]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
70278b9a3c433b7ae0a9b6289385afa0c38af89a
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85  * 'strct resync_pages' stores actual pages used for doing the resync
86  *  IO, and it is per-bio, so make .bi_private points to it.
87  */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90         return bio->bi_private;
91 }
92
93 /*
94  * for resync bio, r1bio pointer can be retrieved from the per-bio
95  * 'struct resync_pages'.
96  */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99         return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104         struct pool_info *pi = data;
105         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107         /* allocate a r1bio with room for raid_disks entries in the bios array */
108         return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113         kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125         struct pool_info *pi = data;
126         struct r1bio *r1_bio;
127         struct bio *bio;
128         int need_pages;
129         int j;
130         struct resync_pages *rps;
131
132         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133         if (!r1_bio)
134                 return NULL;
135
136         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137                       gfp_flags);
138         if (!rps)
139                 goto out_free_r1bio;
140
141         /*
142          * Allocate bios : 1 for reading, n-1 for writing
143          */
144         for (j = pi->raid_disks ; j-- ; ) {
145                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146                 if (!bio)
147                         goto out_free_bio;
148                 r1_bio->bios[j] = bio;
149         }
150         /*
151          * Allocate RESYNC_PAGES data pages and attach them to
152          * the first bio.
153          * If this is a user-requested check/repair, allocate
154          * RESYNC_PAGES for each bio.
155          */
156         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157                 need_pages = pi->raid_disks;
158         else
159                 need_pages = 1;
160         for (j = 0; j < pi->raid_disks; j++) {
161                 struct resync_pages *rp = &rps[j];
162
163                 bio = r1_bio->bios[j];
164
165                 if (j < need_pages) {
166                         if (resync_alloc_pages(rp, gfp_flags))
167                                 goto out_free_pages;
168                 } else {
169                         memcpy(rp, &rps[0], sizeof(*rp));
170                         resync_get_all_pages(rp);
171                 }
172
173                 rp->idx = 0;
174                 rp->raid_bio = r1_bio;
175                 bio->bi_private = rp;
176         }
177
178         r1_bio->master_bio = NULL;
179
180         return r1_bio;
181
182 out_free_pages:
183         while (--j >= 0)
184                 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187         while (++j < pi->raid_disks)
188                 bio_put(r1_bio->bios[j]);
189         kfree(rps);
190
191 out_free_r1bio:
192         r1bio_pool_free(r1_bio, data);
193         return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198         struct pool_info *pi = data;
199         int i;
200         struct r1bio *r1bio = __r1_bio;
201         struct resync_pages *rp = NULL;
202
203         for (i = pi->raid_disks; i--; ) {
204                 rp = get_resync_pages(r1bio->bios[i]);
205                 resync_free_pages(rp);
206                 bio_put(r1bio->bios[i]);
207         }
208
209         /* resync pages array stored in the 1st bio's .bi_private */
210         kfree(rp);
211
212         r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217         int i;
218
219         for (i = 0; i < conf->raid_disks * 2; i++) {
220                 struct bio **bio = r1_bio->bios + i;
221                 if (!BIO_SPECIAL(*bio))
222                         bio_put(*bio);
223                 *bio = NULL;
224         }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230
231         put_all_bios(conf, r1_bio);
232         mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237         struct r1conf *conf = r1_bio->mddev->private;
238         sector_t sect = r1_bio->sector;
239         int i;
240
241         for (i = 0; i < conf->raid_disks * 2; i++) {
242                 struct bio *bio = r1_bio->bios[i];
243                 if (bio->bi_end_io)
244                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245         }
246
247         mempool_free(r1_bio, conf->r1buf_pool);
248
249         lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254         unsigned long flags;
255         struct mddev *mddev = r1_bio->mddev;
256         struct r1conf *conf = mddev->private;
257         int idx;
258
259         idx = sector_to_idx(r1_bio->sector);
260         spin_lock_irqsave(&conf->device_lock, flags);
261         list_add(&r1_bio->retry_list, &conf->retry_list);
262         atomic_inc(&conf->nr_queued[idx]);
263         spin_unlock_irqrestore(&conf->device_lock, flags);
264
265         wake_up(&conf->wait_barrier);
266         md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270  * raid_end_bio_io() is called when we have finished servicing a mirrored
271  * operation and are ready to return a success/failure code to the buffer
272  * cache layer.
273  */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276         struct bio *bio = r1_bio->master_bio;
277         struct r1conf *conf = r1_bio->mddev->private;
278
279         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280                 bio->bi_error = -EIO;
281
282         bio_endio(bio);
283         /*
284          * Wake up any possible resync thread that waits for the device
285          * to go idle.
286          */
287         allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292         struct bio *bio = r1_bio->master_bio;
293
294         /* if nobody has done the final endio yet, do it now */
295         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
298                          (unsigned long long) bio->bi_iter.bi_sector,
299                          (unsigned long long) bio_end_sector(bio) - 1);
300
301                 call_bio_endio(r1_bio);
302         }
303         free_r1bio(r1_bio);
304 }
305
306 /*
307  * Update disk head position estimator based on IRQ completion info.
308  */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311         struct r1conf *conf = r1_bio->mddev->private;
312
313         conf->mirrors[disk].head_position =
314                 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318  * Find the disk number which triggered given bio
319  */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322         int mirror;
323         struct r1conf *conf = r1_bio->mddev->private;
324         int raid_disks = conf->raid_disks;
325
326         for (mirror = 0; mirror < raid_disks * 2; mirror++)
327                 if (r1_bio->bios[mirror] == bio)
328                         break;
329
330         BUG_ON(mirror == raid_disks * 2);
331         update_head_pos(mirror, r1_bio);
332
333         return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338         int uptodate = !bio->bi_error;
339         struct r1bio *r1_bio = bio->bi_private;
340         struct r1conf *conf = r1_bio->mddev->private;
341         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343         /*
344          * this branch is our 'one mirror IO has finished' event handler:
345          */
346         update_head_pos(r1_bio->read_disk, r1_bio);
347
348         if (uptodate)
349                 set_bit(R1BIO_Uptodate, &r1_bio->state);
350         else if (test_bit(FailFast, &rdev->flags) &&
351                  test_bit(R1BIO_FailFast, &r1_bio->state))
352                 /* This was a fail-fast read so we definitely
353                  * want to retry */
354                 ;
355         else {
356                 /* If all other devices have failed, we want to return
357                  * the error upwards rather than fail the last device.
358                  * Here we redefine "uptodate" to mean "Don't want to retry"
359                  */
360                 unsigned long flags;
361                 spin_lock_irqsave(&conf->device_lock, flags);
362                 if (r1_bio->mddev->degraded == conf->raid_disks ||
363                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364                      test_bit(In_sync, &rdev->flags)))
365                         uptodate = 1;
366                 spin_unlock_irqrestore(&conf->device_lock, flags);
367         }
368
369         if (uptodate) {
370                 raid_end_bio_io(r1_bio);
371                 rdev_dec_pending(rdev, conf->mddev);
372         } else {
373                 /*
374                  * oops, read error:
375                  */
376                 char b[BDEVNAME_SIZE];
377                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378                                    mdname(conf->mddev),
379                                    bdevname(rdev->bdev, b),
380                                    (unsigned long long)r1_bio->sector);
381                 set_bit(R1BIO_ReadError, &r1_bio->state);
382                 reschedule_retry(r1_bio);
383                 /* don't drop the reference on read_disk yet */
384         }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389         /* it really is the end of this request */
390         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391                 bio_free_pages(r1_bio->behind_master_bio);
392                 bio_put(r1_bio->behind_master_bio);
393                 r1_bio->behind_master_bio = NULL;
394         }
395         /* clear the bitmap if all writes complete successfully */
396         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397                         r1_bio->sectors,
398                         !test_bit(R1BIO_Degraded, &r1_bio->state),
399                         test_bit(R1BIO_BehindIO, &r1_bio->state));
400         md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405         if (!atomic_dec_and_test(&r1_bio->remaining))
406                 return;
407
408         if (test_bit(R1BIO_WriteError, &r1_bio->state))
409                 reschedule_retry(r1_bio);
410         else {
411                 close_write(r1_bio);
412                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413                         reschedule_retry(r1_bio);
414                 else
415                         raid_end_bio_io(r1_bio);
416         }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421         struct r1bio *r1_bio = bio->bi_private;
422         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423         struct r1conf *conf = r1_bio->mddev->private;
424         struct bio *to_put = NULL;
425         int mirror = find_bio_disk(r1_bio, bio);
426         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427         bool discard_error;
428
429         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431         /*
432          * 'one mirror IO has finished' event handler:
433          */
434         if (bio->bi_error && !discard_error) {
435                 set_bit(WriteErrorSeen, &rdev->flags);
436                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437                         set_bit(MD_RECOVERY_NEEDED, &
438                                 conf->mddev->recovery);
439
440                 if (test_bit(FailFast, &rdev->flags) &&
441                     (bio->bi_opf & MD_FAILFAST) &&
442                     /* We never try FailFast to WriteMostly devices */
443                     !test_bit(WriteMostly, &rdev->flags)) {
444                         md_error(r1_bio->mddev, rdev);
445                         if (!test_bit(Faulty, &rdev->flags))
446                                 /* This is the only remaining device,
447                                  * We need to retry the write without
448                                  * FailFast
449                                  */
450                                 set_bit(R1BIO_WriteError, &r1_bio->state);
451                         else {
452                                 /* Finished with this branch */
453                                 r1_bio->bios[mirror] = NULL;
454                                 to_put = bio;
455                         }
456                 } else
457                         set_bit(R1BIO_WriteError, &r1_bio->state);
458         } else {
459                 /*
460                  * Set R1BIO_Uptodate in our master bio, so that we
461                  * will return a good error code for to the higher
462                  * levels even if IO on some other mirrored buffer
463                  * fails.
464                  *
465                  * The 'master' represents the composite IO operation
466                  * to user-side. So if something waits for IO, then it
467                  * will wait for the 'master' bio.
468                  */
469                 sector_t first_bad;
470                 int bad_sectors;
471
472                 r1_bio->bios[mirror] = NULL;
473                 to_put = bio;
474                 /*
475                  * Do not set R1BIO_Uptodate if the current device is
476                  * rebuilding or Faulty. This is because we cannot use
477                  * such device for properly reading the data back (we could
478                  * potentially use it, if the current write would have felt
479                  * before rdev->recovery_offset, but for simplicity we don't
480                  * check this here.
481                  */
482                 if (test_bit(In_sync, &rdev->flags) &&
483                     !test_bit(Faulty, &rdev->flags))
484                         set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486                 /* Maybe we can clear some bad blocks. */
487                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488                                 &first_bad, &bad_sectors) && !discard_error) {
489                         r1_bio->bios[mirror] = IO_MADE_GOOD;
490                         set_bit(R1BIO_MadeGood, &r1_bio->state);
491                 }
492         }
493
494         if (behind) {
495                 /* we release behind master bio when all write are done */
496                 if (r1_bio->behind_master_bio == bio)
497                         to_put = NULL;
498
499                 if (test_bit(WriteMostly, &rdev->flags))
500                         atomic_dec(&r1_bio->behind_remaining);
501
502                 /*
503                  * In behind mode, we ACK the master bio once the I/O
504                  * has safely reached all non-writemostly
505                  * disks. Setting the Returned bit ensures that this
506                  * gets done only once -- we don't ever want to return
507                  * -EIO here, instead we'll wait
508                  */
509                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511                         /* Maybe we can return now */
512                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513                                 struct bio *mbio = r1_bio->master_bio;
514                                 pr_debug("raid1: behind end write sectors"
515                                          " %llu-%llu\n",
516                                          (unsigned long long) mbio->bi_iter.bi_sector,
517                                          (unsigned long long) bio_end_sector(mbio) - 1);
518                                 call_bio_endio(r1_bio);
519                         }
520                 }
521         }
522         if (r1_bio->bios[mirror] == NULL)
523                 rdev_dec_pending(rdev, conf->mddev);
524
525         /*
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         r1_bio_write_done(r1_bio);
530
531         if (to_put)
532                 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536                                           sector_t sectors)
537 {
538         sector_t len;
539
540         WARN_ON(sectors == 0);
541         /*
542          * len is the number of sectors from start_sector to end of the
543          * barrier unit which start_sector belongs to.
544          */
545         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546               start_sector;
547
548         if (len > sectors)
549                 len = sectors;
550
551         return len;
552 }
553
554 /*
555  * This routine returns the disk from which the requested read should
556  * be done. There is a per-array 'next expected sequential IO' sector
557  * number - if this matches on the next IO then we use the last disk.
558  * There is also a per-disk 'last know head position' sector that is
559  * maintained from IRQ contexts, both the normal and the resync IO
560  * completion handlers update this position correctly. If there is no
561  * perfect sequential match then we pick the disk whose head is closest.
562  *
563  * If there are 2 mirrors in the same 2 devices, performance degrades
564  * because position is mirror, not device based.
565  *
566  * The rdev for the device selected will have nr_pending incremented.
567  */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570         const sector_t this_sector = r1_bio->sector;
571         int sectors;
572         int best_good_sectors;
573         int best_disk, best_dist_disk, best_pending_disk;
574         int has_nonrot_disk;
575         int disk;
576         sector_t best_dist;
577         unsigned int min_pending;
578         struct md_rdev *rdev;
579         int choose_first;
580         int choose_next_idle;
581
582         rcu_read_lock();
583         /*
584          * Check if we can balance. We can balance on the whole
585          * device if no resync is going on, or below the resync window.
586          * We take the first readable disk when above the resync window.
