4151         if (mddev->pers) {
4152                 err = update_size(mddev, sectors);
4153                 md_update_sb(mddev, 1);
4154         } else {
4155                 if (mddev->dev_sectors == 0 ||
4156                     mddev->dev_sectors > sectors)
4157                         mddev->dev_sectors = sectors;
4158                 else
4159                         err = -ENOSPC;
4160         }
4161         mddev_unlock(mddev);
4162         return err ? err : len;
4163 }
4164
4165 static struct md_sysfs_entry md_size =
4166 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4167
4168 /* Metadata version.
4169  * This is one of
4170  *   'none' for arrays with no metadata (good luck...)
4171  *   'external' for arrays with externally managed metadata,
4172  * or N.M for internally known formats
4173  */
4174 static ssize_t
4175 metadata_show(struct mddev *mddev, char *page)
4176 {
4177         if (mddev->persistent)
4178                 return sprintf(page, "%d.%d\n",
4179                                mddev->major_version, mddev->minor_version);
4180         else if (mddev->external)
4181                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4182         else
4183                 return sprintf(page, "none\n");
4184 }
4185
4186 static ssize_t
4187 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4188 {
4189         int major, minor;
4190         char *e;
4191         int err;
4192         /* Changing the details of 'external' metadata is
4193          * always permitted.  Otherwise there must be
4194          * no devices attached to the array.
4195          */
4196
4197         err = mddev_lock(mddev);
4198         if (err)
4199                 return err;
4200         err = -EBUSY;
4201         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4202                 ;
4203         else if (!list_empty(&mddev->disks))
4204                 goto out_unlock;
4205
4206         err = 0;
4207         if (cmd_match(buf, "none")) {
4208                 mddev->persistent = 0;
4209                 mddev->external = 0;
4210                 mddev->major_version = 0;
4211                 mddev->minor_version = 90;
4212                 goto out_unlock;
4213         }
4214         if (strncmp(buf, "external:", 9) == 0) {
4215                 size_t namelen = len-9;
4216                 if (namelen >= sizeof(mddev->metadata_type))
4217                         namelen = sizeof(mddev->metadata_type)-1;
4218                 strncpy(mddev->metadata_type, buf+9, namelen);
4219                 mddev->metadata_type[namelen] = 0;
4220                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4221                         mddev->metadata_type[--namelen] = 0;
4222                 mddev->persistent = 0;
4223                 mddev->external = 1;
4224                 mddev->major_version = 0;
4225                 mddev->minor_version = 90;
4226                 goto out_unlock;
4227         }
4228         major = simple_strtoul(buf, &e, 10);
4229         err = -EINVAL;
4230         if (e==buf || *e != '.')
4231                 goto out_unlock;
4232         buf = e+1;
4233         minor = simple_strtoul(buf, &e, 10);
4234         if (e==buf || (*e && *e != '\n') )
4235                 goto out_unlock;
4236         err = -ENOENT;
4237         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4238                 goto out_unlock;
4239         mddev->major_version = major;
4240         mddev->minor_version = minor;
4241         mddev->persistent = 1;
4242         mddev->external = 0;
4243         err = 0;
4244 out_unlock:
4245         mddev_unlock(mddev);
4246         return err ?: len;
4247 }
4248
4249 static struct md_sysfs_entry md_metadata =
4250 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4251
4252 static ssize_t
4253 action_show(struct mddev *mddev, char *page)
4254 {
4255         char *type = "idle";
4256         unsigned long recovery = mddev->recovery;
4257         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4258                 type = "frozen";
4259         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4260             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4261                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4262                         type = "reshape";
4263                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4264                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4265                                 type = "resync";
4266                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4267                                 type = "check";
4268                         else
4269                                 type = "repair";
4270                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4271                         type = "recover";
4272                 else if (mddev->reshape_position != MaxSector)
4273                         type = "reshape";
4274         }
4275         return sprintf(page, "%s\n", type);
4276 }
4277
4278 static ssize_t
4279 action_store(struct mddev *mddev, const char *page, size_t len)
4280 {
4281         if (!mddev->pers || !mddev->pers->sync_request)
4282                 return -EINVAL;
4283
4284
4285         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4286                 if (cmd_match(page, "frozen"))
4287                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4288                 else
4289                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4290                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4291                     mddev_lock(mddev) == 0) {
4292                         flush_workqueue(md_misc_wq);
4293                         if (mddev->sync_thread) {
4294                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4295                                 md_reap_sync_thread(mddev);
4296                         }
4297                         mddev_unlock(mddev);
4298                 }
4299         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4300                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4301                 return -EBUSY;
4302         else if (cmd_match(page, "resync"))
4303                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4304         else if (cmd_match(page, "recover")) {
4305                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4306                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4307         } else if (cmd_match(page, "reshape")) {
4308                 int err;
4309                 if (mddev->pers->start_reshape == NULL)
4310                         return -EINVAL;
4311                 err = mddev_lock(mddev);
4312                 if (!err) {
4313                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4314                         err = mddev->pers->start_reshape(mddev);
4315                         mddev_unlock(mddev);
4316                 }
4317                 if (err)
4318                         return err;
4319                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4320         } else {
4321                 if (cmd_match(page, "check"))
4322                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4323                 else if (!cmd_match(page, "repair"))
4324                         return -EINVAL;
4325                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4327                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4328         }
4329         if (mddev->ro == 2) {
4330                 /* A write to sync_action is enough to justify
4331                  * canceling read-auto mode
4332                  */
4333                 mddev->ro = 0;
4334                 md_wakeup_thread(mddev->sync_thread);
4335         }
4336         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4337         md_wakeup_thread(mddev->thread);
4338         sysfs_notify_dirent_safe(mddev->sysfs_action);
4339         return len;
4340 }
4341
4342 static struct md_sysfs_entry md_scan_mode =
4343 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4344
4345 static ssize_t
4346 last_sync_action_show(struct mddev *mddev, char *page)
4347 {
4348         return sprintf(page, "%s\n", mddev->last_sync_action);
4349 }
4350
4351 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4352
4353 static ssize_t
4354 mismatch_cnt_show(struct mddev *mddev, char *page)
4355 {
4356         return sprintf(page, "%llu\n",
4357                        (unsigned long long)
4358                        atomic64_read(&mddev->resync_mismatches));
4359 }
4360
4361 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4362
4363 static ssize_t
4364 sync_min_show(struct mddev *mddev, char *page)
4365 {
4366         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4367                        mddev->sync_speed_min ? "local": "system");
4368 }
4369
4370 static ssize_t
4371 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4372 {
4373         unsigned int min;
4374         int rv;
4375
4376         if (strncmp(buf, "system", 6)==0) {
4377                 min = 0;
4378         } else {
4379                 rv = kstrtouint(buf, 10, &min);
4380                 if (rv < 0)
4381                         return rv;
4382                 if (min == 0)
4383                         return -EINVAL;
4384         }
4385         mddev->sync_speed_min = min;
4386         return len;
4387 }
4388
4389 static struct md_sysfs_entry md_sync_min =
4390 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4391
4392 static ssize_t
4393 sync_max_show(struct mddev *mddev, char *page)
4394 {
4395         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4396                        mddev->sync_speed_max ? "local": "system");
4397 }
4398
4399 static ssize_t
4400 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4401 {
4402         unsigned int max;
4403         int rv;
4404
4405         if (strncmp(buf, "system", 6)==0) {
4406                 max = 0;
4407         } else {
4408                 rv = kstrtouint(buf, 10, &max);
4409                 if (rv < 0)
4410                         return rv;
4411                 if (max == 0)
4412                         return -EINVAL;
4413         }
4414         mddev->sync_speed_max = max;
4415         return len;
4416 }
4417
4418 static struct md_sysfs_entry md_sync_max =
4419 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4420
4421 static ssize_t
4422 degraded_show(struct mddev *mddev, char *page)
4423 {
4424         return sprintf(page, "%d\n", mddev->degraded);
4425 }
4426 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4427
4428 static ssize_t
4429 sync_force_parallel_show(struct mddev *mddev, char *page)
4430 {
4431         return sprintf(page, "%d\n", mddev->parallel_resync);
4432 }
4433
4434 static ssize_t
4435 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4436 {
4437         long n;
4438
4439         if (kstrtol(buf, 10, &n))
4440                 return -EINVAL;
4441
4442         if (n != 0 && n != 1)
4443                 return -EINVAL;
4444
4445         mddev->parallel_resync = n;
4446
4447         if (mddev->sync_thread)
4448                 wake_up(&resync_wait);
4449
4450         return len;
4451 }
4452
4453 /* force parallel resync, even with shared block devices */
4454 static struct md_sysfs_entry md_sync_force_parallel =
4455 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4456        sync_force_parallel_show, sync_force_parallel_store);
4457
4458 static ssize_t
4459 sync_speed_show(struct mddev *mddev, char *page)
4460 {
4461         unsigned long resync, dt, db;
4462         if (mddev->curr_resync == 0)
4463                 return sprintf(page, "none\n");
4464         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4465         dt = (jiffies - mddev->resync_mark) / HZ;
4466         if (!dt) dt++;
4467         db = resync - mddev->resync_mark_cnt;
4468         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4469 }
4470
4471 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4472
4473 static ssize_t
4474 sync_completed_show(struct mddev *mddev, char *page)
4475 {
4476         unsigned long long max_sectors, resync;
4477
4478         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479                 return sprintf(page, "none\n");
4480
4481         if (mddev->curr_resync == 1 ||
4482             mddev->curr_resync == 2)
4483                 return sprintf(page, "delayed\n");
4484
4485         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4486             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4487                 max_sectors = mddev->resync_max_sectors;
4488         else
4489                 max_sectors = mddev->dev_sectors;
4490
4491         resync = mddev->curr_resync_completed;
4492         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4493 }
4494
4495 static struct md_sysfs_entry md_sync_completed =
4496         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4497
4498 static ssize_t
4499 min_sync_show(struct mddev *mddev, char *page)
4500 {
4501         return sprintf(page, "%llu\n",
4502                        (unsigned long long)mddev->resync_min);
4503 }
4504 static ssize_t
4505 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4506 {
4507         unsigned long long min;
4508         int err;
4509
4510         if (kstrtoull(buf, 10, &min))
4511                 return -EINVAL;
4512
4513         spin_lock(&mddev->lock);
4514         err = -EINVAL;
4515         if (min > mddev->resync_max)
4516                 goto out_unlock;
4517
4518         err = -EBUSY;
4519         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4520                 goto out_unlock;
4521
4522         /* Round down to multiple of 4K for safety */
4523         mddev->resync_min = round_down(min, 8);
4524         err = 0;
4525
4526 out_unlock:
4527         spin_unlock(&mddev->lock);
4528         return err ?: len;
4529 }
4530
4531 static struct md_sysfs_entry md_min_sync =
4532 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4533
4534 static ssize_t
4535 max_sync_show(struct mddev *mddev, char *page)
4536 {
4537         if (mddev->resync_max == MaxSector)
4538                 return sprintf(page, "max\n");
4539         else
4540                 return sprintf(page, "%llu\n",
4541                                (unsigned long long)mddev->resync_max);
4542 }
4543 static ssize_t
4544 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4545 {
4546         int err;
4547         spin_lock(&mddev->lock);
4548         if (strncmp(buf, "max", 3) == 0)
4549                 mddev->resync_max = MaxSector;
4550         else {
4551                 unsigned long long max;
4552                 int chunk;
4553
4554                 err = -EINVAL;
4555                 if (kstrtoull(buf, 10, &max))
4556                         goto out_unlock;
4557                 if (max < mddev->resync_min)
4558                         goto out_unlock;
4559
4560                 err = -EBUSY;
4561                 if (max < mddev->resync_max &&
4562                     mddev->ro == 0 &&
4563                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4564                         goto out_unlock;
4565
4566                 /* Must be a multiple of chunk_size */
4567                 chunk = mddev->chunk_sectors;
4568                 if (chunk) {
4569                         sector_t temp = max;
4570
4571                         err = -EINVAL;
4572                         if (sector_div(temp, chunk))
4573                                 goto out_unlock;
4574                 }
4575                 mddev->resync_max = max;
4576         }
4577         wake_up(&mddev->recovery_wait);
4578         err = 0;
4579 out_unlock:
4580         spin_unlock(&mddev->lock);
4581         return err ?: len;
4582 }
4583
4584 static struct md_sysfs_entry md_max_sync =
4585 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4586
4587 static ssize_t
4588 suspend_lo_show(struct mddev *mddev, char *page)
4589 {
4590         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4591 }
4592
4593 static ssize_t
4594 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4595 {
4596         unsigned long long old, new;
4597         int err;
4598
4599         err = kstrtoull(buf, 10, &new);
4600         if (err < 0)
4601                 return err;
4602         if (new != (sector_t)new)
4603                 return -EINVAL;
4604
4605         err = mddev_lock(mddev);
4606         if (err)
4607                 return err;
4608         err = -EINVAL;
4609         if (mddev->pers == NULL ||
4610             mddev->pers->quiesce == NULL)
4611                 goto unlock;
4612         old = mddev->suspend_lo;
4613         mddev->suspend_lo = new;
4614         if (new >= old)
4615                 /* Shrinking suspended region */
4616                 mddev->pers->quiesce(mddev, 2);
4617         else {
4618                 /* Expanding suspended region - need to wait */
4619                 mddev->pers->quiesce(mddev, 1);
4620                 mddev->pers->quiesce(mddev, 0);
4621         }
4622         err = 0;
4623 unlock:
4624         mddev_unlock(mddev);
4625         return err ?: len;
4626 }
4627 static struct md_sysfs_entry md_suspend_lo =
4628 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4629
4630 static ssize_t
4631 suspend_hi_show(struct mddev *mddev, char *page)
4632 {
4633         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4634 }
4635
4636 static ssize_t
4637 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639         unsigned long long old, new;
4640         int err;
4641
4642         err = kstrtoull(buf, 10, &new);
4643         if (err < 0)
4644                 return err;
4645         if (new != (sector_t)new)
4646                 return -EINVAL;
4647
4648         err = mddev_lock(mddev);
4649         if (err)
4650                 return err;
4651         err = -EINVAL;
4652         if (mddev->pers == NULL ||
4653             mddev->pers->quiesce == NULL)
4654                 goto unlock;
4655         old = mddev->suspend_hi;
4656         mddev->suspend_hi = new;
4657         if (new <= old)
4658                 /* Shrinking suspended region */
4659                 mddev->pers->quiesce(mddev, 2);
4660         else {
4661                 /* Expanding suspended region - need to wait */
4662                 mddev->pers->quiesce(mddev, 1);
4663                 mddev->pers->quiesce(mddev, 0);
4664         }
4665         err = 0;
4666 unlock:
4667         mddev_unlock(mddev);
4668         return err ?: len;
4669 }
4670 static struct md_sysfs_entry md_suspend_hi =
4671 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4672
4673 static ssize_t
4674 reshape_position_show(struct mddev *mddev, char *page)
4675 {
4676         if (mddev->reshape_position != MaxSector)
4677                 return sprintf(page, "%llu\n",
4678                                (unsigned long long)mddev->reshape_position);
4679         strcpy(page, "none\n");
4680         return 5;
4681 }
4682
4683 static ssize_t
4684 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4685 {
4686         struct md_rdev *rdev;
4687         unsigned long long new;
4688         int err;
4689
4690         err = kstrtoull(buf, 10, &new);
4691         if (err < 0)
4692                 return err;
4693         if (new != (sector_t)new)
4694                 return -EINVAL;
4695         err = mddev_lock(mddev);
4696         if (err)
4697                 return err;
4698         err = -EBUSY;
4699         if (mddev->pers)
4700                 goto unlock;
4701         mddev->reshape_position = new;
4702         mddev->delta_disks = 0;
4703         mddev->reshape_backwards = 0;
4704         mddev->new_level = mddev->level;
4705         mddev->new_layout = mddev->layout;
4706         mddev->new_chunk_sectors = mddev->chunk_sectors;
4707         rdev_for_each(rdev, mddev)
4708                 rdev->new_data_offset = rdev->data_offset;
4709         err = 0;
4710 unlock:
4711         mddev_unlock(mddev);
4712         return err ?: len;
4713 }
4714
4715 static struct md_sysfs_entry md_reshape_position =
4716 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4717        reshape_position_store);
4718
4719 static ssize_t
4720 reshape_direction_show(struct mddev *mddev, char *page)
4721 {
4722         return sprintf(page, "%s\n",
4723                        mddev->reshape_backwards ? "backwards" : "forwards");
4724 }
4725
4726 static ssize_t
4727 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4728 {
4729         int backwards = 0;
4730         int err;
4731
4732         if (cmd_match(buf, "forwards"))
4733                 backwards = 0;
4734         else if (cmd_match(buf, "backwards"))
4735                 backwards = 1;
4736         else
4737                 return -EINVAL;
4738         if (mddev->reshape_backwards == backwards)
4739                 return len;
4740
4741         err = mddev_lock(mddev);
4742         if (err)
4743                 return err;
4744         /* check if we are allowed to change */
4745         if (mddev->delta_disks)
4746                 err = -EBUSY;
4747         else if (mddev->persistent &&
4748             mddev->major_version == 0)
4749                 err =  -EINVAL;
4750         else
4751                 mddev->reshape_backwards = backwards;
4752         mddev_unlock(mddev);
4753         return err ?: len;
4754 }
4755
4756 static struct md_sysfs_entry md_reshape_direction =
4757 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4758        reshape_direction_store);
4759
4760 static ssize_t
4761 array_size_show(struct mddev *mddev, char *page)
4762 {
4763         if (mddev->external_size)
4764                 return sprintf(page, "%llu\n",
4765                                (unsigned long long)mddev->array_sectors/2);
4766         else
4767                 return sprintf(page, "default\n");
4768 }
4769
4770 static ssize_t
4771 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4772 {
4773         sector_t sectors;
4774         int err;
4775
4776         err = mddev_lock(mddev);
4777         if (err)
4778                 return err;
4779
4780         if (strncmp(buf, "default", 7) == 0) {
4781                 if (mddev->pers)
4782                         sectors = mddev->pers->size(mddev, 0, 0);
4783                 else
4784                         sectors = mddev->array_sectors;
4785
4786                 mddev->external_size = 0;
4787         } else {
4788                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4789                         err = -EINVAL;
4790                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4791                         err = -E2BIG;
4792                 else
4793                         mddev->external_size = 1;
4794         }
4795
4796         if (!err) {
4797                 mddev->array_sectors = sectors;
4798                 if (mddev->pers) {
4799                         set_capacity(mddev->gendisk, mddev->array_sectors);
4800                         revalidate_disk(mddev->gendisk);
4801                 }
4802         }
4803         mddev_unlock(mddev);
4804         return err ?: len;
4805 }
4806
4807 static struct md_sysfs_entry md_array_size =
4808 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4809        array_size_store);
4810
4811 static struct attribute *md_default_attrs[] = {
4812         &md_level.attr,
4813         &md_layout.attr,
4814         &md_raid_disks.attr,
4815         &md_chunk_size.attr,
4816         &md_size.attr,
4817         &md_resync_start.attr,
4818         &md_metadata.attr,
4819         &md_new_device.attr,
4820         &md_safe_delay.attr,
4821         &md_array_state.attr,
4822         &md_reshape_position.attr,
4823         &md_reshape_direction.attr,
4824         &md_array_size.attr,
4825         &max_corr_read_errors.attr,
4826         NULL,
4827 };
4828
4829 static struct attribute *md_redundancy_attrs[] = {
4830         &md_scan_mode.attr,
4831         &md_last_scan_mode.attr,
4832         &md_mismatches.attr,
4833         &md_sync_min.attr,
4834         &md_sync_max.attr,
4835         &md_sync_speed.attr,
4836         &md_sync_force_parallel.attr,
4837         &md_sync_completed.attr,
4838         &md_min_sync.attr,
4839         &md_max_sync.attr,
4840         &md_suspend_lo.attr,
4841         &md_suspend_hi.attr,
4842         &md_bitmap.attr,
4843         &md_degraded.attr,
4844         NULL,
4845 };
4846 static struct attribute_group md_redundancy_group = {
4847         .name = NULL,
4848         .attrs = md_redundancy_attrs,
4849 };
4850
4851 static ssize_t
4852 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4853 {
4854         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4855         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4856         ssize_t rv;
4857
4858         if (!entry->show)
4859                 return -EIO;
4860         spin_lock(&all_mddevs_lock);
4861         if (list_empty(&mddev->all_mddevs)) {
4862                 spin_unlock(&all_mddevs_lock);
4863                 return -EBUSY;
4864         }
4865         mddev_get(mddev);
4866         spin_unlock(&all_mddevs_lock);
4867
4868         rv = entry->show(mddev, page);
4869         mddev_put(mddev);
4870         return rv;
4871 }
4872
4873 static ssize_t
4874 md_attr_store(struct kobject *kobj, struct attribute *attr,
4875               const char *page, size_t length)
4876 {
4877         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4878         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4879         ssize_t rv;
4880
4881         if (!entry->store)
4882                 return -EIO;
4883         if (!capable(CAP_SYS_ADMIN))
4884                 return -EACCES;
4885         spin_lock(&all_mddevs_lock);
4886         if (list_empty(&mddev->all_mddevs)) {
4887                 spin_unlock(&all_mddevs_lock);
4888                 return -EBUSY;
4889         }
4890         mddev_get(mddev);
4891         spin_unlock(&all_mddevs_lock);
4892         rv = entry->store(mddev, page, length);
4893         mddev_put(mddev);
4894         return rv;
4895 }
4896
4897 static void md_free(struct kobject *ko)
4898 {
4899         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4900
4901         if (mddev->sysfs_state)
4902                 sysfs_put(mddev->sysfs_state);
4903
4904         if (mddev->queue)
4905                 blk_cleanup_queue(mddev->queue);
4906         if (mddev->gendisk) {
4907                 del_gendisk(mddev->gendisk);
4908                 put_disk(mddev->gendisk);
4909         }
4910
4911         kfree(mddev);
4912 }
4913
4914 static const struct sysfs_ops md_sysfs_ops = {
4915         .show   = md_attr_show,
4916         .store  = md_attr_store,
4917 };
4918 static struct kobj_type md_ktype = {
4919         .release        = md_free,
4920         .sysfs_ops      = &md_sysfs_ops,
4921         .default_attrs  = md_default_attrs,
4922 };
4923
4924 int mdp_major = 0;
4925
4926 static void mddev_delayed_delete(struct work_struct *ws)
4927 {
4928         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4929
4930         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4931         kobject_del(&mddev->kobj);
4932         kobject_put(&mddev->kobj);
4933 }
4934
4935 static int md_alloc(dev_t dev, char *name)
4936 {
4937         static DEFINE_MUTEX(disks_mutex);
4938         struct mddev *mddev = mddev_find(dev);
4939         struct gendisk *disk;
4940         int partitioned;
4941         int shift;
4942         int unit;
4943         int error;
4944
4945         if (!mddev)
4946                 return -ENODEV;
4947
4948         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4949         shift = partitioned ? MdpMinorShift : 0;
4950         unit = MINOR(mddev->unit) >> shift;
4951
4952         /* wait for any previous instance of this device to be
4953          * completely removed (mddev_delayed_delete).
