]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
Merge tag 'ktest-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44
45 #define UNSUPPORTED_MDDEV_FLAGS         \
46         ((1L << MD_HAS_JOURNAL) |       \
47          (1L << MD_JOURNAL_CLEAN))
48
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define NR_RAID1_BIOS 256
53
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73
74 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
75 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
76
77 #define raid1_log(md, fmt, args...)                             \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
79
80 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
81 {
82         struct pool_info *pi = data;
83         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
84
85         /* allocate a r1bio with room for raid_disks entries in the bios array */
86         return kzalloc(size, gfp_flags);
87 }
88
89 static void r1bio_pool_free(void *r1_bio, void *data)
90 {
91         kfree(r1_bio);
92 }
93
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_DEPTH 32
96 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
97 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
98 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
99 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
100 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
101 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
102
103 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
104 {
105         struct pool_info *pi = data;
106         struct r1bio *r1_bio;
107         struct bio *bio;
108         int need_pages;
109         int i, j;
110
111         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
112         if (!r1_bio)
113                 return NULL;
114
115         /*
116          * Allocate bios : 1 for reading, n-1 for writing
117          */
118         for (j = pi->raid_disks ; j-- ; ) {
119                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
120                 if (!bio)
121                         goto out_free_bio;
122                 r1_bio->bios[j] = bio;
123         }
124         /*
125          * Allocate RESYNC_PAGES data pages and attach them to
126          * the first bio.
127          * If this is a user-requested check/repair, allocate
128          * RESYNC_PAGES for each bio.
129          */
130         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
131                 need_pages = pi->raid_disks;
132         else
133                 need_pages = 1;
134         for (j = 0; j < need_pages; j++) {
135                 bio = r1_bio->bios[j];
136                 bio->bi_vcnt = RESYNC_PAGES;
137
138                 if (bio_alloc_pages(bio, gfp_flags))
139                         goto out_free_pages;
140         }
141         /* If not user-requests, copy the page pointers to all bios */
142         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
143                 for (i=0; i<RESYNC_PAGES ; i++)
144                         for (j=1; j<pi->raid_disks; j++)
145                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
146                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
147         }
148
149         r1_bio->master_bio = NULL;
150
151         return r1_bio;
152
153 out_free_pages:
154         while (--j >= 0)
155                 bio_free_pages(r1_bio->bios[j]);
156
157 out_free_bio:
158         while (++j < pi->raid_disks)
159                 bio_put(r1_bio->bios[j]);
160         r1bio_pool_free(r1_bio, data);
161         return NULL;
162 }
163
164 static void r1buf_pool_free(void *__r1_bio, void *data)
165 {
166         struct pool_info *pi = data;
167         int i,j;
168         struct r1bio *r1bio = __r1_bio;
169
170         for (i = 0; i < RESYNC_PAGES; i++)
171                 for (j = pi->raid_disks; j-- ;) {
172                         if (j == 0 ||
173                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
174                             r1bio->bios[0]->bi_io_vec[i].bv_page)
175                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
176                 }
177         for (i=0 ; i < pi->raid_disks; i++)
178                 bio_put(r1bio->bios[i]);
179
180         r1bio_pool_free(r1bio, data);
181 }
182
183 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
184 {
185         int i;
186
187         for (i = 0; i < conf->raid_disks * 2; i++) {
188                 struct bio **bio = r1_bio->bios + i;
189                 if (!BIO_SPECIAL(*bio))
190                         bio_put(*bio);
191                 *bio = NULL;
192         }
193 }
194
195 static void free_r1bio(struct r1bio *r1_bio)
196 {
197         struct r1conf *conf = r1_bio->mddev->private;
198
199         put_all_bios(conf, r1_bio);
200         mempool_free(r1_bio, conf->r1bio_pool);
201 }
202
203 static void put_buf(struct r1bio *r1_bio)
204 {
205         struct r1conf *conf = r1_bio->mddev->private;
206         sector_t sect = r1_bio->sector;
207         int i;
208
209         for (i = 0; i < conf->raid_disks * 2; i++) {
210                 struct bio *bio = r1_bio->bios[i];
211                 if (bio->bi_end_io)
212                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
213         }
214
215         mempool_free(r1_bio, conf->r1buf_pool);
216
217         lower_barrier(conf, sect);
218 }
219
220 static void reschedule_retry(struct r1bio *r1_bio)
221 {
222         unsigned long flags;
223         struct mddev *mddev = r1_bio->mddev;
224         struct r1conf *conf = mddev->private;
225         int idx;
226
227         idx = sector_to_idx(r1_bio->sector);
228         spin_lock_irqsave(&conf->device_lock, flags);
229         list_add(&r1_bio->retry_list, &conf->retry_list);
230         atomic_inc(&conf->nr_queued[idx]);
231         spin_unlock_irqrestore(&conf->device_lock, flags);
232
233         wake_up(&conf->wait_barrier);
234         md_wakeup_thread(mddev->thread);
235 }
236
237 /*
238  * raid_end_bio_io() is called when we have finished servicing a mirrored
239  * operation and are ready to return a success/failure code to the buffer
240  * cache layer.
241  */
242 static void call_bio_endio(struct r1bio *r1_bio)
243 {
244         struct bio *bio = r1_bio->master_bio;
245         int done;
246         struct r1conf *conf = r1_bio->mddev->private;
247         sector_t bi_sector = bio->bi_iter.bi_sector;
248
249         if (bio->bi_phys_segments) {
250                 unsigned long flags;
251                 spin_lock_irqsave(&conf->device_lock, flags);
252                 bio->bi_phys_segments--;
253                 done = (bio->bi_phys_segments == 0);
254                 spin_unlock_irqrestore(&conf->device_lock, flags);
255                 /*
256                  * make_request() might be waiting for
257                  * bi_phys_segments to decrease
258                  */
259                 wake_up(&conf->wait_barrier);
260         } else
261                 done = 1;
262
263         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264                 bio->bi_error = -EIO;
265
266         if (done) {
267                 bio_endio(bio);
268                 /*
269                  * Wake up any possible resync thread that waits for the device
270                  * to go idle.
271                  */
272                 allow_barrier(conf, bi_sector);
273         }
274 }
275
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278         struct bio *bio = r1_bio->master_bio;
279
280         /* if nobody has done the final endio yet, do it now */
281         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
284                          (unsigned long long) bio->bi_iter.bi_sector,
285                          (unsigned long long) bio_end_sector(bio) - 1);
286
287                 call_bio_endio(r1_bio);
288         }
289         free_r1bio(r1_bio);
290 }
291
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297         struct r1conf *conf = r1_bio->mddev->private;
298
299         conf->mirrors[disk].head_position =
300                 r1_bio->sector + (r1_bio->sectors);
301 }
302
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308         int mirror;
309         struct r1conf *conf = r1_bio->mddev->private;
310         int raid_disks = conf->raid_disks;
311
312         for (mirror = 0; mirror < raid_disks * 2; mirror++)
313                 if (r1_bio->bios[mirror] == bio)
314                         break;
315
316         BUG_ON(mirror == raid_disks * 2);
317         update_head_pos(mirror, r1_bio);
318
319         return mirror;
320 }
321
322 static void raid1_end_read_request(struct bio *bio)
323 {
324         int uptodate = !bio->bi_error;
325         struct r1bio *r1_bio = bio->bi_private;
326         struct r1conf *conf = r1_bio->mddev->private;
327         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328
329         /*
330          * this branch is our 'one mirror IO has finished' event handler:
331          */
332         update_head_pos(r1_bio->read_disk, r1_bio);
333
334         if (uptodate)
335                 set_bit(R1BIO_Uptodate, &r1_bio->state);
336         else if (test_bit(FailFast, &rdev->flags) &&
337                  test_bit(R1BIO_FailFast, &r1_bio->state))
338                 /* This was a fail-fast read so we definitely
339                  * want to retry */
340                 ;
341         else {
342                 /* If all other devices have failed, we want to return
343                  * the error upwards rather than fail the last device.
344                  * Here we redefine "uptodate" to mean "Don't want to retry"
345                  */
346                 unsigned long flags;
347                 spin_lock_irqsave(&conf->device_lock, flags);
348                 if (r1_bio->mddev->degraded == conf->raid_disks ||
349                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350                      test_bit(In_sync, &rdev->flags)))
351                         uptodate = 1;
352                 spin_unlock_irqrestore(&conf->device_lock, flags);
353         }
354
355         if (uptodate) {
356                 raid_end_bio_io(r1_bio);
357                 rdev_dec_pending(rdev, conf->mddev);
358         } else {
359                 /*
360                  * oops, read error:
361                  */
362                 char b[BDEVNAME_SIZE];
363                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364                                    mdname(conf->mddev),
365                                    bdevname(rdev->bdev, b),
366                                    (unsigned long long)r1_bio->sector);
367                 set_bit(R1BIO_ReadError, &r1_bio->state);
368                 reschedule_retry(r1_bio);
369                 /* don't drop the reference on read_disk yet */
370         }
371 }
372
373 static void close_write(struct r1bio *r1_bio)
374 {
375         /* it really is the end of this request */
376         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377                 /* free extra copy of the data pages */
378                 int i = r1_bio->behind_page_count;
379                 while (i--)
380                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381                 kfree(r1_bio->behind_bvecs);
382                 r1_bio->behind_bvecs = NULL;
383         }
384         /* clear the bitmap if all writes complete successfully */
385         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386                         r1_bio->sectors,
387                         !test_bit(R1BIO_Degraded, &r1_bio->state),
388                         test_bit(R1BIO_BehindIO, &r1_bio->state));
389         md_write_end(r1_bio->mddev);
390 }
391
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394         if (!atomic_dec_and_test(&r1_bio->remaining))
395                 return;
396
397         if (test_bit(R1BIO_WriteError, &r1_bio->state))
398                 reschedule_retry(r1_bio);
399         else {
400                 close_write(r1_bio);
401                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402                         reschedule_retry(r1_bio);
403                 else
404                         raid_end_bio_io(r1_bio);
405         }
406 }
407
408 static void raid1_end_write_request(struct bio *bio)
409 {
410         struct r1bio *r1_bio = bio->bi_private;
411         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412         struct r1conf *conf = r1_bio->mddev->private;
413         struct bio *to_put = NULL;
414         int mirror = find_bio_disk(r1_bio, bio);
415         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416         bool discard_error;
417
418         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419
420         /*
421          * 'one mirror IO has finished' event handler:
422          */
423         if (bio->bi_error && !discard_error) {
424                 set_bit(WriteErrorSeen, &rdev->flags);
425                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
426                         set_bit(MD_RECOVERY_NEEDED, &
427                                 conf->mddev->recovery);
428
429                 if (test_bit(FailFast, &rdev->flags) &&
430                     (bio->bi_opf & MD_FAILFAST) &&
431                     /* We never try FailFast to WriteMostly devices */
432                     !test_bit(WriteMostly, &rdev->flags)) {
433                         md_error(r1_bio->mddev, rdev);
434                         if (!test_bit(Faulty, &rdev->flags))
435                                 /* This is the only remaining device,
436                                  * We need to retry the write without
437                                  * FailFast
438                                  */
439                                 set_bit(R1BIO_WriteError, &r1_bio->state);
440                         else {
441                                 /* Finished with this branch */
442                                 r1_bio->bios[mirror] = NULL;
443                                 to_put = bio;
444                         }
445                 } else
446                         set_bit(R1BIO_WriteError, &r1_bio->state);
447         } else {
448                 /*
449                  * Set R1BIO_Uptodate in our master bio, so that we
450                  * will return a good error code for to the higher
451                  * levels even if IO on some other mirrored buffer
452                  * fails.
453                  *
454                  * The 'master' represents the composite IO operation
455                  * to user-side. So if something waits for IO, then it
456                  * will wait for the 'master' bio.
457                  */
458                 sector_t first_bad;
459                 int bad_sectors;
460
461                 r1_bio->bios[mirror] = NULL;
462                 to_put = bio;
463                 /*
464                  * Do not set R1BIO_Uptodate if the current device is
465                  * rebuilding or Faulty. This is because we cannot use
466                  * such device for properly reading the data back (we could
467                  * potentially use it, if the current write would have felt
468                  * before rdev->recovery_offset, but for simplicity we don't
469                  * check this here.
470                  */
471                 if (test_bit(In_sync, &rdev->flags) &&
472                     !test_bit(Faulty, &rdev->flags))
473                         set_bit(R1BIO_Uptodate, &r1_bio->state);
474
475                 /* Maybe we can clear some bad blocks. */
476                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477                                 &first_bad, &bad_sectors) && !discard_error) {
478                         r1_bio->bios[mirror] = IO_MADE_GOOD;
479                         set_bit(R1BIO_MadeGood, &r1_bio->state);
480                 }
481         }
482
483         if (behind) {
484                 if (test_bit(WriteMostly, &rdev->flags))
485                         atomic_dec(&r1_bio->behind_remaining);
486
487                 /*
488                  * In behind mode, we ACK the master bio once the I/O
489                  * has safely reached all non-writemostly
490                  * disks. Setting the Returned bit ensures that this
491                  * gets done only once -- we don't ever want to return
492                  * -EIO here, instead we'll wait
493                  */
494                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496                         /* Maybe we can return now */
497                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498                                 struct bio *mbio = r1_bio->master_bio;
499                                 pr_debug("raid1: behind end write sectors"
500                                          " %llu-%llu\n",
501                                          (unsigned long long) mbio->bi_iter.bi_sector,
502                                          (unsigned long long) bio_end_sector(mbio) - 1);
503                                 call_bio_endio(r1_bio);
504                         }
505                 }
506         }
507         if (r1_bio->bios[mirror] == NULL)
508                 rdev_dec_pending(rdev, conf->mddev);
509
510         /*
511          * Let's see if all mirrored write operations have finished
512          * already.
513          */
514         r1_bio_write_done(r1_bio);
515
516         if (to_put)
517                 bio_put(to_put);
518 }
519
520 static sector_t align_to_barrier_unit_end(sector_t start_sector,
521                                           sector_t sectors)
522 {
523         sector_t len;
524
525         WARN_ON(sectors == 0);
526         /*
527          * len is the number of sectors from start_sector to end of the
528          * barrier unit which start_sector belongs to.
