]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
xfs: fix spurious spin_is_locked() assert failures on non-smp kernels
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 /*
114  * 'strct resync_pages' stores actual pages used for doing the resync
115  *  IO, and it is per-bio, so make .bi_private points to it.
116  */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119         return bio->bi_private;
120 }
121
122 /*
123  * for resync bio, r10bio pointer can be retrieved from the per-bio
124  * 'struct resync_pages'.
125  */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128         return get_resync_pages(bio)->raid_bio;
129 }
130
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133         struct r10conf *conf = data;
134         int size = offsetof(struct r10bio, devs[conf->copies]);
135
136         /* allocate a r10bio with room for raid_disks entries in the
137          * bios array */
138         return kzalloc(size, gfp_flags);
139 }
140
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143         kfree(r10_bio);
144 }
145
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150
151 /*
152  * When performing a resync, we need to read and compare, so
153  * we need as many pages are there are copies.
154  * When performing a recovery, we need 2 bios, one for read,
155  * one for write (we recover only one drive per r10buf)
156  *
157  */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160         struct r10conf *conf = data;
161         struct r10bio *r10_bio;
162         struct bio *bio;
163         int j;
164         int nalloc, nalloc_rp;
165         struct resync_pages *rps;
166
167         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168         if (!r10_bio)
169                 return NULL;
170
171         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173                 nalloc = conf->copies; /* resync */
174         else
175                 nalloc = 2; /* recovery */
176
177         /* allocate once for all bios */
178         if (!conf->have_replacement)
179                 nalloc_rp = nalloc;
180         else
181                 nalloc_rp = nalloc * 2;
182         rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183         if (!rps)
184                 goto out_free_r10bio;
185
186         /*
187          * Allocate bios.
188          */
189         for (j = nalloc ; j-- ; ) {
190                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191                 if (!bio)
192                         goto out_free_bio;
193                 r10_bio->devs[j].bio = bio;
194                 if (!conf->have_replacement)
195                         continue;
196                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197                 if (!bio)
198                         goto out_free_bio;
199                 r10_bio->devs[j].repl_bio = bio;
200         }
201         /*
202          * Allocate RESYNC_PAGES data pages and attach them
203          * where needed.
204          */
205         for (j = 0; j < nalloc; j++) {
206                 struct bio *rbio = r10_bio->devs[j].repl_bio;
207                 struct resync_pages *rp, *rp_repl;
208
209                 rp = &rps[j];
210                 if (rbio)
211                         rp_repl = &rps[nalloc + j];
212
213                 bio = r10_bio->devs[j].bio;
214
215                 if (!j || test_bit(MD_RECOVERY_SYNC,
216                                    &conf->mddev->recovery)) {
217                         if (resync_alloc_pages(rp, gfp_flags))
218                                 goto out_free_pages;
219                 } else {
220                         memcpy(rp, &rps[0], sizeof(*rp));
221                         resync_get_all_pages(rp);
222                 }
223
224                 rp->idx = 0;
225                 rp->raid_bio = r10_bio;
226                 bio->bi_private = rp;
227                 if (rbio) {
228                         memcpy(rp_repl, rp, sizeof(*rp));
229                         rbio->bi_private = rp_repl;
230                 }
231         }
232
233         return r10_bio;
234
235 out_free_pages:
236         while (--j >= 0)
237                 resync_free_pages(&rps[j * 2]);
238
239         j = 0;
240 out_free_bio:
241         for ( ; j < nalloc; j++) {
242                 if (r10_bio->devs[j].bio)
243                         bio_put(r10_bio->devs[j].bio);
244                 if (r10_bio->devs[j].repl_bio)
245                         bio_put(r10_bio->devs[j].repl_bio);
246         }
247         kfree(rps);
248 out_free_r10bio:
249         r10bio_pool_free(r10_bio, conf);
250         return NULL;
251 }
252
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255         struct r10conf *conf = data;
256         struct r10bio *r10bio = __r10_bio;
257         int j;
258         struct resync_pages *rp = NULL;
259
260         for (j = conf->copies; j--; ) {
261                 struct bio *bio = r10bio->devs[j].bio;
262
263                 rp = get_resync_pages(bio);
264                 resync_free_pages(rp);
265                 bio_put(bio);
266
267                 bio = r10bio->devs[j].repl_bio;
268                 if (bio)
269                         bio_put(bio);
270         }
271
272         /* resync pages array stored in the 1st bio's .bi_private */
273         kfree(rp);
274
275         r10bio_pool_free(r10bio, conf);
276 }
277
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280         int i;
281
282         for (i = 0; i < conf->copies; i++) {
283                 struct bio **bio = & r10_bio->devs[i].bio;
284                 if (!BIO_SPECIAL(*bio))
285                         bio_put(*bio);
286                 *bio = NULL;
287                 bio = &r10_bio->devs[i].repl_bio;
288                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289                         bio_put(*bio);
290                 *bio = NULL;
291         }
292 }
293
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296         struct r10conf *conf = r10_bio->mddev->private;
297
298         put_all_bios(conf, r10_bio);
299         mempool_free(r10_bio, conf->r10bio_pool);
300 }
301
302 static void put_buf(struct r10bio *r10_bio)
303 {
304         struct r10conf *conf = r10_bio->mddev->private;
305
306         mempool_free(r10_bio, conf->r10buf_pool);
307
308         lower_barrier(conf);
309 }
310
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313         unsigned long flags;
314         struct mddev *mddev = r10_bio->mddev;
315         struct r10conf *conf = mddev->private;
316
317         spin_lock_irqsave(&conf->device_lock, flags);
318         list_add(&r10_bio->retry_list, &conf->retry_list);
319         conf->nr_queued ++;
320         spin_unlock_irqrestore(&conf->device_lock, flags);
321
322         /* wake up frozen array... */
323         wake_up(&conf->wait_barrier);
324
325         md_wakeup_thread(mddev->thread);
326 }
327
328 /*
329  * raid_end_bio_io() is called when we have finished servicing a mirrored
330  * operation and are ready to return a success/failure code to the buffer
331  * cache layer.
332  */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335         struct bio *bio = r10_bio->master_bio;
336         struct r10conf *conf = r10_bio->mddev->private;
337
338         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339                 bio->bi_error = -EIO;
340
341         bio_endio(bio);
342         /*
343          * Wake up any possible resync thread that waits for the device
344          * to go idle.
345          */
346         allow_barrier(conf);
347
348         free_r10bio(r10_bio);
349 }
350
351 /*
352  * Update disk head position estimator based on IRQ completion info.
353  */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356         struct r10conf *conf = r10_bio->mddev->private;
357
358         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359                 r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361
362 /*
363  * Find the disk number which triggered given bio
364  */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366                          struct bio *bio, int *slotp, int *replp)
367 {
368         int slot;
369         int repl = 0;
370
371         for (slot = 0; slot < conf->copies; slot++) {
372                 if (r10_bio->devs[slot].bio == bio)
373                         break;
374                 if (r10_bio->devs[slot].repl_bio == bio) {
375                         repl = 1;
376                         break;
377                 }
378         }
379
380         BUG_ON(slot == conf->copies);
381         update_head_pos(slot, r10_bio);
382
383         if (slotp)
384                 *slotp = slot;
385         if (replp)
386                 *replp = repl;
387         return r10_bio->devs[slot].devnum;
388 }
389
390 static void raid10_end_read_request(struct bio *bio)
391 {
392         int uptodate = !bio->bi_error;
393         struct r10bio *r10_bio = bio->bi_private;
394         int slot, dev;
395         struct md_rdev *rdev;
396         struct r10conf *conf = r10_bio->mddev->private;
397
398         slot = r10_bio->read_slot;
399         dev = r10_bio->devs[slot].devnum;
400         rdev = r10_bio->devs[slot].rdev;
401         /*
402          * this branch is our 'one mirror IO has finished' event handler:
403          */
404         update_head_pos(slot, r10_bio);
405
406         if (uptodate) {
407                 /*
408                  * Set R10BIO_Uptodate in our master bio, so that
409                  * we will return a good error code to the higher
410                  * levels even if IO on some other mirrored buffer fails.
411                  *
412                  * The 'master' represents the composite IO operation to
413                  * user-side. So if something waits for IO, then it will
414                  * wait for the 'master' bio.
415                  */
416                 set_bit(R10BIO_Uptodate, &r10_bio->state);
417         } else {
418                 /* If all other devices that store this block have
419                  * failed, we want to return the error upwards rather
420                  * than fail the last device.  Here we redefine
421                  * "uptodate" to mean "Don't want to retry"
422                  */
423                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424                              rdev->raid_disk))
425                         uptodate = 1;
426         }
427         if (uptodate) {
428                 raid_end_bio_io(r10_bio);
429                 rdev_dec_pending(rdev, conf->mddev);
430         } else {
431                 /*
432                  * oops, read error - keep the refcount on the rdev
433                  */
434                 char b[BDEVNAME_SIZE];
435                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436                                    mdname(conf->mddev),
437                                    bdevname(rdev->bdev, b),
438                                    (unsigned long long)r10_bio->sector);
439                 set_bit(R10BIO_ReadError, &r10_bio->state);
440                 reschedule_retry(r10_bio);
441         }
442 }
443
444 static void close_write(struct r10bio *r10_bio)
445 {
446         /* clear the bitmap if all writes complete successfully */
447         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448                         r10_bio->sectors,
449                         !test_bit(R10BIO_Degraded, &r10_bio->state),
450                         0);
451         md_write_end(r10_bio->mddev);
452 }
453
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456         if (atomic_dec_and_test(&r10_bio->remaining)) {
457                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
458                         reschedule_retry(r10_bio);
459                 else {
460                         close_write(r10_bio);
461                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462                                 reschedule_retry(r10_bio);
463                         else
464                                 raid_end_bio_io(r10_bio);
465                 }
466         }
467 }
468
469 static void raid10_end_write_request(struct bio *bio)
470 {
471         struct r10bio *r10_bio = bio->bi_private;
472         int dev;
473         int dec_rdev = 1;
474         struct r10conf *conf = r10_bio->mddev->private;
475         int slot, repl;
476         struct md_rdev *rdev = NULL;
477         struct bio *to_put = NULL;
478         bool discard_error;
479
480         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
481
482         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483
484         if (repl)
485                 rdev = conf->mirrors[dev].replacement;
486         if (!rdev) {
487                 smp_rmb();
488                 repl = 0;
489                 rdev = conf->mirrors[dev].rdev;
490         }
491         /*
492          * this branch is our 'one mirror IO has finished' event handler:
493          */
494         if (bio->bi_error && !discard_error) {
495                 if (repl)
496                         /* Never record new bad blocks to replacement,
497                          * just fail it.
498                          */
499                         md_error(rdev->mddev, rdev);
500                 else {
501                         set_bit(WriteErrorSeen, &rdev->flags);
502                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
503                                 set_bit(MD_RECOVERY_NEEDED,
504                                         &rdev->mddev->recovery);
505
506                         dec_rdev = 0;
507                         if (test_bit(FailFast, &rdev->flags) &&
508                             (bio->bi_opf & MD_FAILFAST)) {
509                                 md_error(rdev->mddev, rdev);
510                                 if (!test_bit(Faulty, &rdev->flags))
511                                         /* This is the only remaining device,
512                                          * We need to retry the write without
513                                          * FailFast
514                                          */
515                                         set_bit(R10BIO_WriteError, &r10_bio->state);
516                                 else {
517                                         r10_bio->devs[slot].bio = NULL;
518                                         to_put = bio;
519                                         dec_rdev = 1;
520                                 }
521                         } else
522                                 set_bit(R10BIO_WriteError, &r10_bio->state);
523                 }
524         } else {
525                 /*
526                  * Set R10BIO_Uptodate in our master bio, so that
527                  * we will return a good error code for to the higher
528                  * levels even if IO on some other mirrored buffer fails.
529                  *
530                  * The 'master' represents the composite IO operation to
531                  * user-side. So if something waits for IO, then it will
532                  * wait for the 'master' bio.
533                  */
534                 sector_t first_bad;
535                 int bad_sectors;
536
537                 /*
538                  * Do not set R10BIO_Uptodate if the current device is
539                  * rebuilding or Faulty. This is because we cannot use
540                  * such device for properly reading the data back (we could
541                  * potentially use it, if the current write would have felt
542                  * before rdev->recovery_offset, but for simplicity we don't
543                  * check this here.
544                  */
545                 if (test_bit(In_sync, &rdev->flags) &&
546                     !test_bit(Faulty, &rdev->flags))
547                         set_bit(R10BIO_Uptodate, &r10_bio->state);
548
549                 /* Maybe we can clear some bad blocks. */
550                 if (is_badblock(rdev,
551                                 r10_bio->devs[slot].addr,
552                                 r10_bio->sectors,
553                                 &first_bad, &bad_sectors) && !discard_error) {
554                         bio_put(bio);
555                         if (repl)
556                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557                         else
558                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
559                         dec_rdev = 0;
560                         set_bit(R10BIO_MadeGood, &r10_bio->state);
561                 }
562         }
563
564         /*
565          *
566          * Let's see if all mirrored write operations have finished
567          * already.
568          */
569         one_write_done(r10_bio);
570         if (dec_rdev)
571                 rdev_dec_pending(rdev, conf->mddev);
572         if (to_put)
573                 bio_put(to_put);
574 }
575
576 /*
577  * RAID10 layout manager
578  * As well as the chunksize and raid_disks count, there are two
579  * parameters: near_copies and far_copies.
580  * near_copies * far_copies must be <= raid_disks.
581  * Normally one of these will be 1.
582  * If both are 1, we get raid0.
583  * If near_copies == raid_disks, we get raid1.
584  *
585  * Chunks are laid out in raid0 style with near_copies copies of the
586  * first chunk, followed by near_copies copies of the next chunk and
587  * so on.
588  * If far_copies > 1, then after 1/far_copies of the array has been assigned
589  * as described above, we start again with a device offset of near_copies.
590  * So we effectively have another copy of the whole array further down all
591  * the drives, but with blocks on different drives.
592  * With this layout, and block is never stored twice on the one device.
593  *
594  * raid10_find_phys finds the sector offset of a given virtual sector
595  * on each device that it is on.
596  *
597  * raid10_find_virt does the reverse mapping, from a device and a
598  * sector offset to a virtual address
599  */
600
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603         int n,f;
604         sector_t sector;
605         sector_t chunk;
606         sector_t stripe;
607         int dev;
608         int slot = 0;
609         int last_far_set_start, last_far_set_size;
610
611         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612         last_far_set_start *= geo->far_set_size;
613
614         last_far_set_size = geo->far_set_size;
615         last_far_set_size += (geo->raid_disks % geo->far_set_size);
616
617         /* now calculate first sector/dev */
618         chunk = r10bio->sector >> geo->chunk_shift;
619         sector = r10bio->sector & geo->chunk_mask;
620
621         chunk *= geo->near_copies;
622         stripe = chunk;
623         dev = sector_div(stripe, geo->raid_disks);
624         if (geo->far_offset)
625                 stripe *= geo->far_copies;
626
627         sector += stripe << geo->chunk_shift;
628
629         /* and calculate all the others */
630         for (n = 0; n < geo->near_copies; n++) {
631                 int d = dev;
632                 int set;
633                 sector_t s = sector;
634                 r10bio->devs[slot].devnum = d;
635                 r10bio->devs[slot].addr = s;
636                 slot++;
637
638                 for (f = 1; f < geo->far_copies; f++) {
639                         set = d / geo->far_set_size;
640                         d += geo->near_copies;
641
642                         if ((geo->raid_disks % geo->far_set_size) &&
643                             (d > last_far_set_start)) {
644                                 d -= last_far_set_start;
645                                 d %= last_far_set_size;
646                                 d += last_far_set_start;
647                         } else {
648                                 d %= geo->far_set_size;
649                                 d += geo->far_set_size * set;
650                         }
651                         s += geo->stride;
652                         r10bio->devs[slot].devnum = d;
653                         r10bio->devs[slot].addr = s;
654                         slot++;
655                 }
656                 dev++;
657                 if (dev >= geo->raid_disks) {
658                         dev = 0;
659                         sector += (geo->chunk_mask + 1);
660                 }
661         }
662 }
663
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666         struct geom *geo = &conf->geo;
667
668         if (conf->reshape_progress != MaxSector &&
669             ((r10bio->sector >= conf->reshape_progress) !=
670              conf->mddev->reshape_backwards)) {
671                 set_bit(R10BIO_Previous, &r10bio->state);
672                 geo = &conf->prev;
673         } else
674                 clear_bit(R10BIO_Previous, &r10bio->state);
675
676         __raid10_find_phys(geo, r10bio);
677 }
678
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681         sector_t offset, chunk, vchunk;
682         /* Never use conf->prev as this is only called during resync
683          * or recovery, so reshape isn't happening
684          */
685         struct geom *geo = &conf->geo;
686         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687         int far_set_size = geo->far_set_size;
688         int last_far_set_start;
689
690         if (geo->raid_disks % geo->far_set_size) {
691                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692                 last_far_set_start *= geo->far_set_size;
693
694                 if (dev >= last_far_set_start) {
695                         far_set_size = geo->far_set_size;
696                         far_set_size += (geo->raid_disks % geo->far_set_size);
697                         far_set_start = last_far_set_start;
698                 }
699         }
700
701         offset = sector & geo->chunk_mask;
702         if (geo->far_offset) {
703                 int fc;
704                 chunk = sector >> geo->chunk_shift;
705                 fc = sector_div(chunk, geo->far_copies);
706                 dev -= fc * geo->near_copies;
707                 if (dev < far_set_start)
708                         dev += far_set_size;
709         } else {
710                 while (sector >= geo->stride) {
711                         sector -= geo->stride;
712                         if (dev < (geo->near_copies + far_set_start))
713                                 dev += far_set_size - geo->near_copies;
714                         else
715                                 dev -= geo->near_copies;
716                 }
717                 chunk = sector >> geo->chunk_shift;
718         }
719         vchunk = chunk * geo->raid_disks + dev;
720         sector_div(vchunk, geo->near_copies);
721         return (vchunk << geo->chunk_shift) + offset;
722 }
723
724 /*
725  * This routine returns the disk from which the requested read should
726  * be done. There is a per-array 'next expected sequential IO' sector
727  * number - if this matches on the next IO then we use the last disk.
728  * There is also a per-disk 'last know head position' sector that is
729  * maintained from IRQ contexts, both the normal and the resync IO
730  * completion handlers update this position correctly. If there is no
731  * perfect sequential match then we pick the disk whose head is closest.
732  *
733  * If there are 2 mirrors in the same 2 devices, performance degrades
734  * because position is mirror, not device based.
735  *
736  * The rdev for the device selected will have nr_pending incremented.
737  */
738
739 /*
740  * FIXME: possibly should rethink readbalancing and do it differently
741  * depending on near_copies / far_copies geometry.
