]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/persistent-data/dm-btree-remove.c
make vfree() safe to call from interrupt contexts
[karo-tx-linux.git] / drivers / md / persistent-data / dm-btree-remove.c
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct btree_node *n, int shift)
57 {
58         uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59         uint32_t value_size = le32_to_cpu(n->header.value_size);
60
61         if (shift < 0) {
62                 shift = -shift;
63                 BUG_ON(shift > nr_entries);
64                 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65                 memmove(key_ptr(n, 0),
66                         key_ptr(n, shift),
67                         (nr_entries - shift) * sizeof(__le64));
68                 memmove(value_ptr(n, 0),
69                         value_ptr(n, shift),
70                         (nr_entries - shift) * value_size);
71         } else {
72                 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73                 memmove(key_ptr(n, shift),
74                         key_ptr(n, 0),
75                         nr_entries * sizeof(__le64));
76                 memmove(value_ptr(n, shift),
77                         value_ptr(n, 0),
78                         nr_entries * value_size);
79         }
80 }
81
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
83 {
84         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85         uint32_t value_size = le32_to_cpu(left->header.value_size);
86         BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87
88         if (shift < 0) {
89                 shift = -shift;
90                 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91                 memcpy(key_ptr(left, nr_left),
92                        key_ptr(right, 0),
93                        shift * sizeof(__le64));
94                 memcpy(value_ptr(left, nr_left),
95                        value_ptr(right, 0),
96                        shift * value_size);
97         } else {
98                 BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99                 memcpy(key_ptr(right, 0),
100                        key_ptr(left, nr_left - shift),
101                        shift * sizeof(__le64));
102                 memcpy(value_ptr(right, 0),
103                        value_ptr(left, nr_left - shift),
104                        shift * value_size);
105         }
106 }
107
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct btree_node *n, unsigned index)
112 {
113         unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114         unsigned nr_to_copy = nr_entries - (index + 1);
115         uint32_t value_size = le32_to_cpu(n->header.value_size);
116         BUG_ON(index >= nr_entries);
117
118         if (nr_to_copy) {
119                 memmove(key_ptr(n, index),
120                         key_ptr(n, index + 1),
121                         nr_to_copy * sizeof(__le64));
122
123                 memmove(value_ptr(n, index),
124                         value_ptr(n, index + 1),
125                         nr_to_copy * value_size);
126         }
127
128         n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130
131 static unsigned merge_threshold(struct btree_node *n)
132 {
133         return le32_to_cpu(n->header.max_entries) / 3;
134 }
135
136 struct child {
137         unsigned index;
138         struct dm_block *block;
139         struct btree_node *n;
140 };
141
142 static struct dm_btree_value_type le64_type = {
143         .context = NULL,
144         .size = sizeof(__le64),
145         .inc = NULL,
146         .dec = NULL,
147         .equal = NULL
148 };
149
150 static int init_child(struct dm_btree_info *info, struct btree_node *parent,
151                       unsigned index, struct child *result)
152 {
153         int r, inc;
154         dm_block_t root;
155
156         result->index = index;
157         root = value64(parent, index);
158
159         r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
160                                &result->block, &inc);
161         if (r)
162                 return r;
163
164         result->n = dm_block_data(result->block);
165
166         if (inc)
167                 inc_children(info->tm, result->n, &le64_type);
168
169         *((__le64 *) value_ptr(parent, index)) =
170                 cpu_to_le64(dm_block_location(result->block));
171
172         return 0;
173 }
174
175 static int exit_child(struct dm_btree_info *info, struct child *c)
176 {
177         return dm_tm_unlock(info->tm, c->block);
178 }
179
180 static void shift(struct btree_node *left, struct btree_node *right, int count)
181 {
182         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
183         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
184         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
185         uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
186
187         BUG_ON(max_entries != r_max_entries);
188         BUG_ON(nr_left - count > max_entries);
189         BUG_ON(nr_right + count > max_entries);
190
191         if (!count)
192                 return;
193
194         if (count > 0) {
195                 node_shift(right, count);
196                 node_copy(left, right, count);
197         } else {
198                 node_copy(left, right, count);
199                 node_shift(right, count);
200         }
201
202         left->header.nr_entries = cpu_to_le32(nr_left - count);
203         right->header.nr_entries = cpu_to_le32(nr_right + count);
204 }
205
206 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
207                          struct child *l, struct child *r)
208 {
209         struct btree_node *left = l->n;
210         struct btree_node *right = r->n;
211         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
212         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
213         unsigned threshold = 2 * merge_threshold(left) + 1;
214
215         if (nr_left + nr_right < threshold) {
216                 /*
217                  * Merge
218                  */
219                 node_copy(left, right, -nr_right);
220                 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
221                 delete_at(parent, r->index);
222
223                 /*
224                  * We need to decrement the right block, but not it's
225                  * children, since they're still referenced by left.
226                  */
227                 dm_tm_dec(info->tm, dm_block_location(r->block));
228         } else {
229                 /*
230                  * Rebalance.