587          */
588  retry:
589         sectors = r1_bio->sectors;
590         best_disk = -1;
591         best_dist_disk = -1;
592         best_dist = MaxSector;
593         best_pending_disk = -1;
594         min_pending = UINT_MAX;
595         best_good_sectors = 0;
596         has_nonrot_disk = 0;
597         choose_next_idle = 0;
598         clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601             (mddev_is_clustered(conf->mddev) &&
602             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603                     this_sector + sectors)))
604                 choose_first = 1;
605         else
606                 choose_first = 0;
607
608         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609                 sector_t dist;
610                 sector_t first_bad;
611                 int bad_sectors;
612                 unsigned int pending;
613                 bool nonrot;
614
615                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616                 if (r1_bio->bios[disk] == IO_BLOCKED
617                     || rdev == NULL
618                     || test_bit(Faulty, &rdev->flags))
619                         continue;
620                 if (!test_bit(In_sync, &rdev->flags) &&
621                     rdev->recovery_offset < this_sector + sectors)
622                         continue;
623                 if (test_bit(WriteMostly, &rdev->flags)) {
624                         /* Don't balance among write-mostly, just
625                          * use the first as a last resort */
626                         if (best_dist_disk < 0) {
627                                 if (is_badblock(rdev, this_sector, sectors,
628                                                 &first_bad, &bad_sectors)) {
629                                         if (first_bad <= this_sector)
630                                                 /* Cannot use this */
631                                                 continue;
632                                         best_good_sectors = first_bad - this_sector;
633                                 } else
634                                         best_good_sectors = sectors;
635                                 best_dist_disk = disk;
636                                 best_pending_disk = disk;
637                         }
638                         continue;
639                 }
640                 /* This is a reasonable device to use.  It might
641                  * even be best.
642                  */
643                 if (is_badblock(rdev, this_sector, sectors,
644                                 &first_bad, &bad_sectors)) {
645                         if (best_dist < MaxSector)
646                                 /* already have a better device */
647                                 continue;
648                         if (first_bad <= this_sector) {
649                                 /* cannot read here. If this is the 'primary'
650                                  * device, then we must not read beyond
651                                  * bad_sectors from another device..
652                                  */
653                                 bad_sectors -= (this_sector - first_bad);
654                                 if (choose_first && sectors > bad_sectors)
655                                         sectors = bad_sectors;
656                                 if (best_good_sectors > sectors)
657                                         best_good_sectors = sectors;
658
659                         } else {
660                                 sector_t good_sectors = first_bad - this_sector;
661                                 if (good_sectors > best_good_sectors) {
662                                         best_good_sectors = good_sectors;
663                                         best_disk = disk;
664                                 }
665                                 if (choose_first)
666                                         break;
667                         }
668                         continue;
669                 } else
670                         best_good_sectors = sectors;
671
672                 if (best_disk >= 0)
673                         /* At least two disks to choose from so failfast is OK */
674                         set_bit(R1BIO_FailFast, &r1_bio->state);
675
676                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677                 has_nonrot_disk |= nonrot;
678                 pending = atomic_read(&rdev->nr_pending);
679                 dist = abs(this_sector - conf->mirrors[disk].head_position);
680                 if (choose_first) {
681                         best_disk = disk;
682                         break;
683                 }
684                 /* Don't change to another disk for sequential reads */
685                 if (conf->mirrors[disk].next_seq_sect == this_sector
686                     || dist == 0) {
687                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688                         struct raid1_info *mirror = &conf->mirrors[disk];
689
690                         best_disk = disk;
691                         /*
692                          * If buffered sequential IO size exceeds optimal
693                          * iosize, check if there is idle disk. If yes, choose
694                          * the idle disk. read_balance could already choose an
695                          * idle disk before noticing it's a sequential IO in
696                          * this disk. This doesn't matter because this disk
697                          * will idle, next time it will be utilized after the
698                          * first disk has IO size exceeds optimal iosize. In
699                          * this way, iosize of the first disk will be optimal
700                          * iosize at least. iosize of the second disk might be
701                          * small, but not a big deal since when the second disk
702                          * starts IO, the first disk is likely still busy.
703                          */
704                         if (nonrot && opt_iosize > 0 &&
705                             mirror->seq_start != MaxSector &&
706                             mirror->next_seq_sect > opt_iosize &&
707                             mirror->next_seq_sect - opt_iosize >=
708                             mirror->seq_start) {
709                                 choose_next_idle = 1;
710                                 continue;
711                         }
712                         break;
713                 }
714
715                 if (choose_next_idle)
716                         continue;
717
718                 if (min_pending > pending) {
719                         min_pending = pending;
720                         best_pending_disk = disk;
721                 }
722
723                 if (dist < best_dist) {
724                         best_dist = dist;
725                         best_dist_disk = disk;
726                 }
727         }
728
729         /*
730          * If all disks are rotational, choose the closest disk. If any disk is
731          * non-rotational, choose the disk with less pending request even the
732          * disk is rotational, which might/might not be optimal for raids with
733          * mixed ratation/non-rotational disks depending on workload.
734          */
735         if (best_disk == -1) {
736                 if (has_nonrot_disk || min_pending == 0)
737                         best_disk = best_pending_disk;
738                 else
739                         best_disk = best_dist_disk;
740         }
741
742         if (best_disk >= 0) {
743                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744                 if (!rdev)
745                         goto retry;
746                 atomic_inc(&rdev->nr_pending);
747                 sectors = best_good_sectors;
748
749                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750                         conf->mirrors[best_disk].seq_start = this_sector;
751
752                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753         }
754         rcu_read_unlock();
755         *max_sectors = sectors;
756
757         return best_disk;
758 }
759
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762         struct r1conf *conf = mddev->private;
763         int i, ret = 0;
764
765         if ((bits & (1 << WB_async_congested)) &&
766             conf->pending_count >= max_queued_requests)
767                 return 1;
768
769         rcu_read_lock();
770         for (i = 0; i < conf->raid_disks * 2; i++) {
771                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
773                         struct request_queue *q = bdev_get_queue(rdev->bdev);
774
775                         BUG_ON(!q);
776
777                         /* Note the '|| 1' - when read_balance prefers
778                          * non-congested targets, it can be removed
779                          */
780                         if ((bits & (1 << WB_async_congested)) || 1)
781                                 ret |= bdi_congested(q->backing_dev_info, bits);
782                         else
783                                 ret &= bdi_congested(q->backing_dev_info, bits);
784                 }
785         }
786         rcu_read_unlock();
787         return ret;
788 }
789
790 static void flush_pending_writes(struct r1conf *conf)
791 {
792         /* Any writes that have been queued but are awaiting
793          * bitmap updates get flushed here.
794          */
795         spin_lock_irq(&conf->device_lock);
796
797         if (conf->pending_bio_list.head) {
798                 struct bio *bio;
799                 bio = bio_list_get(&conf->pending_bio_list);
800                 conf->pending_count = 0;
801                 spin_unlock_irq(&conf->device_lock);
802                 /* flush any pending bitmap writes to
803                  * disk before proceeding w/ I/O */
804                 bitmap_unplug(conf->mddev->bitmap);
805                 wake_up(&conf->wait_barrier);
806
807                 while (bio) { /* submit pending writes */
808                         struct bio *next = bio->bi_next;
809                         struct md_rdev *rdev = (void*)bio->bi_bdev;
810                         bio->bi_next = NULL;
811                         bio->bi_bdev = rdev->bdev;
812                         if (test_bit(Faulty, &rdev->flags)) {
813                                 bio->bi_error = -EIO;
814                                 bio_endio(bio);
815                         } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
817                                 /* Just ignore it */
818                                 bio_endio(bio);
819                         else
820                                 generic_make_request(bio);
821                         bio = next;
822                 }
823         } else
824                 spin_unlock_irq(&conf->device_lock);
825 }
826
827 /* Barriers....
828  * Sometimes we need to suspend IO while we do something else,
829  * either some resync/recovery, or reconfigure the array.
830  * To do this we raise a 'barrier'.
831  * The 'barrier' is a counter that can be raised multiple times
832  * to count how many activities are happening which preclude
833  * normal IO.
834  * We can only raise the barrier if there is no pending IO.
835  * i.e. if nr_pending == 0.
836  * We choose only to raise the barrier if no-one is waiting for the
837  * barrier to go down.  This means that as soon as an IO request
838  * is ready, no other operations which require a barrier will start
839  * until the IO request has had a chance.
840  *
841  * So: regular IO calls 'wait_barrier'.  When that returns there
842  *    is no backgroup IO happening,  It must arrange to call
843  *    allow_barrier when it has finished its IO.
844  * backgroup IO calls must call raise_barrier.  Once that returns
845  *    there is no normal IO happeing.  It must arrange to call
846  *    lower_barrier when the particular background IO completes.
847  */
848 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
849 {
850         int idx = sector_to_idx(sector_nr);
851
852         spin_lock_irq(&conf->resync_lock);
853
854         /* Wait until no block IO is waiting */
855         wait_event_lock_irq(conf->wait_barrier,
856                             !atomic_read(&conf->nr_waiting[idx]),
857                             conf->resync_lock);
858
859         /* block any new IO from starting */
860         atomic_inc(&conf->barrier[idx]);
861         /*
862          * In raise_barrier() we firstly increase conf->barrier[idx] then
863          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
864          * increase conf->nr_pending[idx] then check conf->barrier[idx].
865          * A memory barrier here to make sure conf->nr_pending[idx] won't
866          * be fetched before conf->barrier[idx] is increased. Otherwise
867          * there will be a race between raise_barrier() and _wait_barrier().
868          */
869         smp_mb__after_atomic();
870
871         /* For these conditions we must wait:
872          * A: while the array is in frozen state
873          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
874          *    existing in corresponding I/O barrier bucket.
875          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
876          *    max resync count which allowed on current I/O barrier bucket.
877          */
878         wait_event_lock_irq(conf->wait_barrier,
879                             !conf->array_frozen &&
880                              !atomic_read(&conf->nr_pending[idx]) &&
881                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
882                             conf->resync_lock);
883
884         atomic_inc(&conf->nr_pending[idx]);
885         spin_unlock_irq(&conf->resync_lock);
886 }
887
888 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
889 {
890         int idx = sector_to_idx(sector_nr);
891
892         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
893
894         atomic_dec(&conf->barrier[idx]);
895         atomic_dec(&conf->nr_pending[idx]);
896         wake_up(&conf->wait_barrier);
897 }
898
899 static void _wait_barrier(struct r1conf *conf, int idx)
900 {
901         /*
902          * We need to increase conf->nr_pending[idx] very early here,
903          * then raise_barrier() can be blocked when it waits for
904          * conf->nr_pending[idx] to be 0. Then we can avoid holding
905          * conf->resync_lock when there is no barrier raised in same
906          * barrier unit bucket. Also if the array is frozen, I/O
907          * should be blocked until array is unfrozen.
908          */
909         atomic_inc(&conf->nr_pending[idx]);
910         /*
911          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
912          * check conf->barrier[idx]. In raise_barrier() we firstly increase
913          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
914          * barrier is necessary here to make sure conf->barrier[idx] won't be
915          * fetched before conf->nr_pending[idx] is increased. Otherwise there
916          * will be a race between _wait_barrier() and raise_barrier().
917          */
918         smp_mb__after_atomic();
919
920         /*
921          * Don't worry about checking two atomic_t variables at same time
922          * here. If during we check conf->barrier[idx], the array is
923          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
924          * 0, it is safe to return and make the I/O continue. Because the
925          * array is frozen, all I/O returned here will eventually complete
926          * or be queued, no race will happen. See code comment in
927          * frozen_array().
928          */
929         if (!READ_ONCE(conf->array_frozen) &&
930             !atomic_read(&conf->barrier[idx]))
931                 return;
932
933         /*
934          * After holding conf->resync_lock, conf->nr_pending[idx]
935          * should be decreased before waiting for barrier to drop.
936          * Otherwise, we may encounter a race condition because
937          * raise_barrer() might be waiting for conf->nr_pending[idx]
938          * to be 0 at same time.
939          */
940         spin_lock_irq(&conf->resync_lock);
941         atomic_inc(&conf->nr_waiting[idx]);
942         atomic_dec(&conf->nr_pending[idx]);
943         /*
944          * In case freeze_array() is waiting for
945          * get_unqueued_pending() == extra
946          */
947         wake_up(&conf->wait_barrier);
948         /* Wait for the barrier in same barrier unit bucket to drop. */
949         wait_event_lock_irq(conf->wait_barrier,
950                             !conf->array_frozen &&
951                              !atomic_read(&conf->barrier[idx]),
952                             conf->resync_lock);
953         atomic_inc(&conf->nr_pending[idx]);
954         atomic_dec(&conf->nr_waiting[idx]);
955         spin_unlock_irq(&conf->resync_lock);
956 }
957
958 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
959 {
960         int idx = sector_to_idx(sector_nr);
961
962         /*
963          * Very similar to _wait_barrier(). The difference is, for read
964          * I/O we don't need wait for sync I/O, but if the whole array
965          * is frozen, the read I/O still has to wait until the array is
966          * unfrozen. Since there is no ordering requirement with
967          * conf->barrier[idx] here, memory barrier is unnecessary as well.
968          */
969         atomic_inc(&conf->nr_pending[idx]);
970
971         if (!READ_ONCE(conf->array_frozen))
972                 return;
973
974         spin_lock_irq(&conf->resync_lock);
975         atomic_inc(&conf->nr_waiting[idx]);
976         atomic_dec(&conf->nr_pending[idx]);
977         /*
978          * In case freeze_array() is waiting for
979          * get_unqueued_pending() == extra
980          */
981         wake_up(&conf->wait_barrier);
982         /* Wait for array to be unfrozen */
983         wait_event_lock_irq(conf->wait_barrier,
984                             !conf->array_frozen,
985                             conf->resync_lock);
986         atomic_inc(&conf->nr_pending[idx]);
987         atomic_dec(&conf->nr_waiting[idx]);
988         spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void inc_pending(struct r1conf *conf, sector_t bi_sector)
992 {
993         /* The current request requires multiple r1_bio, so
994          * we need to increment the pending count, and the corresponding
995          * window count.