742  */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744                                     struct r10bio *r10_bio,
745                                     int *max_sectors)
746 {
747         const sector_t this_sector = r10_bio->sector;
748         int disk, slot;
749         int sectors = r10_bio->sectors;
750         int best_good_sectors;
751         sector_t new_distance, best_dist;
752         struct md_rdev *best_rdev, *rdev = NULL;
753         int do_balance;
754         int best_slot;
755         struct geom *geo = &conf->geo;
756
757         raid10_find_phys(conf, r10_bio);
758         rcu_read_lock();
759         sectors = r10_bio->sectors;
760         best_slot = -1;
761         best_rdev = NULL;
762         best_dist = MaxSector;
763         best_good_sectors = 0;
764         do_balance = 1;
765         clear_bit(R10BIO_FailFast, &r10_bio->state);
766         /*
767          * Check if we can balance. We can balance on the whole
768          * device if no resync is going on (recovery is ok), or below
769          * the resync window. We take the first readable disk when
770          * above the resync window.
771          */
772         if (conf->mddev->recovery_cp < MaxSector
773             && (this_sector + sectors >= conf->next_resync))
774                 do_balance = 0;
775
776         for (slot = 0; slot < conf->copies ; slot++) {
777                 sector_t first_bad;
778                 int bad_sectors;
779                 sector_t dev_sector;
780
781                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
782                         continue;
783                 disk = r10_bio->devs[slot].devnum;
784                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
785                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
788                 if (rdev == NULL ||
789                     test_bit(Faulty, &rdev->flags))
790                         continue;
791                 if (!test_bit(In_sync, &rdev->flags) &&
792                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793                         continue;
794
795                 dev_sector = r10_bio->devs[slot].addr;
796                 if (is_badblock(rdev, dev_sector, sectors,
797                                 &first_bad, &bad_sectors)) {
798                         if (best_dist < MaxSector)
799                                 /* Already have a better slot */
800                                 continue;
801                         if (first_bad <= dev_sector) {
802                                 /* Cannot read here.  If this is the
803                                  * 'primary' device, then we must not read
804                                  * beyond 'bad_sectors' from another device.
805                                  */
806                                 bad_sectors -= (dev_sector - first_bad);
807                                 if (!do_balance && sectors > bad_sectors)
808                                         sectors = bad_sectors;
809                                 if (best_good_sectors > sectors)
810                                         best_good_sectors = sectors;
811                         } else {
812                                 sector_t good_sectors =
813                                         first_bad - dev_sector;
814                                 if (good_sectors > best_good_sectors) {
815                                         best_good_sectors = good_sectors;
816                                         best_slot = slot;
817                                         best_rdev = rdev;
818                                 }
819                                 if (!do_balance)
820                                         /* Must read from here */
821                                         break;
822                         }
823                         continue;
824                 } else
825                         best_good_sectors = sectors;
826
827                 if (!do_balance)
828                         break;
829
830                 if (best_slot >= 0)
831                         /* At least 2 disks to choose from so failfast is OK */
832                         set_bit(R10BIO_FailFast, &r10_bio->state);
833                 /* This optimisation is debatable, and completely destroys
834                  * sequential read speed for 'far copies' arrays.  So only
835                  * keep it for 'near' arrays, and review those later.
836                  */
837                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838                         new_distance = 0;
839
840                 /* for far > 1 always use the lowest address */
841                 else if (geo->far_copies > 1)
842                         new_distance = r10_bio->devs[slot].addr;
843                 else
844                         new_distance = abs(r10_bio->devs[slot].addr -
845                                            conf->mirrors[disk].head_position);
846                 if (new_distance < best_dist) {
847                         best_dist = new_distance;
848                         best_slot = slot;
849                         best_rdev = rdev;
850                 }
851         }
852         if (slot >= conf->copies) {
853                 slot = best_slot;
854                 rdev = best_rdev;
855         }
856
857         if (slot >= 0) {
858                 atomic_inc(&rdev->nr_pending);
859                 r10_bio->read_slot = slot;
860         } else
861                 rdev = NULL;
862         rcu_read_unlock();
863         *max_sectors = best_good_sectors;
864
865         return rdev;
866 }
867
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870         struct r10conf *conf = mddev->private;
871         int i, ret = 0;
872
873         if ((bits & (1 << WB_async_congested)) &&
874             conf->pending_count >= max_queued_requests)
875                 return 1;
876
877         rcu_read_lock();
878         for (i = 0;
879              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880                      && ret == 0;
881              i++) {
882                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
884                         struct request_queue *q = bdev_get_queue(rdev->bdev);
885
886                         ret |= bdi_congested(q->backing_dev_info, bits);
887                 }
888         }
889         rcu_read_unlock();
890         return ret;
891 }
892
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895         /* Any writes that have been queued but are awaiting
896          * bitmap updates get flushed here.
897          */
898         spin_lock_irq(&conf->device_lock);
899
900         if (conf->pending_bio_list.head) {
901                 struct bio *bio;
902                 bio = bio_list_get(&conf->pending_bio_list);
903                 conf->pending_count = 0;
904                 spin_unlock_irq(&conf->device_lock);
905                 /* flush any pending bitmap writes to disk
906                  * before proceeding w/ I/O */
907                 bitmap_unplug(conf->mddev->bitmap);
908                 wake_up(&conf->wait_barrier);
909
910                 while (bio) { /* submit pending writes */
911                         struct bio *next = bio->bi_next;
912                         struct md_rdev *rdev = (void*)bio->bi_bdev;
913                         bio->bi_next = NULL;
914                         bio->bi_bdev = rdev->bdev;
915                         if (test_bit(Faulty, &rdev->flags)) {
916                                 bio->bi_error = -EIO;
917                                 bio_endio(bio);
918                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
919                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920                                 /* Just ignore it */
921                                 bio_endio(bio);
922                         else
923                                 generic_make_request(bio);
924                         bio = next;
925                 }
926         } else
927                 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931  * Sometimes we need to suspend IO while we do something else,
932  * either some resync/recovery, or reconfigure the array.
933  * To do this we raise a 'barrier'.
934  * The 'barrier' is a counter that can be raised multiple times
935  * to count how many activities are happening which preclude
936  * normal IO.
937  * We can only raise the barrier if there is no pending IO.
938  * i.e. if nr_pending == 0.
939  * We choose only to raise the barrier if no-one is waiting for the
940  * barrier to go down.  This means that as soon as an IO request
941  * is ready, no other operations which require a barrier will start
942  * until the IO request has had a chance.
943  *
944  * So: regular IO calls 'wait_barrier'.  When that returns there
945  *    is no backgroup IO happening,  It must arrange to call
946  *    allow_barrier when it has finished its IO.
947  * backgroup IO calls must call raise_barrier.  Once that returns
948  *    there is no normal IO happeing.  It must arrange to call
949  *    lower_barrier when the particular background IO completes.
950  */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954         BUG_ON(force && !conf->barrier);
955         spin_lock_irq(&conf->resync_lock);
956
957         /* Wait until no block IO is waiting (unless 'force') */
958         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959                             conf->resync_lock);
960
961         /* block any new IO from starting */
962         conf->barrier++;
963
964         /* Now wait for all pending IO to complete */
965         wait_event_lock_irq(conf->wait_barrier,
966                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967                             conf->resync_lock);
968
969         spin_unlock_irq(&conf->resync_lock);
970 }
971
972 static void lower_barrier(struct r10conf *conf)
973 {
974         unsigned long flags;
975         spin_lock_irqsave(&conf->resync_lock, flags);
976         conf->barrier--;
977         spin_unlock_irqrestore(&conf->resync_lock, flags);
978         wake_up(&conf->wait_barrier);
979 }
980
981 static void wait_barrier(struct r10conf *conf)
982 {
983         spin_lock_irq(&conf->resync_lock);
984         if (conf->barrier) {
985                 conf->nr_waiting++;
986                 /* Wait for the barrier to drop.
987                  * However if there are already pending
988                  * requests (preventing the barrier from
989                  * rising completely), and the
990                  * pre-process bio queue isn't empty,
991                  * then don't wait, as we need to empty
992                  * that queue to get the nr_pending
993                  * count down.
994                  */
995                 raid10_log(conf->mddev, "wait barrier");
996                 wait_event_lock_irq(conf->wait_barrier,
997                                     !conf->barrier ||
998                                     (atomic_read(&conf->nr_pending) &&
999                                      current->bio_list &&
1000                                      (!bio_list_empty(&current->bio_list[0]) ||
1001                                       !bio_list_empty(&current->bio_list[1]))),
1002                                     conf->resync_lock);
1003                 conf->nr_waiting--;
1004                 if (!conf->nr_waiting)
1005                         wake_up(&conf->wait_barrier);
1006         }
1007         atomic_inc(&conf->nr_pending);
1008         spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014                         (conf->array_freeze_pending))
1015                 wake_up(&conf->wait_barrier);
1016 }
1017
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020         /* stop syncio and normal IO and wait for everything to
1021          * go quiet.
1022          * We increment barrier and nr_waiting, and then
1023          * wait until nr_pending match nr_queued+extra
1024          * This is called in the context of one normal IO request
1025          * that has failed. Thus any sync request that might be pending
1026          * will be blocked by nr_pending, and we need to wait for
1027          * pending IO requests to complete or be queued for re-try.
1028          * Thus the number queued (nr_queued) plus this request (extra)
1029          * must match the number of pending IOs (nr_pending) before
1030          * we continue.
1031          */
1032         spin_lock_irq(&conf->resync_lock);
1033         conf->array_freeze_pending++;
1034         conf->barrier++;
1035         conf->nr_waiting++;
1036         wait_event_lock_irq_cmd(conf->wait_barrier,
1037                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038                                 conf->resync_lock,
1039                                 flush_pending_writes(conf));
1040
1041         conf->array_freeze_pending--;
1042         spin_unlock_irq(&conf->resync_lock);
1043 }
1044
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047         /* reverse the effect of the freeze */
1048         spin_lock_irq(&conf->resync_lock);
1049         conf->barrier--;
1050         conf->nr_waiting--;
1051         wake_up(&conf->wait_barrier);
1052         spin_unlock_irq(&conf->resync_lock);
1053 }
1054
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056                                    struct md_rdev *rdev)
1057 {
1058         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059             test_bit(R10BIO_Previous, &r10_bio->state))
1060                 return rdev->data_offset;
1061         else
1062                 return rdev->new_data_offset;
1063 }
1064
1065 struct raid10_plug_cb {
1066         struct blk_plug_cb      cb;
1067         struct bio_list         pending;
1068         int                     pending_cnt;
1069 };
1070
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074                                                    cb);
1075         struct mddev *mddev = plug->cb.data;
1076         struct r10conf *conf = mddev->private;
1077         struct bio *bio;
1078
1079         if (from_schedule || current->bio_list) {
1080                 spin_lock_irq(&conf->device_lock);
1081                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082                 conf->pending_count += plug->pending_cnt;
1083                 spin_unlock_irq(&conf->device_lock);
1084                 wake_up(&conf->wait_barrier);
1085                 md_wakeup_thread(mddev->thread);
1086                 kfree(plug);
1087                 return;
1088         }
1089
1090         /* we aren't scheduling, so we can do the write-out directly. */
1091         bio = bio_list_get(&plug->pending);
1092         bitmap_unplug(mddev->bitmap);
1093         wake_up(&conf->wait_barrier);
1094
1095         while (bio) { /* submit pending writes */
1096                 struct bio *next = bio->bi_next;
1097                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1098                 bio->bi_next = NULL;
1099                 bio->bi_bdev = rdev->bdev;
1100                 if (test_bit(Faulty, &rdev->flags)) {
1101                         bio->bi_error = -EIO;
1102                         bio_endio(bio);
1103                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1104                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105                         /* Just ignore it */
1106                         bio_endio(bio);
1107                 else
1108                         generic_make_request(bio);
1109                 bio = next;
1110         }
1111         kfree(plug);
1112 }
1113
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115                                 struct r10bio *r10_bio)
1116 {
1117         struct r10conf *conf = mddev->private;
1118         struct bio *read_bio;
1119         const int op = bio_op(bio);
1120         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121         int max_sectors;
1122         sector_t sectors;
1123         struct md_rdev *rdev;
1124         char b[BDEVNAME_SIZE];
1125         int slot = r10_bio->read_slot;
1126         struct md_rdev *err_rdev = NULL;
1127         gfp_t gfp = GFP_NOIO;
1128
1129         if (r10_bio->devs[slot].rdev) {
1130                 /*
1131                  * This is an error retry, but we cannot
1132                  * safely dereference the rdev in the r10_bio,
1133                  * we must use the one in conf.
1134                  * If it has already been disconnected (unlikely)
1135                  * we lose the device name in error messages.
1136                  */
1137                 int disk;
1138                 /*
1139                  * As we are blocking raid10, it is a little safer to
1140                  * use __GFP_HIGH.
1141                  */
1142                 gfp = GFP_NOIO | __GFP_HIGH;
1143
1144                 rcu_read_lock();
1145                 disk = r10_bio->devs[slot].devnum;
1146                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147                 if (err_rdev)
1148                         bdevname(err_rdev->bdev, b);
1149                 else {
1150                         strcpy(b, "???");
1151                         /* This never gets dereferenced */
1152                         err_rdev = r10_bio->devs[slot].rdev;
1153                 }
1154                 rcu_read_unlock();
1155         }
1156         /*
1157          * Register the new request and wait if the reconstruction
1158          * thread has put up a bar for new requests.
1159          * Continue immediately if no resync is active currently.
1160          */
1161         wait_barrier(conf);
1162
1163         sectors = r10_bio->sectors;
1164         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165             bio->bi_iter.bi_sector < conf->reshape_progress &&
1166             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167                 /*
1168                  * IO spans the reshape position.  Need to wait for reshape to
1169                  * pass
1170                  */
1171                 raid10_log(conf->mddev, "wait reshape");
1172                 allow_barrier(conf);
1173                 wait_event(conf->wait_barrier,
1174                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1176                            sectors);
1177                 wait_barrier(conf);
1178         }
1179
1180         rdev = read_balance(conf, r10_bio, &max_sectors);
1181         if (!rdev) {
1182                 if (err_rdev) {
1183                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184                                             mdname(mddev), b,
1185                                             (unsigned long long)r10_bio->sector);
1186                 }
1187                 raid_end_bio_io(r10_bio);
1188                 return;
1189         }
1190         if (err_rdev)
1191                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192                                    mdname(mddev),
1193                                    bdevname(rdev->bdev, b),
1194                                    (unsigned long long)r10_bio->sector);
1195         if (max_sectors < bio_sectors(bio)) {
1196                 struct bio *split = bio_split(bio, max_sectors,
1197                                               gfp, conf->bio_split);
1198                 bio_chain(split, bio);
1199                 generic_make_request(bio);
1200                 bio = split;
1201                 r10_bio->master_bio = bio;
1202                 r10_bio->sectors = max_sectors;
1203         }
1204         slot = r10_bio->read_slot;
1205
1206         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207
1208         r10_bio->devs[slot].bio = read_bio;
1209         r10_bio->devs[slot].rdev = rdev;
1210
1211         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212                 choose_data_offset(r10_bio, rdev);
1213         read_bio->bi_bdev = rdev->bdev;
1214         read_bio->bi_end_io = raid10_end_read_request;
1215         bio_set_op_attrs(read_bio, op, do_sync);
1216         if (test_bit(FailFast, &rdev->flags) &&
1217             test_bit(R10BIO_FailFast, &r10_bio->state))
1218                 read_bio->bi_opf |= MD_FAILFAST;
1219         read_bio->bi_private = r10_bio;
1220
1221         if (mddev->gendisk)
1222                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223                                       read_bio, disk_devt(mddev->gendisk),
1224                                       r10_bio->sector);
1225         generic_make_request(read_bio);
1226         return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230                                   struct bio *bio, bool replacement,
1231                                   int n_copy)
1232 {
1233         const int op = bio_op(bio);
1234         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236         unsigned long flags;
1237         struct blk_plug_cb *cb;
1238         struct raid10_plug_cb *plug = NULL;
1239         struct r10conf *conf = mddev->private;
1240         struct md_rdev *rdev;
1241         int devnum = r10_bio->devs[n_copy].devnum;
1242         struct bio *mbio;
1243
1244         if (replacement) {
1245                 rdev = conf->mirrors[devnum].replacement;
1246                 if (rdev == NULL) {
1247                         /* Replacement just got moved to main 'rdev' */
1248                         smp_mb();
1249                         rdev = conf->mirrors[devnum].rdev;
1250                 }
1251         } else
1252                 rdev = conf->mirrors[devnum].rdev;
1253
1254         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255         if (replacement)
1256                 r10_bio->devs[n_copy].repl_bio = mbio;
1257         else
1258                 r10_bio->devs[n_copy].bio = mbio;
1259
1260         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261                                    choose_data_offset(r10_bio, rdev));
1262         mbio->bi_bdev = rdev->bdev;
1263         mbio->bi_end_io = raid10_end_write_request;
1264         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265         if (!replacement && test_bit(FailFast,
1266                                      &conf->mirrors[devnum].rdev->flags)
1267                          && enough(conf, devnum))
1268                 mbio->bi_opf |= MD_FAILFAST;
1269         mbio->bi_private = r10_bio;
1270
1271         if (conf->mddev->gendisk)
1272                 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273                                       mbio, disk_devt(conf->mddev->gendisk),
1274                                       r10_bio->sector);
1275         /* flush_pending_writes() needs access to the rdev so...*/
1276         mbio->bi_bdev = (void *)rdev;
1277
1278         atomic_inc(&r10_bio->remaining);
1279
1280         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281         if (cb)
1282                 plug = container_of(cb, struct raid10_plug_cb, cb);
1283         else
1284                 plug = NULL;
1285         spin_lock_irqsave(&conf->device_lock, flags);
1286         if (plug) {
1287                 bio_list_add(&plug->pending, mbio);
1288                 plug->pending_cnt++;
1289         } else {
1290                 bio_list_add(&conf->pending_bio_list, mbio);
1291                 conf->pending_count++;
1292         }
1293         spin_unlock_irqrestore(&conf->device_lock, flags);
1294         if (!plug)
1295                 md_wakeup_thread(mddev->thread);
1296 }
1297
1298 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1299                                  struct r10bio *r10_bio)
1300 {
1301         struct r10conf *conf = mddev->private;
1302         int i;
1303         struct md_rdev *blocked_rdev;
1304         sector_t sectors;
1305         int max_sectors;
1306
1307         md_write_start(mddev, bio);
1308
1309         /*
1310          * Register the new request and wait if the reconstruction
1311          * thread has put up a bar for new requests.
1312          * Continue immediately if no resync is active currently.