4954          */
4955         flush_workqueue(md_misc_wq);
4956
4957         mutex_lock(&disks_mutex);
4958         error = -EEXIST;
4959         if (mddev->gendisk)
4960                 goto abort;
4961
4962         if (name) {
4963                 /* Need to ensure that 'name' is not a duplicate.
4964                  */
4965                 struct mddev *mddev2;
4966                 spin_lock(&all_mddevs_lock);
4967
4968                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4969                         if (mddev2->gendisk &&
4970                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4971                                 spin_unlock(&all_mddevs_lock);
4972                                 goto abort;
4973                         }
4974                 spin_unlock(&all_mddevs_lock);
4975         }
4976
4977         error = -ENOMEM;
4978         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4979         if (!mddev->queue)
4980                 goto abort;
4981         mddev->queue->queuedata = mddev;
4982
4983         blk_queue_make_request(mddev->queue, md_make_request);
4984         blk_set_stacking_limits(&mddev->queue->limits);
4985
4986         disk = alloc_disk(1 << shift);
4987         if (!disk) {
4988                 blk_cleanup_queue(mddev->queue);
4989                 mddev->queue = NULL;
4990                 goto abort;
4991         }
4992         disk->major = MAJOR(mddev->unit);
4993         disk->first_minor = unit << shift;
4994         if (name)
4995                 strcpy(disk->disk_name, name);
4996         else if (partitioned)
4997                 sprintf(disk->disk_name, "md_d%d", unit);
4998         else
4999                 sprintf(disk->disk_name, "md%d", unit);
5000         disk->fops = &md_fops;
5001         disk->private_data = mddev;
5002         disk->queue = mddev->queue;
5003         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5004         /* Allow extended partitions.  This makes the
5005          * 'mdp' device redundant, but we can't really
5006          * remove it now.
5007          */
5008         disk->flags |= GENHD_FL_EXT_DEVT;
5009         mddev->gendisk = disk;
5010         /* As soon as we call add_disk(), another thread could get
5011          * through to md_open, so make sure it doesn't get too far
5012          */
5013         mutex_lock(&mddev->open_mutex);
5014         add_disk(disk);
5015
5016         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5017                                      &disk_to_dev(disk)->kobj, "%s", "md");
5018         if (error) {
5019                 /* This isn't possible, but as kobject_init_and_add is marked
5020                  * __must_check, we must do something with the result
5021                  */
5022                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5023                        disk->disk_name);
5024                 error = 0;
5025         }
5026         if (mddev->kobj.sd &&
5027             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5028                 printk(KERN_DEBUG "pointless warning\n");
5029         mutex_unlock(&mddev->open_mutex);
5030  abort:
5031         mutex_unlock(&disks_mutex);
5032         if (!error && mddev->kobj.sd) {
5033                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5034                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5035         }
5036         mddev_put(mddev);
5037         return error;
5038 }
5039
5040 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5041 {
5042         md_alloc(dev, NULL);
5043         return NULL;
5044 }
5045
5046 static int add_named_array(const char *val, struct kernel_param *kp)
5047 {
5048         /* val must be "md_*" where * is not all digits.
5049          * We allocate an array with a large free minor number, and
5050          * set the name to val.  val must not already be an active name.
5051          */
5052         int len = strlen(val);
5053         char buf[DISK_NAME_LEN];
5054
5055         while (len && val[len-1] == '\n')
5056                 len--;
5057         if (len >= DISK_NAME_LEN)
5058                 return -E2BIG;
5059         strlcpy(buf, val, len+1);
5060         if (strncmp(buf, "md_", 3) != 0)
5061                 return -EINVAL;
5062         return md_alloc(0, buf);
5063 }
5064
5065 static void md_safemode_timeout(unsigned long data)
5066 {
5067         struct mddev *mddev = (struct mddev *) data;
5068
5069         if (!atomic_read(&mddev->writes_pending)) {
5070                 mddev->safemode = 1;
5071                 if (mddev->external)
5072                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5073         }
5074         md_wakeup_thread(mddev->thread);
5075 }
5076
5077 static int start_dirty_degraded;
5078
5079 int md_run(struct mddev *mddev)
5080 {
5081         int err;
5082         struct md_rdev *rdev;
5083         struct md_personality *pers;
5084
5085         if (list_empty(&mddev->disks))
5086                 /* cannot run an array with no devices.. */
5087                 return -EINVAL;
5088
5089         if (mddev->pers)
5090                 return -EBUSY;
5091         /* Cannot run until previous stop completes properly */
5092         if (mddev->sysfs_active)
5093                 return -EBUSY;
5094
5095         /*
5096          * Analyze all RAID superblock(s)
5097          */
5098         if (!mddev->raid_disks) {
5099                 if (!mddev->persistent)
5100                         return -EINVAL;
5101                 analyze_sbs(mddev);
5102         }
5103
5104         if (mddev->level != LEVEL_NONE)
5105                 request_module("md-level-%d", mddev->level);
5106         else if (mddev->clevel[0])
5107                 request_module("md-%s", mddev->clevel);
5108
5109         /*
5110          * Drop all container device buffers, from now on
5111          * the only valid external interface is through the md
5112          * device.
5113          */
5114         rdev_for_each(rdev, mddev) {
5115                 if (test_bit(Faulty, &rdev->flags))
5116                         continue;
5117                 sync_blockdev(rdev->bdev);
5118                 invalidate_bdev(rdev->bdev);
5119
5120                 /* perform some consistency tests on the device.
5121                  * We don't want the data to overlap the metadata,
5122                  * Internal Bitmap issues have been handled elsewhere.
5123                  */
5124                 if (rdev->meta_bdev) {
5125                         /* Nothing to check */;
5126                 } else if (rdev->data_offset < rdev->sb_start) {
5127                         if (mddev->dev_sectors &&
5128                             rdev->data_offset + mddev->dev_sectors
5129                             > rdev->sb_start) {
5130                                 printk("md: %s: data overlaps metadata\n",
5131                                        mdname(mddev));
5132                                 return -EINVAL;
5133                         }
5134                 } else {
5135                         if (rdev->sb_start + rdev->sb_size/512
5136                             > rdev->data_offset) {
5137                                 printk("md: %s: metadata overlaps data\n",
5138                                        mdname(mddev));
5139                                 return -EINVAL;
5140                         }
5141                 }
5142                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5143         }
5144
5145         if (mddev->bio_set == NULL)
5146                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5147
5148         spin_lock(&pers_lock);
5149         pers = find_pers(mddev->level, mddev->clevel);
5150         if (!pers || !try_module_get(pers->owner)) {
5151                 spin_unlock(&pers_lock);
5152                 if (mddev->level != LEVEL_NONE)
5153                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5154                                mddev->level);
5155                 else
5156                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5157                                mddev->clevel);
5158                 return -EINVAL;
5159         }
5160         spin_unlock(&pers_lock);
5161         if (mddev->level != pers->level) {
5162                 mddev->level = pers->level;
5163                 mddev->new_level = pers->level;
5164         }
5165         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5166
5167         if (mddev->reshape_position != MaxSector &&
5168             pers->start_reshape == NULL) {
5169                 /* This personality cannot handle reshaping... */
5170                 module_put(pers->owner);
5171                 return -EINVAL;
5172         }
5173
5174         if (pers->sync_request) {
5175                 /* Warn if this is a potentially silly
5176                  * configuration.
5177                  */
5178                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5179                 struct md_rdev *rdev2;
5180                 int warned = 0;
5181
5182                 rdev_for_each(rdev, mddev)
5183                         rdev_for_each(rdev2, mddev) {
5184                                 if (rdev < rdev2 &&
5185                                     rdev->bdev->bd_contains ==
5186                                     rdev2->bdev->bd_contains) {
5187                                         printk(KERN_WARNING
5188                                                "%s: WARNING: %s appears to be"
5189                                                " on the same physical disk as"
5190                                                " %s.\n",
5191                                                mdname(mddev),
5192                                                bdevname(rdev->bdev,b),
5193                                                bdevname(rdev2->bdev,b2));
5194                                         warned = 1;
5195                                 }
5196                         }
5197
5198                 if (warned)
5199                         printk(KERN_WARNING
5200                                "True protection against single-disk"
5201                                " failure might be compromised.\n");
5202         }
5203
5204         mddev->recovery = 0;
5205         /* may be over-ridden by personality */
5206         mddev->resync_max_sectors = mddev->dev_sectors;
5207
5208         mddev->ok_start_degraded = start_dirty_degraded;
5209
5210         if (start_readonly && mddev->ro == 0)
5211                 mddev->ro = 2; /* read-only, but switch on first write */
5212
5213         err = pers->run(mddev);
5214         if (err)
5215                 printk(KERN_ERR "md: pers->run() failed ...\n");
5216         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5217                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5218                           " but 'external_size' not in effect?\n", __func__);
5219                 printk(KERN_ERR
5220                        "md: invalid array_size %llu > default size %llu\n",
5221                        (unsigned long long)mddev->array_sectors / 2,
5222                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5223                 err = -EINVAL;
5224         }
5225         if (err == 0 && pers->sync_request &&
5226             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5227                 struct bitmap *bitmap;
5228
5229                 bitmap = bitmap_create(mddev, -1);
5230                 if (IS_ERR(bitmap)) {
5231                         err = PTR_ERR(bitmap);
5232                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5233                                mdname(mddev), err);
5234                 } else
5235                         mddev->bitmap = bitmap;
5236
5237         }
5238         if (err) {
5239                 mddev_detach(mddev);
5240                 if (mddev->private)
5241                         pers->free(mddev, mddev->private);
5242                 mddev->private = NULL;
5243                 module_put(pers->owner);
5244                 bitmap_destroy(mddev);
5245                 return err;
5246         }
5247         if (mddev->queue) {
5248                 mddev->queue->backing_dev_info.congested_data = mddev;
5249                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5250         }
5251         if (pers->sync_request) {
5252                 if (mddev->kobj.sd &&
5253                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5254                         printk(KERN_WARNING
5255                                "md: cannot register extra attributes for %s\n",
5256                                mdname(mddev));
5257                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5258         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5259                 mddev->ro = 0;
5260
5261         atomic_set(&mddev->writes_pending,0);
5262         atomic_set(&mddev->max_corr_read_errors,
5263                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5264         mddev->safemode = 0;
5265         if (mddev_is_clustered(mddev))
5266                 mddev->safemode_delay = 0;
5267         else
5268                 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5269         mddev->in_sync = 1;
5270         smp_wmb();
5271         spin_lock(&mddev->lock);
5272         mddev->pers = pers;
5273         mddev->ready = 1;
5274         spin_unlock(&mddev->lock);
5275         rdev_for_each(rdev, mddev)
5276                 if (rdev->raid_disk >= 0)
5277                         if (sysfs_link_rdev(mddev, rdev))
5278                                 /* failure here is OK */;
5279
5280         if (mddev->degraded && !mddev->ro)
5281                 /* This ensures that recovering status is reported immediately
5282                  * via sysfs - until a lack of spares is confirmed.
5283                  */
5284                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5285         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5286
5287         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5288                 md_update_sb(mddev, 0);
5289
5290         md_new_event(mddev);
5291         sysfs_notify_dirent_safe(mddev->sysfs_state);
5292         sysfs_notify_dirent_safe(mddev->sysfs_action);
5293         sysfs_notify(&mddev->kobj, NULL, "degraded");
5294         return 0;
5295 }
5296 EXPORT_SYMBOL_GPL(md_run);
5297
5298 static int do_md_run(struct mddev *mddev)
5299 {
5300         int err;
5301
5302         err = md_run(mddev);
5303         if (err)
5304                 goto out;
5305         err = bitmap_load(mddev);
5306         if (err) {
5307                 bitmap_destroy(mddev);
5308                 goto out;
5309         }
5310
5311         if (mddev_is_clustered(mddev))
5312                 md_allow_write(mddev);
5313
5314         md_wakeup_thread(mddev->thread);
5315         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5316
5317         set_capacity(mddev->gendisk, mddev->array_sectors);
5318         revalidate_disk(mddev->gendisk);
5319         mddev->changed = 1;
5320         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5321 out:
5322         return err;
5323 }
5324
5325 static int restart_array(struct mddev *mddev)
5326 {
5327         struct gendisk *disk = mddev->gendisk;
5328
5329         /* Complain if it has no devices */
5330         if (list_empty(&mddev->disks))
5331                 return -ENXIO;
5332         if (!mddev->pers)
5333                 return -EINVAL;
5334         if (!mddev->ro)
5335                 return -EBUSY;
5336         mddev->safemode = 0;
5337         mddev->ro = 0;
5338         set_disk_ro(disk, 0);
5339         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5340                 mdname(mddev));
5341         /* Kick recovery or resync if necessary */
5342         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5343         md_wakeup_thread(mddev->thread);
5344         md_wakeup_thread(mddev->sync_thread);
5345         sysfs_notify_dirent_safe(mddev->sysfs_state);
5346         return 0;
5347 }
5348
5349 static void md_clean(struct mddev *mddev)
5350 {
5351         mddev->array_sectors = 0;
5352         mddev->external_size = 0;
5353         mddev->dev_sectors = 0;
5354         mddev->raid_disks = 0;
5355         mddev->recovery_cp = 0;
5356         mddev->resync_min = 0;
5357         mddev->resync_max = MaxSector;
5358         mddev->reshape_position = MaxSector;
5359         mddev->external = 0;
5360         mddev->persistent = 0;
5361         mddev->level = LEVEL_NONE;
5362         mddev->clevel[0] = 0;
5363         mddev->flags = 0;
5364         mddev->ro = 0;
5365         mddev->metadata_type[0] = 0;
5366         mddev->chunk_sectors = 0;
5367         mddev->ctime = mddev->utime = 0;
5368         mddev->layout = 0;
5369         mddev->max_disks = 0;
5370         mddev->events = 0;
5371         mddev->can_decrease_events = 0;
5372         mddev->delta_disks = 0;
5373         mddev->reshape_backwards = 0;
5374         mddev->new_level = LEVEL_NONE;
5375         mddev->new_layout = 0;
5376         mddev->new_chunk_sectors = 0;
5377         mddev->curr_resync = 0;
5378         atomic64_set(&mddev->resync_mismatches, 0);
5379         mddev->suspend_lo = mddev->suspend_hi = 0;
5380         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5381         mddev->recovery = 0;
5382         mddev->in_sync = 0;
5383         mddev->changed = 0;
5384         mddev->degraded = 0;
5385         mddev->safemode = 0;
5386         mddev->private = NULL;
5387         mddev->bitmap_info.offset = 0;
5388         mddev->bitmap_info.default_offset = 0;
5389         mddev->bitmap_info.default_space = 0;
5390         mddev->bitmap_info.chunksize = 0;
5391         mddev->bitmap_info.daemon_sleep = 0;
5392         mddev->bitmap_info.max_write_behind = 0;
5393 }
5394
5395 static void __md_stop_writes(struct mddev *mddev)
5396 {
5397         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5398         flush_workqueue(md_misc_wq);
5399         if (mddev->sync_thread) {
5400                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5401                 md_reap_sync_thread(mddev);
5402         }
5403
5404         del_timer_sync(&mddev->safemode_timer);
5405
5406         bitmap_flush(mddev);
5407         md_super_wait(mddev);
5408
5409         if (mddev->ro == 0 &&
5410             ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5411              (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5412                 /* mark array as shutdown cleanly */
5413                 if (!mddev_is_clustered(mddev))
5414                         mddev->in_sync = 1;
5415                 md_update_sb(mddev, 1);
5416         }
5417 }
5418
5419 void md_stop_writes(struct mddev *mddev)
5420 {
5421         mddev_lock_nointr(mddev);
5422         __md_stop_writes(mddev);
5423         mddev_unlock(mddev);
5424 }
5425 EXPORT_SYMBOL_GPL(md_stop_writes);
5426
5427 static void mddev_detach(struct mddev *mddev)
5428 {
5429         struct bitmap *bitmap = mddev->bitmap;
5430         /* wait for behind writes to complete */
5431         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5432                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5433                        mdname(mddev));
5434                 /* need to kick something here to make sure I/O goes? */
5435                 wait_event(bitmap->behind_wait,
5436                            atomic_read(&bitmap->behind_writes) == 0);
5437         }
5438         if (mddev->pers && mddev->pers->quiesce) {
5439                 mddev->pers->quiesce(mddev, 1);
5440                 mddev->pers->quiesce(mddev, 0);
5441         }
5442         md_unregister_thread(&mddev->thread);
5443         if (mddev->queue)
5444                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5445 }
5446
5447 static void __md_stop(struct mddev *mddev)
5448 {
5449         struct md_personality *pers = mddev->pers;
5450         mddev_detach(mddev);
5451         /* Ensure ->event_work is done */
5452         flush_workqueue(md_misc_wq);
5453         spin_lock(&mddev->lock);
5454         mddev->ready = 0;
5455         mddev->pers = NULL;
5456         spin_unlock(&mddev->lock);
5457         pers->free(mddev, mddev->private);
5458         mddev->private = NULL;
5459         if (pers->sync_request && mddev->to_remove == NULL)
5460                 mddev->to_remove = &md_redundancy_group;
5461         module_put(pers->owner);
5462         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5463 }
5464
5465 void md_stop(struct mddev *mddev)
5466 {
5467         /* stop the array and free an attached data structures.