996          */
997         int idx = sector_to_idx(bi_sector);
998         atomic_inc(&conf->nr_pending[idx]);
999 }
1000
1001 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1002 {
1003         int idx = sector_to_idx(sector_nr);
1004
1005         _wait_barrier(conf, idx);
1006 }
1007
1008 static void wait_all_barriers(struct r1conf *conf)
1009 {
1010         int idx;
1011
1012         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1013                 _wait_barrier(conf, idx);
1014 }
1015
1016 static void _allow_barrier(struct r1conf *conf, int idx)
1017 {
1018         atomic_dec(&conf->nr_pending[idx]);
1019         wake_up(&conf->wait_barrier);
1020 }
1021
1022 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024         int idx = sector_to_idx(sector_nr);
1025
1026         _allow_barrier(conf, idx);
1027 }
1028
1029 static void allow_all_barriers(struct r1conf *conf)
1030 {
1031         int idx;
1032
1033         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1034                 _allow_barrier(conf, idx);
1035 }
1036
1037 /* conf->resync_lock should be held */
1038 static int get_unqueued_pending(struct r1conf *conf)
1039 {
1040         int idx, ret;
1041
1042         for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1043                 ret += atomic_read(&conf->nr_pending[idx]) -
1044                         atomic_read(&conf->nr_queued[idx]);
1045
1046         return ret;
1047 }
1048
1049 static void freeze_array(struct r1conf *conf, int extra)
1050 {
1051         /* Stop sync I/O and normal I/O and wait for everything to
1052          * go quiet.
1053          * This is called in two situations:
1054          * 1) management command handlers (reshape, remove disk, quiesce).
1055          * 2) one normal I/O request failed.
1056
1057          * After array_frozen is set to 1, new sync IO will be blocked at
1058          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1059          * or wait_read_barrier(). The flying I/Os will either complete or be
1060          * queued. When everything goes quite, there are only queued I/Os left.
1061
1062          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1063          * barrier bucket index which this I/O request hits. When all sync and
1064          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1065          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1066          * in handle_read_error(), we may call freeze_array() before trying to
1067          * fix the read error. In this case, the error read I/O is not queued,
1068          * so get_unqueued_pending() == 1.
1069          *
1070          * Therefore before this function returns, we need to wait until
1071          * get_unqueued_pendings(conf) gets equal to extra. For
1072          * normal I/O context, extra is 1, in rested situations extra is 0.
1073          */
1074         spin_lock_irq(&conf->resync_lock);
1075         conf->array_frozen = 1;
1076         raid1_log(conf->mddev, "wait freeze");
1077         wait_event_lock_irq_cmd(
1078                 conf->wait_barrier,
1079                 get_unqueued_pending(conf) == extra,
1080                 conf->resync_lock,
1081                 flush_pending_writes(conf));
1082         spin_unlock_irq(&conf->resync_lock);
1083 }
1084 static void unfreeze_array(struct r1conf *conf)
1085 {
1086         /* reverse the effect of the freeze */
1087         spin_lock_irq(&conf->resync_lock);
1088         conf->array_frozen = 0;
1089         spin_unlock_irq(&conf->resync_lock);
1090         wake_up(&conf->wait_barrier);
1091 }
1092
1093 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1094                                            struct bio *bio,
1095                                            int offset, int size)
1096 {
1097         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1098         int i = 0;
1099         struct bio *behind_bio = NULL;
1100
1101         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1102         if (!behind_bio)
1103                 goto fail;
1104
1105         /* discard op, we don't support writezero/writesame yet */
1106         if (!bio_has_data(bio))
1107                 goto skip_copy;
1108
1109         while (i < vcnt && size) {
1110                 struct page *page;
1111                 int len = min_t(int, PAGE_SIZE, size);
1112
1113                 page = alloc_page(GFP_NOIO);
1114                 if (unlikely(!page))
1115                         goto free_pages;
1116
1117                 bio_add_page(behind_bio, page, len, 0);
1118
1119                 size -= len;
1120                 i++;
1121         }
1122
1123         bio_copy_data_partial(behind_bio, bio, offset,
1124                               behind_bio->bi_iter.bi_size);
1125 skip_copy:
1126         r1_bio->behind_master_bio = behind_bio;;
1127         set_bit(R1BIO_BehindIO, &r1_bio->state);
1128
1129         return behind_bio;
1130
1131 free_pages:
1132         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1133                  bio->bi_iter.bi_size);
1134         bio_free_pages(behind_bio);
1135 fail:
1136         return behind_bio;
1137 }
1138
1139 struct raid1_plug_cb {
1140         struct blk_plug_cb      cb;
1141         struct bio_list         pending;
1142         int                     pending_cnt;
1143 };
1144
1145 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1146 {
1147         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1148                                                   cb);
1149         struct mddev *mddev = plug->cb.data;
1150         struct r1conf *conf = mddev->private;
1151         struct bio *bio;
1152
1153         if (from_schedule || current->bio_list) {
1154                 spin_lock_irq(&conf->device_lock);
1155                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1156                 conf->pending_count += plug->pending_cnt;
1157                 spin_unlock_irq(&conf->device_lock);
1158                 wake_up(&conf->wait_barrier);
1159                 md_wakeup_thread(mddev->thread);
1160                 kfree(plug);
1161                 return;
1162         }
1163
1164         /* we aren't scheduling, so we can do the write-out directly. */
1165         bio = bio_list_get(&plug->pending);
1166         bitmap_unplug(mddev->bitmap);
1167         wake_up(&conf->wait_barrier);
1168
1169         while (bio) { /* submit pending writes */
1170                 struct bio *next = bio->bi_next;
1171                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1172                 bio->bi_next = NULL;
1173                 bio->bi_bdev = rdev->bdev;
1174                 if (test_bit(Faulty, &rdev->flags)) {
1175                         bio->bi_error = -EIO;
1176                         bio_endio(bio);
1177                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1178                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1179                         /* Just ignore it */
1180                         bio_endio(bio);
1181                 else
1182                         generic_make_request(bio);
1183                 bio = next;
1184         }
1185         kfree(plug);
1186 }
1187
1188 static inline struct r1bio *
1189 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1190 {
1191         struct r1conf *conf = mddev->private;
1192         struct r1bio *r1_bio;
1193
1194         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1195
1196         r1_bio->master_bio = bio;
1197         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1198         r1_bio->state = 0;
1199         r1_bio->mddev = mddev;
1200         r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1201
1202         return r1_bio;
1203 }
1204
1205 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1206 {
1207         struct r1conf *conf = mddev->private;
1208         struct raid1_info *mirror;
1209         struct r1bio *r1_bio;
1210         struct bio *read_bio;
1211         struct bitmap *bitmap = mddev->bitmap;
1212         const int op = bio_op(bio);
1213         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1214         int sectors_handled;
1215         int max_sectors;
1216         int rdisk;
1217
1218         /*
1219          * Still need barrier for READ in case that whole
1220          * array is frozen.
1221          */
1222         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1223
1224         r1_bio = alloc_r1bio(mddev, bio, 0);
1225
1226         /*
1227          * make_request() can abort the operation when read-ahead is being
1228          * used and no empty request is available.
1229          */
1230 read_again:
1231         rdisk = read_balance(conf, r1_bio, &max_sectors);
1232
1233         if (rdisk < 0) {
1234                 /* couldn't find anywhere to read from */
1235                 raid_end_bio_io(r1_bio);
1236                 return;
1237         }
1238         mirror = conf->mirrors + rdisk;
1239
1240         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1241             bitmap) {
1242                 /*
1243                  * Reading from a write-mostly device must take care not to
1244                  * over-take any writes that are 'behind'
1245                  */
1246                 raid1_log(mddev, "wait behind writes");
1247                 wait_event(bitmap->behind_wait,
1248                            atomic_read(&bitmap->behind_writes) == 0);
1249         }
1250         r1_bio->read_disk = rdisk;
1251
1252         read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1253         bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1254                  max_sectors);
1255
1256         r1_bio->bios[rdisk] = read_bio;
1257
1258         read_bio->bi_iter.bi_sector = r1_bio->sector +
1259                 mirror->rdev->data_offset;
1260         read_bio->bi_bdev = mirror->rdev->bdev;
1261         read_bio->bi_end_io = raid1_end_read_request;
1262         bio_set_op_attrs(read_bio, op, do_sync);
1263         if (test_bit(FailFast, &mirror->rdev->flags) &&
1264             test_bit(R1BIO_FailFast, &r1_bio->state))
1265                 read_bio->bi_opf |= MD_FAILFAST;
1266         read_bio->bi_private = r1_bio;
1267
1268         if (mddev->gendisk)
1269                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1270                                       read_bio, disk_devt(mddev->gendisk),
1271                                       r1_bio->sector);
1272
1273         if (max_sectors < r1_bio->sectors) {
1274                 /*
1275                  * could not read all from this device, so we will need another
1276                  * r1_bio.
1277                  */
1278                 sectors_handled = (r1_bio->sector + max_sectors
1279                                    - bio->bi_iter.bi_sector);
1280                 r1_bio->sectors = max_sectors;
1281                 bio_inc_remaining(bio);
1282
1283                 /*
1284                  * Cannot call generic_make_request directly as that will be
1285                  * queued in __make_request and subsequent mempool_alloc might
1286                  * block waiting for it.  So hand bio over to raid1d.
1287                  */
1288                 reschedule_retry(r1_bio);
1289
1290                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1291                 goto read_again;
1292         } else
1293                 generic_make_request(read_bio);
1294 }
1295
1296 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1297 {
1298         struct r1conf *conf = mddev->private;
1299         struct r1bio *r1_bio;
1300         int i, disks;
1301         struct bitmap *bitmap = mddev->bitmap;
1302         unsigned long flags;
1303         struct md_rdev *blocked_rdev;
1304         struct blk_plug_cb *cb;
1305         struct raid1_plug_cb *plug = NULL;
1306         int first_clone;
1307         int sectors_handled;
1308         int max_sectors;
1309         sector_t offset;
1310
1311         /*
1312          * Register the new request and wait if the reconstruction
1313          * thread has put up a bar for new requests.
1314          * Continue immediately if no resync is active currently.
1315          */
1316
1317         md_write_start(mddev, bio); /* wait on superblock update early */
1318
1319         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1320             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1321             (mddev_is_clustered(mddev) &&
1322              md_cluster_ops->area_resyncing(mddev, WRITE,
1323                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1324
1325                 /*
1326                  * As the suspend_* range is controlled by userspace, we want
1327                  * an interruptible wait.
1328                  */
1329                 DEFINE_WAIT(w);
1330                 for (;;) {
1331                         flush_signals(current);
1332                         prepare_to_wait(&conf->wait_barrier,
1333                                         &w, TASK_INTERRUPTIBLE);
1334                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1335                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1336                             (mddev_is_clustered(mddev) &&
1337                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1338                                      bio->bi_iter.bi_sector,
1339                                      bio_end_sector(bio))))
1340                                 break;
1341                         schedule();
1342                 }
1343                 finish_wait(&conf->wait_barrier, &w);
1344         }
1345         wait_barrier(conf, bio->bi_iter.bi_sector);
1346
1347         r1_bio = alloc_r1bio(mddev, bio, 0);
1348
1349         if (conf->pending_count >= max_queued_requests) {
1350                 md_wakeup_thread(mddev->thread);
1351                 raid1_log(mddev, "wait queued");
1352                 wait_event(conf->wait_barrier,
1353                            conf->pending_count < max_queued_requests);
1354         }
1355         /* first select target devices under rcu_lock and
1356          * inc refcount on their rdev.  Record them by setting
1357          * bios[x] to bio
1358          * If there are known/acknowledged bad blocks on any device on
1359          * which we have seen a write error, we want to avoid writing those
1360          * blocks.
1361          * This potentially requires several writes to write around
1362          * the bad blocks.  Each set of writes gets it's own r1bio
1363          * with a set of bios attached.
1364          */
1365
1366         disks = conf->raid_disks * 2;
1367  retry_write:
1368         blocked_rdev = NULL;
1369         rcu_read_lock();
1370         max_sectors = r1_bio->sectors;
1371         for (i = 0;  i < disks; i++) {
1372                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1373                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1374                         atomic_inc(&rdev->nr_pending);
1375                         blocked_rdev = rdev;
1376                         break;
1377                 }
1378                 r1_bio->bios[i] = NULL;
1379                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1380                         if (i < conf->raid_disks)
1381                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1382                         continue;
1383                 }
1384
1385                 atomic_inc(&rdev->nr_pending);
1386                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1387                         sector_t first_bad;
1388                         int bad_sectors;
1389                         int is_bad;
1390
1391                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1392                                              &first_bad, &bad_sectors);
1393                         if (is_bad < 0) {
1394                                 /* mustn't write here until the bad block is
1395                                  * acknowledged*/
1396                                 set_bit(BlockedBadBlocks, &rdev->flags);
1397                                 blocked_rdev = rdev;
1398                                 break;
1399                         }
1400                         if (is_bad && first_bad <= r1_bio->sector) {
1401                                 /* Cannot write here at all */
1402                                 bad_sectors -= (r1_bio->sector - first_bad);
1403                                 if (bad_sectors < max_sectors)
1404                                         /* mustn't write more than bad_sectors
1405                                          * to other devices yet
1406                                          */
1407                                         max_sectors = bad_sectors;
1408                                 rdev_dec_pending(rdev, mddev);
1409                                 /* We don't set R1BIO_Degraded as that
1410                                  * only applies if the disk is
1411                                  * missing, so it might be re-added,
1412                                  * and we want to know to recover this
1413                                  * chunk.