1313          */
1314         wait_barrier(conf);
1315
1316         sectors = r10_bio->sectors;
1317         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1318             bio->bi_iter.bi_sector < conf->reshape_progress &&
1319             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1320                 /*
1321                  * IO spans the reshape position.  Need to wait for reshape to
1322                  * pass
1323                  */
1324                 raid10_log(conf->mddev, "wait reshape");
1325                 allow_barrier(conf);
1326                 wait_event(conf->wait_barrier,
1327                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1328                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1329                            sectors);
1330                 wait_barrier(conf);
1331         }
1332
1333         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1334             (mddev->reshape_backwards
1335              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1336                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1337              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1338                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1339                 /* Need to update reshape_position in metadata */
1340                 mddev->reshape_position = conf->reshape_progress;
1341                 set_mask_bits(&mddev->sb_flags, 0,
1342                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1343                 md_wakeup_thread(mddev->thread);
1344                 raid10_log(conf->mddev, "wait reshape metadata");
1345                 wait_event(mddev->sb_wait,
1346                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1347
1348                 conf->reshape_safe = mddev->reshape_position;
1349         }
1350
1351         if (conf->pending_count >= max_queued_requests) {
1352                 md_wakeup_thread(mddev->thread);
1353                 raid10_log(mddev, "wait queued");
1354                 wait_event(conf->wait_barrier,
1355                            conf->pending_count < max_queued_requests);
1356         }
1357         /* first select target devices under rcu_lock and
1358          * inc refcount on their rdev.  Record them by setting
1359          * bios[x] to bio
1360          * If there are known/acknowledged bad blocks on any device
1361          * on which we have seen a write error, we want to avoid
1362          * writing to those blocks.  This potentially requires several
1363          * writes to write around the bad blocks.  Each set of writes
1364          * gets its own r10_bio with a set of bios attached.
1365          */
1366
1367         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1368         raid10_find_phys(conf, r10_bio);
1369 retry_write:
1370         blocked_rdev = NULL;
1371         rcu_read_lock();
1372         max_sectors = r10_bio->sectors;
1373
1374         for (i = 0;  i < conf->copies; i++) {
1375                 int d = r10_bio->devs[i].devnum;
1376                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1377                 struct md_rdev *rrdev = rcu_dereference(
1378                         conf->mirrors[d].replacement);
1379                 if (rdev == rrdev)
1380                         rrdev = NULL;
1381                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1382                         atomic_inc(&rdev->nr_pending);
1383                         blocked_rdev = rdev;
1384                         break;
1385                 }
1386                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1387                         atomic_inc(&rrdev->nr_pending);
1388                         blocked_rdev = rrdev;
1389                         break;
1390                 }
1391                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1392                         rdev = NULL;
1393                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1394                         rrdev = NULL;
1395
1396                 r10_bio->devs[i].bio = NULL;
1397                 r10_bio->devs[i].repl_bio = NULL;
1398
1399                 if (!rdev && !rrdev) {
1400                         set_bit(R10BIO_Degraded, &r10_bio->state);
1401                         continue;
1402                 }
1403                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1404                         sector_t first_bad;
1405                         sector_t dev_sector = r10_bio->devs[i].addr;
1406                         int bad_sectors;
1407                         int is_bad;
1408
1409                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1410                                              &first_bad, &bad_sectors);
1411                         if (is_bad < 0) {
1412                                 /* Mustn't write here until the bad block
1413                                  * is acknowledged
1414                                  */
1415                                 atomic_inc(&rdev->nr_pending);
1416                                 set_bit(BlockedBadBlocks, &rdev->flags);
1417                                 blocked_rdev = rdev;
1418                                 break;
1419                         }
1420                         if (is_bad && first_bad <= dev_sector) {
1421                                 /* Cannot write here at all */
1422                                 bad_sectors -= (dev_sector - first_bad);
1423                                 if (bad_sectors < max_sectors)
1424                                         /* Mustn't write more than bad_sectors
1425                                          * to other devices yet
1426                                          */
1427                                         max_sectors = bad_sectors;
1428                                 /* We don't set R10BIO_Degraded as that
1429                                  * only applies if the disk is missing,
1430                                  * so it might be re-added, and we want to
1431                                  * know to recover this chunk.
1432                                  * In this case the device is here, and the
1433                                  * fact that this chunk is not in-sync is
1434                                  * recorded in the bad block log.
1435                                  */
1436                                 continue;
1437                         }
1438                         if (is_bad) {
1439                                 int good_sectors = first_bad - dev_sector;
1440                                 if (good_sectors < max_sectors)
1441                                         max_sectors = good_sectors;
1442                         }
1443                 }
1444                 if (rdev) {
1445                         r10_bio->devs[i].bio = bio;
1446                         atomic_inc(&rdev->nr_pending);
1447                 }
1448                 if (rrdev) {
1449                         r10_bio->devs[i].repl_bio = bio;
1450                         atomic_inc(&rrdev->nr_pending);
1451                 }
1452         }
1453         rcu_read_unlock();
1454
1455         if (unlikely(blocked_rdev)) {
1456                 /* Have to wait for this device to get unblocked, then retry */
1457                 int j;
1458                 int d;
1459
1460                 for (j = 0; j < i; j++) {
1461                         if (r10_bio->devs[j].bio) {
1462                                 d = r10_bio->devs[j].devnum;
1463                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1464                         }
1465                         if (r10_bio->devs[j].repl_bio) {
1466                                 struct md_rdev *rdev;
1467                                 d = r10_bio->devs[j].devnum;
1468                                 rdev = conf->mirrors[d].replacement;
1469                                 if (!rdev) {
1470                                         /* Race with remove_disk */
1471                                         smp_mb();
1472                                         rdev = conf->mirrors[d].rdev;
1473                                 }
1474                                 rdev_dec_pending(rdev, mddev);
1475                         }
1476                 }
1477                 allow_barrier(conf);
1478                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1479                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1480                 wait_barrier(conf);
1481                 goto retry_write;
1482         }
1483
1484         if (max_sectors < r10_bio->sectors)
1485                 r10_bio->sectors = max_sectors;
1486
1487         if (r10_bio->sectors < bio_sectors(bio)) {
1488                 struct bio *split = bio_split(bio, r10_bio->sectors,
1489                                               GFP_NOIO, conf->bio_split);
1490                 bio_chain(split, bio);
1491                 generic_make_request(bio);
1492                 bio = split;
1493                 r10_bio->master_bio = bio;
1494         }
1495
1496         atomic_set(&r10_bio->remaining, 1);
1497         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1498
1499         for (i = 0; i < conf->copies; i++) {
1500                 if (r10_bio->devs[i].bio)
1501                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1502                 if (r10_bio->devs[i].repl_bio)
1503                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1504         }
1505         one_write_done(r10_bio);
1506 }
1507
1508 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1509 {
1510         struct r10conf *conf = mddev->private;
1511         struct r10bio *r10_bio;
1512
1513         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1514
1515         r10_bio->master_bio = bio;
1516         r10_bio->sectors = sectors;
1517
1518         r10_bio->mddev = mddev;
1519         r10_bio->sector = bio->bi_iter.bi_sector;
1520         r10_bio->state = 0;
1521         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1522
1523         if (bio_data_dir(bio) == READ)
1524                 raid10_read_request(mddev, bio, r10_bio);
1525         else
1526                 raid10_write_request(mddev, bio, r10_bio);
1527 }
1528
1529 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1530 {
1531         struct r10conf *conf = mddev->private;
1532         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1533         int chunk_sects = chunk_mask + 1;
1534         int sectors = bio_sectors(bio);
1535
1536         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537                 md_flush_request(mddev, bio);
1538                 return;
1539         }
1540
1541         /*
1542          * If this request crosses a chunk boundary, we need to split
1543          * it.
1544          */
1545         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1546                      sectors > chunk_sects
1547                      && (conf->geo.near_copies < conf->geo.raid_disks
1548                          || conf->prev.near_copies <
1549                          conf->prev.raid_disks)))
1550                 sectors = chunk_sects -
1551                         (bio->bi_iter.bi_sector &
1552                          (chunk_sects - 1));
1553         __make_request(mddev, bio, sectors);
1554
1555         /* In case raid10d snuck in to freeze_array */
1556         wake_up(&conf->wait_barrier);
1557 }
1558
1559 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1560 {
1561         struct r10conf *conf = mddev->private;
1562         int i;
1563
1564         if (conf->geo.near_copies < conf->geo.raid_disks)
1565                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1566         if (conf->geo.near_copies > 1)
1567                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1568         if (conf->geo.far_copies > 1) {
1569                 if (conf->geo.far_offset)
1570                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1571                 else
1572                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1573                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1574                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1575         }
1576         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1577                                         conf->geo.raid_disks - mddev->degraded);
1578         rcu_read_lock();
1579         for (i = 0; i < conf->geo.raid_disks; i++) {
1580                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1581                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1582         }
1583         rcu_read_unlock();
1584         seq_printf(seq, "]");
1585 }
1586
1587 /* check if there are enough drives for
1588  * every block to appear on atleast one.
1589  * Don't consider the device numbered 'ignore'
1590  * as we might be about to remove it.
1591  */
1592 static int _enough(struct r10conf *conf, int previous, int ignore)
1593 {
1594         int first = 0;
1595         int has_enough = 0;
1596         int disks, ncopies;
1597         if (previous) {
1598                 disks = conf->prev.raid_disks;
1599                 ncopies = conf->prev.near_copies;
1600         } else {
1601                 disks = conf->geo.raid_disks;
1602                 ncopies = conf->geo.near_copies;
1603         }
1604
1605         rcu_read_lock();
1606         do {
1607                 int n = conf->copies;
1608                 int cnt = 0;
1609                 int this = first;
1610                 while (n--) {
1611                         struct md_rdev *rdev;
1612                         if (this != ignore &&
1613                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1614                             test_bit(In_sync, &rdev->flags))
1615                                 cnt++;
1616                         this = (this+1) % disks;
1617                 }
1618                 if (cnt == 0)
1619                         goto out;
1620                 first = (first + ncopies) % disks;
1621         } while (first != 0);
1622         has_enough = 1;
1623 out:
1624         rcu_read_unlock();
1625         return has_enough;
1626 }
1627
1628 static int enough(struct r10conf *conf, int ignore)
1629 {
1630         /* when calling 'enough', both 'prev' and 'geo' must
1631          * be stable.
1632          * This is ensured if ->reconfig_mutex or ->device_lock
1633          * is held.
1634          */
1635         return _enough(conf, 0, ignore) &&
1636                 _enough(conf, 1, ignore);
1637 }
1638
1639 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1640 {
1641         char b[BDEVNAME_SIZE];
1642         struct r10conf *conf = mddev->private;
1643         unsigned long flags;
1644
1645         /*
1646          * If it is not operational, then we have already marked it as dead
1647          * else if it is the last working disks, ignore the error, let the
1648          * next level up know.
1649          * else mark the drive as failed
1650          */
1651         spin_lock_irqsave(&conf->device_lock, flags);
1652         if (test_bit(In_sync, &rdev->flags)
1653             && !enough(conf, rdev->raid_disk)) {
1654                 /*
1655                  * Don't fail the drive, just return an IO error.
1656                  */
1657                 spin_unlock_irqrestore(&conf->device_lock, flags);
1658                 return;
1659         }
1660         if (test_and_clear_bit(In_sync, &rdev->flags))
1661                 mddev->degraded++;
1662         /*
1663          * If recovery is running, make sure it aborts.
1664          */
1665         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1666         set_bit(Blocked, &rdev->flags);
1667         set_bit(Faulty, &rdev->flags);
1668         set_mask_bits(&mddev->sb_flags, 0,
1669                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1670         spin_unlock_irqrestore(&conf->device_lock, flags);
1671         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1672                 "md/raid10:%s: Operation continuing on %d devices.\n",
1673                 mdname(mddev), bdevname(rdev->bdev, b),
1674                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1675 }
1676
1677 static void print_conf(struct r10conf *conf)
1678 {
1679         int i;
1680         struct md_rdev *rdev;
1681
1682         pr_debug("RAID10 conf printout:\n");
1683         if (!conf) {
1684                 pr_debug("(!conf)\n");
1685                 return;
1686         }
1687         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1688                  conf->geo.raid_disks);
1689
1690         /* This is only called with ->reconfix_mutex held, so
1691          * rcu protection of rdev is not needed */
1692         for (i = 0; i < conf->geo.raid_disks; i++) {
1693                 char b[BDEVNAME_SIZE];
1694                 rdev = conf->mirrors[i].rdev;
1695                 if (rdev)
1696                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1697                                  i, !test_bit(In_sync, &rdev->flags),
1698                                  !test_bit(Faulty, &rdev->flags),
1699                                  bdevname(rdev->bdev,b));
1700         }
1701 }
1702
1703 static void close_sync(struct r10conf *conf)
1704 {
1705         wait_barrier(conf);
1706         allow_barrier(conf);
1707
1708         mempool_destroy(conf->r10buf_pool);
1709         conf->r10buf_pool = NULL;
1710 }
1711
1712 static int raid10_spare_active(struct mddev *mddev)
1713 {
1714         int i;
1715         struct r10conf *conf = mddev->private;
1716         struct raid10_info *tmp;
1717         int count = 0;
1718         unsigned long flags;
1719
1720         /*
1721          * Find all non-in_sync disks within the RAID10 configuration
1722          * and mark them in_sync
1723          */
1724         for (i = 0; i < conf->geo.raid_disks; i++) {
1725                 tmp = conf->mirrors + i;
1726                 if (tmp->replacement
1727                     && tmp->replacement->recovery_offset == MaxSector
1728                     && !test_bit(Faulty, &tmp->replacement->flags)
1729                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1730                         /* Replacement has just become active */
1731                         if (!tmp->rdev
1732                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1733                                 count++;
1734                         if (tmp->rdev) {
1735                                 /* Replaced device not technically faulty,
1736                                  * but we need to be sure it gets removed
1737                                  * and never re-added.
1738                                  */
1739                                 set_bit(Faulty, &tmp->rdev->flags);
1740                                 sysfs_notify_dirent_safe(
1741                                         tmp->rdev->sysfs_state);
1742                         }
1743                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1744                 } else if (tmp->rdev
1745                            && tmp->rdev->recovery_offset == MaxSector
1746                            && !test_bit(Faulty, &tmp->rdev->flags)
1747                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1748                         count++;
1749                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1750                 }
1751         }
1752         spin_lock_irqsave(&conf->device_lock, flags);
1753         mddev->degraded -= count;
1754         spin_unlock_irqrestore(&conf->device_lock, flags);
1755
1756         print_conf(conf);
1757         return count;
1758 }
1759
1760 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1761 {
1762         struct r10conf *conf = mddev->private;
1763         int err = -EEXIST;
1764         int mirror;
1765         int first = 0;
1766         int last = conf->geo.raid_disks - 1;
1767
1768         if (mddev->recovery_cp < MaxSector)
1769                 /* only hot-add to in-sync arrays, as recovery is
1770                  * very different from resync
1771                  */
1772                 return -EBUSY;
1773         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1774                 return -EINVAL;
1775
1776         if (md_integrity_add_rdev(rdev, mddev))
1777                 return -ENXIO;
1778
1779         if (rdev->raid_disk >= 0)
1780                 first = last = rdev->raid_disk;
1781
1782         if (rdev->saved_raid_disk >= first &&
1783             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1784                 mirror = rdev->saved_raid_disk;
1785         else
1786                 mirror = first;
1787         for ( ; mirror <= last ; mirror++) {
1788                 struct raid10_info *p = &conf->mirrors[mirror];
1789                 if (p->recovery_disabled == mddev->recovery_disabled)
1790                         continue;
1791                 if (p->rdev) {
1792                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1793                             p->replacement != NULL)
1794                                 continue;
1795                         clear_bit(In_sync, &rdev->flags);
1796                         set_bit(Replacement, &rdev->flags);
1797                         rdev->raid_disk = mirror;
1798                         err = 0;
1799                         if (mddev->gendisk)
1800                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1801                                                   rdev->data_offset << 9);
1802                         conf->fullsync = 1;
1803                         rcu_assign_pointer(p->replacement, rdev);
1804                         break;
1805                 }
1806
1807                 if (mddev->gendisk)
1808                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1809                                           rdev->data_offset << 9);
1810
1811                 p->head_position = 0;
1812                 p->recovery_disabled = mddev->recovery_disabled - 1;
1813                 rdev->raid_disk = mirror;
1814                 err = 0;
1815                 if (rdev->saved_raid_disk != mirror)
1816                         conf->fullsync = 1;
1817                 rcu_assign_pointer(p->rdev, rdev);
1818                 break;
1819         }
1820         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1821                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1822
1823         print_conf(conf);
1824         return err;
1825 }
1826
1827 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1828 {
1829         struct r10conf *conf = mddev->private;
1830         int err = 0;
1831         int number = rdev->raid_disk;
1832         struct md_rdev **rdevp;
1833         struct raid10_info *p = conf->mirrors + number;
1834
1835         print_conf(conf);
1836         if (rdev == p->rdev)
1837                 rdevp = &p->rdev;
1838         else if (rdev == p->replacement)
1839                 rdevp = &p->replacement;
1840         else
1841                 return 0;
1842
1843         if (test_bit(In_sync, &rdev->flags) ||
1844             atomic_read(&rdev->nr_pending)) {
1845                 err = -EBUSY;
1846                 goto abort;
1847         }
1848         /* Only remove non-faulty devices if recovery
1849          * is not possible.
1850          */
1851         if (!test_bit(Faulty, &rdev->flags) &&
1852             mddev->recovery_disabled != p->recovery_disabled &&
1853             (!p->replacement || p->replacement == rdev) &&
1854             number < conf->geo.raid_disks &&
1855             enough(conf, -1)) {
1856                 err = -EBUSY;
1857                 goto abort;
1858         }
1859         *rdevp = NULL;
1860         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1861                 synchronize_rcu();
1862                 if (atomic_read(&rdev->nr_pending)) {
1863                         /* lost the race, try later */
1864                         err = -EBUSY;
1865                         *rdevp = rdev;
1866                         goto abort;
1867                 }
1868         }
1869         if (p->replacement) {
1870                 /* We must have just cleared 'rdev' */
1871                 p->rdev = p->replacement;
1872                 clear_bit(Replacement, &p->replacement->flags);
1873                 smp_mb(); /* Make sure other CPUs may see both as identical
1874                            * but will never see neither -- if they are careful.
1875                            */
1876                 p->replacement = NULL;
1877         }
1878
1879         clear_bit(WantReplacement, &rdev->flags);
1880         err = md_integrity_register(mddev);
1881
1882 abort:
1883
1884         print_conf(conf);
1885         return err;
1886 }
1887
1888 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1889 {
1890         struct r10conf *conf = r10_bio->mddev->private;
1891
1892         if (!bio->bi_error)
1893                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1894         else
1895                 /* The write handler will notice the lack of
1896                  * R10BIO_Uptodate and record any errors etc
1897                  */
1898                 atomic_add(r10_bio->sectors,
1899                            &conf->mirrors[d].rdev->corrected_errors);
1900
1901         /* for reconstruct, we always reschedule after a read.
