]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid1.c
md/raid1: fix write behind issues introduced by bio_clone_bioset_partial
[karo-tx-linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44
45 #define UNSUPPORTED_MDDEV_FLAGS         \
46         ((1L << MD_HAS_JOURNAL) |       \
47          (1L << MD_JOURNAL_CLEAN))
48
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define NR_RAID1_BIOS 256
53
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73
74 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
75 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
76
77 #define raid1_log(md, fmt, args...)                             \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
79
80 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
81 {
82         struct pool_info *pi = data;
83         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
84
85         /* allocate a r1bio with room for raid_disks entries in the bios array */
86         return kzalloc(size, gfp_flags);
87 }
88
89 static void r1bio_pool_free(void *r1_bio, void *data)
90 {
91         kfree(r1_bio);
92 }
93
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_DEPTH 32
96 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
97 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
98 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
99 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
100 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
101 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
102
103 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
104 {
105         struct pool_info *pi = data;
106         struct r1bio *r1_bio;
107         struct bio *bio;
108         int need_pages;
109         int i, j;
110
111         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
112         if (!r1_bio)
113                 return NULL;
114
115         /*
116          * Allocate bios : 1 for reading, n-1 for writing
117          */
118         for (j = pi->raid_disks ; j-- ; ) {
119                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
120                 if (!bio)
121                         goto out_free_bio;
122                 r1_bio->bios[j] = bio;
123         }
124         /*
125          * Allocate RESYNC_PAGES data pages and attach them to
126          * the first bio.
127          * If this is a user-requested check/repair, allocate
128          * RESYNC_PAGES for each bio.
129          */
130         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
131                 need_pages = pi->raid_disks;
132         else
133                 need_pages = 1;
134         for (j = 0; j < need_pages; j++) {
135                 bio = r1_bio->bios[j];
136                 bio->bi_vcnt = RESYNC_PAGES;
137
138                 if (bio_alloc_pages(bio, gfp_flags))
139                         goto out_free_pages;
140         }
141         /* If not user-requests, copy the page pointers to all bios */
142         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
143                 for (i=0; i<RESYNC_PAGES ; i++)
144                         for (j=1; j<pi->raid_disks; j++)
145                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
146                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
147         }
148
149         r1_bio->master_bio = NULL;
150
151         return r1_bio;
152
153 out_free_pages:
154         while (--j >= 0)
155                 bio_free_pages(r1_bio->bios[j]);
156
157 out_free_bio:
158         while (++j < pi->raid_disks)
159                 bio_put(r1_bio->bios[j]);
160         r1bio_pool_free(r1_bio, data);
161         return NULL;
162 }
163
164 static void r1buf_pool_free(void *__r1_bio, void *data)
165 {
166         struct pool_info *pi = data;
167         int i,j;
168         struct r1bio *r1bio = __r1_bio;
169
170         for (i = 0; i < RESYNC_PAGES; i++)
171                 for (j = pi->raid_disks; j-- ;) {
172                         if (j == 0 ||
173                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
174                             r1bio->bios[0]->bi_io_vec[i].bv_page)
175                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
176                 }
177         for (i=0 ; i < pi->raid_disks; i++)
178                 bio_put(r1bio->bios[i]);
179
180         r1bio_pool_free(r1bio, data);
181 }
182
183 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
184 {
185         int i;
186
187         for (i = 0; i < conf->raid_disks * 2; i++) {
188                 struct bio **bio = r1_bio->bios + i;
189                 if (!BIO_SPECIAL(*bio))
190                         bio_put(*bio);
191                 *bio = NULL;
192         }
193 }
194
195 static void free_r1bio(struct r1bio *r1_bio)
196 {
197         struct r1conf *conf = r1_bio->mddev->private;
198
199         put_all_bios(conf, r1_bio);
200         mempool_free(r1_bio, conf->r1bio_pool);
201 }
202
203 static void put_buf(struct r1bio *r1_bio)
204 {
205         struct r1conf *conf = r1_bio->mddev->private;
206         sector_t sect = r1_bio->sector;
207         int i;
208
209         for (i = 0; i < conf->raid_disks * 2; i++) {
210                 struct bio *bio = r1_bio->bios[i];
211                 if (bio->bi_end_io)
212                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
213         }
214
215         mempool_free(r1_bio, conf->r1buf_pool);
216
217         lower_barrier(conf, sect);
218 }
219
220 static void reschedule_retry(struct r1bio *r1_bio)
221 {
222         unsigned long flags;
223         struct mddev *mddev = r1_bio->mddev;
224         struct r1conf *conf = mddev->private;
225         int idx;
226
227         idx = sector_to_idx(r1_bio->sector);
228         spin_lock_irqsave(&conf->device_lock, flags);
229         list_add(&r1_bio->retry_list, &conf->retry_list);
230         atomic_inc(&conf->nr_queued[idx]);
231         spin_unlock_irqrestore(&conf->device_lock, flags);
232
233         wake_up(&conf->wait_barrier);
234         md_wakeup_thread(mddev->thread);
235 }
236
237 /*
238  * raid_end_bio_io() is called when we have finished servicing a mirrored
239  * operation and are ready to return a success/failure code to the buffer
240  * cache layer.
241  */
242 static void call_bio_endio(struct r1bio *r1_bio)
243 {
244         struct bio *bio = r1_bio->master_bio;
245         int done;
246         struct r1conf *conf = r1_bio->mddev->private;
247         sector_t bi_sector = bio->bi_iter.bi_sector;
248
249         if (bio->bi_phys_segments) {
250                 unsigned long flags;
251                 spin_lock_irqsave(&conf->device_lock, flags);
252                 bio->bi_phys_segments--;
253                 done = (bio->bi_phys_segments == 0);
254                 spin_unlock_irqrestore(&conf->device_lock, flags);
255                 /*
256                  * make_request() might be waiting for
257                  * bi_phys_segments to decrease
258                  */
259                 wake_up(&conf->wait_barrier);
260         } else
261                 done = 1;
262
263         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264                 bio->bi_error = -EIO;
265
266         if (done) {
267                 bio_endio(bio);
268                 /*
269                  * Wake up any possible resync thread that waits for the device
270                  * to go idle.
271                  */
272                 allow_barrier(conf, bi_sector);
273         }
274 }
275
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278         struct bio *bio = r1_bio->master_bio;
279
280         /* if nobody has done the final endio yet, do it now */
281         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
284                          (unsigned long long) bio->bi_iter.bi_sector,
285                          (unsigned long long) bio_end_sector(bio) - 1);
286
287                 call_bio_endio(r1_bio);
288         }
289         free_r1bio(r1_bio);
290 }
291
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297         struct r1conf *conf = r1_bio->mddev->private;
298
299         conf->mirrors[disk].head_position =
300                 r1_bio->sector + (r1_bio->sectors);
301 }
302
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308         int mirror;
309         struct r1conf *conf = r1_bio->mddev->private;
310         int raid_disks = conf->raid_disks;
311
312         for (mirror = 0; mirror < raid_disks * 2; mirror++)
313                 if (r1_bio->bios[mirror] == bio)
314                         break;
315
316         BUG_ON(mirror == raid_disks * 2);
317         update_head_pos(mirror, r1_bio);
318
319         return mirror;
320 }
321
322 static void raid1_end_read_request(struct bio *bio)
323 {
324         int uptodate = !bio->bi_error;
325         struct r1bio *r1_bio = bio->bi_private;
326         struct r1conf *conf = r1_bio->mddev->private;
327         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328
329         /*
330          * this branch is our 'one mirror IO has finished' event handler:
331          */
332         update_head_pos(r1_bio->read_disk, r1_bio);
333
334         if (uptodate)
335                 set_bit(R1BIO_Uptodate, &r1_bio->state);
336         else if (test_bit(FailFast, &rdev->flags) &&
337                  test_bit(R1BIO_FailFast, &r1_bio->state))
338                 /* This was a fail-fast read so we definitely
339                  * want to retry */
340                 ;
341         else {
342                 /* If all other devices have failed, we want to return
343                  * the error upwards rather than fail the last device.
344                  * Here we redefine "uptodate" to mean "Don't want to retry"
345                  */
346                 unsigned long flags;
347                 spin_lock_irqsave(&conf->device_lock, flags);
348                 if (r1_bio->mddev->degraded == conf->raid_disks ||
349                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350                      test_bit(In_sync, &rdev->flags)))
351                         uptodate = 1;
352                 spin_unlock_irqrestore(&conf->device_lock, flags);
353         }
354
355         if (uptodate) {
356                 raid_end_bio_io(r1_bio);
357                 rdev_dec_pending(rdev, conf->mddev);
358         } else {
359                 /*
360                  * oops, read error:
361                  */
362                 char b[BDEVNAME_SIZE];
363                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364                                    mdname(conf->mddev),
365                                    bdevname(rdev->bdev, b),
366                                    (unsigned long long)r1_bio->sector);
367                 set_bit(R1BIO_ReadError, &r1_bio->state);
368                 reschedule_retry(r1_bio);
369                 /* don't drop the reference on read_disk yet */
370         }
371 }
372
373 static void close_write(struct r1bio *r1_bio)
374 {
375         /* it really is the end of this request */
376         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377                 /* free extra copy of the data pages */
378                 int i = r1_bio->behind_page_count;
379                 while (i--)
380                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381                 kfree(r1_bio->behind_bvecs);
382                 r1_bio->behind_bvecs = NULL;
383         }
384         /* clear the bitmap if all writes complete successfully */
385         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386                         r1_bio->sectors,
387                         !test_bit(R1BIO_Degraded, &r1_bio->state),
388                         test_bit(R1BIO_BehindIO, &r1_bio->state));
389         md_write_end(r1_bio->mddev);
390 }
391
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394         if (!atomic_dec_and_test(&r1_bio->remaining))
395                 return;
396
397         if (test_bit(R1BIO_WriteError, &r1_bio->state))
398                 reschedule_retry(r1_bio);
399         else {
400                 close_write(r1_bio);
401                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402                         reschedule_retry(r1_bio);
403                 else
404                         raid_end_bio_io(r1_bio);
405         }
406 }
407
408 static void raid1_end_write_request(struct bio *bio)
409 {
410         struct r1bio *r1_bio = bio->bi_private;
411         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412         struct r1conf *conf = r1_bio->mddev->private;
413         struct bio *to_put = NULL;
414         int mirror = find_bio_disk(r1_bio, bio);
415         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416         bool discard_error;
417
418         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419
420         /*
421          * 'one mirror IO has finished' event handler:
422          */
423         if (bio->bi_error && !discard_error) {
424                 set_bit(WriteErrorSeen, &rdev->flags);
425                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
426                         set_bit(MD_RECOVERY_NEEDED, &
427                                 conf->mddev->recovery);
428
429                 if (test_bit(FailFast, &rdev->flags) &&
430                     (bio->bi_opf & MD_FAILFAST) &&
431                     /* We never try FailFast to WriteMostly devices */
432                     !test_bit(WriteMostly, &rdev->flags)) {
433                         md_error(r1_bio->mddev, rdev);
434                         if (!test_bit(Faulty, &rdev->flags))
435                                 /* This is the only remaining device,
436                                  * We need to retry the write without
437                                  * FailFast
438                                  */
439                                 set_bit(R1BIO_WriteError, &r1_bio->state);
440                         else {
441                                 /* Finished with this branch */
442                                 r1_bio->bios[mirror] = NULL;
443                                 to_put = bio;
444                         }
445                 } else
446                         set_bit(R1BIO_WriteError, &r1_bio->state);
447         } else {
448                 /*
449                  * Set R1BIO_Uptodate in our master bio, so that we
450                  * will return a good error code for to the higher
451                  * levels even if IO on some other mirrored buffer
452                  * fails.
453                  *
454                  * The 'master' represents the composite IO operation
455                  * to user-side. So if something waits for IO, then it
456                  * will wait for the 'master' bio.
457                  */
458                 sector_t first_bad;
459                 int bad_sectors;
460
461                 r1_bio->bios[mirror] = NULL;
462                 to_put = bio;
463                 /*
464                  * Do not set R1BIO_Uptodate if the current device is
465                  * rebuilding or Faulty. This is because we cannot use
466                  * such device for properly reading the data back (we could
467                  * potentially use it, if the current write would have felt
468                  * before rdev->recovery_offset, but for simplicity we don't
469                  * check this here.
470                  */
471                 if (test_bit(In_sync, &rdev->flags) &&
472                     !test_bit(Faulty, &rdev->flags))
473                         set_bit(R1BIO_Uptodate, &r1_bio->state);
474
475                 /* Maybe we can clear some bad blocks. */
476                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477                                 &first_bad, &bad_sectors) && !discard_error) {
478                         r1_bio->bios[mirror] = IO_MADE_GOOD;
479                         set_bit(R1BIO_MadeGood, &r1_bio->state);
480                 }
481         }
482
483         if (behind) {
484                 if (test_bit(WriteMostly, &rdev->flags))
485                         atomic_dec(&r1_bio->behind_remaining);
486
487                 /*
488                  * In behind mode, we ACK the master bio once the I/O
489                  * has safely reached all non-writemostly
490                  * disks. Setting the Returned bit ensures that this
491                  * gets done only once -- we don't ever want to return
492                  * -EIO here, instead we'll wait
493                  */
494                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496                         /* Maybe we can return now */
497                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498                                 struct bio *mbio = r1_bio->master_bio;
499                                 pr_debug("raid1: behind end write sectors"
500                                          " %llu-%llu\n",
501                                          (unsigned long long) mbio->bi_iter.bi_sector,
502                                          (unsigned long long) bio_end_sector(mbio) - 1);
503                                 call_bio_endio(r1_bio);
504                         }
505                 }
506         }
507         if (r1_bio->bios[mirror] == NULL)
508                 rdev_dec_pending(rdev, conf->mddev);
509
510         /*
511          * Let's see if all mirrored write operations have finished
512          * already.