1414                                  * In this case the device is here,
1415                                  * and the fact that this chunk is not
1416                                  * in-sync is recorded in the bad
1417                                  * block log
1418                                  */
1419                                 continue;
1420                         }
1421                         if (is_bad) {
1422                                 int good_sectors = first_bad - r1_bio->sector;
1423                                 if (good_sectors < max_sectors)
1424                                         max_sectors = good_sectors;
1425                         }
1426                 }
1427                 r1_bio->bios[i] = bio;
1428         }
1429         rcu_read_unlock();
1430
1431         if (unlikely(blocked_rdev)) {
1432                 /* Wait for this device to become unblocked */
1433                 int j;
1434
1435                 for (j = 0; j < i; j++)
1436                         if (r1_bio->bios[j])
1437                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1438                 r1_bio->state = 0;
1439                 allow_barrier(conf, bio->bi_iter.bi_sector);
1440                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1441                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1442                 wait_barrier(conf, bio->bi_iter.bi_sector);
1443                 goto retry_write;
1444         }
1445
1446         if (max_sectors < r1_bio->sectors)
1447                 r1_bio->sectors = max_sectors;
1448
1449         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1450
1451         atomic_set(&r1_bio->remaining, 1);
1452         atomic_set(&r1_bio->behind_remaining, 0);
1453
1454         first_clone = 1;
1455
1456         offset = r1_bio->sector - bio->bi_iter.bi_sector;
1457         for (i = 0; i < disks; i++) {
1458                 struct bio *mbio = NULL;
1459                 if (!r1_bio->bios[i])
1460                         continue;
1461
1462
1463                 if (first_clone) {
1464                         /* do behind I/O ?
1465                          * Not if there are too many, or cannot
1466                          * allocate memory, or a reader on WriteMostly
1467                          * is waiting for behind writes to flush */
1468                         if (bitmap &&
1469                             (atomic_read(&bitmap->behind_writes)
1470                              < mddev->bitmap_info.max_write_behind) &&
1471                             !waitqueue_active(&bitmap->behind_wait)) {
1472                                 mbio = alloc_behind_master_bio(r1_bio, bio,
1473                                                                offset << 9,
1474                                                                max_sectors << 9);
1475                         }
1476
1477                         bitmap_startwrite(bitmap, r1_bio->sector,
1478                                           r1_bio->sectors,
1479                                           test_bit(R1BIO_BehindIO,
1480                                                    &r1_bio->state));
1481                         first_clone = 0;
1482                 }
1483
1484                 if (!mbio) {
1485                         if (r1_bio->behind_master_bio)
1486                                 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1487                                                       GFP_NOIO,
1488                                                       mddev->bio_set);
1489                         else {
1490                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1491                                 bio_trim(mbio, offset, max_sectors);
1492                         }
1493                 }
1494
1495                 if (r1_bio->behind_master_bio) {
1496                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1497                                 atomic_inc(&r1_bio->behind_remaining);
1498                 }
1499
1500                 r1_bio->bios[i] = mbio;
1501
1502                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1503                                    conf->mirrors[i].rdev->data_offset);
1504                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1505                 mbio->bi_end_io = raid1_end_write_request;
1506                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1507                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1508                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1509                     conf->raid_disks - mddev->degraded > 1)
1510                         mbio->bi_opf |= MD_FAILFAST;
1511                 mbio->bi_private = r1_bio;
1512
1513                 atomic_inc(&r1_bio->remaining);
1514
1515                 if (mddev->gendisk)
1516                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1517                                               mbio, disk_devt(mddev->gendisk),
1518                                               r1_bio->sector);
1519                 /* flush_pending_writes() needs access to the rdev so...*/
1520                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1521
1522                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1523                 if (cb)
1524                         plug = container_of(cb, struct raid1_plug_cb, cb);
1525                 else
1526                         plug = NULL;
1527                 spin_lock_irqsave(&conf->device_lock, flags);
1528                 if (plug) {
1529                         bio_list_add(&plug->pending, mbio);
1530                         plug->pending_cnt++;
1531                 } else {
1532                         bio_list_add(&conf->pending_bio_list, mbio);
1533                         conf->pending_count++;
1534                 }
1535                 spin_unlock_irqrestore(&conf->device_lock, flags);
1536                 if (!plug)
1537                         md_wakeup_thread(mddev->thread);
1538         }
1539         /* Mustn't call r1_bio_write_done before this next test,
1540          * as it could result in the bio being freed.
1541          */
1542         if (sectors_handled < bio_sectors(bio)) {
1543                 /* We need another r1_bio, which must be counted */
1544                 sector_t sect = bio->bi_iter.bi_sector + sectors_handled;
1545
1546                 inc_pending(conf, sect);
1547                 bio_inc_remaining(bio);
1548                 r1_bio_write_done(r1_bio);
1549                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1550                 goto retry_write;
1551         }
1552
1553         r1_bio_write_done(r1_bio);
1554
1555         /* In case raid1d snuck in to freeze_array */
1556         wake_up(&conf->wait_barrier);
1557 }
1558
1559 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1560 {
1561         struct bio *split;
1562         sector_t sectors;
1563
1564         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1565                 md_flush_request(mddev, bio);
1566                 return;
1567         }
1568
1569         /* if bio exceeds barrier unit boundary, split it */
1570         do {
1571                 sectors = align_to_barrier_unit_end(
1572                                 bio->bi_iter.bi_sector, bio_sectors(bio));
1573                 if (sectors < bio_sectors(bio)) {
1574                         split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1575                         bio_chain(split, bio);
1576                 } else {
1577                         split = bio;
1578                 }
1579
1580                 if (bio_data_dir(split) == READ) {
1581                         raid1_read_request(mddev, split);
1582
1583                         /*
1584                          * If a bio is splitted, the first part of bio will
1585                          * pass barrier but the bio is queued in
1586                          * current->bio_list (see generic_make_request). If
1587                          * there is a raise_barrier() called here, the second
1588                          * part of bio can't pass barrier. But since the first
1589                          * part bio isn't dispatched to underlaying disks yet,
1590                          * the barrier is never released, hence raise_barrier
1591                          * will alays wait. We have a deadlock.
1592                          * Note, this only happens in read path. For write
1593                          * path, the first part of bio is dispatched in a
1594                          * schedule() call (because of blk plug) or offloaded
1595                          * to raid10d.
1596                          * Quitting from the function immediately can change
1597                          * the bio order queued in bio_list and avoid the deadlock.
1598                          */
1599                         if (split != bio) {
1600                                 generic_make_request(bio);
1601                                 break;
1602                         }
1603                 } else
1604                         raid1_write_request(mddev, split);
1605         } while (split != bio);
1606 }
1607
1608 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609 {
1610         struct r1conf *conf = mddev->private;
1611         int i;
1612
1613         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1614                    conf->raid_disks - mddev->degraded);
1615         rcu_read_lock();
1616         for (i = 0; i < conf->raid_disks; i++) {
1617                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1618                 seq_printf(seq, "%s",
1619                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1620         }
1621         rcu_read_unlock();
1622         seq_printf(seq, "]");
1623 }
1624
1625 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1626 {
1627         char b[BDEVNAME_SIZE];
1628         struct r1conf *conf = mddev->private;
1629         unsigned long flags;
1630
1631         /*
1632          * If it is not operational, then we have already marked it as dead
1633          * else if it is the last working disks, ignore the error, let the
1634          * next level up know.
1635          * else mark the drive as failed
1636          */
1637         spin_lock_irqsave(&conf->device_lock, flags);
1638         if (test_bit(In_sync, &rdev->flags)
1639             && (conf->raid_disks - mddev->degraded) == 1) {
1640                 /*
1641                  * Don't fail the drive, act as though we were just a
1642                  * normal single drive.
1643                  * However don't try a recovery from this drive as
1644                  * it is very likely to fail.
1645                  */
1646                 conf->recovery_disabled = mddev->recovery_disabled;
1647                 spin_unlock_irqrestore(&conf->device_lock, flags);
1648                 return;
1649         }
1650         set_bit(Blocked, &rdev->flags);
1651         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1652                 mddev->degraded++;
1653                 set_bit(Faulty, &rdev->flags);
1654         } else
1655                 set_bit(Faulty, &rdev->flags);
1656         spin_unlock_irqrestore(&conf->device_lock, flags);
1657         /*
1658          * if recovery is running, make sure it aborts.
1659          */
1660         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1661         set_mask_bits(&mddev->sb_flags, 0,
1662                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1663         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1664                 "md/raid1:%s: Operation continuing on %d devices.\n",
1665                 mdname(mddev), bdevname(rdev->bdev, b),
1666                 mdname(mddev), conf->raid_disks - mddev->degraded);
1667 }
1668
1669 static void print_conf(struct r1conf *conf)
1670 {
1671         int i;
1672
1673         pr_debug("RAID1 conf printout:\n");
1674         if (!conf) {
1675                 pr_debug("(!conf)\n");
1676                 return;
1677         }
1678         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1679                  conf->raid_disks);
1680
1681         rcu_read_lock();
1682         for (i = 0; i < conf->raid_disks; i++) {
1683                 char b[BDEVNAME_SIZE];
1684                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1685                 if (rdev)
1686                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1687                                  i, !test_bit(In_sync, &rdev->flags),
1688                                  !test_bit(Faulty, &rdev->flags),
1689                                  bdevname(rdev->bdev,b));
1690         }
1691         rcu_read_unlock();
1692 }
1693
1694 static void close_sync(struct r1conf *conf)
1695 {
1696         wait_all_barriers(conf);
1697         allow_all_barriers(conf);
1698
1699         mempool_destroy(conf->r1buf_pool);
1700         conf->r1buf_pool = NULL;
1701 }
1702
1703 static int raid1_spare_active(struct mddev *mddev)
1704 {
1705         int i;
1706         struct r1conf *conf = mddev->private;
1707         int count = 0;
1708         unsigned long flags;
1709
1710         /*
1711          * Find all failed disks within the RAID1 configuration
1712          * and mark them readable.
1713          * Called under mddev lock, so rcu protection not needed.
1714          * device_lock used to avoid races with raid1_end_read_request
1715          * which expects 'In_sync' flags and ->degraded to be consistent.
1716          */
1717         spin_lock_irqsave(&conf->device_lock, flags);
1718         for (i = 0; i < conf->raid_disks; i++) {
1719                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1720                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1721                 if (repl
1722                     && !test_bit(Candidate, &repl->flags)
1723                     && repl->recovery_offset == MaxSector
1724                     && !test_bit(Faulty, &repl->flags)
1725                     && !test_and_set_bit(In_sync, &repl->flags)) {
1726                         /* replacement has just become active */
1727                         if (!rdev ||
1728                             !test_and_clear_bit(In_sync, &rdev->flags))
1729                                 count++;
1730                         if (rdev) {
1731                                 /* Replaced device not technically
1732                                  * faulty, but we need to be sure
1733                                  * it gets removed and never re-added
1734                                  */
1735                                 set_bit(Faulty, &rdev->flags);
1736                                 sysfs_notify_dirent_safe(
1737                                         rdev->sysfs_state);
1738                         }
1739                 }
1740                 if (rdev
1741                     && rdev->recovery_offset == MaxSector
1742                     && !test_bit(Faulty, &rdev->flags)
1743                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1744                         count++;
1745                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1746                 }
1747         }
1748         mddev->degraded -= count;
1749         spin_unlock_irqrestore(&conf->device_lock, flags);
1750
1751         print_conf(conf);
1752         return count;
1753 }
1754
1755 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756 {
1757         struct r1conf *conf = mddev->private;
1758         int err = -EEXIST;
1759         int mirror = 0;
1760         struct raid1_info *p;
1761         int first = 0;
1762         int last = conf->raid_disks - 1;
1763
1764         if (mddev->recovery_disabled == conf->recovery_disabled)
1765                 return -EBUSY;
1766
1767         if (md_integrity_add_rdev(rdev, mddev))
1768                 return -ENXIO;
1769
1770         if (rdev->raid_disk >= 0)
1771                 first = last = rdev->raid_disk;
1772
1773         /*
1774          * find the disk ... but prefer rdev->saved_raid_disk
1775          * if possible.
1776          */
1777         if (rdev->saved_raid_disk >= 0 &&
1778             rdev->saved_raid_disk >= first &&
1779             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780                 first = last = rdev->saved_raid_disk;
1781
1782         for (mirror = first; mirror <= last; mirror++) {
1783                 p = conf->mirrors+mirror;
1784                 if (!p->rdev) {
1785
1786                         if (mddev->gendisk)
1787                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1788                                                   rdev->data_offset << 9);
1789
1790                         p->head_position = 0;
1791                         rdev->raid_disk = mirror;
1792                         err = 0;
1793                         /* As all devices are equivalent, we don't need a full recovery
1794                          * if this was recently any drive of the array
1795                          */
1796                         if (rdev->saved_raid_disk < 0)
1797                                 conf->fullsync = 1;
1798                         rcu_assign_pointer(p->rdev, rdev);
1799                         break;
1800                 }
1801                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1802                     p[conf->raid_disks].rdev == NULL) {
1803                         /* Add this device as a replacement */
1804                         clear_bit(In_sync, &rdev->flags);
1805                         set_bit(Replacement, &rdev->flags);
1806                         rdev->raid_disk = mirror;
1807                         err = 0;
1808                         conf->fullsync = 1;
1809                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1810                         break;
1811                 }
1812         }
1813         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1814                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1815         print_conf(conf);
1816         return err;
1817 }
1818
1819 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1820 {
1821         struct r1conf *conf = mddev->private;
1822         int err = 0;
1823         int number = rdev->raid_disk;
1824         struct raid1_info *p = conf->mirrors + number;
1825
1826         if (rdev != p->rdev)
1827                 p = conf->mirrors + conf->raid_disks + number;
1828
1829         print_conf(conf);
1830         if (rdev == p->rdev) {
1831                 if (test_bit(In_sync, &rdev->flags) ||
1832                     atomic_read(&rdev->nr_pending)) {
1833                         err = -EBUSY;
1834                         goto abort;
1835                 }
1836                 /* Only remove non-faulty devices if recovery
1837                  * is not possible.