529          */
530         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
531               start_sector;
532
533         if (len > sectors)
534                 len = sectors;
535
536         return len;
537 }
538
539 /*
540  * This routine returns the disk from which the requested read should
541  * be done. There is a per-array 'next expected sequential IO' sector
542  * number - if this matches on the next IO then we use the last disk.
543  * There is also a per-disk 'last know head position' sector that is
544  * maintained from IRQ contexts, both the normal and the resync IO
545  * completion handlers update this position correctly. If there is no
546  * perfect sequential match then we pick the disk whose head is closest.
547  *
548  * If there are 2 mirrors in the same 2 devices, performance degrades
549  * because position is mirror, not device based.
550  *
551  * The rdev for the device selected will have nr_pending incremented.
552  */
553 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
554 {
555         const sector_t this_sector = r1_bio->sector;
556         int sectors;
557         int best_good_sectors;
558         int best_disk, best_dist_disk, best_pending_disk;
559         int has_nonrot_disk;
560         int disk;
561         sector_t best_dist;
562         unsigned int min_pending;
563         struct md_rdev *rdev;
564         int choose_first;
565         int choose_next_idle;
566
567         rcu_read_lock();
568         /*
569          * Check if we can balance. We can balance on the whole
570          * device if no resync is going on, or below the resync window.
571          * We take the first readable disk when above the resync window.
572          */
573  retry:
574         sectors = r1_bio->sectors;
575         best_disk = -1;
576         best_dist_disk = -1;
577         best_dist = MaxSector;
578         best_pending_disk = -1;
579         min_pending = UINT_MAX;
580         best_good_sectors = 0;
581         has_nonrot_disk = 0;
582         choose_next_idle = 0;
583         clear_bit(R1BIO_FailFast, &r1_bio->state);
584
585         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
586             (mddev_is_clustered(conf->mddev) &&
587             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
588                     this_sector + sectors)))
589                 choose_first = 1;
590         else
591                 choose_first = 0;
592
593         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
594                 sector_t dist;
595                 sector_t first_bad;
596                 int bad_sectors;
597                 unsigned int pending;
598                 bool nonrot;
599
600                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
601                 if (r1_bio->bios[disk] == IO_BLOCKED
602                     || rdev == NULL
603                     || test_bit(Faulty, &rdev->flags))
604                         continue;
605                 if (!test_bit(In_sync, &rdev->flags) &&
606                     rdev->recovery_offset < this_sector + sectors)
607                         continue;
608                 if (test_bit(WriteMostly, &rdev->flags)) {
609                         /* Don't balance among write-mostly, just
610                          * use the first as a last resort */
611                         if (best_dist_disk < 0) {
612                                 if (is_badblock(rdev, this_sector, sectors,
613                                                 &first_bad, &bad_sectors)) {
614                                         if (first_bad <= this_sector)
615                                                 /* Cannot use this */
616                                                 continue;
617                                         best_good_sectors = first_bad - this_sector;
618                                 } else
619                                         best_good_sectors = sectors;
620                                 best_dist_disk = disk;
621                                 best_pending_disk = disk;
622                         }
623                         continue;
624                 }
625                 /* This is a reasonable device to use.  It might
626                  * even be best.
627                  */
628                 if (is_badblock(rdev, this_sector, sectors,
629                                 &first_bad, &bad_sectors)) {
630                         if (best_dist < MaxSector)
631                                 /* already have a better device */
632                                 continue;
633                         if (first_bad <= this_sector) {
634                                 /* cannot read here. If this is the 'primary'
635                                  * device, then we must not read beyond
636                                  * bad_sectors from another device..
637                                  */
638                                 bad_sectors -= (this_sector - first_bad);
639                                 if (choose_first && sectors > bad_sectors)
640                                         sectors = bad_sectors;
641                                 if (best_good_sectors > sectors)
642                                         best_good_sectors = sectors;
643
644                         } else {
645                                 sector_t good_sectors = first_bad - this_sector;
646                                 if (good_sectors > best_good_sectors) {
647                                         best_good_sectors = good_sectors;
648                                         best_disk = disk;
649                                 }
650                                 if (choose_first)
651                                         break;
652                         }
653                         continue;
654                 } else
655                         best_good_sectors = sectors;
656
657                 if (best_disk >= 0)
658                         /* At least two disks to choose from so failfast is OK */
659                         set_bit(R1BIO_FailFast, &r1_bio->state);
660
661                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
662                 has_nonrot_disk |= nonrot;
663                 pending = atomic_read(&rdev->nr_pending);
664                 dist = abs(this_sector - conf->mirrors[disk].head_position);
665                 if (choose_first) {
666                         best_disk = disk;
667                         break;
668                 }
669                 /* Don't change to another disk for sequential reads */
670                 if (conf->mirrors[disk].next_seq_sect == this_sector
671                     || dist == 0) {
672                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
673                         struct raid1_info *mirror = &conf->mirrors[disk];
674
675                         best_disk = disk;
676                         /*
677                          * If buffered sequential IO size exceeds optimal
678                          * iosize, check if there is idle disk. If yes, choose
679                          * the idle disk. read_balance could already choose an
680                          * idle disk before noticing it's a sequential IO in
681                          * this disk. This doesn't matter because this disk
682                          * will idle, next time it will be utilized after the
683                          * first disk has IO size exceeds optimal iosize. In
684                          * this way, iosize of the first disk will be optimal
685                          * iosize at least. iosize of the second disk might be
686                          * small, but not a big deal since when the second disk
687                          * starts IO, the first disk is likely still busy.
688                          */
689                         if (nonrot && opt_iosize > 0 &&
690                             mirror->seq_start != MaxSector &&
691                             mirror->next_seq_sect > opt_iosize &&
692                             mirror->next_seq_sect - opt_iosize >=
693                             mirror->seq_start) {
694                                 choose_next_idle = 1;
695                                 continue;
696                         }
697                         break;
698                 }
699
700                 if (choose_next_idle)
701                         continue;
702
703                 if (min_pending > pending) {
704                         min_pending = pending;
705                         best_pending_disk = disk;
706                 }
707
708                 if (dist < best_dist) {
709                         best_dist = dist;
710                         best_dist_disk = disk;
711                 }
712         }
713
714         /*
715          * If all disks are rotational, choose the closest disk. If any disk is
716          * non-rotational, choose the disk with less pending request even the
717          * disk is rotational, which might/might not be optimal for raids with
718          * mixed ratation/non-rotational disks depending on workload.
719          */
720         if (best_disk == -1) {
721                 if (has_nonrot_disk || min_pending == 0)
722                         best_disk = best_pending_disk;
723                 else
724                         best_disk = best_dist_disk;
725         }
726
727         if (best_disk >= 0) {
728                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
729                 if (!rdev)
730                         goto retry;
731                 atomic_inc(&rdev->nr_pending);
732                 sectors = best_good_sectors;
733
734                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
735                         conf->mirrors[best_disk].seq_start = this_sector;
736
737                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
738         }
739         rcu_read_unlock();
740         *max_sectors = sectors;
741
742         return best_disk;
743 }
744
745 static int raid1_congested(struct mddev *mddev, int bits)
746 {
747         struct r1conf *conf = mddev->private;
748         int i, ret = 0;
749
750         if ((bits & (1 << WB_async_congested)) &&
751             conf->pending_count >= max_queued_requests)
752                 return 1;
753
754         rcu_read_lock();
755         for (i = 0; i < conf->raid_disks * 2; i++) {
756                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
757                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
758                         struct request_queue *q = bdev_get_queue(rdev->bdev);
759
760                         BUG_ON(!q);
761
762                         /* Note the '|| 1' - when read_balance prefers
763                          * non-congested targets, it can be removed
764                          */
765                         if ((bits & (1 << WB_async_congested)) || 1)
766                                 ret |= bdi_congested(q->backing_dev_info, bits);
767                         else
768                                 ret &= bdi_congested(q->backing_dev_info, bits);
769                 }
770         }
771         rcu_read_unlock();
772         return ret;
773 }
774
775 static void flush_pending_writes(struct r1conf *conf)
776 {
777         /* Any writes that have been queued but are awaiting
778          * bitmap updates get flushed here.
779          */
780         spin_lock_irq(&conf->device_lock);
781
782         if (conf->pending_bio_list.head) {
783                 struct bio *bio;
784                 bio = bio_list_get(&conf->pending_bio_list);
785                 conf->pending_count = 0;
786                 spin_unlock_irq(&conf->device_lock);
787                 /* flush any pending bitmap writes to
788                  * disk before proceeding w/ I/O */
789                 bitmap_unplug(conf->mddev->bitmap);
790                 wake_up(&conf->wait_barrier);
791
792                 while (bio) { /* submit pending writes */
793                         struct bio *next = bio->bi_next;
794                         struct md_rdev *rdev = (void*)bio->bi_bdev;
795                         bio->bi_next = NULL;
796                         bio->bi_bdev = rdev->bdev;
797                         if (test_bit(Faulty, &rdev->flags)) {
798                                 bio->bi_error = -EIO;
799                                 bio_endio(bio);
800                         } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
801                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
802                                 /* Just ignore it */
803                                 bio_endio(bio);
804                         else
805                                 generic_make_request(bio);
806                         bio = next;
807                 }
808         } else
809                 spin_unlock_irq(&conf->device_lock);
810 }
811
812 /* Barriers....
813  * Sometimes we need to suspend IO while we do something else,
814  * either some resync/recovery, or reconfigure the array.
815  * To do this we raise a 'barrier'.
816  * The 'barrier' is a counter that can be raised multiple times
817  * to count how many activities are happening which preclude
818  * normal IO.
819  * We can only raise the barrier if there is no pending IO.
820  * i.e. if nr_pending == 0.
821  * We choose only to raise the barrier if no-one is waiting for the
822  * barrier to go down.  This means that as soon as an IO request
823  * is ready, no other operations which require a barrier will start
824  * until the IO request has had a chance.
825  *
826  * So: regular IO calls 'wait_barrier'.  When that returns there
827  *    is no backgroup IO happening,  It must arrange to call
828  *    allow_barrier when it has finished its IO.
829  * backgroup IO calls must call raise_barrier.  Once that returns
830  *    there is no normal IO happeing.  It must arrange to call
831  *    lower_barrier when the particular background IO completes.
832  */
833 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
834 {
835         int idx = sector_to_idx(sector_nr);
836
837         spin_lock_irq(&conf->resync_lock);
838
839         /* Wait until no block IO is waiting */
840         wait_event_lock_irq(conf->wait_barrier,
841                             !atomic_read(&conf->nr_waiting[idx]),
842                             conf->resync_lock);
843
844         /* block any new IO from starting */
845         atomic_inc(&conf->barrier[idx]);
846         /*
847          * In raise_barrier() we firstly increase conf->barrier[idx] then
848          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
849          * increase conf->nr_pending[idx] then check conf->barrier[idx].
850          * A memory barrier here to make sure conf->nr_pending[idx] won't
851          * be fetched before conf->barrier[idx] is increased. Otherwise
852          * there will be a race between raise_barrier() and _wait_barrier().
853          */
854         smp_mb__after_atomic();
855
856         /* For these conditions we must wait:
857          * A: while the array is in frozen state
858          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
859          *    existing in corresponding I/O barrier bucket.
860          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
861          *    max resync count which allowed on current I/O barrier bucket.
862          */
863         wait_event_lock_irq(conf->wait_barrier,
864                             !conf->array_frozen &&
865                              !atomic_read(&conf->nr_pending[idx]) &&
866                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
867                             conf->resync_lock);
868
869         atomic_inc(&conf->nr_pending[idx]);
870         spin_unlock_irq(&conf->resync_lock);
871 }
872
873 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
874 {
875         int idx = sector_to_idx(sector_nr);
876
877         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
878
879         atomic_dec(&conf->barrier[idx]);
880         atomic_dec(&conf->nr_pending[idx]);
881         wake_up(&conf->wait_barrier);
882 }
883
884 static void _wait_barrier(struct r1conf *conf, int idx)
885 {
886         /*
887          * We need to increase conf->nr_pending[idx] very early here,
888          * then raise_barrier() can be blocked when it waits for
889          * conf->nr_pending[idx] to be 0. Then we can avoid holding
890          * conf->resync_lock when there is no barrier raised in same
891          * barrier unit bucket. Also if the array is frozen, I/O
892          * should be blocked until array is unfrozen.
893          */
894         atomic_inc(&conf->nr_pending[idx]);
895         /*
896          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
897          * check conf->barrier[idx]. In raise_barrier() we firstly increase
898          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
899          * barrier is necessary here to make sure conf->barrier[idx] won't be
900          * fetched before conf->nr_pending[idx] is increased. Otherwise there
901          * will be a race between _wait_barrier() and raise_barrier().
902          */
903         smp_mb__after_atomic();
904
905         /*
906          * Don't worry about checking two atomic_t variables at same time
907          * here. If during we check conf->barrier[idx], the array is
908          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
909          * 0, it is safe to return and make the I/O continue. Because the
910          * array is frozen, all I/O returned here will eventually complete
911          * or be queued, no race will happen. See code comment in
912          * frozen_array().
913          */
914         if (!READ_ONCE(conf->array_frozen) &&
915             !atomic_read(&conf->barrier[idx]))
916                 return;
917
918         /*
919          * After holding conf->resync_lock, conf->nr_pending[idx]
920          * should be decreased before waiting for barrier to drop.
921          * Otherwise, we may encounter a race condition because
922          * raise_barrer() might be waiting for conf->nr_pending[idx]
923          * to be 0 at same time.