1902          * for resync, only after all reads
1903          */
1904         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1905         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1906             atomic_dec_and_test(&r10_bio->remaining)) {
1907                 /* we have read all the blocks,
1908                  * do the comparison in process context in raid10d
1909                  */
1910                 reschedule_retry(r10_bio);
1911         }
1912 }
1913
1914 static void end_sync_read(struct bio *bio)
1915 {
1916         struct r10bio *r10_bio = get_resync_r10bio(bio);
1917         struct r10conf *conf = r10_bio->mddev->private;
1918         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1919
1920         __end_sync_read(r10_bio, bio, d);
1921 }
1922
1923 static void end_reshape_read(struct bio *bio)
1924 {
1925         /* reshape read bio isn't allocated from r10buf_pool */
1926         struct r10bio *r10_bio = bio->bi_private;
1927
1928         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1929 }
1930
1931 static void end_sync_request(struct r10bio *r10_bio)
1932 {
1933         struct mddev *mddev = r10_bio->mddev;
1934
1935         while (atomic_dec_and_test(&r10_bio->remaining)) {
1936                 if (r10_bio->master_bio == NULL) {
1937                         /* the primary of several recovery bios */
1938                         sector_t s = r10_bio->sectors;
1939                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940                             test_bit(R10BIO_WriteError, &r10_bio->state))
1941                                 reschedule_retry(r10_bio);
1942                         else
1943                                 put_buf(r10_bio);
1944                         md_done_sync(mddev, s, 1);
1945                         break;
1946                 } else {
1947                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1948                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1949                             test_bit(R10BIO_WriteError, &r10_bio->state))
1950                                 reschedule_retry(r10_bio);
1951                         else
1952                                 put_buf(r10_bio);
1953                         r10_bio = r10_bio2;
1954                 }
1955         }
1956 }
1957
1958 static void end_sync_write(struct bio *bio)
1959 {
1960         struct r10bio *r10_bio = get_resync_r10bio(bio);
1961         struct mddev *mddev = r10_bio->mddev;
1962         struct r10conf *conf = mddev->private;
1963         int d;
1964         sector_t first_bad;
1965         int bad_sectors;
1966         int slot;
1967         int repl;
1968         struct md_rdev *rdev = NULL;
1969
1970         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1971         if (repl)
1972                 rdev = conf->mirrors[d].replacement;
1973         else
1974                 rdev = conf->mirrors[d].rdev;
1975
1976         if (bio->bi_error) {
1977                 if (repl)
1978                         md_error(mddev, rdev);
1979                 else {
1980                         set_bit(WriteErrorSeen, &rdev->flags);
1981                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1982                                 set_bit(MD_RECOVERY_NEEDED,
1983                                         &rdev->mddev->recovery);
1984                         set_bit(R10BIO_WriteError, &r10_bio->state);
1985                 }
1986         } else if (is_badblock(rdev,
1987                              r10_bio->devs[slot].addr,
1988                              r10_bio->sectors,
1989                              &first_bad, &bad_sectors))
1990                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1991
1992         rdev_dec_pending(rdev, mddev);
1993
1994         end_sync_request(r10_bio);
1995 }
1996
1997 /*
1998  * Note: sync and recover and handled very differently for raid10
1999  * This code is for resync.
2000  * For resync, we read through virtual addresses and read all blocks.
2001  * If there is any error, we schedule a write.  The lowest numbered
2002  * drive is authoritative.
2003  * However requests come for physical address, so we need to map.
2004  * For every physical address there are raid_disks/copies virtual addresses,
2005  * which is always are least one, but is not necessarly an integer.
2006  * This means that a physical address can span multiple chunks, so we may
2007  * have to submit multiple io requests for a single sync request.
2008  */
2009 /*
2010  * We check if all blocks are in-sync and only write to blocks that
2011  * aren't in sync
2012  */
2013 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2014 {
2015         struct r10conf *conf = mddev->private;
2016         int i, first;
2017         struct bio *tbio, *fbio;
2018         int vcnt;
2019         struct page **tpages, **fpages;
2020
2021         atomic_set(&r10_bio->remaining, 1);
2022
2023         /* find the first device with a block */
2024         for (i=0; i<conf->copies; i++)
2025                 if (!r10_bio->devs[i].bio->bi_error)
2026                         break;
2027
2028         if (i == conf->copies)
2029                 goto done;
2030
2031         first = i;
2032         fbio = r10_bio->devs[i].bio;
2033         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2034         fbio->bi_iter.bi_idx = 0;
2035         fpages = get_resync_pages(fbio)->pages;
2036
2037         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2038         /* now find blocks with errors */
2039         for (i=0 ; i < conf->copies ; i++) {
2040                 int  j, d;
2041                 struct md_rdev *rdev;
2042                 struct resync_pages *rp;
2043
2044                 tbio = r10_bio->devs[i].bio;
2045
2046                 if (tbio->bi_end_io != end_sync_read)
2047                         continue;
2048                 if (i == first)
2049                         continue;
2050
2051                 tpages = get_resync_pages(tbio)->pages;
2052                 d = r10_bio->devs[i].devnum;
2053                 rdev = conf->mirrors[d].rdev;
2054                 if (!r10_bio->devs[i].bio->bi_error) {
2055                         /* We know that the bi_io_vec layout is the same for
2056                          * both 'first' and 'i', so we just compare them.
2057                          * All vec entries are PAGE_SIZE;
2058                          */
2059                         int sectors = r10_bio->sectors;
2060                         for (j = 0; j < vcnt; j++) {
2061                                 int len = PAGE_SIZE;
2062                                 if (sectors < (len / 512))
2063                                         len = sectors * 512;
2064                                 if (memcmp(page_address(fpages[j]),
2065                                            page_address(tpages[j]),
2066                                            len))
2067                                         break;
2068                                 sectors -= len/512;
2069                         }
2070                         if (j == vcnt)
2071                                 continue;
2072                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2073                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2074                                 /* Don't fix anything. */
2075                                 continue;
2076                 } else if (test_bit(FailFast, &rdev->flags)) {
2077                         /* Just give up on this device */
2078                         md_error(rdev->mddev, rdev);
2079                         continue;
2080                 }
2081                 /* Ok, we need to write this bio, either to correct an
2082                  * inconsistency or to correct an unreadable block.
2083                  * First we need to fixup bv_offset, bv_len and
2084                  * bi_vecs, as the read request might have corrupted these
2085                  */
2086                 rp = get_resync_pages(tbio);
2087                 bio_reset(tbio);
2088
2089                 tbio->bi_vcnt = vcnt;
2090                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2091                 rp->raid_bio = r10_bio;
2092                 tbio->bi_private = rp;
2093                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2094                 tbio->bi_end_io = end_sync_write;
2095                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2096
2097                 bio_copy_data(tbio, fbio);
2098
2099                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2100                 atomic_inc(&r10_bio->remaining);
2101                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2102
2103                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2104                         tbio->bi_opf |= MD_FAILFAST;
2105                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2106                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2107                 generic_make_request(tbio);
2108         }
2109
2110         /* Now write out to any replacement devices
2111          * that are active
2112          */
2113         for (i = 0; i < conf->copies; i++) {
2114                 int d;
2115
2116                 tbio = r10_bio->devs[i].repl_bio;
2117                 if (!tbio || !tbio->bi_end_io)
2118                         continue;
2119                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2120                     && r10_bio->devs[i].bio != fbio)
2121                         bio_copy_data(tbio, fbio);
2122                 d = r10_bio->devs[i].devnum;
2123                 atomic_inc(&r10_bio->remaining);
2124                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2125                              bio_sectors(tbio));
2126                 generic_make_request(tbio);
2127         }
2128
2129 done:
2130         if (atomic_dec_and_test(&r10_bio->remaining)) {
2131                 md_done_sync(mddev, r10_bio->sectors, 1);
2132                 put_buf(r10_bio);
2133         }
2134 }
2135
2136 /*
2137  * Now for the recovery code.
2138  * Recovery happens across physical sectors.
2139  * We recover all non-is_sync drives by finding the virtual address of
2140  * each, and then choose a working drive that also has that virt address.
2141  * There is a separate r10_bio for each non-in_sync drive.
2142  * Only the first two slots are in use. The first for reading,
2143  * The second for writing.
2144  *
2145  */
2146 static void fix_recovery_read_error(struct r10bio *r10_bio)
2147 {
2148         /* We got a read error during recovery.
2149          * We repeat the read in smaller page-sized sections.
2150          * If a read succeeds, write it to the new device or record
2151          * a bad block if we cannot.
2152          * If a read fails, record a bad block on both old and
2153          * new devices.
2154          */
2155         struct mddev *mddev = r10_bio->mddev;
2156         struct r10conf *conf = mddev->private;
2157         struct bio *bio = r10_bio->devs[0].bio;
2158         sector_t sect = 0;
2159         int sectors = r10_bio->sectors;
2160         int idx = 0;
2161         int dr = r10_bio->devs[0].devnum;
2162         int dw = r10_bio->devs[1].devnum;
2163         struct page **pages = get_resync_pages(bio)->pages;
2164
2165         while (sectors) {
2166                 int s = sectors;
2167                 struct md_rdev *rdev;
2168                 sector_t addr;
2169                 int ok;
2170
2171                 if (s > (PAGE_SIZE>>9))
2172                         s = PAGE_SIZE >> 9;
2173
2174                 rdev = conf->mirrors[dr].rdev;
2175                 addr = r10_bio->devs[0].addr + sect,
2176                 ok = sync_page_io(rdev,
2177                                   addr,
2178                                   s << 9,
2179                                   pages[idx],
2180                                   REQ_OP_READ, 0, false);
2181                 if (ok) {
2182                         rdev = conf->mirrors[dw].rdev;
2183                         addr = r10_bio->devs[1].addr + sect;
2184                         ok = sync_page_io(rdev,
2185                                           addr,
2186                                           s << 9,
2187                                           pages[idx],
2188                                           REQ_OP_WRITE, 0, false);
2189                         if (!ok) {
2190                                 set_bit(WriteErrorSeen, &rdev->flags);
2191                                 if (!test_and_set_bit(WantReplacement,
2192                                                       &rdev->flags))
2193                                         set_bit(MD_RECOVERY_NEEDED,
2194                                                 &rdev->mddev->recovery);
2195                         }
2196                 }
2197                 if (!ok) {
2198                         /* We don't worry if we cannot set a bad block -
2199                          * it really is bad so there is no loss in not
2200                          * recording it yet
2201                          */
2202                         rdev_set_badblocks(rdev, addr, s, 0);
2203
2204                         if (rdev != conf->mirrors[dw].rdev) {
2205                                 /* need bad block on destination too */
2206                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2207                                 addr = r10_bio->devs[1].addr + sect;
2208                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2209                                 if (!ok) {
2210                                         /* just abort the recovery */
2211                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2212                                                   mdname(mddev));
2213
2214                                         conf->mirrors[dw].recovery_disabled
2215                                                 = mddev->recovery_disabled;
2216                                         set_bit(MD_RECOVERY_INTR,
2217                                                 &mddev->recovery);
2218                                         break;
2219                                 }
2220                         }
2221                 }
2222
2223                 sectors -= s;
2224                 sect += s;
2225                 idx++;
2226         }
2227 }
2228
2229 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2230 {
2231         struct r10conf *conf = mddev->private;
2232         int d;
2233         struct bio *wbio, *wbio2;
2234
2235         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2236                 fix_recovery_read_error(r10_bio);
2237                 end_sync_request(r10_bio);
2238                 return;
2239         }
2240
2241         /*
2242          * share the pages with the first bio
2243          * and submit the write request
2244          */
2245         d = r10_bio->devs[1].devnum;
2246         wbio = r10_bio->devs[1].bio;
2247         wbio2 = r10_bio->devs[1].repl_bio;
2248         /* Need to test wbio2->bi_end_io before we call
2249          * generic_make_request as if the former is NULL,
2250          * the latter is free to free wbio2.
2251          */
2252         if (wbio2 && !wbio2->bi_end_io)
2253                 wbio2 = NULL;
2254         if (wbio->bi_end_io) {
2255                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2256                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2257                 generic_make_request(wbio);
2258         }
2259         if (wbio2) {
2260                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2261                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2262                              bio_sectors(wbio2));
2263                 generic_make_request(wbio2);
2264         }
2265 }
2266
2267 /*
2268  * Used by fix_read_error() to decay the per rdev read_errors.
2269  * We halve the read error count for every hour that has elapsed
2270  * since the last recorded read error.
2271  *
2272  */
2273 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2274 {
2275         long cur_time_mon;
2276         unsigned long hours_since_last;
2277         unsigned int read_errors = atomic_read(&rdev->read_errors);
2278
2279         cur_time_mon = ktime_get_seconds();
2280
2281         if (rdev->last_read_error == 0) {
2282                 /* first time we've seen a read error */
2283                 rdev->last_read_error = cur_time_mon;
2284                 return;
2285         }
2286
2287         hours_since_last = (long)(cur_time_mon -
2288                             rdev->last_read_error) / 3600;
2289
2290         rdev->last_read_error = cur_time_mon;
2291
2292         /*
2293          * if hours_since_last is > the number of bits in read_errors
2294          * just set read errors to 0. We do this to avoid
2295          * overflowing the shift of read_errors by hours_since_last.
2296          */
2297         if (hours_since_last >= 8 * sizeof(read_errors))
2298                 atomic_set(&rdev->read_errors, 0);
2299         else
2300                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2301 }
2302
2303 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2304                             int sectors, struct page *page, int rw)
2305 {
2306         sector_t first_bad;
2307         int bad_sectors;
2308
2309         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2310             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2311                 return -1;
2312         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2313                 /* success */
2314                 return 1;
2315         if (rw == WRITE) {
2316                 set_bit(WriteErrorSeen, &rdev->flags);
2317                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2318                         set_bit(MD_RECOVERY_NEEDED,
2319                                 &rdev->mddev->recovery);
2320         }
2321         /* need to record an error - either for the block or the device */
2322         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2323                 md_error(rdev->mddev, rdev);
2324         return 0;
2325 }
2326
2327 /*
2328  * This is a kernel thread which:
2329  *
2330  *      1.      Retries failed read operations on working mirrors.
2331  *      2.      Updates the raid superblock when problems encounter.
2332  *      3.      Performs writes following reads for array synchronising.
2333  */
2334
2335 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2336 {
2337         int sect = 0; /* Offset from r10_bio->sector */
2338         int sectors = r10_bio->sectors;
2339         struct md_rdev*rdev;
2340         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2341         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2342
2343         /* still own a reference to this rdev, so it cannot
2344          * have been cleared recently.
2345          */
2346         rdev = conf->mirrors[d].rdev;
2347
2348         if (test_bit(Faulty, &rdev->flags))
2349                 /* drive has already been failed, just ignore any
2350                    more fix_read_error() attempts */
2351                 return;
2352
2353         check_decay_read_errors(mddev, rdev);
2354         atomic_inc(&rdev->read_errors);
2355         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2356                 char b[BDEVNAME_SIZE];
2357                 bdevname(rdev->bdev, b);
2358
2359                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2360                           mdname(mddev), b,
2361                           atomic_read(&rdev->read_errors), max_read_errors);
2362                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2363                           mdname(mddev), b);
2364                 md_error(mddev, rdev);
2365                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2366                 return;
2367         }
2368
2369         while(sectors) {
2370                 int s = sectors;
2371                 int sl = r10_bio->read_slot;
2372                 int success = 0;
2373                 int start;
2374
2375                 if (s > (PAGE_SIZE>>9))
2376                         s = PAGE_SIZE >> 9;
2377
2378                 rcu_read_lock();
2379                 do {
2380                         sector_t first_bad;
2381                         int bad_sectors;
2382
2383                         d = r10_bio->devs[sl].devnum;
2384                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2385                         if (rdev &&
2386                             test_bit(In_sync, &rdev->flags) &&
2387                             !test_bit(Faulty, &rdev->flags) &&
2388                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2389                                         &first_bad, &bad_sectors) == 0) {
2390                                 atomic_inc(&rdev->nr_pending);
2391                                 rcu_read_unlock();
2392                                 success = sync_page_io(rdev,
2393                                                        r10_bio->devs[sl].addr +
2394                                                        sect,
2395                                                        s<<9,
2396                                                        conf->tmppage,
2397                                                        REQ_OP_READ, 0, false);
2398                                 rdev_dec_pending(rdev, mddev);
2399                                 rcu_read_lock();
2400                                 if (success)
2401                                         break;
2402                         }
2403                         sl++;
2404                         if (sl == conf->copies)
2405                                 sl = 0;
2406                 } while (!success && sl != r10_bio->read_slot);
2407                 rcu_read_unlock();
2408
2409                 if (!success) {
2410                         /* Cannot read from anywhere, just mark the block
2411                          * as bad on the first device to discourage future
2412                          * reads.
2413                          */
2414                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2415                         rdev = conf->mirrors[dn].rdev;
2416
2417                         if (!rdev_set_badblocks(
2418                                     rdev,
2419                                     r10_bio->devs[r10_bio->read_slot].addr
2420                                     + sect,
2421                                     s, 0)) {
2422                                 md_error(mddev, rdev);
2423                                 r10_bio->devs[r10_bio->read_slot].bio
2424                                         = IO_BLOCKED;
2425                         }
2426                         break;
2427                 }
2428
2429                 start = sl;
2430                 /* write it back and re-read */
2431                 rcu_read_lock();
2432                 while (sl != r10_bio->read_slot) {
2433                         char b[BDEVNAME_SIZE];
2434
2435                         if (sl==0)
2436                                 sl = conf->copies;
2437                         sl--;
2438                         d = r10_bio->devs[sl].devnum;
2439                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2440                         if (!rdev ||
2441                             test_bit(Faulty, &rdev->flags) ||
2442                             !test_bit(In_sync, &rdev->flags))
2443                                 continue;
2444
2445                         atomic_inc(&rdev->nr_pending);
2446                         rcu_read_unlock();
2447                         if (r10_sync_page_io(rdev,
2448                                              r10_bio->devs[sl].addr +
2449                                              sect,
2450                                              s, conf->tmppage, WRITE)
2451                             == 0) {
2452                                 /* Well, this device is dead */
2453                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2454                                           mdname(mddev), s,
2455                                           (unsigned long long)(
2456                                                   sect +
2457                                                   choose_data_offset(r10_bio,
2458                                                                      rdev)),
2459                                           bdevname(rdev->bdev, b));
2460                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2461                                           mdname(mddev),
2462                                           bdevname(rdev->bdev, b));
2463                         }
2464                         rdev_dec_pending(rdev, mddev);
2465                         rcu_read_lock();
2466                 }
2467                 sl = start;
2468                 while (sl != r10_bio->read_slot) {
2469                         char b[BDEVNAME_SIZE];
2470
2471                         if (sl==0)
2472                                 sl = conf->copies;
2473                         sl--;
2474                         d = r10_bio->devs[sl].devnum;
2475                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2476                         if (!rdev ||
2477                             test_bit(Faulty, &rdev->flags) ||
2478                             !test_bit(In_sync, &rdev->flags))
2479                                 continue;
2480
2481                         atomic_inc(&rdev->nr_pending);
2482                         rcu_read_unlock();
2483                         switch (r10_sync_page_io(rdev,
2484                                              r10_bio->devs[sl].addr +
2485                                              sect,
2486                                              s, conf->tmppage,
2487                                                  READ)) {
2488                         case 0:
2489                                 /* Well, this device is dead */
2490                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2491                                        mdname(mddev), s,
2492                                        (unsigned long long)(
2493                                                sect +
2494                                                choose_data_offset(r10_bio, rdev)),
2495                                        bdevname(rdev->bdev, b));
2496                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2497                                        mdname(mddev),
2498                                        bdevname(rdev->bdev, b));
2499                                 break;
2500                         case 1:
2501                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2502                                        mdname(mddev), s,
2503                                        (unsigned long long)(
2504                                                sect +
2505                                                choose_data_offset(r10_bio, rdev)),
2506                                        bdevname(rdev->bdev, b));
2507                                 atomic_add(s, &rdev->corrected_errors);
2508                         }
2509
2510                         rdev_dec_pending(rdev, mddev);
2511                         rcu_read_lock();
2512                 }
2513                 rcu_read_unlock();
2514
2515                 sectors -= s;
2516                 sect += s;
2517         }
2518 }
2519
2520 static int narrow_write_error(struct r10bio *r10_bio, int i)
2521 {
2522         struct bio *bio = r10_bio->master_bio;
2523         struct mddev *mddev = r10_bio->mddev;
2524         struct r10conf *conf = mddev->private;
2525         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2526         /* bio has the data to be written to slot 'i' where
2527          * we just recently had a write error.