1838                  */
1839                 if (!test_bit(Faulty, &rdev->flags) &&
1840                     mddev->recovery_disabled != conf->recovery_disabled &&
1841                     mddev->degraded < conf->raid_disks) {
1842                         err = -EBUSY;
1843                         goto abort;
1844                 }
1845                 p->rdev = NULL;
1846                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1847                         synchronize_rcu();
1848                         if (atomic_read(&rdev->nr_pending)) {
1849                                 /* lost the race, try later */
1850                                 err = -EBUSY;
1851                                 p->rdev = rdev;
1852                                 goto abort;
1853                         }
1854                 }
1855                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1856                         /* We just removed a device that is being replaced.
1857                          * Move down the replacement.  We drain all IO before
1858                          * doing this to avoid confusion.
1859                          */
1860                         struct md_rdev *repl =
1861                                 conf->mirrors[conf->raid_disks + number].rdev;
1862                         freeze_array(conf, 0);
1863                         clear_bit(Replacement, &repl->flags);
1864                         p->rdev = repl;
1865                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1866                         unfreeze_array(conf);
1867                         clear_bit(WantReplacement, &rdev->flags);
1868                 } else
1869                         clear_bit(WantReplacement, &rdev->flags);
1870                 err = md_integrity_register(mddev);
1871         }
1872 abort:
1873
1874         print_conf(conf);
1875         return err;
1876 }
1877
1878 static void end_sync_read(struct bio *bio)
1879 {
1880         struct r1bio *r1_bio = get_resync_r1bio(bio);
1881
1882         update_head_pos(r1_bio->read_disk, r1_bio);
1883
1884         /*
1885          * we have read a block, now it needs to be re-written,
1886          * or re-read if the read failed.
1887          * We don't do much here, just schedule handling by raid1d
1888          */
1889         if (!bio->bi_error)
1890                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1891
1892         if (atomic_dec_and_test(&r1_bio->remaining))
1893                 reschedule_retry(r1_bio);
1894 }
1895
1896 static void end_sync_write(struct bio *bio)
1897 {
1898         int uptodate = !bio->bi_error;
1899         struct r1bio *r1_bio = get_resync_r1bio(bio);
1900         struct mddev *mddev = r1_bio->mddev;
1901         struct r1conf *conf = mddev->private;
1902         sector_t first_bad;
1903         int bad_sectors;
1904         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1905
1906         if (!uptodate) {
1907                 sector_t sync_blocks = 0;
1908                 sector_t s = r1_bio->sector;
1909                 long sectors_to_go = r1_bio->sectors;
1910                 /* make sure these bits doesn't get cleared. */
1911                 do {
1912                         bitmap_end_sync(mddev->bitmap, s,
1913                                         &sync_blocks, 1);
1914                         s += sync_blocks;
1915                         sectors_to_go -= sync_blocks;
1916                 } while (sectors_to_go > 0);
1917                 set_bit(WriteErrorSeen, &rdev->flags);
1918                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1919                         set_bit(MD_RECOVERY_NEEDED, &
1920                                 mddev->recovery);
1921                 set_bit(R1BIO_WriteError, &r1_bio->state);
1922         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1923                                &first_bad, &bad_sectors) &&
1924                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1925                                 r1_bio->sector,
1926                                 r1_bio->sectors,
1927                                 &first_bad, &bad_sectors)
1928                 )
1929                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1930
1931         if (atomic_dec_and_test(&r1_bio->remaining)) {
1932                 int s = r1_bio->sectors;
1933                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1934                     test_bit(R1BIO_WriteError, &r1_bio->state))
1935                         reschedule_retry(r1_bio);
1936                 else {
1937                         put_buf(r1_bio);
1938                         md_done_sync(mddev, s, uptodate);
1939                 }
1940         }
1941 }
1942
1943 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1944                             int sectors, struct page *page, int rw)
1945 {
1946         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1947                 /* success */
1948                 return 1;
1949         if (rw == WRITE) {
1950                 set_bit(WriteErrorSeen, &rdev->flags);
1951                 if (!test_and_set_bit(WantReplacement,
1952                                       &rdev->flags))
1953                         set_bit(MD_RECOVERY_NEEDED, &
1954                                 rdev->mddev->recovery);
1955         }
1956         /* need to record an error - either for the block or the device */
1957         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1958                 md_error(rdev->mddev, rdev);
1959         return 0;
1960 }
1961
1962 static int fix_sync_read_error(struct r1bio *r1_bio)
1963 {
1964         /* Try some synchronous reads of other devices to get
1965          * good data, much like with normal read errors.  Only
1966          * read into the pages we already have so we don't
1967          * need to re-issue the read request.
1968          * We don't need to freeze the array, because being in an
1969          * active sync request, there is no normal IO, and
1970          * no overlapping syncs.
1971          * We don't need to check is_badblock() again as we
1972          * made sure that anything with a bad block in range
1973          * will have bi_end_io clear.
1974          */
1975         struct mddev *mddev = r1_bio->mddev;
1976         struct r1conf *conf = mddev->private;
1977         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1978         struct page **pages = get_resync_pages(bio)->pages;
1979         sector_t sect = r1_bio->sector;
1980         int sectors = r1_bio->sectors;
1981         int idx = 0;
1982         struct md_rdev *rdev;
1983
1984         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1985         if (test_bit(FailFast, &rdev->flags)) {
1986                 /* Don't try recovering from here - just fail it
1987                  * ... unless it is the last working device of course */
1988                 md_error(mddev, rdev);
1989                 if (test_bit(Faulty, &rdev->flags))
1990                         /* Don't try to read from here, but make sure
1991                          * put_buf does it's thing
1992                          */
1993                         bio->bi_end_io = end_sync_write;
1994         }
1995
1996         while(sectors) {
1997                 int s = sectors;
1998                 int d = r1_bio->read_disk;
1999                 int success = 0;
2000                 int start;
2001
2002                 if (s > (PAGE_SIZE>>9))
2003                         s = PAGE_SIZE >> 9;
2004                 do {
2005                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2006                                 /* No rcu protection needed here devices
2007                                  * can only be removed when no resync is
2008                                  * active, and resync is currently active
2009                                  */
2010                                 rdev = conf->mirrors[d].rdev;
2011                                 if (sync_page_io(rdev, sect, s<<9,
2012                                                  pages[idx],
2013                                                  REQ_OP_READ, 0, false)) {
2014                                         success = 1;
2015                                         break;
2016                                 }
2017                         }
2018                         d++;
2019                         if (d == conf->raid_disks * 2)
2020                                 d = 0;
2021                 } while (!success && d != r1_bio->read_disk);
2022
2023                 if (!success) {
2024                         char b[BDEVNAME_SIZE];
2025                         int abort = 0;
2026                         /* Cannot read from anywhere, this block is lost.
2027                          * Record a bad block on each device.  If that doesn't
2028                          * work just disable and interrupt the recovery.
2029                          * Don't fail devices as that won't really help.
2030                          */
2031                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2032                                             mdname(mddev),
2033                                             bdevname(bio->bi_bdev, b),
2034                                             (unsigned long long)r1_bio->sector);
2035                         for (d = 0; d < conf->raid_disks * 2; d++) {
2036                                 rdev = conf->mirrors[d].rdev;
2037                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2038                                         continue;
2039                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2040                                         abort = 1;
2041                         }
2042                         if (abort) {
2043                                 conf->recovery_disabled =
2044                                         mddev->recovery_disabled;
2045                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2046                                 md_done_sync(mddev, r1_bio->sectors, 0);
2047                                 put_buf(r1_bio);
2048                                 return 0;
2049                         }
2050                         /* Try next page */
2051                         sectors -= s;
2052                         sect += s;
2053                         idx++;
2054                         continue;
2055                 }
2056
2057                 start = d;
2058                 /* write it back and re-read */
2059                 while (d != r1_bio->read_disk) {
2060                         if (d == 0)
2061                                 d = conf->raid_disks * 2;
2062                         d--;
2063                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2064                                 continue;
2065                         rdev = conf->mirrors[d].rdev;
2066                         if (r1_sync_page_io(rdev, sect, s,
2067                                             pages[idx],
2068                                             WRITE) == 0) {
2069                                 r1_bio->bios[d]->bi_end_io = NULL;
2070                                 rdev_dec_pending(rdev, mddev);
2071                         }
2072                 }
2073                 d = start;
2074                 while (d != r1_bio->read_disk) {
2075                         if (d == 0)
2076                                 d = conf->raid_disks * 2;
2077                         d--;
2078                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2079                                 continue;
2080                         rdev = conf->mirrors[d].rdev;
2081                         if (r1_sync_page_io(rdev, sect, s,
2082                                             pages[idx],
2083                                             READ) != 0)
2084                                 atomic_add(s, &rdev->corrected_errors);
2085                 }
2086                 sectors -= s;
2087                 sect += s;
2088                 idx ++;
2089         }
2090         set_bit(R1BIO_Uptodate, &r1_bio->state);
2091         bio->bi_error = 0;
2092         return 1;
2093 }
2094
2095 static void process_checks(struct r1bio *r1_bio)
2096 {
2097         /* We have read all readable devices.  If we haven't
2098          * got the block, then there is no hope left.
2099          * If we have, then we want to do a comparison
2100          * and skip the write if everything is the same.
2101          * If any blocks failed to read, then we need to
2102          * attempt an over-write
2103          */
2104         struct mddev *mddev = r1_bio->mddev;
2105         struct r1conf *conf = mddev->private;
2106         int primary;
2107         int i;
2108         int vcnt;
2109
2110         /* Fix variable parts of all bios */
2111         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2112         for (i = 0; i < conf->raid_disks * 2; i++) {
2113                 int j;
2114                 int size;
2115                 int error;
2116                 struct bio_vec *bi;
2117                 struct bio *b = r1_bio->bios[i];
2118                 struct resync_pages *rp = get_resync_pages(b);
2119                 if (b->bi_end_io != end_sync_read)
2120                         continue;
2121                 /* fixup the bio for reuse, but preserve errno */
2122                 error = b->bi_error;
2123                 bio_reset(b);
2124                 b->bi_error = error;
2125                 b->bi_vcnt = vcnt;
2126                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2127                 b->bi_iter.bi_sector = r1_bio->sector +
2128                         conf->mirrors[i].rdev->data_offset;
2129                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2130                 b->bi_end_io = end_sync_read;
2131                 rp->raid_bio = r1_bio;
2132                 b->bi_private = rp;
2133
2134                 size = b->bi_iter.bi_size;
2135                 bio_for_each_segment_all(bi, b, j) {
2136                         bi->bv_offset = 0;
2137                         if (size > PAGE_SIZE)
2138                                 bi->bv_len = PAGE_SIZE;
2139                         else
2140                                 bi->bv_len = size;
2141                         size -= PAGE_SIZE;
2142                 }
2143         }
2144         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2145                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2146                     !r1_bio->bios[primary]->bi_error) {
2147                         r1_bio->bios[primary]->bi_end_io = NULL;
2148                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2149                         break;
2150                 }
2151         r1_bio->read_disk = primary;
2152         for (i = 0; i < conf->raid_disks * 2; i++) {
2153                 int j;
2154                 struct bio *pbio = r1_bio->bios[primary];
2155                 struct bio *sbio = r1_bio->bios[i];
2156                 int error = sbio->bi_error;
2157                 struct page **ppages = get_resync_pages(pbio)->pages;
2158                 struct page **spages = get_resync_pages(sbio)->pages;
2159                 struct bio_vec *bi;
2160                 int page_len[RESYNC_PAGES] = { 0 };
2161
2162                 if (sbio->bi_end_io != end_sync_read)
2163                         continue;
2164                 /* Now we can 'fixup' the error value */
2165                 sbio->bi_error = 0;
2166
2167                 bio_for_each_segment_all(bi, sbio, j)
2168                         page_len[j] = bi->bv_len;
2169
2170                 if (!error) {
2171                         for (j = vcnt; j-- ; ) {
2172                                 if (memcmp(page_address(ppages[j]),
2173                                            page_address(spages[j]),
2174                                            page_len[j]))
2175                                         break;
2176                         }
2177                 } else
2178                         j = 0;
2179                 if (j >= 0)
2180                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2181                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2182                               && !error)) {
2183                         /* No need to write to this device. */
2184                         sbio->bi_end_io = NULL;
2185                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2186                         continue;
2187                 }
2188
2189                 bio_copy_data(sbio, pbio);
2190         }
2191 }
2192
2193 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2194 {
2195         struct r1conf *conf = mddev->private;
2196         int i;
2197         int disks = conf->raid_disks * 2;
2198         struct bio *bio, *wbio;
2199
2200         bio = r1_bio->bios[r1_bio->read_disk];
2201
2202         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2203                 /* ouch - failed to read all of that. */
2204                 if (!fix_sync_read_error(r1_bio))
2205                         return;
2206
2207         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2208                 process_checks(r1_bio);
2209
2210         /*
2211          * schedule writes
2212          */
2213         atomic_set(&r1_bio->remaining, 1);
2214         for (i = 0; i < disks ; i++) {
2215                 wbio = r1_bio->bios[i];
2216                 if (wbio->bi_end_io == NULL ||
2217                     (wbio->bi_end_io == end_sync_read &&
2218                      (i == r1_bio->read_disk ||
2219                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2220                         continue;
2221                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2222                         continue;
2223
2224                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2225                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2226                         wbio->bi_opf |= MD_FAILFAST;
2227
2228                 wbio->bi_end_io = end_sync_write;
2229                 atomic_inc(&r1_bio->remaining);
2230                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2231
2232                 generic_make_request(wbio);
2233         }
2234
2235         if (atomic_dec_and_test(&r1_bio->remaining)) {
2236                 /* if we're here, all write(s) have completed, so clean up */
2237                 int s = r1_bio->sectors;
2238                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2239                     test_bit(R1BIO_WriteError, &r1_bio->state))
2240                         reschedule_retry(r1_bio);
2241                 else {
2242                         put_buf(r1_bio);
2243                         md_done_sync(mddev, s, 1);
2244                 }
2245         }
2246 }
2247
2248 /*
2249  * This is a kernel thread which:
2250  *
2251  *      1.      Retries failed read operations on working mirrors.