513          */
514         r1_bio_write_done(r1_bio);
515
516         if (to_put)
517                 bio_put(to_put);
518 }
519
520 static sector_t align_to_barrier_unit_end(sector_t start_sector,
521                                           sector_t sectors)
522 {
523         sector_t len;
524
525         WARN_ON(sectors == 0);
526         /*
527          * len is the number of sectors from start_sector to end of the
528          * barrier unit which start_sector belongs to.
529          */
530         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
531               start_sector;
532
533         if (len > sectors)
534                 len = sectors;
535
536         return len;
537 }
538
539 /*
540  * This routine returns the disk from which the requested read should
541  * be done. There is a per-array 'next expected sequential IO' sector
542  * number - if this matches on the next IO then we use the last disk.
543  * There is also a per-disk 'last know head position' sector that is
544  * maintained from IRQ contexts, both the normal and the resync IO
545  * completion handlers update this position correctly. If there is no
546  * perfect sequential match then we pick the disk whose head is closest.
547  *
548  * If there are 2 mirrors in the same 2 devices, performance degrades
549  * because position is mirror, not device based.
550  *
551  * The rdev for the device selected will have nr_pending incremented.
552  */
553 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
554 {
555         const sector_t this_sector = r1_bio->sector;
556         int sectors;
557         int best_good_sectors;
558         int best_disk, best_dist_disk, best_pending_disk;
559         int has_nonrot_disk;
560         int disk;
561         sector_t best_dist;
562         unsigned int min_pending;
563         struct md_rdev *rdev;
564         int choose_first;
565         int choose_next_idle;
566
567         rcu_read_lock();
568         /*
569          * Check if we can balance. We can balance on the whole
570          * device if no resync is going on, or below the resync window.
571          * We take the first readable disk when above the resync window.
572          */
573  retry:
574         sectors = r1_bio->sectors;
575         best_disk = -1;
576         best_dist_disk = -1;
577         best_dist = MaxSector;
578         best_pending_disk = -1;
579         min_pending = UINT_MAX;
580         best_good_sectors = 0;
581         has_nonrot_disk = 0;
582         choose_next_idle = 0;
583         clear_bit(R1BIO_FailFast, &r1_bio->state);
584
585         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
586             (mddev_is_clustered(conf->mddev) &&
587             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
588                     this_sector + sectors)))
589                 choose_first = 1;
590         else
591                 choose_first = 0;
592
593         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
594                 sector_t dist;
595                 sector_t first_bad;
596                 int bad_sectors;
597                 unsigned int pending;
598                 bool nonrot;
599
600                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
601                 if (r1_bio->bios[disk] == IO_BLOCKED
602                     || rdev == NULL
603                     || test_bit(Faulty, &rdev->flags))
604                         continue;
605                 if (!test_bit(In_sync, &rdev->flags) &&
606                     rdev->recovery_offset < this_sector + sectors)
607                         continue;
608                 if (test_bit(WriteMostly, &rdev->flags)) {
609                         /* Don't balance among write-mostly, just
610                          * use the first as a last resort */
611                         if (best_dist_disk < 0) {
612                                 if (is_badblock(rdev, this_sector, sectors,
613                                                 &first_bad, &bad_sectors)) {
614                                         if (first_bad <= this_sector)
615                                                 /* Cannot use this */
616                                                 continue;
617                                         best_good_sectors = first_bad - this_sector;
618                                 } else
619                                         best_good_sectors = sectors;
620                                 best_dist_disk = disk;
621                                 best_pending_disk = disk;
622                         }
623                         continue;
624                 }
625                 /* This is a reasonable device to use.  It might
626                  * even be best.
627                  */
628                 if (is_badblock(rdev, this_sector, sectors,
629                                 &first_bad, &bad_sectors)) {
630                         if (best_dist < MaxSector)
631                                 /* already have a better device */
632                                 continue;
633                         if (first_bad <= this_sector) {
634                                 /* cannot read here. If this is the 'primary'
635                                  * device, then we must not read beyond
636                                  * bad_sectors from another device..
637                                  */
638                                 bad_sectors -= (this_sector - first_bad);
639                                 if (choose_first && sectors > bad_sectors)
640                                         sectors = bad_sectors;
641                                 if (best_good_sectors > sectors)
642                                         best_good_sectors = sectors;
643
644                         } else {
645                                 sector_t good_sectors = first_bad - this_sector;
646                                 if (good_sectors > best_good_sectors) {
647                                         best_good_sectors = good_sectors;
648                                         best_disk = disk;
649                                 }
650                                 if (choose_first)
651                                         break;
652                         }
653                         continue;
654                 } else
655                         best_good_sectors = sectors;
656
657                 if (best_disk >= 0)
658                         /* At least two disks to choose from so failfast is OK */
659                         set_bit(R1BIO_FailFast, &r1_bio->state);
660
661                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
662                 has_nonrot_disk |= nonrot;
663                 pending = atomic_read(&rdev->nr_pending);
664                 dist = abs(this_sector - conf->mirrors[disk].head_position);
665                 if (choose_first) {
666                         best_disk = disk;
667                         break;
668                 }
669                 /* Don't change to another disk for sequential reads */
670                 if (conf->mirrors[disk].next_seq_sect == this_sector
671                     || dist == 0) {
672                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
673                         struct raid1_info *mirror = &conf->mirrors[disk];
674
675                         best_disk = disk;
676                         /*
677                          * If buffered sequential IO size exceeds optimal
678                          * iosize, check if there is idle disk. If yes, choose
679                          * the idle disk. read_balance could already choose an
680                          * idle disk before noticing it's a sequential IO in
681                          * this disk. This doesn't matter because this disk
682                          * will idle, next time it will be utilized after the
683                          * first disk has IO size exceeds optimal iosize. In
684                          * this way, iosize of the first disk will be optimal
685                          * iosize at least. iosize of the second disk might be
686                          * small, but not a big deal since when the second disk
687                          * starts IO, the first disk is likely still busy.
688                          */
689                         if (nonrot && opt_iosize > 0 &&
690                             mirror->seq_start != MaxSector &&
691                             mirror->next_seq_sect > opt_iosize &&
692                             mirror->next_seq_sect - opt_iosize >=
693                             mirror->seq_start) {
694                                 choose_next_idle = 1;
695                                 continue;
696                         }
697                         break;
698                 }
699
700                 if (choose_next_idle)
701                         continue;
702
703                 if (min_pending > pending) {
704                         min_pending = pending;
705                         best_pending_disk = disk;
706                 }
707
708                 if (dist < best_dist) {
709                         best_dist = dist;
710                         best_dist_disk = disk;
711                 }
712         }
713
714         /*
715          * If all disks are rotational, choose the closest disk. If any disk is
716          * non-rotational, choose the disk with less pending request even the
717          * disk is rotational, which might/might not be optimal for raids with
718          * mixed ratation/non-rotational disks depending on workload.
719          */
720         if (best_disk == -1) {
721                 if (has_nonrot_disk || min_pending == 0)
722                         best_disk = best_pending_disk;
723                 else
724                         best_disk = best_dist_disk;
725         }
726
727         if (best_disk >= 0) {
728                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
729                 if (!rdev)
730                         goto retry;
731                 atomic_inc(&rdev->nr_pending);
732                 sectors = best_good_sectors;
733
734                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
735                         conf->mirrors[best_disk].seq_start = this_sector;
736
737                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
738         }
739         rcu_read_unlock();
740         *max_sectors = sectors;
741
742         return best_disk;
743 }
744
745 static int raid1_congested(struct mddev *mddev, int bits)
746 {
747         struct r1conf *conf = mddev->private;
748         int i, ret = 0;
749
750         if ((bits & (1 << WB_async_congested)) &&
751             conf->pending_count >= max_queued_requests)
752                 return 1;
753
754         rcu_read_lock();
755         for (i = 0; i < conf->raid_disks * 2; i++) {
756                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
757                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
758                         struct request_queue *q = bdev_get_queue(rdev->bdev);
759
760                         BUG_ON(!q);
761
762                         /* Note the '|| 1' - when read_balance prefers
763                          * non-congested targets, it can be removed
764                          */
765                         if ((bits & (1 << WB_async_congested)) || 1)
766                                 ret |= bdi_congested(&q->backing_dev_info, bits);
767                         else
768                                 ret &= bdi_congested(&q->backing_dev_info, bits);
769                 }
770         }
771         rcu_read_unlock();
772         return ret;
773 }
774
775 static void flush_pending_writes(struct r1conf *conf)
776 {
777         /* Any writes that have been queued but are awaiting
778          * bitmap updates get flushed here.
779          */
780         spin_lock_irq(&conf->device_lock);
781
782         if (conf->pending_bio_list.head) {
783                 struct bio *bio;
784                 bio = bio_list_get(&conf->pending_bio_list);
785                 conf->pending_count = 0;
786                 spin_unlock_irq(&conf->device_lock);
787                 /* flush any pending bitmap writes to
788                  * disk before proceeding w/ I/O */
789                 bitmap_unplug(conf->mddev->bitmap);
790                 wake_up(&conf->wait_barrier);
791
792                 while (bio) { /* submit pending writes */
793                         struct bio *next = bio->bi_next;
794                         struct md_rdev *rdev = (void*)bio->bi_bdev;
795                         bio->bi_next = NULL;
796                         bio->bi_bdev = rdev->bdev;
797                         if (test_bit(Faulty, &rdev->flags)) {
798                                 bio->bi_error = -EIO;
799                                 bio_endio(bio);
800                         } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
801                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
802                                 /* Just ignore it */
803                                 bio_endio(bio);
804                         else
805                                 generic_make_request(bio);
806                         bio = next;
807                 }
808         } else
809                 spin_unlock_irq(&conf->device_lock);
810 }
811
812 /* Barriers....
813  * Sometimes we need to suspend IO while we do something else,
814  * either some resync/recovery, or reconfigure the array.
815  * To do this we raise a 'barrier'.
816  * The 'barrier' is a counter that can be raised multiple times
817  * to count how many activities are happening which preclude
818  * normal IO.
819  * We can only raise the barrier if there is no pending IO.
820  * i.e. if nr_pending == 0.
821  * We choose only to raise the barrier if no-one is waiting for the
822  * barrier to go down.  This means that as soon as an IO request
823  * is ready, no other operations which require a barrier will start
824  * until the IO request has had a chance.
825  *
826  * So: regular IO calls 'wait_barrier'.  When that returns there
827  *    is no backgroup IO happening,  It must arrange to call
828  *    allow_barrier when it has finished its IO.
829  * backgroup IO calls must call raise_barrier.  Once that returns
830  *    there is no normal IO happeing.  It must arrange to call
831  *    lower_barrier when the particular background IO completes.
832  */
833 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
834 {
835         int idx = sector_to_idx(sector_nr);
836
837         spin_lock_irq(&conf->resync_lock);
838
839         /* Wait until no block IO is waiting */
840         wait_event_lock_irq(conf->wait_barrier,
841                             !atomic_read(&conf->nr_waiting[idx]),
842                             conf->resync_lock);
843
844         /* block any new IO from starting */
845         atomic_inc(&conf->barrier[idx]);
846         /*
847          * In raise_barrier() we firstly increase conf->barrier[idx] then
848          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
849          * increase conf->nr_pending[idx] then check conf->barrier[idx].
850          * A memory barrier here to make sure conf->nr_pending[idx] won't
851          * be fetched before conf->barrier[idx] is increased. Otherwise
852          * there will be a race between raise_barrier() and _wait_barrier().
853          */
854         smp_mb__after_atomic();
855
856         /* For these conditions we must wait:
857          * A: while the array is in frozen state
858          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
859          *    existing in corresponding I/O barrier bucket.
860          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
861          *    max resync count which allowed on current I/O barrier bucket.
862          */
863         wait_event_lock_irq(conf->wait_barrier,
864                             !conf->array_frozen &&
865                              !atomic_read(&conf->nr_pending[idx]) &&
866                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
867                             conf->resync_lock);
868
869         atomic_inc(&conf->nr_pending[idx]);
870         spin_unlock_irq(&conf->resync_lock);
871 }
872
873 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
874 {
875         int idx = sector_to_idx(sector_nr);
876
877         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
878
879         atomic_dec(&conf->barrier[idx]);
880         atomic_dec(&conf->nr_pending[idx]);
881         wake_up(&conf->wait_barrier);
882 }
883
884 static void _wait_barrier(struct r1conf *conf, int idx)
885 {
886         /*
887          * We need to increase conf->nr_pending[idx] very early here,
888          * then raise_barrier() can be blocked when it waits for
889          * conf->nr_pending[idx] to be 0. Then we can avoid holding
890          * conf->resync_lock when there is no barrier raised in same
891          * barrier unit bucket. Also if the array is frozen, I/O
892          * should be blocked until array is unfrozen.
893          */
894         atomic_inc(&conf->nr_pending[idx]);
895         /*
896          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
897          * check conf->barrier[idx]. In raise_barrier() we firstly increase
898          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
899          * barrier is necessary here to make sure conf->barrier[idx] won't be
900          * fetched before conf->nr_pending[idx] is increased. Otherwise there
901          * will be a race between _wait_barrier() and raise_barrier().
902          */
903         smp_mb__after_atomic();
904
905         /*
906          * Don't worry about checking two atomic_t variables at same time
907          * here. If during we check conf->barrier[idx], the array is
908          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
909          * 0, it is safe to return and make the I/O continue. Because the
910          * array is frozen, all I/O returned here will eventually complete
911          * or be queued, no race will happen. See code comment in
912          * frozen_array().
913          */
914         if (!READ_ONCE(conf->array_frozen) &&
915             !atomic_read(&conf->barrier[idx]))
916                 return;
917
918         /*
919          * After holding conf->resync_lock, conf->nr_pending[idx]
920          * should be decreased before waiting for barrier to drop.
921          * Otherwise, we may encounter a race condition because
922          * raise_barrer() might be waiting for conf->nr_pending[idx]
923          * to be 0 at same time.