2528          * We repeatedly clone the bio and trim down to one block,
2529          * then try the write.  Where the write fails we record
2530          * a bad block.
2531          * It is conceivable that the bio doesn't exactly align with
2532          * blocks.  We must handle this.
2533          *
2534          * We currently own a reference to the rdev.
2535          */
2536
2537         int block_sectors;
2538         sector_t sector;
2539         int sectors;
2540         int sect_to_write = r10_bio->sectors;
2541         int ok = 1;
2542
2543         if (rdev->badblocks.shift < 0)
2544                 return 0;
2545
2546         block_sectors = roundup(1 << rdev->badblocks.shift,
2547                                 bdev_logical_block_size(rdev->bdev) >> 9);
2548         sector = r10_bio->sector;
2549         sectors = ((r10_bio->sector + block_sectors)
2550                    & ~(sector_t)(block_sectors - 1))
2551                 - sector;
2552
2553         while (sect_to_write) {
2554                 struct bio *wbio;
2555                 sector_t wsector;
2556                 if (sectors > sect_to_write)
2557                         sectors = sect_to_write;
2558                 /* Write at 'sector' for 'sectors' */
2559                 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2560                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2561                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2562                 wbio->bi_iter.bi_sector = wsector +
2563                                    choose_data_offset(r10_bio, rdev);
2564                 wbio->bi_bdev = rdev->bdev;
2565                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2566
2567                 if (submit_bio_wait(wbio) < 0)
2568                         /* Failure! */
2569                         ok = rdev_set_badblocks(rdev, wsector,
2570                                                 sectors, 0)
2571                                 && ok;
2572
2573                 bio_put(wbio);
2574                 sect_to_write -= sectors;
2575                 sector += sectors;
2576                 sectors = block_sectors;
2577         }
2578         return ok;
2579 }
2580
2581 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2582 {
2583         int slot = r10_bio->read_slot;
2584         struct bio *bio;
2585         struct r10conf *conf = mddev->private;
2586         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2587         dev_t bio_dev;
2588         sector_t bio_last_sector;
2589
2590         /* we got a read error. Maybe the drive is bad.  Maybe just
2591          * the block and we can fix it.
2592          * We freeze all other IO, and try reading the block from
2593          * other devices.  When we find one, we re-write
2594          * and check it that fixes the read error.
2595          * This is all done synchronously while the array is
2596          * frozen.
2597          */
2598         bio = r10_bio->devs[slot].bio;
2599         bio_dev = bio->bi_bdev->bd_dev;
2600         bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2601         bio_put(bio);
2602         r10_bio->devs[slot].bio = NULL;
2603
2604         if (mddev->ro)
2605                 r10_bio->devs[slot].bio = IO_BLOCKED;
2606         else if (!test_bit(FailFast, &rdev->flags)) {
2607                 freeze_array(conf, 1);
2608                 fix_read_error(conf, mddev, r10_bio);
2609                 unfreeze_array(conf);
2610         } else
2611                 md_error(mddev, rdev);
2612
2613         rdev_dec_pending(rdev, mddev);
2614         allow_barrier(conf);
2615         r10_bio->state = 0;
2616         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2617 }
2618
2619 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2620 {
2621         /* Some sort of write request has finished and it
2622          * succeeded in writing where we thought there was a
2623          * bad block.  So forget the bad block.
2624          * Or possibly if failed and we need to record
2625          * a bad block.
2626          */
2627         int m;
2628         struct md_rdev *rdev;
2629
2630         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2631             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2632                 for (m = 0; m < conf->copies; m++) {
2633                         int dev = r10_bio->devs[m].devnum;
2634                         rdev = conf->mirrors[dev].rdev;
2635                         if (r10_bio->devs[m].bio == NULL)
2636                                 continue;
2637                         if (!r10_bio->devs[m].bio->bi_error) {
2638                                 rdev_clear_badblocks(
2639                                         rdev,
2640                                         r10_bio->devs[m].addr,
2641                                         r10_bio->sectors, 0);
2642                         } else {
2643                                 if (!rdev_set_badblocks(
2644                                             rdev,
2645                                             r10_bio->devs[m].addr,
2646                                             r10_bio->sectors, 0))
2647                                         md_error(conf->mddev, rdev);
2648                         }
2649                         rdev = conf->mirrors[dev].replacement;
2650                         if (r10_bio->devs[m].repl_bio == NULL)
2651                                 continue;
2652
2653                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2654                                 rdev_clear_badblocks(
2655                                         rdev,
2656                                         r10_bio->devs[m].addr,
2657                                         r10_bio->sectors, 0);
2658                         } else {
2659                                 if (!rdev_set_badblocks(
2660                                             rdev,
2661                                             r10_bio->devs[m].addr,
2662                                             r10_bio->sectors, 0))
2663                                         md_error(conf->mddev, rdev);
2664                         }
2665                 }
2666                 put_buf(r10_bio);
2667         } else {
2668                 bool fail = false;
2669                 for (m = 0; m < conf->copies; m++) {
2670                         int dev = r10_bio->devs[m].devnum;
2671                         struct bio *bio = r10_bio->devs[m].bio;
2672                         rdev = conf->mirrors[dev].rdev;
2673                         if (bio == IO_MADE_GOOD) {
2674                                 rdev_clear_badblocks(
2675                                         rdev,
2676                                         r10_bio->devs[m].addr,
2677                                         r10_bio->sectors, 0);
2678                                 rdev_dec_pending(rdev, conf->mddev);
2679                         } else if (bio != NULL && bio->bi_error) {
2680                                 fail = true;
2681                                 if (!narrow_write_error(r10_bio, m)) {
2682                                         md_error(conf->mddev, rdev);
2683                                         set_bit(R10BIO_Degraded,
2684                                                 &r10_bio->state);
2685                                 }
2686                                 rdev_dec_pending(rdev, conf->mddev);
2687                         }
2688                         bio = r10_bio->devs[m].repl_bio;
2689                         rdev = conf->mirrors[dev].replacement;
2690                         if (rdev && bio == IO_MADE_GOOD) {
2691                                 rdev_clear_badblocks(
2692                                         rdev,
2693                                         r10_bio->devs[m].addr,
2694                                         r10_bio->sectors, 0);
2695                                 rdev_dec_pending(rdev, conf->mddev);
2696                         }
2697                 }
2698                 if (fail) {
2699                         spin_lock_irq(&conf->device_lock);
2700                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2701                         conf->nr_queued++;
2702                         spin_unlock_irq(&conf->device_lock);
2703                         /*
2704                          * In case freeze_array() is waiting for condition
2705                          * nr_pending == nr_queued + extra to be true.
2706                          */
2707                         wake_up(&conf->wait_barrier);
2708                         md_wakeup_thread(conf->mddev->thread);
2709                 } else {
2710                         if (test_bit(R10BIO_WriteError,
2711                                      &r10_bio->state))
2712                                 close_write(r10_bio);
2713                         raid_end_bio_io(r10_bio);
2714                 }
2715         }
2716 }
2717
2718 static void raid10d(struct md_thread *thread)
2719 {
2720         struct mddev *mddev = thread->mddev;
2721         struct r10bio *r10_bio;
2722         unsigned long flags;
2723         struct r10conf *conf = mddev->private;
2724         struct list_head *head = &conf->retry_list;
2725         struct blk_plug plug;
2726
2727         md_check_recovery(mddev);
2728
2729         if (!list_empty_careful(&conf->bio_end_io_list) &&
2730             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2731                 LIST_HEAD(tmp);
2732                 spin_lock_irqsave(&conf->device_lock, flags);
2733                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2734                         while (!list_empty(&conf->bio_end_io_list)) {
2735                                 list_move(conf->bio_end_io_list.prev, &tmp);
2736                                 conf->nr_queued--;
2737                         }
2738                 }
2739                 spin_unlock_irqrestore(&conf->device_lock, flags);
2740                 while (!list_empty(&tmp)) {
2741                         r10_bio = list_first_entry(&tmp, struct r10bio,
2742                                                    retry_list);
2743                         list_del(&r10_bio->retry_list);
2744                         if (mddev->degraded)
2745                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2746
2747                         if (test_bit(R10BIO_WriteError,
2748                                      &r10_bio->state))
2749                                 close_write(r10_bio);
2750                         raid_end_bio_io(r10_bio);
2751                 }
2752         }
2753
2754         blk_start_plug(&plug);
2755         for (;;) {
2756
2757                 flush_pending_writes(conf);
2758
2759                 spin_lock_irqsave(&conf->device_lock, flags);
2760                 if (list_empty(head)) {
2761                         spin_unlock_irqrestore(&conf->device_lock, flags);
2762                         break;
2763                 }
2764                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2765                 list_del(head->prev);
2766                 conf->nr_queued--;
2767                 spin_unlock_irqrestore(&conf->device_lock, flags);
2768
2769                 mddev = r10_bio->mddev;
2770                 conf = mddev->private;
2771                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2772                     test_bit(R10BIO_WriteError, &r10_bio->state))
2773                         handle_write_completed(conf, r10_bio);
2774                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2775                         reshape_request_write(mddev, r10_bio);
2776                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2777                         sync_request_write(mddev, r10_bio);
2778                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2779                         recovery_request_write(mddev, r10_bio);
2780                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2781                         handle_read_error(mddev, r10_bio);
2782                 else
2783                         WARN_ON_ONCE(1);
2784
2785                 cond_resched();
2786                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2787                         md_check_recovery(mddev);
2788         }
2789         blk_finish_plug(&plug);
2790 }
2791
2792 static int init_resync(struct r10conf *conf)
2793 {
2794         int buffs;
2795         int i;
2796
2797         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2798         BUG_ON(conf->r10buf_pool);
2799         conf->have_replacement = 0;
2800         for (i = 0; i < conf->geo.raid_disks; i++)
2801                 if (conf->mirrors[i].replacement)
2802                         conf->have_replacement = 1;
2803         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2804         if (!conf->r10buf_pool)
2805                 return -ENOMEM;
2806         conf->next_resync = 0;
2807         return 0;
2808 }
2809
2810 /*
2811  * perform a "sync" on one "block"
2812  *
2813  * We need to make sure that no normal I/O request - particularly write
2814  * requests - conflict with active sync requests.
2815  *
2816  * This is achieved by tracking pending requests and a 'barrier' concept
2817  * that can be installed to exclude normal IO requests.
2818  *
2819  * Resync and recovery are handled very differently.
2820  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2821  *
2822  * For resync, we iterate over virtual addresses, read all copies,
2823  * and update if there are differences.  If only one copy is live,
2824  * skip it.
2825  * For recovery, we iterate over physical addresses, read a good
2826  * value for each non-in_sync drive, and over-write.
2827  *
2828  * So, for recovery we may have several outstanding complex requests for a
2829  * given address, one for each out-of-sync device.  We model this by allocating
2830  * a number of r10_bio structures, one for each out-of-sync device.
2831  * As we setup these structures, we collect all bio's together into a list
2832  * which we then process collectively to add pages, and then process again
2833  * to pass to generic_make_request.
2834  *
2835  * The r10_bio structures are linked using a borrowed master_bio pointer.
2836  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2837  * has its remaining count decremented to 0, the whole complex operation
2838  * is complete.
2839  *
2840  */
2841
2842 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2843                              int *skipped)
2844 {
2845         struct r10conf *conf = mddev->private;
2846         struct r10bio *r10_bio;
2847         struct bio *biolist = NULL, *bio;
2848         sector_t max_sector, nr_sectors;
2849         int i;
2850         int max_sync;
2851         sector_t sync_blocks;
2852         sector_t sectors_skipped = 0;
2853         int chunks_skipped = 0;
2854         sector_t chunk_mask = conf->geo.chunk_mask;
2855
2856         if (!conf->r10buf_pool)
2857                 if (init_resync(conf))
2858                         return 0;
2859
2860         /*
2861          * Allow skipping a full rebuild for incremental assembly
2862          * of a clean array, like RAID1 does.
2863          */
2864         if (mddev->bitmap == NULL &&
2865             mddev->recovery_cp == MaxSector &&
2866             mddev->reshape_position == MaxSector &&
2867             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2868             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2869             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2870             conf->fullsync == 0) {
2871                 *skipped = 1;
2872                 return mddev->dev_sectors - sector_nr;
2873         }
2874
2875  skipped:
2876         max_sector = mddev->dev_sectors;
2877         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2878             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2879                 max_sector = mddev->resync_max_sectors;
2880         if (sector_nr >= max_sector) {
2881                 /* If we aborted, we need to abort the
2882                  * sync on the 'current' bitmap chucks (there can
2883                  * be several when recovering multiple devices).
2884                  * as we may have started syncing it but not finished.
2885                  * We can find the current address in
2886                  * mddev->curr_resync, but for recovery,
2887                  * we need to convert that to several
2888                  * virtual addresses.
2889                  */
2890                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2891                         end_reshape(conf);
2892                         close_sync(conf);
2893                         return 0;
2894                 }
2895
2896                 if (mddev->curr_resync < max_sector) { /* aborted */
2897                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2898                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2899                                                 &sync_blocks, 1);
2900                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2901                                 sector_t sect =
2902                                         raid10_find_virt(conf, mddev->curr_resync, i);
2903                                 bitmap_end_sync(mddev->bitmap, sect,
2904                                                 &sync_blocks, 1);
2905                         }
2906                 } else {
2907                         /* completed sync */
2908                         if ((!mddev->bitmap || conf->fullsync)
2909                             && conf->have_replacement
2910                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2911                                 /* Completed a full sync so the replacements
2912                                  * are now fully recovered.
2913                                  */
2914                                 rcu_read_lock();
2915                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2916                                         struct md_rdev *rdev =
2917                                                 rcu_dereference(conf->mirrors[i].replacement);
2918                                         if (rdev)
2919                                                 rdev->recovery_offset = MaxSector;
2920                                 }
2921                                 rcu_read_unlock();
2922                         }
2923                         conf->fullsync = 0;
2924                 }
2925                 bitmap_close_sync(mddev->bitmap);
2926                 close_sync(conf);
2927                 *skipped = 1;
2928                 return sectors_skipped;
2929         }
2930
2931         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2932                 return reshape_request(mddev, sector_nr, skipped);
2933
2934         if (chunks_skipped >= conf->geo.raid_disks) {
2935                 /* if there has been nothing to do on any drive,
2936                  * then there is nothing to do at all..
2937                  */
2938                 *skipped = 1;
2939                 return (max_sector - sector_nr) + sectors_skipped;
2940         }
2941
2942         if (max_sector > mddev->resync_max)
2943                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2944
2945         /* make sure whole request will fit in a chunk - if chunks
2946          * are meaningful
2947          */
2948         if (conf->geo.near_copies < conf->geo.raid_disks &&
2949             max_sector > (sector_nr | chunk_mask))
2950                 max_sector = (sector_nr | chunk_mask) + 1;
2951
2952         /*
2953          * If there is non-resync activity waiting for a turn, then let it
2954          * though before starting on this new sync request.
2955          */
2956         if (conf->nr_waiting)
2957                 schedule_timeout_uninterruptible(1);
2958
2959         /* Again, very different code for resync and recovery.
2960          * Both must result in an r10bio with a list of bios that
2961          * have bi_end_io, bi_sector, bi_bdev set,
2962          * and bi_private set to the r10bio.
2963          * For recovery, we may actually create several r10bios
2964          * with 2 bios in each, that correspond to the bios in the main one.
2965          * In this case, the subordinate r10bios link back through a
2966          * borrowed master_bio pointer, and the counter in the master
2967          * includes a ref from each subordinate.
2968          */
2969         /* First, we decide what to do and set ->bi_end_io
2970          * To end_sync_read if we want to read, and
2971          * end_sync_write if we will want to write.
2972          */
2973
2974         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2975         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2976                 /* recovery... the complicated one */
2977                 int j;
2978                 r10_bio = NULL;
2979
2980                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2981                         int still_degraded;
2982                         struct r10bio *rb2;
2983                         sector_t sect;
2984                         int must_sync;
2985                         int any_working;
2986                         struct raid10_info *mirror = &conf->mirrors[i];
2987                         struct md_rdev *mrdev, *mreplace;
2988
2989                         rcu_read_lock();
2990                         mrdev = rcu_dereference(mirror->rdev);
2991                         mreplace = rcu_dereference(mirror->replacement);
2992
2993                         if ((mrdev == NULL ||
2994                              test_bit(Faulty, &mrdev->flags) ||
2995                              test_bit(In_sync, &mrdev->flags)) &&
2996                             (mreplace == NULL ||
2997                              test_bit(Faulty, &mreplace->flags))) {
2998                                 rcu_read_unlock();
2999                                 continue;
3000                         }
3001
3002                         still_degraded = 0;
3003                         /* want to reconstruct this device */
3004                         rb2 = r10_bio;
3005                         sect = raid10_find_virt(conf, sector_nr, i);
3006                         if (sect >= mddev->resync_max_sectors) {
3007                                 /* last stripe is not complete - don't
3008                                  * try to recover this sector.
