]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge branch 'ufs-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 /*
114  * 'strct resync_pages' stores actual pages used for doing the resync
115  *  IO, and it is per-bio, so make .bi_private points to it.
116  */
117 static inline struct resync_pages *get_resync_pages(struct bio *bio)
118 {
119         return bio->bi_private;
120 }
121
122 /*
123  * for resync bio, r10bio pointer can be retrieved from the per-bio
124  * 'struct resync_pages'.
125  */
126 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
127 {
128         return get_resync_pages(bio)->raid_bio;
129 }
130
131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133         struct r10conf *conf = data;
134         int size = offsetof(struct r10bio, devs[conf->copies]);
135
136         /* allocate a r10bio with room for raid_disks entries in the
137          * bios array */
138         return kzalloc(size, gfp_flags);
139 }
140
141 static void r10bio_pool_free(void *r10_bio, void *data)
142 {
143         kfree(r10_bio);
144 }
145
146 /* amount of memory to reserve for resync requests */
147 #define RESYNC_WINDOW (1024*1024)
148 /* maximum number of concurrent requests, memory permitting */
149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
150
151 /*
152  * When performing a resync, we need to read and compare, so
153  * we need as many pages are there are copies.
154  * When performing a recovery, we need 2 bios, one for read,
155  * one for write (we recover only one drive per r10buf)
156  *
157  */
158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
159 {
160         struct r10conf *conf = data;
161         struct r10bio *r10_bio;
162         struct bio *bio;
163         int j;
164         int nalloc, nalloc_rp;
165         struct resync_pages *rps;
166
167         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
168         if (!r10_bio)
169                 return NULL;
170
171         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
172             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
173                 nalloc = conf->copies; /* resync */
174         else
175                 nalloc = 2; /* recovery */
176
177         /* allocate once for all bios */
178         if (!conf->have_replacement)
179                 nalloc_rp = nalloc;
180         else
181                 nalloc_rp = nalloc * 2;
182         rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
183         if (!rps)
184                 goto out_free_r10bio;
185
186         /*
187          * Allocate bios.
188          */
189         for (j = nalloc ; j-- ; ) {
190                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
191                 if (!bio)
192                         goto out_free_bio;
193                 r10_bio->devs[j].bio = bio;
194                 if (!conf->have_replacement)
195                         continue;
196                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
197                 if (!bio)
198                         goto out_free_bio;
199                 r10_bio->devs[j].repl_bio = bio;
200         }
201         /*
202          * Allocate RESYNC_PAGES data pages and attach them
203          * where needed.
204          */
205         for (j = 0; j < nalloc; j++) {
206                 struct bio *rbio = r10_bio->devs[j].repl_bio;
207                 struct resync_pages *rp, *rp_repl;
208
209                 rp = &rps[j];
210                 if (rbio)
211                         rp_repl = &rps[nalloc + j];
212
213                 bio = r10_bio->devs[j].bio;
214
215                 if (!j || test_bit(MD_RECOVERY_SYNC,
216                                    &conf->mddev->recovery)) {
217                         if (resync_alloc_pages(rp, gfp_flags))
218                                 goto out_free_pages;
219                 } else {
220                         memcpy(rp, &rps[0], sizeof(*rp));
221                         resync_get_all_pages(rp);
222                 }
223
224                 rp->idx = 0;
225                 rp->raid_bio = r10_bio;
226                 bio->bi_private = rp;
227                 if (rbio) {
228                         memcpy(rp_repl, rp, sizeof(*rp));
229                         rbio->bi_private = rp_repl;
230                 }
231         }
232
233         return r10_bio;
234
235 out_free_pages:
236         while (--j >= 0)
237                 resync_free_pages(&rps[j * 2]);
238
239         j = 0;
240 out_free_bio:
241         for ( ; j < nalloc; j++) {
242                 if (r10_bio->devs[j].bio)
243                         bio_put(r10_bio->devs[j].bio);
244                 if (r10_bio->devs[j].repl_bio)
245                         bio_put(r10_bio->devs[j].repl_bio);
246         }
247         kfree(rps);
248 out_free_r10bio:
249         r10bio_pool_free(r10_bio, conf);
250         return NULL;
251 }
252
253 static void r10buf_pool_free(void *__r10_bio, void *data)
254 {