924          */
925         spin_lock_irq(&conf->resync_lock);
926         atomic_inc(&conf->nr_waiting[idx]);
927         atomic_dec(&conf->nr_pending[idx]);
928         /*
929          * In case freeze_array() is waiting for
930          * get_unqueued_pending() == extra
931          */
932         wake_up(&conf->wait_barrier);
933         /* Wait for the barrier in same barrier unit bucket to drop. */
934         wait_event_lock_irq(conf->wait_barrier,
935                             !conf->array_frozen &&
936                              !atomic_read(&conf->barrier[idx]),
937                             conf->resync_lock);
938         atomic_inc(&conf->nr_pending[idx]);
939         atomic_dec(&conf->nr_waiting[idx]);
940         spin_unlock_irq(&conf->resync_lock);
941 }
942
943 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
944 {
945         int idx = sector_to_idx(sector_nr);
946
947         /*
948          * Very similar to _wait_barrier(). The difference is, for read
949          * I/O we don't need wait for sync I/O, but if the whole array
950          * is frozen, the read I/O still has to wait until the array is
951          * unfrozen. Since there is no ordering requirement with
952          * conf->barrier[idx] here, memory barrier is unnecessary as well.
953          */
954         atomic_inc(&conf->nr_pending[idx]);
955
956         if (!READ_ONCE(conf->array_frozen))
957                 return;
958
959         spin_lock_irq(&conf->resync_lock);
960         atomic_inc(&conf->nr_waiting[idx]);
961         atomic_dec(&conf->nr_pending[idx]);
962         /*
963          * In case freeze_array() is waiting for
964          * get_unqueued_pending() == extra
965          */
966         wake_up(&conf->wait_barrier);
967         /* Wait for array to be unfrozen */
968         wait_event_lock_irq(conf->wait_barrier,
969                             !conf->array_frozen,
970                             conf->resync_lock);
971         atomic_inc(&conf->nr_pending[idx]);
972         atomic_dec(&conf->nr_waiting[idx]);
973         spin_unlock_irq(&conf->resync_lock);
974 }
975
976 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
977 {
978         int idx = sector_to_idx(sector_nr);
979
980         _wait_barrier(conf, idx);
981 }
982
983 static void wait_all_barriers(struct r1conf *conf)
984 {
985         int idx;
986
987         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
988                 _wait_barrier(conf, idx);
989 }
990
991 static void _allow_barrier(struct r1conf *conf, int idx)
992 {
993         atomic_dec(&conf->nr_pending[idx]);
994         wake_up(&conf->wait_barrier);
995 }
996
997 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
998 {
999         int idx = sector_to_idx(sector_nr);
1000
1001         _allow_barrier(conf, idx);
1002 }
1003
1004 static void allow_all_barriers(struct r1conf *conf)
1005 {
1006         int idx;
1007
1008         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1009                 _allow_barrier(conf, idx);
1010 }
1011
1012 /* conf->resync_lock should be held */
1013 static int get_unqueued_pending(struct r1conf *conf)
1014 {
1015         int idx, ret;
1016
1017         for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018                 ret += atomic_read(&conf->nr_pending[idx]) -
1019                         atomic_read(&conf->nr_queued[idx]);
1020
1021         return ret;
1022 }
1023
1024 static void freeze_array(struct r1conf *conf, int extra)
1025 {
1026         /* Stop sync I/O and normal I/O and wait for everything to
1027          * go quite.
1028          * This is called in two situations:
1029          * 1) management command handlers (reshape, remove disk, quiesce).
1030          * 2) one normal I/O request failed.
1031
1032          * After array_frozen is set to 1, new sync IO will be blocked at
1033          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1034          * or wait_read_barrier(). The flying I/Os will either complete or be
1035          * queued. When everything goes quite, there are only queued I/Os left.
1036
1037          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1038          * barrier bucket index which this I/O request hits. When all sync and
1039          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1040          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1041          * in handle_read_error(), we may call freeze_array() before trying to
1042          * fix the read error. In this case, the error read I/O is not queued,
1043          * so get_unqueued_pending() == 1.
1044          *
1045          * Therefore before this function returns, we need to wait until
1046          * get_unqueued_pendings(conf) gets equal to extra. For
1047          * normal I/O context, extra is 1, in rested situations extra is 0.
1048          */
1049         spin_lock_irq(&conf->resync_lock);
1050         conf->array_frozen = 1;
1051         raid1_log(conf->mddev, "wait freeze");
1052         wait_event_lock_irq_cmd(
1053                 conf->wait_barrier,
1054                 get_unqueued_pending(conf) == extra,
1055                 conf->resync_lock,
1056                 flush_pending_writes(conf));
1057         spin_unlock_irq(&conf->resync_lock);
1058 }
1059 static void unfreeze_array(struct r1conf *conf)
1060 {
1061         /* reverse the effect of the freeze */
1062         spin_lock_irq(&conf->resync_lock);
1063         conf->array_frozen = 0;
1064         spin_unlock_irq(&conf->resync_lock);
1065         wake_up(&conf->wait_barrier);
1066 }
1067
1068 /* duplicate the data pages for behind I/O
1069  */
1070 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1071 {
1072         int i;
1073         struct bio_vec *bvec;
1074         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1075                                         GFP_NOIO);
1076         if (unlikely(!bvecs))
1077                 return;
1078
1079         bio_for_each_segment_all(bvec, bio, i) {
1080                 bvecs[i] = *bvec;
1081                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1082                 if (unlikely(!bvecs[i].bv_page))
1083                         goto do_sync_io;
1084                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1085                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1086                 kunmap(bvecs[i].bv_page);
1087                 kunmap(bvec->bv_page);
1088         }
1089         r1_bio->behind_bvecs = bvecs;
1090         r1_bio->behind_page_count = bio->bi_vcnt;
1091         set_bit(R1BIO_BehindIO, &r1_bio->state);
1092         return;
1093
1094 do_sync_io:
1095         for (i = 0; i < bio->bi_vcnt; i++)
1096                 if (bvecs[i].bv_page)
1097                         put_page(bvecs[i].bv_page);
1098         kfree(bvecs);
1099         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1100                  bio->bi_iter.bi_size);
1101 }
1102
1103 struct raid1_plug_cb {
1104         struct blk_plug_cb      cb;
1105         struct bio_list         pending;
1106         int                     pending_cnt;
1107 };
1108
1109 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1112                                                   cb);
1113         struct mddev *mddev = plug->cb.data;
1114         struct r1conf *conf = mddev->private;
1115         struct bio *bio;
1116
1117         if (from_schedule || current->bio_list) {
1118                 spin_lock_irq(&conf->device_lock);
1119                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120                 conf->pending_count += plug->pending_cnt;
1121                 spin_unlock_irq(&conf->device_lock);
1122                 wake_up(&conf->wait_barrier);
1123                 md_wakeup_thread(mddev->thread);
1124                 kfree(plug);
1125                 return;
1126         }
1127
1128         /* we aren't scheduling, so we can do the write-out directly. */
1129         bio = bio_list_get(&plug->pending);
1130         bitmap_unplug(mddev->bitmap);
1131         wake_up(&conf->wait_barrier);
1132
1133         while (bio) { /* submit pending writes */
1134                 struct bio *next = bio->bi_next;
1135                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1136                 bio->bi_next = NULL;
1137                 bio->bi_bdev = rdev->bdev;
1138                 if (test_bit(Faulty, &rdev->flags)) {
1139                         bio->bi_error = -EIO;
1140                         bio_endio(bio);
1141                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1142                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1143                         /* Just ignore it */
1144                         bio_endio(bio);
1145                 else
1146                         generic_make_request(bio);
1147                 bio = next;
1148         }
1149         kfree(plug);
1150 }
1151
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1154 {
1155         struct r1conf *conf = mddev->private;
1156         struct r1bio *r1_bio;
1157
1158         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159
1160         r1_bio->master_bio = bio;
1161         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1162         r1_bio->state = 0;
1163         r1_bio->mddev = mddev;
1164         r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1165
1166         return r1_bio;
1167 }
1168
1169 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1170 {
1171         struct r1conf *conf = mddev->private;
1172         struct raid1_info *mirror;
1173         struct r1bio *r1_bio;
1174         struct bio *read_bio;
1175         struct bitmap *bitmap = mddev->bitmap;
1176         const int op = bio_op(bio);
1177         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1178         int sectors_handled;
1179         int max_sectors;
1180         int rdisk;
1181
1182         /*
1183          * Still need barrier for READ in case that whole
1184          * array is frozen.
1185          */
1186         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1187
1188         r1_bio = alloc_r1bio(mddev, bio, 0);
1189
1190         /*
1191          * We might need to issue multiple reads to different
1192          * devices if there are bad blocks around, so we keep
1193          * track of the number of reads in bio->bi_phys_segments.
1194          * If this is 0, there is only one r1_bio and no locking
1195          * will be needed when requests complete.  If it is
1196          * non-zero, then it is the number of not-completed requests.
1197          */
1198         bio->bi_phys_segments = 0;
1199         bio_clear_flag(bio, BIO_SEG_VALID);
1200
1201         /*
1202          * make_request() can abort the operation when read-ahead is being
1203          * used and no empty request is available.
1204          */
1205 read_again:
1206         rdisk = read_balance(conf, r1_bio, &max_sectors);
1207
1208         if (rdisk < 0) {
1209                 /* couldn't find anywhere to read from */
1210                 raid_end_bio_io(r1_bio);
1211                 return;
1212         }
1213         mirror = conf->mirrors + rdisk;
1214
1215         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1216             bitmap) {
1217                 /*
1218                  * Reading from a write-mostly device must take care not to
1219                  * over-take any writes that are 'behind'
1220                  */
1221                 raid1_log(mddev, "wait behind writes");
1222                 wait_event(bitmap->behind_wait,
1223                            atomic_read(&bitmap->behind_writes) == 0);
1224         }
1225         r1_bio->read_disk = rdisk;
1226
1227         read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1228         bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1229                  max_sectors);
1230
1231         r1_bio->bios[rdisk] = read_bio;
1232
1233         read_bio->bi_iter.bi_sector = r1_bio->sector +
1234                 mirror->rdev->data_offset;
1235         read_bio->bi_bdev = mirror->rdev->bdev;
1236         read_bio->bi_end_io = raid1_end_read_request;
1237         bio_set_op_attrs(read_bio, op, do_sync);
1238         if (test_bit(FailFast, &mirror->rdev->flags) &&
1239             test_bit(R1BIO_FailFast, &r1_bio->state))
1240                 read_bio->bi_opf |= MD_FAILFAST;
1241         read_bio->bi_private = r1_bio;
1242
1243         if (mddev->gendisk)
1244                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1245                                       read_bio, disk_devt(mddev->gendisk),
1246                                       r1_bio->sector);
1247
1248         if (max_sectors < r1_bio->sectors) {
1249                 /*
1250                  * could not read all from this device, so we will need another
1251                  * r1_bio.
1252                  */
1253                 sectors_handled = (r1_bio->sector + max_sectors
1254                                    - bio->bi_iter.bi_sector);
1255                 r1_bio->sectors = max_sectors;
1256                 spin_lock_irq(&conf->device_lock);
1257                 if (bio->bi_phys_segments == 0)
1258                         bio->bi_phys_segments = 2;
1259                 else
1260                         bio->bi_phys_segments++;
1261                 spin_unlock_irq(&conf->device_lock);
1262
1263                 /*
1264                  * Cannot call generic_make_request directly as that will be
1265                  * queued in __make_request and subsequent mempool_alloc might
1266                  * block waiting for it.  So hand bio over to raid1d.
1267                  */
1268                 reschedule_retry(r1_bio);
1269
1270                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1271                 goto read_again;
1272         } else
1273                 generic_make_request(read_bio);
1274 }
1275
1276 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1277 {
1278         struct r1conf *conf = mddev->private;
1279         struct r1bio *r1_bio;
1280         int i, disks;
1281         struct bitmap *bitmap = mddev->bitmap;
1282         unsigned long flags;
1283         const int op = bio_op(bio);
1284         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1285         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1286         struct md_rdev *blocked_rdev;
1287         struct blk_plug_cb *cb;
1288         struct raid1_plug_cb *plug = NULL;
1289         int first_clone;
1290         int sectors_handled;
1291         int max_sectors;
1292
1293         /*
1294          * Register the new request and wait if the reconstruction
1295          * thread has put up a bar for new requests.
1296          * Continue immediately if no resync is active currently.
1297          */
1298
1299         md_write_start(mddev, bio); /* wait on superblock update early */
1300
1301         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303             (mddev_is_clustered(mddev) &&
1304              md_cluster_ops->area_resyncing(mddev, WRITE,
1305                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306
1307                 /*
1308                  * As the suspend_* range is controlled by userspace, we want
1309                  * an interruptible wait.
1310                  */
1311                 DEFINE_WAIT(w);
1312                 for (;;) {
1313                         flush_signals(current);
1314                         prepare_to_wait(&conf->wait_barrier,
1315                                         &w, TASK_INTERRUPTIBLE);
1316                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1317                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318                             (mddev_is_clustered(mddev) &&
1319                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1320                                      bio->bi_iter.bi_sector,
1321                                      bio_end_sector(bio))))
1322                                 break;
1323                         schedule();
1324                 }
1325                 finish_wait(&conf->wait_barrier, &w);
1326         }
1327         wait_barrier(conf, bio->bi_iter.bi_sector);
1328
1329         r1_bio = alloc_r1bio(mddev, bio, 0);
1330
1331         /* We might need to issue multiple writes to different
1332          * devices if there are bad blocks around, so we keep
1333          * track of the number of writes in bio->bi_phys_segments.
1334          * If this is 0, there is only one r1_bio and no locking
1335          * will be needed when requests complete.  If it is
1336          * non-zero, then it is the number of not-completed requests.
1337          */
1338         bio->bi_phys_segments = 0;
1339         bio_clear_flag(bio, BIO_SEG_VALID);
1340
1341         if (conf->pending_count >= max_queued_requests) {
1342                 md_wakeup_thread(mddev->thread);
1343                 raid1_log(mddev, "wait queued");
1344                 wait_event(conf->wait_barrier,
1345                            conf->pending_count < max_queued_requests);
1346         }
1347         /* first select target devices under rcu_lock and
1348          * inc refcount on their rdev.  Record them by setting
1349          * bios[x] to bio
1350          * If there are known/acknowledged bad blocks on any device on
1351          * which we have seen a write error, we want to avoid writing those
1352          * blocks.