3009                                  */
3010                                 rcu_read_unlock();
3011                                 continue;
3012                         }
3013                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3014                                 mreplace = NULL;
3015                         /* Unless we are doing a full sync, or a replacement
3016                          * we only need to recover the block if it is set in
3017                          * the bitmap
3018                          */
3019                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3020                                                       &sync_blocks, 1);
3021                         if (sync_blocks < max_sync)
3022                                 max_sync = sync_blocks;
3023                         if (!must_sync &&
3024                             mreplace == NULL &&
3025                             !conf->fullsync) {
3026                                 /* yep, skip the sync_blocks here, but don't assume
3027                                  * that there will never be anything to do here
3028                                  */
3029                                 chunks_skipped = -1;
3030                                 rcu_read_unlock();
3031                                 continue;
3032                         }
3033                         atomic_inc(&mrdev->nr_pending);
3034                         if (mreplace)
3035                                 atomic_inc(&mreplace->nr_pending);
3036                         rcu_read_unlock();
3037
3038                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3039                         r10_bio->state = 0;
3040                         raise_barrier(conf, rb2 != NULL);
3041                         atomic_set(&r10_bio->remaining, 0);
3042
3043                         r10_bio->master_bio = (struct bio*)rb2;
3044                         if (rb2)
3045                                 atomic_inc(&rb2->remaining);
3046                         r10_bio->mddev = mddev;
3047                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3048                         r10_bio->sector = sect;
3049
3050                         raid10_find_phys(conf, r10_bio);
3051
3052                         /* Need to check if the array will still be
3053                          * degraded
3054                          */
3055                         rcu_read_lock();
3056                         for (j = 0; j < conf->geo.raid_disks; j++) {
3057                                 struct md_rdev *rdev = rcu_dereference(
3058                                         conf->mirrors[j].rdev);
3059                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3060                                         still_degraded = 1;
3061                                         break;
3062                                 }
3063                         }
3064
3065                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3066                                                       &sync_blocks, still_degraded);
3067
3068                         any_working = 0;
3069                         for (j=0; j<conf->copies;j++) {
3070                                 int k;
3071                                 int d = r10_bio->devs[j].devnum;
3072                                 sector_t from_addr, to_addr;
3073                                 struct md_rdev *rdev =
3074                                         rcu_dereference(conf->mirrors[d].rdev);
3075                                 sector_t sector, first_bad;
3076                                 int bad_sectors;
3077                                 if (!rdev ||
3078                                     !test_bit(In_sync, &rdev->flags))
3079                                         continue;
3080                                 /* This is where we read from */
3081                                 any_working = 1;
3082                                 sector = r10_bio->devs[j].addr;
3083
3084                                 if (is_badblock(rdev, sector, max_sync,
3085                                                 &first_bad, &bad_sectors)) {
3086                                         if (first_bad > sector)
3087                                                 max_sync = first_bad - sector;
3088                                         else {
3089                                                 bad_sectors -= (sector
3090                                                                 - first_bad);
3091                                                 if (max_sync > bad_sectors)
3092                                                         max_sync = bad_sectors;
3093                                                 continue;
3094                                         }
3095                                 }
3096                                 bio = r10_bio->devs[0].bio;
3097                                 bio->bi_next = biolist;
3098                                 biolist = bio;
3099                                 bio->bi_end_io = end_sync_read;
3100                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3101                                 if (test_bit(FailFast, &rdev->flags))
3102                                         bio->bi_opf |= MD_FAILFAST;
3103                                 from_addr = r10_bio->devs[j].addr;
3104                                 bio->bi_iter.bi_sector = from_addr +
3105                                         rdev->data_offset;
3106                                 bio->bi_bdev = rdev->bdev;
3107                                 atomic_inc(&rdev->nr_pending);
3108                                 /* and we write to 'i' (if not in_sync) */
3109
3110                                 for (k=0; k<conf->copies; k++)
3111                                         if (r10_bio->devs[k].devnum == i)
3112                                                 break;
3113                                 BUG_ON(k == conf->copies);
3114                                 to_addr = r10_bio->devs[k].addr;
3115                                 r10_bio->devs[0].devnum = d;
3116                                 r10_bio->devs[0].addr = from_addr;
3117                                 r10_bio->devs[1].devnum = i;
3118                                 r10_bio->devs[1].addr = to_addr;
3119
3120                                 if (!test_bit(In_sync, &mrdev->flags)) {
3121                                         bio = r10_bio->devs[1].bio;
3122                                         bio->bi_next = biolist;
3123                                         biolist = bio;
3124                                         bio->bi_end_io = end_sync_write;
3125                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3126                                         bio->bi_iter.bi_sector = to_addr
3127                                                 + mrdev->data_offset;
3128                                         bio->bi_bdev = mrdev->bdev;
3129                                         atomic_inc(&r10_bio->remaining);
3130                                 } else
3131                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3132
3133                                 /* and maybe write to replacement */
3134                                 bio = r10_bio->devs[1].repl_bio;
3135                                 if (bio)
3136                                         bio->bi_end_io = NULL;
3137                                 /* Note: if mreplace != NULL, then bio
3138                                  * cannot be NULL as r10buf_pool_alloc will
3139                                  * have allocated it.
3140                                  * So the second test here is pointless.
3141                                  * But it keeps semantic-checkers happy, and
3142                                  * this comment keeps human reviewers
3143                                  * happy.
3144                                  */
3145                                 if (mreplace == NULL || bio == NULL ||
3146                                     test_bit(Faulty, &mreplace->flags))
3147                                         break;
3148                                 bio->bi_next = biolist;
3149                                 biolist = bio;
3150                                 bio->bi_end_io = end_sync_write;
3151                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3152                                 bio->bi_iter.bi_sector = to_addr +
3153                                         mreplace->data_offset;
3154                                 bio->bi_bdev = mreplace->bdev;
3155                                 atomic_inc(&r10_bio->remaining);
3156                                 break;
3157                         }
3158                         rcu_read_unlock();
3159                         if (j == conf->copies) {
3160                                 /* Cannot recover, so abort the recovery or
3161                                  * record a bad block */
3162                                 if (any_working) {
3163                                         /* problem is that there are bad blocks
3164                                          * on other device(s)
3165                                          */
3166                                         int k;
3167                                         for (k = 0; k < conf->copies; k++)
3168                                                 if (r10_bio->devs[k].devnum == i)
3169                                                         break;
3170                                         if (!test_bit(In_sync,
3171                                                       &mrdev->flags)
3172                                             && !rdev_set_badblocks(
3173                                                     mrdev,
3174                                                     r10_bio->devs[k].addr,
3175                                                     max_sync, 0))
3176                                                 any_working = 0;
3177                                         if (mreplace &&
3178                                             !rdev_set_badblocks(
3179                                                     mreplace,
3180                                                     r10_bio->devs[k].addr,
3181                                                     max_sync, 0))
3182                                                 any_working = 0;
3183                                 }
3184                                 if (!any_working)  {
3185                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3186                                                               &mddev->recovery))
3187                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3188                                                        mdname(mddev));
3189                                         mirror->recovery_disabled
3190                                                 = mddev->recovery_disabled;
3191                                 }
3192                                 put_buf(r10_bio);
3193                                 if (rb2)
3194                                         atomic_dec(&rb2->remaining);
3195                                 r10_bio = rb2;
3196                                 rdev_dec_pending(mrdev, mddev);
3197                                 if (mreplace)
3198                                         rdev_dec_pending(mreplace, mddev);
3199                                 break;
3200                         }
3201                         rdev_dec_pending(mrdev, mddev);
3202                         if (mreplace)
3203                                 rdev_dec_pending(mreplace, mddev);
3204                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3205                                 /* Only want this if there is elsewhere to
3206                                  * read from. 'j' is currently the first
3207                                  * readable copy.
3208                                  */
3209                                 int targets = 1;
3210                                 for (; j < conf->copies; j++) {
3211                                         int d = r10_bio->devs[j].devnum;
3212                                         if (conf->mirrors[d].rdev &&
3213                                             test_bit(In_sync,
3214                                                       &conf->mirrors[d].rdev->flags))
3215                                                 targets++;
3216                                 }
3217                                 if (targets == 1)
3218                                         r10_bio->devs[0].bio->bi_opf
3219                                                 &= ~MD_FAILFAST;
3220                         }
3221                 }
3222                 if (biolist == NULL) {
3223                         while (r10_bio) {
3224                                 struct r10bio *rb2 = r10_bio;
3225                                 r10_bio = (struct r10bio*) rb2->master_bio;
3226                                 rb2->master_bio = NULL;
3227                                 put_buf(rb2);
3228                         }
3229                         goto giveup;
3230                 }
3231         } else {
3232                 /* resync. Schedule a read for every block at this virt offset */
3233                 int count = 0;
3234
3235                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3236
3237                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3238                                        &sync_blocks, mddev->degraded) &&
3239                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3240                                                  &mddev->recovery)) {
3241                         /* We can skip this block */
3242                         *skipped = 1;
3243                         return sync_blocks + sectors_skipped;
3244                 }
3245                 if (sync_blocks < max_sync)
3246                         max_sync = sync_blocks;
3247                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3248                 r10_bio->state = 0;
3249
3250                 r10_bio->mddev = mddev;
3251                 atomic_set(&r10_bio->remaining, 0);
3252                 raise_barrier(conf, 0);
3253                 conf->next_resync = sector_nr;
3254
3255                 r10_bio->master_bio = NULL;
3256                 r10_bio->sector = sector_nr;
3257                 set_bit(R10BIO_IsSync, &r10_bio->state);
3258                 raid10_find_phys(conf, r10_bio);
3259                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3260
3261                 for (i = 0; i < conf->copies; i++) {
3262                         int d = r10_bio->devs[i].devnum;
3263                         sector_t first_bad, sector;
3264                         int bad_sectors;
3265                         struct md_rdev *rdev;
3266
3267                         if (r10_bio->devs[i].repl_bio)
3268                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3269
3270                         bio = r10_bio->devs[i].bio;
3271                         bio->bi_error = -EIO;
3272                         rcu_read_lock();
3273                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3274                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3275                                 rcu_read_unlock();
3276                                 continue;
3277                         }
3278                         sector = r10_bio->devs[i].addr;
3279                         if (is_badblock(rdev, sector, max_sync,
3280                                         &first_bad, &bad_sectors)) {
3281                                 if (first_bad > sector)
3282                                         max_sync = first_bad - sector;
3283                                 else {
3284                                         bad_sectors -= (sector - first_bad);
3285                                         if (max_sync > bad_sectors)
3286                                                 max_sync = bad_sectors;
3287                                         rcu_read_unlock();
3288                                         continue;
3289                                 }
3290                         }
3291                         atomic_inc(&rdev->nr_pending);
3292                         atomic_inc(&r10_bio->remaining);
3293                         bio->bi_next = biolist;
3294                         biolist = bio;
3295                         bio->bi_end_io = end_sync_read;
3296                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3297                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3298                                 bio->bi_opf |= MD_FAILFAST;
3299                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3300                         bio->bi_bdev = rdev->bdev;
3301                         count++;
3302
3303                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3304                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3305                                 rcu_read_unlock();
3306                                 continue;
3307                         }
3308                         atomic_inc(&rdev->nr_pending);
3309                         rcu_read_unlock();
3310
3311                         /* Need to set up for writing to the replacement */
3312                         bio = r10_bio->devs[i].repl_bio;
3313                         bio->bi_error = -EIO;
3314
3315                         sector = r10_bio->devs[i].addr;
3316                         bio->bi_next = biolist;
3317                         biolist = bio;
3318                         bio->bi_end_io = end_sync_write;
3319                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3320                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3321                                 bio->bi_opf |= MD_FAILFAST;
3322                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3323                         bio->bi_bdev = rdev->bdev;
3324                         count++;
3325                 }
3326
3327                 if (count < 2) {
3328                         for (i=0; i<conf->copies; i++) {
3329                                 int d = r10_bio->devs[i].devnum;
3330                                 if (r10_bio->devs[i].bio->bi_end_io)
3331                                         rdev_dec_pending(conf->mirrors[d].rdev,
3332                                                          mddev);
3333                                 if (r10_bio->devs[i].repl_bio &&
3334                                     r10_bio->devs[i].repl_bio->bi_end_io)
3335                                         rdev_dec_pending(
3336                                                 conf->mirrors[d].replacement,
3337                                                 mddev);
3338                         }
3339                         put_buf(r10_bio);
3340                         biolist = NULL;
3341                         goto giveup;
3342                 }
3343         }
3344
3345         nr_sectors = 0;
3346         if (sector_nr + max_sync < max_sector)
3347                 max_sector = sector_nr + max_sync;
3348         do {
3349                 struct page *page;
3350                 int len = PAGE_SIZE;
3351                 if (sector_nr + (len>>9) > max_sector)
3352                         len = (max_sector - sector_nr) << 9;
3353                 if (len == 0)
3354                         break;
3355                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3356                         struct resync_pages *rp = get_resync_pages(bio);
3357                         page = resync_fetch_page(rp, rp->idx++);
3358                         /*
3359                          * won't fail because the vec table is big enough
3360                          * to hold all these pages
3361                          */
3362                         bio_add_page(bio, page, len, 0);
3363                 }
3364                 nr_sectors += len>>9;
3365                 sector_nr += len>>9;
3366         } while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3367         r10_bio->sectors = nr_sectors;
3368
3369         while (biolist) {
3370                 bio = biolist;
3371                 biolist = biolist->bi_next;
3372
3373                 bio->bi_next = NULL;
3374                 r10_bio = get_resync_r10bio(bio);
3375                 r10_bio->sectors = nr_sectors;
3376
3377                 if (bio->bi_end_io == end_sync_read) {
3378                         md_sync_acct(bio->bi_bdev, nr_sectors);
3379                         bio->bi_error = 0;
3380                         generic_make_request(bio);
3381                 }
3382         }
3383
3384         if (sectors_skipped)
3385                 /* pretend they weren't skipped, it makes
3386                  * no important difference in this case
3387                  */
3388                 md_done_sync(mddev, sectors_skipped, 1);
3389
3390         return sectors_skipped + nr_sectors;
3391  giveup:
3392         /* There is nowhere to write, so all non-sync
3393          * drives must be failed or in resync, all drives
3394          * have a bad block, so try the next chunk...
3395          */
3396         if (sector_nr + max_sync < max_sector)
3397                 max_sector = sector_nr + max_sync;
3398
3399         sectors_skipped += (max_sector - sector_nr);
3400         chunks_skipped ++;
3401         sector_nr = max_sector;
3402         goto skipped;
3403 }
3404
3405 static sector_t
3406 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3407 {
3408         sector_t size;
3409         struct r10conf *conf = mddev->private;
3410
3411         if (!raid_disks)
3412                 raid_disks = min(conf->geo.raid_disks,
3413                                  conf->prev.raid_disks);
3414         if (!sectors)
3415                 sectors = conf->dev_sectors;
3416
3417         size = sectors >> conf->geo.chunk_shift;
3418         sector_div(size, conf->geo.far_copies);
3419         size = size * raid_disks;
3420         sector_div(size, conf->geo.near_copies);
3421
3422         return size << conf->geo.chunk_shift;
3423 }
3424
3425 static void calc_sectors(struct r10conf *conf, sector_t size)
3426 {
3427         /* Calculate the number of sectors-per-device that will
3428          * actually be used, and set conf->dev_sectors and
3429          * conf->stride
3430          */
3431
3432         size = size >> conf->geo.chunk_shift;
3433         sector_div(size, conf->geo.far_copies);
3434         size = size * conf->geo.raid_disks;
3435         sector_div(size, conf->geo.near_copies);
3436         /* 'size' is now the number of chunks in the array */
3437         /* calculate "used chunks per device" */
3438         size = size * conf->copies;
3439
3440         /* We need to round up when dividing by raid_disks to
3441          * get the stride size.