231                  */
232                 unsigned target_left = (nr_left + nr_right) / 2;
233                 shift(left, right, nr_left - target_left);
234                 *key_ptr(parent, r->index) = right->keys[0];
235         }
236 }
237
238 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
239                       unsigned left_index)
240 {
241         int r;
242         struct btree_node *parent;
243         struct child left, right;
244
245         parent = dm_block_data(shadow_current(s));
246
247         r = init_child(info, parent, left_index, &left);
248         if (r)
249                 return r;
250
251         r = init_child(info, parent, left_index + 1, &right);
252         if (r) {
253                 exit_child(info, &left);
254                 return r;
255         }
256
257         __rebalance2(info, parent, &left, &right);
258
259         r = exit_child(info, &left);
260         if (r) {
261                 exit_child(info, &right);
262                 return r;
263         }
264
265         return exit_child(info, &right);
266 }
267
268 /*
269  * We dump as many entries from center as possible into left, then the rest
270  * in right, then rebalance2.  This wastes some cpu, but I want something
271  * simple atm.
272  */
273 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
274                                struct child *l, struct child *c, struct child *r,
275                                struct btree_node *left, struct btree_node *center, struct btree_node *right,
276                                uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
277 {
278         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
279         unsigned shift = min(max_entries - nr_left, nr_center);
280
281         BUG_ON(nr_left + shift > max_entries);
282         node_copy(left, center, -shift);
283         left->header.nr_entries = cpu_to_le32(nr_left + shift);
284
285         if (shift != nr_center) {
286                 shift = nr_center - shift;
287                 BUG_ON((nr_right + shift) > max_entries);
288                 node_shift(right, shift);
289                 node_copy(center, right, shift);
290                 right->header.nr_entries = cpu_to_le32(nr_right + shift);
291         }
292         *key_ptr(parent, r->index) = right->keys[0];
293
294         delete_at(parent, c->index);
295         r->index--;
296
297         dm_tm_dec(info->tm, dm_block_location(c->block));
298         __rebalance2(info, parent, l, r);
299 }
300
301 /*
302  * Redistributes entries among 3 sibling nodes.
303  */
304 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
305                           struct child *l, struct child *c, struct child *r,
306                           struct btree_node *left, struct btree_node *center, struct btree_node *right,
307                           uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
308 {
309         int s;
310         uint32_t max_entries = le32_to_cpu(left->header.max_entries);
311         unsigned target = (nr_left + nr_center + nr_right) / 3;
312         BUG_ON(target > max_entries);
313
314         if (nr_left < nr_right) {
315                 s = nr_left - target;
316
317                 if (s < 0 && nr_center < -s) {
318                         /* not enough in central node */
319                         shift(left, center, nr_center);
320                         s = nr_center - target;
321                         shift(left, right, s);
322                         nr_right += s;
323                 } else
324                         shift(left, center, s);
325
326                 shift(center, right, target - nr_right);
327
328         } else {
329                 s = target - nr_right;
330                 if (s > 0 && nr_center < s) {
331                         /* not enough in central node */
332                         shift(center, right, nr_center);
333                         s = target - nr_center;
334                         shift(left, right, s);
335                         nr_left -= s;
336                 } else
337                         shift(center, right, s);
338
339                 shift(left, center, nr_left - target);
340         }
341
342         *key_ptr(parent, c->index) = center->keys[0];
343         *key_ptr(parent, r->index) = right->keys[0];
344 }
345
346 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
347                          struct child *l, struct child *c, struct child *r)
348 {
349         struct btree_node *left = l->n;
350         struct btree_node *center = c->n;
351         struct btree_node *right = r->n;
352
353         uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
354         uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
355         uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
356
357         unsigned threshold = merge_threshold(left) * 4 + 1;
358
359         BUG_ON(left->header.max_entries != center->header.max_entries);
360         BUG_ON(center->header.max_entries != right->header.max_entries);
361
362         if ((nr_left + nr_center + nr_right) < threshold)
363                 delete_center_node(info, parent, l, c, r, left, center, right,
364                                    nr_left, nr_center, nr_right);
365         else
366                 redistribute3(info, parent, l, c, r, left, center, right,
367                               nr_left, nr_center, nr_right);
368 }
369
370 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
371                       unsigned left_index)
372 {
373         int r;
374         struct btree_node *parent = dm_block_data(shadow_current(s));
375         struct child left, center, right;
376
377         /*
378          * FIXME: fill out an array?