5468          * This is called from dm-raid
5469          */
5470         __md_stop(mddev);
5471         bitmap_destroy(mddev);
5472         if (mddev->bio_set)
5473                 bioset_free(mddev->bio_set);
5474 }
5475
5476 EXPORT_SYMBOL_GPL(md_stop);
5477
5478 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5479 {
5480         int err = 0;
5481         int did_freeze = 0;
5482
5483         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5484                 did_freeze = 1;
5485                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5486                 md_wakeup_thread(mddev->thread);
5487         }
5488         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5489                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5490         if (mddev->sync_thread)
5491                 /* Thread might be blocked waiting for metadata update
5492                  * which will now never happen */
5493                 wake_up_process(mddev->sync_thread->tsk);
5494
5495         if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5496                 return -EBUSY;
5497         mddev_unlock(mddev);
5498         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5499                                           &mddev->recovery));
5500         wait_event(mddev->sb_wait,
5501                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5502         mddev_lock_nointr(mddev);
5503
5504         mutex_lock(&mddev->open_mutex);
5505         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5506             mddev->sync_thread ||
5507             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5508             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5509                 printk("md: %s still in use.\n",mdname(mddev));
5510                 if (did_freeze) {
5511                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5512                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5513                         md_wakeup_thread(mddev->thread);
5514                 }
5515                 err = -EBUSY;
5516                 goto out;
5517         }
5518         if (mddev->pers) {
5519                 __md_stop_writes(mddev);
5520
5521                 err  = -ENXIO;
5522                 if (mddev->ro==1)
5523                         goto out;
5524                 mddev->ro = 1;
5525                 set_disk_ro(mddev->gendisk, 1);
5526                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5527                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5528                 md_wakeup_thread(mddev->thread);
5529                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5530                 err = 0;
5531         }
5532 out:
5533         mutex_unlock(&mddev->open_mutex);
5534         return err;
5535 }
5536
5537 /* mode:
5538  *   0 - completely stop and dis-assemble array
5539  *   2 - stop but do not disassemble array
5540  */
5541 static int do_md_stop(struct mddev *mddev, int mode,
5542                       struct block_device *bdev)
5543 {
5544         struct gendisk *disk = mddev->gendisk;
5545         struct md_rdev *rdev;
5546         int did_freeze = 0;
5547
5548         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5549                 did_freeze = 1;
5550                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5551                 md_wakeup_thread(mddev->thread);
5552         }
5553         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5554                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5555         if (mddev->sync_thread)
5556                 /* Thread might be blocked waiting for metadata update
5557                  * which will now never happen */
5558                 wake_up_process(mddev->sync_thread->tsk);
5559
5560         mddev_unlock(mddev);
5561         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5562                                  !test_bit(MD_RECOVERY_RUNNING,
5563                                            &mddev->recovery)));
5564         mddev_lock_nointr(mddev);
5565
5566         mutex_lock(&mddev->open_mutex);
5567         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5568             mddev->sysfs_active ||
5569             mddev->sync_thread ||
5570             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5571             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5572                 printk("md: %s still in use.\n",mdname(mddev));
5573                 mutex_unlock(&mddev->open_mutex);
5574                 if (did_freeze) {
5575                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5576                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5577                         md_wakeup_thread(mddev->thread);
5578                 }
5579                 return -EBUSY;
5580         }
5581         if (mddev->pers) {
5582                 if (mddev->ro)
5583                         set_disk_ro(disk, 0);
5584
5585                 __md_stop_writes(mddev);
5586                 __md_stop(mddev);
5587                 mddev->queue->backing_dev_info.congested_fn = NULL;
5588
5589                 /* tell userspace to handle 'inactive' */
5590                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5591
5592                 rdev_for_each(rdev, mddev)
5593                         if (rdev->raid_disk >= 0)
5594                                 sysfs_unlink_rdev(mddev, rdev);
5595
5596                 set_capacity(disk, 0);
5597                 mutex_unlock(&mddev->open_mutex);
5598                 mddev->changed = 1;
5599                 revalidate_disk(disk);
5600
5601                 if (mddev->ro)
5602                         mddev->ro = 0;
5603         } else
5604                 mutex_unlock(&mddev->open_mutex);
5605         /*
5606          * Free resources if final stop
5607          */
5608         if (mode == 0) {
5609                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5610
5611                 bitmap_destroy(mddev);
5612                 if (mddev->bitmap_info.file) {
5613                         struct file *f = mddev->bitmap_info.file;
5614                         spin_lock(&mddev->lock);
5615                         mddev->bitmap_info.file = NULL;
5616                         spin_unlock(&mddev->lock);
5617                         fput(f);
5618                 }
5619                 mddev->bitmap_info.offset = 0;
5620
5621                 export_array(mddev);
5622
5623                 md_clean(mddev);
5624                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5625                 if (mddev->hold_active == UNTIL_STOP)
5626                         mddev->hold_active = 0;
5627         }
5628         blk_integrity_unregister(disk);
5629         md_new_event(mddev);
5630         sysfs_notify_dirent_safe(mddev->sysfs_state);
5631         return 0;
5632 }
5633
5634 #ifndef MODULE
5635 static void autorun_array(struct mddev *mddev)
5636 {
5637         struct md_rdev *rdev;
5638         int err;
5639
5640         if (list_empty(&mddev->disks))
5641                 return;
5642
5643         printk(KERN_INFO "md: running: ");
5644
5645         rdev_for_each(rdev, mddev) {
5646                 char b[BDEVNAME_SIZE];
5647                 printk("<%s>", bdevname(rdev->bdev,b));
5648         }
5649         printk("\n");
5650
5651         err = do_md_run(mddev);
5652         if (err) {
5653                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5654                 do_md_stop(mddev, 0, NULL);
5655         }
5656 }
5657
5658 /*
5659  * lets try to run arrays based on all disks that have arrived
5660  * until now. (those are in pending_raid_disks)
5661  *
5662  * the method: pick the first pending disk, collect all disks with
5663  * the same UUID, remove all from the pending list and put them into
5664  * the 'same_array' list. Then order this list based on superblock
5665  * update time (freshest comes first), kick out 'old' disks and
5666  * compare superblocks. If everything's fine then run it.
5667  *
5668  * If "unit" is allocated, then bump its reference count
5669  */
5670 static void autorun_devices(int part)
5671 {
5672         struct md_rdev *rdev0, *rdev, *tmp;
5673         struct mddev *mddev;
5674         char b[BDEVNAME_SIZE];
5675
5676         printk(KERN_INFO "md: autorun ...\n");
5677         while (!list_empty(&pending_raid_disks)) {
5678                 int unit;
5679                 dev_t dev;
5680                 LIST_HEAD(candidates);
5681                 rdev0 = list_entry(pending_raid_disks.next,
5682                                          struct md_rdev, same_set);
5683
5684                 printk(KERN_INFO "md: considering %s ...\n",
5685                         bdevname(rdev0->bdev,b));
5686                 INIT_LIST_HEAD(&candidates);
5687                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5688                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5689                                 printk(KERN_INFO "md:  adding %s ...\n",
5690                                         bdevname(rdev->bdev,b));
5691                                 list_move(&rdev->same_set, &candidates);
5692                         }
5693                 /*
5694                  * now we have a set of devices, with all of them having
5695                  * mostly sane superblocks. It's time to allocate the
5696                  * mddev.
5697                  */
5698                 if (part) {
5699                         dev = MKDEV(mdp_major,
5700                                     rdev0->preferred_minor << MdpMinorShift);
5701                         unit = MINOR(dev) >> MdpMinorShift;
5702                 } else {
5703                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5704                         unit = MINOR(dev);
5705                 }
5706                 if (rdev0->preferred_minor != unit) {
5707                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5708                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5709                         break;
5710                 }
5711
5712                 md_probe(dev, NULL, NULL);
5713                 mddev = mddev_find(dev);
5714                 if (!mddev || !mddev->gendisk) {
5715                         if (mddev)
5716                                 mddev_put(mddev);
5717                         printk(KERN_ERR
5718                                 "md: cannot allocate memory for md drive.\n");
5719                         break;
5720                 }
5721                 if (mddev_lock(mddev))
5722                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5723                                mdname(mddev));
5724                 else if (mddev->raid_disks || mddev->major_version
5725                          || !list_empty(&mddev->disks)) {
5726                         printk(KERN_WARNING
5727                                 "md: %s already running, cannot run %s\n",
5728                                 mdname(mddev), bdevname(rdev0->bdev,b));
5729                         mddev_unlock(mddev);
5730                 } else {
5731                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5732                         mddev->persistent = 1;
5733                         rdev_for_each_list(rdev, tmp, &candidates) {
5734                                 list_del_init(&rdev->same_set);
5735                                 if (bind_rdev_to_array(rdev, mddev))
5736                                         export_rdev(rdev);
5737                         }
5738                         autorun_array(mddev);
5739                         mddev_unlock(mddev);
5740                 }
5741                 /* on success, candidates will be empty, on error
5742                  * it won't...
5743                  */
5744                 rdev_for_each_list(rdev, tmp, &candidates) {
5745                         list_del_init(&rdev->same_set);
5746                         export_rdev(rdev);
5747                 }
5748                 mddev_put(mddev);
5749         }
5750         printk(KERN_INFO "md: ... autorun DONE.\n");
5751 }
5752 #endif /* !MODULE */
5753
5754 static int get_version(void __user *arg)
5755 {
5756         mdu_version_t ver;
5757
5758         ver.major = MD_MAJOR_VERSION;
5759         ver.minor = MD_MINOR_VERSION;
5760         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5761
5762         if (copy_to_user(arg, &ver, sizeof(ver)))
5763                 return -EFAULT;
5764
5765         return 0;
5766 }
5767
5768 static int get_array_info(struct mddev *mddev, void __user *arg)
5769 {
5770         mdu_array_info_t info;
5771         int nr,working,insync,failed,spare;
5772         struct md_rdev *rdev;
5773
5774         nr = working = insync = failed = spare = 0;
5775         rcu_read_lock();
5776         rdev_for_each_rcu(rdev, mddev) {
5777                 nr++;
5778                 if (test_bit(Faulty, &rdev->flags))
5779                         failed++;
5780                 else {
5781                         working++;
5782                         if (test_bit(In_sync, &rdev->flags))
5783                                 insync++;
5784                         else
5785                                 spare++;
5786                 }
5787         }
5788         rcu_read_unlock();
5789
5790         info.major_version = mddev->major_version;
5791         info.minor_version = mddev->minor_version;
5792         info.patch_version = MD_PATCHLEVEL_VERSION;
5793         info.ctime         = mddev->ctime;
5794         info.level         = mddev->level;
5795         info.size          = mddev->dev_sectors / 2;
5796         if (info.size != mddev->dev_sectors / 2) /* overflow */
5797                 info.size = -1;
5798         info.nr_disks      = nr;
5799         info.raid_disks    = mddev->raid_disks;
5800         info.md_minor      = mddev->md_minor;
5801         info.not_persistent= !mddev->persistent;
5802
5803         info.utime         = mddev->utime;
5804         info.state         = 0;
5805         if (mddev->in_sync)
5806                 info.state = (1<<MD_SB_CLEAN);
5807         if (mddev->bitmap && mddev->bitmap_info.offset)
5808                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5809         if (mddev_is_clustered(mddev))
5810                 info.state |= (1<<MD_SB_CLUSTERED);
5811         info.active_disks  = insync;
5812         info.working_disks = working;
5813         info.failed_disks  = failed;
5814         info.spare_disks   = spare;
5815
5816         info.layout        = mddev->layout;
5817         info.chunk_size    = mddev->chunk_sectors << 9;
5818
5819         if (copy_to_user(arg, &info, sizeof(info)))
5820                 return -EFAULT;
5821
5822         return 0;
5823 }
5824
5825 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5826 {
5827         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5828         char *ptr;
5829         int err;
5830
5831         file = kzalloc(sizeof(*file), GFP_NOIO);
5832         if (!file)
5833                 return -ENOMEM;
5834
5835         err = 0;
5836         spin_lock(&mddev->lock);
5837         /* bitmap enabled */
5838         if (mddev->bitmap_info.file) {
5839                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5840                                 sizeof(file->pathname));
5841                 if (IS_ERR(ptr))
5842                         err = PTR_ERR(ptr);
5843                 else
5844                         memmove(file->pathname, ptr,
5845                                 sizeof(file->pathname)-(ptr-file->pathname));
5846         }
5847         spin_unlock(&mddev->lock);
5848
5849         if (err == 0 &&
5850             copy_to_user(arg, file, sizeof(*file)))
5851                 err = -EFAULT;
5852
5853         kfree(file);
5854         return err;
5855 }
5856
5857 static int get_disk_info(struct mddev *mddev, void __user * arg)
5858 {
5859         mdu_disk_info_t info;
5860         struct md_rdev *rdev;
5861
5862         if (copy_from_user(&info, arg, sizeof(info)))
5863                 return -EFAULT;
5864
5865         rcu_read_lock();
5866         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5867         if (rdev) {
5868                 info.major = MAJOR(rdev->bdev->bd_dev);
5869                 info.minor = MINOR(rdev->bdev->bd_dev);
5870                 info.raid_disk = rdev->raid_disk;
5871                 info.state = 0;
5872                 if (test_bit(Faulty, &rdev->flags))
5873                         info.state |= (1<<MD_DISK_FAULTY);
5874                 else if (test_bit(In_sync, &rdev->flags)) {
5875                         info.state |= (1<<MD_DISK_ACTIVE);
5876                         info.state |= (1<<MD_DISK_SYNC);
5877                 }
5878                 if (test_bit(Journal, &rdev->flags))
5879                         info.state |= (1<<MD_DISK_JOURNAL);
5880                 if (test_bit(WriteMostly, &rdev->flags))
5881                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5882         } else {
5883                 info.major = info.minor = 0;
5884                 info.raid_disk = -1;
5885                 info.state = (1<<MD_DISK_REMOVED);
5886         }
5887         rcu_read_unlock();
5888
5889         if (copy_to_user(arg, &info, sizeof(info)))
5890                 return -EFAULT;
5891
5892         return 0;
5893 }
5894
5895 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5896 {
5897         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5898         struct md_rdev *rdev;
5899         dev_t dev = MKDEV(info->major,info->minor);
5900
5901         if (mddev_is_clustered(mddev) &&
5902                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5903                 pr_err("%s: Cannot add to clustered mddev.\n",
5904                                mdname(mddev));
5905                 return -EINVAL;
5906         }
5907
5908         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5909                 return -EOVERFLOW;
5910
5911         if (!mddev->raid_disks) {
5912                 int err;
5913                 /* expecting a device which has a superblock */
5914                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5915                 if (IS_ERR(rdev)) {
5916                         printk(KERN_WARNING
5917                                 "md: md_import_device returned %ld\n",
5918                                 PTR_ERR(rdev));
5919                         return PTR_ERR(rdev);
5920                 }
5921                 if (!list_empty(&mddev->disks)) {
5922                         struct md_rdev *rdev0
5923                                 = list_entry(mddev->disks.next,
5924                                              struct md_rdev, same_set);
5925                         err = super_types[mddev->major_version]
5926                                 .load_super(rdev, rdev0, mddev->minor_version);
5927                         if (err < 0) {
5928                                 printk(KERN_WARNING
5929                                         "md: %s has different UUID to %s\n",
5930                                         bdevname(rdev->bdev,b),
5931                                         bdevname(rdev0->bdev,b2));
5932                                 export_rdev(rdev);
5933                                 return -EINVAL;
5934                         }
5935                 }
5936                 err = bind_rdev_to_array(rdev, mddev);
5937                 if (err)
5938                         export_rdev(rdev);
5939                 return err;
5940         }
5941
5942         /*
5943          * add_new_disk can be used once the array is assembled
5944          * to add "hot spares".  They must already have a superblock
5945          * written
5946          */
5947         if (mddev->pers) {
5948                 int err;
5949                 if (!mddev->pers->hot_add_disk) {
5950                         printk(KERN_WARNING
5951                                 "%s: personality does not support diskops!\n",
5952                                mdname(mddev));
5953                         return -EINVAL;
5954                 }
5955                 if (mddev->persistent)
5956                         rdev = md_import_device(dev, mddev->major_version,
5957                                                 mddev->minor_version);
5958                 else
5959                         rdev = md_import_device(dev, -1, -1);
5960                 if (IS_ERR(rdev)) {
5961                         printk(KERN_WARNING
5962                                 "md: md_import_device returned %ld\n",
5963                                 PTR_ERR(rdev));
5964                         return PTR_ERR(rdev);
5965                 }
5966                 /* set saved_raid_disk if appropriate */
5967                 if (!mddev->persistent) {
5968                         if (info->state & (1<<MD_DISK_SYNC)  &&
5969                             info->raid_disk < mddev->raid_disks) {
5970                                 rdev->raid_disk = info->raid_disk;
5971                                 set_bit(In_sync, &rdev->flags);
5972                                 clear_bit(Bitmap_sync, &rdev->flags);
5973                         } else
5974                                 rdev->raid_disk = -1;
5975                         rdev->saved_raid_disk = rdev->raid_disk;
5976                 } else
5977                         super_types[mddev->major_version].
5978                                 validate_super(mddev, rdev);
5979                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5980                      rdev->raid_disk != info->raid_disk) {
5981                         /* This was a hot-add request, but events doesn't
5982                          * match, so reject it.
5983                          */
5984                         export_rdev(rdev);
5985                         return -EINVAL;
5986                 }
5987
5988                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5989                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5990                         set_bit(WriteMostly, &rdev->flags);
5991                 else
5992                         clear_bit(WriteMostly, &rdev->flags);
5993
5994                 if (info->state & (1<<MD_DISK_JOURNAL))
5995                         set_bit(Journal, &rdev->flags);
5996                 /*
5997                  * check whether the device shows up in other nodes
5998                  */
5999                 if (mddev_is_clustered(mddev)) {
6000                         if (info->state & (1 << MD_DISK_CANDIDATE))
6001                                 set_bit(Candidate, &rdev->flags);
6002                         else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6003                                 /* --add initiated by this node */
6004                                 err = md_cluster_ops->add_new_disk(mddev, rdev);
6005                                 if (err) {
6006                                         export_rdev(rdev);
6007                                         return err;
6008                                 }
6009                         }
6010                 }
6011
6012                 rdev->raid_disk = -1;
6013                 err = bind_rdev_to_array(rdev, mddev);
6014
6015                 if (err)
6016                         export_rdev(rdev);
6017
6018                 if (mddev_is_clustered(mddev)) {
6019                         if (info->state & (1 << MD_DISK_CANDIDATE))
6020                                 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6021                         else {
6022                                 if (err)
6023                                         md_cluster_ops->add_new_disk_cancel(mddev);
6024                                 else
6025                                         err = add_bound_rdev(rdev);
6026                         }
6027
6028                 } else if (!err)
6029                         err = add_bound_rdev(rdev);
6030
6031                 return err;
6032         }
6033
6034         /* otherwise, add_new_disk is only allowed
6035          * for major_version==0 superblocks
6036          */
6037         if (mddev->major_version != 0) {
6038                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6039                        mdname(mddev));
6040                 return -EINVAL;
6041         }
6042
6043         if (!(info->state & (1<<MD_DISK_FAULTY))) {
6044                 int err;
6045                 rdev = md_import_device(dev, -1, 0);
6046                 if (IS_ERR(rdev)) {
6047                         printk(KERN_WARNING
6048                                 "md: error, md_import_device() returned %ld\n",
6049                                 PTR_ERR(rdev));
6050                         return PTR_ERR(rdev);
6051                 }
6052                 rdev->desc_nr = info->number;
6053                 if (info->raid_disk < mddev->raid_disks)
6054                         rdev->raid_disk = info->raid_disk;
6055                 else
6056                         rdev->raid_disk = -1;
6057
6058                 if (rdev->raid_disk < mddev->raid_disks)
6059                         if (info->state & (1<<MD_DISK_SYNC))
6060                                 set_bit(In_sync, &rdev->flags);
6061
6062                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6063                         set_bit(WriteMostly, &rdev->flags);
6064
6065                 if (!mddev->persistent) {
6066                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
6067                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6068                 } else
6069                         rdev->sb_start = calc_dev_sboffset(rdev);
6070                 rdev->sectors = rdev->sb_start;
6071
6072                 err = bind_rdev_to_array(rdev, mddev);
6073                 if (err) {
6074                         export_rdev(rdev);
6075                         return err;
6076                 }
6077         }
6078
6079         return 0;
6080 }
6081
6082 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6083 {
6084         char b[BDEVNAME_SIZE];
6085         struct md_rdev *rdev;
6086         int ret = -1;
6087
6088         rdev = find_rdev(mddev, dev);
6089         if (!rdev)
6090                 return -ENXIO;
6091
6092         if (mddev_is_clustered(mddev))
6093                 ret = md_cluster_ops->metadata_update_start(mddev);
6094
6095         if (rdev->raid_disk < 0)
6096                 goto kick_rdev;
6097
6098         clear_bit(Blocked, &rdev->flags);
6099         remove_and_add_spares(mddev, rdev);
6100
6101         if (rdev->raid_disk >= 0)
6102                 goto busy;
6103
6104 kick_rdev:
6105         if (mddev_is_clustered(mddev) && ret == 0)
6106                 md_cluster_ops->remove_disk(mddev, rdev);
6107
6108         md_kick_rdev_from_array(rdev);
6109         md_update_sb(mddev, 1);
6110         md_new_event(mddev);
6111
6112         return 0;
6113 busy:
6114         if (mddev_is_clustered(mddev) && ret == 0)
6115                 md_cluster_ops->metadata_update_cancel(mddev);
6116
6117         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6118                 bdevname(rdev->bdev,b), mdname(mddev));
6119         return -EBUSY;
6120 }
6121
6122 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6123 {
6124         char b[BDEVNAME_SIZE];
6125         int err;
6126         struct md_rdev *rdev;
6127
6128         if (!mddev->pers)
6129                 return -ENODEV;
6130
6131         if (mddev->major_version != 0) {
6132                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6133                         " version-0 superblocks.\n",
6134                         mdname(mddev));
6135                 return -EINVAL;
6136         }
6137         if (!mddev->pers->hot_add_disk) {
6138                 printk(KERN_WARNING
6139                         "%s: personality does not support diskops!\n",
6140                         mdname(mddev));
6141                 return -EINVAL;
6142         }
6143
6144         rdev = md_import_device(dev, -1, 0);
6145         if (IS_ERR(rdev)) {
6146                 printk(KERN_WARNING
6147                         "md: error, md_import_device() returned %ld\n",
6148                         PTR_ERR(rdev));
6149                 return -EINVAL;
6150         }
6151
6152         if (mddev->persistent)
6153                 rdev->sb_start = calc_dev_sboffset(rdev);
6154         else
6155                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6156
6157         rdev->sectors = rdev->sb_start;
6158
6159         if (test_bit(Faulty, &rdev->flags)) {
6160                 printk(KERN_WARNING
6161                         "md: can not hot-add faulty %s disk to %s!\n",
6162                         bdevname(rdev->bdev,b), mdname(mddev));
6163                 err = -EINVAL;
6164                 goto abort_export;
6165         }
6166
6167         clear_bit(In_sync, &rdev->flags);
6168         rdev->desc_nr = -1;
6169         rdev->saved_raid_disk = -1;
6170         err = bind_rdev_to_array(rdev, mddev);
6171         if (err)
6172                 goto abort_export;
6173
6174         /*
6175          * The rest should better be atomic, we can have disk failures
6176          * noticed in interrupt contexts ...
