]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: don't allow "-sync" to be set for device in an active array.
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200         atomic_inc(&md_event_count);
201         wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210         atomic_inc(&md_event_count);
211         wake_up(&md_event_waiters);
212 }
213
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221 /*
222  * iterates through all used mddevs in the system.
223  * We take care to grab the all_mddevs_lock whenever navigating
224  * the list, and to always hold a refcount when unlocked.
225  * Any code which breaks out of this loop while own
226  * a reference to the current mddev and must mddev_put it.
227  */
228 #define for_each_mddev(_mddev,_tmp)                                     \
229                                                                         \
230         for (({ spin_lock(&all_mddevs_lock);                            \
231                 _tmp = all_mddevs.next;                                 \
232                 _mddev = NULL;});                                       \
233              ({ if (_tmp != &all_mddevs)                                \
234                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
235                 spin_unlock(&all_mddevs_lock);                          \
236                 if (_mddev) mddev_put(_mddev);                          \
237                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
238                 _tmp != &all_mddevs;});                                 \
239              ({ spin_lock(&all_mddevs_lock);                            \
240                 _tmp = _tmp->next;})                                    \
241                 )
242
243 /* Rather than calling directly into the personality make_request function,
244  * IO requests come here first so that we can check if the device is
245  * being suspended pending a reconfiguration.
246  * We hold a refcount over the call to ->make_request.  By the time that
247  * call has finished, the bio has been linked into some internal structure
248  * and so is visible to ->quiesce(), so we don't need the refcount any more.
249  */
250 static void md_make_request(struct request_queue *q, struct bio *bio)
251 {
252         const int rw = bio_data_dir(bio);
253         struct mddev *mddev = q->queuedata;
254         int cpu;
255         unsigned int sectors;
256
257         if (mddev == NULL || mddev->pers == NULL
258             || !mddev->ready) {
259                 bio_io_error(bio);
260                 return;
261         }
262         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
263                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
264                 return;
265         }
266         smp_rmb(); /* Ensure implications of  'active' are visible */
267         rcu_read_lock();
268         if (mddev->suspended) {
269                 DEFINE_WAIT(__wait);
270                 for (;;) {
271                         prepare_to_wait(&mddev->sb_wait, &__wait,
272                                         TASK_UNINTERRUPTIBLE);
273                         if (!mddev->suspended)
274                                 break;
275                         rcu_read_unlock();
276                         schedule();
277                         rcu_read_lock();
278                 }
279                 finish_wait(&mddev->sb_wait, &__wait);
280         }
281         atomic_inc(&mddev->active_io);
282         rcu_read_unlock();
283
284         /*
285          * save the sectors now since our bio can
286          * go away inside make_request
287          */
288         sectors = bio_sectors(bio);
289         mddev->pers->make_request(mddev, bio);
290
291         cpu = part_stat_lock();
292         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294         part_stat_unlock();
295
296         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297                 wake_up(&mddev->sb_wait);
298 }
299
300 /* mddev_suspend makes sure no new requests are submitted
301  * to the device, and that any requests that have been submitted
302  * are completely handled.
303  * Once ->stop is called and completes, the module will be completely
304  * unused.
305  */
306 void mddev_suspend(struct mddev *mddev)
307 {
308         BUG_ON(mddev->suspended);
309         mddev->suspended = 1;
310         synchronize_rcu();
311         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
312         mddev->pers->quiesce(mddev, 1);
313
314         del_timer_sync(&mddev->safemode_timer);
315 }
316 EXPORT_SYMBOL_GPL(mddev_suspend);
317
318 void mddev_resume(struct mddev *mddev)
319 {
320         mddev->suspended = 0;
321         wake_up(&mddev->sb_wait);
322         mddev->pers->quiesce(mddev, 0);
323
324         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
325         md_wakeup_thread(mddev->thread);
326         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
327 }
328 EXPORT_SYMBOL_GPL(mddev_resume);
329
330 int mddev_congested(struct mddev *mddev, int bits)
331 {
332         return mddev->suspended;
333 }
334 EXPORT_SYMBOL(mddev_congested);
335
336 /*
337  * Generic flush handling for md
338  */
339
340 static void md_end_flush(struct bio *bio, int err)
341 {
342         struct md_rdev *rdev = bio->bi_private;
343         struct mddev *mddev = rdev->mddev;
344
345         rdev_dec_pending(rdev, mddev);
346
347         if (atomic_dec_and_test(&mddev->flush_pending)) {
348                 /* The pre-request flush has finished */
349                 queue_work(md_wq, &mddev->flush_work);
350         }
351         bio_put(bio);
352 }
353
354 static void md_submit_flush_data(struct work_struct *ws);
355
356 static void submit_flushes(struct work_struct *ws)
357 {
358         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
359         struct md_rdev *rdev;
360
361         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
362         atomic_set(&mddev->flush_pending, 1);
363         rcu_read_lock();
364         rdev_for_each_rcu(rdev, mddev)
365                 if (rdev->raid_disk >= 0 &&
366                     !test_bit(Faulty, &rdev->flags)) {
367                         /* Take two references, one is dropped
368                          * when request finishes, one after
369                          * we reclaim rcu_read_lock
370                          */
371                         struct bio *bi;
372                         atomic_inc(&rdev->nr_pending);
373                         atomic_inc(&rdev->nr_pending);
374                         rcu_read_unlock();
375                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
376                         bi->bi_end_io = md_end_flush;
377                         bi->bi_private = rdev;
378                         bi->bi_bdev = rdev->bdev;
379                         atomic_inc(&mddev->flush_pending);
380                         submit_bio(WRITE_FLUSH, bi);
381                         rcu_read_lock();
382                         rdev_dec_pending(rdev, mddev);
383                 }
384         rcu_read_unlock();
385         if (atomic_dec_and_test(&mddev->flush_pending))
386                 queue_work(md_wq, &mddev->flush_work);
387 }
388
389 static void md_submit_flush_data(struct work_struct *ws)
390 {
391         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
392         struct bio *bio = mddev->flush_bio;
393
394         if (bio->bi_iter.bi_size == 0)
395                 /* an empty barrier - all done */
396                 bio_endio(bio, 0);
397         else {
398                 bio->bi_rw &= ~REQ_FLUSH;
399                 mddev->pers->make_request(mddev, bio);
400         }
401
402         mddev->flush_bio = NULL;
403         wake_up(&mddev->sb_wait);
404 }
405
406 void md_flush_request(struct mddev *mddev, struct bio *bio)
407 {
408         spin_lock_irq(&mddev->write_lock);
409         wait_event_lock_irq(mddev->sb_wait,
410                             !mddev->flush_bio,
411                             mddev->write_lock);
412         mddev->flush_bio = bio;
413         spin_unlock_irq(&mddev->write_lock);
414
415         INIT_WORK(&mddev->flush_work, submit_flushes);
416         queue_work(md_wq, &mddev->flush_work);
417 }
418 EXPORT_SYMBOL(md_flush_request);
419
420 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
421 {
422         struct mddev *mddev = cb->data;
423         md_wakeup_thread(mddev->thread);
424         kfree(cb);
425 }
426 EXPORT_SYMBOL(md_unplug);
427
428 static inline struct mddev *mddev_get(struct mddev *mddev)
429 {
430         atomic_inc(&mddev->active);
431         return mddev;
432 }
433
434 static void mddev_delayed_delete(struct work_struct *ws);
435
436 static void mddev_put(struct mddev *mddev)
437 {
438         struct bio_set *bs = NULL;
439
440         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
441                 return;
442         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
443             mddev->ctime == 0 && !mddev->hold_active) {
444                 /* Array is not configured at all, and not held active,
445                  * so destroy it */
446                 list_del_init(&mddev->all_mddevs);
447                 bs = mddev->bio_set;
448                 mddev->bio_set = NULL;
449                 if (mddev->gendisk) {
450                         /* We did a probe so need to clean up.  Call
451                          * queue_work inside the spinlock so that
452                          * flush_workqueue() after mddev_find will
453                          * succeed in waiting for the work to be done.
454                          */
455                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
456                         queue_work(md_misc_wq, &mddev->del_work);
457                 } else
458                         kfree(mddev);
459         }
460         spin_unlock(&all_mddevs_lock);
461         if (bs)
462                 bioset_free(bs);
463 }
464
465 void mddev_init(struct mddev *mddev)
466 {
467         mutex_init(&mddev->open_mutex);
468         mutex_init(&mddev->reconfig_mutex);
469         mutex_init(&mddev->bitmap_info.mutex);
470         INIT_LIST_HEAD(&mddev->disks);
471         INIT_LIST_HEAD(&mddev->all_mddevs);
472         init_timer(&mddev->safemode_timer);
473         atomic_set(&mddev->active, 1);
474         atomic_set(&mddev->openers, 0);
475         atomic_set(&mddev->active_io, 0);
476         spin_lock_init(&mddev->write_lock);
477         atomic_set(&mddev->flush_pending, 0);
478         init_waitqueue_head(&mddev->sb_wait);
479         init_waitqueue_head(&mddev->recovery_wait);
480         mddev->reshape_position = MaxSector;
481         mddev->reshape_backwards = 0;
482         mddev->last_sync_action = "none";
483         mddev->resync_min = 0;
484         mddev->resync_max = MaxSector;
485         mddev->level = LEVEL_NONE;
486 }
487 EXPORT_SYMBOL_GPL(mddev_init);
488
489 static struct mddev *mddev_find(dev_t unit)
490 {
491         struct mddev *mddev, *new = NULL;
492
493         if (unit && MAJOR(unit) != MD_MAJOR)
494                 unit &= ~((1<<MdpMinorShift)-1);
495
496  retry:
497         spin_lock(&all_mddevs_lock);
498
499         if (unit) {
500                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
501                         if (mddev->unit == unit) {
502                                 mddev_get(mddev);
503                                 spin_unlock(&all_mddevs_lock);
504                                 kfree(new);
505                                 return mddev;
506                         }
507
508                 if (new) {
509                         list_add(&new->all_mddevs, &all_mddevs);
510                         spin_unlock(&all_mddevs_lock);
511                         new->hold_active = UNTIL_IOCTL;
512                         return new;
513                 }
514         } else if (new) {
515                 /* find an unused unit number */
516                 static int next_minor = 512;
517                 int start = next_minor;
518                 int is_free = 0;
519                 int dev = 0;
520                 while (!is_free) {
521                         dev = MKDEV(MD_MAJOR, next_minor);
522                         next_minor++;
523                         if (next_minor > MINORMASK)
524                                 next_minor = 0;
525                         if (next_minor == start) {
526                                 /* Oh dear, all in use. */
527                                 spin_unlock(&all_mddevs_lock);
528                                 kfree(new);
529                                 return NULL;
530                         }
531
532                         is_free = 1;
533                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
534                                 if (mddev->unit == dev) {
535                                         is_free = 0;
536                                         break;
537                                 }
538                 }
539                 new->unit = dev;
540                 new->md_minor = MINOR(dev);
541                 new->hold_active = UNTIL_STOP;
542                 list_add(&new->all_mddevs, &all_mddevs);
543                 spin_unlock(&all_mddevs_lock);
544                 return new;
545         }
546         spin_unlock(&all_mddevs_lock);
547
548         new = kzalloc(sizeof(*new), GFP_KERNEL);
549         if (!new)
550                 return NULL;
551
552         new->unit = unit;
553         if (MAJOR(unit) == MD_MAJOR)
554                 new->md_minor = MINOR(unit);
555         else
556                 new->md_minor = MINOR(unit) >> MdpMinorShift;
557
558         mddev_init(new);
559
560         goto retry;
561 }
562
563 static inline int __must_check mddev_lock(struct mddev *mddev)
564 {
565         return mutex_lock_interruptible(&mddev->reconfig_mutex);
566 }
567
568 /* Sometimes we need to take the lock in a situation where
569  * failure due to interrupts is not acceptable.
570  */
571 static inline void mddev_lock_nointr(struct mddev *mddev)
572 {
573         mutex_lock(&mddev->reconfig_mutex);
574 }
575
576 static inline int mddev_is_locked(struct mddev *mddev)
577 {
578         return mutex_is_locked(&mddev->reconfig_mutex);
579 }
580
581 static inline int mddev_trylock(struct mddev *mddev)
582 {
583         return mutex_trylock(&mddev->reconfig_mutex);
584 }
585
586 static struct attribute_group md_redundancy_group;
587
588 static void mddev_unlock(struct mddev *mddev)
589 {
590         if (mddev->to_remove) {
591                 /* These cannot be removed under reconfig_mutex as
592                  * an access to the files will try to take reconfig_mutex
593                  * while holding the file unremovable, which leads to
594                  * a deadlock.
595                  * So hold set sysfs_active while the remove in happeing,
596                  * and anything else which might set ->to_remove or my
597                  * otherwise change the sysfs namespace will fail with
598                  * -EBUSY if sysfs_active is still set.
599                  * We set sysfs_active under reconfig_mutex and elsewhere
600                  * test it under the same mutex to ensure its correct value
601                  * is seen.
602                  */
603                 struct attribute_group *to_remove = mddev->to_remove;
604                 mddev->to_remove = NULL;
605                 mddev->sysfs_active = 1;
606                 mutex_unlock(&mddev->reconfig_mutex);
607
608                 if (mddev->kobj.sd) {
609                         if (to_remove != &md_redundancy_group)
610                                 sysfs_remove_group(&mddev->kobj, to_remove);
611                         if (mddev->pers == NULL ||
612                             mddev->pers->sync_request == NULL) {
613                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
614                                 if (mddev->sysfs_action)
615                                         sysfs_put(mddev->sysfs_action);
616                                 mddev->sysfs_action = NULL;
617                         }
618                 }
619                 mddev->sysfs_active = 0;
620         } else
621                 mutex_unlock(&mddev->reconfig_mutex);
622
623         /* As we've dropped the mutex we need a spinlock to
624          * make sure the thread doesn't disappear
625          */
626         spin_lock(&pers_lock);
627         md_wakeup_thread(mddev->thread);
628         spin_unlock(&pers_lock);
629 }
630
631 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
632 {
633         struct md_rdev *rdev;
634
635         rdev_for_each_rcu(rdev, mddev)
636                 if (rdev->desc_nr == nr)
637                         return rdev;
638
639         return NULL;
640 }
641
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644         struct md_rdev *rdev;
645
646         rdev_for_each(rdev, mddev)
647                 if (rdev->bdev->bd_dev == dev)
648                         return rdev;
649
650         return NULL;
651 }
652
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655         struct md_rdev *rdev;
656
657         rdev_for_each_rcu(rdev, mddev)
658                 if (rdev->bdev->bd_dev == dev)
659                         return rdev;
660
661         return NULL;
662 }
663
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666         struct md_personality *pers;
667         list_for_each_entry(pers, &pers_list, list) {
668                 if (level != LEVEL_NONE && pers->level == level)
669                         return pers;
670                 if (strcmp(pers->name, clevel)==0)
671                         return pers;
672         }
673         return NULL;
674 }
675
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680         return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685         if (rdev->sb_page)
686                 MD_BUG();
687
688         rdev->sb_page = alloc_page(GFP_KERNEL);
689         if (!rdev->sb_page) {
690                 printk(KERN_ALERT "md: out of memory.\n");
691                 return -ENOMEM;
692         }
693
694         return 0;
695 }
696
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699         if (rdev->sb_page) {
700                 put_page(rdev->sb_page);
701                 rdev->sb_loaded = 0;
702                 rdev->sb_page = NULL;
703                 rdev->sb_start = 0;
704                 rdev->sectors = 0;
705         }
706         if (rdev->bb_page) {
707                 put_page(rdev->bb_page);
708                 rdev->bb_page = NULL;
709         }
710         kfree(rdev->badblocks.page);
711         rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714
715 static void super_written(struct bio *bio, int error)
716 {
717         struct md_rdev *rdev = bio->bi_private;
718         struct mddev *mddev = rdev->mddev;
719
720         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
721                 printk("md: super_written gets error=%d, uptodate=%d\n",
722                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
723                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
724                 md_error(mddev, rdev);
725         }
726
727         if (atomic_dec_and_test(&mddev->pending_writes))
728                 wake_up(&mddev->sb_wait);
729         bio_put(bio);
730 }
731
732 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
733                    sector_t sector, int size, struct page *page)
734 {
735         /* write first size bytes of page to sector of rdev
736          * Increment mddev->pending_writes before returning
737          * and decrement it on completion, waking up sb_wait
738          * if zero is reached.
739          * If an error occurred, call md_error
740          */
741         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
742
743         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
744         bio->bi_iter.bi_sector = sector;
745         bio_add_page(bio, page, size, 0);
746         bio->bi_private = rdev;
747         bio->bi_end_io = super_written;
748
749         atomic_inc(&mddev->pending_writes);
750         submit_bio(WRITE_FLUSH_FUA, bio);
751 }
752
753 void md_super_wait(struct mddev *mddev)
754 {
755         /* wait for all superblock writes that were scheduled to complete */
756         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
757 }
758
759 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
760                  struct page *page, int rw, bool metadata_op)
761 {
762         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
763         int ret;
764
765         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
766                 rdev->meta_bdev : rdev->bdev;
767         if (metadata_op)
768                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
769         else if (rdev->mddev->reshape_position != MaxSector &&
770                  (rdev->mddev->reshape_backwards ==
771                   (sector >= rdev->mddev->reshape_position)))
772                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773         else
774                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
775         bio_add_page(bio, page, size, 0);
776         submit_bio_wait(rw, bio);
777
778         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
779         bio_put(bio);
780         return ret;
781 }
782 EXPORT_SYMBOL_GPL(sync_page_io);
783
784 static int read_disk_sb(struct md_rdev *rdev, int size)
785 {
786         char b[BDEVNAME_SIZE];
787         if (!rdev->sb_page) {
788                 MD_BUG();
789                 return -EINVAL;
790         }
791         if (rdev->sb_loaded)
792                 return 0;
793
794         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
795                 goto fail;
796         rdev->sb_loaded = 1;
797         return 0;
798
799 fail:
800         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
801                 bdevname(rdev->bdev,b));
802         return -EINVAL;
803 }
804
805 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807         return  sb1->set_uuid0 == sb2->set_uuid0 &&
808                 sb1->set_uuid1 == sb2->set_uuid1 &&
809                 sb1->set_uuid2 == sb2->set_uuid2 &&
810                 sb1->set_uuid3 == sb2->set_uuid3;
811 }
812
813 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
814 {
815         int ret;
816         mdp_super_t *tmp1, *tmp2;
817
818         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
819         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
820
821         if (!tmp1 || !tmp2) {
822                 ret = 0;
823                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
824                 goto abort;
825         }
826
827         *tmp1 = *sb1;
828         *tmp2 = *sb2;
829
830         /*
831          * nr_disks is not constant
832          */
833         tmp1->nr_disks = 0;
834         tmp2->nr_disks = 0;
835
836         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
837 abort:
838         kfree(tmp1);
839         kfree(tmp2);
840         return ret;
841 }
842
843 static u32 md_csum_fold(u32 csum)
844 {
845         csum = (csum & 0xffff) + (csum >> 16);
846         return (csum & 0xffff) + (csum >> 16);
847 }
848
849 static unsigned int calc_sb_csum(mdp_super_t *sb)
850 {
851         u64 newcsum = 0;
852         u32 *sb32 = (u32*)sb;
853         int i;
854         unsigned int disk_csum, csum;
855
856         disk_csum = sb->sb_csum;
857         sb->sb_csum = 0;
858
859         for (i = 0; i < MD_SB_BYTES/4 ; i++)
860                 newcsum += sb32[i];
861         csum = (newcsum & 0xffffffff) + (newcsum>>32);
862
863 #ifdef CONFIG_ALPHA
864         /* This used to use csum_partial, which was wrong for several
865          * reasons including that different results are returned on
866          * different architectures.  It isn't critical that we get exactly
867          * the same return value as before (we always csum_fold before
868          * testing, and that removes any differences).  However as we
869          * know that csum_partial always returned a 16bit value on
870          * alphas, do a fold to maximise conformity to previous behaviour.
871          */
872         sb->sb_csum = md_csum_fold(disk_csum);
873 #else
874         sb->sb_csum = disk_csum;
875 #endif
876         return csum;
877 }
878
879 /*
880  * Handle superblock details.
881  * We want to be able to handle multiple superblock formats
882  * so we have a common interface to them all, and an array of
883  * different handlers.
884  * We rely on user-space to write the initial superblock, and support
885  * reading and updating of superblocks.
886  * Interface methods are:
887  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
888  *      loads and validates a superblock on dev.
889  *      if refdev != NULL, compare superblocks on both devices
890  *    Return:
891  *      0 - dev has a superblock that is compatible with refdev
892  *      1 - dev has a superblock that is compatible and newer than refdev
893  *          so dev should be used as the refdev in future
894  *     -EINVAL superblock incompatible or invalid
895  *     -othererror e.g. -EIO
896  *
897  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
898  *      Verify that dev is acceptable into mddev.
899  *       The first time, mddev->raid_disks will be 0, and data from
900  *       dev should be merged in.  Subsequent calls check that dev
901  *       is new enough.  Return 0 or -EINVAL
902  *
903  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
904  *     Update the superblock for rdev with data in mddev
905  *     This does not write to disc.
906  *
907  */
908
909 struct super_type  {
910         char                *name;
911         struct module       *owner;
912         int                 (*load_super)(struct md_rdev *rdev,
913                                           struct md_rdev *refdev,
914                                           int minor_version);
915         int                 (*validate_super)(struct mddev *mddev,
916                                               struct md_rdev *rdev);
917         void                (*sync_super)(struct mddev *mddev,
918                                           struct md_rdev *rdev);
919         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
920                                                 sector_t num_sectors);
921         int                 (*allow_new_offset)(struct md_rdev *rdev,
922                                                 unsigned long long new_offset);
923 };
924
925 /*
926  * Check that the given mddev has no bitmap.
927  *
928  * This function is called from the run method of all personalities that do not
929  * support bitmaps. It prints an error message and returns non-zero if mddev
930  * has a bitmap. Otherwise, it returns 0.
931  *
932  */
933 int md_check_no_bitmap(struct mddev *mddev)
934 {
935         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
936                 return 0;
937         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
938                 mdname(mddev), mddev->pers->name);
939         return 1;
940 }
941 EXPORT_SYMBOL(md_check_no_bitmap);
942
943 /*
944  * load_super for 0.90.0
945  */
946 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
947 {
948         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
949         mdp_super_t *sb;
950         int ret;
951
952         /*
953          * Calculate the position of the superblock (512byte sectors),
954          * it's at the end of the disk.
955          *
956          * It also happens to be a multiple of 4Kb.
957          */
958         rdev->sb_start = calc_dev_sboffset(rdev);
959
960         ret = read_disk_sb(rdev, MD_SB_BYTES);
961         if (ret) return ret;
962
963         ret = -EINVAL;
964
965         bdevname(rdev->bdev, b);
966         sb = page_address(rdev->sb_page);
967
968         if (sb->md_magic != MD_SB_MAGIC) {
969                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
970                        b);
971                 goto abort;
972         }
973
974         if (sb->major_version != 0 ||
975             sb->minor_version < 90 ||
976             sb->minor_version > 91) {
977                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
978                         sb->major_version, sb->minor_version,
979                         b);
980                 goto abort;
981         }
982
983         if (sb->raid_disks <= 0)
984                 goto abort;
985
986         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
987                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
988                         b);
989                 goto abort;
990         }
991
992         rdev->preferred_minor = sb->md_minor;
993         rdev->data_offset = 0;
994         rdev->new_data_offset = 0;
995         rdev->sb_size = MD_SB_BYTES;
996         rdev->badblocks.shift = -1;
997
998         if (sb->level == LEVEL_MULTIPATH)
999                 rdev->desc_nr = -1;
1000         else
1001                 rdev->desc_nr = sb->this_disk.number;
1002
1003         if (!refdev) {
1004                 ret = 1;
1005         } else {
1006                 __u64 ev1, ev2;
1007                 mdp_super_t *refsb = page_address(refdev->sb_page);
1008                 if (!uuid_equal(refsb, sb)) {
1009                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1010                                 b, bdevname(refdev->bdev,b2));
1011                         goto abort;
1012                 }
1013                 if (!sb_equal(refsb, sb)) {
1014                         printk(KERN_WARNING "md: %s has same UUID"
1015                                " but different superblock to %s\n",
1016                                b, bdevname(refdev->bdev, b2));
1017                         goto abort;
1018                 }
1019                 ev1 = md_event(sb);
1020                 ev2 = md_event(refsb);
1021                 if (ev1 > ev2)
1022                         ret = 1;
1023                 else
1024                         ret = 0;
1025         }
1026         rdev->sectors = rdev->sb_start;
1027         /* Limit to 4TB as metadata cannot record more than that.
1028          * (not needed for Linear and RAID0 as metadata doesn't
1029          * record this size)
1030          */
1031         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1032                 rdev->sectors = (2ULL << 32) - 2;
1033
1034         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1035                 /* "this cannot possibly happen" ... */
1036                 ret = -EINVAL;
1037
1038  abort:
1039         return ret;
1040 }
1041
1042 /*
1043  * validate_super for 0.90.0
1044  */
1045 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1046 {
1047         mdp_disk_t *desc;
1048         mdp_super_t *sb = page_address(rdev->sb_page);
1049         __u64 ev1 = md_event(sb);
1050
1051         rdev->raid_disk = -1;
1052         clear_bit(Faulty, &rdev->flags);
1053         clear_bit(In_sync, &rdev->flags);
1054         clear_bit(Bitmap_sync, &rdev->flags);
1055         clear_bit(WriteMostly, &rdev->flags);
1056
1057         if (mddev->raid_disks == 0) {
1058                 mddev->major_version = 0;
1059                 mddev->minor_version = sb->minor_version;
1060                 mddev->patch_version = sb->patch_version;
1061                 mddev->external = 0;
1062                 mddev->chunk_sectors = sb->chunk_size >> 9;
1063                 mddev->ctime = sb->ctime;
1064                 mddev->utime = sb->utime;
1065                 mddev->level = sb->level;
1066                 mddev->clevel[0] = 0;
1067                 mddev->layout = sb->layout;
1068                 mddev->raid_disks = sb->raid_disks;
1069                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1070                 mddev->events = ev1;
1071                 mddev->bitmap_info.offset = 0;
1072                 mddev->bitmap_info.space = 0;
1073                 /* bitmap can use 60 K after the 4K superblocks */
1074                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1075                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1076                 mddev->reshape_backwards = 0;
1077
1078                 if (mddev->minor_version >= 91) {
1079                         mddev->reshape_position = sb->reshape_position;
1080                         mddev->delta_disks = sb->delta_disks;
1081                         mddev->new_level = sb->new_level;
1082                         mddev->new_layout = sb->new_layout;
1083                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1084                         if (mddev->delta_disks < 0)
1085                                 mddev->reshape_backwards = 1;
1086                 } else {
1087                         mddev->reshape_position = MaxSector;
1088                         mddev->delta_disks = 0;
1089                         mddev->new_level = mddev->level;
1090                         mddev->new_layout = mddev->layout;
1091                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1092                 }
1093
1094                 if (sb->state & (1<<MD_SB_CLEAN))
1095                         mddev->recovery_cp = MaxSector;
1096                 else {
1097                         if (sb->events_hi == sb->cp_events_hi &&
1098                                 sb->events_lo == sb->cp_events_lo) {
1099                                 mddev->recovery_cp = sb->recovery_cp;
1100                         } else
1101                                 mddev->recovery_cp = 0;
1102                 }
1103
1104                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1105                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1106                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1107                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1108
1109                 mddev->max_disks = MD_SB_DISKS;
1110
1111                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1112                     mddev->bitmap_info.file == NULL) {
1113                         mddev->bitmap_info.offset =
1114                                 mddev->bitmap_info.default_offset;
1115                         mddev->bitmap_info.space =
1116                                 mddev->bitmap_info.default_space;
1117                 }
1118
1119         } else if (mddev->pers == NULL) {
1120                 /* Insist on good event counter while assembling, except
1121                  * for spares (which don't need an event count) */
1122                 ++ev1;
1123                 if (sb->disks[rdev->desc_nr].state & (
1124                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1125                         if (ev1 < mddev->events)
1126                                 return -EINVAL;
1127         } else if (mddev->bitmap) {
1128                 /* if adding to array with a bitmap, then we can accept an
1129                  * older device ... but not too old.
1130                  */
1131                 if (ev1 < mddev->bitmap->events_cleared)
1132                         return 0;
1133                 if (ev1 < mddev->events)
1134                         set_bit(Bitmap_sync, &rdev->flags);
1135         } else {
1136                 if (ev1 < mddev->events)
1137                         /* just a hot-add of a new device, leave raid_disk at -1 */
1138                         return 0;
1139         }
1140
1141         if (mddev->level != LEVEL_MULTIPATH) {
1142                 desc = sb->disks + rdev->desc_nr;
1143
1144                 if (desc->state & (1<<MD_DISK_FAULTY))
1145                         set_bit(Faulty, &rdev->flags);
1146                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1147                             desc->raid_disk < mddev->raid_disks */) {
1148                         set_bit(In_sync, &rdev->flags);
1149                         rdev->raid_disk = desc->raid_disk;
1150                         rdev->saved_raid_disk = desc->raid_disk;
1151                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1152                         /* active but not in sync implies recovery up to
1153                          * reshape position.  We don't know exactly where
1154                          * that is, so set to zero for now */
1155                         if (mddev->minor_version >= 91) {
1156                                 rdev->recovery_offset = 0;
1157                                 rdev->raid_disk = desc->raid_disk;
1158                         }
1159                 }
1160                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1161                         set_bit(WriteMostly, &rdev->flags);
1162         } else /* MULTIPATH are always insync */
1163                 set_bit(In_sync, &rdev->flags);
1164         return 0;
1165 }
1166
1167 /*
1168  * sync_super for 0.90.0
1169  */
1170 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1171 {
1172         mdp_super_t *sb;
1173         struct md_rdev *rdev2;
1174         int next_spare = mddev->raid_disks;
1175
1176         /* make rdev->sb match mddev data..
1177          *
1178          * 1/ zero out disks
1179          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1180          * 3/ any empty disks < next_spare become removed
1181          *
1182          * disks[0] gets initialised to REMOVED because
1183          * we cannot be sure from other fields if it has
1184          * been initialised or not.
1185          */
1186         int i;
1187         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1188
1189         rdev->sb_size = MD_SB_BYTES;
1190
1191         sb = page_address(rdev->sb_page);
1192
1193         memset(sb, 0, sizeof(*sb));
1194
1195         sb->md_magic = MD_SB_MAGIC;
1196         sb->major_version = mddev->major_version;
1197         sb->patch_version = mddev->patch_version;
1198         sb->gvalid_words  = 0; /* ignored */
1199         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1200         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1201         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1202         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1203
1204         sb->ctime = mddev->ctime;
1205         sb->level = mddev->level;
1206         sb->size = mddev->dev_sectors / 2;
1207         sb->raid_disks = mddev->raid_disks;
1208         sb->md_minor = mddev->md_minor;
1209         sb->not_persistent = 0;
1210         sb->utime = mddev->utime;
1211         sb->state = 0;
1212         sb->events_hi = (mddev->events>>32);
1213         sb->events_lo = (u32)mddev->events;
1214
1215         if (mddev->reshape_position == MaxSector)
1216                 sb->minor_version = 90;
1217         else {
1218                 sb->minor_version = 91;
1219                 sb->reshape_position = mddev->reshape_position;
1220                 sb->new_level = mddev->new_level;
1221                 sb->delta_disks = mddev->delta_disks;
1222                 sb->new_layout = mddev->new_layout;
1223                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1224         }
1225         mddev->minor_version = sb->minor_version;
1226         if (mddev->in_sync)
1227         {
1228                 sb->recovery_cp = mddev->recovery_cp;
1229                 sb->cp_events_hi = (mddev->events>>32);
1230                 sb->cp_events_lo = (u32)mddev->events;
1231                 if (mddev->recovery_cp == MaxSector)
1232                         sb->state = (1<< MD_SB_CLEAN);
1233         } else
1234                 sb->recovery_cp = 0;
1235
1236         sb->layout = mddev->layout;
1237         sb->chunk_size = mddev->chunk_sectors << 9;
1238
1239         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1240                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1241
1242         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1243         rdev_for_each(rdev2, mddev) {
1244                 mdp_disk_t *d;
1245                 int desc_nr;
1246                 int is_active = test_bit(In_sync, &rdev2->flags);
1247
1248                 if (rdev2->raid_disk >= 0 &&
1249                     sb->minor_version >= 91)
1250                         /* we have nowhere to store the recovery_offset,
1251                          * but if it is not below the reshape_position,
1252                          * we can piggy-back on that.