379          */
380         r = init_child(info, parent, left_index, &left);
381         if (r)
382                 return r;
383
384         r = init_child(info, parent, left_index + 1, &center);
385         if (r) {
386                 exit_child(info, &left);
387                 return r;
388         }
389
390         r = init_child(info, parent, left_index + 2, &right);
391         if (r) {
392                 exit_child(info, &left);
393                 exit_child(info, &center);
394                 return r;
395         }
396
397         __rebalance3(info, parent, &left, &center, &right);
398
399         r = exit_child(info, &left);
400         if (r) {
401                 exit_child(info, &center);
402                 exit_child(info, &right);
403                 return r;
404         }
405
406         r = exit_child(info, &center);
407         if (r) {
408                 exit_child(info, &right);
409                 return r;
410         }
411
412         r = exit_child(info, &right);
413         if (r)
414                 return r;
415
416         return 0;
417 }
418
419 static int get_nr_entries(struct dm_transaction_manager *tm,
420                           dm_block_t b, uint32_t *result)
421 {
422         int r;
423         struct dm_block *block;
424         struct btree_node *n;
425
426         r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
427         if (r)
428                 return r;
429
430         n = dm_block_data(block);
431         *result = le32_to_cpu(n->header.nr_entries);
432
433         return dm_tm_unlock(tm, block);
434 }
435
436 static int rebalance_children(struct shadow_spine *s,
437                               struct dm_btree_info *info, uint64_t key)
438 {
439         int i, r, has_left_sibling, has_right_sibling;
440         uint32_t child_entries;
441         struct btree_node *n;
442
443         n = dm_block_data(shadow_current(s));
444
445         if (le32_to_cpu(n->header.nr_entries) == 1) {
446                 struct dm_block *child;
447                 dm_block_t b = value64(n, 0);
448
449                 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
450                 if (r)
451                         return r;
452
453                 memcpy(n, dm_block_data(child),
454                        dm_bm_block_size(dm_tm_get_bm(info->tm)));
455                 r = dm_tm_unlock(info->tm, child);
456                 if (r)
457                         return r;
458
459                 dm_tm_dec(info->tm, dm_block_location(child));
460                 return 0;
461         }
462
463         i = lower_bound(n, key);
464         if (i < 0)
465                 return -ENODATA;
466
467         r = get_nr_entries(info->tm, value64(n, i), &child_entries);
468         if (r)
469                 return r;
470
471         has_left_sibling = i > 0;
472         has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
473
474         if (!has_left_sibling)
475                 r = rebalance2(s, info, i);
476
477         else if (!has_right_sibling)
478                 r = rebalance2(s, info, i - 1);
479
480         else
481                 r = rebalance3(s, info, i - 1);
482
483         return r;
484 }
485
486 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
487 {
488         int i = lower_bound(n, key);
489
490         if ((i < 0) ||
491             (i >= le32_to_cpu(n->header.nr_entries)) ||
492             (le64_to_cpu(n->keys[i]) != key))
493                 return -ENODATA;
494
495         *index = i;
496
497         return 0;
498 }
499
500 /*
501  * Prepares for removal from one level of the hierarchy.  The caller must
502  * call delete_at() to remove the entry at index.
503  */
504 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
505                       struct dm_btree_value_type *vt, dm_block_t root,
506                       uint64_t key, unsigned *index)
507 {
508         int i = *index, r;
509         struct btree_node *n;
510
511         for (;;) {
512                 r = shadow_step(s, root, vt);
513                 if (r < 0)
514                         break;
515
516                 /*
517                  * We have to patch up the parent node, ugly, but I don't
518                  * see a way to do this automatically as part of the spine
519                  * op.
520                  */
521                 if (shadow_has_parent(s)) {
522                         __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
523                         memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
524                                &location, sizeof(__le64));
525                 }
526
527                 n = dm_block_data(shadow_current(s));
528
529                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
530                         return do_leaf(n, key, index);
531
532                 r = rebalance_children(s, info, key);
533                 if (r)
534                         break;
535
536                 n = dm_block_data(shadow_current(s));
537                 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
538                         return do_leaf(n, key, index);
539
540                 i = lower_bound(n, key);
541
542                 /*
543                  * We know the key is present, or else
544                  * rebalance_children would have returned
545                  * -ENODATA
546                  */
547                 root = value64(n, i);
548         }
549
550         return r;
551 }
552
553 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
554                     uint64_t *keys, dm_block_t *new_root)
555 {
556         unsigned level, last_level = info->levels - 1;
557         int index = 0, r = 0;
558         struct shadow_spine spine;
559         struct btree_node *n;
560
561         init_shadow_spine(&spine, info);
562         for (level = 0; level < info->levels; level++) {
563                 r = remove_raw(&spine, info,
564                                (level == last_level ?
565                                 &info->value_type : &le64_type),
566                                root, keys[level], (unsigned *)&index);
567                 if (r < 0)
568                         break;
569
570                 n = dm_block_data(shadow_current(&spine));
571                 if (level != last_level) {
572                         root = value64(n, index);
573                         continue;
574                 }
575
576                 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
577
578                 if (info->value_type.dec)
579                         info->value_type.dec(info->value_type.context,
580                                              value_ptr(n, index));
581
582                 delete_at(n, index);
583         }
584
585         *new_root = shadow_root(&spine);
586         exit_shadow_spine(&spine);
587
588         return r;
589 }
590 EXPORT_SYMBOL_GPL(dm_btree_remove);