924          */
925         spin_lock_irq(&conf->resync_lock);
926         atomic_inc(&conf->nr_waiting[idx]);
927         atomic_dec(&conf->nr_pending[idx]);
928         /*
929          * In case freeze_array() is waiting for
930          * get_unqueued_pending() == extra
931          */
932         wake_up(&conf->wait_barrier);
933         /* Wait for the barrier in same barrier unit bucket to drop. */
934         wait_event_lock_irq(conf->wait_barrier,
935                             !conf->array_frozen &&
936                              !atomic_read(&conf->barrier[idx]),
937                             conf->resync_lock);
938         atomic_inc(&conf->nr_pending[idx]);
939         atomic_dec(&conf->nr_waiting[idx]);
940         spin_unlock_irq(&conf->resync_lock);
941 }
942
943 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
944 {
945         int idx = sector_to_idx(sector_nr);
946
947         /*
948          * Very similar to _wait_barrier(). The difference is, for read
949          * I/O we don't need wait for sync I/O, but if the whole array
950          * is frozen, the read I/O still has to wait until the array is
951          * unfrozen. Since there is no ordering requirement with
952          * conf->barrier[idx] here, memory barrier is unnecessary as well.
953          */
954         atomic_inc(&conf->nr_pending[idx]);
955
956         if (!READ_ONCE(conf->array_frozen))
957                 return;
958
959         spin_lock_irq(&conf->resync_lock);
960         atomic_inc(&conf->nr_waiting[idx]);
961         atomic_dec(&conf->nr_pending[idx]);
962         /*
963          * In case freeze_array() is waiting for
964          * get_unqueued_pending() == extra
965          */
966         wake_up(&conf->wait_barrier);
967         /* Wait for array to be unfrozen */
968         wait_event_lock_irq(conf->wait_barrier,
969                             !conf->array_frozen,
970                             conf->resync_lock);
971         atomic_inc(&conf->nr_pending[idx]);
972         atomic_dec(&conf->nr_waiting[idx]);
973         spin_unlock_irq(&conf->resync_lock);
974 }
975
976 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
977 {
978         int idx = sector_to_idx(sector_nr);
979
980         _wait_barrier(conf, idx);
981 }
982
983 static void wait_all_barriers(struct r1conf *conf)
984 {
985         int idx;
986
987         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
988                 _wait_barrier(conf, idx);
989 }
990
991 static void _allow_barrier(struct r1conf *conf, int idx)
992 {
993         atomic_dec(&conf->nr_pending[idx]);
994         wake_up(&conf->wait_barrier);
995 }
996
997 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
998 {
999         int idx = sector_to_idx(sector_nr);
1000
1001         _allow_barrier(conf, idx);
1002 }
1003
1004 static void allow_all_barriers(struct r1conf *conf)
1005 {
1006         int idx;
1007
1008         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1009                 _allow_barrier(conf, idx);
1010 }
1011
1012 /* conf->resync_lock should be held */
1013 static int get_unqueued_pending(struct r1conf *conf)
1014 {
1015         int idx, ret;
1016
1017         for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018                 ret += atomic_read(&conf->nr_pending[idx]) -
1019                         atomic_read(&conf->nr_queued[idx]);
1020
1021         return ret;
1022 }
1023
1024 static void freeze_array(struct r1conf *conf, int extra)
1025 {
1026         /* Stop sync I/O and normal I/O and wait for everything to
1027          * go quite.
1028          * This is called in two situations:
1029          * 1) management command handlers (reshape, remove disk, quiesce).
1030          * 2) one normal I/O request failed.
1031
1032          * After array_frozen is set to 1, new sync IO will be blocked at
1033          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1034          * or wait_read_barrier(). The flying I/Os will either complete or be
1035          * queued. When everything goes quite, there are only queued I/Os left.
1036
1037          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1038          * barrier bucket index which this I/O request hits. When all sync and
1039          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1040          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1041          * in handle_read_error(), we may call freeze_array() before trying to
1042          * fix the read error. In this case, the error read I/O is not queued,
1043          * so get_unqueued_pending() == 1.
1044          *
1045          * Therefore before this function returns, we need to wait until
1046          * get_unqueued_pendings(conf) gets equal to extra. For
1047          * normal I/O context, extra is 1, in rested situations extra is 0.
1048          */
1049         spin_lock_irq(&conf->resync_lock);
1050         conf->array_frozen = 1;
1051         raid1_log(conf->mddev, "wait freeze");
1052         wait_event_lock_irq_cmd(
1053                 conf->wait_barrier,
1054                 get_unqueued_pending(conf) == extra,
1055                 conf->resync_lock,
1056                 flush_pending_writes(conf));
1057         spin_unlock_irq(&conf->resync_lock);
1058 }
1059 static void unfreeze_array(struct r1conf *conf)
1060 {
1061         /* reverse the effect of the freeze */
1062         spin_lock_irq(&conf->resync_lock);
1063         conf->array_frozen = 0;
1064         spin_unlock_irq(&conf->resync_lock);
1065         wake_up(&conf->wait_barrier);
1066 }
1067
1068 /* duplicate the data pages for behind I/O
1069  */
1070 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1071 {
1072         int i;
1073         struct bio_vec *bvec;
1074         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1075                                         GFP_NOIO);
1076         if (unlikely(!bvecs))
1077                 return;
1078
1079         bio_for_each_segment_all(bvec, bio, i) {
1080                 bvecs[i] = *bvec;
1081                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1082                 if (unlikely(!bvecs[i].bv_page))
1083                         goto do_sync_io;
1084                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1085                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1086                 kunmap(bvecs[i].bv_page);
1087                 kunmap(bvec->bv_page);
1088         }
1089         r1_bio->behind_bvecs = bvecs;
1090         r1_bio->behind_page_count = bio->bi_vcnt;
1091         set_bit(R1BIO_BehindIO, &r1_bio->state);
1092         return;
1093
1094 do_sync_io:
1095         for (i = 0; i < bio->bi_vcnt; i++)
1096                 if (bvecs[i].bv_page)
1097                         put_page(bvecs[i].bv_page);
1098         kfree(bvecs);
1099         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1100                  bio->bi_iter.bi_size);
1101 }
1102
1103 struct raid1_plug_cb {
1104         struct blk_plug_cb      cb;
1105         struct bio_list         pending;
1106         int                     pending_cnt;
1107 };
1108
1109 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1112                                                   cb);
1113         struct mddev *mddev = plug->cb.data;
1114         struct r1conf *conf = mddev->private;
1115         struct bio *bio;
1116
1117         if (from_schedule || current->bio_list) {
1118                 spin_lock_irq(&conf->device_lock);
1119                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120                 conf->pending_count += plug->pending_cnt;
1121                 spin_unlock_irq(&conf->device_lock);
1122                 wake_up(&conf->wait_barrier);
1123                 md_wakeup_thread(mddev->thread);
1124                 kfree(plug);
1125                 return;
1126         }
1127
1128         /* we aren't scheduling, so we can do the write-out directly. */
1129         bio = bio_list_get(&plug->pending);
1130         bitmap_unplug(mddev->bitmap);
1131         wake_up(&conf->wait_barrier);
1132
1133         while (bio) { /* submit pending writes */
1134                 struct bio *next = bio->bi_next;
1135                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1136                 bio->bi_next = NULL;
1137                 bio->bi_bdev = rdev->bdev;
1138                 if (test_bit(Faulty, &rdev->flags)) {
1139                         bio->bi_error = -EIO;
1140                         bio_endio(bio);
1141                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1142                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1143                         /* Just ignore it */
1144                         bio_endio(bio);
1145                 else
1146                         generic_make_request(bio);
1147                 bio = next;
1148         }
1149         kfree(plug);
1150 }
1151
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1154 {
1155         struct r1conf *conf = mddev->private;
1156         struct r1bio *r1_bio;
1157
1158         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159
1160         r1_bio->master_bio = bio;
1161         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1162         r1_bio->state = 0;
1163         r1_bio->mddev = mddev;
1164         r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1165
1166         return r1_bio;
1167 }
1168
1169 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1170 {
1171         struct r1conf *conf = mddev->private;
1172         struct raid1_info *mirror;
1173         struct r1bio *r1_bio;
1174         struct bio *read_bio;
1175         struct bitmap *bitmap = mddev->bitmap;
1176         const int op = bio_op(bio);
1177         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1178         int sectors_handled;
1179         int max_sectors;
1180         int rdisk;
1181
1182         /*
1183          * Still need barrier for READ in case that whole
1184          * array is frozen.
1185          */
1186         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1187
1188         r1_bio = alloc_r1bio(mddev, bio, 0);
1189
1190         /*
1191          * We might need to issue multiple reads to different
1192          * devices if there are bad blocks around, so we keep
1193          * track of the number of reads in bio->bi_phys_segments.
1194          * If this is 0, there is only one r1_bio and no locking
1195          * will be needed when requests complete.  If it is
1196          * non-zero, then it is the number of not-completed requests.
1197          */
1198         bio->bi_phys_segments = 0;
1199         bio_clear_flag(bio, BIO_SEG_VALID);
1200
1201         /*
1202          * make_request() can abort the operation when read-ahead is being
1203          * used and no empty request is available.
1204          */
1205 read_again:
1206         rdisk = read_balance(conf, r1_bio, &max_sectors);
1207
1208         if (rdisk < 0) {
1209                 /* couldn't find anywhere to read from */
1210                 raid_end_bio_io(r1_bio);
1211                 return;
1212         }
1213         mirror = conf->mirrors + rdisk;
1214
1215         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1216             bitmap) {
1217                 /*
1218                  * Reading from a write-mostly device must take care not to
1219                  * over-take any writes that are 'behind'
1220                  */
1221                 raid1_log(mddev, "wait behind writes");
1222                 wait_event(bitmap->behind_wait,
1223                            atomic_read(&bitmap->behind_writes) == 0);
1224         }
1225         r1_bio->read_disk = rdisk;
1226
1227         read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1228         bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1229                  max_sectors);
1230
1231         r1_bio->bios[rdisk] = read_bio;
1232
1233         read_bio->bi_iter.bi_sector = r1_bio->sector +
1234                 mirror->rdev->data_offset;
1235         read_bio->bi_bdev = mirror->rdev->bdev;
1236         read_bio->bi_end_io = raid1_end_read_request;
1237         bio_set_op_attrs(read_bio, op, do_sync);
1238         if (test_bit(FailFast, &mirror->rdev->flags) &&
1239             test_bit(R1BIO_FailFast, &r1_bio->state))
1240                 read_bio->bi_opf |= MD_FAILFAST;
1241         read_bio->bi_private = r1_bio;
1242
1243         if (mddev->gendisk)
1244                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1245                                       read_bio, disk_devt(mddev->gendisk),
1246                                       r1_bio->sector);
1247
1248         if (max_sectors < r1_bio->sectors) {
1249                 /*
1250                  * could not read all from this device, so we will need another
1251                  * r1_bio.
1252                  */
1253                 sectors_handled = (r1_bio->sector + max_sectors
1254                                    - bio->bi_iter.bi_sector);
1255                 r1_bio->sectors = max_sectors;
1256                 spin_lock_irq(&conf->device_lock);
1257                 if (bio->bi_phys_segments == 0)
1258                         bio->bi_phys_segments = 2;
1259                 else
1260                         bio->bi_phys_segments++;
1261                 spin_unlock_irq(&conf->device_lock);
1262
1263                 /*
1264                  * Cannot call generic_make_request directly as that will be
1265                  * queued in __make_request and subsequent mempool_alloc might
1266                  * block waiting for it.  So hand bio over to raid1d.
1267                  */
1268                 reschedule_retry(r1_bio);
1269
1270                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1271                 goto read_again;
1272         } else
1273                 generic_make_request(read_bio);
1274 }
1275
1276 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1277 {
1278         struct r1conf *conf = mddev->private;
1279         struct r1bio *r1_bio;
1280         int i, disks;
1281         struct bitmap *bitmap = mddev->bitmap;
1282         unsigned long flags;
1283         struct md_rdev *blocked_rdev;
1284         struct blk_plug_cb *cb;
1285         struct raid1_plug_cb *plug = NULL;
1286         int first_clone;
1287         int sectors_handled;
1288         int max_sectors;
1289
1290         /*
1291          * Register the new request and wait if the reconstruction
1292          * thread has put up a bar for new requests.
1293          * Continue immediately if no resync is active currently.
1294          */
1295
1296         md_write_start(mddev, bio); /* wait on superblock update early */
1297
1298         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1299             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1300             (mddev_is_clustered(mddev) &&
1301              md_cluster_ops->area_resyncing(mddev, WRITE,
1302                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1303
1304                 /*
1305                  * As the suspend_* range is controlled by userspace, we want
1306                  * an interruptible wait.
1307                  */
1308                 DEFINE_WAIT(w);
1309                 for (;;) {
1310                         flush_signals(current);
1311                         prepare_to_wait(&conf->wait_barrier,
1312                                         &w, TASK_INTERRUPTIBLE);
1313                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1314                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1315                             (mddev_is_clustered(mddev) &&
1316                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1317                                      bio->bi_iter.bi_sector,
1318                                      bio_end_sector(bio))))
1319                                 break;
1320                         schedule();
1321                 }
1322                 finish_wait(&conf->wait_barrier, &w);
1323         }
1324         wait_barrier(conf, bio->bi_iter.bi_sector);
1325
1326         r1_bio = alloc_r1bio(mddev, bio, 0);
1327
1328         /* We might need to issue multiple writes to different
1329          * devices if there are bad blocks around, so we keep
1330          * track of the number of writes in bio->bi_phys_segments.
1331          * If this is 0, there is only one r1_bio and no locking
1332          * will be needed when requests complete.  If it is
1333          * non-zero, then it is the number of not-completed requests.
1334          */
1335         bio->bi_phys_segments = 0;
1336         bio_clear_flag(bio, BIO_SEG_VALID);
1337
1338         if (conf->pending_count >= max_queued_requests) {
1339                 md_wakeup_thread(mddev->thread);
1340                 raid1_log(mddev, "wait queued");
1341                 wait_event(conf->wait_barrier,
1342                            conf->pending_count < max_queued_requests);
1343         }
1344         /* first select target devices under rcu_lock and
1345          * inc refcount on their rdev.  Record them by setting
1346          * bios[x] to bio
1347          * If there are known/acknowledged bad blocks on any device on
1348          * which we have seen a write error, we want to avoid writing those
1349          * blocks.