1253                          */
1254                         is_active = 1;
1255                 if (rdev2->raid_disk < 0 ||
1256                     test_bit(Faulty, &rdev2->flags))
1257                         is_active = 0;
1258                 if (is_active)
1259                         desc_nr = rdev2->raid_disk;
1260                 else
1261                         desc_nr = next_spare++;
1262                 rdev2->desc_nr = desc_nr;
1263                 d = &sb->disks[rdev2->desc_nr];
1264                 nr_disks++;
1265                 d->number = rdev2->desc_nr;
1266                 d->major = MAJOR(rdev2->bdev->bd_dev);
1267                 d->minor = MINOR(rdev2->bdev->bd_dev);
1268                 if (is_active)
1269                         d->raid_disk = rdev2->raid_disk;
1270                 else
1271                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1272                 if (test_bit(Faulty, &rdev2->flags))
1273                         d->state = (1<<MD_DISK_FAULTY);
1274                 else if (is_active) {
1275                         d->state = (1<<MD_DISK_ACTIVE);
1276                         if (test_bit(In_sync, &rdev2->flags))
1277                                 d->state |= (1<<MD_DISK_SYNC);
1278                         active++;
1279                         working++;
1280                 } else {
1281                         d->state = 0;
1282                         spare++;
1283                         working++;
1284                 }
1285                 if (test_bit(WriteMostly, &rdev2->flags))
1286                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1287         }
1288         /* now set the "removed" and "faulty" bits on any missing devices */
1289         for (i=0 ; i < mddev->raid_disks ; i++) {
1290                 mdp_disk_t *d = &sb->disks[i];
1291                 if (d->state == 0 && d->number == 0) {
1292                         d->number = i;
1293                         d->raid_disk = i;
1294                         d->state = (1<<MD_DISK_REMOVED);
1295                         d->state |= (1<<MD_DISK_FAULTY);
1296                         failed++;
1297                 }
1298         }
1299         sb->nr_disks = nr_disks;
1300         sb->active_disks = active;
1301         sb->working_disks = working;
1302         sb->failed_disks = failed;
1303         sb->spare_disks = spare;
1304
1305         sb->this_disk = sb->disks[rdev->desc_nr];
1306         sb->sb_csum = calc_sb_csum(sb);
1307 }
1308
1309 /*
1310  * rdev_size_change for 0.90.0
1311  */
1312 static unsigned long long
1313 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1314 {
1315         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1316                 return 0; /* component must fit device */
1317         if (rdev->mddev->bitmap_info.offset)
1318                 return 0; /* can't move bitmap */
1319         rdev->sb_start = calc_dev_sboffset(rdev);
1320         if (!num_sectors || num_sectors > rdev->sb_start)
1321                 num_sectors = rdev->sb_start;
1322         /* Limit to 4TB as metadata cannot record more than that.
1323          * 4TB == 2^32 KB, or 2*2^32 sectors.
1324          */
1325         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1326                 num_sectors = (2ULL << 32) - 2;
1327         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1328                        rdev->sb_page);
1329         md_super_wait(rdev->mddev);
1330         return num_sectors;
1331 }
1332
1333 static int
1334 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1335 {
1336         /* non-zero offset changes not possible with v0.90 */
1337         return new_offset == 0;
1338 }
1339
1340 /*
1341  * version 1 superblock
1342  */
1343
1344 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1345 {
1346         __le32 disk_csum;
1347         u32 csum;
1348         unsigned long long newcsum;
1349         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1350         __le32 *isuper = (__le32*)sb;
1351
1352         disk_csum = sb->sb_csum;
1353         sb->sb_csum = 0;
1354         newcsum = 0;
1355         for (; size >= 4; size -= 4)
1356                 newcsum += le32_to_cpu(*isuper++);
1357
1358         if (size == 2)
1359                 newcsum += le16_to_cpu(*(__le16*) isuper);
1360
1361         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1362         sb->sb_csum = disk_csum;
1363         return cpu_to_le32(csum);
1364 }
1365
1366 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1367                             int acknowledged);
1368 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1369 {
1370         struct mdp_superblock_1 *sb;
1371         int ret;
1372         sector_t sb_start;
1373         sector_t sectors;
1374         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1375         int bmask;
1376
1377         /*
1378          * Calculate the position of the superblock in 512byte sectors.
1379          * It is always aligned to a 4K boundary and
1380          * depeding on minor_version, it can be:
1381          * 0: At least 8K, but less than 12K, from end of device
1382          * 1: At start of device
1383          * 2: 4K from start of device.
1384          */
1385         switch(minor_version) {
1386         case 0:
1387                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1388                 sb_start -= 8*2;
1389                 sb_start &= ~(sector_t)(4*2-1);
1390                 break;
1391         case 1:
1392                 sb_start = 0;
1393                 break;
1394         case 2:
1395                 sb_start = 8;
1396                 break;
1397         default:
1398                 return -EINVAL;
1399         }
1400         rdev->sb_start = sb_start;
1401
1402         /* superblock is rarely larger than 1K, but it can be larger,
1403          * and it is safe to read 4k, so we do that
1404          */
1405         ret = read_disk_sb(rdev, 4096);
1406         if (ret) return ret;
1407
1408         sb = page_address(rdev->sb_page);
1409
1410         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1411             sb->major_version != cpu_to_le32(1) ||
1412             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1413             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1414             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1415                 return -EINVAL;
1416
1417         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1418                 printk("md: invalid superblock checksum on %s\n",
1419                         bdevname(rdev->bdev,b));
1420                 return -EINVAL;
1421         }
1422         if (le64_to_cpu(sb->data_size) < 10) {
1423                 printk("md: data_size too small on %s\n",
1424                        bdevname(rdev->bdev,b));
1425                 return -EINVAL;
1426         }
1427         if (sb->pad0 ||
1428             sb->pad3[0] ||
1429             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1430                 /* Some padding is non-zero, might be a new feature */
1431                 return -EINVAL;
1432
1433         rdev->preferred_minor = 0xffff;
1434         rdev->data_offset = le64_to_cpu(sb->data_offset);
1435         rdev->new_data_offset = rdev->data_offset;
1436         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1437             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1438                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1439         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1440
1441         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1442         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1443         if (rdev->sb_size & bmask)
1444                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1445
1446         if (minor_version
1447             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1448                 return -EINVAL;
1449         if (minor_version
1450             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1451                 return -EINVAL;
1452
1453         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1454                 rdev->desc_nr = -1;
1455         else
1456                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1457
1458         if (!rdev->bb_page) {
1459                 rdev->bb_page = alloc_page(GFP_KERNEL);
1460                 if (!rdev->bb_page)
1461                         return -ENOMEM;
1462         }
1463         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1464             rdev->badblocks.count == 0) {
1465                 /* need to load the bad block list.
1466                  * Currently we limit it to one page.
1467                  */
1468                 s32 offset;
1469                 sector_t bb_sector;
1470                 u64 *bbp;
1471                 int i;
1472                 int sectors = le16_to_cpu(sb->bblog_size);
1473                 if (sectors > (PAGE_SIZE / 512))
1474                         return -EINVAL;
1475                 offset = le32_to_cpu(sb->bblog_offset);
1476                 if (offset == 0)
1477                         return -EINVAL;
1478                 bb_sector = (long long)offset;
1479                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1480                                   rdev->bb_page, READ, true))
1481                         return -EIO;
1482                 bbp = (u64 *)page_address(rdev->bb_page);
1483                 rdev->badblocks.shift = sb->bblog_shift;
1484                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1485                         u64 bb = le64_to_cpu(*bbp);
1486                         int count = bb & (0x3ff);
1487                         u64 sector = bb >> 10;
1488                         sector <<= sb->bblog_shift;
1489                         count <<= sb->bblog_shift;
1490                         if (bb + 1 == 0)
1491                                 break;
1492                         if (md_set_badblocks(&rdev->badblocks,
1493                                              sector, count, 1) == 0)
1494                                 return -EINVAL;
1495                 }
1496         } else if (sb->bblog_offset != 0)
1497                 rdev->badblocks.shift = 0;
1498
1499         if (!refdev) {
1500                 ret = 1;
1501         } else {
1502                 __u64 ev1, ev2;
1503                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1504
1505                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1506                     sb->level != refsb->level ||
1507                     sb->layout != refsb->layout ||
1508                     sb->chunksize != refsb->chunksize) {
1509                         printk(KERN_WARNING "md: %s has strangely different"
1510                                 " superblock to %s\n",
1511                                 bdevname(rdev->bdev,b),
1512                                 bdevname(refdev->bdev,b2));
1513                         return -EINVAL;
1514                 }
1515                 ev1 = le64_to_cpu(sb->events);
1516                 ev2 = le64_to_cpu(refsb->events);
1517
1518                 if (ev1 > ev2)
1519                         ret = 1;
1520                 else
1521                         ret = 0;
1522         }
1523         if (minor_version) {
1524                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1525                 sectors -= rdev->data_offset;
1526         } else
1527                 sectors = rdev->sb_start;
1528         if (sectors < le64_to_cpu(sb->data_size))
1529                 return -EINVAL;
1530         rdev->sectors = le64_to_cpu(sb->data_size);
1531         return ret;
1532 }
1533
1534 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1535 {
1536         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1537         __u64 ev1 = le64_to_cpu(sb->events);
1538
1539         rdev->raid_disk = -1;
1540         clear_bit(Faulty, &rdev->flags);
1541         clear_bit(In_sync, &rdev->flags);
1542         clear_bit(Bitmap_sync, &rdev->flags);
1543         clear_bit(WriteMostly, &rdev->flags);
1544
1545         if (mddev->raid_disks == 0) {
1546                 mddev->major_version = 1;
1547                 mddev->patch_version = 0;
1548                 mddev->external = 0;
1549                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1550                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1551                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1552                 mddev->level = le32_to_cpu(sb->level);
1553                 mddev->clevel[0] = 0;
1554                 mddev->layout = le32_to_cpu(sb->layout);
1555                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1556                 mddev->dev_sectors = le64_to_cpu(sb->size);
1557                 mddev->events = ev1;
1558                 mddev->bitmap_info.offset = 0;
1559                 mddev->bitmap_info.space = 0;
1560                 /* Default location for bitmap is 1K after superblock
1561                  * using 3K - total of 4K
1562                  */
1563                 mddev->bitmap_info.default_offset = 1024 >> 9;
1564                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1565                 mddev->reshape_backwards = 0;
1566
1567                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1568                 memcpy(mddev->uuid, sb->set_uuid, 16);
1569
1570                 mddev->max_disks =  (4096-256)/2;
1571
1572                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1573                     mddev->bitmap_info.file == NULL) {
1574                         mddev->bitmap_info.offset =
1575                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1576                         /* Metadata doesn't record how much space is available.
1577                          * For 1.0, we assume we can use up to the superblock
1578                          * if before, else to 4K beyond superblock.
1579                          * For others, assume no change is possible.
1580                          */
1581                         if (mddev->minor_version > 0)
1582                                 mddev->bitmap_info.space = 0;
1583                         else if (mddev->bitmap_info.offset > 0)
1584                                 mddev->bitmap_info.space =
1585                                         8 - mddev->bitmap_info.offset;
1586                         else
1587                                 mddev->bitmap_info.space =
1588                                         -mddev->bitmap_info.offset;
1589                 }
1590
1591                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1592                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1593                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1594                         mddev->new_level = le32_to_cpu(sb->new_level);
1595                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1596                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1597                         if (mddev->delta_disks < 0 ||
1598                             (mddev->delta_disks == 0 &&
1599                              (le32_to_cpu(sb->feature_map)
1600                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1601                                 mddev->reshape_backwards = 1;
1602                 } else {
1603                         mddev->reshape_position = MaxSector;
1604                         mddev->delta_disks = 0;
1605                         mddev->new_level = mddev->level;
1606                         mddev->new_layout = mddev->layout;
1607                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1608                 }
1609
1610         } else if (mddev->pers == NULL) {
1611                 /* Insist of good event counter while assembling, except for
1612                  * spares (which don't need an event count) */
1613                 ++ev1;
1614                 if (rdev->desc_nr >= 0 &&
1615                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1616                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1617                         if (ev1 < mddev->events)
1618                                 return -EINVAL;
1619         } else if (mddev->bitmap) {
1620                 /* If adding to array with a bitmap, then we can accept an
1621                  * older device, but not too old.
1622                  */
1623                 if (ev1 < mddev->bitmap->events_cleared)
1624                         return 0;
1625                 if (ev1 < mddev->events)
1626                         set_bit(Bitmap_sync, &rdev->flags);
1627         } else {
1628                 if (ev1 < mddev->events)
1629                         /* just a hot-add of a new device, leave raid_disk at -1 */
1630                         return 0;
1631         }
1632         if (mddev->level != LEVEL_MULTIPATH) {
1633                 int role;
1634                 if (rdev->desc_nr < 0 ||
1635                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1636                         role = 0xffff;
1637                         rdev->desc_nr = -1;
1638                 } else
1639                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1640                 switch(role) {
1641                 case 0xffff: /* spare */
1642                         break;
1643                 case 0xfffe: /* faulty */
1644                         set_bit(Faulty, &rdev->flags);
1645                         break;
1646                 default:
1647                         rdev->saved_raid_disk = role;
1648                         if ((le32_to_cpu(sb->feature_map) &
1649                              MD_FEATURE_RECOVERY_OFFSET)) {
1650                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1651                                 if (!(le32_to_cpu(sb->feature_map) &
1652                                       MD_FEATURE_RECOVERY_BITMAP))
1653                                         rdev->saved_raid_disk = -1;
1654                         } else
1655                                 set_bit(In_sync, &rdev->flags);
1656                         rdev->raid_disk = role;
1657                         break;
1658                 }
1659                 if (sb->devflags & WriteMostly1)
1660                         set_bit(WriteMostly, &rdev->flags);
1661                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1662                         set_bit(Replacement, &rdev->flags);
1663         } else /* MULTIPATH are always insync */
1664                 set_bit(In_sync, &rdev->flags);
1665
1666         return 0;
1667 }
1668
1669 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671         struct mdp_superblock_1 *sb;
1672         struct md_rdev *rdev2;
1673         int max_dev, i;
1674         /* make rdev->sb match mddev and rdev data. */
1675
1676         sb = page_address(rdev->sb_page);
1677
1678         sb->feature_map = 0;
1679         sb->pad0 = 0;
1680         sb->recovery_offset = cpu_to_le64(0);
1681         memset(sb->pad3, 0, sizeof(sb->pad3));
1682
1683         sb->utime = cpu_to_le64((__u64)mddev->utime);
1684         sb->events = cpu_to_le64(mddev->events);
1685         if (mddev->in_sync)
1686                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1687         else
1688                 sb->resync_offset = cpu_to_le64(0);
1689
1690         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1691
1692         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1693         sb->size = cpu_to_le64(mddev->dev_sectors);
1694         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1695         sb->level = cpu_to_le32(mddev->level);
1696         sb->layout = cpu_to_le32(mddev->layout);
1697
1698         if (test_bit(WriteMostly, &rdev->flags))
1699                 sb->devflags |= WriteMostly1;
1700         else
1701                 sb->devflags &= ~WriteMostly1;
1702         sb->data_offset = cpu_to_le64(rdev->data_offset);
1703         sb->data_size = cpu_to_le64(rdev->sectors);
1704
1705         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1706                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1707                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1708         }
1709
1710         if (rdev->raid_disk >= 0 &&
1711             !test_bit(In_sync, &rdev->flags)) {
1712                 sb->feature_map |=
1713                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1714                 sb->recovery_offset =
1715                         cpu_to_le64(rdev->recovery_offset);
1716                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1717                         sb->feature_map |=
1718                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1719         }
1720         if (test_bit(Replacement, &rdev->flags))
1721                 sb->feature_map |=
1722                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1723
1724         if (mddev->reshape_position != MaxSector) {
1725                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1726                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1727                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1728                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1729                 sb->new_level = cpu_to_le32(mddev->new_level);
1730                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1731                 if (mddev->delta_disks == 0 &&
1732                     mddev->reshape_backwards)
1733                         sb->feature_map
1734                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1735                 if (rdev->new_data_offset != rdev->data_offset) {
1736                         sb->feature_map
1737                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1738                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1739                                                              - rdev->data_offset));
1740                 }
1741         }
1742
1743         if (rdev->badblocks.count == 0)
1744                 /* Nothing to do for bad blocks*/ ;
1745         else if (sb->bblog_offset == 0)
1746                 /* Cannot record bad blocks on this device */
1747                 md_error(mddev, rdev);
1748         else {
1749                 struct badblocks *bb = &rdev->badblocks;
1750                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1751                 u64 *p = bb->page;
1752                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1753                 if (bb->changed) {
1754                         unsigned seq;
1755
1756 retry:
1757                         seq = read_seqbegin(&bb->lock);
1758
1759                         memset(bbp, 0xff, PAGE_SIZE);
1760
1761                         for (i = 0 ; i < bb->count ; i++) {
1762                                 u64 internal_bb = p[i];
1763                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1764                                                 | BB_LEN(internal_bb));
1765                                 bbp[i] = cpu_to_le64(store_bb);
1766                         }
1767                         bb->changed = 0;
1768                         if (read_seqretry(&bb->lock, seq))
1769                                 goto retry;
1770
1771                         bb->sector = (rdev->sb_start +
1772                                       (int)le32_to_cpu(sb->bblog_offset));
1773                         bb->size = le16_to_cpu(sb->bblog_size);
1774                 }
1775         }
1776
1777         max_dev = 0;
1778         rdev_for_each(rdev2, mddev)
1779                 if (rdev2->desc_nr+1 > max_dev)
1780                         max_dev = rdev2->desc_nr+1;
1781
1782         if (max_dev > le32_to_cpu(sb->max_dev)) {
1783                 int bmask;
1784                 sb->max_dev = cpu_to_le32(max_dev);
1785                 rdev->sb_size = max_dev * 2 + 256;
1786                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1787                 if (rdev->sb_size & bmask)
1788                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1789         } else
1790                 max_dev = le32_to_cpu(sb->max_dev);
1791
1792         for (i=0; i<max_dev;i++)
1793                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1794
1795         rdev_for_each(rdev2, mddev) {
1796                 i = rdev2->desc_nr;
1797                 if (test_bit(Faulty, &rdev2->flags))
1798                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1799                 else if (test_bit(In_sync, &rdev2->flags))
1800                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1801                 else if (rdev2->raid_disk >= 0)
1802                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1803                 else
1804                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1805         }
1806
1807         sb->sb_csum = calc_sb_1_csum(sb);
1808 }
1809
1810 static unsigned long long
1811 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1812 {
1813         struct mdp_superblock_1 *sb;
1814         sector_t max_sectors;
1815         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1816                 return 0; /* component must fit device */
1817         if (rdev->data_offset != rdev->new_data_offset)
1818                 return 0; /* too confusing */
1819         if (rdev->sb_start < rdev->data_offset) {
1820                 /* minor versions 1 and 2; superblock before data */
1821                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1822                 max_sectors -= rdev->data_offset;
1823                 if (!num_sectors || num_sectors > max_sectors)
1824                         num_sectors = max_sectors;
1825         } else if (rdev->mddev->bitmap_info.offset) {
1826                 /* minor version 0 with bitmap we can't move */
1827                 return 0;
1828         } else {
1829                 /* minor version 0; superblock after data */
1830                 sector_t sb_start;
1831                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1832                 sb_start &= ~(sector_t)(4*2 - 1);
1833                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1834                 if (!num_sectors || num_sectors > max_sectors)
1835                         num_sectors = max_sectors;
1836                 rdev->sb_start = sb_start;
1837         }
1838         sb = page_address(rdev->sb_page);
1839         sb->data_size = cpu_to_le64(num_sectors);
1840         sb->super_offset = rdev->sb_start;
1841         sb->sb_csum = calc_sb_1_csum(sb);
1842         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1843                        rdev->sb_page);
1844         md_super_wait(rdev->mddev);
1845         return num_sectors;
1846
1847 }
1848
1849 static int
1850 super_1_allow_new_offset(struct md_rdev *rdev,
1851                          unsigned long long new_offset)
1852 {
1853         /* All necessary checks on new >= old have been done */
1854         struct bitmap *bitmap;
1855         if (new_offset >= rdev->data_offset)
1856                 return 1;
1857
1858         /* with 1.0 metadata, there is no metadata to tread on
1859          * so we can always move back */
1860         if (rdev->mddev->minor_version == 0)
1861                 return 1;
1862
1863         /* otherwise we must be sure not to step on
1864          * any metadata, so stay:
1865          * 36K beyond start of superblock
1866          * beyond end of badblocks
1867          * beyond write-intent bitmap
1868          */
1869         if (rdev->sb_start + (32+4)*2 > new_offset)
1870                 return 0;
1871         bitmap = rdev->mddev->bitmap;
1872         if (bitmap && !rdev->mddev->bitmap_info.file &&
1873             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1874             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1875                 return 0;
1876         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1877                 return 0;
1878
1879         return 1;
1880 }
1881
1882 static struct super_type super_types[] = {
1883         [0] = {
1884                 .name   = "0.90.0",
1885                 .owner  = THIS_MODULE,
1886                 .load_super         = super_90_load,
1887                 .validate_super     = super_90_validate,
1888                 .sync_super         = super_90_sync,
1889                 .rdev_size_change   = super_90_rdev_size_change,
1890                 .allow_new_offset   = super_90_allow_new_offset,
1891         },
1892         [1] = {
1893                 .name   = "md-1",
1894                 .owner  = THIS_MODULE,
1895                 .load_super         = super_1_load,
1896                 .validate_super     = super_1_validate,
1897                 .sync_super         = super_1_sync,
1898                 .rdev_size_change   = super_1_rdev_size_change,
1899                 .allow_new_offset   = super_1_allow_new_offset,
1900         },
1901 };
1902
1903 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1904 {
1905         if (mddev->sync_super) {
1906                 mddev->sync_super(mddev, rdev);
1907                 return;
1908         }
1909
1910         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1911
1912         super_types[mddev->major_version].sync_super(mddev, rdev);
1913 }
1914
1915 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1916 {
1917         struct md_rdev *rdev, *rdev2;
1918
1919         rcu_read_lock();
1920         rdev_for_each_rcu(rdev, mddev1)
1921                 rdev_for_each_rcu(rdev2, mddev2)
1922                         if (rdev->bdev->bd_contains ==
1923                             rdev2->bdev->bd_contains) {
1924                                 rcu_read_unlock();
1925                                 return 1;
1926                         }
1927         rcu_read_unlock();
1928         return 0;
1929 }
1930
1931 static LIST_HEAD(pending_raid_disks);
1932
1933 /*
1934  * Try to register data integrity profile for an mddev
1935  *
1936  * This is called when an array is started and after a disk has been kicked
1937  * from the array. It only succeeds if all working and active component devices
1938  * are integrity capable with matching profiles.
1939  */
1940 int md_integrity_register(struct mddev *mddev)
1941 {
1942         struct md_rdev *rdev, *reference = NULL;
1943
1944         if (list_empty(&mddev->disks))
1945                 return 0; /* nothing to do */
1946         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1947                 return 0; /* shouldn't register, or already is */
1948         rdev_for_each(rdev, mddev) {
1949                 /* skip spares and non-functional disks */
1950                 if (test_bit(Faulty, &rdev->flags))
1951                         continue;
1952                 if (rdev->raid_disk < 0)
1953                         continue;
1954                 if (!reference) {
1955                         /* Use the first rdev as the reference */
1956                         reference = rdev;
1957                         continue;
1958                 }
1959                 /* does this rdev's profile match the reference profile? */
1960                 if (blk_integrity_compare(reference->bdev->bd_disk,
1961                                 rdev->bdev->bd_disk) < 0)
1962                         return -EINVAL;
1963         }
1964         if (!reference || !bdev_get_integrity(reference->bdev))
1965                 return 0;
1966         /*
1967          * All component devices are integrity capable and have matching
1968          * profiles, register the common profile for the md device.
1969          */
1970         if (blk_integrity_register(mddev->gendisk,
1971                         bdev_get_integrity(reference->bdev)) != 0) {
1972                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1973                         mdname(mddev));
1974                 return -EINVAL;
1975         }
1976         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1977         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1978                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1979                        mdname(mddev));
1980                 return -EINVAL;
1981         }
1982         return 0;
1983 }
1984 EXPORT_SYMBOL(md_integrity_register);
1985
1986 /* Disable data integrity if non-capable/non-matching disk is being added */
1987 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1988 {
1989         struct blk_integrity *bi_rdev;
1990         struct blk_integrity *bi_mddev;
1991
1992         if (!mddev->gendisk)
1993                 return;
1994
1995         bi_rdev = bdev_get_integrity(rdev->bdev);
1996         bi_mddev = blk_get_integrity(mddev->gendisk);
1997
1998         if (!bi_mddev) /* nothing to do */
1999                 return;
2000         if (rdev->raid_disk < 0) /* skip spares */
2001                 return;
2002         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2003                                              rdev->bdev->bd_disk) >= 0)
2004                 return;
2005         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2006         blk_integrity_unregister(mddev->gendisk);
2007 }
2008 EXPORT_SYMBOL(md_integrity_add_rdev);
2009
2010 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2011 {
2012         char b[BDEVNAME_SIZE];
2013         struct kobject *ko;
2014         char *s;
2015         int err;
2016
2017         if (rdev->mddev) {
2018                 MD_BUG();
2019                 return -EINVAL;
2020         }
2021
2022         /* prevent duplicates */
2023         if (find_rdev(mddev, rdev->bdev->bd_dev))
2024                 return -EEXIST;
2025
2026         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2027         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2028                         rdev->sectors < mddev->dev_sectors)) {
2029                 if (mddev->pers) {
2030                         /* Cannot change size, so fail
2031                          * If mddev->level <= 0, then we don't care
2032                          * about aligning sizes (e.g. linear)
2033                          */
2034                         if (mddev->level > 0)
2035                                 return -ENOSPC;
2036                 } else
2037                         mddev->dev_sectors = rdev->sectors;
2038         }
2039
2040         /* Verify rdev->desc_nr is unique.
2041          * If it is -1, assign a free number, else
2042          * check number is not in use
2043          */
2044         rcu_read_lock();
2045         if (rdev->desc_nr < 0) {
2046                 int choice = 0;
2047                 if (mddev->pers)
2048                         choice = mddev->raid_disks;
2049                 while (find_rdev_nr_rcu(mddev, choice))
2050                         choice++;
2051                 rdev->desc_nr = choice;
2052         } else {
2053                 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2054                         rcu_read_unlock();
2055                         return -EBUSY;
2056                 }
2057         }
2058         rcu_read_unlock();
2059         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2060                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2061                        mdname(mddev), mddev->max_disks);
2062                 return -EBUSY;
2063         }
2064         bdevname(rdev->bdev,b);
2065         while ( (s=strchr(b, '/')) != NULL)
2066                 *s = '!';
2067
2068         rdev->mddev = mddev;
2069         printk(KERN_INFO "md: bind<%s>\n", b);
2070
2071         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2072                 goto fail;
2073
2074         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2075         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2076                 /* failure here is OK */;
2077         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2078
2079         list_add_rcu(&rdev->same_set, &mddev->disks);
2080         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2081
2082         /* May as well allow recovery to be retried once */
2083         mddev->recovery_disabled++;
2084
2085         return 0;
2086
2087  fail:
2088         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2089                b, mdname(mddev));
2090         return err;
2091 }
2092
2093 static void md_delayed_delete(struct work_struct *ws)
2094 {
2095         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2096         kobject_del(&rdev->kobj);
2097         kobject_put(&rdev->kobj);
2098 }
2099
2100 static void unbind_rdev_from_array(struct md_rdev *rdev)
2101 {
2102         char b[BDEVNAME_SIZE];
2103         if (!rdev->mddev) {
2104                 MD_BUG();
2105                 return;
2106         }
2107         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2108         list_del_rcu(&rdev->same_set);
2109         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2110         rdev->mddev = NULL;
2111         sysfs_remove_link(&rdev->kobj, "block");
2112         sysfs_put(rdev->sysfs_state);
2113         rdev->sysfs_state = NULL;
2114         rdev->badblocks.count = 0;
2115         /* We need to delay this, otherwise we can deadlock when
2116          * writing to 'remove' to "dev/state".  We also need
2117          * to delay it due to rcu usage.
2118          */
2119         synchronize_rcu();
2120         INIT_WORK(&rdev->del_work, md_delayed_delete);
2121         kobject_get(&rdev->kobj);
2122         queue_work(md_misc_wq, &rdev->del_work);
2123 }
2124
2125 /*
2126  * prevent the device from being mounted, repartitioned or
2127  * otherwise reused by a RAID array (or any other kernel
2128  * subsystem), by bd_claiming the device.
2129  */
2130 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2131 {
2132         int err = 0;
2133         struct block_device *bdev;
2134         char b[BDEVNAME_SIZE];
2135
2136         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2137                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2138         if (IS_ERR(bdev)) {
2139                 printk(KERN_ERR "md: could not open %s.\n",
2140                         __bdevname(dev, b));
2141                 return PTR_ERR(bdev);
2142         }
2143         rdev->bdev = bdev;
2144         return err;
2145 }
2146
2147 static void unlock_rdev(struct md_rdev *rdev)
2148 {
2149         struct block_device *bdev = rdev->bdev;
2150         rdev->bdev = NULL;
2151         if (!bdev)
2152                 MD_BUG();
2153         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2154 }
2155
2156 void md_autodetect_dev(dev_t dev);
2157
2158 static void export_rdev(struct md_rdev *rdev)
2159 {
2160         char b[BDEVNAME_SIZE];
2161         printk(KERN_INFO "md: export_rdev(%s)\n",
2162                 bdevname(rdev->bdev,b));
2163         if (rdev->mddev)
2164                 MD_BUG();
2165         md_rdev_clear(rdev);
2166 #ifndef MODULE
2167         if (test_bit(AutoDetected, &rdev->flags))
2168                 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170         unlock_rdev(rdev);
2171         kobject_put(&rdev->kobj);
2172 }
2173
2174 static void kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176         unbind_rdev_from_array(rdev);
2177         export_rdev(rdev);
2178 }
2179
2180 static void export_array(struct mddev *mddev)
2181 {
2182         struct md_rdev *rdev;
2183
2184         while (!list_empty(&mddev->disks)) {
2185                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2186                                         same_set);
2187                 kick_rdev_from_array(rdev);
2188         }
2189         mddev->raid_disks = 0;
2190         mddev->major_version = 0;
2191 }
2192
2193 static void print_desc(mdp_disk_t *desc)
2194 {
2195         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196                 desc->major,desc->minor,desc->raid_disk,desc->state);
2197 }
2198
2199 static void print_sb_90(mdp_super_t *sb)
2200 {
2201         int i;
2202
2203         printk(KERN_INFO
2204                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205                 sb->major_version, sb->minor_version, sb->patch_version,
2206                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207                 sb->ctime);
2208         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210                 sb->md_minor, sb->layout, sb->chunk_size);
2211         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2212                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214                 sb->failed_disks, sb->spare_disks,
2215                 sb->sb_csum, (unsigned long)sb->events_lo);
2216
2217         printk(KERN_INFO);
2218         for (i = 0; i < MD_SB_DISKS; i++) {
2219                 mdp_disk_t *desc;
2220
2221                 desc = sb->disks + i;
2222                 if (desc->number || desc->major || desc->minor ||
2223                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2224                         printk("     D %2d: ", i);
2225                         print_desc(desc);
2226                 }
2227         }
2228         printk(KERN_INFO "md:     THIS: ");
2229         print_desc(&sb->this_disk);
2230 }
2231
2232 static void print_sb_1(struct mdp_superblock_1 *sb)
2233 {
2234         __u8 *uuid;
2235
2236         uuid = sb->set_uuid;
2237         printk(KERN_INFO
2238                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239                "md:    Name: \"%s\" CT:%llu\n",
2240                 le32_to_cpu(sb->major_version),
2241                 le32_to_cpu(sb->feature_map),
2242                 uuid,
2243                 sb->set_name,
2244                 (unsigned long long)le64_to_cpu(sb->ctime)
2245                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246
2247         uuid = sb->device_uuid;
2248         printk(KERN_INFO
2249                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250                         " RO:%llu\n"
2251                "md:     Dev:%08x UUID: %pU\n"
2252                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253                "md:         (MaxDev:%u) \n",
2254                 le32_to_cpu(sb->level),
2255                 (unsigned long long)le64_to_cpu(sb->size),
2256                 le32_to_cpu(sb->raid_disks),
2257                 le32_to_cpu(sb->layout),
2258                 le32_to_cpu(sb->chunksize),
2259                 (unsigned long long)le64_to_cpu(sb->data_offset),
2260                 (unsigned long long)le64_to_cpu(sb->data_size),
2261                 (unsigned long long)le64_to_cpu(sb->super_offset),
2262                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2263                 le32_to_cpu(sb->dev_number),
2264                 uuid,
2265                 sb->devflags,
2266                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267                 (unsigned long long)le64_to_cpu(sb->events),
2268                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2269                 le32_to_cpu(sb->sb_csum),
2270                 le32_to_cpu(sb->max_dev)
2271                 );
2272 }
2273
2274 static void print_rdev(struct md_rdev *rdev, int major_version)
2275 {
2276         char b[BDEVNAME_SIZE];
2277         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278                bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279                test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280                rdev->desc_nr);
2281         if (rdev->sb_loaded) {
2282                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283                 switch (major_version) {
2284                 case 0:
2285                         print_sb_90(page_address(rdev->sb_page));
2286                         break;
2287                 case 1:
2288                         print_sb_1(page_address(rdev->sb_page));
2289                         break;
2290                 }
2291         } else
2292                 printk(KERN_INFO "md: no rdev superblock!\n");
2293 }
2294
2295 static void md_print_devices(void)
2296 {
2297         struct list_head *tmp;
2298         struct md_rdev *rdev;
2299         struct mddev *mddev;
2300         char b[BDEVNAME_SIZE];
2301
2302         printk("\n");
2303         printk("md:     **********************************\n");
2304         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2305         printk("md:     **********************************\n");
2306         for_each_mddev(mddev, tmp) {
2307
2308                 if (mddev->bitmap)
2309                         bitmap_print_sb(mddev->bitmap);
2310                 else
2311                         printk("%s: ", mdname(mddev));
2312                 rdev_for_each(rdev, mddev)
2313                         printk("<%s>", bdevname(rdev->bdev,b));
2314                 printk("\n");
2315
2316                 rdev_for_each(rdev, mddev)
2317                         print_rdev(rdev, mddev->major_version);
2318         }
2319         printk("md:     **********************************\n");
2320         printk("\n");
2321 }
2322
2323 static void sync_sbs(struct mddev *mddev, int nospares)
2324 {
2325         /* Update each superblock (in-memory image), but
2326          * if we are allowed to, skip spares which already
2327          * have the right event counter, or have one earlier
2328          * (which would mean they aren't being marked as dirty
2329          * with the rest of the array)
2330          */
2331         struct md_rdev *rdev;
2332         rdev_for_each(rdev, mddev) {
2333                 if (rdev->sb_events == mddev->events ||
2334                     (nospares &&
2335                      rdev->raid_disk < 0 &&
2336                      rdev->sb_events+1 == mddev->events)) {
2337                         /* Don't update this superblock */
2338                         rdev->sb_loaded = 2;
2339                 } else {
2340                         sync_super(mddev, rdev);
2341                         rdev->sb_loaded = 1;
2342                 }
2343         }
2344 }
2345
2346 static void md_update_sb(struct mddev *mddev, int force_change)
2347 {
2348         struct md_rdev *rdev;
2349         int sync_req;
2350         int nospares = 0;
2351         int any_badblocks_changed = 0;
2352
2353         if (mddev->ro) {
2354                 if (force_change)
2355                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2356                 return;
2357         }
2358 repeat:
2359         /* First make sure individual recovery_offsets are correct */
2360         rdev_for_each(rdev, mddev) {
2361                 if (rdev->raid_disk >= 0 &&
2362                     mddev->delta_disks >= 0 &&
2363                     !test_bit(In_sync, &rdev->flags) &&
2364                     mddev->curr_resync_completed > rdev->recovery_offset)
2365                                 rdev->recovery_offset = mddev->curr_resync_completed;
2366
2367         }
2368         if (!mddev->persistent) {
2369                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2370                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2371                 if (!mddev->external) {
2372                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2373                         rdev_for_each(rdev, mddev) {
2374                                 if (rdev->badblocks.changed) {
2375                                         rdev->badblocks.changed = 0;
2376                                         md_ack_all_badblocks(&rdev->badblocks);
2377                                         md_error(mddev, rdev);
2378                                 }
2379                                 clear_bit(Blocked, &rdev->flags);
2380                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2381                                 wake_up(&rdev->blocked_wait);
2382                         }
2383                 }
2384                 wake_up(&mddev->sb_wait);
2385                 return;
2386         }
2387
2388         spin_lock_irq(&mddev->write_lock);
2389
2390         mddev->utime = get_seconds();
2391
2392         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2393                 force_change = 1;
2394         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2395                 /* just a clean<-> dirty transition, possibly leave spares alone,
2396                  * though if events isn't the right even/odd, we will have to do
2397                  * spares after all
2398                  */
2399                 nospares = 1;
2400         if (force_change)
2401                 nospares = 0;
2402         if (mddev->degraded)
2403                 /* If the array is degraded, then skipping spares is both
2404                  * dangerous and fairly pointless.