1353          * This potentially requires several writes to write around
1354          * the bad blocks.  Each set of writes gets it's own r1bio
1355          * with a set of bios attached.
1356          */
1357
1358         disks = conf->raid_disks * 2;
1359  retry_write:
1360         blocked_rdev = NULL;
1361         rcu_read_lock();
1362         max_sectors = r1_bio->sectors;
1363         for (i = 0;  i < disks; i++) {
1364                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1365                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366                         atomic_inc(&rdev->nr_pending);
1367                         blocked_rdev = rdev;
1368                         break;
1369                 }
1370                 r1_bio->bios[i] = NULL;
1371                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1372                         if (i < conf->raid_disks)
1373                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1374                         continue;
1375                 }
1376
1377                 atomic_inc(&rdev->nr_pending);
1378                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379                         sector_t first_bad;
1380                         int bad_sectors;
1381                         int is_bad;
1382
1383                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1384                                              &first_bad, &bad_sectors);
1385                         if (is_bad < 0) {
1386                                 /* mustn't write here until the bad block is
1387                                  * acknowledged*/
1388                                 set_bit(BlockedBadBlocks, &rdev->flags);
1389                                 blocked_rdev = rdev;
1390                                 break;
1391                         }
1392                         if (is_bad && first_bad <= r1_bio->sector) {
1393                                 /* Cannot write here at all */
1394                                 bad_sectors -= (r1_bio->sector - first_bad);
1395                                 if (bad_sectors < max_sectors)
1396                                         /* mustn't write more than bad_sectors
1397                                          * to other devices yet
1398                                          */
1399                                         max_sectors = bad_sectors;
1400                                 rdev_dec_pending(rdev, mddev);
1401                                 /* We don't set R1BIO_Degraded as that
1402                                  * only applies if the disk is
1403                                  * missing, so it might be re-added,
1404                                  * and we want to know to recover this
1405                                  * chunk.
1406                                  * In this case the device is here,
1407                                  * and the fact that this chunk is not
1408                                  * in-sync is recorded in the bad
1409                                  * block log
1410                                  */
1411                                 continue;
1412                         }
1413                         if (is_bad) {
1414                                 int good_sectors = first_bad - r1_bio->sector;
1415                                 if (good_sectors < max_sectors)
1416                                         max_sectors = good_sectors;
1417                         }
1418                 }
1419                 r1_bio->bios[i] = bio;
1420         }
1421         rcu_read_unlock();
1422
1423         if (unlikely(blocked_rdev)) {
1424                 /* Wait for this device to become unblocked */
1425                 int j;
1426
1427                 for (j = 0; j < i; j++)
1428                         if (r1_bio->bios[j])
1429                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1430                 r1_bio->state = 0;
1431                 allow_barrier(conf, bio->bi_iter.bi_sector);
1432                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1433                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1434                 wait_barrier(conf, bio->bi_iter.bi_sector);
1435                 goto retry_write;
1436         }
1437
1438         if (max_sectors < r1_bio->sectors) {
1439                 /* We are splitting this write into multiple parts, so
1440                  * we need to prepare for allocating another r1_bio.
1441                  */
1442                 r1_bio->sectors = max_sectors;
1443                 spin_lock_irq(&conf->device_lock);
1444                 if (bio->bi_phys_segments == 0)
1445                         bio->bi_phys_segments = 2;
1446                 else
1447                         bio->bi_phys_segments++;
1448                 spin_unlock_irq(&conf->device_lock);
1449         }
1450         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1451
1452         atomic_set(&r1_bio->remaining, 1);
1453         atomic_set(&r1_bio->behind_remaining, 0);
1454
1455         first_clone = 1;
1456         for (i = 0; i < disks; i++) {
1457                 struct bio *mbio = NULL;
1458                 sector_t offset;
1459                 if (!r1_bio->bios[i])
1460                         continue;
1461
1462                 offset = r1_bio->sector - bio->bi_iter.bi_sector;
1463
1464                 if (first_clone) {
1465                         /* do behind I/O ?
1466                          * Not if there are too many, or cannot
1467                          * allocate memory, or a reader on WriteMostly
1468                          * is waiting for behind writes to flush */
1469                         if (bitmap &&
1470                             (atomic_read(&bitmap->behind_writes)
1471                              < mddev->bitmap_info.max_write_behind) &&
1472                             !waitqueue_active(&bitmap->behind_wait)) {
1473                                 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474                                                                 mddev->bio_set,
1475                                                                 offset << 9,
1476                                                                 max_sectors << 9);
1477                                 alloc_behind_pages(mbio, r1_bio);
1478                         }
1479
1480                         bitmap_startwrite(bitmap, r1_bio->sector,
1481                                           r1_bio->sectors,
1482                                           test_bit(R1BIO_BehindIO,
1483                                                    &r1_bio->state));
1484                         first_clone = 0;
1485                 }
1486
1487                 if (!mbio) {
1488                         if (r1_bio->behind_bvecs)
1489                                 mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1490                                                                 mddev->bio_set,
1491                                                                 offset << 9,
1492                                                                 max_sectors << 9);
1493                         else {
1494                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1495                                 bio_trim(mbio, offset, max_sectors);
1496                         }
1497                 }
1498
1499                 if (r1_bio->behind_bvecs) {
1500                         struct bio_vec *bvec;
1501                         int j;
1502
1503                         /*
1504                          * We trimmed the bio, so _all is legit
1505                          */
1506                         bio_for_each_segment_all(bvec, mbio, j)
1507                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1508                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1509                                 atomic_inc(&r1_bio->behind_remaining);
1510                 }
1511
1512                 r1_bio->bios[i] = mbio;
1513
1514                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1515                                    conf->mirrors[i].rdev->data_offset);
1516                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1517                 mbio->bi_end_io = raid1_end_write_request;
1518                 bio_set_op_attrs(mbio, op, do_fua | do_sync);
1519                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1520                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1521                     conf->raid_disks - mddev->degraded > 1)
1522                         mbio->bi_opf |= MD_FAILFAST;
1523                 mbio->bi_private = r1_bio;
1524
1525                 atomic_inc(&r1_bio->remaining);
1526
1527                 if (mddev->gendisk)
1528                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1529                                               mbio, disk_devt(mddev->gendisk),
1530                                               r1_bio->sector);
1531                 /* flush_pending_writes() needs access to the rdev so...*/
1532                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1533
1534                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535                 if (cb)
1536                         plug = container_of(cb, struct raid1_plug_cb, cb);
1537                 else
1538                         plug = NULL;
1539                 spin_lock_irqsave(&conf->device_lock, flags);
1540                 if (plug) {
1541                         bio_list_add(&plug->pending, mbio);
1542                         plug->pending_cnt++;
1543                 } else {
1544                         bio_list_add(&conf->pending_bio_list, mbio);
1545                         conf->pending_count++;
1546                 }
1547                 spin_unlock_irqrestore(&conf->device_lock, flags);
1548                 if (!plug)
1549                         md_wakeup_thread(mddev->thread);
1550         }
1551         /* Mustn't call r1_bio_write_done before this next test,
1552          * as it could result in the bio being freed.
1553          */
1554         if (sectors_handled < bio_sectors(bio)) {
1555                 r1_bio_write_done(r1_bio);
1556                 /* We need another r1_bio.  It has already been counted
1557                  * in bio->bi_phys_segments
1558                  */
1559                 r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1560                 goto retry_write;
1561         }
1562
1563         r1_bio_write_done(r1_bio);
1564
1565         /* In case raid1d snuck in to freeze_array */
1566         wake_up(&conf->wait_barrier);
1567 }
1568
1569 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1570 {
1571         struct bio *split;
1572         sector_t sectors;
1573
1574         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1575                 md_flush_request(mddev, bio);
1576                 return;
1577         }
1578
1579         /* if bio exceeds barrier unit boundary, split it */
1580         do {
1581                 sectors = align_to_barrier_unit_end(
1582                                 bio->bi_iter.bi_sector, bio_sectors(bio));
1583                 if (sectors < bio_sectors(bio)) {
1584                         split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1585                         bio_chain(split, bio);
1586                 } else {
1587                         split = bio;
1588                 }
1589
1590                 if (bio_data_dir(split) == READ)
1591                         raid1_read_request(mddev, split);
1592                 else
1593                         raid1_write_request(mddev, split);
1594         } while (split != bio);
1595 }
1596
1597 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1598 {
1599         struct r1conf *conf = mddev->private;
1600         int i;
1601
1602         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1603                    conf->raid_disks - mddev->degraded);
1604         rcu_read_lock();
1605         for (i = 0; i < conf->raid_disks; i++) {
1606                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1607                 seq_printf(seq, "%s",
1608                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609         }
1610         rcu_read_unlock();
1611         seq_printf(seq, "]");
1612 }
1613
1614 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1615 {
1616         char b[BDEVNAME_SIZE];
1617         struct r1conf *conf = mddev->private;
1618         unsigned long flags;
1619
1620         /*
1621          * If it is not operational, then we have already marked it as dead
1622          * else if it is the last working disks, ignore the error, let the
1623          * next level up know.
1624          * else mark the drive as failed
1625          */
1626         spin_lock_irqsave(&conf->device_lock, flags);
1627         if (test_bit(In_sync, &rdev->flags)
1628             && (conf->raid_disks - mddev->degraded) == 1) {
1629                 /*
1630                  * Don't fail the drive, act as though we were just a
1631                  * normal single drive.
1632                  * However don't try a recovery from this drive as
1633                  * it is very likely to fail.
1634                  */
1635                 conf->recovery_disabled = mddev->recovery_disabled;
1636                 spin_unlock_irqrestore(&conf->device_lock, flags);
1637                 return;
1638         }
1639         set_bit(Blocked, &rdev->flags);
1640         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1641                 mddev->degraded++;
1642                 set_bit(Faulty, &rdev->flags);
1643         } else
1644                 set_bit(Faulty, &rdev->flags);
1645         spin_unlock_irqrestore(&conf->device_lock, flags);
1646         /*
1647          * if recovery is running, make sure it aborts.
1648          */
1649         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1650         set_mask_bits(&mddev->sb_flags, 0,
1651                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1652         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1653                 "md/raid1:%s: Operation continuing on %d devices.\n",
1654                 mdname(mddev), bdevname(rdev->bdev, b),
1655                 mdname(mddev), conf->raid_disks - mddev->degraded);
1656 }
1657
1658 static void print_conf(struct r1conf *conf)
1659 {
1660         int i;
1661
1662         pr_debug("RAID1 conf printout:\n");
1663         if (!conf) {
1664                 pr_debug("(!conf)\n");
1665                 return;
1666         }
1667         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1668                  conf->raid_disks);
1669
1670         rcu_read_lock();
1671         for (i = 0; i < conf->raid_disks; i++) {
1672                 char b[BDEVNAME_SIZE];
1673                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1674                 if (rdev)
1675                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1676                                  i, !test_bit(In_sync, &rdev->flags),
1677                                  !test_bit(Faulty, &rdev->flags),
1678                                  bdevname(rdev->bdev,b));
1679         }
1680         rcu_read_unlock();
1681 }
1682
1683 static void close_sync(struct r1conf *conf)
1684 {
1685         wait_all_barriers(conf);
1686         allow_all_barriers(conf);
1687
1688         mempool_destroy(conf->r1buf_pool);
1689         conf->r1buf_pool = NULL;
1690 }
1691
1692 static int raid1_spare_active(struct mddev *mddev)
1693 {
1694         int i;
1695         struct r1conf *conf = mddev->private;
1696         int count = 0;
1697         unsigned long flags;
1698
1699         /*
1700          * Find all failed disks within the RAID1 configuration
1701          * and mark them readable.
1702          * Called under mddev lock, so rcu protection not needed.
1703          * device_lock used to avoid races with raid1_end_read_request
1704          * which expects 'In_sync' flags and ->degraded to be consistent.
1705          */
1706         spin_lock_irqsave(&conf->device_lock, flags);
1707         for (i = 0; i < conf->raid_disks; i++) {
1708                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1709                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1710                 if (repl
1711                     && !test_bit(Candidate, &repl->flags)
1712                     && repl->recovery_offset == MaxSector
1713                     && !test_bit(Faulty, &repl->flags)
1714                     && !test_and_set_bit(In_sync, &repl->flags)) {
1715                         /* replacement has just become active */
1716                         if (!rdev ||
1717                             !test_and_clear_bit(In_sync, &rdev->flags))
1718                                 count++;
1719                         if (rdev) {
1720                                 /* Replaced device not technically
1721                                  * faulty, but we need to be sure
1722                                  * it gets removed and never re-added
1723                                  */
1724                                 set_bit(Faulty, &rdev->flags);
1725                                 sysfs_notify_dirent_safe(
1726                                         rdev->sysfs_state);
1727                         }
1728                 }
1729                 if (rdev
1730                     && rdev->recovery_offset == MaxSector
1731                     && !test_bit(Faulty, &rdev->flags)
1732                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1733                         count++;
1734                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1735                 }
1736         }
1737         mddev->degraded -= count;
1738         spin_unlock_irqrestore(&conf->device_lock, flags);
1739
1740         print_conf(conf);
1741         return count;
1742 }
1743
1744 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1745 {
1746         struct r1conf *conf = mddev->private;
1747         int err = -EEXIST;
1748         int mirror = 0;
1749         struct raid1_info *p;
1750         int first = 0;
1751         int last = conf->raid_disks - 1;
1752
1753         if (mddev->recovery_disabled == conf->recovery_disabled)
1754                 return -EBUSY;
1755
1756         if (md_integrity_add_rdev(rdev, mddev))
1757                 return -ENXIO;
1758
1759         if (rdev->raid_disk >= 0)
1760                 first = last = rdev->raid_disk;
1761
1762         /*
1763          * find the disk ... but prefer rdev->saved_raid_disk
1764          * if possible.