1350          * This potentially requires several writes to write around
1351          * the bad blocks.  Each set of writes gets it's own r1bio
1352          * with a set of bios attached.
1353          */
1354
1355         disks = conf->raid_disks * 2;
1356  retry_write:
1357         blocked_rdev = NULL;
1358         rcu_read_lock();
1359         max_sectors = r1_bio->sectors;
1360         for (i = 0;  i < disks; i++) {
1361                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1362                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1363                         atomic_inc(&rdev->nr_pending);
1364                         blocked_rdev = rdev;
1365                         break;
1366                 }
1367                 r1_bio->bios[i] = NULL;
1368                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1369                         if (i < conf->raid_disks)
1370                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1371                         continue;
1372                 }
1373
1374                 atomic_inc(&rdev->nr_pending);
1375                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1376                         sector_t first_bad;
1377                         int bad_sectors;
1378                         int is_bad;
1379
1380                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1381                                              &first_bad, &bad_sectors);
1382                         if (is_bad < 0) {
1383                                 /* mustn't write here until the bad block is
1384                                  * acknowledged*/
1385                                 set_bit(BlockedBadBlocks, &rdev->flags);
1386                                 blocked_rdev = rdev;
1387                                 break;
1388                         }
1389                         if (is_bad && first_bad <= r1_bio->sector) {
1390                                 /* Cannot write here at all */
1391                                 bad_sectors -= (r1_bio->sector - first_bad);
1392                                 if (bad_sectors < max_sectors)
1393                                         /* mustn't write more than bad_sectors
1394                                          * to other devices yet
1395                                          */
1396                                         max_sectors = bad_sectors;
1397                                 rdev_dec_pending(rdev, mddev);
1398                                 /* We don't set R1BIO_Degraded as that
1399                                  * only applies if the disk is
1400                                  * missing, so it might be re-added,
1401                                  * and we want to know to recover this
1402                                  * chunk.
1403                                  * In this case the device is here,
1404                                  * and the fact that this chunk is not
1405                                  * in-sync is recorded in the bad
1406                                  * block log
1407                                  */
1408                                 continue;
1409                         }
1410                         if (is_bad) {
1411                                 int good_sectors = first_bad - r1_bio->sector;
1412                                 if (good_sectors < max_sectors)
1413                                         max_sectors = good_sectors;
1414                         }
1415                 }
1416                 r1_bio->bios[i] = bio;
1417         }
1418         rcu_read_unlock();
1419
1420         if (unlikely(blocked_rdev)) {
1421                 /* Wait for this device to become unblocked */
1422                 int j;
1423
1424                 for (j = 0; j < i; j++)
1425                         if (r1_bio->bios[j])
1426                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1427                 r1_bio->state = 0;
1428                 allow_barrier(conf, bio->bi_iter.bi_sector);
1429                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1430                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431                 wait_barrier(conf, bio->bi_iter.bi_sector);
1432                 goto retry_write;
1433         }
1434
1435         if (max_sectors < r1_bio->sectors) {
1436                 /* We are splitting this write into multiple parts, so
1437                  * we need to prepare for allocating another r1_bio.
1438                  */
1439                 r1_bio->sectors = max_sectors;
1440                 spin_lock_irq(&conf->device_lock);
1441                 if (bio->bi_phys_segments == 0)
1442                         bio->bi_phys_segments = 2;
1443                 else
1444                         bio->bi_phys_segments++;
1445                 spin_unlock_irq(&conf->device_lock);
1446         }
1447         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1448
1449         atomic_set(&r1_bio->remaining, 1);
1450         atomic_set(&r1_bio->behind_remaining, 0);
1451
1452         first_clone = 1;
1453         for (i = 0; i < disks; i++) {
1454                 struct bio *mbio = NULL;
1455                 sector_t offset;
1456                 if (!r1_bio->bios[i])
1457                         continue;
1458
1459                 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1460
1461                 if (first_clone) {
1462                         /* do behind I/O ?
1463                          * Not if there are too many, or cannot
1464                          * allocate memory, or a reader on WriteMostly
1465                          * is waiting for behind writes to flush */
1466                         if (bitmap &&
1467                             (atomic_read(&bitmap->behind_writes)
1468                              < mddev->bitmap_info.max_write_behind) &&
1469                             !waitqueue_active(&bitmap->behind_wait)) {
1470                                 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1471                                                                 mddev->bio_set,
1472                                                                 offset << 9,
1473                                                                 max_sectors << 9);
1474                                 alloc_behind_pages(mbio, r1_bio);
1475                         }
1476
1477                         bitmap_startwrite(bitmap, r1_bio->sector,
1478                                           r1_bio->sectors,
1479                                           test_bit(R1BIO_BehindIO,
1480                                                    &r1_bio->state));
1481                         first_clone = 0;
1482                 }
1483
1484                 if (!mbio) {
1485                         if (r1_bio->behind_bvecs)
1486                                 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1487                                                                 mddev->bio_set,
1488                                                                 offset << 9,
1489                                                                 max_sectors << 9);
1490                         else {
1491                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1492                                 bio_trim(mbio, offset, max_sectors);
1493                         }
1494                 }
1495
1496                 if (r1_bio->behind_bvecs) {
1497                         struct bio_vec *bvec;
1498                         int j;
1499
1500                         /*
1501                          * We trimmed the bio, so _all is legit
1502                          */
1503                         bio_for_each_segment_all(bvec, mbio, j)
1504                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1505                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1506                                 atomic_inc(&r1_bio->behind_remaining);
1507                 }
1508
1509                 r1_bio->bios[i] = mbio;
1510
1511                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1512                                    conf->mirrors[i].rdev->data_offset);
1513                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1514                 mbio->bi_end_io = raid1_end_write_request;
1515                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1516                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1517                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1518                     conf->raid_disks - mddev->degraded > 1)
1519                         mbio->bi_opf |= MD_FAILFAST;
1520                 mbio->bi_private = r1_bio;
1521
1522                 atomic_inc(&r1_bio->remaining);
1523
1524                 if (mddev->gendisk)
1525                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1526                                               mbio, disk_devt(mddev->gendisk),
1527                                               r1_bio->sector);
1528                 /* flush_pending_writes() needs access to the rdev so...*/
1529                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1530
1531                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1532                 if (cb)
1533                         plug = container_of(cb, struct raid1_plug_cb, cb);
1534                 else
1535                         plug = NULL;
1536                 spin_lock_irqsave(&conf->device_lock, flags);
1537                 if (plug) {
1538                         bio_list_add(&plug->pending, mbio);
1539                         plug->pending_cnt++;
1540                 } else {
1541                         bio_list_add(&conf->pending_bio_list, mbio);
1542                         conf->pending_count++;
1543                 }
1544                 spin_unlock_irqrestore(&conf->device_lock, flags);
1545                 if (!plug)
1546                         md_wakeup_thread(mddev->thread);
1547         }
1548         /* Mustn't call r1_bio_write_done before this next test,
1549          * as it could result in the bio being freed.
1550          */
1551         if (sectors_handled < bio_sectors(bio)) {
1552                 r1_bio_write_done(r1_bio);
1553                 /* We need another r1_bio.  It has already been counted
1554                  * in bio->bi_phys_segments
1555                  */
1556                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1557                 goto retry_write;
1558         }
1559
1560         r1_bio_write_done(r1_bio);
1561
1562         /* In case raid1d snuck in to freeze_array */
1563         wake_up(&conf->wait_barrier);
1564 }
1565
1566 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1567 {
1568         struct bio *split;
1569         sector_t sectors;
1570
1571         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1572                 md_flush_request(mddev, bio);
1573                 return;
1574         }
1575
1576         /* if bio exceeds barrier unit boundary, split it */
1577         do {
1578                 sectors = align_to_barrier_unit_end(
1579                                 bio->bi_iter.bi_sector, bio_sectors(bio));
1580                 if (sectors < bio_sectors(bio)) {
1581                         split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1582                         bio_chain(split, bio);
1583                 } else {
1584                         split = bio;
1585                 }
1586
1587                 if (bio_data_dir(split) == READ)
1588                         raid1_read_request(mddev, split);
1589                 else
1590                         raid1_write_request(mddev, split);
1591         } while (split != bio);
1592 }
1593
1594 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1595 {
1596         struct r1conf *conf = mddev->private;
1597         int i;
1598
1599         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1600                    conf->raid_disks - mddev->degraded);
1601         rcu_read_lock();
1602         for (i = 0; i < conf->raid_disks; i++) {
1603                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1604                 seq_printf(seq, "%s",
1605                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1606         }
1607         rcu_read_unlock();
1608         seq_printf(seq, "]");
1609 }
1610
1611 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1612 {
1613         char b[BDEVNAME_SIZE];
1614         struct r1conf *conf = mddev->private;
1615         unsigned long flags;
1616
1617         /*
1618          * If it is not operational, then we have already marked it as dead
1619          * else if it is the last working disks, ignore the error, let the
1620          * next level up know.
1621          * else mark the drive as failed
1622          */
1623         spin_lock_irqsave(&conf->device_lock, flags);
1624         if (test_bit(In_sync, &rdev->flags)
1625             && (conf->raid_disks - mddev->degraded) == 1) {
1626                 /*
1627                  * Don't fail the drive, act as though we were just a
1628                  * normal single drive.
1629                  * However don't try a recovery from this drive as
1630                  * it is very likely to fail.
1631                  */
1632                 conf->recovery_disabled = mddev->recovery_disabled;
1633                 spin_unlock_irqrestore(&conf->device_lock, flags);
1634                 return;
1635         }
1636         set_bit(Blocked, &rdev->flags);
1637         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1638                 mddev->degraded++;
1639                 set_bit(Faulty, &rdev->flags);
1640         } else
1641                 set_bit(Faulty, &rdev->flags);
1642         spin_unlock_irqrestore(&conf->device_lock, flags);
1643         /*
1644          * if recovery is running, make sure it aborts.
1645          */
1646         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1647         set_mask_bits(&mddev->sb_flags, 0,
1648                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1649         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1650                 "md/raid1:%s: Operation continuing on %d devices.\n",
1651                 mdname(mddev), bdevname(rdev->bdev, b),
1652                 mdname(mddev), conf->raid_disks - mddev->degraded);
1653 }
1654
1655 static void print_conf(struct r1conf *conf)
1656 {
1657         int i;
1658
1659         pr_debug("RAID1 conf printout:\n");
1660         if (!conf) {
1661                 pr_debug("(!conf)\n");
1662                 return;
1663         }
1664         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1665                  conf->raid_disks);
1666
1667         rcu_read_lock();
1668         for (i = 0; i < conf->raid_disks; i++) {
1669                 char b[BDEVNAME_SIZE];
1670                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1671                 if (rdev)
1672                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1673                                  i, !test_bit(In_sync, &rdev->flags),
1674                                  !test_bit(Faulty, &rdev->flags),
1675                                  bdevname(rdev->bdev,b));
1676         }
1677         rcu_read_unlock();
1678 }
1679
1680 static void close_sync(struct r1conf *conf)
1681 {
1682         wait_all_barriers(conf);
1683         allow_all_barriers(conf);
1684
1685         mempool_destroy(conf->r1buf_pool);
1686         conf->r1buf_pool = NULL;
1687 }
1688
1689 static int raid1_spare_active(struct mddev *mddev)
1690 {
1691         int i;
1692         struct r1conf *conf = mddev->private;
1693         int count = 0;
1694         unsigned long flags;
1695
1696         /*
1697          * Find all failed disks within the RAID1 configuration
1698          * and mark them readable.
1699          * Called under mddev lock, so rcu protection not needed.
1700          * device_lock used to avoid races with raid1_end_read_request
1701          * which expects 'In_sync' flags and ->degraded to be consistent.
1702          */
1703         spin_lock_irqsave(&conf->device_lock, flags);
1704         for (i = 0; i < conf->raid_disks; i++) {
1705                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1706                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1707                 if (repl
1708                     && !test_bit(Candidate, &repl->flags)
1709                     && repl->recovery_offset == MaxSector
1710                     && !test_bit(Faulty, &repl->flags)
1711                     && !test_and_set_bit(In_sync, &repl->flags)) {
1712                         /* replacement has just become active */
1713                         if (!rdev ||
1714                             !test_and_clear_bit(In_sync, &rdev->flags))
1715                                 count++;
1716                         if (rdev) {
1717                                 /* Replaced device not technically
1718                                  * faulty, but we need to be sure
1719                                  * it gets removed and never re-added
1720                                  */
1721                                 set_bit(Faulty, &rdev->flags);
1722                                 sysfs_notify_dirent_safe(
1723                                         rdev->sysfs_state);
1724                         }
1725                 }
1726                 if (rdev
1727                     && rdev->recovery_offset == MaxSector
1728                     && !test_bit(Faulty, &rdev->flags)
1729                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1730                         count++;
1731                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1732                 }
1733         }
1734         mddev->degraded -= count;
1735         spin_unlock_irqrestore(&conf->device_lock, flags);
1736
1737         print_conf(conf);
1738         return count;
1739 }
1740
1741 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1742 {
1743         struct r1conf *conf = mddev->private;
1744         int err = -EEXIST;
1745         int mirror = 0;
1746         struct raid1_info *p;
1747         int first = 0;
1748         int last = conf->raid_disks - 1;
1749
1750         if (mddev->recovery_disabled == conf->recovery_disabled)
1751                 return -EBUSY;
1752
1753         if (md_integrity_add_rdev(rdev, mddev))
1754                 return -ENXIO;
1755
1756         if (rdev->raid_disk >= 0)
1757                 first = last = rdev->raid_disk;
1758
1759         /*
1760          * find the disk ... but prefer rdev->saved_raid_disk
1761          * if possible.