6177          */
6178
6179         rdev->raid_disk = -1;
6180
6181         md_update_sb(mddev, 1);
6182         /*
6183          * Kick recovery, maybe this spare has to be added to the
6184          * array immediately.
6185          */
6186         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6187         md_wakeup_thread(mddev->thread);
6188         md_new_event(mddev);
6189         return 0;
6190
6191 abort_export:
6192         export_rdev(rdev);
6193         return err;
6194 }
6195
6196 static int set_bitmap_file(struct mddev *mddev, int fd)
6197 {
6198         int err = 0;
6199
6200         if (mddev->pers) {
6201                 if (!mddev->pers->quiesce || !mddev->thread)
6202                         return -EBUSY;
6203                 if (mddev->recovery || mddev->sync_thread)
6204                         return -EBUSY;
6205                 /* we should be able to change the bitmap.. */
6206         }
6207
6208         if (fd >= 0) {
6209                 struct inode *inode;
6210                 struct file *f;
6211
6212                 if (mddev->bitmap || mddev->bitmap_info.file)
6213                         return -EEXIST; /* cannot add when bitmap is present */
6214                 f = fget(fd);
6215
6216                 if (f == NULL) {
6217                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6218                                mdname(mddev));
6219                         return -EBADF;
6220                 }
6221
6222                 inode = f->f_mapping->host;
6223                 if (!S_ISREG(inode->i_mode)) {
6224                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6225                                mdname(mddev));
6226                         err = -EBADF;
6227                 } else if (!(f->f_mode & FMODE_WRITE)) {
6228                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6229                                mdname(mddev));
6230                         err = -EBADF;
6231                 } else if (atomic_read(&inode->i_writecount) != 1) {
6232                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6233                                mdname(mddev));
6234                         err = -EBUSY;
6235                 }
6236                 if (err) {
6237                         fput(f);
6238                         return err;
6239                 }
6240                 mddev->bitmap_info.file = f;
6241                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6242         } else if (mddev->bitmap == NULL)
6243                 return -ENOENT; /* cannot remove what isn't there */
6244         err = 0;
6245         if (mddev->pers) {
6246                 mddev->pers->quiesce(mddev, 1);
6247                 if (fd >= 0) {
6248                         struct bitmap *bitmap;
6249
6250                         bitmap = bitmap_create(mddev, -1);
6251                         if (!IS_ERR(bitmap)) {
6252                                 mddev->bitmap = bitmap;
6253                                 err = bitmap_load(mddev);
6254                         } else
6255                                 err = PTR_ERR(bitmap);
6256                 }
6257                 if (fd < 0 || err) {
6258                         bitmap_destroy(mddev);
6259                         fd = -1; /* make sure to put the file */
6260                 }
6261                 mddev->pers->quiesce(mddev, 0);
6262         }
6263         if (fd < 0) {
6264                 struct file *f = mddev->bitmap_info.file;
6265                 if (f) {
6266                         spin_lock(&mddev->lock);
6267                         mddev->bitmap_info.file = NULL;
6268                         spin_unlock(&mddev->lock);
6269                         fput(f);
6270                 }
6271         }
6272
6273         return err;
6274 }
6275
6276 /*
6277  * set_array_info is used two different ways
6278  * The original usage is when creating a new array.
6279  * In this usage, raid_disks is > 0 and it together with
6280  *  level, size, not_persistent,layout,chunksize determine the
6281  *  shape of the array.
6282  *  This will always create an array with a type-0.90.0 superblock.
6283  * The newer usage is when assembling an array.
6284  *  In this case raid_disks will be 0, and the major_version field is
6285  *  use to determine which style super-blocks are to be found on the devices.
6286  *  The minor and patch _version numbers are also kept incase the
6287  *  super_block handler wishes to interpret them.
6288  */
6289 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6290 {
6291
6292         if (info->raid_disks == 0) {
6293                 /* just setting version number for superblock loading */
6294                 if (info->major_version < 0 ||
6295                     info->major_version >= ARRAY_SIZE(super_types) ||
6296                     super_types[info->major_version].name == NULL) {
6297                         /* maybe try to auto-load a module? */
6298                         printk(KERN_INFO
6299                                 "md: superblock version %d not known\n",
6300                                 info->major_version);
6301                         return -EINVAL;
6302                 }
6303                 mddev->major_version = info->major_version;
6304                 mddev->minor_version = info->minor_version;
6305                 mddev->patch_version = info->patch_version;
6306                 mddev->persistent = !info->not_persistent;
6307                 /* ensure mddev_put doesn't delete this now that there
6308                  * is some minimal configuration.
6309                  */
6310                 mddev->ctime         = get_seconds();
6311                 return 0;
6312         }
6313         mddev->major_version = MD_MAJOR_VERSION;
6314         mddev->minor_version = MD_MINOR_VERSION;
6315         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6316         mddev->ctime         = get_seconds();
6317
6318         mddev->level         = info->level;
6319         mddev->clevel[0]     = 0;
6320         mddev->dev_sectors   = 2 * (sector_t)info->size;
6321         mddev->raid_disks    = info->raid_disks;
6322         /* don't set md_minor, it is determined by which /dev/md* was
6323          * openned
6324          */
6325         if (info->state & (1<<MD_SB_CLEAN))
6326                 mddev->recovery_cp = MaxSector;
6327         else
6328                 mddev->recovery_cp = 0;
6329         mddev->persistent    = ! info->not_persistent;
6330         mddev->external      = 0;
6331
6332         mddev->layout        = info->layout;
6333         mddev->chunk_sectors = info->chunk_size >> 9;
6334
6335         mddev->max_disks     = MD_SB_DISKS;
6336
6337         if (mddev->persistent)
6338                 mddev->flags         = 0;
6339         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6340
6341         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6342         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6343         mddev->bitmap_info.offset = 0;
6344
6345         mddev->reshape_position = MaxSector;
6346
6347         /*
6348          * Generate a 128 bit UUID
6349          */
6350         get_random_bytes(mddev->uuid, 16);
6351
6352         mddev->new_level = mddev->level;
6353         mddev->new_chunk_sectors = mddev->chunk_sectors;
6354         mddev->new_layout = mddev->layout;
6355         mddev->delta_disks = 0;
6356         mddev->reshape_backwards = 0;
6357
6358         return 0;
6359 }
6360
6361 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6362 {
6363         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6364
6365         if (mddev->external_size)
6366                 return;
6367
6368         mddev->array_sectors = array_sectors;
6369 }
6370 EXPORT_SYMBOL(md_set_array_sectors);
6371
6372 static int update_size(struct mddev *mddev, sector_t num_sectors)
6373 {
6374         struct md_rdev *rdev;
6375         int rv;
6376         int fit = (num_sectors == 0);
6377
6378         if (mddev->pers->resize == NULL)
6379                 return -EINVAL;
6380         /* The "num_sectors" is the number of sectors of each device that
6381          * is used.  This can only make sense for arrays with redundancy.
6382          * linear and raid0 always use whatever space is available. We can only
6383          * consider changing this number if no resync or reconstruction is
6384          * happening, and if the new size is acceptable. It must fit before the
6385          * sb_start or, if that is <data_offset, it must fit before the size
6386          * of each device.  If num_sectors is zero, we find the largest size
6387          * that fits.
6388          */
6389         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6390             mddev->sync_thread)
6391                 return -EBUSY;
6392         if (mddev->ro)
6393                 return -EROFS;
6394
6395         rdev_for_each(rdev, mddev) {
6396                 sector_t avail = rdev->sectors;
6397
6398                 if (fit && (num_sectors == 0 || num_sectors > avail))
6399                         num_sectors = avail;
6400                 if (avail < num_sectors)
6401                         return -ENOSPC;
6402         }
6403         rv = mddev->pers->resize(mddev, num_sectors);
6404         if (!rv)
6405                 revalidate_disk(mddev->gendisk);
6406         return rv;
6407 }
6408
6409 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6410 {
6411         int rv;
6412         struct md_rdev *rdev;
6413         /* change the number of raid disks */
6414         if (mddev->pers->check_reshape == NULL)
6415                 return -EINVAL;
6416         if (mddev->ro)
6417                 return -EROFS;
6418         if (raid_disks <= 0 ||
6419             (mddev->max_disks && raid_disks >= mddev->max_disks))
6420                 return -EINVAL;
6421         if (mddev->sync_thread ||
6422             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6423             mddev->reshape_position != MaxSector)
6424                 return -EBUSY;
6425
6426         rdev_for_each(rdev, mddev) {
6427                 if (mddev->raid_disks < raid_disks &&
6428                     rdev->data_offset < rdev->new_data_offset)
6429                         return -EINVAL;
6430                 if (mddev->raid_disks > raid_disks &&
6431                     rdev->data_offset > rdev->new_data_offset)
6432                         return -EINVAL;
6433         }
6434
6435         mddev->delta_disks = raid_disks - mddev->raid_disks;
6436         if (mddev->delta_disks < 0)
6437                 mddev->reshape_backwards = 1;
6438         else if (mddev->delta_disks > 0)
6439                 mddev->reshape_backwards = 0;
6440
6441         rv = mddev->pers->check_reshape(mddev);
6442         if (rv < 0) {
6443                 mddev->delta_disks = 0;
6444                 mddev->reshape_backwards = 0;
6445         }
6446         return rv;
6447 }
6448
6449 /*
6450  * update_array_info is used to change the configuration of an
6451  * on-line array.
6452  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6453  * fields in the info are checked against the array.
6454  * Any differences that cannot be handled will cause an error.
6455  * Normally, only one change can be managed at a time.
6456  */
6457 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6458 {
6459         int rv = 0;
6460         int cnt = 0;
6461         int state = 0;
6462
6463         /* calculate expected state,ignoring low bits */
6464         if (mddev->bitmap && mddev->bitmap_info.offset)
6465                 state |= (1 << MD_SB_BITMAP_PRESENT);
6466
6467         if (mddev->major_version != info->major_version ||
6468             mddev->minor_version != info->minor_version ||
6469 /*          mddev->patch_version != info->patch_version || */
6470             mddev->ctime         != info->ctime         ||
6471             mddev->level         != info->level         ||
6472 /*          mddev->layout        != info->layout        || */
6473             mddev->persistent    != !info->not_persistent ||
6474             mddev->chunk_sectors != info->chunk_size >> 9 ||
6475             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6476             ((state^info->state) & 0xfffffe00)
6477                 )
6478                 return -EINVAL;
6479         /* Check there is only one change */
6480         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6481                 cnt++;
6482         if (mddev->raid_disks != info->raid_disks)
6483                 cnt++;
6484         if (mddev->layout != info->layout)
6485                 cnt++;
6486         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6487                 cnt++;
6488         if (cnt == 0)
6489                 return 0;
6490         if (cnt > 1)
6491                 return -EINVAL;
6492
6493         if (mddev->layout != info->layout) {
6494                 /* Change layout
6495                  * we don't need to do anything at the md level, the
6496                  * personality will take care of it all.
6497                  */
6498                 if (mddev->pers->check_reshape == NULL)
6499                         return -EINVAL;
6500                 else {
6501                         mddev->new_layout = info->layout;
6502                         rv = mddev->pers->check_reshape(mddev);
6503                         if (rv)
6504                                 mddev->new_layout = mddev->layout;
6505                         return rv;
6506                 }
6507         }
6508         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6509                 rv = update_size(mddev, (sector_t)info->size * 2);
6510
6511         if (mddev->raid_disks    != info->raid_disks)
6512                 rv = update_raid_disks(mddev, info->raid_disks);
6513
6514         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6515                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6516                         rv = -EINVAL;
6517                         goto err;
6518                 }
6519                 if (mddev->recovery || mddev->sync_thread) {
6520                         rv = -EBUSY;
6521                         goto err;
6522                 }
6523                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6524                         struct bitmap *bitmap;
6525                         /* add the bitmap */
6526                         if (mddev->bitmap) {
6527                                 rv = -EEXIST;
6528                                 goto err;
6529                         }
6530                         if (mddev->bitmap_info.default_offset == 0) {
6531                                 rv = -EINVAL;
6532                                 goto err;
6533                         }
6534                         mddev->bitmap_info.offset =
6535                                 mddev->bitmap_info.default_offset;
6536                         mddev->bitmap_info.space =
6537                                 mddev->bitmap_info.default_space;
6538                         mddev->pers->quiesce(mddev, 1);
6539                         bitmap = bitmap_create(mddev, -1);
6540                         if (!IS_ERR(bitmap)) {
6541                                 mddev->bitmap = bitmap;
6542                                 rv = bitmap_load(mddev);
6543                         } else
6544                                 rv = PTR_ERR(bitmap);
6545                         if (rv)
6546                                 bitmap_destroy(mddev);
6547                         mddev->pers->quiesce(mddev, 0);
6548                 } else {
6549                         /* remove the bitmap */
6550                         if (!mddev->bitmap) {
6551                                 rv = -ENOENT;
6552                                 goto err;
6553                         }
6554                         if (mddev->bitmap->storage.file) {
6555                                 rv = -EINVAL;
6556                                 goto err;
6557                         }
6558                         mddev->pers->quiesce(mddev, 1);
6559                         bitmap_destroy(mddev);
6560                         mddev->pers->quiesce(mddev, 0);
6561                         mddev->bitmap_info.offset = 0;
6562                 }
6563         }
6564         md_update_sb(mddev, 1);
6565         return rv;
6566 err:
6567         return rv;
6568 }
6569
6570 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6571 {
6572         struct md_rdev *rdev;
6573         int err = 0;
6574
6575         if (mddev->pers == NULL)
6576                 return -ENODEV;
6577
6578         rcu_read_lock();
6579         rdev = find_rdev_rcu(mddev, dev);
6580         if (!rdev)
6581                 err =  -ENODEV;
6582         else {
6583                 md_error(mddev, rdev);
6584                 if (!test_bit(Faulty, &rdev->flags))
6585                         err = -EBUSY;
6586         }
6587         rcu_read_unlock();
6588         return err;
6589 }
6590
6591 /*
6592  * We have a problem here : there is no easy way to give a CHS
6593  * virtual geometry. We currently pretend that we have a 2 heads
6594  * 4 sectors (with a BIG number of cylinders...). This drives
6595  * dosfs just mad... ;-)
6596  */
6597 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6598 {
6599         struct mddev *mddev = bdev->bd_disk->private_data;
6600
6601         geo->heads = 2;
6602         geo->sectors = 4;
6603         geo->cylinders = mddev->array_sectors / 8;
6604         return 0;
6605 }
6606
6607 static inline bool md_ioctl_valid(unsigned int cmd)
6608 {
6609         switch (cmd) {
6610         case ADD_NEW_DISK:
6611         case BLKROSET:
6612         case GET_ARRAY_INFO:
6613         case GET_BITMAP_FILE:
6614         case GET_DISK_INFO:
6615         case HOT_ADD_DISK:
6616         case HOT_REMOVE_DISK:
6617         case RAID_AUTORUN:
6618         case RAID_VERSION:
6619         case RESTART_ARRAY_RW:
6620         case RUN_ARRAY:
6621         case SET_ARRAY_INFO:
6622         case SET_BITMAP_FILE:
6623         case SET_DISK_FAULTY:
6624         case STOP_ARRAY:
6625         case STOP_ARRAY_RO:
6626         case CLUSTERED_DISK_NACK:
6627                 return true;
6628         default:
6629                 return false;
6630         }
6631 }
6632
6633 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6634                         unsigned int cmd, unsigned long arg)
6635 {
6636         int err = 0;
6637         void __user *argp = (void __user *)arg;
6638         struct mddev *mddev = NULL;
6639         int ro;
6640
6641         if (!md_ioctl_valid(cmd))
6642                 return -ENOTTY;
6643
6644         switch (cmd) {
6645         case RAID_VERSION:
6646         case GET_ARRAY_INFO:
6647         case GET_DISK_INFO:
6648                 break;
6649         default:
6650                 if (!capable(CAP_SYS_ADMIN))
6651                         return -EACCES;
6652         }
6653
6654         /*
6655          * Commands dealing with the RAID driver but not any
6656          * particular array:
6657          */
6658         switch (cmd) {
6659         case RAID_VERSION:
6660                 err = get_version(argp);
6661                 goto out;
6662
6663 #ifndef MODULE
6664         case RAID_AUTORUN:
6665                 err = 0;
6666                 autostart_arrays(arg);
6667                 goto out;
6668 #endif
6669         default:;
6670         }
6671
6672         /*
6673          * Commands creating/starting a new array:
6674          */
6675
6676         mddev = bdev->bd_disk->private_data;
6677
6678         if (!mddev) {
6679                 BUG();
6680                 goto out;
6681         }
6682
6683         /* Some actions do not requires the mutex */
6684         switch (cmd) {
6685         case GET_ARRAY_INFO:
6686                 if (!mddev->raid_disks && !mddev->external)
6687                         err = -ENODEV;
6688                 else
6689                         err = get_array_info(mddev, argp);
6690                 goto out;
6691
6692         case GET_DISK_INFO:
6693                 if (!mddev->raid_disks && !mddev->external)
6694                         err = -ENODEV;
6695                 else
6696                         err = get_disk_info(mddev, argp);
6697                 goto out;
6698
6699         case SET_DISK_FAULTY:
6700                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6701                 goto out;
6702
6703         case GET_BITMAP_FILE:
6704                 err = get_bitmap_file(mddev, argp);
6705                 goto out;
6706
6707         }
6708
6709         if (cmd == ADD_NEW_DISK)
6710                 /* need to ensure md_delayed_delete() has completed */
6711                 flush_workqueue(md_misc_wq);
6712
6713         if (cmd == HOT_REMOVE_DISK)
6714                 /* need to ensure recovery thread has run */
6715                 wait_event_interruptible_timeout(mddev->sb_wait,
6716                                                  !test_bit(MD_RECOVERY_NEEDED,
6717                                                            &mddev->flags),
6718                                                  msecs_to_jiffies(5000));
6719         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6720                 /* Need to flush page cache, and ensure no-one else opens
6721                  * and writes
6722                  */
6723                 mutex_lock(&mddev->open_mutex);
6724                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6725                         mutex_unlock(&mddev->open_mutex);
6726                         err = -EBUSY;
6727                         goto out;
6728                 }
6729                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6730                 mutex_unlock(&mddev->open_mutex);
6731                 sync_blockdev(bdev);
6732         }
6733         err = mddev_lock(mddev);
6734         if (err) {
6735                 printk(KERN_INFO
6736                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6737                         err, cmd);
6738                 goto out;
6739         }
6740
6741         if (cmd == SET_ARRAY_INFO) {
6742                 mdu_array_info_t info;
6743                 if (!arg)
6744                         memset(&info, 0, sizeof(info));
6745                 else if (copy_from_user(&info, argp, sizeof(info))) {
6746                         err = -EFAULT;
6747                         goto unlock;
6748                 }
6749                 if (mddev->pers) {
6750                         err = update_array_info(mddev, &info);
6751                         if (err) {
6752                                 printk(KERN_WARNING "md: couldn't update"
6753                                        " array info. %d\n", err);
6754                                 goto unlock;
6755                         }
6756                         goto unlock;
6757                 }
6758                 if (!list_empty(&mddev->disks)) {
6759                         printk(KERN_WARNING
6760                                "md: array %s already has disks!\n",
6761                                mdname(mddev));
6762                         err = -EBUSY;
6763                         goto unlock;
6764                 }
6765                 if (mddev->raid_disks) {
6766                         printk(KERN_WARNING
6767                                "md: array %s already initialised!\n",
6768                                mdname(mddev));
6769                         err = -EBUSY;
6770                         goto unlock;
6771                 }
6772                 err = set_array_info(mddev, &info);
6773                 if (err) {
6774                         printk(KERN_WARNING "md: couldn't set"
6775                                " array info. %d\n", err);
6776                         goto unlock;
6777                 }
6778                 goto unlock;
6779         }
6780
6781         /*
6782          * Commands querying/configuring an existing array:
6783          */
6784         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6785          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6786         if ((!mddev->raid_disks && !mddev->external)
6787             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6788             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6789             && cmd != GET_BITMAP_FILE) {
6790                 err = -ENODEV;
6791                 goto unlock;
6792         }
6793
6794         /*
6795          * Commands even a read-only array can execute:
6796          */
6797         switch (cmd) {
6798         case RESTART_ARRAY_RW:
6799                 err = restart_array(mddev);
6800                 goto unlock;
6801
6802         case STOP_ARRAY:
6803                 err = do_md_stop(mddev, 0, bdev);
6804                 goto unlock;
6805
6806         case STOP_ARRAY_RO:
6807                 err = md_set_readonly(mddev, bdev);
6808                 goto unlock;
6809
6810         case HOT_REMOVE_DISK:
6811                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6812                 goto unlock;
6813
6814         case ADD_NEW_DISK:
6815                 /* We can support ADD_NEW_DISK on read-only arrays
6816                  * on if we are re-adding a preexisting device.