1765          */
1766         if (rdev->saved_raid_disk >= 0 &&
1767             rdev->saved_raid_disk >= first &&
1768             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1769                 first = last = rdev->saved_raid_disk;
1770
1771         for (mirror = first; mirror <= last; mirror++) {
1772                 p = conf->mirrors+mirror;
1773                 if (!p->rdev) {
1774
1775                         if (mddev->gendisk)
1776                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1777                                                   rdev->data_offset << 9);
1778
1779                         p->head_position = 0;
1780                         rdev->raid_disk = mirror;
1781                         err = 0;
1782                         /* As all devices are equivalent, we don't need a full recovery
1783                          * if this was recently any drive of the array
1784                          */
1785                         if (rdev->saved_raid_disk < 0)
1786                                 conf->fullsync = 1;
1787                         rcu_assign_pointer(p->rdev, rdev);
1788                         break;
1789                 }
1790                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1791                     p[conf->raid_disks].rdev == NULL) {
1792                         /* Add this device as a replacement */
1793                         clear_bit(In_sync, &rdev->flags);
1794                         set_bit(Replacement, &rdev->flags);
1795                         rdev->raid_disk = mirror;
1796                         err = 0;
1797                         conf->fullsync = 1;
1798                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1799                         break;
1800                 }
1801         }
1802         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1803                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1804         print_conf(conf);
1805         return err;
1806 }
1807
1808 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1809 {
1810         struct r1conf *conf = mddev->private;
1811         int err = 0;
1812         int number = rdev->raid_disk;
1813         struct raid1_info *p = conf->mirrors + number;
1814
1815         if (rdev != p->rdev)
1816                 p = conf->mirrors + conf->raid_disks + number;
1817
1818         print_conf(conf);
1819         if (rdev == p->rdev) {
1820                 if (test_bit(In_sync, &rdev->flags) ||
1821                     atomic_read(&rdev->nr_pending)) {
1822                         err = -EBUSY;
1823                         goto abort;
1824                 }
1825                 /* Only remove non-faulty devices if recovery
1826                  * is not possible.
1827                  */
1828                 if (!test_bit(Faulty, &rdev->flags) &&
1829                     mddev->recovery_disabled != conf->recovery_disabled &&
1830                     mddev->degraded < conf->raid_disks) {
1831                         err = -EBUSY;
1832                         goto abort;
1833                 }
1834                 p->rdev = NULL;
1835                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1836                         synchronize_rcu();
1837                         if (atomic_read(&rdev->nr_pending)) {
1838                                 /* lost the race, try later */
1839                                 err = -EBUSY;
1840                                 p->rdev = rdev;
1841                                 goto abort;
1842                         }
1843                 }
1844                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1845                         /* We just removed a device that is being replaced.
1846                          * Move down the replacement.  We drain all IO before
1847                          * doing this to avoid confusion.
1848                          */
1849                         struct md_rdev *repl =
1850                                 conf->mirrors[conf->raid_disks + number].rdev;
1851                         freeze_array(conf, 0);
1852                         clear_bit(Replacement, &repl->flags);
1853                         p->rdev = repl;
1854                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1855                         unfreeze_array(conf);
1856                         clear_bit(WantReplacement, &rdev->flags);
1857                 } else
1858                         clear_bit(WantReplacement, &rdev->flags);
1859                 err = md_integrity_register(mddev);
1860         }
1861 abort:
1862
1863         print_conf(conf);
1864         return err;
1865 }
1866
1867 static void end_sync_read(struct bio *bio)
1868 {
1869         struct r1bio *r1_bio = bio->bi_private;
1870
1871         update_head_pos(r1_bio->read_disk, r1_bio);
1872
1873         /*
1874          * we have read a block, now it needs to be re-written,
1875          * or re-read if the read failed.
1876          * We don't do much here, just schedule handling by raid1d
1877          */
1878         if (!bio->bi_error)
1879                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1880
1881         if (atomic_dec_and_test(&r1_bio->remaining))
1882                 reschedule_retry(r1_bio);
1883 }
1884
1885 static void end_sync_write(struct bio *bio)
1886 {
1887         int uptodate = !bio->bi_error;
1888         struct r1bio *r1_bio = bio->bi_private;
1889         struct mddev *mddev = r1_bio->mddev;
1890         struct r1conf *conf = mddev->private;
1891         sector_t first_bad;
1892         int bad_sectors;
1893         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1894
1895         if (!uptodate) {
1896                 sector_t sync_blocks = 0;
1897                 sector_t s = r1_bio->sector;
1898                 long sectors_to_go = r1_bio->sectors;
1899                 /* make sure these bits doesn't get cleared. */
1900                 do {
1901                         bitmap_end_sync(mddev->bitmap, s,
1902                                         &sync_blocks, 1);
1903                         s += sync_blocks;
1904                         sectors_to_go -= sync_blocks;
1905                 } while (sectors_to_go > 0);
1906                 set_bit(WriteErrorSeen, &rdev->flags);
1907                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1908                         set_bit(MD_RECOVERY_NEEDED, &
1909                                 mddev->recovery);
1910                 set_bit(R1BIO_WriteError, &r1_bio->state);
1911         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1912                                &first_bad, &bad_sectors) &&
1913                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1914                                 r1_bio->sector,
1915                                 r1_bio->sectors,
1916                                 &first_bad, &bad_sectors)
1917                 )
1918                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1919
1920         if (atomic_dec_and_test(&r1_bio->remaining)) {
1921                 int s = r1_bio->sectors;
1922                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1923                     test_bit(R1BIO_WriteError, &r1_bio->state))
1924                         reschedule_retry(r1_bio);
1925                 else {
1926                         put_buf(r1_bio);
1927                         md_done_sync(mddev, s, uptodate);
1928                 }
1929         }
1930 }
1931
1932 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1933                             int sectors, struct page *page, int rw)
1934 {
1935         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1936                 /* success */
1937                 return 1;
1938         if (rw == WRITE) {
1939                 set_bit(WriteErrorSeen, &rdev->flags);
1940                 if (!test_and_set_bit(WantReplacement,
1941                                       &rdev->flags))
1942                         set_bit(MD_RECOVERY_NEEDED, &
1943                                 rdev->mddev->recovery);
1944         }
1945         /* need to record an error - either for the block or the device */
1946         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1947                 md_error(rdev->mddev, rdev);
1948         return 0;
1949 }
1950
1951 static int fix_sync_read_error(struct r1bio *r1_bio)
1952 {
1953         /* Try some synchronous reads of other devices to get
1954          * good data, much like with normal read errors.  Only
1955          * read into the pages we already have so we don't
1956          * need to re-issue the read request.
1957          * We don't need to freeze the array, because being in an
1958          * active sync request, there is no normal IO, and
1959          * no overlapping syncs.
1960          * We don't need to check is_badblock() again as we
1961          * made sure that anything with a bad block in range
1962          * will have bi_end_io clear.
1963          */
1964         struct mddev *mddev = r1_bio->mddev;
1965         struct r1conf *conf = mddev->private;
1966         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1967         sector_t sect = r1_bio->sector;
1968         int sectors = r1_bio->sectors;
1969         int idx = 0;
1970         struct md_rdev *rdev;
1971
1972         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1973         if (test_bit(FailFast, &rdev->flags)) {
1974                 /* Don't try recovering from here - just fail it
1975                  * ... unless it is the last working device of course */
1976                 md_error(mddev, rdev);
1977                 if (test_bit(Faulty, &rdev->flags))
1978                         /* Don't try to read from here, but make sure
1979                          * put_buf does it's thing
1980                          */
1981                         bio->bi_end_io = end_sync_write;
1982         }
1983
1984         while(sectors) {
1985                 int s = sectors;
1986                 int d = r1_bio->read_disk;
1987                 int success = 0;
1988                 int start;
1989
1990                 if (s > (PAGE_SIZE>>9))
1991                         s = PAGE_SIZE >> 9;
1992                 do {
1993                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1994                                 /* No rcu protection needed here devices
1995                                  * can only be removed when no resync is
1996                                  * active, and resync is currently active
1997                                  */
1998                                 rdev = conf->mirrors[d].rdev;
1999                                 if (sync_page_io(rdev, sect, s<<9,
2000                                                  bio->bi_io_vec[idx].bv_page,
2001                                                  REQ_OP_READ, 0, false)) {
2002                                         success = 1;
2003                                         break;
2004                                 }
2005                         }
2006                         d++;
2007                         if (d == conf->raid_disks * 2)
2008                                 d = 0;
2009                 } while (!success && d != r1_bio->read_disk);
2010
2011                 if (!success) {
2012                         char b[BDEVNAME_SIZE];
2013                         int abort = 0;
2014                         /* Cannot read from anywhere, this block is lost.
2015                          * Record a bad block on each device.  If that doesn't
2016                          * work just disable and interrupt the recovery.
2017                          * Don't fail devices as that won't really help.
2018                          */
2019                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2020                                             mdname(mddev),
2021                                             bdevname(bio->bi_bdev, b),
2022                                             (unsigned long long)r1_bio->sector);
2023                         for (d = 0; d < conf->raid_disks * 2; d++) {
2024                                 rdev = conf->mirrors[d].rdev;
2025                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2026                                         continue;
2027                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2028                                         abort = 1;
2029                         }
2030                         if (abort) {
2031                                 conf->recovery_disabled =
2032                                         mddev->recovery_disabled;
2033                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2034                                 md_done_sync(mddev, r1_bio->sectors, 0);
2035                                 put_buf(r1_bio);
2036                                 return 0;
2037                         }
2038                         /* Try next page */
2039                         sectors -= s;
2040                         sect += s;
2041                         idx++;
2042                         continue;
2043                 }
2044
2045                 start = d;
2046                 /* write it back and re-read */
2047                 while (d != r1_bio->read_disk) {
2048                         if (d == 0)
2049                                 d = conf->raid_disks * 2;
2050                         d--;
2051                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2052                                 continue;
2053                         rdev = conf->mirrors[d].rdev;
2054                         if (r1_sync_page_io(rdev, sect, s,
2055                                             bio->bi_io_vec[idx].bv_page,
2056                                             WRITE) == 0) {
2057                                 r1_bio->bios[d]->bi_end_io = NULL;
2058                                 rdev_dec_pending(rdev, mddev);
2059                         }
2060                 }
2061                 d = start;
2062                 while (d != r1_bio->read_disk) {
2063                         if (d == 0)
2064                                 d = conf->raid_disks * 2;
2065                         d--;
2066                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2067                                 continue;
2068                         rdev = conf->mirrors[d].rdev;
2069                         if (r1_sync_page_io(rdev, sect, s,
2070                                             bio->bi_io_vec[idx].bv_page,
2071                                             READ) != 0)
2072                                 atomic_add(s, &rdev->corrected_errors);
2073                 }
2074                 sectors -= s;
2075                 sect += s;
2076                 idx ++;
2077         }
2078         set_bit(R1BIO_Uptodate, &r1_bio->state);
2079         bio->bi_error = 0;
2080         return 1;
2081 }
2082
2083 static void process_checks(struct r1bio *r1_bio)
2084 {
2085         /* We have read all readable devices.  If we haven't
2086          * got the block, then there is no hope left.
2087          * If we have, then we want to do a comparison
2088          * and skip the write if everything is the same.
2089          * If any blocks failed to read, then we need to
2090          * attempt an over-write
2091          */
2092         struct mddev *mddev = r1_bio->mddev;
2093         struct r1conf *conf = mddev->private;
2094         int primary;
2095         int i;
2096         int vcnt;
2097
2098         /* Fix variable parts of all bios */
2099         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2100         for (i = 0; i < conf->raid_disks * 2; i++) {
2101                 int j;
2102                 int size;
2103                 int error;
2104                 struct bio *b = r1_bio->bios[i];
2105                 if (b->bi_end_io != end_sync_read)
2106                         continue;
2107                 /* fixup the bio for reuse, but preserve errno */
2108                 error = b->bi_error;
2109                 bio_reset(b);
2110                 b->bi_error = error;
2111                 b->bi_vcnt = vcnt;
2112                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2113                 b->bi_iter.bi_sector = r1_bio->sector +
2114                         conf->mirrors[i].rdev->data_offset;
2115                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2116                 b->bi_end_io = end_sync_read;
2117                 b->bi_private = r1_bio;
2118
2119                 size = b->bi_iter.bi_size;
2120                 for (j = 0; j < vcnt ; j++) {
2121                         struct bio_vec *bi;
2122                         bi = &b->bi_io_vec[j];
2123                         bi->bv_offset = 0;
2124                         if (size > PAGE_SIZE)
2125                                 bi->bv_len = PAGE_SIZE;
2126                         else
2127                                 bi->bv_len = size;
2128                         size -= PAGE_SIZE;
2129                 }
2130         }
2131         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2132                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2133                     !r1_bio->bios[primary]->bi_error) {
2134                         r1_bio->bios[primary]->bi_end_io = NULL;
2135                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2136                         break;
2137                 }
2138         r1_bio->read_disk = primary;
2139         for (i = 0; i < conf->raid_disks * 2; i++) {
2140                 int j;
2141                 struct bio *pbio = r1_bio->bios[primary];
2142                 struct bio *sbio = r1_bio->bios[i];
2143                 int error = sbio->bi_error;
2144
2145                 if (sbio->bi_end_io != end_sync_read)
2146                         continue;
2147                 /* Now we can 'fixup' the error value */
2148                 sbio->bi_error = 0;
2149
2150                 if (!error) {
2151                         for (j = vcnt; j-- ; ) {
2152                                 struct page *p, *s;
2153                                 p = pbio->bi_io_vec[j].bv_page;
2154                                 s = sbio->bi_io_vec[j].bv_page;
2155                                 if (memcmp(page_address(p),
2156                                            page_address(s),
2157                                            sbio->bi_io_vec[j].bv_len))
2158                                         break;
2159                         }
2160                 } else
2161                         j = 0;
2162                 if (j >= 0)
2163                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2164                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2165                               && !error)) {
2166                         /* No need to write to this device. */
2167                         sbio->bi_end_io = NULL;
2168                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2169                         continue;
2170                 }
2171
2172                 bio_copy_data(sbio, pbio);
2173         }
2174 }
2175
2176 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2177 {
2178         struct r1conf *conf = mddev->private;
2179         int i;
2180         int disks = conf->raid_disks * 2;
2181         struct bio *bio, *wbio;
2182
2183         bio = r1_bio->bios[r1_bio->read_disk];
2184
2185         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2186                 /* ouch - failed to read all of that. */
2187                 if (!fix_sync_read_error(r1_bio))
2188                         return;
2189
2190         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2191                 process_checks(r1_bio);
2192
2193         /*
2194          * schedule writes
2195          */
2196         atomic_set(&r1_bio->remaining, 1);
2197         for (i = 0; i < disks ; i++) {
2198                 wbio = r1_bio->bios[i];
2199                 if (wbio->bi_end_io == NULL ||
2200                     (wbio->bi_end_io == end_sync_read &&
2201                      (i == r1_bio->read_disk ||
2202                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2203                         continue;
2204
2205                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2206                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2207                         wbio->bi_opf |= MD_FAILFAST;
2208
2209                 wbio->bi_end_io = end_sync_write;
2210                 atomic_inc(&r1_bio->remaining);
2211                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2212
2213                 generic_make_request(wbio);
2214         }
2215
2216         if (atomic_dec_and_test(&r1_bio->remaining)) {
2217                 /* if we're here, all write(s) have completed, so clean up */
2218                 int s = r1_bio->sectors;
2219                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2220                     test_bit(R1BIO_WriteError, &r1_bio->state))
2221                         reschedule_retry(r1_bio);
2222                 else {
2223                         put_buf(r1_bio);
2224                         md_done_sync(mddev, s, 1);
2225                 }
2226         }
2227 }
2228
2229 /*
2230  * This is a kernel thread which:
2231  *
2232  *      1.      Retries failed read operations on working mirrors.