1762          */
1763         if (rdev->saved_raid_disk >= 0 &&
1764             rdev->saved_raid_disk >= first &&
1765             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1766                 first = last = rdev->saved_raid_disk;
1767
1768         for (mirror = first; mirror <= last; mirror++) {
1769                 p = conf->mirrors+mirror;
1770                 if (!p->rdev) {
1771
1772                         if (mddev->gendisk)
1773                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1774                                                   rdev->data_offset << 9);
1775
1776                         p->head_position = 0;
1777                         rdev->raid_disk = mirror;
1778                         err = 0;
1779                         /* As all devices are equivalent, we don't need a full recovery
1780                          * if this was recently any drive of the array
1781                          */
1782                         if (rdev->saved_raid_disk < 0)
1783                                 conf->fullsync = 1;
1784                         rcu_assign_pointer(p->rdev, rdev);
1785                         break;
1786                 }
1787                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1788                     p[conf->raid_disks].rdev == NULL) {
1789                         /* Add this device as a replacement */
1790                         clear_bit(In_sync, &rdev->flags);
1791                         set_bit(Replacement, &rdev->flags);
1792                         rdev->raid_disk = mirror;
1793                         err = 0;
1794                         conf->fullsync = 1;
1795                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1796                         break;
1797                 }
1798         }
1799         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1800                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1801         print_conf(conf);
1802         return err;
1803 }
1804
1805 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807         struct r1conf *conf = mddev->private;
1808         int err = 0;
1809         int number = rdev->raid_disk;
1810         struct raid1_info *p = conf->mirrors + number;
1811
1812         if (rdev != p->rdev)
1813                 p = conf->mirrors + conf->raid_disks + number;
1814
1815         print_conf(conf);
1816         if (rdev == p->rdev) {
1817                 if (test_bit(In_sync, &rdev->flags) ||
1818                     atomic_read(&rdev->nr_pending)) {
1819                         err = -EBUSY;
1820                         goto abort;
1821                 }
1822                 /* Only remove non-faulty devices if recovery
1823                  * is not possible.
1824                  */
1825                 if (!test_bit(Faulty, &rdev->flags) &&
1826                     mddev->recovery_disabled != conf->recovery_disabled &&
1827                     mddev->degraded < conf->raid_disks) {
1828                         err = -EBUSY;
1829                         goto abort;
1830                 }
1831                 p->rdev = NULL;
1832                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1833                         synchronize_rcu();
1834                         if (atomic_read(&rdev->nr_pending)) {
1835                                 /* lost the race, try later */
1836                                 err = -EBUSY;
1837                                 p->rdev = rdev;
1838                                 goto abort;
1839                         }
1840                 }
1841                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1842                         /* We just removed a device that is being replaced.
1843                          * Move down the replacement.  We drain all IO before
1844                          * doing this to avoid confusion.
1845                          */
1846                         struct md_rdev *repl =
1847                                 conf->mirrors[conf->raid_disks + number].rdev;
1848                         freeze_array(conf, 0);
1849                         clear_bit(Replacement, &repl->flags);
1850                         p->rdev = repl;
1851                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1852                         unfreeze_array(conf);
1853                         clear_bit(WantReplacement, &rdev->flags);
1854                 } else
1855                         clear_bit(WantReplacement, &rdev->flags);
1856                 err = md_integrity_register(mddev);
1857         }
1858 abort:
1859
1860         print_conf(conf);
1861         return err;
1862 }
1863
1864 static void end_sync_read(struct bio *bio)
1865 {
1866         struct r1bio *r1_bio = bio->bi_private;
1867
1868         update_head_pos(r1_bio->read_disk, r1_bio);
1869
1870         /*
1871          * we have read a block, now it needs to be re-written,
1872          * or re-read if the read failed.
1873          * We don't do much here, just schedule handling by raid1d
1874          */
1875         if (!bio->bi_error)
1876                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1877
1878         if (atomic_dec_and_test(&r1_bio->remaining))
1879                 reschedule_retry(r1_bio);
1880 }
1881
1882 static void end_sync_write(struct bio *bio)
1883 {
1884         int uptodate = !bio->bi_error;
1885         struct r1bio *r1_bio = bio->bi_private;
1886         struct mddev *mddev = r1_bio->mddev;
1887         struct r1conf *conf = mddev->private;
1888         sector_t first_bad;
1889         int bad_sectors;
1890         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1891
1892         if (!uptodate) {
1893                 sector_t sync_blocks = 0;
1894                 sector_t s = r1_bio->sector;
1895                 long sectors_to_go = r1_bio->sectors;
1896                 /* make sure these bits doesn't get cleared. */
1897                 do {
1898                         bitmap_end_sync(mddev->bitmap, s,
1899                                         &sync_blocks, 1);
1900                         s += sync_blocks;
1901                         sectors_to_go -= sync_blocks;
1902                 } while (sectors_to_go > 0);
1903                 set_bit(WriteErrorSeen, &rdev->flags);
1904                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1905                         set_bit(MD_RECOVERY_NEEDED, &
1906                                 mddev->recovery);
1907                 set_bit(R1BIO_WriteError, &r1_bio->state);
1908         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1909                                &first_bad, &bad_sectors) &&
1910                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1911                                 r1_bio->sector,
1912                                 r1_bio->sectors,
1913                                 &first_bad, &bad_sectors)
1914                 )
1915                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1916
1917         if (atomic_dec_and_test(&r1_bio->remaining)) {
1918                 int s = r1_bio->sectors;
1919                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1920                     test_bit(R1BIO_WriteError, &r1_bio->state))
1921                         reschedule_retry(r1_bio);
1922                 else {
1923                         put_buf(r1_bio);
1924                         md_done_sync(mddev, s, uptodate);
1925                 }
1926         }
1927 }
1928
1929 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1930                             int sectors, struct page *page, int rw)
1931 {
1932         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1933                 /* success */
1934                 return 1;
1935         if (rw == WRITE) {
1936                 set_bit(WriteErrorSeen, &rdev->flags);
1937                 if (!test_and_set_bit(WantReplacement,
1938                                       &rdev->flags))
1939                         set_bit(MD_RECOVERY_NEEDED, &
1940                                 rdev->mddev->recovery);
1941         }
1942         /* need to record an error - either for the block or the device */
1943         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1944                 md_error(rdev->mddev, rdev);
1945         return 0;
1946 }
1947
1948 static int fix_sync_read_error(struct r1bio *r1_bio)
1949 {
1950         /* Try some synchronous reads of other devices to get
1951          * good data, much like with normal read errors.  Only
1952          * read into the pages we already have so we don't
1953          * need to re-issue the read request.
1954          * We don't need to freeze the array, because being in an
1955          * active sync request, there is no normal IO, and
1956          * no overlapping syncs.
1957          * We don't need to check is_badblock() again as we
1958          * made sure that anything with a bad block in range
1959          * will have bi_end_io clear.
1960          */
1961         struct mddev *mddev = r1_bio->mddev;
1962         struct r1conf *conf = mddev->private;
1963         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1964         sector_t sect = r1_bio->sector;
1965         int sectors = r1_bio->sectors;
1966         int idx = 0;
1967         struct md_rdev *rdev;
1968
1969         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1970         if (test_bit(FailFast, &rdev->flags)) {
1971                 /* Don't try recovering from here - just fail it
1972                  * ... unless it is the last working device of course */
1973                 md_error(mddev, rdev);
1974                 if (test_bit(Faulty, &rdev->flags))
1975                         /* Don't try to read from here, but make sure
1976                          * put_buf does it's thing
1977                          */
1978                         bio->bi_end_io = end_sync_write;
1979         }
1980
1981         while(sectors) {
1982                 int s = sectors;
1983                 int d = r1_bio->read_disk;
1984                 int success = 0;
1985                 int start;
1986
1987                 if (s > (PAGE_SIZE>>9))
1988                         s = PAGE_SIZE >> 9;
1989                 do {
1990                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1991                                 /* No rcu protection needed here devices
1992                                  * can only be removed when no resync is
1993                                  * active, and resync is currently active
1994                                  */
1995                                 rdev = conf->mirrors[d].rdev;
1996                                 if (sync_page_io(rdev, sect, s<<9,
1997                                                  bio->bi_io_vec[idx].bv_page,
1998                                                  REQ_OP_READ, 0, false)) {
1999                                         success = 1;
2000                                         break;
2001                                 }
2002                         }
2003                         d++;
2004                         if (d == conf->raid_disks * 2)
2005                                 d = 0;
2006                 } while (!success && d != r1_bio->read_disk);
2007
2008                 if (!success) {
2009                         char b[BDEVNAME_SIZE];
2010                         int abort = 0;
2011                         /* Cannot read from anywhere, this block is lost.
2012                          * Record a bad block on each device.  If that doesn't
2013                          * work just disable and interrupt the recovery.
2014                          * Don't fail devices as that won't really help.
2015                          */
2016                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2017                                             mdname(mddev),
2018                                             bdevname(bio->bi_bdev, b),
2019                                             (unsigned long long)r1_bio->sector);
2020                         for (d = 0; d < conf->raid_disks * 2; d++) {
2021                                 rdev = conf->mirrors[d].rdev;
2022                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2023                                         continue;
2024                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2025                                         abort = 1;
2026                         }
2027                         if (abort) {
2028                                 conf->recovery_disabled =
2029                                         mddev->recovery_disabled;
2030                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2031                                 md_done_sync(mddev, r1_bio->sectors, 0);
2032                                 put_buf(r1_bio);
2033                                 return 0;
2034                         }
2035                         /* Try next page */
2036                         sectors -= s;
2037                         sect += s;
2038                         idx++;
2039                         continue;
2040                 }
2041
2042                 start = d;
2043                 /* write it back and re-read */
2044                 while (d != r1_bio->read_disk) {
2045                         if (d == 0)
2046                                 d = conf->raid_disks * 2;
2047                         d--;
2048                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2049                                 continue;
2050                         rdev = conf->mirrors[d].rdev;
2051                         if (r1_sync_page_io(rdev, sect, s,
2052                                             bio->bi_io_vec[idx].bv_page,
2053                                             WRITE) == 0) {
2054                                 r1_bio->bios[d]->bi_end_io = NULL;
2055                                 rdev_dec_pending(rdev, mddev);
2056                         }
2057                 }
2058                 d = start;
2059                 while (d != r1_bio->read_disk) {
2060                         if (d == 0)
2061                                 d = conf->raid_disks * 2;
2062                         d--;
2063                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2064                                 continue;
2065                         rdev = conf->mirrors[d].rdev;
2066                         if (r1_sync_page_io(rdev, sect, s,
2067                                             bio->bi_io_vec[idx].bv_page,
2068                                             READ) != 0)
2069                                 atomic_add(s, &rdev->corrected_errors);
2070                 }
2071                 sectors -= s;
2072                 sect += s;
2073                 idx ++;
2074         }
2075         set_bit(R1BIO_Uptodate, &r1_bio->state);
2076         bio->bi_error = 0;
2077         return 1;
2078 }
2079
2080 static void process_checks(struct r1bio *r1_bio)
2081 {
2082         /* We have read all readable devices.  If we haven't
2083          * got the block, then there is no hope left.
2084          * If we have, then we want to do a comparison
2085          * and skip the write if everything is the same.
2086          * If any blocks failed to read, then we need to
2087          * attempt an over-write
2088          */
2089         struct mddev *mddev = r1_bio->mddev;
2090         struct r1conf *conf = mddev->private;
2091         int primary;
2092         int i;
2093         int vcnt;
2094
2095         /* Fix variable parts of all bios */
2096         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2097         for (i = 0; i < conf->raid_disks * 2; i++) {
2098                 int j;
2099                 int size;
2100                 int error;
2101                 struct bio *b = r1_bio->bios[i];
2102                 if (b->bi_end_io != end_sync_read)
2103                         continue;
2104                 /* fixup the bio for reuse, but preserve errno */
2105                 error = b->bi_error;
2106                 bio_reset(b);
2107                 b->bi_error = error;
2108                 b->bi_vcnt = vcnt;
2109                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2110                 b->bi_iter.bi_sector = r1_bio->sector +
2111                         conf->mirrors[i].rdev->data_offset;
2112                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2113                 b->bi_end_io = end_sync_read;
2114                 b->bi_private = r1_bio;
2115
2116                 size = b->bi_iter.bi_size;
2117                 for (j = 0; j < vcnt ; j++) {
2118                         struct bio_vec *bi;
2119                         bi = &b->bi_io_vec[j];
2120                         bi->bv_offset = 0;
2121                         if (size > PAGE_SIZE)
2122                                 bi->bv_len = PAGE_SIZE;
2123                         else
2124                                 bi->bv_len = size;
2125                         size -= PAGE_SIZE;
2126                 }
2127         }
2128         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2129                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2130                     !r1_bio->bios[primary]->bi_error) {
2131                         r1_bio->bios[primary]->bi_end_io = NULL;
2132                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2133                         break;
2134                 }
2135         r1_bio->read_disk = primary;
2136         for (i = 0; i < conf->raid_disks * 2; i++) {
2137                 int j;
2138                 struct bio *pbio = r1_bio->bios[primary];
2139                 struct bio *sbio = r1_bio->bios[i];
2140                 int error = sbio->bi_error;
2141
2142                 if (sbio->bi_end_io != end_sync_read)
2143                         continue;
2144                 /* Now we can 'fixup' the error value */
2145                 sbio->bi_error = 0;
2146
2147                 if (!error) {
2148                         for (j = vcnt; j-- ; ) {
2149                                 struct page *p, *s;
2150                                 p = pbio->bi_io_vec[j].bv_page;
2151                                 s = sbio->bi_io_vec[j].bv_page;
2152                                 if (memcmp(page_address(p),
2153                                            page_address(s),
2154                                            sbio->bi_io_vec[j].bv_len))
2155                                         break;
2156                         }
2157                 } else
2158                         j = 0;
2159                 if (j >= 0)
2160                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2161                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2162                               && !error)) {
2163                         /* No need to write to this device. */
2164                         sbio->bi_end_io = NULL;
2165                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2166                         continue;
2167                 }
2168
2169                 bio_copy_data(sbio, pbio);
2170         }
2171 }
2172
2173 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2174 {
2175         struct r1conf *conf = mddev->private;
2176         int i;
2177         int disks = conf->raid_disks * 2;
2178         struct bio *bio, *wbio;
2179
2180         bio = r1_bio->bios[r1_bio->read_disk];
2181
2182         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2183                 /* ouch - failed to read all of that. */
2184                 if (!fix_sync_read_error(r1_bio))
2185                         return;
2186
2187         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2188                 process_checks(r1_bio);
2189
2190         /*
2191          * schedule writes
2192          */
2193         atomic_set(&r1_bio->remaining, 1);
2194         for (i = 0; i < disks ; i++) {
2195                 wbio = r1_bio->bios[i];
2196                 if (wbio->bi_end_io == NULL ||
2197                     (wbio->bi_end_io == end_sync_read &&
2198                      (i == r1_bio->read_disk ||
2199                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2200                         continue;
2201
2202                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2203                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2204                         wbio->bi_opf |= MD_FAILFAST;
2205
2206                 wbio->bi_end_io = end_sync_write;
2207                 atomic_inc(&r1_bio->remaining);
2208                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2209
2210                 generic_make_request(wbio);
2211         }
2212
2213         if (atomic_dec_and_test(&r1_bio->remaining)) {
2214                 /* if we're here, all write(s) have completed, so clean up */
2215                 int s = r1_bio->sectors;
2216                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2217                     test_bit(R1BIO_WriteError, &r1_bio->state))
2218                         reschedule_retry(r1_bio);
2219                 else {
2220                         put_buf(r1_bio);
2221                         md_done_sync(mddev, s, 1);
2222                 }
2223         }
2224 }
2225
2226 /*
2227  * This is a kernel thread which:
2228  *
2229  *      1.      Retries failed read operations on working mirrors.