6817                  * So require mddev->pers and MD_DISK_SYNC.
6818                  */
6819                 if (mddev->pers) {
6820                         mdu_disk_info_t info;
6821                         if (copy_from_user(&info, argp, sizeof(info)))
6822                                 err = -EFAULT;
6823                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6824                                 /* Need to clear read-only for this */
6825                                 break;
6826                         else
6827                                 err = add_new_disk(mddev, &info);
6828                         goto unlock;
6829                 }
6830                 break;
6831
6832         case BLKROSET:
6833                 if (get_user(ro, (int __user *)(arg))) {
6834                         err = -EFAULT;
6835                         goto unlock;
6836                 }
6837                 err = -EINVAL;
6838
6839                 /* if the bdev is going readonly the value of mddev->ro
6840                  * does not matter, no writes are coming
6841                  */
6842                 if (ro)
6843                         goto unlock;
6844
6845                 /* are we are already prepared for writes? */
6846                 if (mddev->ro != 1)
6847                         goto unlock;
6848
6849                 /* transitioning to readauto need only happen for
6850                  * arrays that call md_write_start
6851                  */
6852                 if (mddev->pers) {
6853                         err = restart_array(mddev);
6854                         if (err == 0) {
6855                                 mddev->ro = 2;
6856                                 set_disk_ro(mddev->gendisk, 0);
6857                         }
6858                 }
6859                 goto unlock;
6860         }
6861
6862         /*
6863          * The remaining ioctls are changing the state of the
6864          * superblock, so we do not allow them on read-only arrays.
6865          */
6866         if (mddev->ro && mddev->pers) {
6867                 if (mddev->ro == 2) {
6868                         mddev->ro = 0;
6869                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6870                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6871                         /* mddev_unlock will wake thread */
6872                         /* If a device failed while we were read-only, we
6873                          * need to make sure the metadata is updated now.
6874                          */
6875                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6876                                 mddev_unlock(mddev);
6877                                 wait_event(mddev->sb_wait,
6878                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6879                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6880                                 mddev_lock_nointr(mddev);
6881                         }
6882                 } else {
6883                         err = -EROFS;
6884                         goto unlock;
6885                 }
6886         }
6887
6888         switch (cmd) {
6889         case ADD_NEW_DISK:
6890         {
6891                 mdu_disk_info_t info;
6892                 if (copy_from_user(&info, argp, sizeof(info)))
6893                         err = -EFAULT;
6894                 else
6895                         err = add_new_disk(mddev, &info);
6896                 goto unlock;
6897         }
6898
6899         case CLUSTERED_DISK_NACK:
6900                 if (mddev_is_clustered(mddev))
6901                         md_cluster_ops->new_disk_ack(mddev, false);
6902                 else
6903                         err = -EINVAL;
6904                 goto unlock;
6905
6906         case HOT_ADD_DISK:
6907                 err = hot_add_disk(mddev, new_decode_dev(arg));
6908                 goto unlock;
6909
6910         case RUN_ARRAY:
6911                 err = do_md_run(mddev);
6912                 goto unlock;
6913
6914         case SET_BITMAP_FILE:
6915                 err = set_bitmap_file(mddev, (int)arg);
6916                 goto unlock;
6917
6918         default:
6919                 err = -EINVAL;
6920                 goto unlock;
6921         }
6922
6923 unlock:
6924         if (mddev->hold_active == UNTIL_IOCTL &&
6925             err != -EINVAL)
6926                 mddev->hold_active = 0;
6927         mddev_unlock(mddev);
6928 out:
6929         return err;
6930 }
6931 #ifdef CONFIG_COMPAT
6932 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6933                     unsigned int cmd, unsigned long arg)
6934 {
6935         switch (cmd) {
6936         case HOT_REMOVE_DISK:
6937         case HOT_ADD_DISK:
6938         case SET_DISK_FAULTY:
6939         case SET_BITMAP_FILE:
6940                 /* These take in integer arg, do not convert */
6941                 break;
6942         default:
6943                 arg = (unsigned long)compat_ptr(arg);
6944                 break;
6945         }
6946
6947         return md_ioctl(bdev, mode, cmd, arg);
6948 }
6949 #endif /* CONFIG_COMPAT */
6950
6951 static int md_open(struct block_device *bdev, fmode_t mode)
6952 {
6953         /*
6954          * Succeed if we can lock the mddev, which confirms that
6955          * it isn't being stopped right now.
6956          */
6957         struct mddev *mddev = mddev_find(bdev->bd_dev);
6958         int err;
6959
6960         if (!mddev)
6961                 return -ENODEV;
6962
6963         if (mddev->gendisk != bdev->bd_disk) {
6964                 /* we are racing with mddev_put which is discarding this
6965                  * bd_disk.
6966                  */
6967                 mddev_put(mddev);
6968                 /* Wait until bdev->bd_disk is definitely gone */
6969                 flush_workqueue(md_misc_wq);
6970                 /* Then retry the open from the top */
6971                 return -ERESTARTSYS;
6972         }
6973         BUG_ON(mddev != bdev->bd_disk->private_data);
6974
6975         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6976                 goto out;
6977
6978         err = 0;
6979         atomic_inc(&mddev->openers);
6980         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6981         mutex_unlock(&mddev->open_mutex);
6982
6983         check_disk_change(bdev);
6984  out:
6985         return err;
6986 }
6987
6988 static void md_release(struct gendisk *disk, fmode_t mode)
6989 {
6990         struct mddev *mddev = disk->private_data;
6991
6992         BUG_ON(!mddev);
6993         atomic_dec(&mddev->openers);
6994         mddev_put(mddev);
6995 }
6996
6997 static int md_media_changed(struct gendisk *disk)
6998 {
6999         struct mddev *mddev = disk->private_data;
7000
7001         return mddev->changed;
7002 }
7003
7004 static int md_revalidate(struct gendisk *disk)
7005 {
7006         struct mddev *mddev = disk->private_data;
7007
7008         mddev->changed = 0;
7009         return 0;
7010 }
7011 static const struct block_device_operations md_fops =
7012 {
7013         .owner          = THIS_MODULE,
7014         .open           = md_open,
7015         .release        = md_release,
7016         .ioctl          = md_ioctl,
7017 #ifdef CONFIG_COMPAT
7018         .compat_ioctl   = md_compat_ioctl,
7019 #endif
7020         .getgeo         = md_getgeo,
7021         .media_changed  = md_media_changed,
7022         .revalidate_disk= md_revalidate,
7023 };
7024
7025 static int md_thread(void *arg)
7026 {
7027         struct md_thread *thread = arg;
7028
7029         /*
7030          * md_thread is a 'system-thread', it's priority should be very
7031          * high. We avoid resource deadlocks individually in each
7032          * raid personality. (RAID5 does preallocation) We also use RR and
7033          * the very same RT priority as kswapd, thus we will never get
7034          * into a priority inversion deadlock.
7035          *
7036          * we definitely have to have equal or higher priority than
7037          * bdflush, otherwise bdflush will deadlock if there are too
7038          * many dirty RAID5 blocks.
7039          */
7040
7041         allow_signal(SIGKILL);
7042         while (!kthread_should_stop()) {
7043
7044                 /* We need to wait INTERRUPTIBLE so that
7045                  * we don't add to the load-average.
7046                  * That means we need to be sure no signals are
7047                  * pending
7048                  */
7049                 if (signal_pending(current))
7050                         flush_signals(current);
7051
7052                 wait_event_interruptible_timeout
7053                         (thread->wqueue,
7054                          test_bit(THREAD_WAKEUP, &thread->flags)
7055                          || kthread_should_stop(),
7056                          thread->timeout);
7057
7058                 clear_bit(THREAD_WAKEUP, &thread->flags);
7059                 if (!kthread_should_stop())
7060                         thread->run(thread);
7061         }
7062
7063         return 0;
7064 }
7065
7066 void md_wakeup_thread(struct md_thread *thread)
7067 {
7068         if (thread) {
7069                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7070                 set_bit(THREAD_WAKEUP, &thread->flags);
7071                 wake_up(&thread->wqueue);
7072         }
7073 }
7074 EXPORT_SYMBOL(md_wakeup_thread);
7075
7076 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7077                 struct mddev *mddev, const char *name)
7078 {
7079         struct md_thread *thread;
7080
7081         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7082         if (!thread)
7083                 return NULL;
7084
7085         init_waitqueue_head(&thread->wqueue);
7086
7087         thread->run = run;
7088         thread->mddev = mddev;
7089         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7090         thread->tsk = kthread_run(md_thread, thread,
7091                                   "%s_%s",
7092                                   mdname(thread->mddev),
7093                                   name);
7094         if (IS_ERR(thread->tsk)) {
7095                 kfree(thread);
7096                 return NULL;
7097         }
7098         return thread;
7099 }
7100 EXPORT_SYMBOL(md_register_thread);
7101
7102 void md_unregister_thread(struct md_thread **threadp)
7103 {
7104         struct md_thread *thread = *threadp;
7105         if (!thread)
7106                 return;
7107         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7108         /* Locking ensures that mddev_unlock does not wake_up a
7109          * non-existent thread
7110          */
7111         spin_lock(&pers_lock);
7112         *threadp = NULL;
7113         spin_unlock(&pers_lock);
7114
7115         kthread_stop(thread->tsk);
7116         kfree(thread);
7117 }
7118 EXPORT_SYMBOL(md_unregister_thread);
7119
7120 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7121 {
7122         if (!rdev || test_bit(Faulty, &rdev->flags))
7123                 return;
7124
7125         if (!mddev->pers || !mddev->pers->error_handler)
7126                 return;
7127         mddev->pers->error_handler(mddev,rdev);
7128         if (mddev->degraded)
7129                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7130         sysfs_notify_dirent_safe(rdev->sysfs_state);
7131         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7132         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7133         md_wakeup_thread(mddev->thread);
7134         if (mddev->event_work.func)
7135                 queue_work(md_misc_wq, &mddev->event_work);
7136         md_new_event_inintr(mddev);
7137 }
7138 EXPORT_SYMBOL(md_error);
7139
7140 /* seq_file implementation /proc/mdstat */
7141
7142 static void status_unused(struct seq_file *seq)
7143 {
7144         int i = 0;
7145         struct md_rdev *rdev;
7146
7147         seq_printf(seq, "unused devices: ");
7148
7149         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7150                 char b[BDEVNAME_SIZE];
7151                 i++;
7152                 seq_printf(seq, "%s ",
7153                               bdevname(rdev->bdev,b));
7154         }
7155         if (!i)
7156                 seq_printf(seq, "<none>");
7157
7158         seq_printf(seq, "\n");
7159 }
7160
7161 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7162 {
7163         sector_t max_sectors, resync, res;
7164         unsigned long dt, db;
7165         sector_t rt;
7166         int scale;
7167         unsigned int per_milli;
7168
7169         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7170             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7171                 max_sectors = mddev->resync_max_sectors;
7172         else
7173                 max_sectors = mddev->dev_sectors;
7174
7175         resync = mddev->curr_resync;
7176         if (resync <= 3) {
7177                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7178                         /* Still cleaning up */
7179                         resync = max_sectors;
7180         } else
7181                 resync -= atomic_read(&mddev->recovery_active);
7182
7183         if (resync == 0) {
7184                 if (mddev->recovery_cp < MaxSector) {
7185                         seq_printf(seq, "\tresync=PENDING");
7186                         return 1;
7187                 }
7188                 return 0;
7189         }
7190         if (resync < 3) {
7191                 seq_printf(seq, "\tresync=DELAYED");
7192                 return 1;
7193         }
7194
7195         WARN_ON(max_sectors == 0);
7196         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7197          * in a sector_t, and (max_sectors>>scale) will fit in a
7198          * u32, as those are the requirements for sector_div.
7199          * Thus 'scale' must be at least 10
7200          */
7201         scale = 10;
7202         if (sizeof(sector_t) > sizeof(unsigned long)) {
7203                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7204                         scale++;
7205         }
7206         res = (resync>>scale)*1000;
7207         sector_div(res, (u32)((max_sectors>>scale)+1));
7208
7209         per_milli = res;
7210         {
7211                 int i, x = per_milli/50, y = 20-x;
7212                 seq_printf(seq, "[");
7213                 for (i = 0; i < x; i++)
7214                         seq_printf(seq, "=");
7215                 seq_printf(seq, ">");
7216                 for (i = 0; i < y; i++)
7217                         seq_printf(seq, ".");
7218                 seq_printf(seq, "] ");
7219         }
7220         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7221                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7222                     "reshape" :
7223                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7224                      "check" :
7225                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7226                       "resync" : "recovery"))),
7227                    per_milli/10, per_milli % 10,
7228                    (unsigned long long) resync/2,
7229                    (unsigned long long) max_sectors/2);
7230
7231         /*
7232          * dt: time from mark until now
7233          * db: blocks written from mark until now
7234          * rt: remaining time
7235          *
7236          * rt is a sector_t, so could be 32bit or 64bit.
7237          * So we divide before multiply in case it is 32bit and close
7238          * to the limit.
7239          * We scale the divisor (db) by 32 to avoid losing precision
7240          * near the end of resync when the number of remaining sectors
7241          * is close to 'db'.
7242          * We then divide rt by 32 after multiplying by db to compensate.
7243          * The '+1' avoids division by zero if db is very small.