2233  *      2.      Updates the raid superblock when problems encounter.
2234  *      3.      Performs writes following reads for array synchronising.
2235  */
2236
2237 static void fix_read_error(struct r1conf *conf, int read_disk,
2238                            sector_t sect, int sectors)
2239 {
2240         struct mddev *mddev = conf->mddev;
2241         while(sectors) {
2242                 int s = sectors;
2243                 int d = read_disk;
2244                 int success = 0;
2245                 int start;
2246                 struct md_rdev *rdev;
2247
2248                 if (s > (PAGE_SIZE>>9))
2249                         s = PAGE_SIZE >> 9;
2250
2251                 do {
2252                         sector_t first_bad;
2253                         int bad_sectors;
2254
2255                         rcu_read_lock();
2256                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2257                         if (rdev &&
2258                             (test_bit(In_sync, &rdev->flags) ||
2259                              (!test_bit(Faulty, &rdev->flags) &&
2260                               rdev->recovery_offset >= sect + s)) &&
2261                             is_badblock(rdev, sect, s,
2262                                         &first_bad, &bad_sectors) == 0) {
2263                                 atomic_inc(&rdev->nr_pending);
2264                                 rcu_read_unlock();
2265                                 if (sync_page_io(rdev, sect, s<<9,
2266                                          conf->tmppage, REQ_OP_READ, 0, false))
2267                                         success = 1;
2268                                 rdev_dec_pending(rdev, mddev);
2269                                 if (success)
2270                                         break;
2271                         } else
2272                                 rcu_read_unlock();
2273                         d++;
2274                         if (d == conf->raid_disks * 2)
2275                                 d = 0;
2276                 } while (!success && d != read_disk);
2277
2278                 if (!success) {
2279                         /* Cannot read from anywhere - mark it bad */
2280                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2281                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2282                                 md_error(mddev, rdev);
2283                         break;
2284                 }
2285                 /* write it back and re-read */
2286                 start = d;
2287                 while (d != read_disk) {
2288                         if (d==0)
2289                                 d = conf->raid_disks * 2;
2290                         d--;
2291                         rcu_read_lock();
2292                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2293                         if (rdev &&
2294                             !test_bit(Faulty, &rdev->flags)) {
2295                                 atomic_inc(&rdev->nr_pending);
2296                                 rcu_read_unlock();
2297                                 r1_sync_page_io(rdev, sect, s,
2298                                                 conf->tmppage, WRITE);
2299                                 rdev_dec_pending(rdev, mddev);
2300                         } else
2301                                 rcu_read_unlock();
2302                 }
2303                 d = start;
2304                 while (d != read_disk) {
2305                         char b[BDEVNAME_SIZE];
2306                         if (d==0)
2307                                 d = conf->raid_disks * 2;
2308                         d--;
2309                         rcu_read_lock();
2310                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2311                         if (rdev &&
2312                             !test_bit(Faulty, &rdev->flags)) {
2313                                 atomic_inc(&rdev->nr_pending);
2314                                 rcu_read_unlock();
2315                                 if (r1_sync_page_io(rdev, sect, s,
2316                                                     conf->tmppage, READ)) {
2317                                         atomic_add(s, &rdev->corrected_errors);
2318                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2319                                                 mdname(mddev), s,
2320                                                 (unsigned long long)(sect +
2321                                                                      rdev->data_offset),
2322                                                 bdevname(rdev->bdev, b));
2323                                 }
2324                                 rdev_dec_pending(rdev, mddev);
2325                         } else
2326                                 rcu_read_unlock();
2327                 }
2328                 sectors -= s;
2329                 sect += s;
2330         }
2331 }
2332
2333 static int narrow_write_error(struct r1bio *r1_bio, int i)
2334 {
2335         struct mddev *mddev = r1_bio->mddev;
2336         struct r1conf *conf = mddev->private;
2337         struct md_rdev *rdev = conf->mirrors[i].rdev;
2338
2339         /* bio has the data to be written to device 'i' where
2340          * we just recently had a write error.
2341          * We repeatedly clone the bio and trim down to one block,
2342          * then try the write.  Where the write fails we record
2343          * a bad block.
2344          * It is conceivable that the bio doesn't exactly align with
2345          * blocks.  We must handle this somehow.
2346          *
2347          * We currently own a reference on the rdev.
2348          */
2349
2350         int block_sectors;
2351         sector_t sector;
2352         int sectors;
2353         int sect_to_write = r1_bio->sectors;
2354         int ok = 1;
2355
2356         if (rdev->badblocks.shift < 0)
2357                 return 0;
2358
2359         block_sectors = roundup(1 << rdev->badblocks.shift,
2360                                 bdev_logical_block_size(rdev->bdev) >> 9);
2361         sector = r1_bio->sector;
2362         sectors = ((sector + block_sectors)
2363                    & ~(sector_t)(block_sectors - 1))
2364                 - sector;
2365
2366         while (sect_to_write) {
2367                 struct bio *wbio;
2368                 if (sectors > sect_to_write)
2369                         sectors = sect_to_write;
2370                 /* Write at 'sector' for 'sectors'*/
2371
2372                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2373                         unsigned vcnt = r1_bio->behind_page_count;
2374                         struct bio_vec *vec = r1_bio->behind_bvecs;
2375
2376                         while (!vec->bv_page) {
2377                                 vec++;
2378                                 vcnt--;
2379                         }
2380
2381                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2382                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2383
2384                         wbio->bi_vcnt = vcnt;
2385                 } else {
2386                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2387                                               mddev->bio_set);
2388                 }
2389
2390                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2391                 wbio->bi_iter.bi_sector = r1_bio->sector;
2392                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2393
2394                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2395                 wbio->bi_iter.bi_sector += rdev->data_offset;
2396                 wbio->bi_bdev = rdev->bdev;
2397
2398                 if (submit_bio_wait(wbio) < 0)
2399                         /* failure! */
2400                         ok = rdev_set_badblocks(rdev, sector,
2401                                                 sectors, 0)
2402                                 && ok;
2403
2404                 bio_put(wbio);
2405                 sect_to_write -= sectors;
2406                 sector += sectors;
2407                 sectors = block_sectors;
2408         }
2409         return ok;
2410 }
2411
2412 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2413 {
2414         int m;
2415         int s = r1_bio->sectors;
2416         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2417                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2418                 struct bio *bio = r1_bio->bios[m];
2419                 if (bio->bi_end_io == NULL)
2420                         continue;
2421                 if (!bio->bi_error &&
2422                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2423                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2424                 }
2425                 if (bio->bi_error &&
2426                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2427                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2428                                 md_error(conf->mddev, rdev);
2429                 }
2430         }
2431         put_buf(r1_bio);
2432         md_done_sync(conf->mddev, s, 1);
2433 }
2434
2435 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2436 {
2437         int m, idx;
2438         bool fail = false;
2439
2440         for (m = 0; m < conf->raid_disks * 2 ; m++)
2441                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2442                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2443                         rdev_clear_badblocks(rdev,
2444                                              r1_bio->sector,
2445                                              r1_bio->sectors, 0);
2446                         rdev_dec_pending(rdev, conf->mddev);
2447                 } else if (r1_bio->bios[m] != NULL) {
2448                         /* This drive got a write error.  We need to
2449                          * narrow down and record precise write
2450                          * errors.
2451                          */
2452                         fail = true;
2453                         if (!narrow_write_error(r1_bio, m)) {
2454                                 md_error(conf->mddev,
2455                                          conf->mirrors[m].rdev);
2456                                 /* an I/O failed, we can't clear the bitmap */
2457                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2458                         }
2459                         rdev_dec_pending(conf->mirrors[m].rdev,
2460                                          conf->mddev);
2461                 }
2462         if (fail) {
2463                 spin_lock_irq(&conf->device_lock);
2464                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2465                 idx = sector_to_idx(r1_bio->sector);
2466                 atomic_inc(&conf->nr_queued[idx]);
2467                 spin_unlock_irq(&conf->device_lock);
2468                 /*
2469                  * In case freeze_array() is waiting for condition
2470                  * get_unqueued_pending() == extra to be true.
2471                  */
2472                 wake_up(&conf->wait_barrier);
2473                 md_wakeup_thread(conf->mddev->thread);
2474         } else {
2475                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2476                         close_write(r1_bio);
2477                 raid_end_bio_io(r1_bio);
2478         }
2479 }
2480
2481 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2482 {
2483         int disk;
2484         int max_sectors;
2485         struct mddev *mddev = conf->mddev;
2486         struct bio *bio;
2487         char b[BDEVNAME_SIZE];
2488         struct md_rdev *rdev;
2489         dev_t bio_dev;
2490         sector_t bio_sector;
2491
2492         clear_bit(R1BIO_ReadError, &r1_bio->state);
2493         /* we got a read error. Maybe the drive is bad.  Maybe just
2494          * the block and we can fix it.
2495          * We freeze all other IO, and try reading the block from
2496          * other devices.  When we find one, we re-write
2497          * and check it that fixes the read error.
2498          * This is all done synchronously while the array is
2499          * frozen
2500          */
2501
2502         bio = r1_bio->bios[r1_bio->read_disk];
2503         bdevname(bio->bi_bdev, b);
2504         bio_dev = bio->bi_bdev->bd_dev;
2505         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2506         bio_put(bio);
2507         r1_bio->bios[r1_bio->read_disk] = NULL;
2508
2509         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2510         if (mddev->ro == 0
2511             && !test_bit(FailFast, &rdev->flags)) {
2512                 freeze_array(conf, 1);
2513                 fix_read_error(conf, r1_bio->read_disk,
2514                                r1_bio->sector, r1_bio->sectors);
2515                 unfreeze_array(conf);
2516         } else {
2517                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2518         }
2519
2520         rdev_dec_pending(rdev, conf->mddev);
2521
2522 read_more:
2523         disk = read_balance(conf, r1_bio, &max_sectors);
2524         if (disk == -1) {
2525                 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2526                                     mdname(mddev), b, (unsigned long long)r1_bio->sector);
2527                 raid_end_bio_io(r1_bio);
2528         } else {
2529                 const unsigned long do_sync
2530                         = r1_bio->master_bio->bi_opf & REQ_SYNC;
2531                 r1_bio->read_disk = disk;
2532                 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2533                                      mddev->bio_set);
2534                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2535                          max_sectors);
2536                 r1_bio->bios[r1_bio->read_disk] = bio;
2537                 rdev = conf->mirrors[disk].rdev;
2538                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2539                                     mdname(mddev),
2540                                     (unsigned long long)r1_bio->sector,
2541                                     bdevname(rdev->bdev, b));
2542                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2543                 bio->bi_bdev = rdev->bdev;
2544                 bio->bi_end_io = raid1_end_read_request;
2545                 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2546                 if (test_bit(FailFast, &rdev->flags) &&
2547                     test_bit(R1BIO_FailFast, &r1_bio->state))
2548                         bio->bi_opf |= MD_FAILFAST;
2549                 bio->bi_private = r1_bio;
2550                 if (max_sectors < r1_bio->sectors) {
2551                         /* Drat - have to split this up more */
2552                         struct bio *mbio = r1_bio->master_bio;
2553                         int sectors_handled = (r1_bio->sector + max_sectors
2554                                                - mbio->bi_iter.bi_sector);
2555                         r1_bio->sectors = max_sectors;
2556                         spin_lock_irq(&conf->device_lock);
2557                         if (mbio->bi_phys_segments == 0)
2558                                 mbio->bi_phys_segments = 2;
2559                         else
2560                                 mbio->bi_phys_segments++;
2561                         spin_unlock_irq(&conf->device_lock);
2562                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2563                                               bio, bio_dev, bio_sector);
2564                         generic_make_request(bio);
2565                         bio = NULL;
2566
2567                         r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2568                         set_bit(R1BIO_ReadError, &r1_bio->state);
2569
2570                         goto read_more;
2571                 } else {
2572                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2573                                               bio, bio_dev, bio_sector);
2574                         generic_make_request(bio);
2575                 }
2576         }
2577 }
2578
2579 static void raid1d(struct md_thread *thread)
2580 {
2581         struct mddev *mddev = thread->mddev;
2582         struct r1bio *r1_bio;
2583         unsigned long flags;
2584         struct r1conf *conf = mddev->private;
2585         struct list_head *head = &conf->retry_list;
2586         struct blk_plug plug;
2587         int idx;
2588
2589         md_check_recovery(mddev);
2590
2591         if (!list_empty_careful(&conf->bio_end_io_list) &&
2592             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2593                 LIST_HEAD(tmp);
2594                 spin_lock_irqsave(&conf->device_lock, flags);
2595                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2596                         list_splice_init(&conf->bio_end_io_list, &tmp);
2597                 spin_unlock_irqrestore(&conf->device_lock, flags);
2598                 while (!list_empty(&tmp)) {
2599                         r1_bio = list_first_entry(&tmp, struct r1bio,
2600                                                   retry_list);
2601                         list_del(&r1_bio->retry_list);
2602                         idx = sector_to_idx(r1_bio->sector);
2603                         atomic_dec(&conf->nr_queued[idx]);
2604                         if (mddev->degraded)
2605                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2606                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2607                                 close_write(r1_bio);
2608                         raid_end_bio_io(r1_bio);
2609                 }
2610         }
2611
2612         blk_start_plug(&plug);
2613         for (;;) {
2614
2615                 flush_pending_writes(conf);
2616
2617                 spin_lock_irqsave(&conf->device_lock, flags);
2618                 if (list_empty(head)) {
2619                         spin_unlock_irqrestore(&conf->device_lock, flags);
2620                         break;
2621                 }
2622                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2623                 list_del(head->prev);
2624                 idx = sector_to_idx(r1_bio->sector);
2625                 atomic_dec(&conf->nr_queued[idx]);
2626                 spin_unlock_irqrestore(&conf->device_lock, flags);
2627
2628                 mddev = r1_bio->mddev;
2629                 conf = mddev->private;
2630                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2631                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2632                             test_bit(R1BIO_WriteError, &r1_bio->state))
2633                                 handle_sync_write_finished(conf, r1_bio);
2634                         else
2635                                 sync_request_write(mddev, r1_bio);
2636                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2637                            test_bit(R1BIO_WriteError, &r1_bio->state))
2638                         handle_write_finished(conf, r1_bio);
2639                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2640                         handle_read_error(conf, r1_bio);
2641                 else
2642                         /* just a partial read to be scheduled from separate
2643                          * context
2644                          */
2645                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2646
2647                 cond_resched();
2648                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2649                         md_check_recovery(mddev);
2650         }
2651         blk_finish_plug(&plug);
2652 }
2653
2654 static int init_resync(struct r1conf *conf)
2655 {
2656         int buffs;
2657
2658         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2659         BUG_ON(conf->r1buf_pool);
2660         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2661                                           conf->poolinfo);
2662         if (!conf->r1buf_pool)
2663                 return -ENOMEM;
2664         return 0;
2665 }
2666
2667 /*
2668  * perform a "sync" on one "block"
2669  *
2670  * We need to make sure that no normal I/O request - particularly write
2671  * requests - conflict with active sync requests.