2230  *      2.      Updates the raid superblock when problems encounter.
2231  *      3.      Performs writes following reads for array synchronising.
2232  */
2233
2234 static void fix_read_error(struct r1conf *conf, int read_disk,
2235                            sector_t sect, int sectors)
2236 {
2237         struct mddev *mddev = conf->mddev;
2238         while(sectors) {
2239                 int s = sectors;
2240                 int d = read_disk;
2241                 int success = 0;
2242                 int start;
2243                 struct md_rdev *rdev;
2244
2245                 if (s > (PAGE_SIZE>>9))
2246                         s = PAGE_SIZE >> 9;
2247
2248                 do {
2249                         sector_t first_bad;
2250                         int bad_sectors;
2251
2252                         rcu_read_lock();
2253                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2254                         if (rdev &&
2255                             (test_bit(In_sync, &rdev->flags) ||
2256                              (!test_bit(Faulty, &rdev->flags) &&
2257                               rdev->recovery_offset >= sect + s)) &&
2258                             is_badblock(rdev, sect, s,
2259                                         &first_bad, &bad_sectors) == 0) {
2260                                 atomic_inc(&rdev->nr_pending);
2261                                 rcu_read_unlock();
2262                                 if (sync_page_io(rdev, sect, s<<9,
2263                                          conf->tmppage, REQ_OP_READ, 0, false))
2264                                         success = 1;
2265                                 rdev_dec_pending(rdev, mddev);
2266                                 if (success)
2267                                         break;
2268                         } else
2269                                 rcu_read_unlock();
2270                         d++;
2271                         if (d == conf->raid_disks * 2)
2272                                 d = 0;
2273                 } while (!success && d != read_disk);
2274
2275                 if (!success) {
2276                         /* Cannot read from anywhere - mark it bad */
2277                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2278                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2279                                 md_error(mddev, rdev);
2280                         break;
2281                 }
2282                 /* write it back and re-read */
2283                 start = d;
2284                 while (d != read_disk) {
2285                         if (d==0)
2286                                 d = conf->raid_disks * 2;
2287                         d--;
2288                         rcu_read_lock();
2289                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2290                         if (rdev &&
2291                             !test_bit(Faulty, &rdev->flags)) {
2292                                 atomic_inc(&rdev->nr_pending);
2293                                 rcu_read_unlock();
2294                                 r1_sync_page_io(rdev, sect, s,
2295                                                 conf->tmppage, WRITE);
2296                                 rdev_dec_pending(rdev, mddev);
2297                         } else
2298                                 rcu_read_unlock();
2299                 }
2300                 d = start;
2301                 while (d != read_disk) {
2302                         char b[BDEVNAME_SIZE];
2303                         if (d==0)
2304                                 d = conf->raid_disks * 2;
2305                         d--;
2306                         rcu_read_lock();
2307                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2308                         if (rdev &&
2309                             !test_bit(Faulty, &rdev->flags)) {
2310                                 atomic_inc(&rdev->nr_pending);
2311                                 rcu_read_unlock();
2312                                 if (r1_sync_page_io(rdev, sect, s,
2313                                                     conf->tmppage, READ)) {
2314                                         atomic_add(s, &rdev->corrected_errors);
2315                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2316                                                 mdname(mddev), s,
2317                                                 (unsigned long long)(sect +
2318                                                                      rdev->data_offset),
2319                                                 bdevname(rdev->bdev, b));
2320                                 }
2321                                 rdev_dec_pending(rdev, mddev);
2322                         } else
2323                                 rcu_read_unlock();
2324                 }
2325                 sectors -= s;
2326                 sect += s;
2327         }
2328 }
2329
2330 static int narrow_write_error(struct r1bio *r1_bio, int i)
2331 {
2332         struct mddev *mddev = r1_bio->mddev;
2333         struct r1conf *conf = mddev->private;
2334         struct md_rdev *rdev = conf->mirrors[i].rdev;
2335
2336         /* bio has the data to be written to device 'i' where
2337          * we just recently had a write error.
2338          * We repeatedly clone the bio and trim down to one block,
2339          * then try the write.  Where the write fails we record
2340          * a bad block.
2341          * It is conceivable that the bio doesn't exactly align with
2342          * blocks.  We must handle this somehow.
2343          *
2344          * We currently own a reference on the rdev.
2345          */
2346
2347         int block_sectors;
2348         sector_t sector;
2349         int sectors;
2350         int sect_to_write = r1_bio->sectors;
2351         int ok = 1;
2352
2353         if (rdev->badblocks.shift < 0)
2354                 return 0;
2355
2356         block_sectors = roundup(1 << rdev->badblocks.shift,
2357                                 bdev_logical_block_size(rdev->bdev) >> 9);
2358         sector = r1_bio->sector;
2359         sectors = ((sector + block_sectors)
2360                    & ~(sector_t)(block_sectors - 1))
2361                 - sector;
2362
2363         while (sect_to_write) {
2364                 struct bio *wbio;
2365                 if (sectors > sect_to_write)
2366                         sectors = sect_to_write;
2367                 /* Write at 'sector' for 'sectors'*/
2368
2369                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2370                         unsigned vcnt = r1_bio->behind_page_count;
2371                         struct bio_vec *vec = r1_bio->behind_bvecs;
2372
2373                         while (!vec->bv_page) {
2374                                 vec++;
2375                                 vcnt--;
2376                         }
2377
2378                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2379                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2380
2381                         wbio->bi_vcnt = vcnt;
2382                 } else {
2383                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2384                                               mddev->bio_set);
2385                 }
2386
2387                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2388                 wbio->bi_iter.bi_sector = r1_bio->sector;
2389                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2390
2391                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2392                 wbio->bi_iter.bi_sector += rdev->data_offset;
2393                 wbio->bi_bdev = rdev->bdev;
2394
2395                 if (submit_bio_wait(wbio) < 0)
2396                         /* failure! */
2397                         ok = rdev_set_badblocks(rdev, sector,
2398                                                 sectors, 0)
2399                                 && ok;
2400
2401                 bio_put(wbio);
2402                 sect_to_write -= sectors;
2403                 sector += sectors;
2404                 sectors = block_sectors;
2405         }
2406         return ok;
2407 }
2408
2409 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2410 {
2411         int m;
2412         int s = r1_bio->sectors;
2413         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2414                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2415                 struct bio *bio = r1_bio->bios[m];
2416                 if (bio->bi_end_io == NULL)
2417                         continue;
2418                 if (!bio->bi_error &&
2419                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2420                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2421                 }
2422                 if (bio->bi_error &&
2423                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2424                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2425                                 md_error(conf->mddev, rdev);
2426                 }
2427         }
2428         put_buf(r1_bio);
2429         md_done_sync(conf->mddev, s, 1);
2430 }
2431
2432 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2433 {
2434         int m, idx;
2435         bool fail = false;
2436
2437         for (m = 0; m < conf->raid_disks * 2 ; m++)
2438                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2439                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2440                         rdev_clear_badblocks(rdev,
2441                                              r1_bio->sector,
2442                                              r1_bio->sectors, 0);
2443                         rdev_dec_pending(rdev, conf->mddev);
2444                 } else if (r1_bio->bios[m] != NULL) {
2445                         /* This drive got a write error.  We need to
2446                          * narrow down and record precise write
2447                          * errors.
2448                          */
2449                         fail = true;
2450                         if (!narrow_write_error(r1_bio, m)) {
2451                                 md_error(conf->mddev,
2452                                          conf->mirrors[m].rdev);
2453                                 /* an I/O failed, we can't clear the bitmap */
2454                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2455                         }
2456                         rdev_dec_pending(conf->mirrors[m].rdev,
2457                                          conf->mddev);
2458                 }
2459         if (fail) {
2460                 spin_lock_irq(&conf->device_lock);
2461                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2462                 idx = sector_to_idx(r1_bio->sector);
2463                 atomic_inc(&conf->nr_queued[idx]);
2464                 spin_unlock_irq(&conf->device_lock);
2465                 /*
2466                  * In case freeze_array() is waiting for condition
2467                  * get_unqueued_pending() == extra to be true.
2468                  */
2469                 wake_up(&conf->wait_barrier);
2470                 md_wakeup_thread(conf->mddev->thread);
2471         } else {
2472                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2473                         close_write(r1_bio);
2474                 raid_end_bio_io(r1_bio);
2475         }
2476 }
2477
2478 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2479 {
2480         int disk;
2481         int max_sectors;
2482         struct mddev *mddev = conf->mddev;
2483         struct bio *bio;
2484         char b[BDEVNAME_SIZE];
2485         struct md_rdev *rdev;
2486         dev_t bio_dev;
2487         sector_t bio_sector;
2488
2489         clear_bit(R1BIO_ReadError, &r1_bio->state);
2490         /* we got a read error. Maybe the drive is bad.  Maybe just
2491          * the block and we can fix it.
2492          * We freeze all other IO, and try reading the block from
2493          * other devices.  When we find one, we re-write
2494          * and check it that fixes the read error.
2495          * This is all done synchronously while the array is
2496          * frozen
2497          */
2498
2499         bio = r1_bio->bios[r1_bio->read_disk];
2500         bdevname(bio->bi_bdev, b);
2501         bio_dev = bio->bi_bdev->bd_dev;
2502         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2503         bio_put(bio);
2504         r1_bio->bios[r1_bio->read_disk] = NULL;
2505
2506         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2507         if (mddev->ro == 0
2508             && !test_bit(FailFast, &rdev->flags)) {
2509                 freeze_array(conf, 1);
2510                 fix_read_error(conf, r1_bio->read_disk,
2511                                r1_bio->sector, r1_bio->sectors);
2512                 unfreeze_array(conf);
2513         } else {
2514                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2515         }
2516
2517         rdev_dec_pending(rdev, conf->mddev);
2518
2519 read_more:
2520         disk = read_balance(conf, r1_bio, &max_sectors);
2521         if (disk == -1) {
2522                 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2523                                     mdname(mddev), b, (unsigned long long)r1_bio->sector);
2524                 raid_end_bio_io(r1_bio);
2525         } else {
2526                 const unsigned long do_sync
2527                         = r1_bio->master_bio->bi_opf & REQ_SYNC;
2528                 r1_bio->read_disk = disk;
2529                 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2530                                      mddev->bio_set);
2531                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2532                          max_sectors);
2533                 r1_bio->bios[r1_bio->read_disk] = bio;
2534                 rdev = conf->mirrors[disk].rdev;
2535                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2536                                     mdname(mddev),
2537                                     (unsigned long long)r1_bio->sector,
2538                                     bdevname(rdev->bdev, b));
2539                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2540                 bio->bi_bdev = rdev->bdev;
2541                 bio->bi_end_io = raid1_end_read_request;
2542                 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2543                 if (test_bit(FailFast, &rdev->flags) &&
2544                     test_bit(R1BIO_FailFast, &r1_bio->state))
2545                         bio->bi_opf |= MD_FAILFAST;
2546                 bio->bi_private = r1_bio;
2547                 if (max_sectors < r1_bio->sectors) {
2548                         /* Drat - have to split this up more */
2549                         struct bio *mbio = r1_bio->master_bio;
2550                         int sectors_handled = (r1_bio->sector + max_sectors
2551                                                - mbio->bi_iter.bi_sector);
2552                         r1_bio->sectors = max_sectors;
2553                         spin_lock_irq(&conf->device_lock);
2554                         if (mbio->bi_phys_segments == 0)
2555                                 mbio->bi_phys_segments = 2;
2556                         else
2557                                 mbio->bi_phys_segments++;
2558                         spin_unlock_irq(&conf->device_lock);
2559                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2560                                               bio, bio_dev, bio_sector);
2561                         generic_make_request(bio);
2562                         bio = NULL;
2563
2564                         r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2565                         set_bit(R1BIO_ReadError, &r1_bio->state);
2566
2567                         goto read_more;
2568                 } else {
2569                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2570                                               bio, bio_dev, bio_sector);
2571                         generic_make_request(bio);
2572                 }
2573         }
2574 }
2575
2576 static void raid1d(struct md_thread *thread)
2577 {
2578         struct mddev *mddev = thread->mddev;
2579         struct r1bio *r1_bio;
2580         unsigned long flags;
2581         struct r1conf *conf = mddev->private;
2582         struct list_head *head = &conf->retry_list;
2583         struct blk_plug plug;
2584         int idx;
2585
2586         md_check_recovery(mddev);
2587
2588         if (!list_empty_careful(&conf->bio_end_io_list) &&
2589             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2590                 LIST_HEAD(tmp);
2591                 spin_lock_irqsave(&conf->device_lock, flags);
2592                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2593                         list_splice_init(&conf->bio_end_io_list, &tmp);
2594                 spin_unlock_irqrestore(&conf->device_lock, flags);
2595                 while (!list_empty(&tmp)) {
2596                         r1_bio = list_first_entry(&tmp, struct r1bio,
2597                                                   retry_list);
2598                         list_del(&r1_bio->retry_list);
2599                         idx = sector_to_idx(r1_bio->sector);
2600                         atomic_dec(&conf->nr_queued[idx]);
2601                         if (mddev->degraded)
2602                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2603                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2604                                 close_write(r1_bio);
2605                         raid_end_bio_io(r1_bio);
2606                 }
2607         }
2608
2609         blk_start_plug(&plug);
2610         for (;;) {
2611
2612                 flush_pending_writes(conf);
2613
2614                 spin_lock_irqsave(&conf->device_lock, flags);
2615                 if (list_empty(head)) {
2616                         spin_unlock_irqrestore(&conf->device_lock, flags);
2617                         break;
2618                 }
2619                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2620                 list_del(head->prev);
2621                 idx = sector_to_idx(r1_bio->sector);
2622                 atomic_dec(&conf->nr_queued[idx]);
2623                 spin_unlock_irqrestore(&conf->device_lock, flags);
2624
2625                 mddev = r1_bio->mddev;
2626                 conf = mddev->private;
2627                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2628                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2629                             test_bit(R1BIO_WriteError, &r1_bio->state))
2630                                 handle_sync_write_finished(conf, r1_bio);
2631                         else
2632                                 sync_request_write(mddev, r1_bio);
2633                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2634                            test_bit(R1BIO_WriteError, &r1_bio->state))
2635                         handle_write_finished(conf, r1_bio);
2636                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2637                         handle_read_error(conf, r1_bio);
2638                 else
2639                         /* just a partial read to be scheduled from separate
2640                          * context
2641                          */
2642                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2643
2644                 cond_resched();
2645                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2646                         md_check_recovery(mddev);
2647         }
2648         blk_finish_plug(&plug);
2649 }
2650
2651 static int init_resync(struct r1conf *conf)
2652 {
2653         int buffs;
2654
2655         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2656         BUG_ON(conf->r1buf_pool);
2657         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2658                                           conf->poolinfo);
2659         if (!conf->r1buf_pool)
2660                 return -ENOMEM;
2661         return 0;
2662 }
2663
2664 /*
2665  * perform a "sync" on one "block"
2666  *
2667  * We need to make sure that no normal I/O request - particularly write
2668  * requests - conflict with active sync requests.