2252  *      2.      Updates the raid superblock when problems encounter.
2253  *      3.      Performs writes following reads for array synchronising.
2254  */
2255
2256 static void fix_read_error(struct r1conf *conf, int read_disk,
2257                            sector_t sect, int sectors)
2258 {
2259         struct mddev *mddev = conf->mddev;
2260         while(sectors) {
2261                 int s = sectors;
2262                 int d = read_disk;
2263                 int success = 0;
2264                 int start;
2265                 struct md_rdev *rdev;
2266
2267                 if (s > (PAGE_SIZE>>9))
2268                         s = PAGE_SIZE >> 9;
2269
2270                 do {
2271                         sector_t first_bad;
2272                         int bad_sectors;
2273
2274                         rcu_read_lock();
2275                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2276                         if (rdev &&
2277                             (test_bit(In_sync, &rdev->flags) ||
2278                              (!test_bit(Faulty, &rdev->flags) &&
2279                               rdev->recovery_offset >= sect + s)) &&
2280                             is_badblock(rdev, sect, s,
2281                                         &first_bad, &bad_sectors) == 0) {
2282                                 atomic_inc(&rdev->nr_pending);
2283                                 rcu_read_unlock();
2284                                 if (sync_page_io(rdev, sect, s<<9,
2285                                          conf->tmppage, REQ_OP_READ, 0, false))
2286                                         success = 1;
2287                                 rdev_dec_pending(rdev, mddev);
2288                                 if (success)
2289                                         break;
2290                         } else
2291                                 rcu_read_unlock();
2292                         d++;
2293                         if (d == conf->raid_disks * 2)
2294                                 d = 0;
2295                 } while (!success && d != read_disk);
2296
2297                 if (!success) {
2298                         /* Cannot read from anywhere - mark it bad */
2299                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2300                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2301                                 md_error(mddev, rdev);
2302                         break;
2303                 }
2304                 /* write it back and re-read */
2305                 start = d;
2306                 while (d != read_disk) {
2307                         if (d==0)
2308                                 d = conf->raid_disks * 2;
2309                         d--;
2310                         rcu_read_lock();
2311                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2312                         if (rdev &&
2313                             !test_bit(Faulty, &rdev->flags)) {
2314                                 atomic_inc(&rdev->nr_pending);
2315                                 rcu_read_unlock();
2316                                 r1_sync_page_io(rdev, sect, s,
2317                                                 conf->tmppage, WRITE);
2318                                 rdev_dec_pending(rdev, mddev);
2319                         } else
2320                                 rcu_read_unlock();
2321                 }
2322                 d = start;
2323                 while (d != read_disk) {
2324                         char b[BDEVNAME_SIZE];
2325                         if (d==0)
2326                                 d = conf->raid_disks * 2;
2327                         d--;
2328                         rcu_read_lock();
2329                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2330                         if (rdev &&
2331                             !test_bit(Faulty, &rdev->flags)) {
2332                                 atomic_inc(&rdev->nr_pending);
2333                                 rcu_read_unlock();
2334                                 if (r1_sync_page_io(rdev, sect, s,
2335                                                     conf->tmppage, READ)) {
2336                                         atomic_add(s, &rdev->corrected_errors);
2337                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2338                                                 mdname(mddev), s,
2339                                                 (unsigned long long)(sect +
2340                                                                      rdev->data_offset),
2341                                                 bdevname(rdev->bdev, b));
2342                                 }
2343                                 rdev_dec_pending(rdev, mddev);
2344                         } else
2345                                 rcu_read_unlock();
2346                 }
2347                 sectors -= s;
2348                 sect += s;
2349         }
2350 }
2351
2352 static int narrow_write_error(struct r1bio *r1_bio, int i)
2353 {
2354         struct mddev *mddev = r1_bio->mddev;
2355         struct r1conf *conf = mddev->private;
2356         struct md_rdev *rdev = conf->mirrors[i].rdev;
2357
2358         /* bio has the data to be written to device 'i' where
2359          * we just recently had a write error.
2360          * We repeatedly clone the bio and trim down to one block,
2361          * then try the write.  Where the write fails we record
2362          * a bad block.
2363          * It is conceivable that the bio doesn't exactly align with
2364          * blocks.  We must handle this somehow.
2365          *
2366          * We currently own a reference on the rdev.
2367          */
2368
2369         int block_sectors;
2370         sector_t sector;
2371         int sectors;
2372         int sect_to_write = r1_bio->sectors;
2373         int ok = 1;
2374
2375         if (rdev->badblocks.shift < 0)
2376                 return 0;
2377
2378         block_sectors = roundup(1 << rdev->badblocks.shift,
2379                                 bdev_logical_block_size(rdev->bdev) >> 9);
2380         sector = r1_bio->sector;
2381         sectors = ((sector + block_sectors)
2382                    & ~(sector_t)(block_sectors - 1))
2383                 - sector;
2384
2385         while (sect_to_write) {
2386                 struct bio *wbio;
2387                 if (sectors > sect_to_write)
2388                         sectors = sect_to_write;
2389                 /* Write at 'sector' for 'sectors'*/
2390
2391                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2392                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2393                                               GFP_NOIO,
2394                                               mddev->bio_set);
2395                         /* We really need a _all clone */
2396                         wbio->bi_iter = (struct bvec_iter){ 0 };
2397                 } else {
2398                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2399                                               mddev->bio_set);
2400                 }
2401
2402                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2403                 wbio->bi_iter.bi_sector = r1_bio->sector;
2404                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2405
2406                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2407                 wbio->bi_iter.bi_sector += rdev->data_offset;
2408                 wbio->bi_bdev = rdev->bdev;
2409
2410                 if (submit_bio_wait(wbio) < 0)
2411                         /* failure! */
2412                         ok = rdev_set_badblocks(rdev, sector,
2413                                                 sectors, 0)
2414                                 && ok;
2415
2416                 bio_put(wbio);
2417                 sect_to_write -= sectors;
2418                 sector += sectors;
2419                 sectors = block_sectors;
2420         }
2421         return ok;
2422 }
2423
2424 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2425 {
2426         int m;
2427         int s = r1_bio->sectors;
2428         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2429                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2430                 struct bio *bio = r1_bio->bios[m];
2431                 if (bio->bi_end_io == NULL)
2432                         continue;
2433                 if (!bio->bi_error &&
2434                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2435                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2436                 }
2437                 if (bio->bi_error &&
2438                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2439                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2440                                 md_error(conf->mddev, rdev);
2441                 }
2442         }
2443         put_buf(r1_bio);
2444         md_done_sync(conf->mddev, s, 1);
2445 }
2446
2447 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2448 {
2449         int m, idx;
2450         bool fail = false;
2451
2452         for (m = 0; m < conf->raid_disks * 2 ; m++)
2453                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2454                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2455                         rdev_clear_badblocks(rdev,
2456                                              r1_bio->sector,
2457                                              r1_bio->sectors, 0);
2458                         rdev_dec_pending(rdev, conf->mddev);
2459                 } else if (r1_bio->bios[m] != NULL) {
2460                         /* This drive got a write error.  We need to
2461                          * narrow down and record precise write
2462                          * errors.
2463                          */
2464                         fail = true;
2465                         if (!narrow_write_error(r1_bio, m)) {
2466                                 md_error(conf->mddev,
2467                                          conf->mirrors[m].rdev);
2468                                 /* an I/O failed, we can't clear the bitmap */
2469                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2470                         }
2471                         rdev_dec_pending(conf->mirrors[m].rdev,
2472                                          conf->mddev);
2473                 }
2474         if (fail) {
2475                 spin_lock_irq(&conf->device_lock);
2476                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2477                 idx = sector_to_idx(r1_bio->sector);
2478                 atomic_inc(&conf->nr_queued[idx]);
2479                 spin_unlock_irq(&conf->device_lock);
2480                 /*
2481                  * In case freeze_array() is waiting for condition
2482                  * get_unqueued_pending() == extra to be true.
2483                  */
2484                 wake_up(&conf->wait_barrier);
2485                 md_wakeup_thread(conf->mddev->thread);
2486         } else {
2487                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2488                         close_write(r1_bio);
2489                 raid_end_bio_io(r1_bio);
2490         }
2491 }
2492
2493 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2494 {
2495         int disk;
2496         int max_sectors;
2497         struct mddev *mddev = conf->mddev;
2498         struct bio *bio;
2499         char b[BDEVNAME_SIZE];
2500         struct md_rdev *rdev;
2501         dev_t bio_dev;
2502         sector_t bio_sector;
2503
2504         clear_bit(R1BIO_ReadError, &r1_bio->state);
2505         /* we got a read error. Maybe the drive is bad.  Maybe just
2506          * the block and we can fix it.
2507          * We freeze all other IO, and try reading the block from
2508          * other devices.  When we find one, we re-write
2509          * and check it that fixes the read error.
2510          * This is all done synchronously while the array is
2511          * frozen
2512          */
2513
2514         bio = r1_bio->bios[r1_bio->read_disk];
2515         bdevname(bio->bi_bdev, b);
2516         bio_dev = bio->bi_bdev->bd_dev;
2517         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2518         bio_put(bio);
2519         r1_bio->bios[r1_bio->read_disk] = NULL;
2520
2521         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2522         if (mddev->ro == 0
2523             && !test_bit(FailFast, &rdev->flags)) {
2524                 freeze_array(conf, 1);
2525                 fix_read_error(conf, r1_bio->read_disk,
2526                                r1_bio->sector, r1_bio->sectors);
2527                 unfreeze_array(conf);
2528         } else {
2529                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2530         }
2531
2532         rdev_dec_pending(rdev, conf->mddev);
2533
2534 read_more:
2535         disk = read_balance(conf, r1_bio, &max_sectors);
2536         if (disk == -1) {
2537                 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2538                                     mdname(mddev), b, (unsigned long long)r1_bio->sector);
2539                 raid_end_bio_io(r1_bio);
2540         } else {
2541                 const unsigned long do_sync
2542                         = r1_bio->master_bio->bi_opf & REQ_SYNC;
2543                 r1_bio->read_disk = disk;
2544                 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2545                                      mddev->bio_set);
2546                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2547                          max_sectors);
2548                 r1_bio->bios[r1_bio->read_disk] = bio;
2549                 rdev = conf->mirrors[disk].rdev;
2550                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2551                                     mdname(mddev),
2552                                     (unsigned long long)r1_bio->sector,
2553                                     bdevname(rdev->bdev, b));
2554                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2555                 bio->bi_bdev = rdev->bdev;
2556                 bio->bi_end_io = raid1_end_read_request;
2557                 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2558                 if (test_bit(FailFast, &rdev->flags) &&
2559                     test_bit(R1BIO_FailFast, &r1_bio->state))
2560                         bio->bi_opf |= MD_FAILFAST;
2561                 bio->bi_private = r1_bio;
2562                 if (max_sectors < r1_bio->sectors) {
2563                         /* Drat - have to split this up more */
2564                         struct bio *mbio = r1_bio->master_bio;
2565                         int sectors_handled = (r1_bio->sector + max_sectors
2566                                                - mbio->bi_iter.bi_sector);
2567                         r1_bio->sectors = max_sectors;
2568                         bio_inc_remaining(mbio);
2569                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2570                                               bio, bio_dev, bio_sector);
2571                         generic_make_request(bio);
2572                         bio = NULL;
2573
2574                         r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2575                         set_bit(R1BIO_ReadError, &r1_bio->state);
2576                         inc_pending(conf, r1_bio->sector);
2577
2578                         goto read_more;
2579                 } else {
2580                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2581                                               bio, bio_dev, bio_sector);
2582                         generic_make_request(bio);
2583                 }
2584         }
2585 }
2586
2587 static void raid1d(struct md_thread *thread)
2588 {
2589         struct mddev *mddev = thread->mddev;
2590         struct r1bio *r1_bio;
2591         unsigned long flags;
2592         struct r1conf *conf = mddev->private;
2593         struct list_head *head = &conf->retry_list;
2594         struct blk_plug plug;
2595         int idx;
2596
2597         md_check_recovery(mddev);
2598
2599         if (!list_empty_careful(&conf->bio_end_io_list) &&
2600             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2601                 LIST_HEAD(tmp);
2602                 spin_lock_irqsave(&conf->device_lock, flags);
2603                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2604                         list_splice_init(&conf->bio_end_io_list, &tmp);
2605                 spin_unlock_irqrestore(&conf->device_lock, flags);
2606                 while (!list_empty(&tmp)) {
2607                         r1_bio = list_first_entry(&tmp, struct r1bio,
2608                                                   retry_list);
2609                         list_del(&r1_bio->retry_list);
2610                         idx = sector_to_idx(r1_bio->sector);
2611                         atomic_dec(&conf->nr_queued[idx]);
2612                         if (mddev->degraded)
2613                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2614                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2615                                 close_write(r1_bio);
2616                         raid_end_bio_io(r1_bio);
2617                 }
2618         }
2619
2620         blk_start_plug(&plug);
2621         for (;;) {
2622
2623                 flush_pending_writes(conf);
2624
2625                 spin_lock_irqsave(&conf->device_lock, flags);
2626                 if (list_empty(head)) {
2627                         spin_unlock_irqrestore(&conf->device_lock, flags);
2628                         break;
2629                 }
2630                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2631                 list_del(head->prev);
2632                 idx = sector_to_idx(r1_bio->sector);
2633                 atomic_dec(&conf->nr_queued[idx]);
2634                 spin_unlock_irqrestore(&conf->device_lock, flags);
2635
2636                 mddev = r1_bio->mddev;
2637                 conf = mddev->private;
2638                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2639                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2640                             test_bit(R1BIO_WriteError, &r1_bio->state))
2641                                 handle_sync_write_finished(conf, r1_bio);
2642                         else
2643                                 sync_request_write(mddev, r1_bio);
2644                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2645                            test_bit(R1BIO_WriteError, &r1_bio->state))
2646                         handle_write_finished(conf, r1_bio);
2647                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2648                         handle_read_error(conf, r1_bio);
2649                 else
2650                         /* just a partial read to be scheduled from separate
2651                          * context
2652                          */
2653                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2654
2655                 cond_resched();
2656                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2657                         md_check_recovery(mddev);
2658         }
2659         blk_finish_plug(&plug);
2660 }
2661
2662 static int init_resync(struct r1conf *conf)
2663 {
2664         int buffs;
2665
2666         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2667         BUG_ON(conf->r1buf_pool);
2668         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2669                                           conf->poolinfo);
2670         if (!conf->r1buf_pool)
2671                 return -ENOMEM;
2672         return 0;
2673 }
2674
2675 /*
2676  * perform a "sync" on one "block"
2677  *
2678  * We need to make sure that no normal I/O request - particularly write
2679  * requests - conflict with active sync requests.