2672  *
2673  * This is achieved by tracking pending requests and a 'barrier' concept
2674  * that can be installed to exclude normal IO requests.
2675  */
2676
2677 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2678                                    int *skipped)
2679 {
2680         struct r1conf *conf = mddev->private;
2681         struct r1bio *r1_bio;
2682         struct bio *bio;
2683         sector_t max_sector, nr_sectors;
2684         int disk = -1;
2685         int i;
2686         int wonly = -1;
2687         int write_targets = 0, read_targets = 0;
2688         sector_t sync_blocks;
2689         int still_degraded = 0;
2690         int good_sectors = RESYNC_SECTORS;
2691         int min_bad = 0; /* number of sectors that are bad in all devices */
2692         int idx = sector_to_idx(sector_nr);
2693
2694         if (!conf->r1buf_pool)
2695                 if (init_resync(conf))
2696                         return 0;
2697
2698         max_sector = mddev->dev_sectors;
2699         if (sector_nr >= max_sector) {
2700                 /* If we aborted, we need to abort the
2701                  * sync on the 'current' bitmap chunk (there will
2702                  * only be one in raid1 resync.
2703                  * We can find the current addess in mddev->curr_resync
2704                  */
2705                 if (mddev->curr_resync < max_sector) /* aborted */
2706                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2707                                                 &sync_blocks, 1);
2708                 else /* completed sync */
2709                         conf->fullsync = 0;
2710
2711                 bitmap_close_sync(mddev->bitmap);
2712                 close_sync(conf);
2713
2714                 if (mddev_is_clustered(mddev)) {
2715                         conf->cluster_sync_low = 0;
2716                         conf->cluster_sync_high = 0;
2717                 }
2718                 return 0;
2719         }
2720
2721         if (mddev->bitmap == NULL &&
2722             mddev->recovery_cp == MaxSector &&
2723             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2724             conf->fullsync == 0) {
2725                 *skipped = 1;
2726                 return max_sector - sector_nr;
2727         }
2728         /* before building a request, check if we can skip these blocks..
2729          * This call the bitmap_start_sync doesn't actually record anything
2730          */
2731         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2732             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2733                 /* We can skip this block, and probably several more */
2734                 *skipped = 1;
2735                 return sync_blocks;
2736         }
2737
2738         /*
2739          * If there is non-resync activity waiting for a turn, then let it
2740          * though before starting on this new sync request.
2741          */
2742         if (atomic_read(&conf->nr_waiting[idx]))
2743                 schedule_timeout_uninterruptible(1);
2744
2745         /* we are incrementing sector_nr below. To be safe, we check against
2746          * sector_nr + two times RESYNC_SECTORS
2747          */
2748
2749         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2750                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2751         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2752
2753         raise_barrier(conf, sector_nr);
2754
2755         rcu_read_lock();
2756         /*
2757          * If we get a correctably read error during resync or recovery,
2758          * we might want to read from a different device.  So we
2759          * flag all drives that could conceivably be read from for READ,
2760          * and any others (which will be non-In_sync devices) for WRITE.
2761          * If a read fails, we try reading from something else for which READ
2762          * is OK.
2763          */
2764
2765         r1_bio->mddev = mddev;
2766         r1_bio->sector = sector_nr;
2767         r1_bio->state = 0;
2768         set_bit(R1BIO_IsSync, &r1_bio->state);
2769         /* make sure good_sectors won't go across barrier unit boundary */
2770         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2771
2772         for (i = 0; i < conf->raid_disks * 2; i++) {
2773                 struct md_rdev *rdev;
2774                 bio = r1_bio->bios[i];
2775                 bio_reset(bio);
2776
2777                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2778                 if (rdev == NULL ||
2779                     test_bit(Faulty, &rdev->flags)) {
2780                         if (i < conf->raid_disks)
2781                                 still_degraded = 1;
2782                 } else if (!test_bit(In_sync, &rdev->flags)) {
2783                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2784                         bio->bi_end_io = end_sync_write;
2785                         write_targets ++;
2786                 } else {
2787                         /* may need to read from here */
2788                         sector_t first_bad = MaxSector;
2789                         int bad_sectors;
2790
2791                         if (is_badblock(rdev, sector_nr, good_sectors,
2792                                         &first_bad, &bad_sectors)) {
2793                                 if (first_bad > sector_nr)
2794                                         good_sectors = first_bad - sector_nr;
2795                                 else {
2796                                         bad_sectors -= (sector_nr - first_bad);
2797                                         if (min_bad == 0 ||
2798                                             min_bad > bad_sectors)
2799                                                 min_bad = bad_sectors;
2800                                 }
2801                         }
2802                         if (sector_nr < first_bad) {
2803                                 if (test_bit(WriteMostly, &rdev->flags)) {
2804                                         if (wonly < 0)
2805                                                 wonly = i;
2806                                 } else {
2807                                         if (disk < 0)
2808                                                 disk = i;
2809                                 }
2810                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2811                                 bio->bi_end_io = end_sync_read;
2812                                 read_targets++;
2813                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2814                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2815                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2816                                 /*
2817                                  * The device is suitable for reading (InSync),
2818                                  * but has bad block(s) here. Let's try to correct them,
2819                                  * if we are doing resync or repair. Otherwise, leave
2820                                  * this device alone for this sync request.
2821                                  */
2822                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2823                                 bio->bi_end_io = end_sync_write;
2824                                 write_targets++;
2825                         }
2826                 }
2827                 if (bio->bi_end_io) {
2828                         atomic_inc(&rdev->nr_pending);
2829                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2830                         bio->bi_bdev = rdev->bdev;
2831                         bio->bi_private = r1_bio;
2832                         if (test_bit(FailFast, &rdev->flags))
2833                                 bio->bi_opf |= MD_FAILFAST;
2834                 }
2835         }
2836         rcu_read_unlock();
2837         if (disk < 0)
2838                 disk = wonly;
2839         r1_bio->read_disk = disk;
2840
2841         if (read_targets == 0 && min_bad > 0) {
2842                 /* These sectors are bad on all InSync devices, so we
2843                  * need to mark them bad on all write targets
2844                  */
2845                 int ok = 1;
2846                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2847                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2848                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2849                                 ok = rdev_set_badblocks(rdev, sector_nr,
2850                                                         min_bad, 0
2851                                         ) && ok;
2852                         }
2853                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2854                 *skipped = 1;
2855                 put_buf(r1_bio);
2856
2857                 if (!ok) {
2858                         /* Cannot record the badblocks, so need to
2859                          * abort the resync.
2860                          * If there are multiple read targets, could just
2861                          * fail the really bad ones ???
2862                          */
2863                         conf->recovery_disabled = mddev->recovery_disabled;
2864                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2865                         return 0;
2866                 } else
2867                         return min_bad;
2868
2869         }
2870         if (min_bad > 0 && min_bad < good_sectors) {
2871                 /* only resync enough to reach the next bad->good
2872                  * transition */
2873                 good_sectors = min_bad;
2874         }
2875
2876         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2877                 /* extra read targets are also write targets */
2878                 write_targets += read_targets-1;
2879
2880         if (write_targets == 0 || read_targets == 0) {
2881                 /* There is nowhere to write, so all non-sync
2882                  * drives must be failed - so we are finished
2883                  */
2884                 sector_t rv;
2885                 if (min_bad > 0)
2886                         max_sector = sector_nr + min_bad;
2887                 rv = max_sector - sector_nr;
2888                 *skipped = 1;
2889                 put_buf(r1_bio);
2890                 return rv;
2891         }
2892
2893         if (max_sector > mddev->resync_max)
2894                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2895         if (max_sector > sector_nr + good_sectors)
2896                 max_sector = sector_nr + good_sectors;
2897         nr_sectors = 0;
2898         sync_blocks = 0;
2899         do {
2900                 struct page *page;
2901                 int len = PAGE_SIZE;
2902                 if (sector_nr + (len>>9) > max_sector)
2903                         len = (max_sector - sector_nr) << 9;
2904                 if (len == 0)
2905                         break;
2906                 if (sync_blocks == 0) {
2907                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2908                                                &sync_blocks, still_degraded) &&
2909                             !conf->fullsync &&
2910                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2911                                 break;
2912                         if ((len >> 9) > sync_blocks)
2913                                 len = sync_blocks<<9;
2914                 }
2915
2916                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2917                         bio = r1_bio->bios[i];
2918                         if (bio->bi_end_io) {
2919                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2920                                 if (bio_add_page(bio, page, len, 0) == 0) {
2921                                         /* stop here */
2922                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2923                                         while (i > 0) {
2924                                                 i--;
2925                                                 bio = r1_bio->bios[i];
2926                                                 if (bio->bi_end_io==NULL)
2927                                                         continue;
2928                                                 /* remove last page from this bio */
2929                                                 bio->bi_vcnt--;
2930                                                 bio->bi_iter.bi_size -= len;
2931                                                 bio_clear_flag(bio, BIO_SEG_VALID);
2932                                         }
2933                                         goto bio_full;
2934                                 }
2935                         }
2936                 }
2937                 nr_sectors += len>>9;
2938                 sector_nr += len>>9;
2939                 sync_blocks -= (len>>9);
2940         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2941  bio_full:
2942         r1_bio->sectors = nr_sectors;
2943
2944         if (mddev_is_clustered(mddev) &&
2945                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2946                 conf->cluster_sync_low = mddev->curr_resync_completed;
2947                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2948                 /* Send resync message */
2949                 md_cluster_ops->resync_info_update(mddev,
2950                                 conf->cluster_sync_low,
2951                                 conf->cluster_sync_high);
2952         }
2953
2954         /* For a user-requested sync, we read all readable devices and do a
2955          * compare
2956          */
2957         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2958                 atomic_set(&r1_bio->remaining, read_targets);
2959                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2960                         bio = r1_bio->bios[i];
2961                         if (bio->bi_end_io == end_sync_read) {
2962                                 read_targets--;
2963                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2964                                 if (read_targets == 1)
2965                                         bio->bi_opf &= ~MD_FAILFAST;
2966                                 generic_make_request(bio);
2967                         }
2968                 }
2969         } else {
2970                 atomic_set(&r1_bio->remaining, 1);
2971                 bio = r1_bio->bios[r1_bio->read_disk];
2972                 md_sync_acct(bio->bi_bdev, nr_sectors);
2973                 if (read_targets == 1)
2974                         bio->bi_opf &= ~MD_FAILFAST;
2975                 generic_make_request(bio);
2976
2977         }
2978         return nr_sectors;
2979 }
2980
2981 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2982 {
2983         if (sectors)
2984                 return sectors;
2985
2986         return mddev->dev_sectors;
2987 }
2988
2989 static struct r1conf *setup_conf(struct mddev *mddev)
2990 {
2991         struct r1conf *conf;
2992         int i;
2993         struct raid1_info *disk;
2994         struct md_rdev *rdev;
2995         int err = -ENOMEM;
2996
2997         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2998         if (!conf)
2999                 goto abort;
3000
3001         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3002                                    sizeof(atomic_t), GFP_KERNEL);
3003         if (!conf->nr_pending)
3004                 goto abort;
3005
3006         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3007                                    sizeof(atomic_t), GFP_KERNEL);
3008         if (!conf->nr_waiting)
3009                 goto abort;
3010
3011         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3012                                   sizeof(atomic_t), GFP_KERNEL);
3013         if (!conf->nr_queued)
3014                 goto abort;
3015
3016         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3017                                 sizeof(atomic_t), GFP_KERNEL);
3018         if (!conf->barrier)
3019                 goto abort;
3020
3021         conf->mirrors = kzalloc(sizeof(struct raid1_info)
3022                                 * mddev->raid_disks * 2,
3023                                  GFP_KERNEL);