2669  *
2670  * This is achieved by tracking pending requests and a 'barrier' concept
2671  * that can be installed to exclude normal IO requests.
2672  */
2673
2674 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2675                                    int *skipped)
2676 {
2677         struct r1conf *conf = mddev->private;
2678         struct r1bio *r1_bio;
2679         struct bio *bio;
2680         sector_t max_sector, nr_sectors;
2681         int disk = -1;
2682         int i;
2683         int wonly = -1;
2684         int write_targets = 0, read_targets = 0;
2685         sector_t sync_blocks;
2686         int still_degraded = 0;
2687         int good_sectors = RESYNC_SECTORS;
2688         int min_bad = 0; /* number of sectors that are bad in all devices */
2689         int idx = sector_to_idx(sector_nr);
2690
2691         if (!conf->r1buf_pool)
2692                 if (init_resync(conf))
2693                         return 0;
2694
2695         max_sector = mddev->dev_sectors;
2696         if (sector_nr >= max_sector) {
2697                 /* If we aborted, we need to abort the
2698                  * sync on the 'current' bitmap chunk (there will
2699                  * only be one in raid1 resync.
2700                  * We can find the current addess in mddev->curr_resync
2701                  */
2702                 if (mddev->curr_resync < max_sector) /* aborted */
2703                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2704                                                 &sync_blocks, 1);
2705                 else /* completed sync */
2706                         conf->fullsync = 0;
2707
2708                 bitmap_close_sync(mddev->bitmap);
2709                 close_sync(conf);
2710
2711                 if (mddev_is_clustered(mddev)) {
2712                         conf->cluster_sync_low = 0;
2713                         conf->cluster_sync_high = 0;
2714                 }
2715                 return 0;
2716         }
2717
2718         if (mddev->bitmap == NULL &&
2719             mddev->recovery_cp == MaxSector &&
2720             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2721             conf->fullsync == 0) {
2722                 *skipped = 1;
2723                 return max_sector - sector_nr;
2724         }
2725         /* before building a request, check if we can skip these blocks..
2726          * This call the bitmap_start_sync doesn't actually record anything
2727          */
2728         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2729             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2730                 /* We can skip this block, and probably several more */
2731                 *skipped = 1;
2732                 return sync_blocks;
2733         }
2734
2735         /*
2736          * If there is non-resync activity waiting for a turn, then let it
2737          * though before starting on this new sync request.
2738          */
2739         if (atomic_read(&conf->nr_waiting[idx]))
2740                 schedule_timeout_uninterruptible(1);
2741
2742         /* we are incrementing sector_nr below. To be safe, we check against
2743          * sector_nr + two times RESYNC_SECTORS
2744          */
2745
2746         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2747                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2748         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2749
2750         raise_barrier(conf, sector_nr);
2751
2752         rcu_read_lock();
2753         /*
2754          * If we get a correctably read error during resync or recovery,
2755          * we might want to read from a different device.  So we
2756          * flag all drives that could conceivably be read from for READ,
2757          * and any others (which will be non-In_sync devices) for WRITE.
2758          * If a read fails, we try reading from something else for which READ
2759          * is OK.
2760          */
2761
2762         r1_bio->mddev = mddev;
2763         r1_bio->sector = sector_nr;
2764         r1_bio->state = 0;
2765         set_bit(R1BIO_IsSync, &r1_bio->state);
2766         /* make sure good_sectors won't go across barrier unit boundary */
2767         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2768
2769         for (i = 0; i < conf->raid_disks * 2; i++) {
2770                 struct md_rdev *rdev;
2771                 bio = r1_bio->bios[i];
2772                 bio_reset(bio);
2773
2774                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2775                 if (rdev == NULL ||
2776                     test_bit(Faulty, &rdev->flags)) {
2777                         if (i < conf->raid_disks)
2778                                 still_degraded = 1;
2779                 } else if (!test_bit(In_sync, &rdev->flags)) {
2780                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781                         bio->bi_end_io = end_sync_write;
2782                         write_targets ++;
2783                 } else {
2784                         /* may need to read from here */
2785                         sector_t first_bad = MaxSector;
2786                         int bad_sectors;
2787
2788                         if (is_badblock(rdev, sector_nr, good_sectors,
2789                                         &first_bad, &bad_sectors)) {
2790                                 if (first_bad > sector_nr)
2791                                         good_sectors = first_bad - sector_nr;
2792                                 else {
2793                                         bad_sectors -= (sector_nr - first_bad);
2794                                         if (min_bad == 0 ||
2795                                             min_bad > bad_sectors)
2796                                                 min_bad = bad_sectors;
2797                                 }
2798                         }
2799                         if (sector_nr < first_bad) {
2800                                 if (test_bit(WriteMostly, &rdev->flags)) {
2801                                         if (wonly < 0)
2802                                                 wonly = i;
2803                                 } else {
2804                                         if (disk < 0)
2805                                                 disk = i;
2806                                 }
2807                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2808                                 bio->bi_end_io = end_sync_read;
2809                                 read_targets++;
2810                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2811                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2812                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2813                                 /*
2814                                  * The device is suitable for reading (InSync),
2815                                  * but has bad block(s) here. Let's try to correct them,
2816                                  * if we are doing resync or repair. Otherwise, leave
2817                                  * this device alone for this sync request.
2818                                  */
2819                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2820                                 bio->bi_end_io = end_sync_write;
2821                                 write_targets++;
2822                         }
2823                 }
2824                 if (bio->bi_end_io) {
2825                         atomic_inc(&rdev->nr_pending);
2826                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2827                         bio->bi_bdev = rdev->bdev;
2828                         bio->bi_private = r1_bio;
2829                         if (test_bit(FailFast, &rdev->flags))
2830                                 bio->bi_opf |= MD_FAILFAST;
2831                 }
2832         }
2833         rcu_read_unlock();
2834         if (disk < 0)
2835                 disk = wonly;
2836         r1_bio->read_disk = disk;
2837
2838         if (read_targets == 0 && min_bad > 0) {
2839                 /* These sectors are bad on all InSync devices, so we
2840                  * need to mark them bad on all write targets
2841                  */
2842                 int ok = 1;
2843                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2844                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2845                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2846                                 ok = rdev_set_badblocks(rdev, sector_nr,
2847                                                         min_bad, 0
2848                                         ) && ok;
2849                         }
2850                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2851                 *skipped = 1;
2852                 put_buf(r1_bio);
2853
2854                 if (!ok) {
2855                         /* Cannot record the badblocks, so need to
2856                          * abort the resync.
2857                          * If there are multiple read targets, could just
2858                          * fail the really bad ones ???
2859                          */
2860                         conf->recovery_disabled = mddev->recovery_disabled;
2861                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2862                         return 0;
2863                 } else
2864                         return min_bad;
2865
2866         }
2867         if (min_bad > 0 && min_bad < good_sectors) {
2868                 /* only resync enough to reach the next bad->good
2869                  * transition */
2870                 good_sectors = min_bad;
2871         }
2872
2873         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2874                 /* extra read targets are also write targets */
2875                 write_targets += read_targets-1;
2876
2877         if (write_targets == 0 || read_targets == 0) {
2878                 /* There is nowhere to write, so all non-sync
2879                  * drives must be failed - so we are finished
2880                  */
2881                 sector_t rv;
2882                 if (min_bad > 0)
2883                         max_sector = sector_nr + min_bad;
2884                 rv = max_sector - sector_nr;
2885                 *skipped = 1;
2886                 put_buf(r1_bio);
2887                 return rv;
2888         }
2889
2890         if (max_sector > mddev->resync_max)
2891                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2892         if (max_sector > sector_nr + good_sectors)
2893                 max_sector = sector_nr + good_sectors;
2894         nr_sectors = 0;
2895         sync_blocks = 0;
2896         do {
2897                 struct page *page;
2898                 int len = PAGE_SIZE;
2899                 if (sector_nr + (len>>9) > max_sector)
2900                         len = (max_sector - sector_nr) << 9;
2901                 if (len == 0)
2902                         break;
2903                 if (sync_blocks == 0) {
2904                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2905                                                &sync_blocks, still_degraded) &&
2906                             !conf->fullsync &&
2907                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2908                                 break;
2909                         if ((len >> 9) > sync_blocks)
2910                                 len = sync_blocks<<9;
2911                 }
2912
2913                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2914                         bio = r1_bio->bios[i];
2915                         if (bio->bi_end_io) {
2916                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2917                                 if (bio_add_page(bio, page, len, 0) == 0) {
2918                                         /* stop here */
2919                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2920                                         while (i > 0) {
2921                                                 i--;
2922                                                 bio = r1_bio->bios[i];
2923                                                 if (bio->bi_end_io==NULL)
2924                                                         continue;
2925                                                 /* remove last page from this bio */
2926                                                 bio->bi_vcnt--;
2927                                                 bio->bi_iter.bi_size -= len;
2928                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2929                                         }
2930                                         goto bio_full;
2931                                 }
2932                         }
2933                 }
2934                 nr_sectors += len>>9;
2935                 sector_nr += len>>9;
2936                 sync_blocks -= (len>>9);
2937         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2938  bio_full:
2939         r1_bio->sectors = nr_sectors;
2940
2941         if (mddev_is_clustered(mddev) &&
2942                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2943                 conf->cluster_sync_low = mddev->curr_resync_completed;
2944                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2945                 /* Send resync message */
2946                 md_cluster_ops->resync_info_update(mddev,
2947                                 conf->cluster_sync_low,
2948                                 conf->cluster_sync_high);
2949         }
2950
2951         /* For a user-requested sync, we read all readable devices and do a
2952          * compare
2953          */
2954         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2955                 atomic_set(&r1_bio->remaining, read_targets);
2956                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2957                         bio = r1_bio->bios[i];
2958                         if (bio->bi_end_io == end_sync_read) {
2959                                 read_targets--;
2960                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2961                                 if (read_targets == 1)
2962                                         bio->bi_opf &= ~MD_FAILFAST;
2963                                 generic_make_request(bio);
2964                         }
2965                 }
2966         } else {
2967                 atomic_set(&r1_bio->remaining, 1);
2968                 bio = r1_bio->bios[r1_bio->read_disk];
2969                 md_sync_acct(bio->bi_bdev, nr_sectors);
2970                 if (read_targets == 1)
2971                         bio->bi_opf &= ~MD_FAILFAST;
2972                 generic_make_request(bio);
2973
2974         }
2975         return nr_sectors;
2976 }
2977
2978 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2979 {
2980         if (sectors)
2981                 return sectors;
2982
2983         return mddev->dev_sectors;
2984 }
2985
2986 static struct r1conf *setup_conf(struct mddev *mddev)
2987 {
2988         struct r1conf *conf;
2989         int i;
2990         struct raid1_info *disk;
2991         struct md_rdev *rdev;
2992         int err = -ENOMEM;
2993
2994         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2995         if (!conf)
2996                 goto abort;
2997
2998         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2999                                    sizeof(atomic_t), GFP_KERNEL);
3000         if (!conf->nr_pending)
3001                 goto abort;
3002
3003         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3004                                    sizeof(atomic_t), GFP_KERNEL);
3005         if (!conf->nr_waiting)
3006                 goto abort;
3007
3008         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3009                                   sizeof(atomic_t), GFP_KERNEL);
3010         if (!conf->nr_queued)
3011                 goto abort;
3012
3013         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3014                                 sizeof(atomic_t), GFP_KERNEL);
3015         if (!conf->barrier)
3016                 goto abort;
3017
3018         conf->mirrors = kzalloc(sizeof(struct raid1_info)
3019                                 * mddev->raid_disks * 2,
3020                                  GFP_KERNEL);
3021         if (!conf->mirrors)