7244          */
7245         dt = ((jiffies - mddev->resync_mark) / HZ);
7246         if (!dt) dt++;
7247         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7248                 - mddev->resync_mark_cnt;
7249
7250         rt = max_sectors - resync;    /* number of remaining sectors */
7251         sector_div(rt, db/32+1);
7252         rt *= dt;
7253         rt >>= 5;
7254
7255         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7256                    ((unsigned long)rt % 60)/6);
7257
7258         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7259         return 1;
7260 }
7261
7262 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7263 {
7264         struct list_head *tmp;
7265         loff_t l = *pos;
7266         struct mddev *mddev;
7267
7268         if (l >= 0x10000)
7269                 return NULL;
7270         if (!l--)
7271                 /* header */
7272                 return (void*)1;
7273
7274         spin_lock(&all_mddevs_lock);
7275         list_for_each(tmp,&all_mddevs)
7276                 if (!l--) {
7277                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7278                         mddev_get(mddev);
7279                         spin_unlock(&all_mddevs_lock);
7280                         return mddev;
7281                 }
7282         spin_unlock(&all_mddevs_lock);
7283         if (!l--)
7284                 return (void*)2;/* tail */
7285         return NULL;
7286 }
7287
7288 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7289 {
7290         struct list_head *tmp;
7291         struct mddev *next_mddev, *mddev = v;
7292
7293         ++*pos;
7294         if (v == (void*)2)
7295                 return NULL;
7296
7297         spin_lock(&all_mddevs_lock);
7298         if (v == (void*)1)
7299                 tmp = all_mddevs.next;
7300         else
7301                 tmp = mddev->all_mddevs.next;
7302         if (tmp != &all_mddevs)
7303                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7304         else {
7305                 next_mddev = (void*)2;
7306                 *pos = 0x10000;
7307         }
7308         spin_unlock(&all_mddevs_lock);
7309
7310         if (v != (void*)1)
7311                 mddev_put(mddev);
7312         return next_mddev;
7313
7314 }
7315
7316 static void md_seq_stop(struct seq_file *seq, void *v)
7317 {
7318         struct mddev *mddev = v;
7319
7320         if (mddev && v != (void*)1 && v != (void*)2)
7321                 mddev_put(mddev);
7322 }
7323
7324 static int md_seq_show(struct seq_file *seq, void *v)
7325 {
7326         struct mddev *mddev = v;
7327         sector_t sectors;
7328         struct md_rdev *rdev;
7329
7330         if (v == (void*)1) {
7331                 struct md_personality *pers;
7332                 seq_printf(seq, "Personalities : ");
7333                 spin_lock(&pers_lock);
7334                 list_for_each_entry(pers, &pers_list, list)
7335                         seq_printf(seq, "[%s] ", pers->name);
7336
7337                 spin_unlock(&pers_lock);
7338                 seq_printf(seq, "\n");
7339                 seq->poll_event = atomic_read(&md_event_count);
7340                 return 0;
7341         }
7342         if (v == (void*)2) {
7343                 status_unused(seq);
7344                 return 0;
7345         }
7346
7347         spin_lock(&mddev->lock);
7348         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7349                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7350                                                 mddev->pers ? "" : "in");
7351                 if (mddev->pers) {
7352                         if (mddev->ro==1)
7353                                 seq_printf(seq, " (read-only)");
7354                         if (mddev->ro==2)
7355                                 seq_printf(seq, " (auto-read-only)");
7356                         seq_printf(seq, " %s", mddev->pers->name);
7357                 }
7358
7359                 sectors = 0;
7360                 rcu_read_lock();
7361                 rdev_for_each_rcu(rdev, mddev) {
7362                         char b[BDEVNAME_SIZE];
7363                         seq_printf(seq, " %s[%d]",
7364                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7365                         if (test_bit(WriteMostly, &rdev->flags))
7366                                 seq_printf(seq, "(W)");
7367                         if (test_bit(Journal, &rdev->flags))
7368                                 seq_printf(seq, "(J)");
7369                         if (test_bit(Faulty, &rdev->flags)) {
7370                                 seq_printf(seq, "(F)");
7371                                 continue;
7372                         }
7373                         if (rdev->raid_disk < 0)
7374                                 seq_printf(seq, "(S)"); /* spare */
7375                         if (test_bit(Replacement, &rdev->flags))
7376                                 seq_printf(seq, "(R)");
7377                         sectors += rdev->sectors;
7378                 }
7379                 rcu_read_unlock();
7380
7381                 if (!list_empty(&mddev->disks)) {
7382                         if (mddev->pers)
7383                                 seq_printf(seq, "\n      %llu blocks",
7384                                            (unsigned long long)
7385                                            mddev->array_sectors / 2);
7386                         else
7387                                 seq_printf(seq, "\n      %llu blocks",
7388                                            (unsigned long long)sectors / 2);
7389                 }
7390                 if (mddev->persistent) {
7391                         if (mddev->major_version != 0 ||
7392                             mddev->minor_version != 90) {
7393                                 seq_printf(seq," super %d.%d",
7394                                            mddev->major_version,
7395                                            mddev->minor_version);
7396                         }
7397                 } else if (mddev->external)
7398                         seq_printf(seq, " super external:%s",
7399                                    mddev->metadata_type);
7400                 else
7401                         seq_printf(seq, " super non-persistent");
7402
7403                 if (mddev->pers) {
7404                         mddev->pers->status(seq, mddev);
7405                         seq_printf(seq, "\n      ");
7406                         if (mddev->pers->sync_request) {
7407                                 if (status_resync(seq, mddev))
7408                                         seq_printf(seq, "\n      ");
7409                         }
7410                 } else
7411                         seq_printf(seq, "\n       ");
7412
7413                 bitmap_status(seq, mddev->bitmap);
7414
7415                 seq_printf(seq, "\n");
7416         }
7417         spin_unlock(&mddev->lock);
7418
7419         return 0;
7420 }
7421
7422 static const struct seq_operations md_seq_ops = {
7423         .start  = md_seq_start,
7424         .next   = md_seq_next,
7425         .stop   = md_seq_stop,
7426         .show   = md_seq_show,
7427 };
7428
7429 static int md_seq_open(struct inode *inode, struct file *file)
7430 {
7431         struct seq_file *seq;
7432         int error;
7433
7434         error = seq_open(file, &md_seq_ops);
7435         if (error)
7436                 return error;
7437
7438         seq = file->private_data;
7439         seq->poll_event = atomic_read(&md_event_count);
7440         return error;
7441 }
7442
7443 static int md_unloading;
7444 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7445 {
7446         struct seq_file *seq = filp->private_data;
7447         int mask;
7448
7449         if (md_unloading)
7450                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7451         poll_wait(filp, &md_event_waiters, wait);
7452
7453         /* always allow read */
7454         mask = POLLIN | POLLRDNORM;
7455
7456         if (seq->poll_event != atomic_read(&md_event_count))
7457                 mask |= POLLERR | POLLPRI;
7458         return mask;
7459 }
7460
7461 static const struct file_operations md_seq_fops = {
7462         .owner          = THIS_MODULE,
7463         .open           = md_seq_open,
7464         .read           = seq_read,
7465         .llseek         = seq_lseek,
7466         .release        = seq_release_private,
7467         .poll           = mdstat_poll,
7468 };
7469
7470 int register_md_personality(struct md_personality *p)
7471 {
7472         printk(KERN_INFO "md: %s personality registered for level %d\n",
7473                                                 p->name, p->level);
7474         spin_lock(&pers_lock);
7475         list_add_tail(&p->list, &pers_list);
7476         spin_unlock(&pers_lock);
7477         return 0;
7478 }
7479 EXPORT_SYMBOL(register_md_personality);
7480
7481 int unregister_md_personality(struct md_personality *p)
7482 {
7483         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7484         spin_lock(&pers_lock);
7485         list_del_init(&p->list);
7486         spin_unlock(&pers_lock);
7487         return 0;
7488 }
7489 EXPORT_SYMBOL(unregister_md_personality);
7490
7491 int register_md_cluster_operations(struct md_cluster_operations *ops,
7492                                    struct module *module)
7493 {
7494         int ret = 0;
7495         spin_lock(&pers_lock);
7496         if (md_cluster_ops != NULL)
7497                 ret = -EALREADY;
7498         else {
7499                 md_cluster_ops = ops;
7500                 md_cluster_mod = module;
7501         }
7502         spin_unlock(&pers_lock);
7503         return ret;
7504 }
7505 EXPORT_SYMBOL(register_md_cluster_operations);
7506
7507 int unregister_md_cluster_operations(void)
7508 {
7509         spin_lock(&pers_lock);
7510         md_cluster_ops = NULL;
7511         spin_unlock(&pers_lock);
7512         return 0;
7513 }
7514 EXPORT_SYMBOL(unregister_md_cluster_operations);
7515
7516 int md_setup_cluster(struct mddev *mddev, int nodes)
7517 {
7518         int err;
7519
7520         err = request_module("md-cluster");
7521         if (err) {
7522                 pr_err("md-cluster module not found.\n");
7523                 return -ENOENT;
7524         }
7525
7526         spin_lock(&pers_lock);
7527         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7528                 spin_unlock(&pers_lock);
7529                 return -ENOENT;
7530         }
7531         spin_unlock(&pers_lock);
7532
7533         return md_cluster_ops->join(mddev, nodes);
7534 }
7535
7536 void md_cluster_stop(struct mddev *mddev)
7537 {
7538         if (!md_cluster_ops)
7539                 return;
7540         md_cluster_ops->leave(mddev);
7541         module_put(md_cluster_mod);
7542 }
7543
7544 static int is_mddev_idle(struct mddev *mddev, int init)
7545 {
7546         struct md_rdev *rdev;
7547         int idle;
7548         int curr_events;
7549
7550         idle = 1;
7551         rcu_read_lock();
7552         rdev_for_each_rcu(rdev, mddev) {
7553                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7554                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7555                               (int)part_stat_read(&disk->part0, sectors[1]) -
7556                               atomic_read(&disk->sync_io);
7557                 /* sync IO will cause sync_io to increase before the disk_stats
7558                  * as sync_io is counted when a request starts, and
7559                  * disk_stats is counted when it completes.
7560                  * So resync activity will cause curr_events to be smaller than
7561                  * when there was no such activity.
7562                  * non-sync IO will cause disk_stat to increase without
7563                  * increasing sync_io so curr_events will (eventually)
7564                  * be larger than it was before.  Once it becomes
7565                  * substantially larger, the test below will cause
7566                  * the array to appear non-idle, and resync will slow
7567                  * down.
7568                  * If there is a lot of outstanding resync activity when
7569                  * we set last_event to curr_events, then all that activity
7570                  * completing might cause the array to appear non-idle
7571                  * and resync will be slowed down even though there might
7572                  * not have been non-resync activity.  This will only
7573                  * happen once though.  'last_events' will soon reflect
7574                  * the state where there is little or no outstanding
7575                  * resync requests, and further resync activity will
7576                  * always make curr_events less than last_events.
7577                  *
7578                  */
7579                 if (init || curr_events - rdev->last_events > 64) {
7580                         rdev->last_events = curr_events;
7581                         idle = 0;
7582                 }
7583         }
7584         rcu_read_unlock();
7585         return idle;
7586 }
7587
7588 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7589 {
7590         /* another "blocks" (512byte) blocks have been synced */
7591         atomic_sub(blocks, &mddev->recovery_active);
7592         wake_up(&mddev->recovery_wait);
7593         if (!ok) {
7594                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7595                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7596                 md_wakeup_thread(mddev->thread);
7597                 // stop recovery, signal do_sync ....
7598         }
7599 }
7600 EXPORT_SYMBOL(md_done_sync);
7601
7602 /* md_write_start(mddev, bi)
7603  * If we need to update some array metadata (e.g. 'active' flag
7604  * in superblock) before writing, schedule a superblock update
7605  * and wait for it to complete.
7606  */
7607 void md_write_start(struct mddev *mddev, struct bio *bi)
7608 {
7609         int did_change = 0;
7610         if (bio_data_dir(bi) != WRITE)
7611                 return;
7612
7613         BUG_ON(mddev->ro == 1);
7614         if (mddev->ro == 2) {
7615                 /* need to switch to read/write */
7616                 mddev->ro = 0;
7617                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7618                 md_wakeup_thread(mddev->thread);
7619                 md_wakeup_thread(mddev->sync_thread);
7620                 did_change = 1;
7621         }
7622         atomic_inc(&mddev->writes_pending);
7623         if (mddev->safemode == 1)
7624                 mddev->safemode = 0;
7625         if (mddev->in_sync) {
7626                 spin_lock(&mddev->lock);
7627                 if (mddev->in_sync) {
7628                         mddev->in_sync = 0;
7629                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7630                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7631                         md_wakeup_thread(mddev->thread);
7632                         did_change = 1;
7633                 }
7634                 spin_unlock(&mddev->lock);
7635         }
7636         if (did_change)
7637                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7638         wait_event(mddev->sb_wait,
7639                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7640 }
7641 EXPORT_SYMBOL(md_write_start);
7642
7643 void md_write_end(struct mddev *mddev)
7644 {
7645         if (atomic_dec_and_test(&mddev->writes_pending)) {
7646                 if (mddev->safemode == 2)
7647                         md_wakeup_thread(mddev->thread);
7648                 else if (mddev->safemode_delay)
7649                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7650         }
7651 }
7652 EXPORT_SYMBOL(md_write_end);
7653
7654 /* md_allow_write(mddev)
7655  * Calling this ensures that the array is marked 'active' so that writes
7656  * may proceed without blocking.  It is important to call this before
7657  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7658  * Must be called with mddev_lock held.
7659  *
7660  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7661  * is dropped, so return -EAGAIN after notifying userspace.
7662  */
7663 int md_allow_write(struct mddev *mddev)
7664 {
7665         if (!mddev->pers)
7666                 return 0;
7667         if (mddev->ro)
7668                 return 0;
7669         if (!mddev->pers->sync_request)
7670                 return 0;
7671
7672         spin_lock(&mddev->lock);
7673         if (mddev->in_sync) {
7674                 mddev->in_sync = 0;
7675                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7676                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7677                 if (mddev->safemode_delay &&
7678                     mddev->safemode == 0)
7679                         mddev->safemode = 1;
7680                 spin_unlock(&mddev->lock);
7681                 md_update_sb(mddev, 0);
7682                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7683         } else
7684                 spin_unlock(&mddev->lock);
7685
7686         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7687                 return -EAGAIN;
7688         else
7689                 return 0;
7690 }
7691 EXPORT_SYMBOL_GPL(md_allow_write);
7692
7693 #define SYNC_MARKS      10
7694 #define SYNC_MARK_STEP  (3*HZ)
7695 #define UPDATE_FREQUENCY (5*60*HZ)
7696 void md_do_sync(struct md_thread *thread)
7697 {
7698         struct mddev *mddev = thread->mddev;
7699         struct mddev *mddev2;
7700         unsigned int currspeed = 0,
7701                  window;
7702         sector_t max_sectors,j, io_sectors, recovery_done;
7703         unsigned long mark[SYNC_MARKS];
7704         unsigned long update_time;
7705         sector_t mark_cnt[SYNC_MARKS];
7706         int last_mark,m;
7707         struct list_head *tmp;
7708         sector_t last_check;
7709         int skipped = 0;
7710         struct md_rdev *rdev;
7711         char *desc, *action = NULL;
7712         struct blk_plug plug;
7713         bool cluster_resync_finished = false;
7714
7715         /* just incase thread restarts... */
7716         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7717                 return;
7718         if (mddev->ro) {/* never try to sync a read-only array */
7719                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7720                 return;
7721         }
7722
7723         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7724                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7725                         desc = "data-check";
7726                         action = "check";
7727                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7728                         desc = "requested-resync";
7729                         action = "repair";
7730                 } else
7731                         desc = "resync";
7732         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7733                 desc = "reshape";
7734         else
7735                 desc = "recovery";
7736
7737         mddev->last_sync_action = action ?: desc;
7738
7739         /* we overload curr_resync somewhat here.
7740          * 0 == not engaged in resync at all
7741          * 2 == checking that there is no conflict with another sync
7742          * 1 == like 2, but have yielded to allow conflicting resync to
7743          *              commense
7744          * other == active in resync - this many blocks
7745          *
7746          * Before starting a resync we must have set curr_resync to
7747          * 2, and then checked that every "conflicting" array has curr_resync
7748          * less than ours.  When we find one that is the same or higher
7749          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7750          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7751          * This will mean we have to start checking from the beginning again.
7752          *
7753          */
7754
7755         do {
7756                 mddev->curr_resync = 2;
7757
7758         try_again:
7759                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7760                         goto skip;
7761                 for_each_mddev(mddev2, tmp) {
7762                         if (mddev2 == mddev)
7763                                 continue;
7764                         if (!mddev->parallel_resync
7765                         &&  mddev2->curr_resync
7766                         &&  match_mddev_units(mddev, mddev2)) {
7767                                 DEFINE_WAIT(wq);
7768                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7769                                         /* arbitrarily yield */
7770                                         mddev->curr_resync = 1;
7771                                         wake_up(&resync_wait);
7772                                 }
7773                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7774                                         /* no need to wait here, we can wait the next
7775                                          * time 'round when curr_resync == 2
7776                                          */
7777                                         continue;
7778                                 /* We need to wait 'interruptible' so as not to
7779                                  * contribute to the load average, and not to
7780                                  * be caught by 'softlockup'
7781                                  */
7782                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7783                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7784                                     mddev2->curr_resync >= mddev->curr_resync) {
7785                                         printk(KERN_INFO "md: delaying %s of %s"
7786                                                " until %s has finished (they"
7787                                                " share one or more physical units)\n",
7788                                                desc, mdname(mddev), mdname(mddev2));
7789                                         mddev_put(mddev2);
7790                                         if (signal_pending(current))
7791                                                 flush_signals(current);
7792                                         schedule();
7793                                         finish_wait(&resync_wait, &wq);
7794                                         goto try_again;
7795                                 }
7796                                 finish_wait(&resync_wait, &wq);
7797                         }
7798                 }
7799         } while (mddev->curr_resync < 2);
7800
7801         j = 0;
7802         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7803                 /* resync follows the size requested by the personality,
7804                  * which defaults to physical size, but can be virtual size
7805                  */
7806                 max_sectors = mddev->resync_max_sectors;
7807                 atomic64_set(&mddev->resync_mismatches, 0);
7808                 /* we don't use the checkpoint if there's a bitmap */
7809                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7810                         j = mddev->resync_min;
7811                 else if (!mddev->bitmap)
7812                         j = mddev->recovery_cp;
7813
7814         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7815                 max_sectors = mddev->resync_max_sectors;
7816         else {
7817                 /* recovery follows the physical size of devices */
7818                 max_sectors = mddev->dev_sectors;
7819                 j = MaxSector;
7820                 rcu_read_lock();
7821                 rdev_for_each_rcu(rdev, mddev)
7822                         if (rdev->raid_disk >= 0 &&
7823                             !test_bit(Faulty, &rdev->flags) &&
7824                             !test_bit(In_sync, &rdev->flags) &&
7825                             rdev->recovery_offset < j)
7826                                 j = rdev->recovery_offset;
7827                 rcu_read_unlock();
7828
7829                 /* If there is a bitmap, we need to make sure all
7830                  * writes that started before we added a spare
7831                  * complete before we start doing a recovery.
7832                  * Otherwise the write might complete and (via
7833                  * bitmap_endwrite) set a bit in the bitmap after the
7834                  * recovery has checked that bit and skipped that
7835                  * region.
7836                  */
7837                 if (mddev->bitmap) {
7838                         mddev->pers->quiesce(mddev, 1);
7839                         mddev->pers->quiesce(mddev, 0);
7840                 }
7841         }
7842
7843         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7844         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7845                 " %d KB/sec/disk.\n", speed_min(mddev));
7846         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7847                "(but not more than %d KB/sec) for %s.\n",
7848                speed_max(mddev), desc);
7849
7850         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7851
7852         io_sectors = 0;
7853         for (m = 0; m < SYNC_MARKS; m++) {
7854                 mark[m] = jiffies;
7855                 mark_cnt[m] = io_sectors;
7856         }
7857         last_mark = 0;
7858         mddev->resync_mark = mark[last_mark];
7859         mddev->resync_mark_cnt = mark_cnt[last_mark];
7860
7861         /*
7862          * Tune reconstruction:
7863          */
7864         window = 32*(PAGE_SIZE/512);
7865         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7866                 window/2, (unsigned long long)max_sectors/2);
7867
7868         atomic_set(&mddev->recovery_active, 0);
7869         last_check = 0;
7870
7871         if (j>2) {
7872                 printk(KERN_INFO
7873                        "md: resuming %s of %s from checkpoint.\n",
7874                        desc, mdname(mddev));
7875                 mddev->curr_resync = j;
7876         } else
7877                 mddev->curr_resync = 3; /* no longer delayed */
7878         mddev->curr_resync_completed = j;
7879         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7880         md_new_event(mddev);
7881         update_time = jiffies;
7882
7883         blk_start_plug(&plug);
7884         while (j < max_sectors) {
7885                 sector_t sectors;
7886
7887                 skipped = 0;
7888
7889                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7890                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7891                       (mddev->curr_resync - mddev->curr_resync_completed)
7892                       > (max_sectors >> 4)) ||
7893                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7894                      (j - mddev->curr_resync_completed)*2
7895                      >= mddev->resync_max - mddev->curr_resync_completed ||
7896                      mddev->curr_resync_completed > mddev->resync_max
7897                             )) {
7898                         /* time to update curr_resync_completed */
7899                         wait_event(mddev->recovery_wait,
7900                                    atomic_read(&mddev->recovery_active) == 0);
7901                         mddev->curr_resync_completed = j;
7902                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7903                             j > mddev->recovery_cp)
7904                                 mddev->recovery_cp = j;
7905                         update_time = jiffies;
7906                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7907                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7908                 }
7909
7910                 while (j >= mddev->resync_max &&
7911                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7912                         /* As this condition is controlled by user-space,
7913                          * we can block indefinitely, so use '_interruptible'
7914                          * to avoid triggering warnings.
7915                          */
7916                         flush_signals(current); /* just in case */
7917                         wait_event_interruptible(mddev->recovery_wait,
7918                                                  mddev->resync_max > j
7919                                                  || test_bit(MD_RECOVERY_INTR,
7920                                                              &mddev->recovery));
7921                 }
7922
7923                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7924                         break;
7925
7926                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7927                 if (sectors == 0) {
7928                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7929                         break;
7930                 }
7931
7932                 if (!skipped) { /* actual IO requested */
7933                         io_sectors += sectors;
7934                         atomic_add(sectors, &mddev->recovery_active);
7935                 }
7936
7937                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7938                         break;
7939
7940                 j += sectors;
7941                 if (j > max_sectors)
7942                         /* when skipping, extra large numbers can be returned. */
7943                         j = max_sectors;
7944                 if (j > 2)
7945                         mddev->curr_resync = j;
7946                 mddev->curr_mark_cnt = io_sectors;
7947                 if (last_check == 0)
7948                         /* this is the earliest that rebuild will be
7949                          * visible in /proc/mdstat
7950                          */
7951                         md_new_event(mddev);
7952
7953                 if (last_check + window > io_sectors || j == max_sectors)
7954                         continue;
7955
7956                 last_check = io_sectors;
7957         repeat:
7958                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7959                         /* step marks */
7960                         int next = (last_mark+1) % SYNC_MARKS;
7961
7962                         mddev->resync_mark = mark[next];
7963                         mddev->resync_mark_cnt = mark_cnt[next];
7964                         mark[next] = jiffies;
7965                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7966                         last_mark = next;
7967                 }
7968
7969                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7970                         break;
7971
7972                 /*
7973                  * this loop exits only if either when we are slower than
7974                  * the 'hard' speed limit, or the system was IO-idle for
7975                  * a jiffy.