3442          */
3443         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3444
3445         conf->dev_sectors = size << conf->geo.chunk_shift;
3446
3447         if (conf->geo.far_offset)
3448                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3449         else {
3450                 sector_div(size, conf->geo.far_copies);
3451                 conf->geo.stride = size << conf->geo.chunk_shift;
3452         }
3453 }
3454
3455 enum geo_type {geo_new, geo_old, geo_start};
3456 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3457 {
3458         int nc, fc, fo;
3459         int layout, chunk, disks;
3460         switch (new) {
3461         case geo_old:
3462                 layout = mddev->layout;
3463                 chunk = mddev->chunk_sectors;
3464                 disks = mddev->raid_disks - mddev->delta_disks;
3465                 break;
3466         case geo_new:
3467                 layout = mddev->new_layout;
3468                 chunk = mddev->new_chunk_sectors;
3469                 disks = mddev->raid_disks;
3470                 break;
3471         default: /* avoid 'may be unused' warnings */
3472         case geo_start: /* new when starting reshape - raid_disks not
3473                          * updated yet. */
3474                 layout = mddev->new_layout;
3475                 chunk = mddev->new_chunk_sectors;
3476                 disks = mddev->raid_disks + mddev->delta_disks;
3477                 break;
3478         }
3479         if (layout >> 19)
3480                 return -1;
3481         if (chunk < (PAGE_SIZE >> 9) ||
3482             !is_power_of_2(chunk))
3483                 return -2;
3484         nc = layout & 255;
3485         fc = (layout >> 8) & 255;
3486         fo = layout & (1<<16);
3487         geo->raid_disks = disks;
3488         geo->near_copies = nc;
3489         geo->far_copies = fc;
3490         geo->far_offset = fo;
3491         switch (layout >> 17) {
3492         case 0: /* original layout.  simple but not always optimal */
3493                 geo->far_set_size = disks;
3494                 break;
3495         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3496                  * actually using this, but leave code here just in case.*/
3497                 geo->far_set_size = disks/fc;
3498                 WARN(geo->far_set_size < fc,
3499                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3500                 break;
3501         case 2: /* "improved" layout fixed to match documentation */
3502                 geo->far_set_size = fc * nc;
3503                 break;
3504         default: /* Not a valid layout */
3505                 return -1;
3506         }
3507         geo->chunk_mask = chunk - 1;
3508         geo->chunk_shift = ffz(~chunk);
3509         return nc*fc;
3510 }
3511
3512 static struct r10conf *setup_conf(struct mddev *mddev)
3513 {
3514         struct r10conf *conf = NULL;
3515         int err = -EINVAL;
3516         struct geom geo;
3517         int copies;
3518
3519         copies = setup_geo(&geo, mddev, geo_new);
3520
3521         if (copies == -2) {
3522                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3523                         mdname(mddev), PAGE_SIZE);
3524                 goto out;
3525         }
3526
3527         if (copies < 2 || copies > mddev->raid_disks) {
3528                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3529                         mdname(mddev), mddev->new_layout);
3530                 goto out;
3531         }
3532
3533         err = -ENOMEM;
3534         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3535         if (!conf)
3536                 goto out;
3537
3538         /* FIXME calc properly */
3539         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3540                                                             max(0,-mddev->delta_disks)),
3541                                 GFP_KERNEL);
3542         if (!conf->mirrors)
3543                 goto out;
3544
3545         conf->tmppage = alloc_page(GFP_KERNEL);
3546         if (!conf->tmppage)
3547                 goto out;
3548
3549         conf->geo = geo;
3550         conf->copies = copies;
3551         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3552                                            r10bio_pool_free, conf);
3553         if (!conf->r10bio_pool)
3554                 goto out;
3555
3556         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
3557         if (!conf->bio_split)
3558                 goto out;
3559
3560         calc_sectors(conf, mddev->dev_sectors);
3561         if (mddev->reshape_position == MaxSector) {
3562                 conf->prev = conf->geo;
3563                 conf->reshape_progress = MaxSector;
3564         } else {
3565                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3566                         err = -EINVAL;
3567                         goto out;
3568                 }
3569                 conf->reshape_progress = mddev->reshape_position;
3570                 if (conf->prev.far_offset)
3571                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3572                 else
3573                         /* far_copies must be 1 */
3574                         conf->prev.stride = conf->dev_sectors;
3575         }
3576         conf->reshape_safe = conf->reshape_progress;
3577         spin_lock_init(&conf->device_lock);
3578         INIT_LIST_HEAD(&conf->retry_list);
3579         INIT_LIST_HEAD(&conf->bio_end_io_list);
3580
3581         spin_lock_init(&conf->resync_lock);
3582         init_waitqueue_head(&conf->wait_barrier);
3583         atomic_set(&conf->nr_pending, 0);
3584
3585         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3586         if (!conf->thread)
3587                 goto out;
3588
3589         conf->mddev = mddev;
3590         return conf;
3591
3592  out:
3593         if (conf) {
3594                 mempool_destroy(conf->r10bio_pool);
3595                 kfree(conf->mirrors);
3596                 safe_put_page(conf->tmppage);
3597                 if (conf->bio_split)
3598                         bioset_free(conf->bio_split);
3599                 kfree(conf);
3600         }
3601         return ERR_PTR(err);
3602 }
3603
3604 static int raid10_run(struct mddev *mddev)
3605 {
3606         struct r10conf *conf;
3607         int i, disk_idx, chunk_size;
3608         struct raid10_info *disk;
3609         struct md_rdev *rdev;
3610         sector_t size;
3611         sector_t min_offset_diff = 0;
3612         int first = 1;
3613         bool discard_supported = false;
3614
3615         if (mddev->private == NULL) {
3616                 conf = setup_conf(mddev);
3617                 if (IS_ERR(conf))
3618                         return PTR_ERR(conf);
3619                 mddev->private = conf;
3620         }
3621         conf = mddev->private;
3622         if (!conf)
3623                 goto out;
3624
3625         mddev->thread = conf->thread;
3626         conf->thread = NULL;
3627
3628         chunk_size = mddev->chunk_sectors << 9;
3629         if (mddev->queue) {
3630                 blk_queue_max_discard_sectors(mddev->queue,
3631                                               mddev->chunk_sectors);
3632                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3633                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3634                 blk_queue_io_min(mddev->queue, chunk_size);
3635                 if (conf->geo.raid_disks % conf->geo.near_copies)
3636                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3637                 else
3638                         blk_queue_io_opt(mddev->queue, chunk_size *
3639                                          (conf->geo.raid_disks / conf->geo.near_copies));
3640         }
3641
3642         rdev_for_each(rdev, mddev) {
3643                 long long diff;
3644
3645                 disk_idx = rdev->raid_disk;
3646                 if (disk_idx < 0)
3647                         continue;
3648                 if (disk_idx >= conf->geo.raid_disks &&
3649                     disk_idx >= conf->prev.raid_disks)
3650                         continue;
3651                 disk = conf->mirrors + disk_idx;
3652
3653                 if (test_bit(Replacement, &rdev->flags)) {
3654                         if (disk->replacement)
3655                                 goto out_free_conf;
3656                         disk->replacement = rdev;
3657                 } else {
3658                         if (disk->rdev)
3659                                 goto out_free_conf;
3660                         disk->rdev = rdev;
3661                 }
3662                 diff = (rdev->new_data_offset - rdev->data_offset);
3663                 if (!mddev->reshape_backwards)
3664                         diff = -diff;
3665                 if (diff < 0)
3666                         diff = 0;
3667                 if (first || diff < min_offset_diff)
3668                         min_offset_diff = diff;
3669
3670                 if (mddev->gendisk)
3671                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3672                                           rdev->data_offset << 9);
3673
3674                 disk->head_position = 0;
3675
3676                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3677                         discard_supported = true;
3678                 first = 0;
3679         }
3680
3681         if (mddev->queue) {
3682                 if (discard_supported)
3683                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3684                                                 mddev->queue);
3685                 else
3686                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3687                                                   mddev->queue);
3688         }
3689         /* need to check that every block has at least one working mirror */
3690         if (!enough(conf, -1)) {
3691                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3692                        mdname(mddev));
3693                 goto out_free_conf;
3694         }
3695
3696         if (conf->reshape_progress != MaxSector) {
3697                 /* must ensure that shape change is supported */
3698                 if (conf->geo.far_copies != 1 &&
3699                     conf->geo.far_offset == 0)
3700                         goto out_free_conf;
3701                 if (conf->prev.far_copies != 1 &&
3702                     conf->prev.far_offset == 0)
3703                         goto out_free_conf;
3704         }
3705
3706         mddev->degraded = 0;
3707         for (i = 0;
3708              i < conf->geo.raid_disks
3709                      || i < conf->prev.raid_disks;
3710              i++) {
3711
3712                 disk = conf->mirrors + i;
3713
3714                 if (!disk->rdev && disk->replacement) {
3715                         /* The replacement is all we have - use it */
3716                         disk->rdev = disk->replacement;
3717                         disk->replacement = NULL;
3718                         clear_bit(Replacement, &disk->rdev->flags);
3719                 }
3720
3721                 if (!disk->rdev ||
3722                     !test_bit(In_sync, &disk->rdev->flags)) {
3723                         disk->head_position = 0;
3724                         mddev->degraded++;
3725                         if (disk->rdev &&
3726                             disk->rdev->saved_raid_disk < 0)
3727                                 conf->fullsync = 1;
3728                 }
3729                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3730         }
3731
3732         if (mddev->recovery_cp != MaxSector)
3733                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3734                           mdname(mddev));
3735         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3736                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3737                 conf->geo.raid_disks);
3738         /*
3739          * Ok, everything is just fine now
3740          */
3741         mddev->dev_sectors = conf->dev_sectors;
3742         size = raid10_size(mddev, 0, 0);
3743         md_set_array_sectors(mddev, size);
3744         mddev->resync_max_sectors = size;
3745         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3746
3747         if (mddev->queue) {
3748                 int stripe = conf->geo.raid_disks *
3749                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3750
3751                 /* Calculate max read-ahead size.
3752                  * We need to readahead at least twice a whole stripe....
3753                  * maybe...
3754                  */
3755                 stripe /= conf->geo.near_copies;
3756                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3757                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3758         }
3759
3760         if (md_integrity_register(mddev))
3761                 goto out_free_conf;
3762
3763         if (conf->reshape_progress != MaxSector) {
3764                 unsigned long before_length, after_length;
3765
3766                 before_length = ((1 << conf->prev.chunk_shift) *
3767                                  conf->prev.far_copies);
3768                 after_length = ((1 << conf->geo.chunk_shift) *
3769                                 conf->geo.far_copies);
3770
3771                 if (max(before_length, after_length) > min_offset_diff) {
3772                         /* This cannot work */
3773                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3774                         goto out_free_conf;
3775                 }
3776                 conf->offset_diff = min_offset_diff;
3777
3778                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3779                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3780                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3781                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3782                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3783                                                         "reshape");
3784         }
3785
3786         return 0;
3787
3788 out_free_conf:
3789         md_unregister_thread(&mddev->thread);
3790         mempool_destroy(conf->r10bio_pool);
3791         safe_put_page(conf->tmppage);
3792         kfree(conf->mirrors);
3793         kfree(conf);
3794         mddev->private = NULL;
3795 out:
3796         return -EIO;
3797 }
3798
3799 static void raid10_free(struct mddev *mddev, void *priv)
3800 {
3801         struct r10conf *conf = priv;
3802
3803         mempool_destroy(conf->r10bio_pool);
3804         safe_put_page(conf->tmppage);
3805         kfree(conf->mirrors);
3806         kfree(conf->mirrors_old);
3807         kfree(conf->mirrors_new);
3808         if (conf->bio_split)
3809                 bioset_free(conf->bio_split);
3810         kfree(conf);
3811 }
3812
3813 static void raid10_quiesce(struct mddev *mddev, int state)
3814 {
3815         struct r10conf *conf = mddev->private;
3816
3817         switch(state) {
3818         case 1:
3819                 raise_barrier(conf, 0);
3820                 break;
3821         case 0:
3822                 lower_barrier(conf);
3823                 break;
3824         }
3825 }
3826
3827 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3828 {
3829         /* Resize of 'far' arrays is not supported.
3830          * For 'near' and 'offset' arrays we can set the
3831          * number of sectors used to be an appropriate multiple
3832          * of the chunk size.
3833          * For 'offset', this is far_copies*chunksize.
3834          * For 'near' the multiplier is the LCM of
3835          * near_copies and raid_disks.
3836          * So if far_copies > 1 && !far_offset, fail.
3837          * Else find LCM(raid_disks, near_copy)*far_copies and
3838          * multiply by chunk_size.  Then round to this number.
3839          * This is mostly done by raid10_size()
3840          */
3841         struct r10conf *conf = mddev->private;
3842         sector_t oldsize, size;
3843
3844         if (mddev->reshape_position != MaxSector)
3845                 return -EBUSY;
3846
3847         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3848                 return -EINVAL;
3849
3850         oldsize = raid10_size(mddev, 0, 0);
3851         size = raid10_size(mddev, sectors, 0);
3852         if (mddev->external_size &&
3853             mddev->array_sectors > size)
3854                 return -EINVAL;
3855         if (mddev->bitmap) {
3856                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3857                 if (ret)
3858                         return ret;
3859         }
3860         md_set_array_sectors(mddev, size);
3861         if (sectors > mddev->dev_sectors &&
3862             mddev->recovery_cp > oldsize) {
3863                 mddev->recovery_cp = oldsize;
3864                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3865         }
3866         calc_sectors(conf, sectors);
3867         mddev->dev_sectors = conf->dev_sectors;
3868         mddev->resync_max_sectors = size;
3869         return 0;
3870 }
3871
3872 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3873 {
3874         struct md_rdev *rdev;
3875         struct r10conf *conf;
3876
3877         if (mddev->degraded > 0) {
3878                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3879                         mdname(mddev));
3880                 return ERR_PTR(-EINVAL);
3881         }
3882         sector_div(size, devs);
3883
3884         /* Set new parameters */
3885         mddev->new_level = 10;
3886         /* new layout: far_copies = 1, near_copies = 2 */
3887         mddev->new_layout = (1<<8) + 2;
3888         mddev->new_chunk_sectors = mddev->chunk_sectors;
3889         mddev->delta_disks = mddev->raid_disks;
3890         mddev->raid_disks *= 2;
3891         /* make sure it will be not marked as dirty */
3892         mddev->recovery_cp = MaxSector;
3893         mddev->dev_sectors = size;
3894
3895         conf = setup_conf(mddev);
3896         if (!IS_ERR(conf)) {
3897                 rdev_for_each(rdev, mddev)
3898                         if (rdev->raid_disk >= 0) {
3899                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3900                                 rdev->sectors = size;
3901                         }
3902                 conf->barrier = 1;
3903         }
3904
3905         return conf;
3906 }
3907
3908 static void *raid10_takeover(struct mddev *mddev)
3909 {
3910         struct r0conf *raid0_conf;
3911
3912         /* raid10 can take over:
3913          *  raid0 - providing it has only two drives
3914          */
3915         if (mddev->level == 0) {
3916                 /* for raid0 takeover only one zone is supported */
3917                 raid0_conf = mddev->private;
3918                 if (raid0_conf->nr_strip_zones > 1) {
3919                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3920                                 mdname(mddev));
3921                         return ERR_PTR(-EINVAL);
3922                 }
3923                 return raid10_takeover_raid0(mddev,
3924                         raid0_conf->strip_zone->zone_end,
3925                         raid0_conf->strip_zone->nb_dev);
3926         }
3927         return ERR_PTR(-EINVAL);
3928 }
3929
3930 static int raid10_check_reshape(struct mddev *mddev)
3931 {
3932         /* Called when there is a request to change
3933          * - layout (to ->new_layout)
3934          * - chunk size (to ->new_chunk_sectors)
3935          * - raid_disks (by delta_disks)
3936          * or when trying to restart a reshape that was ongoing.
3937          *
3938          * We need to validate the request and possibly allocate
3939          * space if that might be an issue later.
3940          *
3941          * Currently we reject any reshape of a 'far' mode array,
3942          * allow chunk size to change if new is generally acceptable,
3943          * allow raid_disks to increase, and allow
3944          * a switch between 'near' mode and 'offset' mode.
3945          */
3946         struct r10conf *conf = mddev->private;
3947         struct geom geo;
3948
3949         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3950                 return -EINVAL;
3951
3952         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3953                 /* mustn't change number of copies */
3954                 return -EINVAL;
3955         if (geo.far_copies > 1 && !geo.far_offset)
3956                 /* Cannot switch to 'far' mode */
3957                 return -EINVAL;
3958
3959         if (mddev->array_sectors & geo.chunk_mask)
3960                         /* not factor of array size */
3961                         return -EINVAL;
3962
3963         if (!enough(conf, -1))
3964                 return -EINVAL;
3965
3966         kfree(conf->mirrors_new);
3967         conf->mirrors_new = NULL;
3968         if (mddev->delta_disks > 0) {
3969                 /* allocate new 'mirrors' list */
3970                 conf->mirrors_new = kzalloc(
3971                         sizeof(struct raid10_info)
3972                         *(mddev->raid_disks +
3973                           mddev->delta_disks),
3974                         GFP_KERNEL);
3975                 if (!conf->mirrors_new)
3976                         return -ENOMEM;
3977         }
3978         return 0;
3979 }
3980
3981 /*
3982  * Need to check if array has failed when deciding whether to:
3983  *  - start an array
3984  *  - remove non-faulty devices
3985  *  - add a spare
3986  *  - allow a reshape
3987  * This determination is simple when no reshape is happening.
3988  * However if there is a reshape, we need to carefully check
3989  * both the before and after sections.
3990  * This is because some failed devices may only affect one
3991  * of the two sections, and some non-in_sync devices may
3992  * be insync in the section most affected by failed devices.
3993  */
3994 static int calc_degraded(struct r10conf *conf)
3995 {
3996         int degraded, degraded2;
3997         int i;
3998
3999         rcu_read_lock();
4000         degraded = 0;
4001         /* 'prev' section first */
4002         for (i = 0; i < conf->prev.raid_disks; i++) {
4003                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4004                 if (!rdev || test_bit(Faulty, &rdev->flags))
4005                         degraded++;
4006                 else if (!test_bit(In_sync, &rdev->flags))
4007                         /* When we can reduce the number of devices in
4008                          * an array, this might not contribute to
4009                          * 'degraded'.  It does now.
4010                          */
4011                         degraded++;
4012         }
4013         rcu_read_unlock();
4014         if (conf->geo.raid_disks == conf->prev.raid_disks)
4015                 return degraded;
4016         rcu_read_lock();
4017         degraded2 = 0;
4018         for (i = 0; i < conf->geo.raid_disks; i++) {
4019                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4020                 if (!rdev || test_bit(Faulty, &rdev->flags))
4021                         degraded2++;
4022                 else if (!test_bit(In_sync, &rdev->flags)) {
4023                         /* If reshape is increasing the number of devices,
4024                          * this section has already been recovered, so
4025                          * it doesn't contribute to degraded.
4026                          * else it does.
4027                          */
4028                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4029                                 degraded2++;
4030                 }
4031         }
4032         rcu_read_unlock();
4033         if (degraded2 > degraded)
4034                 return degraded2;
4035         return degraded;
4036 }
4037
4038 static int raid10_start_reshape(struct mddev *mddev)
4039 {
4040         /* A 'reshape' has been requested. This commits
4041          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4042          * This also checks if there are enough spares and adds them
4043          * to the array.
4044          * We currently require enough spares to make the final
4045          * array non-degraded.  We also require that the difference
4046          * between old and new data_offset - on each device - is
4047          * enough that we never risk over-writing.
4048          */
4049
4050         unsigned long before_length, after_length;
4051         sector_t min_offset_diff = 0;
4052         int first = 1;
4053         struct geom new;
4054         struct r10conf *conf = mddev->private;
4055         struct md_rdev *rdev;
4056         int spares = 0;
4057         int ret;
4058
4059         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4060                 return -EBUSY;
4061
4062         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4063                 return -EINVAL;
4064
4065         before_length = ((1 << conf->prev.chunk_shift) *
4066                          conf->prev.far_copies);
4067         after_length = ((1 << conf->geo.chunk_shift) *
4068                         conf->geo.far_copies);
4069
4070         rdev_for_each(rdev, mddev) {
4071                 if (!test_bit(In_sync, &rdev->flags)
4072                     && !test_bit(Faulty, &rdev->flags))
4073                         spares++;
4074                 if (rdev->raid_disk >= 0) {
4075                         long long diff = (rdev->new_data_offset
4076                                           - rdev->data_offset);
4077                         if (!mddev->reshape_backwards)
4078                                 diff = -diff;
4079                         if (diff < 0)
4080                                 diff = 0;
4081                         if (first || diff < min_offset_diff)
4082                                 min_offset_diff = diff;
4083                         first = 0;
4084                 }
4085         }
4086
4087         if (max(before_length, after_length) > min_offset_diff)
4088                 return -EINVAL;
4089
4090         if (spares < mddev->delta_disks)
4091                 return -EINVAL;
4092
4093         conf->offset_diff = min_offset_diff;
4094         spin_lock_irq(&conf->device_lock);
4095         if (conf->mirrors_new) {
4096                 memcpy(conf->mirrors_new, conf->mirrors,
4097                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4098                 smp_mb();
4099                 kfree(conf->mirrors_old);
4100                 conf->mirrors_old = conf->mirrors;
4101                 conf->mirrors = conf->mirrors_new;
4102                 conf->mirrors_new = NULL;
4103         }
4104         setup_geo(&conf->geo, mddev, geo_start);
4105         smp_mb();
4106         if (mddev->reshape_backwards) {
4107                 sector_t size = raid10_size(mddev, 0, 0);
4108                 if (size < mddev->array_sectors) {
4109                         spin_unlock_irq(&conf->device_lock);
4110                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4111                                 mdname(mddev));
4112                         return -EINVAL;
4113                 }
4114                 mddev->resync_max_sectors = size;
4115                 conf->reshape_progress = size;
4116         } else
4117                 conf->reshape_progress = 0;
4118         conf->reshape_safe = conf->reshape_progress;
4119         spin_unlock_irq(&conf->device_lock);
4120
4121         if (mddev->delta_disks && mddev->bitmap) {
4122                 ret = bitmap_resize(mddev->bitmap,
4123                                     raid10_size(mddev, 0,
4124                                                 conf->geo.raid_disks),
4125                                     0, 0);
4126                 if (ret)
4127                         goto abort;
4128         }
4129         if (mddev->delta_disks > 0) {
4130                 rdev_for_each(rdev, mddev)
4131                         if (rdev->raid_disk < 0 &&
4132                             !test_bit(Faulty, &rdev->flags)) {
4133                                 if (raid10_add_disk(mddev, rdev) == 0) {
4134                                         if (rdev->raid_disk >=
4135                                             conf->prev.raid_disks)
4136                                                 set_bit(In_sync, &rdev->flags);
4137                                         else
4138                                                 rdev->recovery_offset = 0;
4139
4140                                         if (sysfs_link_rdev(mddev, rdev))
4141                                                 /* Failure here  is OK */;
4142                                 }
4143                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4144                                    && !test_bit(Faulty, &rdev->flags)) {
4145                                 /* This is a spare that was manually added */
4146                                 set_bit(In_sync, &rdev->flags);
4147                         }
4148         }
4149         /* When a reshape changes the number of devices,
4150          * ->degraded is measured against the larger of the
4151          * pre and  post numbers.