2680  *
2681  * This is achieved by tracking pending requests and a 'barrier' concept
2682  * that can be installed to exclude normal IO requests.
2683  */
2684
2685 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2686                                    int *skipped)
2687 {
2688         struct r1conf *conf = mddev->private;
2689         struct r1bio *r1_bio;
2690         struct bio *bio;
2691         sector_t max_sector, nr_sectors;
2692         int disk = -1;
2693         int i;
2694         int wonly = -1;
2695         int write_targets = 0, read_targets = 0;
2696         sector_t sync_blocks;
2697         int still_degraded = 0;
2698         int good_sectors = RESYNC_SECTORS;
2699         int min_bad = 0; /* number of sectors that are bad in all devices */
2700         int idx = sector_to_idx(sector_nr);
2701
2702         if (!conf->r1buf_pool)
2703                 if (init_resync(conf))
2704                         return 0;
2705
2706         max_sector = mddev->dev_sectors;
2707         if (sector_nr >= max_sector) {
2708                 /* If we aborted, we need to abort the
2709                  * sync on the 'current' bitmap chunk (there will
2710                  * only be one in raid1 resync.
2711                  * We can find the current addess in mddev->curr_resync
2712                  */
2713                 if (mddev->curr_resync < max_sector) /* aborted */
2714                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2715                                                 &sync_blocks, 1);
2716                 else /* completed sync */
2717                         conf->fullsync = 0;
2718
2719                 bitmap_close_sync(mddev->bitmap);
2720                 close_sync(conf);
2721
2722                 if (mddev_is_clustered(mddev)) {
2723                         conf->cluster_sync_low = 0;
2724                         conf->cluster_sync_high = 0;
2725                 }
2726                 return 0;
2727         }
2728
2729         if (mddev->bitmap == NULL &&
2730             mddev->recovery_cp == MaxSector &&
2731             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2732             conf->fullsync == 0) {
2733                 *skipped = 1;
2734                 return max_sector - sector_nr;
2735         }
2736         /* before building a request, check if we can skip these blocks..
2737          * This call the bitmap_start_sync doesn't actually record anything
2738          */
2739         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2740             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2741                 /* We can skip this block, and probably several more */
2742                 *skipped = 1;
2743                 return sync_blocks;
2744         }
2745
2746         /*
2747          * If there is non-resync activity waiting for a turn, then let it
2748          * though before starting on this new sync request.
2749          */
2750         if (atomic_read(&conf->nr_waiting[idx]))
2751                 schedule_timeout_uninterruptible(1);
2752
2753         /* we are incrementing sector_nr below. To be safe, we check against
2754          * sector_nr + two times RESYNC_SECTORS
2755          */
2756
2757         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2758                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2759         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2760
2761         raise_barrier(conf, sector_nr);
2762
2763         rcu_read_lock();
2764         /*
2765          * If we get a correctably read error during resync or recovery,
2766          * we might want to read from a different device.  So we
2767          * flag all drives that could conceivably be read from for READ,
2768          * and any others (which will be non-In_sync devices) for WRITE.
2769          * If a read fails, we try reading from something else for which READ
2770          * is OK.
2771          */
2772
2773         r1_bio->mddev = mddev;
2774         r1_bio->sector = sector_nr;
2775         r1_bio->state = 0;
2776         set_bit(R1BIO_IsSync, &r1_bio->state);
2777         /* make sure good_sectors won't go across barrier unit boundary */
2778         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2779
2780         for (i = 0; i < conf->raid_disks * 2; i++) {
2781                 struct md_rdev *rdev;
2782                 bio = r1_bio->bios[i];
2783
2784                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2785                 if (rdev == NULL ||
2786                     test_bit(Faulty, &rdev->flags)) {
2787                         if (i < conf->raid_disks)
2788                                 still_degraded = 1;
2789                 } else if (!test_bit(In_sync, &rdev->flags)) {
2790                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2791                         bio->bi_end_io = end_sync_write;
2792                         write_targets ++;
2793                 } else {
2794                         /* may need to read from here */
2795                         sector_t first_bad = MaxSector;
2796                         int bad_sectors;
2797
2798                         if (is_badblock(rdev, sector_nr, good_sectors,
2799                                         &first_bad, &bad_sectors)) {
2800                                 if (first_bad > sector_nr)
2801                                         good_sectors = first_bad - sector_nr;
2802                                 else {
2803                                         bad_sectors -= (sector_nr - first_bad);
2804                                         if (min_bad == 0 ||
2805                                             min_bad > bad_sectors)
2806                                                 min_bad = bad_sectors;
2807                                 }
2808                         }
2809                         if (sector_nr < first_bad) {
2810                                 if (test_bit(WriteMostly, &rdev->flags)) {
2811                                         if (wonly < 0)
2812                                                 wonly = i;
2813                                 } else {
2814                                         if (disk < 0)
2815                                                 disk = i;
2816                                 }
2817                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2818                                 bio->bi_end_io = end_sync_read;
2819                                 read_targets++;
2820                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2821                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2822                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2823                                 /*
2824                                  * The device is suitable for reading (InSync),
2825                                  * but has bad block(s) here. Let's try to correct them,
2826                                  * if we are doing resync or repair. Otherwise, leave
2827                                  * this device alone for this sync request.
2828                                  */
2829                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2830                                 bio->bi_end_io = end_sync_write;
2831                                 write_targets++;
2832                         }
2833                 }
2834                 if (bio->bi_end_io) {
2835                         atomic_inc(&rdev->nr_pending);
2836                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2837                         bio->bi_bdev = rdev->bdev;
2838                         if (test_bit(FailFast, &rdev->flags))
2839                                 bio->bi_opf |= MD_FAILFAST;
2840                 }
2841         }
2842         rcu_read_unlock();
2843         if (disk < 0)
2844                 disk = wonly;
2845         r1_bio->read_disk = disk;
2846
2847         if (read_targets == 0 && min_bad > 0) {
2848                 /* These sectors are bad on all InSync devices, so we
2849                  * need to mark them bad on all write targets
2850                  */
2851                 int ok = 1;
2852                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2853                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2854                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2855                                 ok = rdev_set_badblocks(rdev, sector_nr,
2856                                                         min_bad, 0
2857                                         ) && ok;
2858                         }
2859                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2860                 *skipped = 1;
2861                 put_buf(r1_bio);
2862
2863                 if (!ok) {
2864                         /* Cannot record the badblocks, so need to
2865                          * abort the resync.
2866                          * If there are multiple read targets, could just
2867                          * fail the really bad ones ???
2868                          */
2869                         conf->recovery_disabled = mddev->recovery_disabled;
2870                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2871                         return 0;
2872                 } else
2873                         return min_bad;
2874
2875         }
2876         if (min_bad > 0 && min_bad < good_sectors) {
2877                 /* only resync enough to reach the next bad->good
2878                  * transition */
2879                 good_sectors = min_bad;
2880         }
2881
2882         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2883                 /* extra read targets are also write targets */
2884                 write_targets += read_targets-1;
2885
2886         if (write_targets == 0 || read_targets == 0) {
2887                 /* There is nowhere to write, so all non-sync
2888                  * drives must be failed - so we are finished
2889                  */
2890                 sector_t rv;
2891                 if (min_bad > 0)
2892                         max_sector = sector_nr + min_bad;
2893                 rv = max_sector - sector_nr;
2894                 *skipped = 1;
2895                 put_buf(r1_bio);
2896                 return rv;
2897         }
2898
2899         if (max_sector > mddev->resync_max)
2900                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2901         if (max_sector > sector_nr + good_sectors)
2902                 max_sector = sector_nr + good_sectors;
2903         nr_sectors = 0;
2904         sync_blocks = 0;
2905         do {
2906                 struct page *page;
2907                 int len = PAGE_SIZE;
2908                 if (sector_nr + (len>>9) > max_sector)
2909                         len = (max_sector - sector_nr) << 9;
2910                 if (len == 0)
2911                         break;
2912                 if (sync_blocks == 0) {
2913                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2914                                                &sync_blocks, still_degraded) &&
2915                             !conf->fullsync &&
2916                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2917                                 break;
2918                         if ((len >> 9) > sync_blocks)
2919                                 len = sync_blocks<<9;
2920                 }
2921
2922                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2923                         struct resync_pages *rp;
2924
2925                         bio = r1_bio->bios[i];
2926                         rp = get_resync_pages(bio);
2927                         if (bio->bi_end_io) {
2928                                 page = resync_fetch_page(rp, rp->idx++);
2929
2930                                 /*
2931                                  * won't fail because the vec table is big
2932                                  * enough to hold all these pages
2933                                  */
2934                                 bio_add_page(bio, page, len, 0);
2935                         }
2936                 }
2937                 nr_sectors += len>>9;
2938                 sector_nr += len>>9;
2939                 sync_blocks -= (len>>9);
2940         } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2941
2942         r1_bio->sectors = nr_sectors;
2943
2944         if (mddev_is_clustered(mddev) &&
2945                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2946                 conf->cluster_sync_low = mddev->curr_resync_completed;
2947                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2948                 /* Send resync message */
2949                 md_cluster_ops->resync_info_update(mddev,
2950                                 conf->cluster_sync_low,
2951                                 conf->cluster_sync_high);
2952         }
2953
2954         /* For a user-requested sync, we read all readable devices and do a
2955          * compare
2956          */
2957         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2958                 atomic_set(&r1_bio->remaining, read_targets);
2959                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2960                         bio = r1_bio->bios[i];
2961                         if (bio->bi_end_io == end_sync_read) {
2962                                 read_targets--;
2963                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2964                                 if (read_targets == 1)
2965                                         bio->bi_opf &= ~MD_FAILFAST;
2966                                 generic_make_request(bio);
2967                         }
2968                 }
2969         } else {
2970                 atomic_set(&r1_bio->remaining, 1);
2971                 bio = r1_bio->bios[r1_bio->read_disk];
2972                 md_sync_acct(bio->bi_bdev, nr_sectors);
2973                 if (read_targets == 1)
2974                         bio->bi_opf &= ~MD_FAILFAST;
2975                 generic_make_request(bio);
2976
2977         }
2978         return nr_sectors;
2979 }
2980
2981 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2982 {
2983         if (sectors)
2984                 return sectors;
2985
2986         return mddev->dev_sectors;
2987 }
2988
2989 static struct r1conf *setup_conf(struct mddev *mddev)
2990 {
2991         struct r1conf *conf;
2992         int i;
2993         struct raid1_info *disk;
2994         struct md_rdev *rdev;
2995         int err = -ENOMEM;
2996
2997         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2998         if (!conf)
2999                 goto abort;
3000
3001         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3002                                    sizeof(atomic_t), GFP_KERNEL);
3003         if (!conf->nr_pending)
3004                 goto abort;
3005
3006         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3007                                    sizeof(atomic_t), GFP_KERNEL);
3008         if (!conf->nr_waiting)
3009                 goto abort;
3010
3011         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3012                                   sizeof(atomic_t), GFP_KERNEL);
3013         if (!conf->nr_queued)
3014                 goto abort;
3015
3016         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3017                                 sizeof(atomic_t), GFP_KERNEL);
3018         if (!conf->barrier)
3019                 goto abort;
3020
3021         conf->mirrors = kzalloc(sizeof(struct raid1_info)
3022                                 * mddev->raid_disks * 2,
3023                                  GFP_KERNEL);
3024         if (!conf->mirrors)
3025                 goto abort;
3026
3027         conf->tmppage = alloc_page(GFP_KERNEL);
3028         if (!conf->tmppage)
3029                 goto abort;
3030
3031         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3032         if (!conf->poolinfo)