255         struct r10conf *conf = data;
256         struct r10bio *r10bio = __r10_bio;
257         int j;
258         struct resync_pages *rp = NULL;
259
260         for (j = conf->copies; j--; ) {
261                 struct bio *bio = r10bio->devs[j].bio;
262
263                 rp = get_resync_pages(bio);
264                 resync_free_pages(rp);
265                 bio_put(bio);
266
267                 bio = r10bio->devs[j].repl_bio;
268                 if (bio)
269                         bio_put(bio);
270         }
271
272         /* resync pages array stored in the 1st bio's .bi_private */
273         kfree(rp);
274
275         r10bio_pool_free(r10bio, conf);
276 }
277
278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
279 {
280         int i;
281
282         for (i = 0; i < conf->copies; i++) {
283                 struct bio **bio = & r10_bio->devs[i].bio;
284                 if (!BIO_SPECIAL(*bio))
285                         bio_put(*bio);
286                 *bio = NULL;
287                 bio = &r10_bio->devs[i].repl_bio;
288                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
289                         bio_put(*bio);
290                 *bio = NULL;
291         }
292 }
293
294 static void free_r10bio(struct r10bio *r10_bio)
295 {
296         struct r10conf *conf = r10_bio->mddev->private;
297
298         put_all_bios(conf, r10_bio);
299         mempool_free(r10_bio, conf->r10bio_pool);
300 }
301
302 static void put_buf(struct r10bio *r10_bio)
303 {
304         struct r10conf *conf = r10_bio->mddev->private;
305
306         mempool_free(r10_bio, conf->r10buf_pool);
307
308         lower_barrier(conf);
309 }
310
311 static void reschedule_retry(struct r10bio *r10_bio)
312 {
313         unsigned long flags;
314         struct mddev *mddev = r10_bio->mddev;
315         struct r10conf *conf = mddev->private;
316
317         spin_lock_irqsave(&conf->device_lock, flags);
318         list_add(&r10_bio->retry_list, &conf->retry_list);
319         conf->nr_queued ++;
320         spin_unlock_irqrestore(&conf->device_lock, flags);
321
322         /* wake up frozen array... */
323         wake_up(&conf->wait_barrier);
324
325         md_wakeup_thread(mddev->thread);
326 }
327
328 /*
329  * raid_end_bio_io() is called when we have finished servicing a mirrored
330  * operation and are ready to return a success/failure code to the buffer
331  * cache layer.
332  */
333 static void raid_end_bio_io(struct r10bio *r10_bio)
334 {
335         struct bio *bio = r10_bio->master_bio;
336         struct r10conf *conf = r10_bio->mddev->private;
337
338         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
339                 bio->bi_error = -EIO;
340
341         bio_endio(bio);
342         /*
343          * Wake up any possible resync thread that waits for the device
344          * to go idle.
345          */
346         allow_barrier(conf);
347
348         free_r10bio(r10_bio);
349 }
350
351 /*
352  * Update disk head position estimator based on IRQ completion info.
353  */
354 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
355 {
356         struct r10conf *conf = r10_bio->mddev->private;
357
358         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
359                 r10_bio->devs[slot].addr + (r10_bio->sectors);
360 }
361
362 /*
363  * Find the disk number which triggered given bio
364  */
365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
366                          struct bio *bio, int *slotp, int *replp)
367 {
368         int slot;
369         int repl = 0;
370
371         for (slot = 0; slot < conf->copies; slot++) {
372                 if (r10_bio->devs[slot].bio == bio)
373                         break;
374                 if (r10_bio->devs[slot].repl_bio == bio) {
375                         repl = 1;
376                         break;
377                 }
378         }
379
380         BUG_ON(slot == conf->copies);
381         update_head_pos(slot, r10_bio);
382
383         if (slotp)
384                 *slotp = slot;
385         if (replp)
386                 *replp = repl;
387         return r10_bio->devs[slot].devnum;
388 }
389
390 static void raid10_end_read_request(struct bio *bio)
391 {
392         int uptodate = !bio->bi_error;
393         struct r10bio *r10_bio = bio->bi_private;
394         int slot, dev;
395         struct md_rdev *rdev;
396         struct r10conf *conf = r10_bio->mddev->private;
397
398         slot = r10_bio->read_slot;
399         dev = r10_bio->devs[slot].devnum;
400         rdev = r10_bio->devs[slot].rdev;
401         /*
402          * this branch is our 'one mirror IO has finished' event handler:
403          */
404         update_head_pos(slot, r10_bio);
405
406         if (uptodate) {
407                 /*
408                  * Set R10BIO_Uptodate in our master bio, so that
409                  * we will return a good error code to the higher
410                  * levels even if IO on some other mirrored buffer fails.