7976                  * the system might be non-idle CPU-wise, but we only care
7977                  * about not overloading the IO subsystem. (things like an
7978                  * e2fsck being done on the RAID array should execute fast)
7979                  */
7980                 cond_resched();
7981
7982                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7983                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7984                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7985
7986                 if (currspeed > speed_min(mddev)) {
7987                         if (currspeed > speed_max(mddev)) {
7988                                 msleep(500);
7989                                 goto repeat;
7990                         }
7991                         if (!is_mddev_idle(mddev, 0)) {
7992                                 /*
7993                                  * Give other IO more of a chance.
7994                                  * The faster the devices, the less we wait.
7995                                  */
7996                                 wait_event(mddev->recovery_wait,
7997                                            !atomic_read(&mddev->recovery_active));
7998                         }
7999                 }
8000         }
8001         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8002                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8003                ? "interrupted" : "done");
8004         /*
8005          * this also signals 'finished resyncing' to md_stop
8006          */
8007         blk_finish_plug(&plug);
8008         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8009
8010         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8011             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8012             mddev->curr_resync > 2) {
8013                 mddev->curr_resync_completed = mddev->curr_resync;
8014                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8015         }
8016         /* tell personality and other nodes that we are finished */
8017         if (mddev_is_clustered(mddev)) {
8018                 md_cluster_ops->resync_finish(mddev);
8019                 cluster_resync_finished = true;
8020         }
8021         mddev->pers->sync_request(mddev, max_sectors, &skipped);
8022
8023         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8024             mddev->curr_resync > 2) {
8025                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8026                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8027                                 if (mddev->curr_resync >= mddev->recovery_cp) {
8028                                         printk(KERN_INFO
8029                                                "md: checkpointing %s of %s.\n",
8030                                                desc, mdname(mddev));
8031                                         if (test_bit(MD_RECOVERY_ERROR,
8032                                                 &mddev->recovery))
8033                                                 mddev->recovery_cp =
8034                                                         mddev->curr_resync_completed;
8035                                         else
8036                                                 mddev->recovery_cp =
8037                                                         mddev->curr_resync;
8038                                 }
8039                         } else
8040                                 mddev->recovery_cp = MaxSector;
8041                 } else {
8042                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8043                                 mddev->curr_resync = MaxSector;
8044                         rcu_read_lock();
8045                         rdev_for_each_rcu(rdev, mddev)
8046                                 if (rdev->raid_disk >= 0 &&
8047                                     mddev->delta_disks >= 0 &&
8048                                     !test_bit(Faulty, &rdev->flags) &&
8049                                     !test_bit(In_sync, &rdev->flags) &&
8050                                     rdev->recovery_offset < mddev->curr_resync)
8051                                         rdev->recovery_offset = mddev->curr_resync;
8052                         rcu_read_unlock();
8053                 }
8054         }
8055  skip:
8056         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8057
8058         if (mddev_is_clustered(mddev) &&
8059             test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8060             !cluster_resync_finished)
8061                 md_cluster_ops->resync_finish(mddev);
8062
8063         spin_lock(&mddev->lock);
8064         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8065                 /* We completed so min/max setting can be forgotten if used. */
8066                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8067                         mddev->resync_min = 0;
8068                 mddev->resync_max = MaxSector;
8069         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8070                 mddev->resync_min = mddev->curr_resync_completed;
8071         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8072         mddev->curr_resync = 0;
8073         spin_unlock(&mddev->lock);
8074
8075         wake_up(&resync_wait);
8076         md_wakeup_thread(mddev->thread);
8077         return;
8078 }
8079 EXPORT_SYMBOL_GPL(md_do_sync);
8080
8081 static int remove_and_add_spares(struct mddev *mddev,
8082                                  struct md_rdev *this)
8083 {
8084         struct md_rdev *rdev;
8085         int spares = 0;
8086         int removed = 0;
8087
8088         rdev_for_each(rdev, mddev)
8089                 if ((this == NULL || rdev == this) &&
8090                     rdev->raid_disk >= 0 &&
8091                     !test_bit(Blocked, &rdev->flags) &&
8092                     (test_bit(Faulty, &rdev->flags) ||
8093                      ! test_bit(In_sync, &rdev->flags)) &&
8094                     atomic_read(&rdev->nr_pending)==0) {
8095                         if (mddev->pers->hot_remove_disk(
8096                                     mddev, rdev) == 0) {
8097                                 sysfs_unlink_rdev(mddev, rdev);
8098                                 rdev->raid_disk = -1;
8099                                 removed++;
8100                         }
8101                 }
8102         if (removed && mddev->kobj.sd)
8103                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8104
8105         if (this && removed)
8106                 goto no_add;
8107
8108         rdev_for_each(rdev, mddev) {
8109                 if (this && this != rdev)
8110                         continue;
8111                 if (test_bit(Candidate, &rdev->flags))
8112                         continue;
8113                 if (rdev->raid_disk >= 0 &&
8114                     !test_bit(In_sync, &rdev->flags) &&
8115                     !test_bit(Faulty, &rdev->flags))
8116                         spares++;
8117                 if (rdev->raid_disk >= 0)
8118                         continue;
8119                 if (test_bit(Faulty, &rdev->flags))
8120                         continue;
8121                 if (test_bit(Journal, &rdev->flags))
8122                         continue;
8123                 if (mddev->ro &&
8124                     ! (rdev->saved_raid_disk >= 0 &&
8125                        !test_bit(Bitmap_sync, &rdev->flags)))
8126                         continue;
8127
8128                 if (rdev->saved_raid_disk < 0)
8129                         rdev->recovery_offset = 0;
8130                 if (mddev->pers->
8131                     hot_add_disk(mddev, rdev) == 0) {
8132                         if (sysfs_link_rdev(mddev, rdev))
8133                                 /* failure here is OK */;
8134                         spares++;
8135                         md_new_event(mddev);
8136                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8137                 }
8138         }
8139 no_add:
8140         if (removed)
8141                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8142         return spares;
8143 }
8144
8145 static void md_start_sync(struct work_struct *ws)
8146 {
8147         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8148         int ret = 0;
8149
8150         if (mddev_is_clustered(mddev)) {
8151                 ret = md_cluster_ops->resync_start(mddev);
8152                 if (ret) {
8153                         mddev->sync_thread = NULL;
8154                         goto out;
8155                 }
8156         }
8157
8158         mddev->sync_thread = md_register_thread(md_do_sync,
8159                                                 mddev,
8160                                                 "resync");
8161 out:
8162         if (!mddev->sync_thread) {
8163                 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8164                         printk(KERN_ERR "%s: could not start resync"
8165                                " thread...\n",
8166                                mdname(mddev));
8167                 /* leave the spares where they are, it shouldn't hurt */
8168                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8169                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8170                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8171                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8172                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8173                 wake_up(&resync_wait);
8174                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8175                                        &mddev->recovery))
8176                         if (mddev->sysfs_action)
8177                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8178         } else
8179                 md_wakeup_thread(mddev->sync_thread);
8180         sysfs_notify_dirent_safe(mddev->sysfs_action);
8181         md_new_event(mddev);
8182 }
8183
8184 /*
8185  * This routine is regularly called by all per-raid-array threads to
8186  * deal with generic issues like resync and super-block update.
8187  * Raid personalities that don't have a thread (linear/raid0) do not
8188  * need this as they never do any recovery or update the superblock.
8189  *
8190  * It does not do any resync itself, but rather "forks" off other threads
8191  * to do that as needed.
8192  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8193  * "->recovery" and create a thread at ->sync_thread.
8194  * When the thread finishes it sets MD_RECOVERY_DONE
8195  * and wakeups up this thread which will reap the thread and finish up.
8196  * This thread also removes any faulty devices (with nr_pending == 0).
8197  *
8198  * The overall approach is:
8199  *  1/ if the superblock needs updating, update it.
8200  *  2/ If a recovery thread is running, don't do anything else.
8201  *  3/ If recovery has finished, clean up, possibly marking spares active.
8202  *  4/ If there are any faulty devices, remove them.
8203  *  5/ If array is degraded, try to add spares devices
8204  *  6/ If array has spares or is not in-sync, start a resync thread.
8205  */
8206 void md_check_recovery(struct mddev *mddev)
8207 {
8208         if (mddev->suspended)
8209                 return;
8210
8211         if (mddev->bitmap)
8212                 bitmap_daemon_work(mddev);
8213
8214         if (signal_pending(current)) {
8215                 if (mddev->pers->sync_request && !mddev->external) {
8216                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8217                                mdname(mddev));
8218                         mddev->safemode = 2;
8219                 }
8220                 flush_signals(current);
8221         }
8222
8223         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8224                 return;
8225         if ( ! (
8226                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8227                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8228                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8229                 (mddev->external == 0 && mddev->safemode == 1) ||
8230                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8231                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8232                 ))
8233                 return;
8234
8235         if (mddev_trylock(mddev)) {
8236                 int spares = 0;
8237
8238                 if (mddev->ro) {
8239                         struct md_rdev *rdev;
8240                         if (!mddev->external && mddev->in_sync)
8241                                 /* 'Blocked' flag not needed as failed devices
8242                                  * will be recorded if array switched to read/write.
8243                                  * Leaving it set will prevent the device
8244                                  * from being removed.
8245                                  */
8246                                 rdev_for_each(rdev, mddev)
8247                                         clear_bit(Blocked, &rdev->flags);
8248                         /* On a read-only array we can:
8249                          * - remove failed devices
8250                          * - add already-in_sync devices if the array itself
8251                          *   is in-sync.
8252                          * As we only add devices that are already in-sync,
8253                          * we can activate the spares immediately.
8254                          */
8255                         remove_and_add_spares(mddev, NULL);
8256                         /* There is no thread, but we need to call
8257                          * ->spare_active and clear saved_raid_disk
8258                          */
8259                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8260                         md_reap_sync_thread(mddev);
8261                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8262                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8263                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8264                         goto unlock;
8265                 }
8266
8267                 if (!mddev->external) {
8268                         int did_change = 0;
8269                         spin_lock(&mddev->lock);
8270                         if (mddev->safemode &&
8271                             !atomic_read(&mddev->writes_pending) &&
8272                             !mddev->in_sync &&
8273                             mddev->recovery_cp == MaxSector) {
8274                                 mddev->in_sync = 1;
8275                                 did_change = 1;
8276                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8277                         }
8278                         if (mddev->safemode == 1)
8279                                 mddev->safemode = 0;
8280                         spin_unlock(&mddev->lock);
8281                         if (did_change)
8282                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8283                 }
8284
8285                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8286                         md_update_sb(mddev, 0);
8287
8288                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8289                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8290                         /* resync/recovery still happening */
8291                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8292                         goto unlock;
8293                 }
8294                 if (mddev->sync_thread) {
8295                         md_reap_sync_thread(mddev);
8296                         goto unlock;
8297                 }
8298                 /* Set RUNNING before clearing NEEDED to avoid
8299                  * any transients in the value of "sync_action".
8300                  */
8301                 mddev->curr_resync_completed = 0;
8302                 spin_lock(&mddev->lock);
8303                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8304                 spin_unlock(&mddev->lock);
8305                 /* Clear some bits that don't mean anything, but
8306                  * might be left set
8307                  */
8308                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8309                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8310
8311                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8312                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8313                         goto not_running;
8314                 /* no recovery is running.
8315                  * remove any failed drives, then
8316                  * add spares if possible.
8317                  * Spares are also removed and re-added, to allow
8318                  * the personality to fail the re-add.
8319                  */
8320
8321                 if (mddev->reshape_position != MaxSector) {
8322                         if (mddev->pers->check_reshape == NULL ||
8323                             mddev->pers->check_reshape(mddev) != 0)
8324                                 /* Cannot proceed */
8325                                 goto not_running;
8326                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8327                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8328                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8329                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8330                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8331                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8332                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8333                 } else if (mddev->recovery_cp < MaxSector) {
8334                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8335                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8336                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8337                         /* nothing to be done ... */
8338                         goto not_running;
8339
8340                 if (mddev->pers->sync_request) {
8341                         if (spares) {
8342                                 /* We are adding a device or devices to an array
8343                                  * which has the bitmap stored on all devices.
8344                                  * So make sure all bitmap pages get written
8345                                  */
8346                                 bitmap_write_all(mddev->bitmap);
8347                         }
8348                         INIT_WORK(&mddev->del_work, md_start_sync);
8349                         queue_work(md_misc_wq, &mddev->del_work);
8350                         goto unlock;
8351                 }
8352         not_running:
8353                 if (!mddev->sync_thread) {
8354                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8355                         wake_up(&resync_wait);
8356                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8357                                                &mddev->recovery))
8358                                 if (mddev->sysfs_action)
8359                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8360                 }
8361         unlock:
8362                 wake_up(&mddev->sb_wait);
8363                 mddev_unlock(mddev);
8364         }
8365 }
8366 EXPORT_SYMBOL(md_check_recovery);
8367
8368 void md_reap_sync_thread(struct mddev *mddev)
8369 {
8370         struct md_rdev *rdev;
8371
8372         /* resync has finished, collect result */
8373         md_unregister_thread(&mddev->sync_thread);
8374         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8375             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8376                 /* success...*/
8377                 /* activate any spares */
8378                 if (mddev->pers->spare_active(mddev)) {
8379                         sysfs_notify(&mddev->kobj, NULL,
8380                                      "degraded");
8381                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8382                 }
8383         }
8384         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8385             mddev->pers->finish_reshape)
8386                 mddev->pers->finish_reshape(mddev);
8387
8388         /* If array is no-longer degraded, then any saved_raid_disk
8389          * information must be scrapped.
8390          */
8391         if (!mddev->degraded)
8392                 rdev_for_each(rdev, mddev)
8393                         rdev->saved_raid_disk = -1;
8394
8395         md_update_sb(mddev, 1);
8396         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8397         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8398         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8399         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8400         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8401         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8402         wake_up(&resync_wait);
8403         /* flag recovery needed just to double check */
8404         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8405         sysfs_notify_dirent_safe(mddev->sysfs_action);
8406         md_new_event(mddev);
8407         if (mddev->event_work.func)
8408                 queue_work(md_misc_wq, &mddev->event_work);
8409 }
8410 EXPORT_SYMBOL(md_reap_sync_thread);
8411
8412 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8413 {
8414         sysfs_notify_dirent_safe(rdev->sysfs_state);
8415         wait_event_timeout(rdev->blocked_wait,
8416                            !test_bit(Blocked, &rdev->flags) &&
8417                            !test_bit(BlockedBadBlocks, &rdev->flags),
8418                            msecs_to_jiffies(5000));
8419         rdev_dec_pending(rdev, mddev);
8420 }
8421 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8422
8423 void md_finish_reshape(struct mddev *mddev)
8424 {
8425         /* called be personality module when reshape completes. */
8426         struct md_rdev *rdev;
8427
8428         rdev_for_each(rdev, mddev) {
8429                 if (rdev->data_offset > rdev->new_data_offset)
8430                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8431                 else
8432                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8433                 rdev->data_offset = rdev->new_data_offset;
8434         }
8435 }
8436 EXPORT_SYMBOL(md_finish_reshape);
8437
8438 /* Bad block management.
8439  * We can record which blocks on each device are 'bad' and so just
8440  * fail those blocks, or that stripe, rather than the whole device.
8441  * Entries in the bad-block table are 64bits wide.  This comprises:
8442  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8443  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8444  *  A 'shift' can be set so that larger blocks are tracked and
8445  *  consequently larger devices can be covered.
8446  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8447  *
8448  * Locking of the bad-block table uses a seqlock so md_is_badblock
8449  * might need to retry if it is very unlucky.
8450  * We will sometimes want to check for bad blocks in a bi_end_io function,
8451  * so we use the write_seqlock_irq variant.
8452  *
8453  * When looking for a bad block we specify a range and want to
8454  * know if any block in the range is bad.  So we binary-search
8455  * to the last range that starts at-or-before the given endpoint,
8456  * (or "before the sector after the target range")
8457  * then see if it ends after the given start.
8458  * We return
8459  *  0 if there are no known bad blocks in the range
8460  *  1 if there are known bad block which are all acknowledged
8461  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8462  * plus the start/length of the first bad section we overlap.
8463  */
8464 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8465                    sector_t *first_bad, int *bad_sectors)
8466 {
8467         int hi;
8468         int lo;
8469         u64 *p = bb->page;
8470         int rv;
8471         sector_t target = s + sectors;
8472         unsigned seq;
8473
8474         if (bb->shift > 0) {
8475                 /* round the start down, and the end up */
8476                 s >>= bb->shift;
8477                 target += (1<<bb->shift) - 1;
8478                 target >>= bb->shift;
8479                 sectors = target - s;
8480         }
8481         /* 'target' is now the first block after the bad range */
8482
8483 retry:
8484         seq = read_seqbegin(&bb->lock);
8485         lo = 0;
8486         rv = 0;
8487         hi = bb->count;
8488
8489         /* Binary search between lo and hi for 'target'
8490          * i.e. for the last range that starts before 'target'
8491          */
8492         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8493          * are known not to be the last range before target.
8494          * VARIANT: hi-lo is the number of possible
8495          * ranges, and decreases until it reaches 1
8496          */
8497         while (hi - lo > 1) {
8498                 int mid = (lo + hi) / 2;
8499                 sector_t a = BB_OFFSET(p[mid]);
8500                 if (a < target)
8501                         /* This could still be the one, earlier ranges
8502                          * could not. */
8503                         lo = mid;
8504                 else
8505                         /* This and later ranges are definitely out. */
8506                         hi = mid;
8507         }
8508         /* 'lo' might be the last that started before target, but 'hi' isn't */
8509         if (hi > lo) {
8510                 /* need to check all range that end after 's' to see if
8511                  * any are unacknowledged.
8512                  */
8513                 while (lo >= 0 &&
8514                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8515                         if (BB_OFFSET(p[lo]) < target) {
8516                                 /* starts before the end, and finishes after
8517                                  * the start, so they must overlap
8518                                  */
8519                                 if (rv != -1 && BB_ACK(p[lo]))
8520                                         rv = 1;
8521                                 else
8522                                         rv = -1;
8523                                 *first_bad = BB_OFFSET(p[lo]);
8524                                 *bad_sectors = BB_LEN(p[lo]);
8525                         }
8526                         lo--;
8527                 }
8528         }
8529
8530         if (read_seqretry(&bb->lock, seq))
8531                 goto retry;
8532
8533         return rv;
8534 }
8535 EXPORT_SYMBOL_GPL(md_is_badblock);
8536
8537 /*
8538  * Add a range of bad blocks to the table.
8539  * This might extend the table, or might contract it
8540  * if two adjacent ranges can be merged.
8541  * We binary-search to find the 'insertion' point, then
8542  * decide how best to handle it.
8543  */
8544 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8545                             int acknowledged)
8546 {
8547         u64 *p;
8548         int lo, hi;
8549         int rv = 1;
8550         unsigned long flags;
8551
8552         if (bb->shift < 0)
8553                 /* badblocks are disabled */
8554                 return 0;
8555
8556         if (bb->shift) {
8557                 /* round the start down, and the end up */
8558                 sector_t next = s + sectors;
8559                 s >>= bb->shift;
8560                 next += (1<<bb->shift) - 1;
8561                 next >>= bb->shift;
8562                 sectors = next - s;
8563         }
8564
8565         write_seqlock_irqsave(&bb->lock, flags);
8566
8567         p = bb->page;
8568         lo = 0;
8569         hi = bb->count;
8570         /* Find the last range that starts at-or-before 's' */
8571         while (hi - lo > 1) {
8572                 int mid = (lo + hi) / 2;
8573                 sector_t a = BB_OFFSET(p[mid]);
8574                 if (a <= s)
8575                         lo = mid;
8576                 else
8577                         hi = mid;
8578         }
8579         if (hi > lo && BB_OFFSET(p[lo]) > s)
8580                 hi = lo;
8581
8582         if (hi > lo) {
8583                 /* we found a range that might merge with the start
8584                  * of our new range
8585                  */
8586                 sector_t a = BB_OFFSET(p[lo]);
8587                 sector_t e = a + BB_LEN(p[lo]);
8588                 int ack = BB_ACK(p[lo]);
8589                 if (e >= s) {
8590                         /* Yes, we can merge with a previous range */
8591                         if (s == a && s + sectors >= e)
8592                                 /* new range covers old */
8593                                 ack = acknowledged;
8594                         else
8595                                 ack = ack && acknowledged;
8596
8597                         if (e < s + sectors)
8598                                 e = s + sectors;
8599                         if (e - a <= BB_MAX_LEN) {
8600                                 p[lo] = BB_MAKE(a, e-a, ack);
8601                                 s = e;
8602                         } else {
8603                                 /* does not all fit in one range,
8604                                  * make p[lo] maximal
8605                                  */
8606                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8607                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8608                                 s = a + BB_MAX_LEN;
8609                         }
8610                         sectors = e - s;
8611                 }
8612         }
8613         if (sectors && hi < bb->count) {
8614                 /* 'hi' points to the first range that starts after 's'.