2405                  * Dangerous because a device that was removed from the array
2406                  * might have a event_count that still looks up-to-date,
2407                  * so it can be re-added without a resync.
2408                  * Pointless because if there are any spares to skip,
2409                  * then a recovery will happen and soon that array won't
2410                  * be degraded any more and the spare can go back to sleep then.
2411                  */
2412                 nospares = 0;
2413
2414         sync_req = mddev->in_sync;
2415
2416         /* If this is just a dirty<->clean transition, and the array is clean
2417          * and 'events' is odd, we can roll back to the previous clean state */
2418         if (nospares
2419             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2420             && mddev->can_decrease_events
2421             && mddev->events != 1) {
2422                 mddev->events--;
2423                 mddev->can_decrease_events = 0;
2424         } else {
2425                 /* otherwise we have to go forward and ... */
2426                 mddev->events ++;
2427                 mddev->can_decrease_events = nospares;
2428         }
2429
2430         if (!mddev->events) {
2431                 /*
2432                  * oops, this 64-bit counter should never wrap.
2433                  * Either we are in around ~1 trillion A.C., assuming
2434                  * 1 reboot per second, or we have a bug:
2435                  */
2436                 MD_BUG();
2437                 mddev->events --;
2438         }
2439
2440         rdev_for_each(rdev, mddev) {
2441                 if (rdev->badblocks.changed)
2442                         any_badblocks_changed++;
2443                 if (test_bit(Faulty, &rdev->flags))
2444                         set_bit(FaultRecorded, &rdev->flags);
2445         }
2446
2447         sync_sbs(mddev, nospares);
2448         spin_unlock_irq(&mddev->write_lock);
2449
2450         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2451                  mdname(mddev), mddev->in_sync);
2452
2453         bitmap_update_sb(mddev->bitmap);
2454         rdev_for_each(rdev, mddev) {
2455                 char b[BDEVNAME_SIZE];
2456
2457                 if (rdev->sb_loaded != 1)
2458                         continue; /* no noise on spare devices */
2459
2460                 if (!test_bit(Faulty, &rdev->flags)) {
2461                         md_super_write(mddev,rdev,
2462                                        rdev->sb_start, rdev->sb_size,
2463                                        rdev->sb_page);
2464                         pr_debug("md: (write) %s's sb offset: %llu\n",
2465                                  bdevname(rdev->bdev, b),
2466                                  (unsigned long long)rdev->sb_start);
2467                         rdev->sb_events = mddev->events;
2468                         if (rdev->badblocks.size) {
2469                                 md_super_write(mddev, rdev,
2470                                                rdev->badblocks.sector,
2471                                                rdev->badblocks.size << 9,
2472                                                rdev->bb_page);
2473                                 rdev->badblocks.size = 0;
2474                         }
2475
2476                 } else
2477                         pr_debug("md: %s (skipping faulty)\n",
2478                                  bdevname(rdev->bdev, b));
2479
2480                 if (mddev->level == LEVEL_MULTIPATH)
2481                         /* only need to write one superblock... */
2482                         break;
2483         }
2484         md_super_wait(mddev);
2485         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2486
2487         spin_lock_irq(&mddev->write_lock);
2488         if (mddev->in_sync != sync_req ||
2489             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2490                 /* have to write it out again */
2491                 spin_unlock_irq(&mddev->write_lock);
2492                 goto repeat;
2493         }
2494         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2495         spin_unlock_irq(&mddev->write_lock);
2496         wake_up(&mddev->sb_wait);
2497         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2498                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2499
2500         rdev_for_each(rdev, mddev) {
2501                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2502                         clear_bit(Blocked, &rdev->flags);
2503
2504                 if (any_badblocks_changed)
2505                         md_ack_all_badblocks(&rdev->badblocks);
2506                 clear_bit(BlockedBadBlocks, &rdev->flags);
2507                 wake_up(&rdev->blocked_wait);
2508         }
2509 }
2510
2511 /* words written to sysfs files may, or may not, be \n terminated.
2512  * We want to accept with case. For this we use cmd_match.
2513  */
2514 static int cmd_match(const char *cmd, const char *str)
2515 {
2516         /* See if cmd, written into a sysfs file, matches
2517          * str.  They must either be the same, or cmd can
2518          * have a trailing newline
2519          */
2520         while (*cmd && *str && *cmd == *str) {
2521                 cmd++;
2522                 str++;
2523         }
2524         if (*cmd == '\n')
2525                 cmd++;
2526         if (*str || *cmd)
2527                 return 0;
2528         return 1;
2529 }
2530
2531 struct rdev_sysfs_entry {
2532         struct attribute attr;
2533         ssize_t (*show)(struct md_rdev *, char *);
2534         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2535 };
2536
2537 static ssize_t
2538 state_show(struct md_rdev *rdev, char *page)
2539 {
2540         char *sep = "";
2541         size_t len = 0;
2542
2543         if (test_bit(Faulty, &rdev->flags) ||
2544             rdev->badblocks.unacked_exist) {
2545                 len+= sprintf(page+len, "%sfaulty",sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(In_sync, &rdev->flags)) {
2549                 len += sprintf(page+len, "%sin_sync",sep);
2550                 sep = ",";
2551         }
2552         if (test_bit(WriteMostly, &rdev->flags)) {
2553                 len += sprintf(page+len, "%swrite_mostly",sep);
2554                 sep = ",";
2555         }
2556         if (test_bit(Blocked, &rdev->flags) ||
2557             (rdev->badblocks.unacked_exist
2558              && !test_bit(Faulty, &rdev->flags))) {
2559                 len += sprintf(page+len, "%sblocked", sep);
2560                 sep = ",";
2561         }
2562         if (!test_bit(Faulty, &rdev->flags) &&
2563             !test_bit(In_sync, &rdev->flags)) {
2564                 len += sprintf(page+len, "%sspare", sep);
2565                 sep = ",";
2566         }
2567         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2568                 len += sprintf(page+len, "%swrite_error", sep);
2569                 sep = ",";
2570         }
2571         if (test_bit(WantReplacement, &rdev->flags)) {
2572                 len += sprintf(page+len, "%swant_replacement", sep);
2573                 sep = ",";
2574         }
2575         if (test_bit(Replacement, &rdev->flags)) {
2576                 len += sprintf(page+len, "%sreplacement", sep);
2577                 sep = ",";
2578         }
2579
2580         return len+sprintf(page+len, "\n");
2581 }
2582
2583 static ssize_t
2584 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2585 {
2586         /* can write
2587          *  faulty  - simulates an error
2588          *  remove  - disconnects the device
2589          *  writemostly - sets write_mostly
2590          *  -writemostly - clears write_mostly
2591          *  blocked - sets the Blocked flags
2592          *  -blocked - clears the Blocked and possibly simulates an error
2593          *  insync - sets Insync providing device isn't active
2594          *  -insync - clear Insync for a device with a slot assigned,
2595          *            so that it gets rebuilt based on bitmap
2596          *  write_error - sets WriteErrorSeen
2597          *  -write_error - clears WriteErrorSeen
2598          */
2599         int err = -EINVAL;
2600         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2601                 md_error(rdev->mddev, rdev);
2602                 if (test_bit(Faulty, &rdev->flags))
2603                         err = 0;
2604                 else
2605                         err = -EBUSY;
2606         } else if (cmd_match(buf, "remove")) {
2607                 if (rdev->raid_disk >= 0)
2608                         err = -EBUSY;
2609                 else {
2610                         struct mddev *mddev = rdev->mddev;
2611                         kick_rdev_from_array(rdev);
2612                         if (mddev->pers)
2613                                 md_update_sb(mddev, 1);
2614                         md_new_event(mddev);
2615                         err = 0;
2616                 }
2617         } else if (cmd_match(buf, "writemostly")) {
2618                 set_bit(WriteMostly, &rdev->flags);
2619                 err = 0;
2620         } else if (cmd_match(buf, "-writemostly")) {
2621                 clear_bit(WriteMostly, &rdev->flags);
2622                 err = 0;
2623         } else if (cmd_match(buf, "blocked")) {
2624                 set_bit(Blocked, &rdev->flags);
2625                 err = 0;
2626         } else if (cmd_match(buf, "-blocked")) {
2627                 if (!test_bit(Faulty, &rdev->flags) &&
2628                     rdev->badblocks.unacked_exist) {
2629                         /* metadata handler doesn't understand badblocks,
2630                          * so we need to fail the device
2631                          */
2632                         md_error(rdev->mddev, rdev);
2633                 }
2634                 clear_bit(Blocked, &rdev->flags);
2635                 clear_bit(BlockedBadBlocks, &rdev->flags);
2636                 wake_up(&rdev->blocked_wait);
2637                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2638                 md_wakeup_thread(rdev->mddev->thread);
2639
2640                 err = 0;
2641         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2642                 set_bit(In_sync, &rdev->flags);
2643                 err = 0;
2644         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2645                 if (rdev->mddev->pers == NULL) {
2646                         clear_bit(In_sync, &rdev->flags);
2647                         rdev->saved_raid_disk = rdev->raid_disk;
2648                         rdev->raid_disk = -1;
2649                         err = 0;
2650                 }
2651         } else if (cmd_match(buf, "write_error")) {
2652                 set_bit(WriteErrorSeen, &rdev->flags);
2653                 err = 0;
2654         } else if (cmd_match(buf, "-write_error")) {
2655                 clear_bit(WriteErrorSeen, &rdev->flags);
2656                 err = 0;
2657         } else if (cmd_match(buf, "want_replacement")) {
2658                 /* Any non-spare device that is not a replacement can
2659                  * become want_replacement at any time, but we then need to
2660                  * check if recovery is needed.
2661                  */
2662                 if (rdev->raid_disk >= 0 &&
2663                     !test_bit(Replacement, &rdev->flags))
2664                         set_bit(WantReplacement, &rdev->flags);
2665                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2666                 md_wakeup_thread(rdev->mddev->thread);
2667                 err = 0;
2668         } else if (cmd_match(buf, "-want_replacement")) {
2669                 /* Clearing 'want_replacement' is always allowed.
2670                  * Once replacements starts it is too late though.
2671                  */
2672                 err = 0;
2673                 clear_bit(WantReplacement, &rdev->flags);
2674         } else if (cmd_match(buf, "replacement")) {
2675                 /* Can only set a device as a replacement when array has not
2676                  * yet been started.  Once running, replacement is automatic
2677                  * from spares, or by assigning 'slot'.
2678                  */
2679                 if (rdev->mddev->pers)
2680                         err = -EBUSY;
2681                 else {
2682                         set_bit(Replacement, &rdev->flags);
2683                         err = 0;
2684                 }
2685         } else if (cmd_match(buf, "-replacement")) {
2686                 /* Similarly, can only clear Replacement before start */
2687                 if (rdev->mddev->pers)
2688                         err = -EBUSY;
2689                 else {
2690                         clear_bit(Replacement, &rdev->flags);
2691                         err = 0;
2692                 }
2693         }
2694         if (!err)
2695                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2696         return err ? err : len;
2697 }
2698 static struct rdev_sysfs_entry rdev_state =
2699 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2700
2701 static ssize_t
2702 errors_show(struct md_rdev *rdev, char *page)
2703 {
2704         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2705 }
2706
2707 static ssize_t
2708 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2709 {
2710         char *e;
2711         unsigned long n = simple_strtoul(buf, &e, 10);
2712         if (*buf && (*e == 0 || *e == '\n')) {
2713                 atomic_set(&rdev->corrected_errors, n);
2714                 return len;
2715         }
2716         return -EINVAL;
2717 }
2718 static struct rdev_sysfs_entry rdev_errors =
2719 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2720
2721 static ssize_t
2722 slot_show(struct md_rdev *rdev, char *page)
2723 {
2724         if (rdev->raid_disk < 0)
2725                 return sprintf(page, "none\n");
2726         else
2727                 return sprintf(page, "%d\n", rdev->raid_disk);
2728 }
2729
2730 static ssize_t
2731 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2732 {
2733         char *e;
2734         int err;
2735         int slot = simple_strtoul(buf, &e, 10);
2736         if (strncmp(buf, "none", 4)==0)
2737                 slot = -1;
2738         else if (e==buf || (*e && *e!= '\n'))
2739                 return -EINVAL;
2740         if (rdev->mddev->pers && slot == -1) {
2741                 /* Setting 'slot' on an active array requires also
2742                  * updating the 'rd%d' link, and communicating
2743                  * with the personality with ->hot_*_disk.
2744                  * For now we only support removing
2745                  * failed/spare devices.  This normally happens automatically,
2746                  * but not when the metadata is externally managed.
2747                  */
2748                 if (rdev->raid_disk == -1)
2749                         return -EEXIST;
2750                 /* personality does all needed checks */
2751                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2752                         return -EINVAL;
2753                 clear_bit(Blocked, &rdev->flags);
2754                 remove_and_add_spares(rdev->mddev, rdev);
2755                 if (rdev->raid_disk >= 0)
2756                         return -EBUSY;
2757                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2758                 md_wakeup_thread(rdev->mddev->thread);
2759         } else if (rdev->mddev->pers) {
2760                 /* Activating a spare .. or possibly reactivating
2761                  * if we ever get bitmaps working here.
2762                  */
2763
2764                 if (rdev->raid_disk != -1)
2765                         return -EBUSY;
2766
2767                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2768                         return -EBUSY;
2769
2770                 if (rdev->mddev->pers->hot_add_disk == NULL)
2771                         return -EINVAL;
2772
2773                 if (slot >= rdev->mddev->raid_disks &&
2774                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2775                         return -ENOSPC;
2776
2777                 rdev->raid_disk = slot;
2778                 if (test_bit(In_sync, &rdev->flags))
2779                         rdev->saved_raid_disk = slot;
2780                 else
2781                         rdev->saved_raid_disk = -1;
2782                 clear_bit(In_sync, &rdev->flags);
2783                 clear_bit(Bitmap_sync, &rdev->flags);
2784                 err = rdev->mddev->pers->
2785                         hot_add_disk(rdev->mddev, rdev);
2786                 if (err) {
2787                         rdev->raid_disk = -1;
2788                         return err;
2789                 } else
2790                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2791                 if (sysfs_link_rdev(rdev->mddev, rdev))
2792                         /* failure here is OK */;
2793                 /* don't wakeup anyone, leave that to userspace. */
2794         } else {
2795                 if (slot >= rdev->mddev->raid_disks &&
2796                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2797                         return -ENOSPC;
2798                 rdev->raid_disk = slot;
2799                 /* assume it is working */
2800                 clear_bit(Faulty, &rdev->flags);
2801                 clear_bit(WriteMostly, &rdev->flags);
2802                 set_bit(In_sync, &rdev->flags);
2803                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2804         }
2805         return len;
2806 }
2807
2808 static struct rdev_sysfs_entry rdev_slot =
2809 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2810
2811 static ssize_t
2812 offset_show(struct md_rdev *rdev, char *page)
2813 {
2814         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2815 }
2816
2817 static ssize_t
2818 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2819 {
2820         unsigned long long offset;
2821         if (kstrtoull(buf, 10, &offset) < 0)
2822                 return -EINVAL;
2823         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2824                 return -EBUSY;
2825         if (rdev->sectors && rdev->mddev->external)
2826                 /* Must set offset before size, so overlap checks
2827                  * can be sane */
2828                 return -EBUSY;
2829         rdev->data_offset = offset;
2830         rdev->new_data_offset = offset;
2831         return len;
2832 }
2833
2834 static struct rdev_sysfs_entry rdev_offset =
2835 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2836
2837 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2838 {
2839         return sprintf(page, "%llu\n",
2840                        (unsigned long long)rdev->new_data_offset);
2841 }
2842
2843 static ssize_t new_offset_store(struct md_rdev *rdev,
2844                                 const char *buf, size_t len)
2845 {
2846         unsigned long long new_offset;
2847         struct mddev *mddev = rdev->mddev;
2848
2849         if (kstrtoull(buf, 10, &new_offset) < 0)
2850                 return -EINVAL;
2851
2852         if (mddev->sync_thread)
2853                 return -EBUSY;
2854         if (new_offset == rdev->data_offset)
2855                 /* reset is always permitted */
2856                 ;
2857         else if (new_offset > rdev->data_offset) {
2858                 /* must not push array size beyond rdev_sectors */
2859                 if (new_offset - rdev->data_offset
2860                     + mddev->dev_sectors > rdev->sectors)
2861                                 return -E2BIG;
2862         }
2863         /* Metadata worries about other space details. */
2864
2865         /* decreasing the offset is inconsistent with a backwards
2866          * reshape.
2867          */
2868         if (new_offset < rdev->data_offset &&
2869             mddev->reshape_backwards)
2870                 return -EINVAL;
2871         /* Increasing offset is inconsistent with forwards
2872          * reshape.  reshape_direction should be set to
2873          * 'backwards' first.
2874          */
2875         if (new_offset > rdev->data_offset &&
2876             !mddev->reshape_backwards)
2877                 return -EINVAL;
2878
2879         if (mddev->pers && mddev->persistent &&
2880             !super_types[mddev->major_version]
2881             .allow_new_offset(rdev, new_offset))
2882                 return -E2BIG;
2883         rdev->new_data_offset = new_offset;
2884         if (new_offset > rdev->data_offset)
2885                 mddev->reshape_backwards = 1;
2886         else if (new_offset < rdev->data_offset)
2887                 mddev->reshape_backwards = 0;
2888
2889         return len;
2890 }
2891 static struct rdev_sysfs_entry rdev_new_offset =
2892 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2893
2894 static ssize_t
2895 rdev_size_show(struct md_rdev *rdev, char *page)
2896 {
2897         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2898 }
2899
2900 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2901 {
2902         /* check if two start/length pairs overlap */
2903         if (s1+l1 <= s2)
2904                 return 0;
2905         if (s2+l2 <= s1)
2906                 return 0;
2907         return 1;
2908 }
2909
2910 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2911 {
2912         unsigned long long blocks;
2913         sector_t new;
2914
2915         if (kstrtoull(buf, 10, &blocks) < 0)
2916                 return -EINVAL;
2917
2918         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2919                 return -EINVAL; /* sector conversion overflow */
2920
2921         new = blocks * 2;
2922         if (new != blocks * 2)
2923                 return -EINVAL; /* unsigned long long to sector_t overflow */
2924
2925         *sectors = new;
2926         return 0;
2927 }
2928
2929 static ssize_t
2930 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2931 {
2932         struct mddev *my_mddev = rdev->mddev;
2933         sector_t oldsectors = rdev->sectors;
2934         sector_t sectors;
2935
2936         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2937                 return -EINVAL;
2938         if (rdev->data_offset != rdev->new_data_offset)
2939                 return -EINVAL; /* too confusing */
2940         if (my_mddev->pers && rdev->raid_disk >= 0) {
2941                 if (my_mddev->persistent) {
2942                         sectors = super_types[my_mddev->major_version].
2943                                 rdev_size_change(rdev, sectors);
2944                         if (!sectors)
2945                                 return -EBUSY;
2946                 } else if (!sectors)
2947                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2948                                 rdev->data_offset;
2949                 if (!my_mddev->pers->resize)
2950                         /* Cannot change size for RAID0 or Linear etc */
2951                         return -EINVAL;
2952         }
2953         if (sectors < my_mddev->dev_sectors)
2954                 return -EINVAL; /* component must fit device */
2955
2956         rdev->sectors = sectors;
2957         if (sectors > oldsectors && my_mddev->external) {
2958                 /* Need to check that all other rdevs with the same
2959                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2960                  * the rdev lists safely.
2961                  * This check does not provide a hard guarantee, it
2962                  * just helps avoid dangerous mistakes.
2963                  */
2964                 struct mddev *mddev;
2965                 int overlap = 0;
2966                 struct list_head *tmp;
2967
2968                 rcu_read_lock();
2969                 for_each_mddev(mddev, tmp) {
2970                         struct md_rdev *rdev2;
2971
2972                         rdev_for_each(rdev2, mddev)
2973                                 if (rdev->bdev == rdev2->bdev &&
2974                                     rdev != rdev2 &&
2975                                     overlaps(rdev->data_offset, rdev->sectors,
2976                                              rdev2->data_offset,
2977                                              rdev2->sectors)) {
2978                                         overlap = 1;
2979                                         break;
2980                                 }
2981                         if (overlap) {
2982                                 mddev_put(mddev);
2983                                 break;
2984                         }
2985                 }
2986                 rcu_read_unlock();
2987                 if (overlap) {
2988                         /* Someone else could have slipped in a size
2989                          * change here, but doing so is just silly.
2990                          * We put oldsectors back because we *know* it is
2991                          * safe, and trust userspace not to race with
2992                          * itself
2993                          */
2994                         rdev->sectors = oldsectors;
2995                         return -EBUSY;
2996                 }
2997         }
2998         return len;
2999 }
3000
3001 static struct rdev_sysfs_entry rdev_size =
3002 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3003
3004 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3005 {
3006         unsigned long long recovery_start = rdev->recovery_offset;
3007
3008         if (test_bit(In_sync, &rdev->flags) ||
3009             recovery_start == MaxSector)
3010                 return sprintf(page, "none\n");
3011
3012         return sprintf(page, "%llu\n", recovery_start);
3013 }
3014
3015 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3016 {
3017         unsigned long long recovery_start;
3018
3019         if (cmd_match(buf, "none"))
3020                 recovery_start = MaxSector;
3021         else if (kstrtoull(buf, 10, &recovery_start))
3022                 return -EINVAL;
3023
3024         if (rdev->mddev->pers &&
3025             rdev->raid_disk >= 0)
3026                 return -EBUSY;
3027
3028         rdev->recovery_offset = recovery_start;
3029         if (recovery_start == MaxSector)
3030                 set_bit(In_sync, &rdev->flags);
3031         else
3032                 clear_bit(In_sync, &rdev->flags);
3033         return len;
3034 }
3035
3036 static struct rdev_sysfs_entry rdev_recovery_start =
3037 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3038
3039 static ssize_t
3040 badblocks_show(struct badblocks *bb, char *page, int unack);
3041 static ssize_t
3042 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3043
3044 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3045 {
3046         return badblocks_show(&rdev->badblocks, page, 0);
3047 }
3048 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3049 {
3050         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3051         /* Maybe that ack was all we needed */
3052         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3053                 wake_up(&rdev->blocked_wait);
3054         return rv;
3055 }
3056 static struct rdev_sysfs_entry rdev_bad_blocks =
3057 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3058
3059 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3060 {
3061         return badblocks_show(&rdev->badblocks, page, 1);
3062 }
3063 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3064 {
3065         return badblocks_store(&rdev->badblocks, page, len, 1);
3066 }
3067 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3068 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3069
3070 static struct attribute *rdev_default_attrs[] = {
3071         &rdev_state.attr,
3072         &rdev_errors.attr,
3073         &rdev_slot.attr,
3074         &rdev_offset.attr,
3075         &rdev_new_offset.attr,
3076         &rdev_size.attr,
3077         &rdev_recovery_start.attr,
3078         &rdev_bad_blocks.attr,
3079         &rdev_unack_bad_blocks.attr,
3080         NULL,
3081 };
3082 static ssize_t
3083 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3084 {
3085         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3086         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3087         struct mddev *mddev = rdev->mddev;
3088         ssize_t rv;
3089
3090         if (!entry->show)
3091                 return -EIO;
3092
3093         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3094         if (!rv) {
3095                 if (rdev->mddev == NULL)
3096                         rv = -EBUSY;
3097                 else
3098                         rv = entry->show(rdev, page);
3099                 mddev_unlock(mddev);
3100         }
3101         return rv;
3102 }
3103
3104 static ssize_t
3105 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3106               const char *page, size_t length)
3107 {
3108         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3109         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3110         ssize_t rv;
3111         struct mddev *mddev = rdev->mddev;
3112
3113         if (!entry->store)
3114                 return -EIO;
3115         if (!capable(CAP_SYS_ADMIN))
3116                 return -EACCES;
3117         rv = mddev ? mddev_lock(mddev): -EBUSY;
3118         if (!rv) {
3119                 if (rdev->mddev == NULL)
3120                         rv = -EBUSY;
3121                 else
3122                         rv = entry->store(rdev, page, length);
3123                 mddev_unlock(mddev);
3124         }
3125         return rv;
3126 }
3127
3128 static void rdev_free(struct kobject *ko)
3129 {
3130         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3131         kfree(rdev);
3132 }
3133 static const struct sysfs_ops rdev_sysfs_ops = {
3134         .show           = rdev_attr_show,
3135         .store          = rdev_attr_store,
3136 };
3137 static struct kobj_type rdev_ktype = {
3138         .release        = rdev_free,
3139         .sysfs_ops      = &rdev_sysfs_ops,
3140         .default_attrs  = rdev_default_attrs,
3141 };
3142
3143 int md_rdev_init(struct md_rdev *rdev)
3144 {
3145         rdev->desc_nr = -1;
3146         rdev->saved_raid_disk = -1;
3147         rdev->raid_disk = -1;
3148         rdev->flags = 0;
3149         rdev->data_offset = 0;
3150         rdev->new_data_offset = 0;
3151         rdev->sb_events = 0;
3152         rdev->last_read_error.tv_sec  = 0;
3153         rdev->last_read_error.tv_nsec = 0;
3154         rdev->sb_loaded = 0;
3155         rdev->bb_page = NULL;
3156         atomic_set(&rdev->nr_pending, 0);
3157         atomic_set(&rdev->read_errors, 0);
3158         atomic_set(&rdev->corrected_errors, 0);
3159
3160         INIT_LIST_HEAD(&rdev->same_set);
3161         init_waitqueue_head(&rdev->blocked_wait);
3162
3163         /* Add space to store bad block list.
3164          * This reserves the space even on arrays where it cannot
3165          * be used - I wonder if that matters
3166          */
3167         rdev->badblocks.count = 0;
3168         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3169         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3170         seqlock_init(&rdev->badblocks.lock);
3171         if (rdev->badblocks.page == NULL)
3172                 return -ENOMEM;
3173
3174         return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(md_rdev_init);
3177 /*
3178  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3179  *
3180  * mark the device faulty if:
3181  *
3182  *   - the device is nonexistent (zero size)
3183  *   - the device has no valid superblock
3184  *
3185  * a faulty rdev _never_ has rdev->sb set.
3186  */
3187 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3188 {
3189         char b[BDEVNAME_SIZE];
3190         int err;
3191         struct md_rdev *rdev;
3192         sector_t size;
3193
3194         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3195         if (!rdev) {
3196                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3197                 return ERR_PTR(-ENOMEM);
3198         }
3199
3200         err = md_rdev_init(rdev);
3201         if (err)
3202                 goto abort_free;
3203         err = alloc_disk_sb(rdev);
3204         if (err)
3205                 goto abort_free;
3206
3207         err = lock_rdev(rdev, newdev, super_format == -2);
3208         if (err)
3209                 goto abort_free;
3210
3211         kobject_init(&rdev->kobj, &rdev_ktype);
3212
3213         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3214         if (!size) {
3215                 printk(KERN_WARNING
3216                         "md: %s has zero or unknown size, marking faulty!\n",
3217                         bdevname(rdev->bdev,b));
3218                 err = -EINVAL;
3219                 goto abort_free;
3220         }
3221
3222         if (super_format >= 0) {
3223                 err = super_types[super_format].
3224                         load_super(rdev, NULL, super_minor);
3225                 if (err == -EINVAL) {
3226                         printk(KERN_WARNING
3227                                 "md: %s does not have a valid v%d.%d "
3228                                "superblock, not importing!\n",
3229                                 bdevname(rdev->bdev,b),
3230                                super_format, super_minor);
3231                         goto abort_free;
3232                 }
3233                 if (err < 0) {
3234                         printk(KERN_WARNING
3235                                 "md: could not read %s's sb, not importing!\n",
3236                                 bdevname(rdev->bdev,b));
3237                         goto abort_free;
3238                 }
3239         }
3240
3241         return rdev;
3242
3243 abort_free:
3244         if (rdev->bdev)
3245                 unlock_rdev(rdev);
3246         md_rdev_clear(rdev);
3247         kfree(rdev);
3248         return ERR_PTR(err);
3249 }
3250
3251 /*
3252  * Check a full RAID array for plausibility
3253  */
3254
3255 static void analyze_sbs(struct mddev *mddev)
3256 {
3257         int i;
3258         struct md_rdev *rdev, *freshest, *tmp;
3259         char b[BDEVNAME_SIZE];
3260
3261         freshest = NULL;
3262         rdev_for_each_safe(rdev, tmp, mddev)
3263                 switch (super_types[mddev->major_version].
3264                         load_super(rdev, freshest, mddev->minor_version)) {
3265                 case 1:
3266                         freshest = rdev;
3267                         break;
3268                 case 0:
3269                         break;
3270                 default:
3271                         printk( KERN_ERR \
3272                                 "md: fatal superblock inconsistency in %s"
3273                                 " -- removing from array\n",
3274                                 bdevname(rdev->bdev,b));
3275                         kick_rdev_from_array(rdev);
3276                 }
3277
3278         super_types[mddev->major_version].
3279                 validate_super(mddev, freshest);
3280
3281         i = 0;
3282         rdev_for_each_safe(rdev, tmp, mddev) {
3283                 if (mddev->max_disks &&
3284                     (rdev->desc_nr >= mddev->max_disks ||
3285                      i > mddev->max_disks)) {
3286                         printk(KERN_WARNING
3287                                "md: %s: %s: only %d devices permitted\n",
3288                                mdname(mddev), bdevname(rdev->bdev, b),
3289                                mddev->max_disks);
3290                         kick_rdev_from_array(rdev);
3291                         continue;
3292                 }
3293                 if (rdev != freshest)
3294                         if (super_types[mddev->major_version].
3295                             validate_super(mddev, rdev)) {
3296                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3297                                         " from array!\n",
3298                                         bdevname(rdev->bdev,b));
3299                                 kick_rdev_from_array(rdev);
3300                                 continue;
3301                         }
3302                 if (mddev->level == LEVEL_MULTIPATH) {
3303                         rdev->desc_nr = i++;
3304                         rdev->raid_disk = rdev->desc_nr;
3305                         set_bit(In_sync, &rdev->flags);
3306                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3307                         rdev->raid_disk = -1;
3308                         clear_bit(In_sync, &rdev->flags);
3309                 }
3310         }
3311 }
3312
3313 /* Read a fixed-point number.
3314  * Numbers in sysfs attributes should be in "standard" units where
3315  * possible, so time should be in seconds.
3316  * However we internally use a a much smaller unit such as
3317  * milliseconds or jiffies.
3318  * This function takes a decimal number with a possible fractional
3319  * component, and produces an integer which is the result of
3320  * multiplying that number by 10^'scale'.
3321  * all without any floating-point arithmetic.
3322  */
3323 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3324 {
3325         unsigned long result = 0;
3326         long decimals = -1;
3327         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3328                 if (*cp == '.')