411                  *
412                  * The 'master' represents the composite IO operation to
413                  * user-side. So if something waits for IO, then it will
414                  * wait for the 'master' bio.
415                  */
416                 set_bit(R10BIO_Uptodate, &r10_bio->state);
417         } else {
418                 /* If all other devices that store this block have
419                  * failed, we want to return the error upwards rather
420                  * than fail the last device.  Here we redefine
421                  * "uptodate" to mean "Don't want to retry"
422                  */
423                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
424                              rdev->raid_disk))
425                         uptodate = 1;
426         }
427         if (uptodate) {
428                 raid_end_bio_io(r10_bio);
429                 rdev_dec_pending(rdev, conf->mddev);
430         } else {
431                 /*
432                  * oops, read error - keep the refcount on the rdev
433                  */
434                 char b[BDEVNAME_SIZE];
435                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
436                                    mdname(conf->mddev),
437                                    bdevname(rdev->bdev, b),
438                                    (unsigned long long)r10_bio->sector);
439                 set_bit(R10BIO_ReadError, &r10_bio->state);
440                 reschedule_retry(r10_bio);
441         }
442 }
443
444 static void close_write(struct r10bio *r10_bio)
445 {
446         /* clear the bitmap if all writes complete successfully */
447         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
448                         r10_bio->sectors,
449                         !test_bit(R10BIO_Degraded, &r10_bio->state),
450                         0);
451         md_write_end(r10_bio->mddev);
452 }
453
454 static void one_write_done(struct r10bio *r10_bio)
455 {
456         if (atomic_dec_and_test(&r10_bio->remaining)) {
457                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
458                         reschedule_retry(r10_bio);
459                 else {
460                         close_write(r10_bio);
461                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
462                                 reschedule_retry(r10_bio);
463                         else
464                                 raid_end_bio_io(r10_bio);
465                 }
466         }
467 }
468
469 static void raid10_end_write_request(struct bio *bio)
470 {
471         struct r10bio *r10_bio = bio->bi_private;
472         int dev;
473         int dec_rdev = 1;
474         struct r10conf *conf = r10_bio->mddev->private;
475         int slot, repl;
476         struct md_rdev *rdev = NULL;
477         struct bio *to_put = NULL;
478         bool discard_error;
479
480         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
481
482         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
483
484         if (repl)
485                 rdev = conf->mirrors[dev].replacement;
486         if (!rdev) {
487                 smp_rmb();
488                 repl = 0;
489                 rdev = conf->mirrors[dev].rdev;
490         }
491         /*
492          * this branch is our 'one mirror IO has finished' event handler:
493          */
494         if (bio->bi_error && !discard_error) {
495                 if (repl)
496                         /* Never record new bad blocks to replacement,
497                          * just fail it.