8615                  * Maybe we can merge with the start of that range */
8616                 sector_t a = BB_OFFSET(p[hi]);
8617                 sector_t e = a + BB_LEN(p[hi]);
8618                 int ack = BB_ACK(p[hi]);
8619                 if (a <= s + sectors) {
8620                         /* merging is possible */
8621                         if (e <= s + sectors) {
8622                                 /* full overlap */
8623                                 e = s + sectors;
8624                                 ack = acknowledged;
8625                         } else
8626                                 ack = ack && acknowledged;
8627
8628                         a = s;
8629                         if (e - a <= BB_MAX_LEN) {
8630                                 p[hi] = BB_MAKE(a, e-a, ack);
8631                                 s = e;
8632                         } else {
8633                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8634                                 s = a + BB_MAX_LEN;
8635                         }
8636                         sectors = e - s;
8637                         lo = hi;
8638                         hi++;
8639                 }
8640         }
8641         if (sectors == 0 && hi < bb->count) {
8642                 /* we might be able to combine lo and hi */
8643                 /* Note: 's' is at the end of 'lo' */
8644                 sector_t a = BB_OFFSET(p[hi]);
8645                 int lolen = BB_LEN(p[lo]);
8646                 int hilen = BB_LEN(p[hi]);
8647                 int newlen = lolen + hilen - (s - a);
8648                 if (s >= a && newlen < BB_MAX_LEN) {
8649                         /* yes, we can combine them */
8650                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8651                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8652                         memmove(p + hi, p + hi + 1,
8653                                 (bb->count - hi - 1) * 8);
8654                         bb->count--;
8655                 }
8656         }
8657         while (sectors) {
8658                 /* didn't merge (it all).
8659                  * Need to add a range just before 'hi' */
8660                 if (bb->count >= MD_MAX_BADBLOCKS) {
8661                         /* No room for more */
8662                         rv = 0;
8663                         break;
8664                 } else {
8665                         int this_sectors = sectors;
8666                         memmove(p + hi + 1, p + hi,
8667                                 (bb->count - hi) * 8);
8668                         bb->count++;
8669
8670                         if (this_sectors > BB_MAX_LEN)
8671                                 this_sectors = BB_MAX_LEN;
8672                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8673                         sectors -= this_sectors;
8674                         s += this_sectors;
8675                 }
8676         }
8677
8678         bb->changed = 1;
8679         if (!acknowledged)
8680                 bb->unacked_exist = 1;
8681         write_sequnlock_irqrestore(&bb->lock, flags);
8682
8683         return rv;
8684 }
8685
8686 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8687                        int is_new)
8688 {
8689         int rv;
8690         if (is_new)
8691                 s += rdev->new_data_offset;
8692         else
8693                 s += rdev->data_offset;
8694         rv = md_set_badblocks(&rdev->badblocks,
8695                               s, sectors, 0);
8696         if (rv) {
8697                 /* Make sure they get written out promptly */
8698                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8699                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8700                 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8701                 md_wakeup_thread(rdev->mddev->thread);
8702         }
8703         return rv;
8704 }
8705 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8706
8707 /*
8708  * Remove a range of bad blocks from the table.
8709  * This may involve extending the table if we spilt a region,
8710  * but it must not fail.  So if the table becomes full, we just
8711  * drop the remove request.
8712  */
8713 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8714 {
8715         u64 *p;
8716         int lo, hi;
8717         sector_t target = s + sectors;
8718         int rv = 0;
8719
8720         if (bb->shift > 0) {
8721                 /* When clearing we round the start up and the end down.
8722                  * This should not matter as the shift should align with
8723                  * the block size and no rounding should ever be needed.
8724                  * However it is better the think a block is bad when it
8725                  * isn't than to think a block is not bad when it is.
8726                  */
8727                 s += (1<<bb->shift) - 1;
8728                 s >>= bb->shift;
8729                 target >>= bb->shift;
8730                 sectors = target - s;
8731         }
8732
8733         write_seqlock_irq(&bb->lock);
8734
8735         p = bb->page;
8736         lo = 0;
8737         hi = bb->count;
8738         /* Find the last range that starts before 'target' */
8739         while (hi - lo > 1) {
8740                 int mid = (lo + hi) / 2;
8741                 sector_t a = BB_OFFSET(p[mid]);
8742                 if (a < target)
8743                         lo = mid;
8744                 else
8745                         hi = mid;
8746         }
8747         if (hi > lo) {
8748                 /* p[lo] is the last range that could overlap the
8749                  * current range.  Earlier ranges could also overlap,
8750                  * but only this one can overlap the end of the range.
8751                  */
8752                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8753                         /* Partial overlap, leave the tail of this range */
8754                         int ack = BB_ACK(p[lo]);
8755                         sector_t a = BB_OFFSET(p[lo]);
8756                         sector_t end = a + BB_LEN(p[lo]);
8757
8758                         if (a < s) {
8759                                 /* we need to split this range */
8760                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8761                                         rv = -ENOSPC;
8762                                         goto out;
8763                                 }
8764                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8765                                 bb->count++;
8766                                 p[lo] = BB_MAKE(a, s-a, ack);
8767                                 lo++;
8768                         }
8769                         p[lo] = BB_MAKE(target, end - target, ack);
8770                         /* there is no longer an overlap */
8771                         hi = lo;
8772                         lo--;
8773                 }
8774                 while (lo >= 0 &&
8775                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8776                         /* This range does overlap */
8777                         if (BB_OFFSET(p[lo]) < s) {
8778                                 /* Keep the early parts of this range. */
8779                                 int ack = BB_ACK(p[lo]);
8780                                 sector_t start = BB_OFFSET(p[lo]);
8781                                 p[lo] = BB_MAKE(start, s - start, ack);
8782                                 /* now low doesn't overlap, so.. */
8783                                 break;
8784                         }
8785                         lo--;
8786                 }
8787                 /* 'lo' is strictly before, 'hi' is strictly after,
8788                  * anything between needs to be discarded
8789                  */
8790                 if (hi - lo > 1) {
8791                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8792                         bb->count -= (hi - lo - 1);
8793                 }
8794         }
8795
8796         bb->changed = 1;
8797 out:
8798         write_sequnlock_irq(&bb->lock);
8799         return rv;
8800 }
8801
8802 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8803                          int is_new)
8804 {
8805         if (is_new)
8806                 s += rdev->new_data_offset;
8807         else
8808                 s += rdev->data_offset;
8809         return md_clear_badblocks(&rdev->badblocks,
8810                                   s, sectors);
8811 }
8812 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8813
8814 /*
8815  * Acknowledge all bad blocks in a list.
8816  * This only succeeds if ->changed is clear.  It is used by
8817  * in-kernel metadata updates
8818  */
8819 void md_ack_all_badblocks(struct badblocks *bb)
8820 {
8821         if (bb->page == NULL || bb->changed)
8822                 /* no point even trying */
8823                 return;
8824         write_seqlock_irq(&bb->lock);
8825
8826         if (bb->changed == 0 && bb->unacked_exist) {
8827                 u64 *p = bb->page;
8828                 int i;
8829                 for (i = 0; i < bb->count ; i++) {
8830                         if (!BB_ACK(p[i])) {
8831                                 sector_t start = BB_OFFSET(p[i]);
8832                                 int len = BB_LEN(p[i]);
8833                                 p[i] = BB_MAKE(start, len, 1);
8834                         }
8835                 }
8836                 bb->unacked_exist = 0;
8837         }
8838         write_sequnlock_irq(&bb->lock);
8839 }
8840 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8841
8842 /* sysfs access to bad-blocks list.
8843  * We present two files.
8844  * 'bad-blocks' lists sector numbers and lengths of ranges that
8845  *    are recorded as bad.  The list is truncated to fit within
8846  *    the one-page limit of sysfs.
8847  *    Writing "sector length" to this file adds an acknowledged
8848  *    bad block list.
8849  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8850  *    been acknowledged.  Writing to this file adds bad blocks
8851  *    without acknowledging them.  This is largely for testing.
8852  */
8853
8854 static ssize_t
8855 badblocks_show(struct badblocks *bb, char *page, int unack)
8856 {
8857         size_t len;
8858         int i;
8859         u64 *p = bb->page;
8860         unsigned seq;
8861
8862         if (bb->shift < 0)
8863                 return 0;
8864
8865 retry:
8866         seq = read_seqbegin(&bb->lock);
8867
8868         len = 0;
8869         i = 0;
8870
8871         while (len < PAGE_SIZE && i < bb->count) {
8872                 sector_t s = BB_OFFSET(p[i]);
8873                 unsigned int length = BB_LEN(p[i]);
8874                 int ack = BB_ACK(p[i]);
8875                 i++;
8876
8877                 if (unack && ack)
8878                         continue;
8879
8880                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8881                                 (unsigned long long)s << bb->shift,
8882                                 length << bb->shift);
8883         }
8884         if (unack && len == 0)
8885                 bb->unacked_exist = 0;
8886
8887         if (read_seqretry(&bb->lock, seq))
8888                 goto retry;
8889
8890         return len;
8891 }
8892
8893 #define DO_DEBUG 1
8894
8895 static ssize_t
8896 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8897 {
8898         unsigned long long sector;
8899         int length;
8900         char newline;
8901 #ifdef DO_DEBUG
8902         /* Allow clearing via sysfs *only* for testing/debugging.
8903          * Normally only a successful write may clear a badblock
8904          */
8905         int clear = 0;
8906         if (page[0] == '-') {
8907                 clear = 1;
8908                 page++;
8909         }
8910 #endif /* DO_DEBUG */
8911
8912         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8913         case 3:
8914                 if (newline != '\n')
8915                         return -EINVAL;
8916         case 2:
8917                 if (length <= 0)
8918                         return -EINVAL;
8919                 break;
8920         default:
8921                 return -EINVAL;
8922         }
8923
8924 #ifdef DO_DEBUG
8925         if (clear) {
8926                 md_clear_badblocks(bb, sector, length);
8927                 return len;
8928         }
8929 #endif /* DO_DEBUG */
8930         if (md_set_badblocks(bb, sector, length, !unack))
8931                 return len;
8932         else
8933                 return -ENOSPC;
8934 }
8935
8936 static int md_notify_reboot(struct notifier_block *this,
8937                             unsigned long code, void *x)
8938 {
8939         struct list_head *tmp;
8940         struct mddev *mddev;
8941         int need_delay = 0;
8942
8943         for_each_mddev(mddev, tmp) {
8944                 if (mddev_trylock(mddev)) {
8945                         if (mddev->pers)
8946                                 __md_stop_writes(mddev);
8947                         if (mddev->persistent)
8948                                 mddev->safemode = 2;
8949                         mddev_unlock(mddev);
8950                 }
8951                 need_delay = 1;
8952         }
8953         /*
8954          * certain more exotic SCSI devices are known to be
8955          * volatile wrt too early system reboots. While the
8956          * right place to handle this issue is the given
8957          * driver, we do want to have a safe RAID driver ...
8958          */
8959         if (need_delay)
8960                 mdelay(1000*1);
8961
8962         return NOTIFY_DONE;
8963 }
8964
8965 static struct notifier_block md_notifier = {
8966         .notifier_call  = md_notify_reboot,
8967         .next           = NULL,
8968         .priority       = INT_MAX, /* before any real devices */
8969 };
8970
8971 static void md_geninit(void)
8972 {
8973         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8974
8975         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8976 }
8977
8978 static int __init md_init(void)
8979 {
8980         int ret = -ENOMEM;
8981
8982         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8983         if (!md_wq)
8984                 goto err_wq;
8985
8986         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8987         if (!md_misc_wq)
8988                 goto err_misc_wq;
8989
8990         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8991                 goto err_md;
8992
8993         if ((ret = register_blkdev(0, "mdp")) < 0)
8994                 goto err_mdp;
8995         mdp_major = ret;
8996
8997         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8998                             md_probe, NULL, NULL);
8999         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9000                             md_probe, NULL, NULL);
9001
9002         register_reboot_notifier(&md_notifier);
9003         raid_table_header = register_sysctl_table(raid_root_table);
9004
9005         md_geninit();
9006         return 0;
9007
9008 err_mdp:
9009         unregister_blkdev(MD_MAJOR, "md");
9010 err_md:
9011         destroy_workqueue(md_misc_wq);
9012 err_misc_wq:
9013         destroy_workqueue(md_wq);
9014 err_wq:
9015         return ret;
9016 }
9017
9018 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9019 {
9020         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9021         struct md_rdev *rdev2;
9022         int role, ret;
9023         char b[BDEVNAME_SIZE];
9024
9025         /* Check for change of roles in the active devices */
9026         rdev_for_each(rdev2, mddev) {
9027                 if (test_bit(Faulty, &rdev2->flags))
9028                         continue;
9029
9030                 /* Check if the roles changed */
9031                 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9032
9033                 if (test_bit(Candidate, &rdev2->flags)) {
9034                         if (role == 0xfffe) {
9035                                 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9036                                 md_kick_rdev_from_array(rdev2);
9037                                 continue;
9038                         }
9039                         else
9040                                 clear_bit(Candidate, &rdev2->flags);
9041                 }
9042
9043                 if (role != rdev2->raid_disk) {
9044                         /* got activated */
9045                         if (rdev2->raid_disk == -1 && role != 0xffff) {
9046                                 rdev2->saved_raid_disk = role;
9047                                 ret = remove_and_add_spares(mddev, rdev2);
9048                                 pr_info("Activated spare: %s\n",
9049                                                 bdevname(rdev2->bdev,b));
9050                                 continue;
9051                         }
9052                         /* device faulty
9053                          * We just want to do the minimum to mark the disk
9054                          * as faulty. The recovery is performed by the
9055                          * one who initiated the error.
9056                          */
9057                         if ((role == 0xfffe) || (role == 0xfffd)) {
9058                                 md_error(mddev, rdev2);
9059                                 clear_bit(Blocked, &rdev2->flags);
9060                         }
9061                 }
9062         }
9063
9064         if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9065                 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9066
9067         /* Finally set the event to be up to date */
9068         mddev->events = le64_to_cpu(sb->events);
9069 }
9070
9071 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9072 {
9073         int err;
9074         struct page *swapout = rdev->sb_page;
9075         struct mdp_superblock_1 *sb;
9076
9077         /* Store the sb page of the rdev in the swapout temporary
9078          * variable in case we err in the future
9079          */
9080         rdev->sb_page = NULL;
9081         alloc_disk_sb(rdev);
9082         ClearPageUptodate(rdev->sb_page);
9083         rdev->sb_loaded = 0;
9084         err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9085
9086         if (err < 0) {
9087                 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9088                                 __func__, __LINE__, rdev->desc_nr, err);
9089                 put_page(rdev->sb_page);
9090                 rdev->sb_page = swapout;
9091                 rdev->sb_loaded = 1;
9092                 return err;
9093         }
9094
9095         sb = page_address(rdev->sb_page);
9096         /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9097          * is not set
9098          */
9099
9100         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9101                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9102
9103         /* The other node finished recovery, call spare_active to set
9104          * device In_sync and mddev->degraded
9105          */
9106         if (rdev->recovery_offset == MaxSector &&
9107             !test_bit(In_sync, &rdev->flags) &&
9108             mddev->pers->spare_active(mddev))
9109                 sysfs_notify(&mddev->kobj, NULL, "degraded");
9110
9111         put_page(swapout);
9112         return 0;
9113 }
9114
9115 void md_reload_sb(struct mddev *mddev, int nr)
9116 {
9117         struct md_rdev *rdev;
9118         int err;
9119
9120         /* Find the rdev */
9121         rdev_for_each_rcu(rdev, mddev) {
9122                 if (rdev->desc_nr == nr)
9123                         break;
9124         }
9125
9126         if (!rdev || rdev->desc_nr != nr) {
9127                 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9128                 return;
9129         }
9130
9131         err = read_rdev(mddev, rdev);
9132         if (err < 0)
9133                 return;
9134
9135         check_sb_changes(mddev, rdev);
9136
9137         /* Read all rdev's to update recovery_offset */
9138         rdev_for_each_rcu(rdev, mddev)
9139                 read_rdev(mddev, rdev);
9140 }
9141 EXPORT_SYMBOL(md_reload_sb);
9142
9143 #ifndef MODULE
9144
9145 /*
9146  * Searches all registered partitions for autorun RAID arrays
9147  * at boot time.
9148  */
9149
9150 static LIST_HEAD(all_detected_devices);
9151 struct detected_devices_node {
9152         struct list_head list;
9153         dev_t dev;
9154 };
9155
9156 void md_autodetect_dev(dev_t dev)
9157 {
9158         struct detected_devices_node *node_detected_dev;
9159
9160         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9161         if (node_detected_dev) {
9162                 node_detected_dev->dev = dev;
9163                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9164         } else {
9165                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9166                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9167         }
9168 }
9169
9170 static void autostart_arrays(int part)
9171 {
9172         struct md_rdev *rdev;
9173         struct detected_devices_node *node_detected_dev;
9174         dev_t dev;
9175         int i_scanned, i_passed;
9176
9177         i_scanned = 0;
9178         i_passed = 0;
9179
9180         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9181
9182         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9183                 i_scanned++;
9184                 node_detected_dev = list_entry(all_detected_devices.next,
9185                                         struct detected_devices_node, list);
9186                 list_del(&node_detected_dev->list);
9187                 dev = node_detected_dev->dev;
9188                 kfree(node_detected_dev);
9189                 rdev = md_import_device(dev,0, 90);
9190                 if (IS_ERR(rdev))
9191                         continue;
9192
9193                 if (test_bit(Faulty, &rdev->flags))
9194                         continue;
9195
9196                 set_bit(AutoDetected, &rdev->flags);
9197                 list_add(&rdev->same_set, &pending_raid_disks);
9198                 i_passed++;
9199         }
9200
9201         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9202                                                 i_scanned, i_passed);
9203
9204         autorun_devices(part);
9205 }
9206
9207 #endif /* !MODULE */
9208
9209 static __exit void md_exit(void)
9210 {
9211         struct mddev *mddev;
9212         struct list_head *tmp;
9213         int delay = 1;
9214
9215         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9216         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9217
9218         unregister_blkdev(MD_MAJOR,"md");
9219         unregister_blkdev(mdp_major, "mdp");
9220         unregister_reboot_notifier(&md_notifier);
9221         unregister_sysctl_table(raid_table_header);
9222
9223         /* We cannot unload the modules while some process is
9224          * waiting for us in select() or poll() - wake them up
9225          */
9226         md_unloading = 1;
9227         while (waitqueue_active(&md_event_waiters)) {
9228                 /* not safe to leave yet */
9229                 wake_up(&md_event_waiters);
9230                 msleep(delay);
9231                 delay += delay;
9232         }
9233         remove_proc_entry("mdstat", NULL);
9234
9235         for_each_mddev(mddev, tmp) {
9236                 export_array(mddev);
9237                 mddev->hold_active = 0;
9238         }
9239         destroy_workqueue(md_misc_wq);
9240         destroy_workqueue(md_wq);
9241 }
9242
9243 subsys_initcall(md_init);
9244 module_exit(md_exit)
9245
9246 static int get_ro(char *buffer, struct kernel_param *kp)
9247 {
9248         return sprintf(buffer, "%d", start_readonly);
9249 }
9250 static int set_ro(const char *val, struct kernel_param *kp)
9251 {
9252         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9253 }
9254
9255 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9256 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9257 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9258
9259 MODULE_LICENSE("GPL");
9260 MODULE_DESCRIPTION("MD RAID framework");
9261 MODULE_ALIAS("md");
9262 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);