3329                         decimals = 0;
3330                 else if (decimals < scale) {
3331                         unsigned int value;
3332                         value = *cp - '0';
3333                         result = result * 10 + value;
3334                         if (decimals >= 0)
3335                                 decimals++;
3336                 }
3337                 cp++;
3338         }
3339         if (*cp == '\n')
3340                 cp++;
3341         if (*cp)
3342                 return -EINVAL;
3343         if (decimals < 0)
3344                 decimals = 0;
3345         while (decimals < scale) {
3346                 result *= 10;
3347                 decimals ++;
3348         }
3349         *res = result;
3350         return 0;
3351 }
3352
3353 static void md_safemode_timeout(unsigned long data);
3354
3355 static ssize_t
3356 safe_delay_show(struct mddev *mddev, char *page)
3357 {
3358         int msec = (mddev->safemode_delay*1000)/HZ;
3359         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3360 }
3361 static ssize_t
3362 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3363 {
3364         unsigned long msec;
3365
3366         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3367                 return -EINVAL;
3368         if (msec == 0)
3369                 mddev->safemode_delay = 0;
3370         else {
3371                 unsigned long old_delay = mddev->safemode_delay;
3372                 mddev->safemode_delay = (msec*HZ)/1000;
3373                 if (mddev->safemode_delay == 0)
3374                         mddev->safemode_delay = 1;
3375                 if (mddev->safemode_delay < old_delay || old_delay == 0)
3376                         md_safemode_timeout((unsigned long)mddev);
3377         }
3378         return len;
3379 }
3380 static struct md_sysfs_entry md_safe_delay =
3381 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3382
3383 static ssize_t
3384 level_show(struct mddev *mddev, char *page)
3385 {
3386         struct md_personality *p = mddev->pers;
3387         if (p)
3388                 return sprintf(page, "%s\n", p->name);
3389         else if (mddev->clevel[0])
3390                 return sprintf(page, "%s\n", mddev->clevel);
3391         else if (mddev->level != LEVEL_NONE)
3392                 return sprintf(page, "%d\n", mddev->level);
3393         else
3394                 return 0;
3395 }
3396
3397 static ssize_t
3398 level_store(struct mddev *mddev, const char *buf, size_t len)
3399 {
3400         char clevel[16];
3401         ssize_t rv = len;
3402         struct md_personality *pers;
3403         long level;
3404         void *priv;
3405         struct md_rdev *rdev;
3406
3407         if (mddev->pers == NULL) {
3408                 if (len == 0)
3409                         return 0;
3410                 if (len >= sizeof(mddev->clevel))
3411                         return -ENOSPC;
3412                 strncpy(mddev->clevel, buf, len);
3413                 if (mddev->clevel[len-1] == '\n')
3414                         len--;
3415                 mddev->clevel[len] = 0;
3416                 mddev->level = LEVEL_NONE;
3417                 return rv;
3418         }
3419         if (mddev->ro)
3420                 return  -EROFS;
3421
3422         /* request to change the personality.  Need to ensure:
3423          *  - array is not engaged in resync/recovery/reshape
3424          *  - old personality can be suspended
3425          *  - new personality will access other array.
3426          */
3427
3428         if (mddev->sync_thread ||
3429             mddev->reshape_position != MaxSector ||
3430             mddev->sysfs_active)
3431                 return -EBUSY;
3432
3433         if (!mddev->pers->quiesce) {
3434                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3435                        mdname(mddev), mddev->pers->name);
3436                 return -EINVAL;
3437         }
3438
3439         /* Now find the new personality */
3440         if (len == 0 || len >= sizeof(clevel))
3441                 return -EINVAL;
3442         strncpy(clevel, buf, len);
3443         if (clevel[len-1] == '\n')
3444                 len--;
3445         clevel[len] = 0;
3446         if (kstrtol(clevel, 10, &level))
3447                 level = LEVEL_NONE;
3448
3449         if (request_module("md-%s", clevel) != 0)
3450                 request_module("md-level-%s", clevel);
3451         spin_lock(&pers_lock);
3452         pers = find_pers(level, clevel);
3453         if (!pers || !try_module_get(pers->owner)) {
3454                 spin_unlock(&pers_lock);
3455                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3456                 return -EINVAL;
3457         }
3458         spin_unlock(&pers_lock);
3459
3460         if (pers == mddev->pers) {
3461                 /* Nothing to do! */
3462                 module_put(pers->owner);
3463                 return rv;
3464         }
3465         if (!pers->takeover) {
3466                 module_put(pers->owner);
3467                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3468                        mdname(mddev), clevel);
3469                 return -EINVAL;
3470         }
3471
3472         rdev_for_each(rdev, mddev)
3473                 rdev->new_raid_disk = rdev->raid_disk;
3474
3475         /* ->takeover must set new_* and/or delta_disks
3476          * if it succeeds, and may set them when it fails.
3477          */
3478         priv = pers->takeover(mddev);
3479         if (IS_ERR(priv)) {
3480                 mddev->new_level = mddev->level;
3481                 mddev->new_layout = mddev->layout;
3482                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3483                 mddev->raid_disks -= mddev->delta_disks;
3484                 mddev->delta_disks = 0;
3485                 mddev->reshape_backwards = 0;
3486                 module_put(pers->owner);
3487                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3488                        mdname(mddev), clevel);
3489                 return PTR_ERR(priv);
3490         }
3491
3492         /* Looks like we have a winner */
3493         mddev_suspend(mddev);
3494         mddev->pers->stop(mddev);
3495
3496         if (mddev->pers->sync_request == NULL &&
3497             pers->sync_request != NULL) {
3498                 /* need to add the md_redundancy_group */
3499                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3500                         printk(KERN_WARNING
3501                                "md: cannot register extra attributes for %s\n",
3502                                mdname(mddev));
3503                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3504         }
3505         if (mddev->pers->sync_request != NULL &&
3506             pers->sync_request == NULL) {
3507                 /* need to remove the md_redundancy_group */
3508                 if (mddev->to_remove == NULL)
3509                         mddev->to_remove = &md_redundancy_group;
3510         }
3511
3512         if (mddev->pers->sync_request == NULL &&
3513             mddev->external) {
3514                 /* We are converting from a no-redundancy array
3515                  * to a redundancy array and metadata is managed
3516                  * externally so we need to be sure that writes
3517                  * won't block due to a need to transition
3518                  *      clean->dirty
3519                  * until external management is started.
3520                  */
3521                 mddev->in_sync = 0;
3522                 mddev->safemode_delay = 0;
3523                 mddev->safemode = 0;
3524         }
3525
3526         rdev_for_each(rdev, mddev) {
3527                 if (rdev->raid_disk < 0)
3528                         continue;
3529                 if (rdev->new_raid_disk >= mddev->raid_disks)
3530                         rdev->new_raid_disk = -1;
3531                 if (rdev->new_raid_disk == rdev->raid_disk)
3532                         continue;
3533                 sysfs_unlink_rdev(mddev, rdev);
3534         }
3535         rdev_for_each(rdev, mddev) {
3536                 if (rdev->raid_disk < 0)
3537                         continue;
3538                 if (rdev->new_raid_disk == rdev->raid_disk)
3539                         continue;
3540                 rdev->raid_disk = rdev->new_raid_disk;
3541                 if (rdev->raid_disk < 0)
3542                         clear_bit(In_sync, &rdev->flags);
3543                 else {
3544                         if (sysfs_link_rdev(mddev, rdev))
3545                                 printk(KERN_WARNING "md: cannot register rd%d"
3546                                        " for %s after level change\n",
3547                                        rdev->raid_disk, mdname(mddev));
3548                 }
3549         }
3550
3551         module_put(mddev->pers->owner);
3552         mddev->pers = pers;
3553         mddev->private = priv;
3554         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3555         mddev->level = mddev->new_level;
3556         mddev->layout = mddev->new_layout;
3557         mddev->chunk_sectors = mddev->new_chunk_sectors;
3558         mddev->delta_disks = 0;
3559         mddev->reshape_backwards = 0;
3560         mddev->degraded = 0;
3561         if (mddev->pers->sync_request == NULL) {
3562                 /* this is now an array without redundancy, so
3563                  * it must always be in_sync
3564                  */
3565                 mddev->in_sync = 1;
3566                 del_timer_sync(&mddev->safemode_timer);
3567         }
3568         blk_set_stacking_limits(&mddev->queue->limits);
3569         pers->run(mddev);
3570         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3571         mddev_resume(mddev);
3572         if (!mddev->thread)
3573                 md_update_sb(mddev, 1);
3574         sysfs_notify(&mddev->kobj, NULL, "level");
3575         md_new_event(mddev);
3576         return rv;
3577 }
3578
3579 static struct md_sysfs_entry md_level =
3580 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3581
3582 static ssize_t
3583 layout_show(struct mddev *mddev, char *page)
3584 {
3585         /* just a number, not meaningful for all levels */
3586         if (mddev->reshape_position != MaxSector &&
3587             mddev->layout != mddev->new_layout)
3588                 return sprintf(page, "%d (%d)\n",
3589                                mddev->new_layout, mddev->layout);
3590         return sprintf(page, "%d\n", mddev->layout);
3591 }
3592
3593 static ssize_t
3594 layout_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596         char *e;
3597         unsigned long n = simple_strtoul(buf, &e, 10);
3598
3599         if (!*buf || (*e && *e != '\n'))
3600                 return -EINVAL;
3601
3602         if (mddev->pers) {
3603                 int err;
3604                 if (mddev->pers->check_reshape == NULL)
3605                         return -EBUSY;
3606                 if (mddev->ro)
3607                         return -EROFS;
3608                 mddev->new_layout = n;
3609                 err = mddev->pers->check_reshape(mddev);
3610                 if (err) {
3611                         mddev->new_layout = mddev->layout;
3612                         return err;
3613                 }
3614         } else {
3615                 mddev->new_layout = n;
3616                 if (mddev->reshape_position == MaxSector)
3617                         mddev->layout = n;
3618         }
3619         return len;
3620 }
3621 static struct md_sysfs_entry md_layout =
3622 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3623
3624 static ssize_t
3625 raid_disks_show(struct mddev *mddev, char *page)
3626 {
3627         if (mddev->raid_disks == 0)
3628                 return 0;
3629         if (mddev->reshape_position != MaxSector &&
3630             mddev->delta_disks != 0)
3631                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3632                                mddev->raid_disks - mddev->delta_disks);
3633         return sprintf(page, "%d\n", mddev->raid_disks);
3634 }
3635
3636 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3637
3638 static ssize_t
3639 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3640 {
3641         char *e;
3642         int rv = 0;
3643         unsigned long n = simple_strtoul(buf, &e, 10);
3644
3645         if (!*buf || (*e && *e != '\n'))
3646                 return -EINVAL;
3647
3648         if (mddev->pers)
3649                 rv = update_raid_disks(mddev, n);
3650         else if (mddev->reshape_position != MaxSector) {
3651                 struct md_rdev *rdev;
3652                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3653
3654                 rdev_for_each(rdev, mddev) {
3655                         if (olddisks < n &&
3656                             rdev->data_offset < rdev->new_data_offset)
3657                                 return -EINVAL;
3658                         if (olddisks > n &&
3659                             rdev->data_offset > rdev->new_data_offset)
3660                                 return -EINVAL;
3661                 }
3662                 mddev->delta_disks = n - olddisks;
3663                 mddev->raid_disks = n;
3664                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3665         } else
3666                 mddev->raid_disks = n;
3667         return rv ? rv : len;
3668 }
3669 static struct md_sysfs_entry md_raid_disks =
3670 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3671
3672 static ssize_t
3673 chunk_size_show(struct mddev *mddev, char *page)
3674 {
3675         if (mddev->reshape_position != MaxSector &&
3676             mddev->chunk_sectors != mddev->new_chunk_sectors)
3677                 return sprintf(page, "%d (%d)\n",
3678                                mddev->new_chunk_sectors << 9,
3679                                mddev->chunk_sectors << 9);
3680         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3681 }
3682
3683 static ssize_t
3684 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3685 {
3686         char *e;
3687         unsigned long n = simple_strtoul(buf, &e, 10);
3688
3689         if (!*buf || (*e && *e != '\n'))
3690                 return -EINVAL;
3691
3692         if (mddev->pers) {
3693                 int err;
3694                 if (mddev->pers->check_reshape == NULL)
3695                         return -EBUSY;
3696                 if (mddev->ro)
3697                         return -EROFS;
3698                 mddev->new_chunk_sectors = n >> 9;
3699                 err = mddev->pers->check_reshape(mddev);
3700                 if (err) {
3701                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3702                         return err;
3703                 }
3704         } else {
3705                 mddev->new_chunk_sectors = n >> 9;
3706                 if (mddev->reshape_position == MaxSector)
3707                         mddev->chunk_sectors = n >> 9;
3708         }
3709         return len;
3710 }
3711 static struct md_sysfs_entry md_chunk_size =
3712 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3713
3714 static ssize_t
3715 resync_start_show(struct mddev *mddev, char *page)
3716 {
3717         if (mddev->recovery_cp == MaxSector)
3718                 return sprintf(page, "none\n");
3719         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3720 }
3721
3722 static ssize_t
3723 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3724 {
3725         char *e;
3726         unsigned long long n = simple_strtoull(buf, &e, 10);
3727
3728         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3729                 return -EBUSY;
3730         if (cmd_match(buf, "none"))
3731                 n = MaxSector;
3732         else if (!*buf || (*e && *e != '\n'))
3733                 return -EINVAL;
3734
3735         mddev->recovery_cp = n;
3736         if (mddev->pers)
3737                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3738         return len;
3739 }
3740 static struct md_sysfs_entry md_resync_start =
3741 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3742
3743 /*
3744  * The array state can be:
3745  *
3746  * clear
3747  *     No devices, no size, no level
3748  *     Equivalent to STOP_ARRAY ioctl
3749  * inactive
3750  *     May have some settings, but array is not active
3751  *        all IO results in error
3752  *     When written, doesn't tear down array, but just stops it
3753  * suspended (not supported yet)
3754  *     All IO requests will block. The array can be reconfigured.
3755  *     Writing this, if accepted, will block until array is quiescent
3756  * readonly
3757  *     no resync can happen.  no superblocks get written.
3758  *     write requests fail
3759  * read-auto
3760  *     like readonly, but behaves like 'clean' on a write request.
3761  *
3762  * clean - no pending writes, but otherwise active.
3763  *     When written to inactive array, starts without resync
3764  *     If a write request arrives then
3765  *       if metadata is known, mark 'dirty' and switch to 'active'.
3766  *       if not known, block and switch to write-pending
3767  *     If written to an active array that has pending writes, then fails.
3768  * active
3769  *     fully active: IO and resync can be happening.
3770  *     When written to inactive array, starts with resync
3771  *
3772  * write-pending
3773  *     clean, but writes are blocked waiting for 'active' to be written.
3774  *
3775  * active-idle
3776  *     like active, but no writes have been seen for a while (100msec).
3777  *
3778  */
3779 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3780                    write_pending, active_idle, bad_word};
3781 static char *array_states[] = {
3782         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3783         "write-pending", "active-idle", NULL };
3784
3785 static int match_word(const char *word, char **list)
3786 {
3787         int n;
3788         for (n=0; list[n]; n++)
3789                 if (cmd_match(word, list[n]))
3790                         break;
3791         return n;
3792 }
3793
3794 static ssize_t
3795 array_state_show(struct mddev *mddev, char *page)
3796 {
3797         enum array_state st = inactive;
3798
3799         if (mddev->pers)
3800                 switch(mddev->ro) {
3801                 case 1:
3802                         st = readonly;
3803                         break;
3804                 case 2:
3805                         st = read_auto;
3806                         break;
3807                 case 0:
3808                         if (mddev->in_sync)
3809                                 st = clean;
3810                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3811                                 st = write_pending;
3812                         else if (mddev->safemode)
3813                                 st = active_idle;
3814                         else
3815                                 st = active;
3816                 }
3817         else {
3818                 if (list_empty(&mddev->disks) &&
3819                     mddev->raid_disks == 0 &&
3820                     mddev->dev_sectors == 0)
3821                         st = clear;
3822                 else
3823                         st = inactive;
3824         }
3825         return sprintf(page, "%s\n", array_states[st]);
3826 }
3827
3828 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3829 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3830 static int do_md_run(struct mddev *mddev);
3831 static int restart_array(struct mddev *mddev);
3832
3833 static ssize_t
3834 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3835 {
3836         int err = -EINVAL;
3837         enum array_state st = match_word(buf, array_states);
3838         switch(st) {
3839         case bad_word:
3840                 break;
3841         case clear:
3842                 /* stopping an active array */
3843                 err = do_md_stop(mddev, 0, NULL);
3844                 break;
3845         case inactive:
3846                 /* stopping an active array */
3847                 if (mddev->pers)
3848                         err = do_md_stop(mddev, 2, NULL);
3849                 else
3850                         err = 0; /* already inactive */
3851                 break;
3852         case suspended:
3853                 break; /* not supported yet */
3854         case readonly:
3855                 if (mddev->pers)
3856                         err = md_set_readonly(mddev, NULL);
3857                 else {
3858                         mddev->ro = 1;
3859                         set_disk_ro(mddev->gendisk, 1);
3860                         err = do_md_run(mddev);
3861                 }
3862                 break;
3863         case read_auto:
3864                 if (mddev->pers) {
3865                         if (mddev->ro == 0)
3866                                 err = md_set_readonly(mddev, NULL);
3867                         else if (mddev->ro == 1)
3868                                 err = restart_array(mddev);
3869                         if (err == 0) {
3870                                 mddev->ro = 2;
3871                                 set_disk_ro(mddev->gendisk, 0);
3872                         }
3873                 } else {
3874                         mddev->ro = 2;
3875                         err = do_md_run(mddev);
3876                 }
3877                 break;
3878         case clean:
3879                 if (mddev->pers) {
3880                         restart_array(mddev);
3881                         spin_lock_irq(&mddev->write_lock);
3882                         if (atomic_read(&mddev->writes_pending) == 0) {
3883                                 if (mddev->in_sync == 0) {
3884                                         mddev->in_sync = 1;
3885                                         if (mddev->safemode == 1)
3886                                                 mddev->safemode = 0;
3887                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3888                                 }
3889                                 err = 0;
3890                         } else
3891                                 err = -EBUSY;
3892                         spin_unlock_irq(&mddev->write_lock);
3893                 } else
3894                         err = -EINVAL;
3895                 break;
3896         case active:
3897                 if (mddev->pers) {
3898                         restart_array(mddev);
3899                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3900                         wake_up(&mddev->sb_wait);
3901                         err = 0;
3902                 } else {
3903                         mddev->ro = 0;
3904                         set_disk_ro(mddev->gendisk, 0);
3905                         err = do_md_run(mddev);
3906                 }
3907                 break;
3908         case write_pending:
3909         case active_idle:
3910                 /* these cannot be set */
3911                 break;
3912         }
3913         if (err)
3914                 return err;
3915         else {
3916                 if (mddev->hold_active == UNTIL_IOCTL)
3917                         mddev->hold_active = 0;
3918                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3919                 return len;
3920         }
3921 }
3922 static struct md_sysfs_entry md_array_state =
3923 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3924
3925 static ssize_t
3926 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3927         return sprintf(page, "%d\n",
3928                        atomic_read(&mddev->max_corr_read_errors));
3929 }
3930
3931 static ssize_t
3932 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934         char *e;
3935         unsigned long n = simple_strtoul(buf, &e, 10);
3936
3937         if (*buf && (*e == 0 || *e == '\n')) {
3938                 atomic_set(&mddev->max_corr_read_errors, n);
3939                 return len;
3940         }
3941         return -EINVAL;
3942 }
3943
3944 static struct md_sysfs_entry max_corr_read_errors =
3945 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3946         max_corrected_read_errors_store);
3947
3948 static ssize_t
3949 null_show(struct mddev *mddev, char *page)
3950 {
3951         return -EINVAL;
3952 }
3953
3954 static ssize_t
3955 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3956 {
3957         /* buf must be %d:%d\n? giving major and minor numbers */
3958         /* The new device is added to the array.
3959          * If the array has a persistent superblock, we read the
3960          * superblock to initialise info and check validity.
3961          * Otherwise, only checking done is that in bind_rdev_to_array,
3962          * which mainly checks size.
3963          */
3964         char *e;
3965         int major = simple_strtoul(buf, &e, 10);
3966         int minor;
3967         dev_t dev;
3968         struct md_rdev *rdev;
3969         int err;
3970
3971         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3972                 return -EINVAL;
3973         minor = simple_strtoul(e+1, &e, 10);
3974         if (*e && *e != '\n')
3975                 return -EINVAL;
3976         dev = MKDEV(major, minor);
3977         if (major != MAJOR(dev) ||
3978             minor != MINOR(dev))
3979                 return -EOVERFLOW;
3980
3981         if (mddev->persistent) {
3982                 rdev = md_import_device(dev, mddev->major_version,
3983                                         mddev->minor_version);
3984                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3985                         struct md_rdev *rdev0
3986                                 = list_entry(mddev->disks.next,
3987                                              struct md_rdev, same_set);
3988                         err = super_types[mddev->major_version]
3989                                 .load_super(rdev, rdev0, mddev->minor_version);
3990                         if (err < 0)
3991                                 goto out;
3992                 }
3993         } else if (mddev->external)
3994                 rdev = md_import_device(dev, -2, -1);
3995         else
3996                 rdev = md_import_device(dev, -1, -1);
3997
3998         if (IS_ERR(rdev))
3999                 return PTR_ERR(rdev);
4000         err = bind_rdev_to_array(rdev, mddev);
4001  out:
4002         if (err)
4003                 export_rdev(rdev);
4004         return err ? err : len;
4005 }
4006
4007 static struct md_sysfs_entry md_new_device =
4008 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4009
4010 static ssize_t
4011 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4012 {
4013         char *end;
4014         unsigned long chunk, end_chunk;
4015
4016         if (!mddev->bitmap)
4017                 goto out;
4018         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4019         while (*buf) {
4020                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4021                 if (buf == end) break;
4022                 if (*end == '-') { /* range */
4023                         buf = end + 1;
4024                         end_chunk = simple_strtoul(buf, &end, 0);
4025                         if (buf == end) break;
4026                 }
4027                 if (*end && !isspace(*end)) break;
4028                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4029                 buf = skip_spaces(end);
4030         }
4031         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4032 out:
4033         return len;
4034 }
4035
4036 static struct md_sysfs_entry md_bitmap =
4037 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4038
4039 static ssize_t
4040 size_show(struct mddev *mddev, char *page)
4041 {
4042         return sprintf(page, "%llu\n",
4043                 (unsigned long long)mddev->dev_sectors / 2);
4044 }
4045
4046 static int update_size(struct mddev *mddev, sector_t num_sectors);
4047
4048 static ssize_t
4049 size_store(struct mddev *mddev, const char *buf, size_t len)
4050 {
4051         /* If array is inactive, we can reduce the component size, but
4052          * not increase it (except from 0).
4053          * If array is active, we can try an on-line resize
4054          */
4055         sector_t sectors;
4056         int err = strict_blocks_to_sectors(buf, &sectors);
4057
4058         if (err < 0)
4059                 return err;
4060         if (mddev->pers) {
4061                 err = update_size(mddev, sectors);
4062                 md_update_sb(mddev, 1);
4063         } else {
4064                 if (mddev->dev_sectors == 0 ||
4065                     mddev->dev_sectors > sectors)
4066                         mddev->dev_sectors = sectors;
4067                 else
4068                         err = -ENOSPC;
4069         }
4070         return err ? err : len;
4071 }
4072
4073 static struct md_sysfs_entry md_size =
4074 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4075
4076 /* Metadata version.
4077  * This is one of
4078  *   'none' for arrays with no metadata (good luck...)
4079  *   'external' for arrays with externally managed metadata,
4080  * or N.M for internally known formats
4081  */
4082 static ssize_t
4083 metadata_show(struct mddev *mddev, char *page)
4084 {
4085         if (mddev->persistent)
4086                 return sprintf(page, "%d.%d\n",
4087                                mddev->major_version, mddev->minor_version);
4088         else if (mddev->external)
4089                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4090         else
4091                 return sprintf(page, "none\n");
4092 }
4093
4094 static ssize_t
4095 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4096 {
4097         int major, minor;
4098         char *e;
4099         /* Changing the details of 'external' metadata is
4100          * always permitted.  Otherwise there must be
4101          * no devices attached to the array.
4102          */
4103         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4104                 ;
4105         else if (!list_empty(&mddev->disks))
4106                 return -EBUSY;
4107
4108         if (cmd_match(buf, "none")) {
4109                 mddev->persistent = 0;
4110                 mddev->external = 0;
4111                 mddev->major_version = 0;
4112                 mddev->minor_version = 90;
4113                 return len;
4114         }
4115         if (strncmp(buf, "external:", 9) == 0) {
4116                 size_t namelen = len-9;
4117                 if (namelen >= sizeof(mddev->metadata_type))
4118                         namelen = sizeof(mddev->metadata_type)-1;
4119                 strncpy(mddev->metadata_type, buf+9, namelen);
4120                 mddev->metadata_type[namelen] = 0;
4121                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4122                         mddev->metadata_type[--namelen] = 0;
4123                 mddev->persistent = 0;
4124                 mddev->external = 1;
4125                 mddev->major_version = 0;
4126                 mddev->minor_version = 90;
4127                 return len;
4128         }
4129         major = simple_strtoul(buf, &e, 10);
4130         if (e==buf || *e != '.')
4131                 return -EINVAL;
4132         buf = e+1;
4133         minor = simple_strtoul(buf, &e, 10);
4134         if (e==buf || (*e && *e != '\n') )
4135                 return -EINVAL;
4136         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4137                 return -ENOENT;
4138         mddev->major_version = major;
4139         mddev->minor_version = minor;
4140         mddev->persistent = 1;
4141         mddev->external = 0;
4142         return len;
4143 }
4144
4145 static struct md_sysfs_entry md_metadata =
4146 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4147
4148 static ssize_t
4149 action_show(struct mddev *mddev, char *page)
4150 {
4151         char *type = "idle";
4152         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4153                 type = "frozen";
4154         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4155             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4156                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4157                         type = "reshape";
4158                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4159                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4160                                 type = "resync";
4161                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4162                                 type = "check";
4163                         else
4164                                 type = "repair";
4165                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4166                         type = "recover";
4167         }
4168         return sprintf(page, "%s\n", type);
4169 }
4170
4171 static ssize_t
4172 action_store(struct mddev *mddev, const char *page, size_t len)
4173 {
4174         if (!mddev->pers || !mddev->pers->sync_request)
4175                 return -EINVAL;
4176
4177         if (cmd_match(page, "frozen"))
4178                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4179         else
4180                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4181
4182         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4183                 if (mddev->sync_thread) {
4184                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4185                         md_reap_sync_thread(mddev);
4186                 }
4187         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4188                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4189                 return -EBUSY;
4190         else if (cmd_match(page, "resync"))
4191                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4192         else if (cmd_match(page, "recover")) {
4193                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4194                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4195         } else if (cmd_match(page, "reshape")) {
4196                 int err;
4197                 if (mddev->pers->start_reshape == NULL)
4198                         return -EINVAL;
4199                 err = mddev->pers->start_reshape(mddev);
4200                 if (err)
4201                         return err;
4202                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4203         } else {
4204                 if (cmd_match(page, "check"))
4205                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4206                 else if (!cmd_match(page, "repair"))
4207                         return -EINVAL;
4208                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4209                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4210         }
4211         if (mddev->ro == 2) {
4212                 /* A write to sync_action is enough to justify
4213                  * canceling read-auto mode
4214                  */
4215                 mddev->ro = 0;
4216                 md_wakeup_thread(mddev->sync_thread);
4217         }
4218         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4219         md_wakeup_thread(mddev->thread);
4220         sysfs_notify_dirent_safe(mddev->sysfs_action);
4221         return len;
4222 }
4223
4224 static struct md_sysfs_entry md_scan_mode =
4225 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4226
4227 static ssize_t
4228 last_sync_action_show(struct mddev *mddev, char *page)
4229 {
4230         return sprintf(page, "%s\n", mddev->last_sync_action);
4231 }
4232
4233 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4234
4235 static ssize_t
4236 mismatch_cnt_show(struct mddev *mddev, char *page)
4237 {
4238         return sprintf(page, "%llu\n",
4239                        (unsigned long long)
4240                        atomic64_read(&mddev->resync_mismatches));
4241 }
4242
4243 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4244
4245 static ssize_t
4246 sync_min_show(struct mddev *mddev, char *page)
4247 {
4248         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4249                        mddev->sync_speed_min ? "local": "system");
4250 }
4251
4252 static ssize_t
4253 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4254 {
4255         int min;
4256         char *e;
4257         if (strncmp(buf, "system", 6)==0) {
4258                 mddev->sync_speed_min = 0;
4259                 return len;
4260         }
4261         min = simple_strtoul(buf, &e, 10);
4262         if (buf == e || (*e && *e != '\n') || min <= 0)
4263                 return -EINVAL;
4264         mddev->sync_speed_min = min;
4265         return len;
4266 }
4267
4268 static struct md_sysfs_entry md_sync_min =
4269 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4270
4271 static ssize_t
4272 sync_max_show(struct mddev *mddev, char *page)
4273 {
4274         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4275                        mddev->sync_speed_max ? "local": "system");
4276 }
4277
4278 static ssize_t
4279 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4280 {
4281         int max;
4282         char *e;
4283         if (strncmp(buf, "system", 6)==0) {
4284                 mddev->sync_speed_max = 0;
4285                 return len;
4286         }
4287         max = simple_strtoul(buf, &e, 10);
4288         if (buf == e || (*e && *e != '\n') || max <= 0)
4289                 return -EINVAL;
4290         mddev->sync_speed_max = max;
4291         return len;
4292 }
4293
4294 static struct md_sysfs_entry md_sync_max =
4295 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4296
4297 static ssize_t
4298 degraded_show(struct mddev *mddev, char *page)
4299 {
4300         return sprintf(page, "%d\n", mddev->degraded);
4301 }
4302 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4303
4304 static ssize_t
4305 sync_force_parallel_show(struct mddev *mddev, char *page)
4306 {
4307         return sprintf(page, "%d\n", mddev->parallel_resync);
4308 }
4309
4310 static ssize_t
4311 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4312 {
4313         long n;
4314
4315         if (kstrtol(buf, 10, &n))
4316                 return -EINVAL;
4317
4318         if (n != 0 && n != 1)
4319                 return -EINVAL;
4320
4321         mddev->parallel_resync = n;
4322
4323         if (mddev->sync_thread)
4324                 wake_up(&resync_wait);
4325
4326         return len;
4327 }
4328
4329 /* force parallel resync, even with shared block devices */
4330 static struct md_sysfs_entry md_sync_force_parallel =
4331 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4332        sync_force_parallel_show, sync_force_parallel_store);
4333
4334 static ssize_t
4335 sync_speed_show(struct mddev *mddev, char *page)
4336 {
4337         unsigned long resync, dt, db;
4338         if (mddev->curr_resync == 0)
4339                 return sprintf(page, "none\n");
4340         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4341         dt = (jiffies - mddev->resync_mark) / HZ;
4342         if (!dt) dt++;
4343         db = resync - mddev->resync_mark_cnt;
4344         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4345 }
4346
4347 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4348
4349 static ssize_t
4350 sync_completed_show(struct mddev *mddev, char *page)
4351 {
4352         unsigned long long max_sectors, resync;
4353
4354         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4355                 return sprintf(page, "none\n");
4356
4357         if (mddev->curr_resync == 1 ||
4358             mddev->curr_resync == 2)
4359                 return sprintf(page, "delayed\n");
4360
4361         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4362             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4363                 max_sectors = mddev->resync_max_sectors;
4364         else
4365                 max_sectors = mddev->dev_sectors;
4366
4367         resync = mddev->curr_resync_completed;
4368         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4369 }
4370
4371 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4372
4373 static ssize_t
4374 min_sync_show(struct mddev *mddev, char *page)
4375 {
4376         return sprintf(page, "%llu\n",
4377                        (unsigned long long)mddev->resync_min);
4378 }
4379 static ssize_t
4380 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4381 {
4382         unsigned long long min;
4383         if (kstrtoull(buf, 10, &min))
4384                 return -EINVAL;
4385         if (min > mddev->resync_max)
4386                 return -EINVAL;
4387         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4388                 return -EBUSY;
4389
4390         /* Must be a multiple of chunk_size */
4391         if (mddev->chunk_sectors) {
4392                 sector_t temp = min;
4393                 if (sector_div(temp, mddev->chunk_sectors))
4394                         return -EINVAL;
4395         }
4396         mddev->resync_min = min;
4397
4398         return len;
4399 }
4400
4401 static struct md_sysfs_entry md_min_sync =
4402 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4403
4404 static ssize_t
4405 max_sync_show(struct mddev *mddev, char *page)
4406 {
4407         if (mddev->resync_max == MaxSector)
4408                 return sprintf(page, "max\n");
4409         else
4410                 return sprintf(page, "%llu\n",
4411                                (unsigned long long)mddev->resync_max);
4412 }
4413 static ssize_t
4414 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4415 {
4416         if (strncmp(buf, "max", 3) == 0)
4417                 mddev->resync_max = MaxSector;
4418         else {
4419                 unsigned long long max;
4420                 if (kstrtoull(buf, 10, &max))
4421                         return -EINVAL;
4422                 if (max < mddev->resync_min)
4423                         return -EINVAL;
4424                 if (max < mddev->resync_max &&
4425                     mddev->ro == 0 &&
4426                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4427                         return -EBUSY;
4428
4429                 /* Must be a multiple of chunk_size */
4430                 if (mddev->chunk_sectors) {
4431                         sector_t temp = max;
4432                         if (sector_div(temp, mddev->chunk_sectors))
4433                                 return -EINVAL;
4434                 }
4435                 mddev->resync_max = max;
4436         }
4437         wake_up(&mddev->recovery_wait);
4438         return len;
4439 }
4440
4441 static struct md_sysfs_entry md_max_sync =
4442 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4443
4444 static ssize_t
4445 suspend_lo_show(struct mddev *mddev, char *page)
4446 {
4447         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4448 }
4449
4450 static ssize_t
4451 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4452 {
4453         char *e;
4454         unsigned long long new = simple_strtoull(buf, &e, 10);
4455         unsigned long long old = mddev->suspend_lo;
4456
4457         if (mddev->pers == NULL ||
4458             mddev->pers->quiesce == NULL)
4459                 return -EINVAL;
4460         if (buf == e || (*e && *e != '\n'))
4461                 return -EINVAL;
4462
4463         mddev->suspend_lo = new;
4464         if (new >= old)
4465                 /* Shrinking suspended region */
4466                 mddev->pers->quiesce(mddev, 2);
4467         else {
4468                 /* Expanding suspended region - need to wait */
4469                 mddev->pers->quiesce(mddev, 1);
4470                 mddev->pers->quiesce(mddev, 0);
4471         }
4472         return len;
4473 }
4474 static struct md_sysfs_entry md_suspend_lo =
4475 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4476
4477 static ssize_t
4478 suspend_hi_show(struct mddev *mddev, char *page)
4479 {
4480         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4481 }
4482
4483 static ssize_t
4484 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4485 {
4486         char *e;
4487         unsigned long long new = simple_strtoull(buf, &e, 10);
4488         unsigned long long old = mddev->suspend_hi;
4489
4490         if (mddev->pers == NULL ||
4491             mddev->pers->quiesce == NULL)
4492                 return -EINVAL;
4493         if (buf == e || (*e && *e != '\n'))
4494                 return -EINVAL;
4495
4496         mddev->suspend_hi = new;
4497         if (new <= old)
4498                 /* Shrinking suspended region */
4499                 mddev->pers->quiesce(mddev, 2);
4500         else {
4501                 /* Expanding suspended region - need to wait */
4502                 mddev->pers->quiesce(mddev, 1);
4503                 mddev->pers->quiesce(mddev, 0);
4504         }
4505         return len;
4506 }
4507 static struct md_sysfs_entry md_suspend_hi =
4508 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4509
4510 static ssize_t
4511 reshape_position_show(struct mddev *mddev, char *page)
4512 {
4513         if (mddev->reshape_position != MaxSector)
4514                 return sprintf(page, "%llu\n",
4515                                (unsigned long long)mddev->reshape_position);
4516         strcpy(page, "none\n");
4517         return 5;
4518 }
4519
4520 static ssize_t
4521 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4522 {
4523         struct md_rdev *rdev;
4524         char *e;
4525         unsigned long long new = simple_strtoull(buf, &e, 10);
4526         if (mddev->pers)
4527                 return -EBUSY;
4528         if (buf == e || (*e && *e != '\n'))
4529                 return -EINVAL;
4530         mddev->reshape_position = new;
4531         mddev->delta_disks = 0;
4532         mddev->reshape_backwards = 0;
4533         mddev->new_level = mddev->level;
4534         mddev->new_layout = mddev->layout;
4535         mddev->new_chunk_sectors = mddev->chunk_sectors;
4536         rdev_for_each(rdev, mddev)
4537                 rdev->new_data_offset = rdev->data_offset;
4538         return len;
4539 }
4540
4541 static struct md_sysfs_entry md_reshape_position =
4542 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4543        reshape_position_store);
4544
4545 static ssize_t
4546 reshape_direction_show(struct mddev *mddev, char *page)
4547 {
4548         return sprintf(page, "%s\n",
4549                        mddev->reshape_backwards ? "backwards" : "forwards");
4550 }
4551
4552 static ssize_t
4553 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4554 {
4555         int backwards = 0;
4556         if (cmd_match(buf, "forwards"))
4557                 backwards = 0;
4558         else if (cmd_match(buf, "backwards"))
4559                 backwards = 1;
4560         else
4561                 return -EINVAL;
4562         if (mddev->reshape_backwards == backwards)
4563                 return len;
4564
4565         /* check if we are allowed to change */
4566         if (mddev->delta_disks)
4567                 return -EBUSY;
4568
4569         if (mddev->persistent &&
4570             mddev->major_version == 0)
4571                 return -EINVAL;
4572
4573         mddev->reshape_backwards = backwards;
4574         return len;
4575 }
4576
4577 static struct md_sysfs_entry md_reshape_direction =
4578 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4579        reshape_direction_store);
4580
4581 static ssize_t
4582 array_size_show(struct mddev *mddev, char *page)
4583 {
4584         if (mddev->external_size)
4585                 return sprintf(page, "%llu\n",
4586                                (unsigned long long)mddev->array_sectors/2);
4587         else
4588                 return sprintf(page, "default\n");
4589 }
4590
4591 static ssize_t
4592 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4593 {
4594         sector_t sectors;
4595
4596         if (strncmp(buf, "default", 7) == 0) {
4597                 if (mddev->pers)
4598                         sectors = mddev->pers->size(mddev, 0, 0);
4599                 else
4600                         sectors = mddev->array_sectors;
4601
4602                 mddev->external_size = 0;
4603         } else {
4604                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4605                         return -EINVAL;
4606                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4607                         return -E2BIG;
4608
4609                 mddev->external_size = 1;
4610         }
4611
4612         mddev->array_sectors = sectors;
4613         if (mddev->pers) {
4614                 set_capacity(mddev->gendisk, mddev->array_sectors);
4615                 revalidate_disk(mddev->gendisk);
4616         }
4617         return len;
4618 }
4619
4620 static struct md_sysfs_entry md_array_size =
4621 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4622        array_size_store);
4623
4624 static struct attribute *md_default_attrs[] = {
4625         &md_level.attr,
4626         &md_layout.attr,
4627         &md_raid_disks.attr,
4628         &md_chunk_size.attr,
4629         &md_size.attr,
4630         &md_resync_start.attr,
4631         &md_metadata.attr,
4632         &md_new_device.attr,
4633         &md_safe_delay.attr,
4634         &md_array_state.attr,
4635         &md_reshape_position.attr,
4636         &md_reshape_direction.attr,
4637         &md_array_size.attr,
4638         &max_corr_read_errors.attr,
4639         NULL,
4640 };
4641
4642 static struct attribute *md_redundancy_attrs[] = {
4643         &md_scan_mode.attr,
4644         &md_last_scan_mode.attr,
4645         &md_mismatches.attr,
4646         &md_sync_min.attr,
4647         &md_sync_max.attr,
4648         &md_sync_speed.attr,
4649         &md_sync_force_parallel.attr,
4650         &md_sync_completed.attr,
4651         &md_min_sync.attr,
4652         &md_max_sync.attr,
4653         &md_suspend_lo.attr,
4654         &md_suspend_hi.attr,
4655         &md_bitmap.attr,
4656         &md_degraded.attr,
4657         NULL,
4658 };
4659 static struct attribute_group md_redundancy_group = {
4660         .name = NULL,
4661         .attrs = md_redundancy_attrs,
4662 };
4663
4664 static ssize_t
4665 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4666 {
4667         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4668         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4669         ssize_t rv;
4670
4671         if (!entry->show)
4672                 return -EIO;
4673         spin_lock(&all_mddevs_lock);
4674         if (list_empty(&mddev->all_mddevs)) {
4675                 spin_unlock(&all_mddevs_lock);
4676                 return -EBUSY;
4677         }
4678         mddev_get(mddev);
4679         spin_unlock(&all_mddevs_lock);
4680
4681         rv = mddev_lock(mddev);
4682         if (!rv) {
4683                 rv = entry->show(mddev, page);
4684                 mddev_unlock(mddev);
4685         }
4686         mddev_put(mddev);
4687         return rv;
4688 }
4689
4690 static ssize_t
4691 md_attr_store(struct kobject *kobj, struct attribute *attr,
4692               const char *page, size_t length)
4693 {
4694         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4695         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4696         ssize_t rv;
4697
4698         if (!entry->store)
4699                 return -EIO;
4700         if (!capable(CAP_SYS_ADMIN))
4701                 return -EACCES;
4702         spin_lock(&all_mddevs_lock);
4703         if (list_empty(&mddev->all_mddevs)) {
4704                 spin_unlock(&all_mddevs_lock);
4705                 return -EBUSY;
4706         }
4707         mddev_get(mddev);
4708         spin_unlock(&all_mddevs_lock);
4709         if (entry->store == new_dev_store)
4710                 flush_workqueue(md_misc_wq);
4711         rv = mddev_lock(mddev);
4712         if (!rv) {
4713                 rv = entry->store(mddev, page, length);
4714                 mddev_unlock(mddev);
4715         }
4716         mddev_put(mddev);
4717         return rv;
4718 }
4719
4720 static void md_free(struct kobject *ko)
4721 {
4722         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4723
4724         if (mddev->sysfs_state)
4725                 sysfs_put(mddev->sysfs_state);
4726
4727         if (mddev->gendisk) {
4728                 del_gendisk(mddev->gendisk);
4729                 put_disk(mddev->gendisk);
4730         }
4731         if (mddev->queue)
4732                 blk_cleanup_queue(mddev->queue);
4733
4734         kfree(mddev);
4735 }
4736
4737 static const struct sysfs_ops md_sysfs_ops = {
4738         .show   = md_attr_show,
4739         .store  = md_attr_store,
4740 };
4741 static struct kobj_type md_ktype = {
4742         .release        = md_free,
4743         .sysfs_ops      = &md_sysfs_ops,
4744         .default_attrs  = md_default_attrs,
4745 };
4746
4747 int mdp_major = 0;
4748
4749 static void mddev_delayed_delete(struct work_struct *ws)
4750 {
4751         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4752
4753         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4754         kobject_del(&mddev->kobj);
4755         kobject_put(&mddev->kobj);
4756 }
4757
4758 static int md_alloc(dev_t dev, char *name)
4759 {
4760         static DEFINE_MUTEX(disks_mutex);
4761         struct mddev *mddev = mddev_find(dev);
4762         struct gendisk *disk;
4763         int partitioned;
4764         int shift;
4765         int unit;
4766         int error;
4767
4768         if (!mddev)
4769                 return -ENODEV;
4770
4771         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4772         shift = partitioned ? MdpMinorShift : 0;
4773         unit = MINOR(mddev->unit) >> shift;
4774
4775         /* wait for any previous instance of this device to be
4776          * completely removed (mddev_delayed_delete).