3022                 goto abort;
3023
3024         conf->tmppage = alloc_page(GFP_KERNEL);
3025         if (!conf->tmppage)
3026                 goto abort;
3027
3028         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3029         if (!conf->poolinfo)
3030                 goto abort;
3031         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3032         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3033                                           r1bio_pool_free,
3034                                           conf->poolinfo);
3035         if (!conf->r1bio_pool)
3036                 goto abort;
3037
3038         conf->poolinfo->mddev = mddev;
3039
3040         err = -EINVAL;
3041         spin_lock_init(&conf->device_lock);
3042         rdev_for_each(rdev, mddev) {
3043                 struct request_queue *q;
3044                 int disk_idx = rdev->raid_disk;
3045                 if (disk_idx >= mddev->raid_disks
3046                     || disk_idx < 0)
3047                         continue;
3048                 if (test_bit(Replacement, &rdev->flags))
3049                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3050                 else
3051                         disk = conf->mirrors + disk_idx;
3052
3053                 if (disk->rdev)
3054                         goto abort;
3055                 disk->rdev = rdev;
3056                 q = bdev_get_queue(rdev->bdev);
3057
3058                 disk->head_position = 0;
3059                 disk->seq_start = MaxSector;
3060         }
3061         conf->raid_disks = mddev->raid_disks;
3062         conf->mddev = mddev;
3063         INIT_LIST_HEAD(&conf->retry_list);
3064         INIT_LIST_HEAD(&conf->bio_end_io_list);
3065
3066         spin_lock_init(&conf->resync_lock);
3067         init_waitqueue_head(&conf->wait_barrier);
3068
3069         bio_list_init(&conf->pending_bio_list);
3070         conf->pending_count = 0;
3071         conf->recovery_disabled = mddev->recovery_disabled - 1;
3072
3073         err = -EIO;
3074         for (i = 0; i < conf->raid_disks * 2; i++) {
3075
3076                 disk = conf->mirrors + i;
3077
3078                 if (i < conf->raid_disks &&
3079                     disk[conf->raid_disks].rdev) {
3080                         /* This slot has a replacement. */
3081                         if (!disk->rdev) {
3082                                 /* No original, just make the replacement
3083                                  * a recovering spare
3084                                  */
3085                                 disk->rdev =
3086                                         disk[conf->raid_disks].rdev;
3087                                 disk[conf->raid_disks].rdev = NULL;
3088                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3089                                 /* Original is not in_sync - bad */
3090                                 goto abort;
3091                 }
3092
3093                 if (!disk->rdev ||
3094                     !test_bit(In_sync, &disk->rdev->flags)) {
3095                         disk->head_position = 0;
3096                         if (disk->rdev &&
3097                             (disk->rdev->saved_raid_disk < 0))
3098                                 conf->fullsync = 1;
3099                 }
3100         }
3101
3102         err = -ENOMEM;
3103         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3104         if (!conf->thread)
3105                 goto abort;
3106
3107         return conf;
3108
3109  abort:
3110         if (conf) {
3111                 mempool_destroy(conf->r1bio_pool);
3112                 kfree(conf->mirrors);
3113                 safe_put_page(conf->tmppage);
3114                 kfree(conf->poolinfo);
3115                 kfree(conf->nr_pending);
3116                 kfree(conf->nr_waiting);
3117                 kfree(conf->nr_queued);
3118                 kfree(conf->barrier);
3119                 kfree(conf);
3120         }
3121         return ERR_PTR(err);
3122 }
3123
3124 static void raid1_free(struct mddev *mddev, void *priv);
3125 static int raid1_run(struct mddev *mddev)
3126 {
3127         struct r1conf *conf;
3128         int i;
3129         struct md_rdev *rdev;
3130         int ret;
3131         bool discard_supported = false;
3132
3133         if (mddev->level != 1) {
3134                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3135                         mdname(mddev), mddev->level);
3136                 return -EIO;
3137         }
3138         if (mddev->reshape_position != MaxSector) {
3139                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3140                         mdname(mddev));
3141                 return -EIO;
3142         }
3143         /*
3144          * copy the already verified devices into our private RAID1
3145          * bookkeeping area. [whatever we allocate in run(),
3146          * should be freed in raid1_free()]
3147          */
3148         if (mddev->private == NULL)
3149                 conf = setup_conf(mddev);
3150         else
3151                 conf = mddev->private;
3152
3153         if (IS_ERR(conf))
3154                 return PTR_ERR(conf);
3155
3156         if (mddev->queue)
3157                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3158
3159         rdev_for_each(rdev, mddev) {
3160                 if (!mddev->gendisk)
3161                         continue;
3162                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3163                                   rdev->data_offset << 9);
3164                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3165                         discard_supported = true;
3166         }
3167
3168         mddev->degraded = 0;
3169         for (i=0; i < conf->raid_disks; i++)
3170                 if (conf->mirrors[i].rdev == NULL ||
3171                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3172                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3173                         mddev->degraded++;
3174
3175         if (conf->raid_disks - mddev->degraded == 1)
3176                 mddev->recovery_cp = MaxSector;
3177
3178         if (mddev->recovery_cp != MaxSector)
3179                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3180                         mdname(mddev));
3181         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3182                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3183                 mddev->raid_disks);
3184
3185         /*
3186          * Ok, everything is just fine now
3187          */
3188         mddev->thread = conf->thread;
3189         conf->thread = NULL;
3190         mddev->private = conf;
3191         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3192
3193         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3194
3195         if (mddev->queue) {
3196                 if (discard_supported)
3197                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3198                                                 mddev->queue);
3199                 else
3200                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3201                                                   mddev->queue);
3202         }
3203
3204         ret =  md_integrity_register(mddev);
3205         if (ret) {
3206                 md_unregister_thread(&mddev->thread);
3207                 raid1_free(mddev, conf);
3208         }
3209         return ret;
3210 }
3211
3212 static void raid1_free(struct mddev *mddev, void *priv)
3213 {
3214         struct r1conf *conf = priv;
3215
3216         mempool_destroy(conf->r1bio_pool);
3217         kfree(conf->mirrors);
3218         safe_put_page(conf->tmppage);
3219         kfree(conf->poolinfo);
3220         kfree(conf->nr_pending);
3221         kfree(conf->nr_waiting);
3222         kfree(conf->nr_queued);
3223         kfree(conf->barrier);
3224         kfree(conf);
3225 }
3226
3227 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3228 {
3229         /* no resync is happening, and there is enough space
3230          * on all devices, so we can resize.
3231          * We need to make sure resync covers any new space.
3232          * If the array is shrinking we should possibly wait until
3233          * any io in the removed space completes, but it hardly seems
3234          * worth it.
3235          */
3236         sector_t newsize = raid1_size(mddev, sectors, 0);
3237         if (mddev->external_size &&
3238             mddev->array_sectors > newsize)
3239                 return -EINVAL;
3240         if (mddev->bitmap) {
3241                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3242                 if (ret)
3243                         return ret;
3244         }
3245         md_set_array_sectors(mddev, newsize);
3246         set_capacity(mddev->gendisk, mddev->array_sectors);
3247         revalidate_disk(mddev->gendisk);
3248         if (sectors > mddev->dev_sectors &&
3249             mddev->recovery_cp > mddev->dev_sectors) {
3250                 mddev->recovery_cp = mddev->dev_sectors;
3251                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3252         }
3253         mddev->dev_sectors = sectors;
3254         mddev->resync_max_sectors = sectors;
3255         return 0;
3256 }
3257
3258 static int raid1_reshape(struct mddev *mddev)
3259 {
3260         /* We need to:
3261          * 1/ resize the r1bio_pool
3262          * 2/ resize conf->mirrors
3263          *
3264          * We allocate a new r1bio_pool if we can.
3265          * Then raise a device barrier and wait until all IO stops.
3266          * Then resize conf->mirrors and swap in the new r1bio pool.
3267          *
3268          * At the same time, we "pack" the devices so that all the missing
3269          * devices have the higher raid_disk numbers.
3270          */
3271         mempool_t *newpool, *oldpool;
3272         struct pool_info *newpoolinfo;
3273         struct raid1_info *newmirrors;
3274         struct r1conf *conf = mddev->private;
3275         int cnt, raid_disks;
3276         unsigned long flags;
3277         int d, d2, err;
3278
3279         /* Cannot change chunk_size, layout, or level */
3280         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3281             mddev->layout != mddev->new_layout ||
3282             mddev->level != mddev->new_level) {
3283                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3284                 mddev->new_layout = mddev->layout;
3285                 mddev->new_level = mddev->level;
3286                 return -EINVAL;
3287         }
3288
3289         if (!mddev_is_clustered(mddev)) {
3290                 err = md_allow_write(mddev);
3291                 if (err)
3292                         return err;
3293         }
3294
3295         raid_disks = mddev->raid_disks + mddev->delta_disks;
3296
3297         if (raid_disks < conf->raid_disks) {
3298                 cnt=0;
3299                 for (d= 0; d < conf->raid_disks; d++)
3300                         if (conf->mirrors[d].rdev)
3301                                 cnt++;
3302                 if (cnt > raid_disks)
3303                         return -EBUSY;
3304         }
3305
3306         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3307         if (!newpoolinfo)
3308                 return -ENOMEM;
3309         newpoolinfo->mddev = mddev;
3310         newpoolinfo->raid_disks = raid_disks * 2;
3311
3312         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3313                                  r1bio_pool_free, newpoolinfo);
3314         if (!newpool) {
3315                 kfree(newpoolinfo);
3316                 return -ENOMEM;
3317         }
3318         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3319                              GFP_KERNEL);
3320         if (!newmirrors) {
3321                 kfree(newpoolinfo);
3322                 mempool_destroy(newpool);
3323                 return -ENOMEM;
3324         }
3325
3326         freeze_array(conf, 0);
3327
3328         /* ok, everything is stopped */
3329         oldpool = conf->r1bio_pool;
3330         conf->r1bio_pool = newpool;
3331
3332         for (d = d2 = 0; d < conf->raid_disks; d++) {
3333                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3334                 if (rdev && rdev->raid_disk != d2) {
3335                         sysfs_unlink_rdev(mddev, rdev);
3336                         rdev->raid_disk = d2;
3337                         sysfs_unlink_rdev(mddev, rdev);
3338                         if (sysfs_link_rdev(mddev, rdev))
3339                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3340                                         mdname(mddev), rdev->raid_disk);
3341                 }
3342                 if (rdev)
3343                         newmirrors[d2++].rdev = rdev;
3344         }
3345         kfree(conf->mirrors);
3346         conf->mirrors = newmirrors;
3347         kfree(conf->poolinfo);
3348         conf->poolinfo = newpoolinfo;
3349
3350         spin_lock_irqsave(&conf->device_lock, flags);
3351         mddev->degraded += (raid_disks - conf->raid_disks);
3352         spin_unlock_irqrestore(&conf->device_lock, flags);
3353         conf->raid_disks = mddev->raid_disks = raid_disks;
3354         mddev->delta_disks = 0;
3355
3356         unfreeze_array(conf);
3357
3358         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3359         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3360         md_wakeup_thread(mddev->thread);
3361
3362         mempool_destroy(oldpool);
3363         return 0;
3364 }
3365
3366 static void raid1_quiesce(struct mddev *mddev, int state)
3367 {
3368         struct r1conf *conf = mddev->private;
3369
3370         switch(state) {
3371         case 2: /* wake for suspend */
3372                 wake_up(&conf->wait_barrier);
3373                 break;
3374         case 1:
3375                 freeze_array(conf, 0);
3376                 break;
3377         case 0:
3378                 unfreeze_array(conf);
3379                 break;
3380         }
3381 }
3382
3383 static void *raid1_takeover(struct mddev *mddev)
3384 {
3385         /* raid1 can take over:
3386          *  raid5 with 2 devices, any layout or chunk size
3387          */
3388         if (mddev->level == 5 && mddev->raid_disks == 2) {
3389                 struct r1conf *conf;
3390                 mddev->new_level = 1;
3391                 mddev->new_layout = 0;
3392                 mddev->new_chunk_sectors = 0;
3393                 conf = setup_conf(mddev);
3394                 if (!IS_ERR(conf)) {
3395                         /* Array must appear to be quiesced */
3396                         conf->array_frozen = 1;
3397                         mddev_clear_unsupported_flags(mddev,
3398                                 UNSUPPORTED_MDDEV_FLAGS);
3399                 }
3400                 return conf;
3401         }
3402         return ERR_PTR(-EINVAL);
3403 }
3404
3405 static struct md_personality raid1_personality =
3406 {
3407         .name           = "raid1",
3408         .level          = 1,
3409         .owner          = THIS_MODULE,
3410         .make_request   = raid1_make_request,
3411         .run            = raid1_run,
3412         .free           = raid1_free,
3413         .status         = raid1_status,
3414         .error_handler  = raid1_error,
3415         .hot_add_disk   = raid1_add_disk,
3416         .hot_remove_disk= raid1_remove_disk,
3417         .spare_active   = raid1_spare_active,
3418         .sync_request   = raid1_sync_request,
3419         .resize         = raid1_resize,
3420         .size           = raid1_size,
3421         .check_reshape  = raid1_reshape,
3422         .quiesce        = raid1_quiesce,
3423         .takeover       = raid1_takeover,
3424         .congested      = raid1_congested,
3425 };
3426
3427 static int __init raid_init(void)
3428 {
3429         return register_md_personality(&raid1_personality);
3430 }
3431
3432 static void raid_exit(void)
3433 {
3434         unregister_md_personality(&raid1_personality);
3435 }
3436
3437 module_init(raid_init);
3438 module_exit(raid_exit);
3439 MODULE_LICENSE("GPL");
3440 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3441 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3442 MODULE_ALIAS("md-raid1");
3443 MODULE_ALIAS("md-level-1");
3444
3445 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);