3024         if (!conf->mirrors)
3025                 goto abort;
3026
3027         conf->tmppage = alloc_page(GFP_KERNEL);
3028         if (!conf->tmppage)
3029                 goto abort;
3030
3031         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3032         if (!conf->poolinfo)
3033                 goto abort;
3034         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3035         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3036                                           r1bio_pool_free,
3037                                           conf->poolinfo);
3038         if (!conf->r1bio_pool)
3039                 goto abort;
3040
3041         conf->poolinfo->mddev = mddev;
3042
3043         err = -EINVAL;
3044         spin_lock_init(&conf->device_lock);
3045         rdev_for_each(rdev, mddev) {
3046                 struct request_queue *q;
3047                 int disk_idx = rdev->raid_disk;
3048                 if (disk_idx >= mddev->raid_disks
3049                     || disk_idx < 0)
3050                         continue;
3051                 if (test_bit(Replacement, &rdev->flags))
3052                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3053                 else
3054                         disk = conf->mirrors + disk_idx;
3055
3056                 if (disk->rdev)
3057                         goto abort;
3058                 disk->rdev = rdev;
3059                 q = bdev_get_queue(rdev->bdev);
3060
3061                 disk->head_position = 0;
3062                 disk->seq_start = MaxSector;
3063         }
3064         conf->raid_disks = mddev->raid_disks;
3065         conf->mddev = mddev;
3066         INIT_LIST_HEAD(&conf->retry_list);
3067         INIT_LIST_HEAD(&conf->bio_end_io_list);
3068
3069         spin_lock_init(&conf->resync_lock);
3070         init_waitqueue_head(&conf->wait_barrier);
3071
3072         bio_list_init(&conf->pending_bio_list);
3073         conf->pending_count = 0;
3074         conf->recovery_disabled = mddev->recovery_disabled - 1;
3075
3076         err = -EIO;
3077         for (i = 0; i < conf->raid_disks * 2; i++) {
3078
3079                 disk = conf->mirrors + i;
3080
3081                 if (i < conf->raid_disks &&
3082                     disk[conf->raid_disks].rdev) {
3083                         /* This slot has a replacement. */
3084                         if (!disk->rdev) {
3085                                 /* No original, just make the replacement
3086                                  * a recovering spare
3087                                  */
3088                                 disk->rdev =
3089                                         disk[conf->raid_disks].rdev;
3090                                 disk[conf->raid_disks].rdev = NULL;
3091                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3092                                 /* Original is not in_sync - bad */
3093                                 goto abort;
3094                 }
3095
3096                 if (!disk->rdev ||
3097                     !test_bit(In_sync, &disk->rdev->flags)) {
3098                         disk->head_position = 0;
3099                         if (disk->rdev &&
3100                             (disk->rdev->saved_raid_disk < 0))
3101                                 conf->fullsync = 1;
3102                 }
3103         }
3104
3105         err = -ENOMEM;
3106         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3107         if (!conf->thread)
3108                 goto abort;
3109
3110         return conf;
3111
3112  abort:
3113         if (conf) {
3114                 mempool_destroy(conf->r1bio_pool);
3115                 kfree(conf->mirrors);
3116                 safe_put_page(conf->tmppage);
3117                 kfree(conf->poolinfo);
3118                 kfree(conf->nr_pending);
3119                 kfree(conf->nr_waiting);
3120                 kfree(conf->nr_queued);
3121                 kfree(conf->barrier);
3122                 kfree(conf);
3123         }
3124         return ERR_PTR(err);
3125 }
3126
3127 static void raid1_free(struct mddev *mddev, void *priv);
3128 static int raid1_run(struct mddev *mddev)
3129 {
3130         struct r1conf *conf;
3131         int i;
3132         struct md_rdev *rdev;
3133         int ret;
3134         bool discard_supported = false;
3135
3136         if (mddev->level != 1) {
3137                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3138                         mdname(mddev), mddev->level);
3139                 return -EIO;
3140         }
3141         if (mddev->reshape_position != MaxSector) {
3142                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3143                         mdname(mddev));
3144                 return -EIO;
3145         }
3146         /*
3147          * copy the already verified devices into our private RAID1
3148          * bookkeeping area. [whatever we allocate in run(),
3149          * should be freed in raid1_free()]
3150          */
3151         if (mddev->private == NULL)
3152                 conf = setup_conf(mddev);
3153         else
3154                 conf = mddev->private;
3155
3156         if (IS_ERR(conf))
3157                 return PTR_ERR(conf);
3158
3159         if (mddev->queue)
3160                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3161
3162         rdev_for_each(rdev, mddev) {
3163                 if (!mddev->gendisk)
3164                         continue;
3165                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3166                                   rdev->data_offset << 9);
3167                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3168                         discard_supported = true;
3169         }
3170
3171         mddev->degraded = 0;
3172         for (i=0; i < conf->raid_disks; i++)
3173                 if (conf->mirrors[i].rdev == NULL ||
3174                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3175                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3176                         mddev->degraded++;
3177
3178         if (conf->raid_disks - mddev->degraded == 1)
3179                 mddev->recovery_cp = MaxSector;
3180
3181         if (mddev->recovery_cp != MaxSector)
3182                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3183                         mdname(mddev));
3184         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3185                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3186                 mddev->raid_disks);
3187
3188         /*
3189          * Ok, everything is just fine now
3190          */
3191         mddev->thread = conf->thread;
3192         conf->thread = NULL;
3193         mddev->private = conf;
3194         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3195
3196         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3197
3198         if (mddev->queue) {
3199                 if (discard_supported)
3200                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3201                                                 mddev->queue);
3202                 else
3203                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3204                                                   mddev->queue);
3205         }
3206
3207         ret =  md_integrity_register(mddev);
3208         if (ret) {
3209                 md_unregister_thread(&mddev->thread);
3210                 raid1_free(mddev, conf);
3211         }
3212         return ret;
3213 }
3214
3215 static void raid1_free(struct mddev *mddev, void *priv)
3216 {
3217         struct r1conf *conf = priv;
3218
3219         mempool_destroy(conf->r1bio_pool);
3220         kfree(conf->mirrors);
3221         safe_put_page(conf->tmppage);
3222         kfree(conf->poolinfo);
3223         kfree(conf->nr_pending);
3224         kfree(conf->nr_waiting);
3225         kfree(conf->nr_queued);
3226         kfree(conf->barrier);
3227         kfree(conf);
3228 }
3229
3230 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3231 {
3232         /* no resync is happening, and there is enough space
3233          * on all devices, so we can resize.
3234          * We need to make sure resync covers any new space.
3235          * If the array is shrinking we should possibly wait until
3236          * any io in the removed space completes, but it hardly seems
3237          * worth it.
3238          */
3239         sector_t newsize = raid1_size(mddev, sectors, 0);
3240         if (mddev->external_size &&
3241             mddev->array_sectors > newsize)
3242                 return -EINVAL;
3243         if (mddev->bitmap) {
3244                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3245                 if (ret)
3246                         return ret;
3247         }
3248         md_set_array_sectors(mddev, newsize);
3249         set_capacity(mddev->gendisk, mddev->array_sectors);
3250         revalidate_disk(mddev->gendisk);
3251         if (sectors > mddev->dev_sectors &&
3252             mddev->recovery_cp > mddev->dev_sectors) {
3253                 mddev->recovery_cp = mddev->dev_sectors;
3254                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3255         }
3256         mddev->dev_sectors = sectors;
3257         mddev->resync_max_sectors = sectors;
3258         return 0;
3259 }
3260
3261 static int raid1_reshape(struct mddev *mddev)
3262 {
3263         /* We need to:
3264          * 1/ resize the r1bio_pool
3265          * 2/ resize conf->mirrors
3266          *
3267          * We allocate a new r1bio_pool if we can.
3268          * Then raise a device barrier and wait until all IO stops.
3269          * Then resize conf->mirrors and swap in the new r1bio pool.
3270          *
3271          * At the same time, we "pack" the devices so that all the missing
3272          * devices have the higher raid_disk numbers.
3273          */
3274         mempool_t *newpool, *oldpool;
3275         struct pool_info *newpoolinfo;
3276         struct raid1_info *newmirrors;
3277         struct r1conf *conf = mddev->private;
3278         int cnt, raid_disks;
3279         unsigned long flags;
3280         int d, d2, err;
3281
3282         /* Cannot change chunk_size, layout, or level */
3283         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3284             mddev->layout != mddev->new_layout ||
3285             mddev->level != mddev->new_level) {
3286                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3287                 mddev->new_layout = mddev->layout;
3288                 mddev->new_level = mddev->level;
3289                 return -EINVAL;
3290         }
3291
3292         if (!mddev_is_clustered(mddev)) {
3293                 err = md_allow_write(mddev);
3294                 if (err)
3295                         return err;
3296         }
3297
3298         raid_disks = mddev->raid_disks + mddev->delta_disks;
3299
3300         if (raid_disks < conf->raid_disks) {
3301                 cnt=0;
3302                 for (d= 0; d < conf->raid_disks; d++)
3303                         if (conf->mirrors[d].rdev)
3304                                 cnt++;
3305                 if (cnt > raid_disks)
3306                         return -EBUSY;
3307         }
3308
3309         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3310         if (!newpoolinfo)
3311                 return -ENOMEM;
3312         newpoolinfo->mddev = mddev;
3313         newpoolinfo->raid_disks = raid_disks * 2;
3314
3315         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3316                                  r1bio_pool_free, newpoolinfo);
3317         if (!newpool) {
3318                 kfree(newpoolinfo);
3319                 return -ENOMEM;
3320         }
3321         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3322                              GFP_KERNEL);
3323         if (!newmirrors) {
3324                 kfree(newpoolinfo);
3325                 mempool_destroy(newpool);
3326                 return -ENOMEM;
3327         }
3328
3329         freeze_array(conf, 0);
3330
3331         /* ok, everything is stopped */
3332         oldpool = conf->r1bio_pool;
3333         conf->r1bio_pool = newpool;
3334
3335         for (d = d2 = 0; d < conf->raid_disks; d++) {
3336                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3337                 if (rdev && rdev->raid_disk != d2) {
3338                         sysfs_unlink_rdev(mddev, rdev);
3339                         rdev->raid_disk = d2;
3340                         sysfs_unlink_rdev(mddev, rdev);
3341                         if (sysfs_link_rdev(mddev, rdev))
3342                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3343                                         mdname(mddev), rdev->raid_disk);
3344                 }
3345                 if (rdev)
3346                         newmirrors[d2++].rdev = rdev;
3347         }
3348         kfree(conf->mirrors);
3349         conf->mirrors = newmirrors;
3350         kfree(conf->poolinfo);
3351         conf->poolinfo = newpoolinfo;
3352
3353         spin_lock_irqsave(&conf->device_lock, flags);
3354         mddev->degraded += (raid_disks - conf->raid_disks);
3355         spin_unlock_irqrestore(&conf->device_lock, flags);
3356         conf->raid_disks = mddev->raid_disks = raid_disks;
3357         mddev->delta_disks = 0;
3358
3359         unfreeze_array(conf);
3360
3361         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3362         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3363         md_wakeup_thread(mddev->thread);
3364
3365         mempool_destroy(oldpool);
3366         return 0;
3367 }
3368
3369 static void raid1_quiesce(struct mddev *mddev, int state)
3370 {
3371         struct r1conf *conf = mddev->private;
3372
3373         switch(state) {
3374         case 2: /* wake for suspend */
3375                 wake_up(&conf->wait_barrier);
3376                 break;
3377         case 1:
3378                 freeze_array(conf, 0);
3379                 break;
3380         case 0:
3381                 unfreeze_array(conf);
3382                 break;
3383         }
3384 }
3385
3386 static void *raid1_takeover(struct mddev *mddev)
3387 {
3388         /* raid1 can take over:
3389          *  raid5 with 2 devices, any layout or chunk size
3390          */
3391         if (mddev->level == 5 && mddev->raid_disks == 2) {
3392                 struct r1conf *conf;
3393                 mddev->new_level = 1;
3394                 mddev->new_layout = 0;
3395                 mddev->new_chunk_sectors = 0;
3396                 conf = setup_conf(mddev);
3397                 if (!IS_ERR(conf)) {
3398                         /* Array must appear to be quiesced */
3399                         conf->array_frozen = 1;
3400                         mddev_clear_unsupported_flags(mddev,
3401                                 UNSUPPORTED_MDDEV_FLAGS);
3402                 }
3403                 return conf;
3404         }
3405         return ERR_PTR(-EINVAL);
3406 }
3407
3408 static struct md_personality raid1_personality =
3409 {
3410         .name           = "raid1",
3411         .level          = 1,
3412         .owner          = THIS_MODULE,
3413         .make_request   = raid1_make_request,
3414         .run            = raid1_run,
3415         .free           = raid1_free,
3416         .status         = raid1_status,
3417         .error_handler  = raid1_error,
3418         .hot_add_disk   = raid1_add_disk,
3419         .hot_remove_disk= raid1_remove_disk,
3420         .spare_active   = raid1_spare_active,
3421         .sync_request   = raid1_sync_request,
3422         .resize         = raid1_resize,
3423         .size           = raid1_size,
3424         .check_reshape  = raid1_reshape,
3425         .quiesce        = raid1_quiesce,
3426         .takeover       = raid1_takeover,
3427         .congested      = raid1_congested,
3428 };
3429
3430 static int __init raid_init(void)
3431 {
3432         return register_md_personality(&raid1_personality);
3433 }
3434
3435 static void raid_exit(void)
3436 {
3437         unregister_md_personality(&raid1_personality);
3438 }
3439
3440 module_init(raid_init);
3441 module_exit(raid_exit);
3442 MODULE_LICENSE("GPL");
3443 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3444 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3445 MODULE_ALIAS("md-raid1");
3446 MODULE_ALIAS("md-level-1");
3447
3448 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);