4777          */
4778         flush_workqueue(md_misc_wq);
4779
4780         mutex_lock(&disks_mutex);
4781         error = -EEXIST;
4782         if (mddev->gendisk)
4783                 goto abort;
4784
4785         if (name) {
4786                 /* Need to ensure that 'name' is not a duplicate.
4787                  */
4788                 struct mddev *mddev2;
4789                 spin_lock(&all_mddevs_lock);
4790
4791                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4792                         if (mddev2->gendisk &&
4793                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4794                                 spin_unlock(&all_mddevs_lock);
4795                                 goto abort;
4796                         }
4797                 spin_unlock(&all_mddevs_lock);
4798         }
4799
4800         error = -ENOMEM;
4801         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4802         if (!mddev->queue)
4803                 goto abort;
4804         mddev->queue->queuedata = mddev;
4805
4806         blk_queue_make_request(mddev->queue, md_make_request);
4807         blk_set_stacking_limits(&mddev->queue->limits);
4808
4809         disk = alloc_disk(1 << shift);
4810         if (!disk) {
4811                 blk_cleanup_queue(mddev->queue);
4812                 mddev->queue = NULL;
4813                 goto abort;
4814         }
4815         disk->major = MAJOR(mddev->unit);
4816         disk->first_minor = unit << shift;
4817         if (name)
4818                 strcpy(disk->disk_name, name);
4819         else if (partitioned)
4820                 sprintf(disk->disk_name, "md_d%d", unit);
4821         else
4822                 sprintf(disk->disk_name, "md%d", unit);
4823         disk->fops = &md_fops;
4824         disk->private_data = mddev;
4825         disk->queue = mddev->queue;
4826         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4827         /* Allow extended partitions.  This makes the
4828          * 'mdp' device redundant, but we can't really
4829          * remove it now.
4830          */
4831         disk->flags |= GENHD_FL_EXT_DEVT;
4832         mddev->gendisk = disk;
4833         /* As soon as we call add_disk(), another thread could get
4834          * through to md_open, so make sure it doesn't get too far
4835          */
4836         mutex_lock(&mddev->open_mutex);
4837         add_disk(disk);
4838
4839         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4840                                      &disk_to_dev(disk)->kobj, "%s", "md");
4841         if (error) {
4842                 /* This isn't possible, but as kobject_init_and_add is marked
4843                  * __must_check, we must do something with the result
4844                  */
4845                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4846                        disk->disk_name);
4847                 error = 0;
4848         }
4849         if (mddev->kobj.sd &&
4850             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4851                 printk(KERN_DEBUG "pointless warning\n");
4852         mutex_unlock(&mddev->open_mutex);
4853  abort:
4854         mutex_unlock(&disks_mutex);
4855         if (!error && mddev->kobj.sd) {
4856                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4857                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4858         }
4859         mddev_put(mddev);
4860         return error;
4861 }
4862
4863 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4864 {
4865         md_alloc(dev, NULL);
4866         return NULL;
4867 }
4868
4869 static int add_named_array(const char *val, struct kernel_param *kp)
4870 {
4871         /* val must be "md_*" where * is not all digits.
4872          * We allocate an array with a large free minor number, and
4873          * set the name to val.  val must not already be an active name.
4874          */
4875         int len = strlen(val);
4876         char buf[DISK_NAME_LEN];
4877
4878         while (len && val[len-1] == '\n')
4879                 len--;
4880         if (len >= DISK_NAME_LEN)
4881                 return -E2BIG;
4882         strlcpy(buf, val, len+1);
4883         if (strncmp(buf, "md_", 3) != 0)
4884                 return -EINVAL;
4885         return md_alloc(0, buf);
4886 }
4887
4888 static void md_safemode_timeout(unsigned long data)
4889 {
4890         struct mddev *mddev = (struct mddev *) data;
4891
4892         if (!atomic_read(&mddev->writes_pending)) {
4893                 mddev->safemode = 1;
4894                 if (mddev->external)
4895                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4896         }
4897         md_wakeup_thread(mddev->thread);
4898 }
4899
4900 static int start_dirty_degraded;
4901
4902 int md_run(struct mddev *mddev)
4903 {
4904         int err;
4905         struct md_rdev *rdev;
4906         struct md_personality *pers;
4907
4908         if (list_empty(&mddev->disks))
4909                 /* cannot run an array with no devices.. */
4910                 return -EINVAL;
4911
4912         if (mddev->pers)
4913                 return -EBUSY;
4914         /* Cannot run until previous stop completes properly */
4915         if (mddev->sysfs_active)
4916                 return -EBUSY;
4917
4918         /*
4919          * Analyze all RAID superblock(s)
4920          */
4921         if (!mddev->raid_disks) {
4922                 if (!mddev->persistent)
4923                         return -EINVAL;
4924                 analyze_sbs(mddev);
4925         }
4926
4927         if (mddev->level != LEVEL_NONE)
4928                 request_module("md-level-%d", mddev->level);
4929         else if (mddev->clevel[0])
4930                 request_module("md-%s", mddev->clevel);
4931
4932         /*
4933          * Drop all container device buffers, from now on
4934          * the only valid external interface is through the md
4935          * device.
4936          */
4937         rdev_for_each(rdev, mddev) {
4938                 if (test_bit(Faulty, &rdev->flags))
4939                         continue;
4940                 sync_blockdev(rdev->bdev);
4941                 invalidate_bdev(rdev->bdev);
4942
4943                 /* perform some consistency tests on the device.
4944                  * We don't want the data to overlap the metadata,
4945                  * Internal Bitmap issues have been handled elsewhere.
4946                  */
4947                 if (rdev->meta_bdev) {
4948                         /* Nothing to check */;
4949                 } else if (rdev->data_offset < rdev->sb_start) {
4950                         if (mddev->dev_sectors &&
4951                             rdev->data_offset + mddev->dev_sectors
4952                             > rdev->sb_start) {
4953                                 printk("md: %s: data overlaps metadata\n",
4954                                        mdname(mddev));
4955                                 return -EINVAL;
4956                         }
4957                 } else {
4958                         if (rdev->sb_start + rdev->sb_size/512
4959                             > rdev->data_offset) {
4960                                 printk("md: %s: metadata overlaps data\n",
4961                                        mdname(mddev));
4962                                 return -EINVAL;
4963                         }
4964                 }
4965                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4966         }
4967
4968         if (mddev->bio_set == NULL)
4969                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4970
4971         spin_lock(&pers_lock);
4972         pers = find_pers(mddev->level, mddev->clevel);
4973         if (!pers || !try_module_get(pers->owner)) {
4974                 spin_unlock(&pers_lock);
4975                 if (mddev->level != LEVEL_NONE)
4976                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4977                                mddev->level);
4978                 else
4979                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4980                                mddev->clevel);
4981                 return -EINVAL;
4982         }
4983         mddev->pers = pers;
4984         spin_unlock(&pers_lock);
4985         if (mddev->level != pers->level) {
4986                 mddev->level = pers->level;
4987                 mddev->new_level = pers->level;
4988         }
4989         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4990
4991         if (mddev->reshape_position != MaxSector &&
4992             pers->start_reshape == NULL) {
4993                 /* This personality cannot handle reshaping... */
4994                 mddev->pers = NULL;
4995                 module_put(pers->owner);
4996                 return -EINVAL;
4997         }
4998
4999         if (pers->sync_request) {
5000                 /* Warn if this is a potentially silly
5001                  * configuration.
5002                  */
5003                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5004                 struct md_rdev *rdev2;
5005                 int warned = 0;
5006
5007                 rdev_for_each(rdev, mddev)
5008                         rdev_for_each(rdev2, mddev) {
5009                                 if (rdev < rdev2 &&
5010                                     rdev->bdev->bd_contains ==
5011                                     rdev2->bdev->bd_contains) {
5012                                         printk(KERN_WARNING
5013                                                "%s: WARNING: %s appears to be"
5014                                                " on the same physical disk as"
5015                                                " %s.\n",
5016                                                mdname(mddev),
5017                                                bdevname(rdev->bdev,b),
5018                                                bdevname(rdev2->bdev,b2));
5019                                         warned = 1;
5020                                 }
5021                         }
5022
5023                 if (warned)
5024                         printk(KERN_WARNING
5025                                "True protection against single-disk"
5026                                " failure might be compromised.\n");
5027         }
5028
5029         mddev->recovery = 0;
5030         /* may be over-ridden by personality */
5031         mddev->resync_max_sectors = mddev->dev_sectors;
5032
5033         mddev->ok_start_degraded = start_dirty_degraded;
5034
5035         if (start_readonly && mddev->ro == 0)
5036                 mddev->ro = 2; /* read-only, but switch on first write */
5037
5038         err = mddev->pers->run(mddev);
5039         if (err)
5040                 printk(KERN_ERR "md: pers->run() failed ...\n");
5041         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5042                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5043                           " but 'external_size' not in effect?\n", __func__);
5044                 printk(KERN_ERR
5045                        "md: invalid array_size %llu > default size %llu\n",
5046                        (unsigned long long)mddev->array_sectors / 2,
5047                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5048                 err = -EINVAL;
5049                 mddev->pers->stop(mddev);
5050         }
5051         if (err == 0 && mddev->pers->sync_request &&
5052             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5053                 err = bitmap_create(mddev);
5054                 if (err) {
5055                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5056                                mdname(mddev), err);
5057                         mddev->pers->stop(mddev);
5058                 }
5059         }
5060         if (err) {
5061                 module_put(mddev->pers->owner);
5062                 mddev->pers = NULL;
5063                 bitmap_destroy(mddev);
5064                 return err;
5065         }
5066         if (mddev->pers->sync_request) {
5067                 if (mddev->kobj.sd &&
5068                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5069                         printk(KERN_WARNING
5070                                "md: cannot register extra attributes for %s\n",
5071                                mdname(mddev));
5072                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5073         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5074                 mddev->ro = 0;
5075
5076         atomic_set(&mddev->writes_pending,0);
5077         atomic_set(&mddev->max_corr_read_errors,
5078                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5079         mddev->safemode = 0;
5080         mddev->safemode_timer.function = md_safemode_timeout;
5081         mddev->safemode_timer.data = (unsigned long) mddev;
5082         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5083         mddev->in_sync = 1;
5084         smp_wmb();
5085         mddev->ready = 1;
5086         rdev_for_each(rdev, mddev)
5087                 if (rdev->raid_disk >= 0)
5088                         if (sysfs_link_rdev(mddev, rdev))
5089                                 /* failure here is OK */;
5090
5091         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5092
5093         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5094                 md_update_sb(mddev, 0);
5095
5096         md_new_event(mddev);
5097         sysfs_notify_dirent_safe(mddev->sysfs_state);
5098         sysfs_notify_dirent_safe(mddev->sysfs_action);
5099         sysfs_notify(&mddev->kobj, NULL, "degraded");
5100         return 0;
5101 }
5102 EXPORT_SYMBOL_GPL(md_run);
5103
5104 static int do_md_run(struct mddev *mddev)
5105 {
5106         int err;
5107
5108         err = md_run(mddev);
5109         if (err)
5110                 goto out;
5111         err = bitmap_load(mddev);
5112         if (err) {
5113                 bitmap_destroy(mddev);
5114                 goto out;
5115         }
5116
5117         md_wakeup_thread(mddev->thread);
5118         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5119
5120         set_capacity(mddev->gendisk, mddev->array_sectors);
5121         revalidate_disk(mddev->gendisk);
5122         mddev->changed = 1;
5123         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5124 out:
5125         return err;
5126 }
5127
5128 static int restart_array(struct mddev *mddev)
5129 {
5130         struct gendisk *disk = mddev->gendisk;
5131
5132         /* Complain if it has no devices */
5133         if (list_empty(&mddev->disks))
5134                 return -ENXIO;
5135         if (!mddev->pers)
5136                 return -EINVAL;
5137         if (!mddev->ro)
5138                 return -EBUSY;
5139         mddev->safemode = 0;
5140         mddev->ro = 0;
5141         set_disk_ro(disk, 0);
5142         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5143                 mdname(mddev));
5144         /* Kick recovery or resync if necessary */
5145         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146         md_wakeup_thread(mddev->thread);
5147         md_wakeup_thread(mddev->sync_thread);
5148         sysfs_notify_dirent_safe(mddev->sysfs_state);
5149         return 0;
5150 }
5151
5152 static void md_clean(struct mddev *mddev)
5153 {
5154         mddev->array_sectors = 0;
5155         mddev->external_size = 0;
5156         mddev->dev_sectors = 0;
5157         mddev->raid_disks = 0;
5158         mddev->recovery_cp = 0;
5159         mddev->resync_min = 0;
5160         mddev->resync_max = MaxSector;
5161         mddev->reshape_position = MaxSector;
5162         mddev->external = 0;
5163         mddev->persistent = 0;
5164         mddev->level = LEVEL_NONE;
5165         mddev->clevel[0] = 0;
5166         mddev->flags = 0;
5167         mddev->ro = 0;
5168         mddev->metadata_type[0] = 0;
5169         mddev->chunk_sectors = 0;
5170         mddev->ctime = mddev->utime = 0;
5171         mddev->layout = 0;
5172         mddev->max_disks = 0;
5173         mddev->events = 0;
5174         mddev->can_decrease_events = 0;
5175         mddev->delta_disks = 0;
5176         mddev->reshape_backwards = 0;
5177         mddev->new_level = LEVEL_NONE;
5178         mddev->new_layout = 0;
5179         mddev->new_chunk_sectors = 0;
5180         mddev->curr_resync = 0;
5181         atomic64_set(&mddev->resync_mismatches, 0);
5182         mddev->suspend_lo = mddev->suspend_hi = 0;
5183         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5184         mddev->recovery = 0;
5185         mddev->in_sync = 0;
5186         mddev->changed = 0;
5187         mddev->degraded = 0;
5188         mddev->safemode = 0;
5189         mddev->merge_check_needed = 0;
5190         mddev->bitmap_info.offset = 0;
5191         mddev->bitmap_info.default_offset = 0;
5192         mddev->bitmap_info.default_space = 0;
5193         mddev->bitmap_info.chunksize = 0;
5194         mddev->bitmap_info.daemon_sleep = 0;
5195         mddev->bitmap_info.max_write_behind = 0;
5196 }
5197
5198 static void __md_stop_writes(struct mddev *mddev)
5199 {
5200         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5201         if (mddev->sync_thread) {
5202                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5203                 md_reap_sync_thread(mddev);
5204         }
5205
5206         del_timer_sync(&mddev->safemode_timer);
5207
5208         bitmap_flush(mddev);
5209         md_super_wait(mddev);
5210
5211         if (mddev->ro == 0 &&
5212             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5213                 /* mark array as shutdown cleanly */
5214                 mddev->in_sync = 1;
5215                 md_update_sb(mddev, 1);
5216         }
5217 }
5218
5219 void md_stop_writes(struct mddev *mddev)
5220 {
5221         mddev_lock_nointr(mddev);
5222         __md_stop_writes(mddev);
5223         mddev_unlock(mddev);
5224 }
5225 EXPORT_SYMBOL_GPL(md_stop_writes);
5226
5227 static void __md_stop(struct mddev *mddev)
5228 {
5229         mddev->ready = 0;
5230         mddev->pers->stop(mddev);
5231         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5232                 mddev->to_remove = &md_redundancy_group;
5233         module_put(mddev->pers->owner);
5234         mddev->pers = NULL;
5235         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5236 }
5237
5238 void md_stop(struct mddev *mddev)
5239 {
5240         /* stop the array and free an attached data structures.
5241          * This is called from dm-raid
5242          */
5243         __md_stop(mddev);
5244         bitmap_destroy(mddev);
5245         if (mddev->bio_set)
5246                 bioset_free(mddev->bio_set);
5247 }
5248
5249 EXPORT_SYMBOL_GPL(md_stop);
5250
5251 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5252 {
5253         int err = 0;
5254         int did_freeze = 0;
5255
5256         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5257                 did_freeze = 1;
5258                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5259                 md_wakeup_thread(mddev->thread);
5260         }
5261         if (mddev->sync_thread) {
5262                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5263                 /* Thread might be blocked waiting for metadata update
5264                  * which will now never happen */
5265                 wake_up_process(mddev->sync_thread->tsk);
5266         }
5267         mddev_unlock(mddev);
5268         wait_event(resync_wait, mddev->sync_thread == NULL);
5269         mddev_lock_nointr(mddev);
5270
5271         mutex_lock(&mddev->open_mutex);
5272         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5273             mddev->sync_thread ||
5274             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5275                 printk("md: %s still in use.\n",mdname(mddev));
5276                 if (did_freeze) {
5277                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5278                         md_wakeup_thread(mddev->thread);
5279                 }
5280                 err = -EBUSY;
5281                 goto out;
5282         }
5283         if (mddev->pers) {
5284                 __md_stop_writes(mddev);
5285
5286                 err  = -ENXIO;
5287                 if (mddev->ro==1)
5288                         goto out;
5289                 mddev->ro = 1;
5290                 set_disk_ro(mddev->gendisk, 1);
5291                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5292                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5293                 err = 0;
5294         }
5295 out:
5296         mutex_unlock(&mddev->open_mutex);
5297         return err;
5298 }
5299
5300 /* mode:
5301  *   0 - completely stop and dis-assemble array
5302  *   2 - stop but do not disassemble array
5303  */
5304 static int do_md_stop(struct mddev *mddev, int mode,
5305                       struct block_device *bdev)
5306 {
5307         struct gendisk *disk = mddev->gendisk;
5308         struct md_rdev *rdev;
5309         int did_freeze = 0;
5310
5311         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5312                 did_freeze = 1;
5313                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5314                 md_wakeup_thread(mddev->thread);
5315         }
5316         if (mddev->sync_thread) {
5317                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5318                 /* Thread might be blocked waiting for metadata update
5319                  * which will now never happen */
5320                 wake_up_process(mddev->sync_thread->tsk);
5321         }
5322         mddev_unlock(mddev);
5323         wait_event(resync_wait, mddev->sync_thread == NULL);
5324         mddev_lock_nointr(mddev);
5325
5326         mutex_lock(&mddev->open_mutex);
5327         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5328             mddev->sysfs_active ||
5329             mddev->sync_thread ||
5330             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5331                 printk("md: %s still in use.\n",mdname(mddev));
5332                 mutex_unlock(&mddev->open_mutex);
5333                 if (did_freeze) {
5334                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5335                         md_wakeup_thread(mddev->thread);
5336                 }
5337                 return -EBUSY;
5338         }
5339         if (mddev->pers) {
5340                 if (mddev->ro)
5341                         set_disk_ro(disk, 0);
5342
5343                 __md_stop_writes(mddev);
5344                 __md_stop(mddev);
5345                 mddev->queue->merge_bvec_fn = NULL;
5346                 mddev->queue->backing_dev_info.congested_fn = NULL;
5347
5348                 /* tell userspace to handle 'inactive' */
5349                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5350
5351                 rdev_for_each(rdev, mddev)
5352                         if (rdev->raid_disk >= 0)
5353                                 sysfs_unlink_rdev(mddev, rdev);
5354
5355                 set_capacity(disk, 0);
5356                 mutex_unlock(&mddev->open_mutex);
5357                 mddev->changed = 1;
5358                 revalidate_disk(disk);
5359
5360                 if (mddev->ro)
5361                         mddev->ro = 0;
5362         } else
5363                 mutex_unlock(&mddev->open_mutex);
5364         /*
5365          * Free resources if final stop
5366          */
5367         if (mode == 0) {
5368                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5369
5370                 bitmap_destroy(mddev);
5371                 if (mddev->bitmap_info.file) {
5372                         fput(mddev->bitmap_info.file);
5373                         mddev->bitmap_info.file = NULL;
5374                 }
5375                 mddev->bitmap_info.offset = 0;
5376
5377                 export_array(mddev);
5378
5379                 md_clean(mddev);
5380                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5381                 if (mddev->hold_active == UNTIL_STOP)
5382                         mddev->hold_active = 0;
5383         }
5384         blk_integrity_unregister(disk);
5385         md_new_event(mddev);
5386         sysfs_notify_dirent_safe(mddev->sysfs_state);
5387         return 0;
5388 }
5389
5390 #ifndef MODULE
5391 static void autorun_array(struct mddev *mddev)
5392 {
5393         struct md_rdev *rdev;
5394         int err;
5395
5396         if (list_empty(&mddev->disks))
5397                 return;
5398
5399         printk(KERN_INFO "md: running: ");
5400
5401         rdev_for_each(rdev, mddev) {
5402                 char b[BDEVNAME_SIZE];
5403                 printk("<%s>", bdevname(rdev->bdev,b));
5404         }
5405         printk("\n");
5406
5407         err = do_md_run(mddev);
5408         if (err) {
5409                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5410                 do_md_stop(mddev, 0, NULL);
5411         }
5412 }
5413
5414 /*
5415  * lets try to run arrays based on all disks that have arrived
5416  * until now. (those are in pending_raid_disks)
5417  *
5418  * the method: pick the first pending disk, collect all disks with
5419  * the same UUID, remove all from the pending list and put them into
5420  * the 'same_array' list. Then order this list based on superblock
5421  * update time (freshest comes first), kick out 'old' disks and
5422  * compare superblocks. If everything's fine then run it.
5423  *
5424  * If "unit" is allocated, then bump its reference count
5425  */
5426 static void autorun_devices(int part)
5427 {
5428         struct md_rdev *rdev0, *rdev, *tmp;
5429         struct mddev *mddev;
5430         char b[BDEVNAME_SIZE];
5431
5432         printk(KERN_INFO "md: autorun ...\n");
5433         while (!list_empty(&pending_raid_disks)) {
5434                 int unit;
5435                 dev_t dev;
5436                 LIST_HEAD(candidates);
5437                 rdev0 = list_entry(pending_raid_disks.next,
5438                                          struct md_rdev, same_set);
5439
5440                 printk(KERN_INFO "md: considering %s ...\n",
5441                         bdevname(rdev0->bdev,b));
5442                 INIT_LIST_HEAD(&candidates);
5443                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5444                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5445                                 printk(KERN_INFO "md:  adding %s ...\n",
5446                                         bdevname(rdev->bdev,b));
5447                                 list_move(&rdev->same_set, &candidates);
5448                         }
5449                 /*
5450                  * now we have a set of devices, with all of them having
5451                  * mostly sane superblocks. It's time to allocate the
5452                  * mddev.
5453                  */
5454                 if (part) {
5455                         dev = MKDEV(mdp_major,
5456                                     rdev0->preferred_minor << MdpMinorShift);
5457                         unit = MINOR(dev) >> MdpMinorShift;
5458                 } else {
5459                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5460                         unit = MINOR(dev);
5461                 }
5462                 if (rdev0->preferred_minor != unit) {
5463                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5464                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5465                         break;
5466                 }
5467
5468                 md_probe(dev, NULL, NULL);
5469                 mddev = mddev_find(dev);
5470                 if (!mddev || !mddev->gendisk) {
5471                         if (mddev)
5472                                 mddev_put(mddev);
5473                         printk(KERN_ERR
5474                                 "md: cannot allocate memory for md drive.\n");
5475                         break;
5476                 }
5477                 if (mddev_lock(mddev))
5478                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5479                                mdname(mddev));
5480                 else if (mddev->raid_disks || mddev->major_version
5481                          || !list_empty(&mddev->disks)) {
5482                         printk(KERN_WARNING
5483                                 "md: %s already running, cannot run %s\n",
5484                                 mdname(mddev), bdevname(rdev0->bdev,b));
5485                         mddev_unlock(mddev);
5486                 } else {
5487                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5488                         mddev->persistent = 1;
5489                         rdev_for_each_list(rdev, tmp, &candidates) {
5490                                 list_del_init(&rdev->same_set);
5491                                 if (bind_rdev_to_array(rdev, mddev))
5492                                         export_rdev(rdev);
5493                         }
5494                         autorun_array(mddev);
5495                         mddev_unlock(mddev);
5496                 }
5497                 /* on success, candidates will be empty, on error
5498                  * it won't...