3033                 goto abort;
3034         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3035         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3036                                           r1bio_pool_free,
3037                                           conf->poolinfo);
3038         if (!conf->r1bio_pool)
3039                 goto abort;
3040
3041         conf->poolinfo->mddev = mddev;
3042
3043         err = -EINVAL;
3044         spin_lock_init(&conf->device_lock);
3045         rdev_for_each(rdev, mddev) {
3046                 struct request_queue *q;
3047                 int disk_idx = rdev->raid_disk;
3048                 if (disk_idx >= mddev->raid_disks
3049                     || disk_idx < 0)
3050                         continue;
3051                 if (test_bit(Replacement, &rdev->flags))
3052                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3053                 else
3054                         disk = conf->mirrors + disk_idx;
3055
3056                 if (disk->rdev)
3057                         goto abort;
3058                 disk->rdev = rdev;
3059                 q = bdev_get_queue(rdev->bdev);
3060
3061                 disk->head_position = 0;
3062                 disk->seq_start = MaxSector;
3063         }
3064         conf->raid_disks = mddev->raid_disks;
3065         conf->mddev = mddev;
3066         INIT_LIST_HEAD(&conf->retry_list);
3067         INIT_LIST_HEAD(&conf->bio_end_io_list);
3068
3069         spin_lock_init(&conf->resync_lock);
3070         init_waitqueue_head(&conf->wait_barrier);
3071
3072         bio_list_init(&conf->pending_bio_list);
3073         conf->pending_count = 0;
3074         conf->recovery_disabled = mddev->recovery_disabled - 1;
3075
3076         err = -EIO;
3077         for (i = 0; i < conf->raid_disks * 2; i++) {
3078
3079                 disk = conf->mirrors + i;
3080
3081                 if (i < conf->raid_disks &&
3082                     disk[conf->raid_disks].rdev) {
3083                         /* This slot has a replacement. */
3084                         if (!disk->rdev) {
3085                                 /* No original, just make the replacement
3086                                  * a recovering spare
3087                                  */
3088                                 disk->rdev =
3089                                         disk[conf->raid_disks].rdev;
3090                                 disk[conf->raid_disks].rdev = NULL;
3091                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3092                                 /* Original is not in_sync - bad */
3093                                 goto abort;
3094                 }
3095
3096                 if (!disk->rdev ||
3097                     !test_bit(In_sync, &disk->rdev->flags)) {
3098                         disk->head_position = 0;
3099                         if (disk->rdev &&
3100                             (disk->rdev->saved_raid_disk < 0))
3101                                 conf->fullsync = 1;
3102                 }
3103         }
3104
3105         err = -ENOMEM;
3106         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3107         if (!conf->thread)
3108                 goto abort;
3109
3110         return conf;
3111
3112  abort:
3113         if (conf) {
3114                 mempool_destroy(conf->r1bio_pool);
3115                 kfree(conf->mirrors);
3116                 safe_put_page(conf->tmppage);
3117                 kfree(conf->poolinfo);
3118                 kfree(conf->nr_pending);
3119                 kfree(conf->nr_waiting);
3120                 kfree(conf->nr_queued);
3121                 kfree(conf->barrier);
3122                 kfree(conf);
3123         }
3124         return ERR_PTR(err);
3125 }
3126
3127 static void raid1_free(struct mddev *mddev, void *priv);
3128 static int raid1_run(struct mddev *mddev)
3129 {
3130         struct r1conf *conf;
3131         int i;
3132         struct md_rdev *rdev;
3133         int ret;
3134         bool discard_supported = false;
3135
3136         if (mddev->level != 1) {
3137                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3138                         mdname(mddev), mddev->level);
3139                 return -EIO;
3140         }
3141         if (mddev->reshape_position != MaxSector) {
3142                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3143                         mdname(mddev));
3144                 return -EIO;
3145         }
3146         /*
3147          * copy the already verified devices into our private RAID1
3148          * bookkeeping area. [whatever we allocate in run(),
3149          * should be freed in raid1_free()]
3150          */
3151         if (mddev->private == NULL)
3152                 conf = setup_conf(mddev);
3153         else
3154                 conf = mddev->private;
3155
3156         if (IS_ERR(conf))
3157                 return PTR_ERR(conf);
3158
3159         if (mddev->queue)
3160                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3161
3162         rdev_for_each(rdev, mddev) {
3163                 if (!mddev->gendisk)
3164                         continue;
3165                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3166                                   rdev->data_offset << 9);
3167                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3168                         discard_supported = true;
3169         }
3170
3171         mddev->degraded = 0;
3172         for (i=0; i < conf->raid_disks; i++)
3173                 if (conf->mirrors[i].rdev == NULL ||
3174                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3175                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3176                         mddev->degraded++;
3177
3178         if (conf->raid_disks - mddev->degraded == 1)
3179                 mddev->recovery_cp = MaxSector;
3180
3181         if (mddev->recovery_cp != MaxSector)
3182                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3183                         mdname(mddev));
3184         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3185                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3186                 mddev->raid_disks);
3187
3188         /*
3189          * Ok, everything is just fine now
3190          */
3191         mddev->thread = conf->thread;
3192         conf->thread = NULL;
3193         mddev->private = conf;
3194         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3195
3196         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3197
3198         if (mddev->queue) {
3199                 if (discard_supported)
3200                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3201                                                 mddev->queue);
3202                 else
3203                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3204                                                   mddev->queue);
3205         }
3206
3207         ret =  md_integrity_register(mddev);
3208         if (ret) {
3209                 md_unregister_thread(&mddev->thread);
3210                 raid1_free(mddev, conf);
3211         }
3212         return ret;
3213 }
3214
3215 static void raid1_free(struct mddev *mddev, void *priv)
3216 {
3217         struct r1conf *conf = priv;
3218
3219         mempool_destroy(conf->r1bio_pool);
3220         kfree(conf->mirrors);
3221         safe_put_page(conf->tmppage);
3222         kfree(conf->poolinfo);
3223         kfree(conf->nr_pending);
3224         kfree(conf->nr_waiting);
3225         kfree(conf->nr_queued);
3226         kfree(conf->barrier);
3227         kfree(conf);
3228 }
3229
3230 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3231 {
3232         /* no resync is happening, and there is enough space
3233          * on all devices, so we can resize.
3234          * We need to make sure resync covers any new space.
3235          * If the array is shrinking we should possibly wait until
3236          * any io in the removed space completes, but it hardly seems
3237          * worth it.
3238          */
3239         sector_t newsize = raid1_size(mddev, sectors, 0);
3240         if (mddev->external_size &&
3241             mddev->array_sectors > newsize)
3242                 return -EINVAL;
3243         if (mddev->bitmap) {
3244                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3245                 if (ret)
3246                         return ret;
3247         }
3248         md_set_array_sectors(mddev, newsize);
3249         if (sectors > mddev->dev_sectors &&
3250             mddev->recovery_cp > mddev->dev_sectors) {
3251                 mddev->recovery_cp = mddev->dev_sectors;
3252                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3253         }
3254         mddev->dev_sectors = sectors;
3255         mddev->resync_max_sectors = sectors;
3256         return 0;
3257 }
3258
3259 static int raid1_reshape(struct mddev *mddev)
3260 {
3261         /* We need to:
3262          * 1/ resize the r1bio_pool
3263          * 2/ resize conf->mirrors
3264          *
3265          * We allocate a new r1bio_pool if we can.
3266          * Then raise a device barrier and wait until all IO stops.
3267          * Then resize conf->mirrors and swap in the new r1bio pool.
3268          *
3269          * At the same time, we "pack" the devices so that all the missing
3270          * devices have the higher raid_disk numbers.
3271          */
3272         mempool_t *newpool, *oldpool;
3273         struct pool_info *newpoolinfo;
3274         struct raid1_info *newmirrors;
3275         struct r1conf *conf = mddev->private;
3276         int cnt, raid_disks;
3277         unsigned long flags;
3278         int d, d2, err;
3279
3280         /* Cannot change chunk_size, layout, or level */
3281         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3282             mddev->layout != mddev->new_layout ||
3283             mddev->level != mddev->new_level) {
3284                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3285                 mddev->new_layout = mddev->layout;
3286                 mddev->new_level = mddev->level;
3287                 return -EINVAL;
3288         }
3289
3290         if (!mddev_is_clustered(mddev)) {
3291                 err = md_allow_write(mddev);
3292                 if (err)
3293                         return err;
3294         }
3295
3296         raid_disks = mddev->raid_disks + mddev->delta_disks;
3297
3298         if (raid_disks < conf->raid_disks) {
3299                 cnt=0;
3300                 for (d= 0; d < conf->raid_disks; d++)
3301                         if (conf->mirrors[d].rdev)
3302                                 cnt++;
3303                 if (cnt > raid_disks)
3304                         return -EBUSY;
3305         }
3306
3307         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3308         if (!newpoolinfo)
3309                 return -ENOMEM;
3310         newpoolinfo->mddev = mddev;
3311         newpoolinfo->raid_disks = raid_disks * 2;
3312
3313         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3314                                  r1bio_pool_free, newpoolinfo);
3315         if (!newpool) {
3316                 kfree(newpoolinfo);
3317                 return -ENOMEM;
3318         }
3319         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3320                              GFP_KERNEL);
3321         if (!newmirrors) {
3322                 kfree(newpoolinfo);
3323                 mempool_destroy(newpool);
3324                 return -ENOMEM;
3325         }
3326
3327         freeze_array(conf, 0);
3328
3329         /* ok, everything is stopped */
3330         oldpool = conf->r1bio_pool;
3331         conf->r1bio_pool = newpool;
3332
3333         for (d = d2 = 0; d < conf->raid_disks; d++) {
3334                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3335                 if (rdev && rdev->raid_disk != d2) {
3336                         sysfs_unlink_rdev(mddev, rdev);
3337                         rdev->raid_disk = d2;
3338                         sysfs_unlink_rdev(mddev, rdev);
3339                         if (sysfs_link_rdev(mddev, rdev))
3340                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3341                                         mdname(mddev), rdev->raid_disk);
3342                 }
3343                 if (rdev)
3344                         newmirrors[d2++].rdev = rdev;
3345         }
3346         kfree(conf->mirrors);
3347         conf->mirrors = newmirrors;
3348         kfree(conf->poolinfo);
3349         conf->poolinfo = newpoolinfo;
3350
3351         spin_lock_irqsave(&conf->device_lock, flags);
3352         mddev->degraded += (raid_disks - conf->raid_disks);
3353         spin_unlock_irqrestore(&conf->device_lock, flags);
3354         conf->raid_disks = mddev->raid_disks = raid_disks;
3355         mddev->delta_disks = 0;
3356
3357         unfreeze_array(conf);
3358
3359         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3360         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3361         md_wakeup_thread(mddev->thread);
3362
3363         mempool_destroy(oldpool);
3364         return 0;
3365 }
3366
3367 static void raid1_quiesce(struct mddev *mddev, int state)
3368 {
3369         struct r1conf *conf = mddev->private;
3370
3371         switch(state) {
3372         case 2: /* wake for suspend */
3373                 wake_up(&conf->wait_barrier);
3374                 break;
3375         case 1:
3376                 freeze_array(conf, 0);
3377                 break;
3378         case 0:
3379                 unfreeze_array(conf);
3380                 break;
3381         }
3382 }
3383
3384 static void *raid1_takeover(struct mddev *mddev)
3385 {
3386         /* raid1 can take over:
3387          *  raid5 with 2 devices, any layout or chunk size
3388          */
3389         if (mddev->level == 5 && mddev->raid_disks == 2) {
3390                 struct r1conf *conf;
3391                 mddev->new_level = 1;
3392                 mddev->new_layout = 0;
3393                 mddev->new_chunk_sectors = 0;
3394                 conf = setup_conf(mddev);
3395                 if (!IS_ERR(conf)) {
3396                         /* Array must appear to be quiesced */
3397                         conf->array_frozen = 1;
3398                         mddev_clear_unsupported_flags(mddev,
3399                                 UNSUPPORTED_MDDEV_FLAGS);
3400                 }
3401                 return conf;
3402         }
3403         return ERR_PTR(-EINVAL);
3404 }
3405
3406 static struct md_personality raid1_personality =
3407 {
3408         .name           = "raid1",
3409         .level          = 1,
3410         .owner          = THIS_MODULE,
3411         .make_request   = raid1_make_request,
3412         .run            = raid1_run,
3413         .free           = raid1_free,
3414         .status         = raid1_status,
3415         .error_handler  = raid1_error,
3416         .hot_add_disk   = raid1_add_disk,
3417         .hot_remove_disk= raid1_remove_disk,
3418         .spare_active   = raid1_spare_active,
3419         .sync_request   = raid1_sync_request,
3420         .resize         = raid1_resize,
3421         .size           = raid1_size,
3422         .check_reshape  = raid1_reshape,
3423         .quiesce        = raid1_quiesce,
3424         .takeover       = raid1_takeover,
3425         .congested      = raid1_congested,
3426 };
3427
3428 static int __init raid_init(void)
3429 {
3430         return register_md_personality(&raid1_personality);
3431 }
3432
3433 static void raid_exit(void)
3434 {
3435         unregister_md_personality(&raid1_personality);
3436 }
3437
3438 module_init(raid_init);
3439 module_exit(raid_exit);
3440 MODULE_LICENSE("GPL");
3441 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3442 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3443 MODULE_ALIAS("md-raid1");
3444 MODULE_ALIAS("md-level-1");
3445
3446 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);