4152          */
4153         spin_lock_irq(&conf->device_lock);
4154         mddev->degraded = calc_degraded(conf);
4155         spin_unlock_irq(&conf->device_lock);
4156         mddev->raid_disks = conf->geo.raid_disks;
4157         mddev->reshape_position = conf->reshape_progress;
4158         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4159
4160         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4161         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4162         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4163         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4164         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4165
4166         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4167                                                 "reshape");
4168         if (!mddev->sync_thread) {
4169                 ret = -EAGAIN;
4170                 goto abort;
4171         }
4172         conf->reshape_checkpoint = jiffies;
4173         md_wakeup_thread(mddev->sync_thread);
4174         md_new_event(mddev);
4175         return 0;
4176
4177 abort:
4178         mddev->recovery = 0;
4179         spin_lock_irq(&conf->device_lock);
4180         conf->geo = conf->prev;
4181         mddev->raid_disks = conf->geo.raid_disks;
4182         rdev_for_each(rdev, mddev)
4183                 rdev->new_data_offset = rdev->data_offset;
4184         smp_wmb();
4185         conf->reshape_progress = MaxSector;
4186         conf->reshape_safe = MaxSector;
4187         mddev->reshape_position = MaxSector;
4188         spin_unlock_irq(&conf->device_lock);
4189         return ret;
4190 }
4191
4192 /* Calculate the last device-address that could contain
4193  * any block from the chunk that includes the array-address 's'
4194  * and report the next address.
4195  * i.e. the address returned will be chunk-aligned and after
4196  * any data that is in the chunk containing 's'.
4197  */
4198 static sector_t last_dev_address(sector_t s, struct geom *geo)
4199 {
4200         s = (s | geo->chunk_mask) + 1;
4201         s >>= geo->chunk_shift;
4202         s *= geo->near_copies;
4203         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4204         s *= geo->far_copies;
4205         s <<= geo->chunk_shift;
4206         return s;
4207 }
4208
4209 /* Calculate the first device-address that could contain
4210  * any block from the chunk that includes the array-address 's'.
4211  * This too will be the start of a chunk
4212  */
4213 static sector_t first_dev_address(sector_t s, struct geom *geo)
4214 {
4215         s >>= geo->chunk_shift;
4216         s *= geo->near_copies;
4217         sector_div(s, geo->raid_disks);
4218         s *= geo->far_copies;
4219         s <<= geo->chunk_shift;
4220         return s;
4221 }
4222
4223 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4224                                 int *skipped)
4225 {
4226         /* We simply copy at most one chunk (smallest of old and new)
4227          * at a time, possibly less if that exceeds RESYNC_PAGES,
4228          * or we hit a bad block or something.
4229          * This might mean we pause for normal IO in the middle of
4230          * a chunk, but that is not a problem as mddev->reshape_position
4231          * can record any location.
4232          *
4233          * If we will want to write to a location that isn't
4234          * yet recorded as 'safe' (i.e. in metadata on disk) then
4235          * we need to flush all reshape requests and update the metadata.
4236          *
4237          * When reshaping forwards (e.g. to more devices), we interpret
4238          * 'safe' as the earliest block which might not have been copied
4239          * down yet.  We divide this by previous stripe size and multiply
4240          * by previous stripe length to get lowest device offset that we
4241          * cannot write to yet.
4242          * We interpret 'sector_nr' as an address that we want to write to.
4243          * From this we use last_device_address() to find where we might
4244          * write to, and first_device_address on the  'safe' position.
4245          * If this 'next' write position is after the 'safe' position,
4246          * we must update the metadata to increase the 'safe' position.
4247          *
4248          * When reshaping backwards, we round in the opposite direction
4249          * and perform the reverse test:  next write position must not be
4250          * less than current safe position.
4251          *
4252          * In all this the minimum difference in data offsets
4253          * (conf->offset_diff - always positive) allows a bit of slack,
4254          * so next can be after 'safe', but not by more than offset_diff
4255          *
4256          * We need to prepare all the bios here before we start any IO
4257          * to ensure the size we choose is acceptable to all devices.
4258          * The means one for each copy for write-out and an extra one for
4259          * read-in.
4260          * We store the read-in bio in ->master_bio and the others in
4261          * ->devs[x].bio and ->devs[x].repl_bio.
4262          */
4263         struct r10conf *conf = mddev->private;
4264         struct r10bio *r10_bio;
4265         sector_t next, safe, last;
4266         int max_sectors;
4267         int nr_sectors;
4268         int s;
4269         struct md_rdev *rdev;
4270         int need_flush = 0;
4271         struct bio *blist;
4272         struct bio *bio, *read_bio;
4273         int sectors_done = 0;
4274         struct page **pages;
4275
4276         if (sector_nr == 0) {
4277                 /* If restarting in the middle, skip the initial sectors */
4278                 if (mddev->reshape_backwards &&
4279                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4280                         sector_nr = (raid10_size(mddev, 0, 0)
4281                                      - conf->reshape_progress);
4282                 } else if (!mddev->reshape_backwards &&
4283                            conf->reshape_progress > 0)
4284                         sector_nr = conf->reshape_progress;
4285                 if (sector_nr) {
4286                         mddev->curr_resync_completed = sector_nr;
4287                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4288                         *skipped = 1;
4289                         return sector_nr;
4290                 }
4291         }
4292
4293         /* We don't use sector_nr to track where we are up to
4294          * as that doesn't work well for ->reshape_backwards.
4295          * So just use ->reshape_progress.
4296          */
4297         if (mddev->reshape_backwards) {
4298                 /* 'next' is the earliest device address that we might
4299                  * write to for this chunk in the new layout
4300                  */
4301                 next = first_dev_address(conf->reshape_progress - 1,
4302                                          &conf->geo);
4303
4304                 /* 'safe' is the last device address that we might read from
4305                  * in the old layout after a restart
4306                  */
4307                 safe = last_dev_address(conf->reshape_safe - 1,
4308                                         &conf->prev);
4309
4310                 if (next + conf->offset_diff < safe)
4311                         need_flush = 1;
4312
4313                 last = conf->reshape_progress - 1;
4314                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4315                                                & conf->prev.chunk_mask);
4316                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4317                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4318         } else {
4319                 /* 'next' is after the last device address that we
4320                  * might write to for this chunk in the new layout
4321                  */
4322                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4323
4324                 /* 'safe' is the earliest device address that we might
4325                  * read from in the old layout after a restart
4326                  */
4327                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4328
4329                 /* Need to update metadata if 'next' might be beyond 'safe'
4330                  * as that would possibly corrupt data
4331                  */
4332                 if (next > safe + conf->offset_diff)
4333                         need_flush = 1;
4334
4335                 sector_nr = conf->reshape_progress;
4336                 last  = sector_nr | (conf->geo.chunk_mask
4337                                      & conf->prev.chunk_mask);
4338
4339                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4340                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4341         }
4342
4343         if (need_flush ||
4344             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4345                 /* Need to update reshape_position in metadata */
4346                 wait_barrier(conf);
4347                 mddev->reshape_position = conf->reshape_progress;
4348                 if (mddev->reshape_backwards)
4349                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4350                                 - conf->reshape_progress;
4351                 else
4352                         mddev->curr_resync_completed = conf->reshape_progress;
4353                 conf->reshape_checkpoint = jiffies;
4354                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4355                 md_wakeup_thread(mddev->thread);
4356                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4357                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4358                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4359                         allow_barrier(conf);
4360                         return sectors_done;
4361                 }
4362                 conf->reshape_safe = mddev->reshape_position;
4363                 allow_barrier(conf);
4364         }
4365
4366 read_more:
4367         /* Now schedule reads for blocks from sector_nr to last */
4368         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4369         r10_bio->state = 0;
4370         raise_barrier(conf, sectors_done != 0);
4371         atomic_set(&r10_bio->remaining, 0);
4372         r10_bio->mddev = mddev;
4373         r10_bio->sector = sector_nr;
4374         set_bit(R10BIO_IsReshape, &r10_bio->state);
4375         r10_bio->sectors = last - sector_nr + 1;
4376         rdev = read_balance(conf, r10_bio, &max_sectors);
4377         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4378
4379         if (!rdev) {
4380                 /* Cannot read from here, so need to record bad blocks
4381                  * on all the target devices.
4382                  */
4383                 // FIXME
4384                 mempool_free(r10_bio, conf->r10buf_pool);
4385                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4386                 return sectors_done;
4387         }
4388
4389         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4390
4391         read_bio->bi_bdev = rdev->bdev;
4392         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4393                                + rdev->data_offset);
4394         read_bio->bi_private = r10_bio;
4395         read_bio->bi_end_io = end_reshape_read;
4396         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4397         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4398         read_bio->bi_error = 0;
4399         read_bio->bi_vcnt = 0;
4400         read_bio->bi_iter.bi_size = 0;
4401         r10_bio->master_bio = read_bio;
4402         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4403
4404         /* Now find the locations in the new layout */
4405         __raid10_find_phys(&conf->geo, r10_bio);
4406
4407         blist = read_bio;
4408         read_bio->bi_next = NULL;
4409
4410         rcu_read_lock();
4411         for (s = 0; s < conf->copies*2; s++) {
4412                 struct bio *b;
4413                 int d = r10_bio->devs[s/2].devnum;
4414                 struct md_rdev *rdev2;
4415                 if (s&1) {
4416                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4417                         b = r10_bio->devs[s/2].repl_bio;
4418                 } else {
4419                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4420                         b = r10_bio->devs[s/2].bio;
4421                 }
4422                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4423                         continue;
4424
4425                 b->bi_bdev = rdev2->bdev;
4426                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4427                         rdev2->new_data_offset;
4428                 b->bi_end_io = end_reshape_write;
4429                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4430                 b->bi_next = blist;
4431                 blist = b;
4432         }
4433
4434         /* Now add as many pages as possible to all of these bios. */
4435
4436         nr_sectors = 0;
4437         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4438         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4439                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4440                 int len = (max_sectors - s) << 9;
4441                 if (len > PAGE_SIZE)
4442                         len = PAGE_SIZE;
4443                 for (bio = blist; bio ; bio = bio->bi_next) {
4444                         /*
4445                          * won't fail because the vec table is big enough
4446                          * to hold all these pages
4447                          */
4448                         bio_add_page(bio, page, len, 0);
4449                 }
4450                 sector_nr += len >> 9;
4451                 nr_sectors += len >> 9;
4452         }
4453         rcu_read_unlock();
4454         r10_bio->sectors = nr_sectors;
4455
4456         /* Now submit the read */
4457         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4458         atomic_inc(&r10_bio->remaining);
4459         read_bio->bi_next = NULL;
4460         generic_make_request(read_bio);
4461         sector_nr += nr_sectors;
4462         sectors_done += nr_sectors;
4463         if (sector_nr <= last)
4464                 goto read_more;
4465
4466         /* Now that we have done the whole section we can
4467          * update reshape_progress
4468          */
4469         if (mddev->reshape_backwards)
4470                 conf->reshape_progress -= sectors_done;
4471         else
4472                 conf->reshape_progress += sectors_done;
4473
4474         return sectors_done;
4475 }
4476
4477 static void end_reshape_request(struct r10bio *r10_bio);
4478 static int handle_reshape_read_error(struct mddev *mddev,
4479                                      struct r10bio *r10_bio);
4480 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4481 {
4482         /* Reshape read completed.  Hopefully we have a block
4483          * to write out.
4484          * If we got a read error then we do sync 1-page reads from
4485          * elsewhere until we find the data - or give up.
4486          */
4487         struct r10conf *conf = mddev->private;
4488         int s;
4489
4490         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4491                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4492                         /* Reshape has been aborted */
4493                         md_done_sync(mddev, r10_bio->sectors, 0);
4494                         return;
4495                 }
4496
4497         /* We definitely have the data in the pages, schedule the
4498          * writes.
4499          */
4500         atomic_set(&r10_bio->remaining, 1);
4501         for (s = 0; s < conf->copies*2; s++) {
4502                 struct bio *b;
4503                 int d = r10_bio->devs[s/2].devnum;
4504                 struct md_rdev *rdev;
4505                 rcu_read_lock();
4506                 if (s&1) {
4507                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4508                         b = r10_bio->devs[s/2].repl_bio;
4509                 } else {
4510                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4511                         b = r10_bio->devs[s/2].bio;
4512                 }
4513                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4514                         rcu_read_unlock();
4515                         continue;
4516                 }
4517                 atomic_inc(&rdev->nr_pending);
4518                 rcu_read_unlock();
4519                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4520                 atomic_inc(&r10_bio->remaining);
4521                 b->bi_next = NULL;
4522                 generic_make_request(b);
4523         }
4524         end_reshape_request(r10_bio);
4525 }
4526
4527 static void end_reshape(struct r10conf *conf)
4528 {
4529         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4530                 return;
4531
4532         spin_lock_irq(&conf->device_lock);
4533         conf->prev = conf->geo;
4534         md_finish_reshape(conf->mddev);
4535         smp_wmb();
4536         conf->reshape_progress = MaxSector;
4537         conf->reshape_safe = MaxSector;
4538         spin_unlock_irq(&conf->device_lock);
4539
4540         /* read-ahead size must cover two whole stripes, which is
4541          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4542          */
4543         if (conf->mddev->queue) {
4544                 int stripe = conf->geo.raid_disks *
4545                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4546                 stripe /= conf->geo.near_copies;
4547                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4548                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4549         }
4550         conf->fullsync = 0;
4551 }
4552
4553 static int handle_reshape_read_error(struct mddev *mddev,
4554                                      struct r10bio *r10_bio)
4555 {
4556         /* Use sync reads to get the blocks from somewhere else */
4557         int sectors = r10_bio->sectors;
4558         struct r10conf *conf = mddev->private;
4559         struct {
4560                 struct r10bio r10_bio;
4561                 struct r10dev devs[conf->copies];
4562         } on_stack;
4563         struct r10bio *r10b = &on_stack.r10_bio;
4564         int slot = 0;
4565         int idx = 0;
4566         struct page **pages;
4567
4568         /* reshape IOs share pages from .devs[0].bio */
4569         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4570
4571         r10b->sector = r10_bio->sector;
4572         __raid10_find_phys(&conf->prev, r10b);
4573
4574         while (sectors) {
4575                 int s = sectors;
4576                 int success = 0;
4577                 int first_slot = slot;
4578
4579                 if (s > (PAGE_SIZE >> 9))
4580                         s = PAGE_SIZE >> 9;
4581
4582                 rcu_read_lock();
4583                 while (!success) {
4584                         int d = r10b->devs[slot].devnum;
4585                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4586                         sector_t addr;
4587                         if (rdev == NULL ||
4588                             test_bit(Faulty, &rdev->flags) ||
4589                             !test_bit(In_sync, &rdev->flags))
4590                                 goto failed;
4591
4592                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4593                         atomic_inc(&rdev->nr_pending);
4594                         rcu_read_unlock();
4595                         success = sync_page_io(rdev,
4596                                                addr,
4597                                                s << 9,
4598                                                pages[idx],
4599                                                REQ_OP_READ, 0, false);
4600                         rdev_dec_pending(rdev, mddev);
4601                         rcu_read_lock();
4602                         if (success)
4603                                 break;
4604                 failed:
4605                         slot++;
4606                         if (slot >= conf->copies)
4607                                 slot = 0;
4608                         if (slot == first_slot)
4609                                 break;
4610                 }
4611                 rcu_read_unlock();
4612                 if (!success) {
4613                         /* couldn't read this block, must give up */
4614                         set_bit(MD_RECOVERY_INTR,
4615                                 &mddev->recovery);
4616                         return -EIO;
4617                 }
4618                 sectors -= s;
4619                 idx++;
4620         }
4621         return 0;
4622 }
4623
4624 static void end_reshape_write(struct bio *bio)
4625 {
4626         struct r10bio *r10_bio = get_resync_r10bio(bio);
4627         struct mddev *mddev = r10_bio->mddev;
4628         struct r10conf *conf = mddev->private;
4629         int d;
4630         int slot;
4631         int repl;
4632         struct md_rdev *rdev = NULL;
4633
4634         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4635         if (repl)
4636                 rdev = conf->mirrors[d].replacement;
4637         if (!rdev) {
4638                 smp_mb();
4639                 rdev = conf->mirrors[d].rdev;
4640         }
4641
4642         if (bio->bi_error) {
4643                 /* FIXME should record badblock */
4644                 md_error(mddev, rdev);
4645         }
4646
4647         rdev_dec_pending(rdev, mddev);
4648         end_reshape_request(r10_bio);
4649 }
4650
4651 static void end_reshape_request(struct r10bio *r10_bio)
4652 {
4653         if (!atomic_dec_and_test(&r10_bio->remaining))
4654                 return;
4655         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4656         bio_put(r10_bio->master_bio);
4657         put_buf(r10_bio);
4658 }
4659
4660 static void raid10_finish_reshape(struct mddev *mddev)
4661 {
4662         struct r10conf *conf = mddev->private;
4663
4664         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4665                 return;
4666
4667         if (mddev->delta_disks > 0) {
4668                 sector_t size = raid10_size(mddev, 0, 0);
4669                 md_set_array_sectors(mddev, size);
4670                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4671                         mddev->recovery_cp = mddev->resync_max_sectors;
4672                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4673                 }
4674                 mddev->resync_max_sectors = size;
4675                 if (mddev->queue) {
4676                         set_capacity(mddev->gendisk, mddev->array_sectors);
4677                         revalidate_disk(mddev->gendisk);
4678                 }
4679         } else {
4680                 int d;
4681                 rcu_read_lock();
4682                 for (d = conf->geo.raid_disks ;
4683                      d < conf->geo.raid_disks - mddev->delta_disks;
4684                      d++) {
4685                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4686                         if (rdev)
4687                                 clear_bit(In_sync, &rdev->flags);
4688                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4689                         if (rdev)
4690                                 clear_bit(In_sync, &rdev->flags);
4691                 }
4692                 rcu_read_unlock();
4693         }
4694         mddev->layout = mddev->new_layout;
4695         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4696         mddev->reshape_position = MaxSector;
4697         mddev->delta_disks = 0;
4698         mddev->reshape_backwards = 0;
4699 }
4700
4701 static struct md_personality raid10_personality =
4702 {
4703         .name           = "raid10",
4704         .level          = 10,
4705         .owner          = THIS_MODULE,
4706         .make_request   = raid10_make_request,
4707         .run            = raid10_run,
4708         .free           = raid10_free,
4709         .status         = raid10_status,
4710         .error_handler  = raid10_error,
4711         .hot_add_disk   = raid10_add_disk,
4712         .hot_remove_disk= raid10_remove_disk,
4713         .spare_active   = raid10_spare_active,
4714         .sync_request   = raid10_sync_request,
4715         .quiesce        = raid10_quiesce,
4716         .size           = raid10_size,
4717         .resize         = raid10_resize,
4718         .takeover       = raid10_takeover,
4719         .check_reshape  = raid10_check_reshape,
4720         .start_reshape  = raid10_start_reshape,
4721         .finish_reshape = raid10_finish_reshape,
4722         .congested      = raid10_congested,
4723 };
4724
4725 static int __init raid_init(void)
4726 {
4727         return register_md_personality(&raid10_personality);
4728 }
4729
4730 static void raid_exit(void)
4731 {
4732         unregister_md_personality(&raid10_personality);
4733 }
4734
4735 module_init(raid_init);
4736 module_exit(raid_exit);
4737 MODULE_LICENSE("GPL");
4738 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4739 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4740 MODULE_ALIAS("md-raid10");
4741 MODULE_ALIAS("md-level-10");
4742
4743 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);