5499                  */
5500                 rdev_for_each_list(rdev, tmp, &candidates) {
5501                         list_del_init(&rdev->same_set);
5502                         export_rdev(rdev);
5503                 }
5504                 mddev_put(mddev);
5505         }
5506         printk(KERN_INFO "md: ... autorun DONE.\n");
5507 }
5508 #endif /* !MODULE */
5509
5510 static int get_version(void __user *arg)
5511 {
5512         mdu_version_t ver;
5513
5514         ver.major = MD_MAJOR_VERSION;
5515         ver.minor = MD_MINOR_VERSION;
5516         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5517
5518         if (copy_to_user(arg, &ver, sizeof(ver)))
5519                 return -EFAULT;
5520
5521         return 0;
5522 }
5523
5524 static int get_array_info(struct mddev *mddev, void __user *arg)
5525 {
5526         mdu_array_info_t info;
5527         int nr,working,insync,failed,spare;
5528         struct md_rdev *rdev;
5529
5530         nr = working = insync = failed = spare = 0;
5531         rcu_read_lock();
5532         rdev_for_each_rcu(rdev, mddev) {
5533                 nr++;
5534                 if (test_bit(Faulty, &rdev->flags))
5535                         failed++;
5536                 else {
5537                         working++;
5538                         if (test_bit(In_sync, &rdev->flags))
5539                                 insync++;
5540                         else
5541                                 spare++;
5542                 }
5543         }
5544         rcu_read_unlock();
5545
5546         info.major_version = mddev->major_version;
5547         info.minor_version = mddev->minor_version;
5548         info.patch_version = MD_PATCHLEVEL_VERSION;
5549         info.ctime         = mddev->ctime;
5550         info.level         = mddev->level;
5551         info.size          = mddev->dev_sectors / 2;
5552         if (info.size != mddev->dev_sectors / 2) /* overflow */
5553                 info.size = -1;
5554         info.nr_disks      = nr;
5555         info.raid_disks    = mddev->raid_disks;
5556         info.md_minor      = mddev->md_minor;
5557         info.not_persistent= !mddev->persistent;
5558
5559         info.utime         = mddev->utime;
5560         info.state         = 0;
5561         if (mddev->in_sync)
5562                 info.state = (1<<MD_SB_CLEAN);
5563         if (mddev->bitmap && mddev->bitmap_info.offset)
5564                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5565         info.active_disks  = insync;
5566         info.working_disks = working;
5567         info.failed_disks  = failed;
5568         info.spare_disks   = spare;
5569
5570         info.layout        = mddev->layout;
5571         info.chunk_size    = mddev->chunk_sectors << 9;
5572
5573         if (copy_to_user(arg, &info, sizeof(info)))
5574                 return -EFAULT;
5575
5576         return 0;
5577 }
5578
5579 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5580 {
5581         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5582         char *ptr, *buf = NULL;
5583         int err = -ENOMEM;
5584
5585         file = kmalloc(sizeof(*file), GFP_NOIO);
5586
5587         if (!file)
5588                 goto out;
5589
5590         /* bitmap disabled, zero the first byte and copy out */
5591         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5592                 file->pathname[0] = '\0';
5593                 goto copy_out;
5594         }
5595
5596         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5597         if (!buf)
5598                 goto out;
5599
5600         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5601                      buf, sizeof(file->pathname));
5602         if (IS_ERR(ptr))
5603                 goto out;
5604
5605         strcpy(file->pathname, ptr);
5606
5607 copy_out:
5608         err = 0;
5609         if (copy_to_user(arg, file, sizeof(*file)))
5610                 err = -EFAULT;
5611 out:
5612         kfree(buf);
5613         kfree(file);
5614         return err;
5615 }
5616
5617 static int get_disk_info(struct mddev *mddev, void __user * arg)
5618 {
5619         mdu_disk_info_t info;
5620         struct md_rdev *rdev;
5621
5622         if (copy_from_user(&info, arg, sizeof(info)))
5623                 return -EFAULT;
5624
5625         rcu_read_lock();
5626         rdev = find_rdev_nr_rcu(mddev, info.number);
5627         if (rdev) {
5628                 info.major = MAJOR(rdev->bdev->bd_dev);
5629                 info.minor = MINOR(rdev->bdev->bd_dev);
5630                 info.raid_disk = rdev->raid_disk;
5631                 info.state = 0;
5632                 if (test_bit(Faulty, &rdev->flags))
5633                         info.state |= (1<<MD_DISK_FAULTY);
5634                 else if (test_bit(In_sync, &rdev->flags)) {
5635                         info.state |= (1<<MD_DISK_ACTIVE);
5636                         info.state |= (1<<MD_DISK_SYNC);
5637                 }
5638                 if (test_bit(WriteMostly, &rdev->flags))
5639                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5640         } else {
5641                 info.major = info.minor = 0;
5642                 info.raid_disk = -1;
5643                 info.state = (1<<MD_DISK_REMOVED);
5644         }
5645         rcu_read_unlock();
5646
5647         if (copy_to_user(arg, &info, sizeof(info)))
5648                 return -EFAULT;
5649
5650         return 0;
5651 }
5652
5653 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5654 {
5655         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5656         struct md_rdev *rdev;
5657         dev_t dev = MKDEV(info->major,info->minor);
5658
5659         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5660                 return -EOVERFLOW;
5661
5662         if (!mddev->raid_disks) {
5663                 int err;
5664                 /* expecting a device which has a superblock */
5665                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5666                 if (IS_ERR(rdev)) {
5667                         printk(KERN_WARNING
5668                                 "md: md_import_device returned %ld\n",
5669                                 PTR_ERR(rdev));
5670                         return PTR_ERR(rdev);
5671                 }
5672                 if (!list_empty(&mddev->disks)) {
5673                         struct md_rdev *rdev0
5674                                 = list_entry(mddev->disks.next,
5675                                              struct md_rdev, same_set);
5676                         err = super_types[mddev->major_version]
5677                                 .load_super(rdev, rdev0, mddev->minor_version);
5678                         if (err < 0) {
5679                                 printk(KERN_WARNING
5680                                         "md: %s has different UUID to %s\n",
5681                                         bdevname(rdev->bdev,b),
5682                                         bdevname(rdev0->bdev,b2));
5683                                 export_rdev(rdev);
5684                                 return -EINVAL;
5685                         }
5686                 }
5687                 err = bind_rdev_to_array(rdev, mddev);
5688                 if (err)
5689                         export_rdev(rdev);
5690                 return err;
5691         }
5692
5693         /*
5694          * add_new_disk can be used once the array is assembled
5695          * to add "hot spares".  They must already have a superblock
5696          * written
5697          */
5698         if (mddev->pers) {
5699                 int err;
5700                 if (!mddev->pers->hot_add_disk) {
5701                         printk(KERN_WARNING
5702                                 "%s: personality does not support diskops!\n",
5703                                mdname(mddev));
5704                         return -EINVAL;
5705                 }
5706                 if (mddev->persistent)
5707                         rdev = md_import_device(dev, mddev->major_version,
5708                                                 mddev->minor_version);
5709                 else
5710                         rdev = md_import_device(dev, -1, -1);
5711                 if (IS_ERR(rdev)) {
5712                         printk(KERN_WARNING
5713                                 "md: md_import_device returned %ld\n",
5714                                 PTR_ERR(rdev));
5715                         return PTR_ERR(rdev);
5716                 }
5717                 /* set saved_raid_disk if appropriate */
5718                 if (!mddev->persistent) {
5719                         if (info->state & (1<<MD_DISK_SYNC)  &&
5720                             info->raid_disk < mddev->raid_disks) {
5721                                 rdev->raid_disk = info->raid_disk;
5722                                 set_bit(In_sync, &rdev->flags);
5723                                 clear_bit(Bitmap_sync, &rdev->flags);
5724                         } else
5725                                 rdev->raid_disk = -1;
5726                         rdev->saved_raid_disk = rdev->raid_disk;
5727                 } else
5728                         super_types[mddev->major_version].
5729                                 validate_super(mddev, rdev);
5730                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5731                      rdev->raid_disk != info->raid_disk) {
5732                         /* This was a hot-add request, but events doesn't
5733                          * match, so reject it.
5734                          */
5735                         export_rdev(rdev);
5736                         return -EINVAL;
5737                 }
5738
5739                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5740                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5741                         set_bit(WriteMostly, &rdev->flags);
5742                 else
5743                         clear_bit(WriteMostly, &rdev->flags);
5744
5745                 rdev->raid_disk = -1;
5746                 err = bind_rdev_to_array(rdev, mddev);
5747                 if (!err && !mddev->pers->hot_remove_disk) {
5748                         /* If there is hot_add_disk but no hot_remove_disk
5749                          * then added disks for geometry changes,
5750                          * and should be added immediately.
5751                          */
5752                         super_types[mddev->major_version].
5753                                 validate_super(mddev, rdev);
5754                         err = mddev->pers->hot_add_disk(mddev, rdev);
5755                         if (err)
5756                                 unbind_rdev_from_array(rdev);
5757                 }
5758                 if (err)
5759                         export_rdev(rdev);
5760                 else
5761                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5762
5763                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5764                 if (mddev->degraded)
5765                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5766                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5767                 if (!err)
5768                         md_new_event(mddev);
5769                 md_wakeup_thread(mddev->thread);
5770                 return err;
5771         }
5772
5773         /* otherwise, add_new_disk is only allowed
5774          * for major_version==0 superblocks
5775          */
5776         if (mddev->major_version != 0) {
5777                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5778                        mdname(mddev));
5779                 return -EINVAL;
5780         }
5781
5782         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5783                 int err;
5784                 rdev = md_import_device(dev, -1, 0);
5785                 if (IS_ERR(rdev)) {
5786                         printk(KERN_WARNING
5787                                 "md: error, md_import_device() returned %ld\n",
5788                                 PTR_ERR(rdev));
5789                         return PTR_ERR(rdev);
5790                 }
5791                 rdev->desc_nr = info->number;
5792                 if (info->raid_disk < mddev->raid_disks)
5793                         rdev->raid_disk = info->raid_disk;
5794                 else
5795                         rdev->raid_disk = -1;
5796
5797                 if (rdev->raid_disk < mddev->raid_disks)
5798                         if (info->state & (1<<MD_DISK_SYNC))
5799                                 set_bit(In_sync, &rdev->flags);
5800
5801                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5802                         set_bit(WriteMostly, &rdev->flags);
5803
5804                 if (!mddev->persistent) {
5805                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5806                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5807                 } else
5808                         rdev->sb_start = calc_dev_sboffset(rdev);
5809                 rdev->sectors = rdev->sb_start;
5810
5811                 err = bind_rdev_to_array(rdev, mddev);
5812                 if (err) {
5813                         export_rdev(rdev);
5814                         return err;
5815                 }
5816         }
5817
5818         return 0;
5819 }
5820
5821 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5822 {
5823         char b[BDEVNAME_SIZE];
5824         struct md_rdev *rdev;
5825
5826         rdev = find_rdev(mddev, dev);
5827         if (!rdev)
5828                 return -ENXIO;
5829
5830         clear_bit(Blocked, &rdev->flags);
5831         remove_and_add_spares(mddev, rdev);
5832
5833         if (rdev->raid_disk >= 0)
5834                 goto busy;
5835
5836         kick_rdev_from_array(rdev);
5837         md_update_sb(mddev, 1);
5838         md_new_event(mddev);
5839
5840         return 0;
5841 busy:
5842         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5843                 bdevname(rdev->bdev,b), mdname(mddev));
5844         return -EBUSY;
5845 }
5846
5847 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5848 {
5849         char b[BDEVNAME_SIZE];
5850         int err;
5851         struct md_rdev *rdev;
5852
5853         if (!mddev->pers)
5854                 return -ENODEV;
5855
5856         if (mddev->major_version != 0) {
5857                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5858                         " version-0 superblocks.\n",
5859                         mdname(mddev));
5860                 return -EINVAL;
5861         }
5862         if (!mddev->pers->hot_add_disk) {
5863                 printk(KERN_WARNING
5864                         "%s: personality does not support diskops!\n",
5865                         mdname(mddev));
5866                 return -EINVAL;
5867         }
5868
5869         rdev = md_import_device(dev, -1, 0);
5870         if (IS_ERR(rdev)) {
5871                 printk(KERN_WARNING
5872                         "md: error, md_import_device() returned %ld\n",
5873                         PTR_ERR(rdev));
5874                 return -EINVAL;
5875         }
5876
5877         if (mddev->persistent)
5878                 rdev->sb_start = calc_dev_sboffset(rdev);
5879         else
5880                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5881
5882         rdev->sectors = rdev->sb_start;
5883
5884         if (test_bit(Faulty, &rdev->flags)) {
5885                 printk(KERN_WARNING
5886                         "md: can not hot-add faulty %s disk to %s!\n",
5887                         bdevname(rdev->bdev,b), mdname(mddev));
5888                 err = -EINVAL;
5889                 goto abort_export;
5890         }
5891         clear_bit(In_sync, &rdev->flags);
5892         rdev->desc_nr = -1;
5893         rdev->saved_raid_disk = -1;
5894         err = bind_rdev_to_array(rdev, mddev);
5895         if (err)
5896                 goto abort_export;
5897
5898         /*
5899          * The rest should better be atomic, we can have disk failures
5900          * noticed in interrupt contexts ...
5901          */
5902
5903         rdev->raid_disk = -1;
5904
5905         md_update_sb(mddev, 1);
5906
5907         /*
5908          * Kick recovery, maybe this spare has to be added to the
5909          * array immediately.
5910          */
5911         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5912         md_wakeup_thread(mddev->thread);
5913         md_new_event(mddev);
5914         return 0;
5915
5916 abort_export:
5917         export_rdev(rdev);
5918         return err;
5919 }
5920
5921 static int set_bitmap_file(struct mddev *mddev, int fd)
5922 {
5923         int err = 0;
5924
5925         if (mddev->pers) {
5926                 if (!mddev->pers->quiesce || !mddev->thread)
5927                         return -EBUSY;
5928                 if (mddev->recovery || mddev->sync_thread)
5929                         return -EBUSY;
5930                 /* we should be able to change the bitmap.. */
5931         }
5932
5933         if (fd >= 0) {
5934                 struct inode *inode;
5935                 if (mddev->bitmap)
5936                         return -EEXIST; /* cannot add when bitmap is present */
5937                 mddev->bitmap_info.file = fget(fd);
5938
5939                 if (mddev->bitmap_info.file == NULL) {
5940                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5941                                mdname(mddev));
5942                         return -EBADF;
5943                 }
5944
5945                 inode = mddev->bitmap_info.file->f_mapping->host;
5946                 if (!S_ISREG(inode->i_mode)) {
5947                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5948                                mdname(mddev));
5949                         err = -EBADF;
5950                 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5951                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5952                                mdname(mddev));
5953                         err = -EBADF;
5954                 } else if (atomic_read(&inode->i_writecount) != 1) {
5955                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5956                                mdname(mddev));
5957                         err = -EBUSY;
5958                 }
5959                 if (err) {
5960                         fput(mddev->bitmap_info.file);
5961                         mddev->bitmap_info.file = NULL;
5962                         return err;
5963                 }
5964                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5965         } else if (mddev->bitmap == NULL)
5966                 return -ENOENT; /* cannot remove what isn't there */
5967         err = 0;
5968         if (mddev->pers) {
5969                 mddev->pers->quiesce(mddev, 1);
5970                 if (fd >= 0) {
5971                         err = bitmap_create(mddev);
5972                         if (!err)
5973                                 err = bitmap_load(mddev);
5974                 }
5975                 if (fd < 0 || err) {
5976                         bitmap_destroy(mddev);
5977                         fd = -1; /* make sure to put the file */
5978                 }
5979                 mddev->pers->quiesce(mddev, 0);
5980         }
5981         if (fd < 0) {
5982                 if (mddev->bitmap_info.file)
5983                         fput(mddev->bitmap_info.file);
5984                 mddev->bitmap_info.file = NULL;
5985         }
5986
5987         return err;
5988 }
5989
5990 /*
5991  * set_array_info is used two different ways
5992  * The original usage is when creating a new array.
5993  * In this usage, raid_disks is > 0 and it together with
5994  *  level, size, not_persistent,layout,chunksize determine the
5995  *  shape of the array.
5996  *  This will always create an array with a type-0.90.0 superblock.
5997  * The newer usage is when assembling an array.
5998  *  In this case raid_disks will be 0, and the major_version field is
5999  *  use to determine which style super-blocks are to be found on the devices.
6000  *  The minor and patch _version numbers are also kept incase the
6001  *  super_block handler wishes to interpret them.
6002  */
6003 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6004 {
6005
6006         if (info->raid_disks == 0) {
6007                 /* just setting version number for superblock loading */
6008                 if (info->major_version < 0 ||
6009                     info->major_version >= ARRAY_SIZE(super_types) ||
6010                     super_types[info->major_version].name == NULL) {
6011                         /* maybe try to auto-load a module? */
6012                         printk(KERN_INFO
6013                                 "md: superblock version %d not known\n",
6014                                 info->major_version);
6015                         return -EINVAL;
6016                 }
6017                 mddev->major_version = info->major_version;
6018                 mddev->minor_version = info->minor_version;
6019                 mddev->patch_version = info->patch_version;
6020                 mddev->persistent = !info->not_persistent;
6021                 /* ensure mddev_put doesn't delete this now that there
6022                  * is some minimal configuration.
6023                  */
6024                 mddev->ctime         = get_seconds();
6025                 return 0;
6026         }
6027         mddev->major_version = MD_MAJOR_VERSION;
6028         mddev->minor_version = MD_MINOR_VERSION;
6029         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6030         mddev->ctime         = get_seconds();
6031
6032         mddev->level         = info->level;
6033         mddev->clevel[0]     = 0;
6034         mddev->dev_sectors   = 2 * (sector_t)info->size;
6035         mddev->raid_disks    = info->raid_disks;
6036         /* don't set md_minor, it is determined by which /dev/md* was
6037          * openned
6038          */
6039         if (info->state & (1<<MD_SB_CLEAN))
6040                 mddev->recovery_cp = MaxSector;
6041         else
6042                 mddev->recovery_cp = 0;
6043         mddev->persistent    = ! info->not_persistent;
6044         mddev->external      = 0;
6045
6046         mddev->layout        = info->layout;
6047         mddev->chunk_sectors = info->chunk_size >> 9;
6048
6049         mddev->max_disks     = MD_SB_DISKS;
6050
6051         if (mddev->persistent)
6052                 mddev->flags         = 0;
6053         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6054
6055         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6056         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6057         mddev->bitmap_info.offset = 0;
6058
6059         mddev->reshape_position = MaxSector;
6060
6061         /*
6062          * Generate a 128 bit UUID
6063          */
6064         get_random_bytes(mddev->uuid, 16);
6065
6066         mddev->new_level = mddev->level;
6067         mddev->new_chunk_sectors = mddev->chunk_sectors;
6068         mddev->new_layout = mddev->layout;
6069         mddev->delta_disks = 0;
6070         mddev->reshape_backwards = 0;
6071
6072         return 0;
6073 }
6074
6075 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6076 {
6077         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6078
6079         if (mddev->external_size)
6080                 return;
6081
6082         mddev->array_sectors = array_sectors;
6083 }
6084 EXPORT_SYMBOL(md_set_array_sectors);
6085
6086 static int update_size(struct mddev *mddev, sector_t num_sectors)
6087 {
6088         struct md_rdev *rdev;
6089         int rv;
6090         int fit = (num_sectors == 0);
6091
6092         if (mddev->pers->resize == NULL)
6093                 return -EINVAL;
6094         /* The "num_sectors" is the number of sectors of each device that
6095          * is used.  This can only make sense for arrays with redundancy.
6096          * linear and raid0 always use whatever space is available. We can only
6097          * consider changing this number if no resync or reconstruction is
6098          * happening, and if the new size is acceptable. It must fit before the
6099          * sb_start or, if that is <data_offset, it must fit before the size
6100          * of each device.  If num_sectors is zero, we find the largest size
6101          * that fits.
6102          */
6103         if (mddev->sync_thread)
6104                 return -EBUSY;
6105         if (mddev->ro)
6106                 return -EROFS;
6107
6108         rdev_for_each(rdev, mddev) {
6109                 sector_t avail = rdev->sectors;
6110
6111                 if (fit && (num_sectors == 0 || num_sectors > avail))
6112                         num_sectors = avail;
6113                 if (avail < num_sectors)
6114                         return -ENOSPC;
6115         }
6116         rv = mddev->pers->resize(mddev, num_sectors);
6117         if (!rv)
6118                 revalidate_disk(mddev->gendisk);
6119         return rv;
6120 }
6121
6122 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6123 {
6124         int rv;
6125         struct md_rdev *rdev;
6126         /* change the number of raid disks */
6127         if (mddev->pers->check_reshape == NULL)
6128                 return -EINVAL;
6129         if (mddev->ro)
6130                 return -EROFS;
6131         if (raid_disks <= 0 ||
6132             (mddev->max_disks && raid_disks >= mddev->max_disks))
6133                 return -EINVAL;
6134         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6135                 return -EBUSY;
6136
6137         rdev_for_each(rdev, mddev) {
6138                 if (mddev->raid_disks < raid_disks &&
6139                     rdev->data_offset < rdev->new_data_offset)
6140                         return -EINVAL;
6141                 if (mddev->raid_disks > raid_disks &&
6142                     rdev->data_offset > rdev->new_data_offset)
6143                         return -EINVAL;
6144         }
6145
6146         mddev->delta_disks = raid_disks - mddev->raid_disks;
6147         if (mddev->delta_disks < 0)
6148                 mddev->reshape_backwards = 1;
6149         else if (mddev->delta_disks > 0)
6150                 mddev->reshape_backwards = 0;
6151
6152         rv = mddev->pers->check_reshape(mddev);
6153         if (rv < 0) {
6154                 mddev->delta_disks = 0;
6155                 mddev->reshape_backwards = 0;
6156         }
6157         return rv;
6158 }
6159
6160 /*
6161  * update_array_info is used to change the configuration of an
6162  * on-line array.
6163  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6164  * fields in the info are checked against the array.
6165  * Any differences that cannot be handled will cause an error.
6166  * Normally, only one change can be managed at a time.
6167  */
6168 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6169 {
6170         int rv = 0;
6171         int cnt = 0;
6172         int state = 0;
6173
6174         /* calculate expected state,ignoring low bits */
6175         if (mddev->bitmap && mddev->bitmap_info.offset)
6176                 state |= (1 << MD_SB_BITMAP_PRESENT);
6177
6178         if (mddev->major_version != info->major_version ||
6179             mddev->minor_version != info->minor_version ||
6180 /*          mddev->patch_version != info->patch_version || */
6181             mddev->ctime         != info->ctime         ||
6182             mddev->level         != info->level         ||
6183 /*          mddev->layout        != info->layout        || */
6184             !mddev->persistent   != info->not_persistent||
6185             mddev->chunk_sectors != info->chunk_size >> 9 ||
6186             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6187             ((state^info->state) & 0xfffffe00)
6188                 )
6189                 return -EINVAL;
6190         /* Check there is only one change */
6191         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6192                 cnt++;
6193         if (mddev->raid_disks != info->raid_disks)
6194                 cnt++;
6195         if (mddev->layout != info->layout)
6196                 cnt++;
6197         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6198                 cnt++;
6199         if (cnt == 0)
6200                 return 0;
6201         if (cnt > 1)
6202                 return -EINVAL;
6203
6204         if (mddev->layout != info->layout) {
6205                 /* Change layout
6206                  * we don't need to do anything at the md level, the
6207                  * personality will take care of it all.
6208                  */
6209                 if (mddev->pers->check_reshape == NULL)
6210                         return -EINVAL;
6211                 else {
6212                         mddev->new_layout = info->layout;
6213                         rv = mddev->pers->check_reshape(mddev);
6214                         if (rv)
6215                                 mddev->new_layout = mddev->layout;
6216                         return rv;
6217                 }
6218         }
6219         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6220                 rv = update_size(mddev, (sector_t)info->size * 2);
6221
6222         if (mddev->raid_disks    != info->raid_disks)
6223                 rv = update_raid_disks(mddev, info->raid_disks);
6224
6225         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6226                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6227                         return -EINVAL;
6228                 if (mddev->recovery || mddev->sync_thread)
6229                         return -EBUSY;
6230                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6231                         /* add the bitmap */
6232                         if (mddev->bitmap)
6233                                 return -EEXIST;
6234                         if (mddev->bitmap_info.default_offset == 0)
6235                                 return -EINVAL;
6236                         mddev->bitmap_info.offset =
6237                                 mddev->bitmap_info.default_offset;
6238                         mddev->bitmap_info.space =
6239                                 mddev->bitmap_info.default_space;
6240                         mddev->pers->quiesce(mddev, 1);
6241                         rv = bitmap_create(mddev);
6242                         if (!rv)
6243                                 rv = bitmap_load(mddev);
6244                         if (rv)
6245                                 bitmap_destroy(mddev);
6246                         mddev->pers->quiesce(mddev, 0);
6247                 } else {
6248                         /* remove the bitmap */
6249                         if (!mddev->bitmap)
6250                                 return -ENOENT;
6251                         if (mddev->bitmap->storage.file)
6252                                 return -EINVAL;
6253                         mddev->pers->quiesce(mddev, 1);
6254                         bitmap_destroy(mddev);
6255                         mddev->pers->quiesce(mddev, 0);
6256                         mddev->bitmap_info.offset = 0;
6257                 }
6258         }
6259         md_update_sb(mddev, 1);
6260         return rv;
6261 }
6262
6263 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6264 {
6265         struct md_rdev *rdev;
6266         int err = 0;
6267
6268         if (mddev->pers == NULL)
6269                 return -ENODEV;
6270
6271         rcu_read_lock();
6272         rdev = find_rdev_rcu(mddev, dev);
6273         if (!rdev)
6274                 err =  -ENODEV;
6275         else {
6276                 md_error(mddev, rdev);
6277                 if (!test_bit(Faulty, &rdev->flags))
6278                         err = -EBUSY;
6279         }
6280         rcu_read_unlock();
6281         return err;
6282 }
6283
6284 /*
6285  * We have a problem here : there is no easy way to give a CHS
6286  * virtual geometry. We currently pretend that we have a 2 heads
6287  * 4 sectors (with a BIG number of cylinders...). This drives
6288  * dosfs just mad... ;-)
6289  */
6290 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6291 {
6292         struct mddev *mddev = bdev->bd_disk->private_data;
6293
6294         geo->heads = 2;
6295         geo->sectors = 4;
6296         geo->cylinders = mddev->array_sectors / 8;
6297         return 0;
6298 }
6299
6300 static inline bool md_ioctl_valid(unsigned int cmd)
6301 {
6302         switch (cmd) {
6303         case ADD_NEW_DISK:
6304         case BLKROSET:
6305         case GET_ARRAY_INFO:
6306         case GET_BITMAP_FILE:
6307         case GET_DISK_INFO:
6308         case HOT_ADD_DISK:
6309         case HOT_REMOVE_DISK:
6310         case PRINT_RAID_DEBUG:
6311         case RAID_AUTORUN:
6312         case RAID_VERSION:
6313         case RESTART_ARRAY_RW:
6314         case RUN_ARRAY:
6315         case SET_ARRAY_INFO:
6316         case SET_BITMAP_FILE:
6317         case SET_DISK_FAULTY:
6318         case STOP_ARRAY:
6319         case STOP_ARRAY_RO:
6320                 return true;
6321         default:
6322                 return false;
6323         }
6324 }
6325
6326 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6327                         unsigned int cmd, unsigned long arg)
6328 {
6329         int err = 0;
6330         void __user *argp = (void __user *)arg;
6331         struct mddev *mddev = NULL;
6332         int ro;
6333
6334         if (!md_ioctl_valid(cmd))
6335                 return -ENOTTY;
6336
6337         switch (cmd) {
6338         case RAID_VERSION:
6339         case GET_ARRAY_INFO:
6340         case GET_DISK_INFO:
6341                 break;
6342         default:
6343                 if (!capable(CAP_SYS_ADMIN))
6344                         return -EACCES;
6345         }
6346
6347         /*
6348          * Commands dealing with the RAID driver but not any
6349          * particular array:
6350          */
6351         switch (cmd) {
6352         case RAID_VERSION:
6353                 err = get_version(argp);
6354                 goto done;
6355
6356         case PRINT_RAID_DEBUG:
6357                 err = 0;
6358                 md_print_devices();
6359                 goto done;
6360
6361 #ifndef MODULE
6362         case RAID_AUTORUN:
6363                 err = 0;
6364                 autostart_arrays(arg);
6365                 goto done;
6366 #endif
6367         default:;
6368         }
6369
6370         /*
6371          * Commands creating/starting a new array:
6372          */
6373
6374         mddev = bdev->bd_disk->private_data;
6375
6376         if (!mddev) {
6377                 BUG();
6378                 goto abort;
6379         }
6380
6381         /* Some actions do not requires the mutex */
6382         switch (cmd) {
6383         case GET_ARRAY_INFO:
6384                 if (!mddev->raid_disks && !mddev->external)
6385                         err = -ENODEV;
6386                 else
6387                         err = get_array_info(mddev, argp);
6388                 goto abort;
6389
6390         case GET_DISK_INFO:
6391                 if (!mddev->raid_disks && !mddev->external)
6392                         err = -ENODEV;
6393                 else
6394                         err = get_disk_info(mddev, argp);
6395                 goto abort;
6396
6397         case SET_DISK_FAULTY:
6398                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6399                 goto abort;
6400         }
6401
6402         if (cmd == ADD_NEW_DISK)
6403                 /* need to ensure md_delayed_delete() has completed */
6404                 flush_workqueue(md_misc_wq);
6405
6406         if (cmd == HOT_REMOVE_DISK)
6407                 /* need to ensure recovery thread has run */
6408                 wait_event_interruptible_timeout(mddev->sb_wait,
6409                                                  !test_bit(MD_RECOVERY_NEEDED,
6410                                                            &mddev->flags),
6411                                                  msecs_to_jiffies(5000));
6412         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6413                 /* Need to flush page cache, and ensure no-one else opens
6414                  * and writes
6415                  */
6416                 mutex_lock(&mddev->open_mutex);
6417                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6418                         mutex_unlock(&mddev->open_mutex);
6419                         err = -EBUSY;
6420                         goto abort;
6421                 }
6422                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6423                 mutex_unlock(&mddev->open_mutex);
6424                 sync_blockdev(bdev);
6425         }
6426         err = mddev_lock(mddev);
6427         if (err) {
6428                 printk(KERN_INFO
6429                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6430                         err, cmd);
6431                 goto abort;
6432         }
6433
6434         if (cmd == SET_ARRAY_INFO) {
6435                 mdu_array_info_t info;
6436                 if (!arg)
6437                         memset(&info, 0, sizeof(info));
6438                 else if (copy_from_user(&info, argp, sizeof(info))) {
6439                         err = -EFAULT;
6440                         goto abort_unlock;
6441                 }
6442                 if (mddev->pers) {
6443                         err = update_array_info(mddev, &info);
6444                         if (err) {
6445                                 printk(KERN_WARNING "md: couldn't update"
6446                                        " array info. %d\n", err);
6447                                 goto abort_unlock;
6448                         }
6449                         goto done_unlock;
6450                 }
6451                 if (!list_empty(&mddev->disks)) {
6452                         printk(KERN_WARNING
6453                                "md: array %s already has disks!\n",
6454                                mdname(mddev));
6455                         err = -EBUSY;
6456                         goto abort_unlock;
6457                 }
6458                 if (mddev->raid_disks) {
6459                         printk(KERN_WARNING
6460                                "md: array %s already initialised!\n",
6461                                mdname(mddev));
6462                         err = -EBUSY;
6463                         goto abort_unlock;
6464                 }
6465                 err = set_array_info(mddev, &info);
6466                 if (err) {
6467                         printk(KERN_WARNING "md: couldn't set"
6468                                " array info. %d\n", err);
6469                         goto abort_unlock;
6470                 }
6471                 goto done_unlock;
6472         }
6473
6474         /*
6475          * Commands querying/configuring an existing array:
6476          */
6477         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6478          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6479         if ((!mddev->raid_disks && !mddev->external)
6480             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6481             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6482             && cmd != GET_BITMAP_FILE) {
6483                 err = -ENODEV;
6484                 goto abort_unlock;
6485         }
6486
6487         /*
6488          * Commands even a read-only array can execute:
6489          */
6490         switch (cmd) {
6491         case GET_BITMAP_FILE:
6492                 err = get_bitmap_file(mddev, argp);
6493                 goto done_unlock;
6494
6495         case RESTART_ARRAY_RW:
6496                 err = restart_array(mddev);
6497                 goto done_unlock;
6498
6499         case STOP_ARRAY:
6500                 err = do_md_stop(mddev, 0, bdev);
6501                 goto done_unlock;
6502
6503         case STOP_ARRAY_RO:
6504                 err = md_set_readonly(mddev, bdev);
6505                 goto done_unlock;
6506
6507         case HOT_REMOVE_DISK:
6508                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6509                 goto done_unlock;
6510
6511         case ADD_NEW_DISK:
6512                 /* We can support ADD_NEW_DISK on read-only arrays
6513                  * on if we are re-adding a preexisting device.
6514                  * So require mddev->pers and MD_DISK_SYNC.
6515                  */
6516                 if (mddev->pers) {
6517                         mdu_disk_info_t info;
6518                         if (copy_from_user(&info, argp, sizeof(info)))
6519                                 err = -EFAULT;
6520                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6521                                 /* Need to clear read-only for this */
6522                                 break;
6523                         else
6524                                 err = add_new_disk(mddev, &info);
6525                         goto done_unlock;
6526                 }
6527                 break;
6528
6529         case BLKROSET:
6530                 if (get_user(ro, (int __user *)(arg))) {
6531                         err = -EFAULT;
6532                         goto done_unlock;
6533                 }
6534                 err = -EINVAL;
6535
6536                 /* if the bdev is going readonly the value of mddev->ro
6537                  * does not matter, no writes are coming
6538                  */
6539                 if (ro)
6540                         goto done_unlock;
6541
6542                 /* are we are already prepared for writes? */
6543                 if (mddev->ro != 1)
6544                         goto done_unlock;
6545
6546                 /* transitioning to readauto need only happen for
6547                  * arrays that call md_write_start
6548                  */
6549                 if (mddev->pers) {
6550                         err = restart_array(mddev);
6551                         if (err == 0) {
6552                                 mddev->ro = 2;
6553                                 set_disk_ro(mddev->gendisk, 0);
6554                         }
6555                 }
6556                 goto done_unlock;
6557         }
6558
6559         /*
6560          * The remaining ioctls are changing the state of the
6561          * superblock, so we do not allow them on read-only arrays.
6562          * However non-MD ioctls (e.g. get-size) will still come through
6563          * here and hit the 'default' below, so only disallow
6564          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6565          */
6566         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6567                 if (mddev->ro == 2) {
6568                         mddev->ro = 0;
6569                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6570                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6571                         /* mddev_unlock will wake thread */
6572                         /* If a device failed while we were read-only, we
6573                          * need to make sure the metadata is updated now.
6574                          */
6575                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6576                                 mddev_unlock(mddev);
6577                                 wait_event(mddev->sb_wait,
6578                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6579                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6580                                 mddev_lock_nointr(mddev);
6581                         }
6582                 } else {
6583                         err = -EROFS;
6584                         goto abort_unlock;
6585                 }
6586         }
6587
6588         switch (cmd) {
6589         case ADD_NEW_DISK:
6590         {
6591                 mdu_disk_info_t info;
6592                 if (copy_from_user(&info, argp, sizeof(info)))
6593                         err = -EFAULT;
6594                 else
6595                         err = add_new_disk(mddev, &info);
6596                 goto done_unlock;
6597         }
6598
6599         case HOT_ADD_DISK:
6600                 err = hot_add_disk(mddev, new_decode_dev(arg));
6601                 goto done_unlock;
6602
6603         case RUN_ARRAY:
6604                 err = do_md_run(mddev);
6605                 goto done_unlock;
6606
6607         case SET_BITMAP_FILE:
6608                 err = set_bitmap_file(mddev, (int)arg);
6609                 goto done_unlock;
6610
6611         default:
6612                 err = -EINVAL;
6613                 goto abort_unlock;
6614         }
6615
6616 done_unlock:
6617 abort_unlock:
6618         if (mddev->hold_active == UNTIL_IOCTL &&
6619             err != -EINVAL)
6620                 mddev->hold_active = 0;
6621         mddev_unlock(mddev);
6622
6623         return err;
6624 done:
6625         if (err)
6626                 MD_BUG();
6627 abort:
6628         return err;
6629 }
6630 #ifdef CONFIG_COMPAT
6631 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6632                     unsigned int cmd, unsigned long arg)
6633 {
6634         switch (cmd) {
6635         case HOT_REMOVE_DISK:
6636         case HOT_ADD_DISK:
6637         case SET_DISK_FAULTY:
6638         case SET_BITMAP_FILE:
6639                 /* These take in integer arg, do not convert */
6640                 break;
6641         default:
6642                 arg = (unsigned long)compat_ptr(arg);
6643                 break;
6644         }
6645
6646         return md_ioctl(bdev, mode, cmd, arg);
6647 }
6648 #endif /* CONFIG_COMPAT */
6649
6650 static int md_open(struct block_device *bdev, fmode_t mode)
6651 {
6652         /*
6653          * Succeed if we can lock the mddev, which confirms that
6654          * it isn't being stopped right now.
6655          */
6656         struct mddev *mddev = mddev_find(bdev->bd_dev);
6657         int err;
6658
6659         if (!mddev)
6660                 return -ENODEV;
6661
6662         if (mddev->gendisk != bdev->bd_disk) {
6663                 /* we are racing with mddev_put which is discarding this
6664                  * bd_disk.
6665                  */
6666                 mddev_put(mddev);
6667                 /* Wait until bdev->bd_disk is definitely gone */
6668                 flush_workqueue(md_misc_wq);
6669                 /* Then retry the open from the top */
6670                 return -ERESTARTSYS;
6671         }
6672         BUG_ON(mddev != bdev->bd_disk->private_data);
6673
6674         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6675                 goto out;
6676
6677         err = 0;
6678         atomic_inc(&mddev->openers);
6679         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6680         mutex_unlock(&mddev->open_mutex);
6681
6682         check_disk_change(bdev);
6683  out:
6684         return err;
6685 }
6686
6687 static void md_release(struct gendisk *disk, fmode_t mode)
6688 {
6689         struct mddev *mddev = disk->private_data;
6690
6691         BUG_ON(!mddev);
6692         atomic_dec(&mddev->openers);
6693         mddev_put(mddev);
6694 }
6695
6696 static int md_media_changed(struct gendisk *disk)
6697 {
6698         struct mddev *mddev = disk->private_data;
6699
6700         return mddev->changed;
6701 }
6702
6703 static int md_revalidate(struct gendisk *disk)
6704 {
6705         struct mddev *mddev = disk->private_data;
6706
6707         mddev->changed = 0;
6708         return 0;
6709 }
6710 static const struct block_device_operations md_fops =
6711 {
6712         .owner          = THIS_MODULE,
6713         .open           = md_open,
6714         .release        = md_release,
6715         .ioctl          = md_ioctl,
6716 #ifdef CONFIG_COMPAT
6717         .compat_ioctl   = md_compat_ioctl,
6718 #endif
6719         .getgeo         = md_getgeo,
6720         .media_changed  = md_media_changed,
6721         .revalidate_disk= md_revalidate,
6722 };
6723
6724 static int md_thread(void *arg)
6725 {
6726         struct md_thread *thread = arg;
6727
6728         /*
6729          * md_thread is a 'system-thread', it's priority should be very
6730          * high. We avoid resource deadlocks individually in each
6731          * raid personality. (RAID5 does preallocation) We also use RR and
6732          * the very same RT priority as kswapd, thus we will never get
6733          * into a priority inversion deadlock.
6734          *
6735          * we definitely have to have equal or higher priority than
6736          * bdflush, otherwise bdflush will deadlock if there are too
6737          * many dirty RAID5 blocks.
6738          */
6739
6740         allow_signal(SIGKILL);
6741         while (!kthread_should_stop()) {
6742
6743                 /* We need to wait INTERRUPTIBLE so that
6744                  * we don't add to the load-average.
6745                  * That means we need to be sure no signals are
6746                  * pending
6747                  */
6748                 if (signal_pending(current))
6749                         flush_signals(current);
6750
6751                 wait_event_interruptible_timeout
6752                         (thread->wqueue,
6753                          test_bit(THREAD_WAKEUP, &thread->flags)
6754                          || kthread_should_stop(),
6755                          thread->timeout);
6756
6757                 clear_bit(THREAD_WAKEUP, &thread->flags);
6758                 if (!kthread_should_stop())
6759                         thread->run(thread);
6760         }
6761
6762         return 0;
6763 }
6764
6765 void md_wakeup_thread(struct md_thread *thread)
6766 {
6767         if (thread) {
6768                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6769                 set_bit(THREAD_WAKEUP, &thread->flags);
6770                 wake_up(&thread->wqueue);
6771         }
6772 }
6773
6774 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6775                 struct mddev *mddev, const char *name)
6776 {
6777         struct md_thread *thread;
6778
6779         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6780         if (!thread)
6781                 return NULL;
6782
6783         init_waitqueue_head(&thread->wqueue);
6784
6785         thread->run = run;
6786         thread->mddev = mddev;
6787         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6788         thread->tsk = kthread_run(md_thread, thread,
6789                                   "%s_%s",
6790                                   mdname(thread->mddev),
6791                                   name);
6792         if (IS_ERR(thread->tsk)) {
6793                 kfree(thread);
6794                 return NULL;
6795         }
6796         return thread;
6797 }
6798
6799 void md_unregister_thread(struct md_thread **threadp)
6800 {
6801         struct md_thread *thread = *threadp;
6802         if (!thread)
6803                 return;
6804         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6805         /* Locking ensures that mddev_unlock does not wake_up a
6806          * non-existent thread
6807          */
6808         spin_lock(&pers_lock);
6809         *threadp = NULL;
6810         spin_unlock(&pers_lock);
6811
6812         kthread_stop(thread->tsk);
6813         kfree(thread);
6814 }
6815
6816 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6817 {
6818         if (!mddev) {
6819                 MD_BUG();
6820                 return;
6821         }
6822
6823         if (!rdev || test_bit(Faulty, &rdev->flags))
6824                 return;
6825
6826         if (!mddev->pers || !mddev->pers->error_handler)
6827                 return;
6828         mddev->pers->error_handler(mddev,rdev);
6829         if (mddev->degraded)
6830                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6831         sysfs_notify_dirent_safe(rdev->sysfs_state);
6832         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6833         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6834         md_wakeup_thread(mddev->thread);
6835         if (mddev->event_work.func)
6836                 queue_work(md_misc_wq, &mddev->event_work);
6837         md_new_event_inintr(mddev);
6838 }
6839
6840 /* seq_file implementation /proc/mdstat */
6841
6842 static void status_unused(struct seq_file *seq)
6843 {
6844         int i = 0;
6845         struct md_rdev *rdev;
6846
6847         seq_printf(seq, "unused devices: ");
6848
6849         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6850                 char b[BDEVNAME_SIZE];
6851                 i++;
6852                 seq_printf(seq, "%s ",
6853                               bdevname(rdev->bdev,b));
6854         }
6855         if (!i)
6856                 seq_printf(seq, "<none>");
6857
6858         seq_printf(seq, "\n");
6859 }
6860
6861 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6862 {
6863         sector_t max_sectors, resync, res;
6864         unsigned long dt, db;
6865         sector_t rt;
6866         int scale;
6867         unsigned int per_milli;
6868
6869         if (mddev->curr_resync <= 3)
6870                 resync = 0;
6871         else
6872                 resync = mddev->curr_resync
6873                         - atomic_read(&mddev->recovery_active);
6874
6875         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6876             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6877                 max_sectors = mddev->resync_max_sectors;
6878         else
6879                 max_sectors = mddev->dev_sectors;
6880
6881         /*
6882          * Should not happen.
6883          */
6884         if (!max_sectors) {
6885                 MD_BUG();
6886                 return;
6887         }
6888         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6889          * in a sector_t, and (max_sectors>>scale) will fit in a
6890          * u32, as those are the requirements for sector_div.
6891          * Thus 'scale' must be at least 10
6892          */
6893         scale = 10;
6894         if (sizeof(sector_t) > sizeof(unsigned long)) {
6895                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6896                         scale++;
6897         }
6898         res = (resync>>scale)*1000;
6899         sector_div(res, (u32)((max_sectors>>scale)+1));
6900
6901         per_milli = res;
6902         {
6903                 int i, x = per_milli/50, y = 20-x;
6904                 seq_printf(seq, "[");
6905                 for (i = 0; i < x; i++)
6906                         seq_printf(seq, "=");
6907                 seq_printf(seq, ">");
6908                 for (i = 0; i < y; i++)
6909                         seq_printf(seq, ".");
6910                 seq_printf(seq, "] ");
6911         }
6912         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6913                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6914                     "reshape" :
6915                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6916                      "check" :
6917                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6918                       "resync" : "recovery"))),
6919                    per_milli/10, per_milli % 10,
6920                    (unsigned long long) resync/2,
6921                    (unsigned long long) max_sectors/2);
6922
6923         /*
6924          * dt: time from mark until now
6925          * db: blocks written from mark until now
6926          * rt: remaining time
6927          *
6928          * rt is a sector_t, so could be 32bit or 64bit.
6929          * So we divide before multiply in case it is 32bit and close
6930          * to the limit.
6931          * We scale the divisor (db) by 32 to avoid losing precision
6932          * near the end of resync when the number of remaining sectors
6933          * is close to 'db'.
6934          * We then divide rt by 32 after multiplying by db to compensate.
6935          * The '+1' avoids division by zero if db is very small.
6936          */
6937         dt = ((jiffies - mddev->resync_mark) / HZ);
6938         if (!dt) dt++;
6939         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6940                 - mddev->resync_mark_cnt;
6941
6942         rt = max_sectors - resync;    /* number of remaining sectors */
6943         sector_div(rt, db/32+1);
6944         rt *= dt;
6945         rt >>= 5;
6946
6947         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6948                    ((unsigned long)rt % 60)/6);
6949
6950         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6951 }
6952
6953 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6954 {
6955         struct list_head *tmp;
6956         loff_t l = *pos;
6957         struct mddev *mddev;
6958
6959         if (l >= 0x10000)
6960                 return NULL;
6961         if (!l--)
6962                 /* header */
6963                 return (void*)1;
6964
6965         spin_lock(&all_mddevs_lock);
6966         list_for_each(tmp,&all_mddevs)
6967                 if (!l--) {
6968                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6969                         mddev_get(mddev);
6970                         spin_unlock(&all_mddevs_lock);
6971                         return mddev;
6972                 }
6973         spin_unlock(&all_mddevs_lock);
6974         if (!l--)
6975                 return (void*)2;/* tail */
6976         return NULL;
6977 }
6978
6979 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6980 {
6981         struct list_head *tmp;
6982         struct mddev *next_mddev, *mddev = v;
6983
6984         ++*pos;
6985         if (v == (void*)2)
6986                 return NULL;
6987
6988         spin_lock(&all_mddevs_lock);
6989         if (v == (void*)1)
6990                 tmp = all_mddevs.next;
6991         else
6992                 tmp = mddev->all_mddevs.next;
6993         if (tmp != &all_mddevs)
6994                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6995         else {
6996                 next_mddev = (void*)2;
6997                 *pos = 0x10000;
6998         }
6999         spin_unlock(&all_mddevs_lock);
7000
7001         if (v != (void*)1)
7002                 mddev_put(mddev);
7003         return next_mddev;
7004
7005 }
7006
7007 static void md_seq_stop(struct seq_file *seq, void *v)
7008 {
7009         struct mddev *mddev = v;
7010
7011         if (mddev && v != (void*)1 && v != (void*)2)
7012                 mddev_put(mddev);
7013 }
7014
7015 static int md_seq_show(struct seq_file *seq, void *v)
7016 {
7017         struct mddev *mddev = v;
7018         sector_t sectors;
7019         struct md_rdev *rdev;
7020
7021         if (v == (void*)1) {
7022                 struct md_personality *pers;
7023                 seq_printf(seq, "Personalities : ");
7024                 spin_lock(&pers_lock);
7025                 list_for_each_entry(pers, &pers_list, list)
7026                         seq_printf(seq, "[%s] ", pers->name);
7027
7028                 spin_unlock(&pers_lock);
7029                 seq_printf(seq, "\n");
7030                 seq->poll_event = atomic_read(&md_event_count);
7031                 return 0;
7032         }
7033         if (v == (void*)2) {
7034                 status_unused(seq);
7035                 return 0;
7036         }
7037
7038         if (mddev_lock(mddev) < 0)
7039                 return -EINTR;
7040
7041         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7042                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7043                                                 mddev->pers ? "" : "in");
7044                 if (mddev->pers) {
7045                         if (mddev->ro==1)
7046                                 seq_printf(seq, " (read-only)");
7047                         if (mddev->ro==2)
7048                                 seq_printf(seq, " (auto-read-only)");
7049                         seq_printf(seq, " %s", mddev->pers->name);
7050                 }
7051
7052                 sectors = 0;
7053                 rdev_for_each(rdev, mddev) {
7054                         char b[BDEVNAME_SIZE];
7055                         seq_printf(seq, " %s[%d]",
7056                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7057                         if (test_bit(WriteMostly, &rdev->flags))
7058                                 seq_printf(seq, "(W)");
7059                         if (test_bit(Faulty, &rdev->flags)) {
7060                                 seq_printf(seq, "(F)");
7061                                 continue;
7062                         }
7063                         if (rdev->raid_disk < 0)
7064                                 seq_printf(seq, "(S)"); /* spare */
7065                         if (test_bit(Replacement, &rdev->flags))
7066                                 seq_printf(seq, "(R)");
7067                         sectors += rdev->sectors;
7068                 }
7069
7070                 if (!list_empty(&mddev->disks)) {
7071                         if (mddev->pers)
7072                                 seq_printf(seq, "\n      %llu blocks",
7073                                            (unsigned long long)
7074                                            mddev->array_sectors / 2);
7075                         else
7076                                 seq_printf(seq, "\n      %llu blocks",
7077                                            (unsigned long long)sectors / 2);
7078                 }
7079                 if (mddev->persistent) {
7080                         if (mddev->major_version != 0 ||
7081                             mddev->minor_version != 90) {
7082                                 seq_printf(seq," super %d.%d",
7083                                            mddev->major_version,
7084                                            mddev->minor_version);
7085                         }
7086                 } else if (mddev->external)
7087                         seq_printf(seq, " super external:%s",
7088                                    mddev->metadata_type);
7089                 else
7090                         seq_printf(seq, " super non-persistent");
7091
7092                 if (mddev->pers) {
7093                         mddev->pers->status(seq, mddev);
7094                         seq_printf(seq, "\n      ");
7095                         if (mddev->pers->sync_request) {
7096                                 if (mddev->curr_resync > 2) {
7097                                         status_resync(seq, mddev);
7098                                         seq_printf(seq, "\n      ");
7099                                 } else if (mddev->curr_resync >= 1)
7100                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7101                                 else if (mddev->recovery_cp < MaxSector)
7102                                         seq_printf(seq, "\tresync=PENDING\n      ");
7103                         }
7104                 } else
7105                         seq_printf(seq, "\n       ");
7106
7107                 bitmap_status(seq, mddev->bitmap);
7108
7109                 seq_printf(seq, "\n");
7110         }
7111         mddev_unlock(mddev);
7112
7113         return 0;
7114 }
7115
7116 static const struct seq_operations md_seq_ops = {
7117         .start  = md_seq_start,
7118         .next   = md_seq_next,
7119         .stop   = md_seq_stop,
7120         .show   = md_seq_show,
7121 };
7122
7123 static int md_seq_open(struct inode *inode, struct file *file)
7124 {
7125         struct seq_file *seq;
7126         int error;
7127
7128         error = seq_open(file, &md_seq_ops);
7129         if (error)
7130                 return error;
7131
7132         seq = file->private_data;
7133         seq->poll_event = atomic_read(&md_event_count);
7134         return error;
7135 }
7136
7137 static int md_unloading;
7138 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7139 {
7140         struct seq_file *seq = filp->private_data;
7141         int mask;
7142
7143         if (md_unloading)
7144                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
7145         poll_wait(filp, &md_event_waiters, wait);
7146
7147         /* always allow read */
7148         mask = POLLIN | POLLRDNORM;
7149
7150         if (seq->poll_event != atomic_read(&md_event_count))
7151                 mask |= POLLERR | POLLPRI;
7152         return mask;
7153 }
7154
7155 static const struct file_operations md_seq_fops = {
7156         .owner          = THIS_MODULE,
7157         .open           = md_seq_open,
7158         .read           = seq_read,
7159         .llseek         = seq_lseek,
7160         .release        = seq_release_private,
7161         .poll           = mdstat_poll,
7162 };
7163
7164 int register_md_personality(struct md_personality *p)
7165 {
7166         printk(KERN_INFO "md: %s personality registered for level %d\n",
7167                                                 p->name, p->level);
7168         spin_lock(&pers_lock);
7169         list_add_tail(&p->list, &pers_list);
7170         spin_unlock(&pers_lock);
7171         return 0;
7172 }
7173
7174 int unregister_md_personality(struct md_personality *p)
7175 {
7176         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7177         spin_lock(&pers_lock);
7178         list_del_init(&p->list);
7179         spin_unlock(&pers_lock);
7180         return 0;
7181 }
7182
7183 static int is_mddev_idle(struct mddev *mddev, int init)
7184 {
7185         struct md_rdev *rdev;
7186         int idle;
7187         int curr_events;
7188
7189         idle = 1;
7190         rcu_read_lock();
7191         rdev_for_each_rcu(rdev, mddev) {
7192                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7193                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7194                               (int)part_stat_read(&disk->part0, sectors[1]) -
7195                               atomic_read(&disk->sync_io);
7196                 /* sync IO will cause sync_io to increase before the disk_stats
7197                  * as sync_io is counted when a request starts, and
7198                  * disk_stats is counted when it completes.
7199                  * So resync activity will cause curr_events to be smaller than
7200                  * when there was no such activity.
7201                  * non-sync IO will cause disk_stat to increase without
7202                  * increasing sync_io so curr_events will (eventually)
7203                  * be larger than it was before.  Once it becomes
7204                  * substantially larger, the test below will cause
7205                  * the array to appear non-idle, and resync will slow
7206                  * down.
7207                  * If there is a lot of outstanding resync activity when
7208                  * we set last_event to curr_events, then all that activity
7209                  * completing might cause the array to appear non-idle
7210                  * and resync will be slowed down even though there might
7211                  * not have been non-resync activity.  This will only
7212                  * happen once though.  'last_events' will soon reflect
7213                  * the state where there is little or no outstanding
7214                  * resync requests, and further resync activity will
7215                  * always make curr_events less than last_events.
7216                  *
7217                  */
7218                 if (init || curr_events - rdev->last_events > 64) {
7219                         rdev->last_events = curr_events;
7220                         idle = 0;
7221                 }
7222         }
7223         rcu_read_unlock();
7224         return idle;
7225 }
7226
7227 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7228 {
7229         /* another "blocks" (512byte) blocks have been synced */
7230         atomic_sub(blocks, &mddev->recovery_active);
7231         wake_up(&mddev->recovery_wait);
7232         if (!ok) {
7233                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7234                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7235                 md_wakeup_thread(mddev->thread);
7236                 // stop recovery, signal do_sync ....
7237         }
7238 }
7239
7240 /* md_write_start(mddev, bi)
7241  * If we need to update some array metadata (e.g. 'active' flag
7242  * in superblock) before writing, schedule a superblock update
7243  * and wait for it to complete.
7244  */
7245 void md_write_start(struct mddev *mddev, struct bio *bi)
7246 {
7247         int did_change = 0;
7248         if (bio_data_dir(bi) != WRITE)
7249                 return;
7250
7251         BUG_ON(mddev->ro == 1);
7252         if (mddev->ro == 2) {
7253                 /* need to switch to read/write */
7254                 mddev->ro = 0;
7255                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7256                 md_wakeup_thread(mddev->thread);
7257                 md_wakeup_thread(mddev->sync_thread);
7258                 did_change = 1;
7259         }
7260         atomic_inc(&mddev->writes_pending);
7261         if (mddev->safemode == 1)
7262                 mddev->safemode = 0;
7263         if (mddev->in_sync) {
7264                 spin_lock_irq(&mddev->write_lock);
7265                 if (mddev->in_sync) {
7266                         mddev->in_sync = 0;
7267                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7268                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7269                         md_wakeup_thread(mddev->thread);
7270                         did_change = 1;
7271                 }
7272                 spin_unlock_irq(&mddev->write_lock);
7273         }
7274         if (did_change)
7275                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7276         wait_event(mddev->sb_wait,
7277                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7278 }
7279
7280 void md_write_end(struct mddev *mddev)
7281 {
7282         if (atomic_dec_and_test(&mddev->writes_pending)) {
7283                 if (mddev->safemode == 2)
7284                         md_wakeup_thread(mddev->thread);
7285                 else if (mddev->safemode_delay)
7286                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7287         }
7288 }
7289
7290 /* md_allow_write(mddev)
7291  * Calling this ensures that the array is marked 'active' so that writes
7292  * may proceed without blocking.  It is important to call this before
7293  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7294  * Must be called with mddev_lock held.
7295  *
7296  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7297  * is dropped, so return -EAGAIN after notifying userspace.
7298  */
7299 int md_allow_write(struct mddev *mddev)
7300 {
7301         if (!mddev->pers)
7302                 return 0;
7303         if (mddev->ro)
7304                 return 0;
7305         if (!mddev->pers->sync_request)
7306                 return 0;
7307
7308         spin_lock_irq(&mddev->write_lock);
7309         if (mddev->in_sync) {
7310                 mddev->in_sync = 0;
7311                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7312                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7313                 if (mddev->safemode_delay &&
7314                     mddev->safemode == 0)
7315                         mddev->safemode = 1;
7316                 spin_unlock_irq(&mddev->write_lock);
7317                 md_update_sb(mddev, 0);
7318                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7319         } else
7320                 spin_unlock_irq(&mddev->write_lock);
7321
7322         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7323                 return -EAGAIN;
7324         else
7325                 return 0;
7326 }
7327 EXPORT_SYMBOL_GPL(md_allow_write);
7328
7329 #define SYNC_MARKS      10
7330 #define SYNC_MARK_STEP  (3*HZ)
7331 #define UPDATE_FREQUENCY (5*60*HZ)
7332 void md_do_sync(struct md_thread *thread)
7333 {
7334         struct mddev *mddev = thread->mddev;
7335         struct mddev *mddev2;
7336         unsigned int currspeed = 0,
7337                  window;
7338         sector_t max_sectors,j, io_sectors, recovery_done;
7339         unsigned long mark[SYNC_MARKS];
7340         unsigned long update_time;
7341         sector_t mark_cnt[SYNC_MARKS];
7342         int last_mark,m;
7343         struct list_head *tmp;
7344         sector_t last_check;
7345         int skipped = 0;
7346         struct md_rdev *rdev;
7347         char *desc, *action = NULL;
7348         struct blk_plug plug;
7349
7350         /* just incase thread restarts... */
7351         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7352                 return;
7353         if (mddev->ro) {/* never try to sync a read-only array */
7354                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7355                 return;
7356         }
7357
7358         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7359                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7360                         desc = "data-check";
7361                         action = "check";
7362                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7363                         desc = "requested-resync";
7364                         action = "repair";
7365                 } else
7366                         desc = "resync";
7367         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7368                 desc = "reshape";
7369         else
7370                 desc = "recovery";
7371
7372         mddev->last_sync_action = action ?: desc;
7373
7374         /* we overload curr_resync somewhat here.
7375          * 0 == not engaged in resync at all
7376          * 2 == checking that there is no conflict with another sync
7377          * 1 == like 2, but have yielded to allow conflicting resync to
7378          *              commense
7379          * other == active in resync - this many blocks
7380          *
7381          * Before starting a resync we must have set curr_resync to
7382          * 2, and then checked that every "conflicting" array has curr_resync
7383          * less than ours.  When we find one that is the same or higher
7384          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7385          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7386          * This will mean we have to start checking from the beginning again.
7387          *
7388          */
7389
7390         do {
7391                 mddev->curr_resync = 2;
7392
7393         try_again:
7394                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7395                         goto skip;
7396                 for_each_mddev(mddev2, tmp) {
7397                         if (mddev2 == mddev)
7398                                 continue;
7399                         if (!mddev->parallel_resync
7400                         &&  mddev2->curr_resync
7401                         &&  match_mddev_units(mddev, mddev2)) {
7402                                 DEFINE_WAIT(wq);
7403                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7404                                         /* arbitrarily yield */
7405                                         mddev->curr_resync = 1;
7406                                         wake_up(&resync_wait);
7407                                 }
7408                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7409                                         /* no need to wait here, we can wait the next
7410                                          * time 'round when curr_resync == 2
7411                                          */
7412                                         continue;
7413                                 /* We need to wait 'interruptible' so as not to
7414                                  * contribute to the load average, and not to
7415                                  * be caught by 'softlockup'
7416                                  */
7417                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7418                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7419                                     mddev2->curr_resync >= mddev->curr_resync) {
7420                                         printk(KERN_INFO "md: delaying %s of %s"
7421                                                " until %s has finished (they"
7422                                                " share one or more physical units)\n",
7423                                                desc, mdname(mddev), mdname(mddev2));
7424                                         mddev_put(mddev2);
7425                                         if (signal_pending(current))
7426                                                 flush_signals(current);
7427                                         schedule();
7428                                         finish_wait(&resync_wait, &wq);
7429                                         goto try_again;
7430                                 }
7431                                 finish_wait(&resync_wait, &wq);
7432                         }
7433                 }
7434         } while (mddev->curr_resync < 2);
7435
7436         j = 0;
7437         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7438                 /* resync follows the size requested by the personality,
7439                  * which defaults to physical size, but can be virtual size
7440                  */
7441                 max_sectors = mddev->resync_max_sectors;
7442                 atomic64_set(&mddev->resync_mismatches, 0);
7443                 /* we don't use the checkpoint if there's a bitmap */
7444                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7445                         j = mddev->resync_min;
7446                 else if (!mddev->bitmap)
7447                         j = mddev->recovery_cp;
7448
7449         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7450                 max_sectors = mddev->resync_max_sectors;
7451         else {
7452                 /* recovery follows the physical size of devices */
7453                 max_sectors = mddev->dev_sectors;
7454                 j = MaxSector;
7455                 rcu_read_lock();
7456                 rdev_for_each_rcu(rdev, mddev)
7457                         if (rdev->raid_disk >= 0 &&
7458                             !test_bit(Faulty, &rdev->flags) &&
7459                             !test_bit(In_sync, &rdev->flags) &&
7460                             rdev->recovery_offset < j)
7461                                 j = rdev->recovery_offset;
7462                 rcu_read_unlock();
7463
7464                 /* If there is a bitmap, we need to make sure all
7465                  * writes that started before we added a spare
7466                  * complete before we start doing a recovery.
7467                  * Otherwise the write might complete and (via
7468                  * bitmap_endwrite) set a bit in the bitmap after the
7469                  * recovery has checked that bit and skipped that
7470                  * region.
7471                  */
7472                 if (mddev->bitmap) {
7473                         mddev->pers->quiesce(mddev, 1);
7474                         mddev->pers->quiesce(mddev, 0);
7475                 }
7476         }
7477
7478         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7479         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7480                 " %d KB/sec/disk.\n", speed_min(mddev));
7481         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7482                "(but not more than %d KB/sec) for %s.\n",
7483                speed_max(mddev), desc);
7484
7485         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7486
7487         io_sectors = 0;
7488         for (m = 0; m < SYNC_MARKS; m++) {
7489                 mark[m] = jiffies;
7490                 mark_cnt[m] = io_sectors;
7491         }
7492         last_mark = 0;
7493         mddev->resync_mark = mark[last_mark];
7494         mddev->resync_mark_cnt = mark_cnt[last_mark];
7495
7496         /*
7497          * Tune reconstruction:
7498          */
7499         window = 32*(PAGE_SIZE/512);
7500         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7501                 window/2, (unsigned long long)max_sectors/2);
7502
7503         atomic_set(&mddev->recovery_active, 0);
7504         last_check = 0;
7505
7506         if (j>2) {
7507                 printk(KERN_INFO
7508                        "md: resuming %s of %s from checkpoint.\n",
7509                        desc, mdname(mddev));
7510                 mddev->curr_resync = j;
7511         } else
7512                 mddev->curr_resync = 3; /* no longer delayed */
7513         mddev->curr_resync_completed = j;
7514         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7515         md_new_event(mddev);
7516         update_time = jiffies;
7517
7518         blk_start_plug(&plug);
7519         while (j < max_sectors) {
7520                 sector_t sectors;
7521
7522                 skipped = 0;
7523
7524                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7525                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7526                       (mddev->curr_resync - mddev->curr_resync_completed)
7527                       > (max_sectors >> 4)) ||
7528                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7529                      (j - mddev->curr_resync_completed)*2
7530                      >= mddev->resync_max - mddev->curr_resync_completed
7531                             )) {
7532                         /* time to update curr_resync_completed */
7533                         wait_event(mddev->recovery_wait,
7534                                    atomic_read(&mddev->recovery_active) == 0);
7535                         mddev->curr_resync_completed = j;
7536                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7537                             j > mddev->recovery_cp)
7538                                 mddev->recovery_cp = j;
7539                         update_time = jiffies;
7540                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7541                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7542                 }
7543
7544                 while (j >= mddev->resync_max &&
7545                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7546                         /* As this condition is controlled by user-space,
7547                          * we can block indefinitely, so use '_interruptible'
7548                          * to avoid triggering warnings.
7549                          */
7550                         flush_signals(current); /* just in case */
7551                         wait_event_interruptible(mddev->recovery_wait,
7552                                                  mddev->resync_max > j
7553                                                  || test_bit(MD_RECOVERY_INTR,
7554                                                              &mddev->recovery));
7555                 }
7556
7557                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7558                         break;
7559
7560                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7561                                                   currspeed < speed_min(mddev));
7562                 if (sectors == 0) {
7563                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7564                         break;
7565                 }
7566
7567                 if (!skipped) { /* actual IO requested */
7568                         io_sectors += sectors;
7569                         atomic_add(sectors, &mddev->recovery_active);
7570                 }
7571
7572                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7573                         break;
7574
7575                 j += sectors;
7576                 if (j > 2)
7577                         mddev->curr_resync = j;
7578                 mddev->curr_mark_cnt = io_sectors;
7579                 if (last_check == 0)
7580                         /* this is the earliest that rebuild will be
7581                          * visible in /proc/mdstat
7582                          */
7583                         md_new_event(mddev);
7584
7585                 if (last_check + window > io_sectors || j == max_sectors)
7586                         continue;
7587
7588                 last_check = io_sectors;
7589         repeat:
7590                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7591                         /* step marks */
7592                         int next = (last_mark+1) % SYNC_MARKS;
7593
7594                         mddev->resync_mark = mark[next];
7595                         mddev->resync_mark_cnt = mark_cnt[next];
7596                         mark[next] = jiffies;
7597                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7598                         last_mark = next;
7599                 }
7600
7601                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7602                         break;
7603
7604                 /*
7605                  * this loop exits only if either when we are slower than
7606                  * the 'hard' speed limit, or the system was IO-idle for
7607                  * a jiffy.
7608                  * the system might be non-idle CPU-wise, but we only care
7609                  * about not overloading the IO subsystem. (things like an
7610                  * e2fsck being done on the RAID array should execute fast)
7611                  */
7612                 cond_resched();
7613
7614                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7615                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7616                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7617
7618                 if (currspeed > speed_min(mddev)) {
7619                         if ((currspeed > speed_max(mddev)) ||
7620                                         !is_mddev_idle(mddev, 0)) {
7621                                 msleep(500);
7622                                 goto repeat;
7623                         }
7624                 }
7625         }
7626         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7627                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7628                ? "interrupted" : "done");
7629         /*
7630          * this also signals 'finished resyncing' to md_stop
7631          */
7632         blk_finish_plug(&plug);
7633         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7634
7635         /* tell personality that we are finished */
7636         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7637
7638         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7639             mddev->curr_resync > 2) {
7640                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7641                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7642                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7643                                         printk(KERN_INFO
7644                                                "md: checkpointing %s of %s.\n",
7645                                                desc, mdname(mddev));
7646                                         if (test_bit(MD_RECOVERY_ERROR,
7647                                                 &mddev->recovery))
7648                                                 mddev->recovery_cp =
7649                                                         mddev->curr_resync_completed;
7650                                         else
7651                                                 mddev->recovery_cp =
7652                                                         mddev->curr_resync;
7653                                 }
7654                         } else
7655                                 mddev->recovery_cp = MaxSector;
7656                 } else {
7657                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7658                                 mddev->curr_resync = MaxSector;
7659                         rcu_read_lock();
7660                         rdev_for_each_rcu(rdev, mddev)
7661                                 if (rdev->raid_disk >= 0 &&
7662                                     mddev->delta_disks >= 0 &&
7663                                     !test_bit(Faulty, &rdev->flags) &&
7664                                     !test_bit(In_sync, &rdev->flags) &&
7665                                     rdev->recovery_offset < mddev->curr_resync)
7666                                         rdev->recovery_offset = mddev->curr_resync;
7667                         rcu_read_unlock();
7668                 }
7669         }
7670  skip:
7671         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7672
7673         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7674                 /* We completed so min/max setting can be forgotten if used. */
7675                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7676                         mddev->resync_min = 0;
7677                 mddev->resync_max = MaxSector;
7678         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7679                 mddev->resync_min = mddev->curr_resync_completed;
7680         mddev->curr_resync = 0;
7681         wake_up(&resync_wait);
7682         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7683         md_wakeup_thread(mddev->thread);
7684         return;
7685 }
7686 EXPORT_SYMBOL_GPL(md_do_sync);
7687
7688 static int remove_and_add_spares(struct mddev *mddev,
7689                                  struct md_rdev *this)
7690 {
7691         struct md_rdev *rdev;
7692         int spares = 0;
7693         int removed = 0;
7694
7695         rdev_for_each(rdev, mddev)
7696                 if ((this == NULL || rdev == this) &&
7697                     rdev->raid_disk >= 0 &&
7698                     !test_bit(Blocked, &rdev->flags) &&
7699                     (test_bit(Faulty, &rdev->flags) ||
7700                      ! test_bit(In_sync, &rdev->flags)) &&
7701                     atomic_read(&rdev->nr_pending)==0) {
7702                         if (mddev->pers->hot_remove_disk(
7703                                     mddev, rdev) == 0) {
7704                                 sysfs_unlink_rdev(mddev, rdev);
7705                                 rdev->raid_disk = -1;
7706                                 removed++;
7707                         }
7708                 }
7709         if (removed && mddev->kobj.sd)
7710                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7711
7712         if (this)
7713                 goto no_add;
7714
7715         rdev_for_each(rdev, mddev) {
7716                 if (rdev->raid_disk >= 0 &&
7717                     !test_bit(In_sync, &rdev->flags) &&
7718                     !test_bit(Faulty, &rdev->flags))
7719                         spares++;
7720                 if (rdev->raid_disk >= 0)
7721                         continue;
7722                 if (test_bit(Faulty, &rdev->flags))
7723                         continue;
7724                 if (mddev->ro &&
7725                     ! (rdev->saved_raid_disk >= 0 &&
7726                        !test_bit(Bitmap_sync, &rdev->flags)))
7727                         continue;
7728
7729                 if (rdev->saved_raid_disk < 0)
7730                         rdev->recovery_offset = 0;
7731                 if (mddev->pers->
7732                     hot_add_disk(mddev, rdev) == 0) {
7733                         if (sysfs_link_rdev(mddev, rdev))
7734                                 /* failure here is OK */;
7735                         spares++;
7736                         md_new_event(mddev);
7737                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7738                 }
7739         }
7740 no_add:
7741         if (removed)
7742                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7743         return spares;
7744 }
7745
7746 static void md_start_sync(struct work_struct *ws)
7747 {
7748         struct mddev *mddev = container_of(ws, struct mddev, del_work);
7749
7750         mddev->sync_thread = md_register_thread(md_do_sync,
7751                                                 mddev,
7752                                                 "resync");
7753         if (!mddev->sync_thread) {
7754                 printk(KERN_ERR "%s: could not start resync"
7755                        " thread...\n",
7756                        mdname(mddev));
7757                 /* leave the spares where they are, it shouldn't hurt */
7758                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7759                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7760                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7761                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7762                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7763                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7764                                        &mddev->recovery))
7765                         if (mddev->sysfs_action)
7766                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
7767         } else
7768                 md_wakeup_thread(mddev->sync_thread);
7769         sysfs_notify_dirent_safe(mddev->sysfs_action);
7770         md_new_event(mddev);
7771 }
7772
7773 /*
7774  * This routine is regularly called by all per-raid-array threads to
7775  * deal with generic issues like resync and super-block update.
7776  * Raid personalities that don't have a thread (linear/raid0) do not
7777  * need this as they never do any recovery or update the superblock.
7778  *
7779  * It does not do any resync itself, but rather "forks" off other threads
7780  * to do that as needed.
7781  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7782  * "->recovery" and create a thread at ->sync_thread.
7783  * When the thread finishes it sets MD_RECOVERY_DONE
7784  * and wakeups up this thread which will reap the thread and finish up.
7785  * This thread also removes any faulty devices (with nr_pending == 0).
7786  *
7787  * The overall approach is:
7788  *  1/ if the superblock needs updating, update it.
7789  *  2/ If a recovery thread is running, don't do anything else.
7790  *  3/ If recovery has finished, clean up, possibly marking spares active.
7791  *  4/ If there are any faulty devices, remove them.
7792  *  5/ If array is degraded, try to add spares devices
7793  *  6/ If array has spares or is not in-sync, start a resync thread.
7794  */
7795 void md_check_recovery(struct mddev *mddev)
7796 {
7797         if (mddev->suspended)
7798                 return;
7799
7800         if (mddev->bitmap)
7801                 bitmap_daemon_work(mddev);
7802
7803         if (signal_pending(current)) {
7804                 if (mddev->pers->sync_request && !mddev->external) {
7805                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7806                                mdname(mddev));
7807                         mddev->safemode = 2;
7808                 }
7809                 flush_signals(current);
7810         }
7811
7812         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7813                 return;
7814         if ( ! (
7815                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7816                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7817                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7818                 (mddev->external == 0 && mddev->safemode == 1) ||
7819                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7820                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7821                 ))
7822                 return;
7823
7824         if (mddev_trylock(mddev)) {
7825                 int spares = 0;
7826
7827                 if (mddev->ro) {
7828                         /* On a read-only array we can:
7829                          * - remove failed devices
7830                          * - add already-in_sync devices if the array itself
7831                          *   is in-sync.
7832                          * As we only add devices that are already in-sync,
7833                          * we can activate the spares immediately.
7834                          */
7835                         remove_and_add_spares(mddev, NULL);
7836                         /* There is no thread, but we need to call
7837                          * ->spare_active and clear saved_raid_disk
7838                          */
7839                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7840                         md_reap_sync_thread(mddev);
7841                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7842                         goto unlock;
7843                 }
7844
7845                 if (!mddev->external) {
7846                         int did_change = 0;
7847                         spin_lock_irq(&mddev->write_lock);
7848                         if (mddev->safemode &&
7849                             !atomic_read(&mddev->writes_pending) &&
7850                             !mddev->in_sync &&
7851                             mddev->recovery_cp == MaxSector) {
7852                                 mddev->in_sync = 1;
7853                                 did_change = 1;
7854                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7855                         }
7856                         if (mddev->safemode == 1)
7857                                 mddev->safemode = 0;
7858                         spin_unlock_irq(&mddev->write_lock);
7859                         if (did_change)
7860                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7861                 }
7862
7863                 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7864                         md_update_sb(mddev, 0);
7865
7866                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7867                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7868                         /* resync/recovery still happening */
7869                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7870                         goto unlock;
7871                 }
7872                 if (mddev->sync_thread) {
7873                         md_reap_sync_thread(mddev);
7874                         goto unlock;
7875                 }
7876                 /* Set RUNNING before clearing NEEDED to avoid
7877                  * any transients in the value of "sync_action".
7878                  */
7879                 mddev->curr_resync_completed = 0;
7880                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7881                 /* Clear some bits that don't mean anything, but
7882                  * might be left set
7883                  */
7884                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7885                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7886
7887                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7888                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7889                         goto not_running;
7890                 /* no recovery is running.
7891                  * remove any failed drives, then
7892                  * add spares if possible.
7893                  * Spares are also removed and re-added, to allow
7894                  * the personality to fail the re-add.
7895                  */
7896
7897                 if (mddev->reshape_position != MaxSector) {
7898                         if (mddev->pers->check_reshape == NULL ||
7899                             mddev->pers->check_reshape(mddev) != 0)
7900                                 /* Cannot proceed */
7901                                 goto not_running;
7902                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7903                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7904                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7905                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7906                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7907                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7908                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7909                 } else if (mddev->recovery_cp < MaxSector) {
7910                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7911                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7912                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7913                         /* nothing to be done ... */
7914                         goto not_running;
7915
7916                 if (mddev->pers->sync_request) {
7917                         if (spares) {
7918                                 /* We are adding a device or devices to an array
7919                                  * which has the bitmap stored on all devices.
7920                                  * So make sure all bitmap pages get written
7921                                  */
7922                                 bitmap_write_all(mddev->bitmap);
7923                         }
7924                         INIT_WORK(&mddev->del_work, md_start_sync);
7925                         queue_work(md_misc_wq, &mddev->del_work);
7926                         goto unlock;
7927                 }
7928         not_running:
7929                 if (!mddev->sync_thread) {
7930                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7931                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7932                                                &mddev->recovery))
7933                                 if (mddev->sysfs_action)
7934                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7935                 }
7936         unlock:
7937                 wake_up(&mddev->sb_wait);
7938                 mddev_unlock(mddev);
7939         }
7940 }
7941
7942 void md_reap_sync_thread(struct mddev *mddev)
7943 {
7944         struct md_rdev *rdev;
7945
7946         /* resync has finished, collect result */
7947         md_unregister_thread(&mddev->sync_thread);
7948         wake_up(&resync_wait);
7949         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7950             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7951                 /* success...*/
7952                 /* activate any spares */
7953                 if (mddev->pers->spare_active(mddev)) {
7954                         sysfs_notify(&mddev->kobj, NULL,
7955                                      "degraded");
7956                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7957                 }
7958         }
7959         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7960             mddev->pers->finish_reshape)
7961                 mddev->pers->finish_reshape(mddev);
7962
7963         /* If array is no-longer degraded, then any saved_raid_disk
7964          * information must be scrapped.
7965          */
7966         if (!mddev->degraded)
7967                 rdev_for_each(rdev, mddev)
7968                         rdev->saved_raid_disk = -1;
7969
7970         md_update_sb(mddev, 1);
7971         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7972         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7974         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7975         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7976         /* flag recovery needed just to double check */
7977         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7978         sysfs_notify_dirent_safe(mddev->sysfs_action);
7979         md_new_event(mddev);
7980         if (mddev->event_work.func)
7981                 queue_work(md_misc_wq, &mddev->event_work);
7982 }
7983
7984 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7985 {
7986         sysfs_notify_dirent_safe(rdev->sysfs_state);
7987         wait_event_timeout(rdev->blocked_wait,
7988                            !test_bit(Blocked, &rdev->flags) &&
7989                            !test_bit(BlockedBadBlocks, &rdev->flags),
7990                            msecs_to_jiffies(5000));
7991         rdev_dec_pending(rdev, mddev);
7992 }
7993 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7994
7995 void md_finish_reshape(struct mddev *mddev)
7996 {
7997         /* called be personality module when reshape completes. */
7998         struct md_rdev *rdev;
7999
8000         rdev_for_each(rdev, mddev) {
8001                 if (rdev->data_offset > rdev->new_data_offset)
8002                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8003                 else
8004                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8005                 rdev->data_offset = rdev->new_data_offset;
8006         }
8007 }
8008 EXPORT_SYMBOL(md_finish_reshape);
8009
8010 /* Bad block management.
8011  * We can record which blocks on each device are 'bad' and so just
8012  * fail those blocks, or that stripe, rather than the whole device.
8013  * Entries in the bad-block table are 64bits wide.  This comprises:
8014  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8015  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8016  *  A 'shift' can be set so that larger blocks are tracked and
8017  *  consequently larger devices can be covered.
8018  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8019  *
8020  * Locking of the bad-block table uses a seqlock so md_is_badblock
8021  * might need to retry if it is very unlucky.
8022  * We will sometimes want to check for bad blocks in a bi_end_io function,
8023  * so we use the write_seqlock_irq variant.
8024  *
8025  * When looking for a bad block we specify a range and want to
8026  * know if any block in the range is bad.  So we binary-search
8027  * to the last range that starts at-or-before the given endpoint,
8028  * (or "before the sector after the target range")
8029  * then see if it ends after the given start.
8030  * We return
8031  *  0 if there are no known bad blocks in the range
8032  *  1 if there are known bad block which are all acknowledged
8033  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8034  * plus the start/length of the first bad section we overlap.
8035  */
8036 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8037                    sector_t *first_bad, int *bad_sectors)
8038 {
8039         int hi;
8040         int lo;
8041         u64 *p = bb->page;
8042         int rv;
8043         sector_t target = s + sectors;
8044         unsigned seq;
8045
8046         if (bb->shift > 0) {
8047                 /* round the start down, and the end up */
8048                 s >>= bb->shift;
8049                 target += (1<<bb->shift) - 1;
8050                 target >>= bb->shift;
8051                 sectors = target - s;
8052         }
8053         /* 'target' is now the first block after the bad range */
8054
8055 retry:
8056         seq = read_seqbegin(&bb->lock);
8057         lo = 0;
8058         rv = 0;
8059         hi = bb->count;
8060
8061         /* Binary search between lo and hi for 'target'
8062          * i.e. for the last range that starts before 'target'
8063          */
8064         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8065          * are known not to be the last range before target.
8066          * VARIANT: hi-lo is the number of possible
8067          * ranges, and decreases until it reaches 1
8068          */
8069         while (hi - lo > 1) {
8070                 int mid = (lo + hi) / 2;
8071                 sector_t a = BB_OFFSET(p[mid]);
8072                 if (a < target)
8073                         /* This could still be the one, earlier ranges
8074                          * could not. */
8075                         lo = mid;
8076                 else
8077                         /* This and later ranges are definitely out. */
8078                         hi = mid;
8079         }
8080         /* 'lo' might be the last that started before target, but 'hi' isn't */
8081         if (hi > lo) {
8082                 /* need to check all range that end after 's' to see if
8083                  * any are unacknowledged.
8084                  */
8085                 while (lo >= 0 &&
8086                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8087                         if (BB_OFFSET(p[lo]) < target) {
8088                                 /* starts before the end, and finishes after
8089                                  * the start, so they must overlap
8090                                  */
8091                                 if (rv != -1 && BB_ACK(p[lo]))
8092                                         rv = 1;
8093                                 else
8094                                         rv = -1;
8095                                 *first_bad = BB_OFFSET(p[lo]);
8096                                 *bad_sectors = BB_LEN(p[lo]);
8097                         }
8098                         lo--;
8099                 }
8100         }
8101
8102         if (read_seqretry(&bb->lock, seq))
8103                 goto retry;
8104
8105         return rv;
8106 }
8107 EXPORT_SYMBOL_GPL(md_is_badblock);
8108
8109 /*
8110  * Add a range of bad blocks to the table.
8111  * This might extend the table, or might contract it
8112  * if two adjacent ranges can be merged.
8113  * We binary-search to find the 'insertion' point, then
8114  * decide how best to handle it.
8115  */
8116 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8117                             int acknowledged)
8118 {
8119         u64 *p;
8120         int lo, hi;
8121         int rv = 1;
8122         unsigned long flags;
8123
8124         if (bb->shift < 0)
8125                 /* badblocks are disabled */
8126                 return 0;
8127
8128         if (bb->shift) {
8129                 /* round the start down, and the end up */
8130                 sector_t next = s + sectors;
8131                 s >>= bb->shift;
8132                 next += (1<<bb->shift) - 1;
8133                 next >>= bb->shift;
8134                 sectors = next - s;
8135         }
8136
8137         write_seqlock_irqsave(&bb->lock, flags);
8138
8139         p = bb->page;
8140         lo = 0;
8141         hi = bb->count;
8142         /* Find the last range that starts at-or-before 's' */
8143         while (hi - lo > 1) {
8144                 int mid = (lo + hi) / 2;
8145                 sector_t a = BB_OFFSET(p[mid]);
8146                 if (a <= s)
8147                         lo = mid;
8148                 else
8149                         hi = mid;
8150         }
8151         if (hi > lo && BB_OFFSET(p[lo]) > s)
8152                 hi = lo;
8153
8154         if (hi > lo) {
8155                 /* we found a range that might merge with the start
8156                  * of our new range
8157                  */
8158                 sector_t a = BB_OFFSET(p[lo]);
8159                 sector_t e = a + BB_LEN(p[lo]);
8160                 int ack = BB_ACK(p[lo]);
8161                 if (e >= s) {
8162                         /* Yes, we can merge with a previous range */
8163                         if (s == a && s + sectors >= e)
8164                                 /* new range covers old */
8165                                 ack = acknowledged;
8166                         else
8167                                 ack = ack && acknowledged;
8168
8169                         if (e < s + sectors)
8170                                 e = s + sectors;
8171                         if (e - a <= BB_MAX_LEN) {
8172                                 p[lo] = BB_MAKE(a, e-a, ack);
8173                                 s = e;
8174                         } else {
8175                                 /* does not all fit in one range,
8176                                  * make p[lo] maximal
8177                                  */
8178                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8179                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8180                                 s = a + BB_MAX_LEN;
8181                         }
8182                         sectors = e - s;
8183                 }
8184         }
8185         if (sectors && hi < bb->count) {
8186                 /* 'hi' points to the first range that starts after 's'.
8187                  * Maybe we can merge with the start of that range */
8188                 sector_t a = BB_OFFSET(p[hi]);
8189                 sector_t e = a + BB_LEN(p[hi]);
8190                 int ack = BB_ACK(p[hi]);
8191                 if (a <= s + sectors) {
8192                         /* merging is possible */
8193                         if (e <= s + sectors) {
8194                                 /* full overlap */
8195                                 e = s + sectors;
8196                                 ack = acknowledged;
8197                         } else
8198                                 ack = ack && acknowledged;
8199
8200                         a = s;
8201                         if (e - a <= BB_MAX_LEN) {
8202                                 p[hi] = BB_MAKE(a, e-a, ack);
8203                                 s = e;
8204                         } else {
8205                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8206                                 s = a + BB_MAX_LEN;
8207                         }
8208                         sectors = e - s;
8209                         lo = hi;
8210                         hi++;
8211                 }
8212         }
8213         if (sectors == 0 && hi < bb->count) {
8214                 /* we might be able to combine lo and hi */
8215                 /* Note: 's' is at the end of 'lo' */
8216                 sector_t a = BB_OFFSET(p[hi]);
8217                 int lolen = BB_LEN(p[lo]);
8218                 int hilen = BB_LEN(p[hi]);
8219                 int newlen = lolen + hilen - (s - a);
8220                 if (s >= a && newlen < BB_MAX_LEN) {
8221                         /* yes, we can combine them */
8222                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8223                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8224                         memmove(p + hi, p + hi + 1,
8225                                 (bb->count - hi - 1) * 8);
8226                         bb->count--;
8227                 }
8228         }
8229         while (sectors) {
8230                 /* didn't merge (it all).
8231                  * Need to add a range just before 'hi' */
8232                 if (bb->count >= MD_MAX_BADBLOCKS) {
8233                         /* No room for more */
8234                         rv = 0;
8235                         break;
8236                 } else {
8237                         int this_sectors = sectors;
8238                         memmove(p + hi + 1, p + hi,
8239                                 (bb->count - hi) * 8);
8240                         bb->count++;
8241
8242                         if (this_sectors > BB_MAX_LEN)
8243                                 this_sectors = BB_MAX_LEN;
8244                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8245                         sectors -= this_sectors;
8246                         s += this_sectors;
8247                 }
8248         }
8249
8250         bb->changed = 1;
8251         if (!acknowledged)
8252                 bb->unacked_exist = 1;
8253         write_sequnlock_irqrestore(&bb->lock, flags);
8254
8255         return rv;
8256 }
8257
8258 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8259                        int is_new)
8260 {
8261         int rv;
8262         if (is_new)
8263                 s += rdev->new_data_offset;
8264         else
8265                 s += rdev->data_offset;
8266         rv = md_set_badblocks(&rdev->badblocks,
8267                               s, sectors, 0);
8268         if (rv) {
8269                 /* Make sure they get written out promptly */
8270                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8271                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8272                 md_wakeup_thread(rdev->mddev->thread);
8273         }
8274         return rv;
8275 }
8276 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8277
8278 /*
8279  * Remove a range of bad blocks from the table.
8280  * This may involve extending the table if we spilt a region,
8281  * but it must not fail.  So if the table becomes full, we just
8282  * drop the remove request.
8283  */
8284 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8285 {
8286         u64 *p;
8287         int lo, hi;
8288         sector_t target = s + sectors;
8289         int rv = 0;
8290
8291         if (bb->shift > 0) {
8292                 /* When clearing we round the start up and the end down.
8293                  * This should not matter as the shift should align with
8294                  * the block size and no rounding should ever be needed.
8295                  * However it is better the think a block is bad when it
8296                  * isn't than to think a block is not bad when it is.
8297                  */
8298                 s += (1<<bb->shift) - 1;
8299                 s >>= bb->shift;
8300                 target >>= bb->shift;
8301                 sectors = target - s;
8302         }
8303
8304         write_seqlock_irq(&bb->lock);
8305
8306         p = bb->page;
8307         lo = 0;
8308         hi = bb->count;
8309         /* Find the last range that starts before 'target' */
8310         while (hi - lo > 1) {
8311                 int mid = (lo + hi) / 2;
8312                 sector_t a = BB_OFFSET(p[mid]);
8313                 if (a < target)
8314                         lo = mid;
8315                 else
8316                         hi = mid;
8317         }
8318         if (hi > lo) {
8319                 /* p[lo] is the last range that could overlap the
8320                  * current range.  Earlier ranges could also overlap,
8321                  * but only this one can overlap the end of the range.
8322                  */
8323                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8324                         /* Partial overlap, leave the tail of this range */
8325                         int ack = BB_ACK(p[lo]);
8326                         sector_t a = BB_OFFSET(p[lo]);
8327                         sector_t end = a + BB_LEN(p[lo]);
8328
8329                         if (a < s) {
8330                                 /* we need to split this range */
8331                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8332                                         rv = -ENOSPC;
8333                                         goto out;
8334                                 }
8335                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8336                                 bb->count++;
8337                                 p[lo] = BB_MAKE(a, s-a, ack);
8338                                 lo++;
8339                         }
8340                         p[lo] = BB_MAKE(target, end - target, ack);
8341                         /* there is no longer an overlap */
8342                         hi = lo;
8343                         lo--;
8344                 }
8345                 while (lo >= 0 &&
8346                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8347                         /* This range does overlap */
8348                         if (BB_OFFSET(p[lo]) < s) {
8349                                 /* Keep the early parts of this range. */
8350                                 int ack = BB_ACK(p[lo]);
8351                                 sector_t start = BB_OFFSET(p[lo]);
8352                                 p[lo] = BB_MAKE(start, s - start, ack);
8353                                 /* now low doesn't overlap, so.. */
8354                                 break;
8355                         }
8356                         lo--;
8357                 }
8358                 /* 'lo' is strictly before, 'hi' is strictly after,
8359                  * anything between needs to be discarded
8360                  */
8361                 if (hi - lo > 1) {
8362                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8363                         bb->count -= (hi - lo - 1);
8364                 }
8365         }
8366
8367         bb->changed = 1;
8368 out:
8369         write_sequnlock_irq(&bb->lock);
8370         return rv;
8371 }
8372
8373 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8374                          int is_new)
8375 {
8376         if (is_new)
8377                 s += rdev->new_data_offset;
8378         else
8379                 s += rdev->data_offset;
8380         return md_clear_badblocks(&rdev->badblocks,
8381                                   s, sectors);
8382 }
8383 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8384
8385 /*
8386  * Acknowledge all bad blocks in a list.
8387  * This only succeeds if ->changed is clear.  It is used by
8388  * in-kernel metadata updates
8389  */
8390 void md_ack_all_badblocks(struct badblocks *bb)
8391 {
8392         if (bb->page == NULL || bb->changed)
8393                 /* no point even trying */
8394                 return;
8395         write_seqlock_irq(&bb->lock);
8396
8397         if (bb->changed == 0 && bb->unacked_exist) {
8398                 u64 *p = bb->page;
8399                 int i;
8400                 for (i = 0; i < bb->count ; i++) {
8401                         if (!BB_ACK(p[i])) {
8402                                 sector_t start = BB_OFFSET(p[i]);
8403                                 int len = BB_LEN(p[i]);
8404                                 p[i] = BB_MAKE(start, len, 1);
8405                         }
8406                 }
8407                 bb->unacked_exist = 0;
8408         }
8409         write_sequnlock_irq(&bb->lock);
8410 }
8411 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8412
8413 /* sysfs access to bad-blocks list.
8414  * We present two files.
8415  * 'bad-blocks' lists sector numbers and lengths of ranges that
8416  *    are recorded as bad.  The list is truncated to fit within
8417  *    the one-page limit of sysfs.
8418  *    Writing "sector length" to this file adds an acknowledged
8419  *    bad block list.
8420  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8421  *    been acknowledged.  Writing to this file adds bad blocks
8422  *    without acknowledging them.  This is largely for testing.
8423  */
8424
8425 static ssize_t
8426 badblocks_show(struct badblocks *bb, char *page, int unack)
8427 {
8428         size_t len;
8429         int i;
8430         u64 *p = bb->page;
8431         unsigned seq;
8432
8433         if (bb->shift < 0)
8434                 return 0;
8435
8436 retry:
8437         seq = read_seqbegin(&bb->lock);
8438
8439         len = 0;
8440         i = 0;
8441
8442         while (len < PAGE_SIZE && i < bb->count) {
8443                 sector_t s = BB_OFFSET(p[i]);
8444                 unsigned int length = BB_LEN(p[i]);
8445                 int ack = BB_ACK(p[i]);
8446                 i++;
8447
8448                 if (unack && ack)
8449                         continue;
8450
8451                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8452                                 (unsigned long long)s << bb->shift,
8453                                 length << bb->shift);
8454         }
8455         if (unack && len == 0)
8456                 bb->unacked_exist = 0;
8457
8458         if (read_seqretry(&bb->lock, seq))
8459                 goto retry;
8460
8461         return len;
8462 }
8463
8464 #define DO_DEBUG 1
8465
8466 static ssize_t
8467 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8468 {
8469         unsigned long long sector;
8470         int length;
8471         char newline;
8472 #ifdef DO_DEBUG
8473         /* Allow clearing via sysfs *only* for testing/debugging.
8474          * Normally only a successful write may clear a badblock
8475          */
8476         int clear = 0;
8477         if (page[0] == '-') {
8478                 clear = 1;
8479                 page++;
8480         }
8481 #endif /* DO_DEBUG */
8482
8483         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8484         case 3:
8485                 if (newline != '\n')
8486                         return -EINVAL;
8487         case 2:
8488                 if (length <= 0)
8489                         return -EINVAL;
8490                 break;
8491         default:
8492                 return -EINVAL;
8493         }
8494
8495 #ifdef DO_DEBUG
8496         if (clear) {
8497                 md_clear_badblocks(bb, sector, length);
8498                 return len;
8499         }
8500 #endif /* DO_DEBUG */
8501         if (md_set_badblocks(bb, sector, length, !unack))
8502                 return len;
8503         else
8504                 return -ENOSPC;
8505 }
8506
8507 static int md_notify_reboot(struct notifier_block *this,
8508                             unsigned long code, void *x)
8509 {
8510         struct list_head *tmp;
8511         struct mddev *mddev;
8512         int need_delay = 0;
8513
8514         for_each_mddev(mddev, tmp) {
8515                 if (mddev_trylock(mddev)) {
8516                         if (mddev->pers)
8517                                 __md_stop_writes(mddev);
8518                         if (mddev->persistent)
8519                                 mddev->safemode = 2;
8520                         mddev_unlock(mddev);
8521                 }
8522                 need_delay = 1;
8523         }
8524         /*
8525          * certain more exotic SCSI devices are known to be
8526          * volatile wrt too early system reboots. While the
8527          * right place to handle this issue is the given
8528          * driver, we do want to have a safe RAID driver ...
8529          */
8530         if (need_delay)
8531                 mdelay(1000*1);
8532
8533         return NOTIFY_DONE;
8534 }
8535
8536 static struct notifier_block md_notifier = {
8537         .notifier_call  = md_notify_reboot,
8538         .next           = NULL,
8539         .priority       = INT_MAX, /* before any real devices */
8540 };
8541
8542 static void md_geninit(void)
8543 {
8544         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8545
8546         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8547 }
8548
8549 static int __init md_init(void)
8550 {
8551         int ret = -ENOMEM;
8552
8553         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8554         if (!md_wq)
8555                 goto err_wq;
8556
8557         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8558         if (!md_misc_wq)
8559                 goto err_misc_wq;
8560
8561         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8562                 goto err_md;
8563
8564         if ((ret = register_blkdev(0, "mdp")) < 0)
8565                 goto err_mdp;
8566         mdp_major = ret;
8567
8568         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8569                             md_probe, NULL, NULL);
8570         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8571                             md_probe, NULL, NULL);
8572
8573         register_reboot_notifier(&md_notifier);
8574         raid_table_header = register_sysctl_table(raid_root_table);
8575
8576         md_geninit();
8577         return 0;
8578
8579 err_mdp:
8580         unregister_blkdev(MD_MAJOR, "md");
8581 err_md:
8582         destroy_workqueue(md_misc_wq);
8583 err_misc_wq:
8584         destroy_workqueue(md_wq);
8585 err_wq:
8586         return ret;
8587 }
8588
8589 #ifndef MODULE
8590
8591 /*
8592  * Searches all registered partitions for autorun RAID arrays
8593  * at boot time.
8594  */
8595
8596 static LIST_HEAD(all_detected_devices);
8597 struct detected_devices_node {
8598         struct list_head list;
8599         dev_t dev;
8600 };
8601
8602 void md_autodetect_dev(dev_t dev)
8603 {
8604         struct detected_devices_node *node_detected_dev;
8605
8606         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8607         if (node_detected_dev) {
8608                 node_detected_dev->dev = dev;
8609                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8610         } else {
8611                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8612                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8613         }
8614 }
8615
8616 static void autostart_arrays(int part)
8617 {
8618         struct md_rdev *rdev;
8619         struct detected_devices_node *node_detected_dev;
8620         dev_t dev;
8621         int i_scanned, i_passed;
8622
8623         i_scanned = 0;
8624         i_passed = 0;
8625
8626         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8627
8628         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8629                 i_scanned++;
8630                 node_detected_dev = list_entry(all_detected_devices.next,
8631                                         struct detected_devices_node, list);
8632                 list_del(&node_detected_dev->list);
8633                 dev = node_detected_dev->dev;
8634                 kfree(node_detected_dev);
8635                 rdev = md_import_device(dev,0, 90);
8636                 if (IS_ERR(rdev))
8637                         continue;
8638
8639                 if (test_bit(Faulty, &rdev->flags)) {
8640                         MD_BUG();
8641                         continue;
8642                 }
8643                 set_bit(AutoDetected, &rdev->flags);
8644                 list_add(&rdev->same_set, &pending_raid_disks);
8645                 i_passed++;
8646         }
8647
8648         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8649                                                 i_scanned, i_passed);
8650
8651         autorun_devices(part);
8652 }
8653
8654 #endif /* !MODULE */
8655
8656 static __exit void md_exit(void)
8657 {
8658         struct mddev *mddev;
8659         struct list_head *tmp;
8660         int delay = 1;
8661
8662         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8663         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8664
8665         unregister_blkdev(MD_MAJOR,"md");
8666         unregister_blkdev(mdp_major, "mdp");
8667         unregister_reboot_notifier(&md_notifier);
8668         unregister_sysctl_table(raid_table_header);
8669
8670         /* We cannot unload the modules while some process is
8671          * waiting for us in select() or poll() - wake them up
8672          */
8673         md_unloading = 1;
8674         while (waitqueue_active(&md_event_waiters)) {
8675                 /* not safe to leave yet */
8676                 wake_up(&md_event_waiters);
8677                 msleep(delay);
8678                 delay += delay;
8679         }
8680         remove_proc_entry("mdstat", NULL);
8681
8682         for_each_mddev(mddev, tmp) {
8683                 export_array(mddev);
8684                 mddev->hold_active = 0;
8685         }
8686         destroy_workqueue(md_misc_wq);
8687         destroy_workqueue(md_wq);
8688 }
8689
8690 subsys_initcall(md_init);
8691 module_exit(md_exit)
8692
8693 static int get_ro(char *buffer, struct kernel_param *kp)
8694 {
8695         return sprintf(buffer, "%d", start_readonly);
8696 }
8697 static int set_ro(const char *val, struct kernel_param *kp)
8698 {
8699         char *e;
8700         int num = simple_strtoul(val, &e, 10);
8701         if (*val && (*e == '\0' || *e == '\n')) {
8702                 start_readonly = num;
8703                 return 0;
8704         }
8705         return -EINVAL;
8706 }
8707
8708 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8709 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8710
8711 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8712
8713 EXPORT_SYMBOL(register_md_personality);
8714 EXPORT_SYMBOL(unregister_md_personality);
8715 EXPORT_SYMBOL(md_error);
8716 EXPORT_SYMBOL(md_done_sync);
8717 EXPORT_SYMBOL(md_write_start);
8718 EXPORT_SYMBOL(md_write_end);
8719 EXPORT_SYMBOL(md_register_thread);
8720 EXPORT_SYMBOL(md_unregister_thread);
8721 EXPORT_SYMBOL(md_wakeup_thread);
8722 EXPORT_SYMBOL(md_check_recovery);
8723 EXPORT_SYMBOL(md_reap_sync_thread);
8724 MODULE_LICENSE("GPL");
8725 MODULE_DESCRIPTION("MD RAID framework");
8726 MODULE_ALIAS("md");
8727 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);