498                          */
499                         md_error(rdev->mddev, rdev);
500                 else {
501                         set_bit(WriteErrorSeen, &rdev->flags);
502                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
503                                 set_bit(MD_RECOVERY_NEEDED,
504                                         &rdev->mddev->recovery);
505
506                         dec_rdev = 0;
507                         if (test_bit(FailFast, &rdev->flags) &&
508                             (bio->bi_opf & MD_FAILFAST)) {
509                                 md_error(rdev->mddev, rdev);
510                                 if (!test_bit(Faulty, &rdev->flags))
511                                         /* This is the only remaining device,
512                                          * We need to retry the write without
513                                          * FailFast
514                                          */
515                                         set_bit(R10BIO_WriteError, &r10_bio->state);
516                                 else {
517                                         r10_bio->devs[slot].bio = NULL;
518                                         to_put = bio;
519                                         dec_rdev = 1;
520                                 }
521                         } else
522                                 set_bit(R10BIO_WriteError, &r10_bio->state);
523                 }
524         } else {
525                 /*
526                  * Set R10BIO_Uptodate in our master bio, so that
527                  * we will return a good error code for to the higher
528                  * levels even if IO on some other mirrored buffer fails.
529                  *
530                  * The 'master' represents the composite IO operation to
531                  * user-side. So if something waits for IO, then it will
532                  * wait for the 'master' bio.
533                  */
534                 sector_t first_bad;
535                 int bad_sectors;
536
537                 /*
538                  * Do not set R10BIO_Uptodate if the current device is
539                  * rebuilding or Faulty. This is because we cannot use
540                  * such device for properly reading the data back (we could
541                  * potentially use it, if the current write would have felt
542                  * before rdev->recovery_offset, but for simplicity we don't
543                  * check this here.
544                  */
545                 if (test_bit(In_sync, &rdev->flags) &&
546                     !test_bit(Faulty, &rdev->flags))
547                         set_bit(R10BIO_Uptodate, &r10_bio->state);
548
549                 /* Maybe we can clear some bad blocks. */
550                 if (is_badblock(rdev,
551                                 r10_bio->devs[slot].addr,
552                                 r10_bio->sectors,
553                                 &first_bad, &bad_sectors) && !discard_error) {
554                         bio_put(bio);
555                         if (repl)
556                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
557                         else
558                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
559                         dec_rdev = 0;
560                         set_bit(R10BIO_MadeGood, &r10_bio->state);
561                 }
562         }
563
564         /*
565          *
566          * Let's see if all mirrored write operations have finished
567          * already.
568          */
569         one_write_done(r10_bio);
570         if (dec_rdev)
571                 rdev_dec_pending(rdev, conf->mddev);
572         if (to_put)
573                 bio_put(to_put);
574 }
575
576 /*
577  * RAID10 layout manager
578  * As well as the chunksize and raid_disks count, there are two
579  * parameters: near_copies and far_copies.
580  * near_copies * far_copies must be <= raid_disks.
581  * Normally one of these will be 1.
582  * If both are 1, we get raid0.
583  * If near_copies == raid_disks, we get raid1.
584  *
585  * Chunks are laid out in raid0 style with near_copies copies of the
586  * first chunk, followed by near_copies copies of the next chunk and
587  * so on.
588  * If far_copies > 1, then after 1/far_copies of the array has been assigned
589  * as described above, we start again with a device offset of near_copies.
590  * So we effectively have another copy of the whole array further down all
591  * the drives, but with blocks on different drives.
592  * With this layout, and block is never stored twice on the one device.
593  *
594  * raid10_find_phys finds the sector offset of a given virtual sector
595  * on each device that it is on.
596  *
597  * raid10_find_virt does the reverse mapping, from a device and a
598  * sector offset to a virtual address
599  */
600
601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
602 {
603         int n,f;
604         sector_t sector;
605         sector_t chunk;
606         sector_t stripe;
607         int dev;
608         int slot = 0;
609         int last_far_set_start, last_far_set_size;
610
611         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
612         last_far_set_start *= geo->far_set_size;
613
614         last_far_set_size = geo->far_set_size;
615         last_far_set_size += (geo->raid_disks % geo->far_set_size);
616
617         /* now calculate first sector/dev */
618         chunk = r10bio->sector >> geo->chunk_shift;
619         sector = r10bio->sector & geo->chunk_mask;
620
621         chunk *= geo->near_copies;
622         stripe = chunk;
623         dev = sector_div(stripe, geo->raid_disks);
624         if (geo->far_offset)
625                 stripe *= geo->far_copies;
626
627         sector += stripe << geo->chunk_shift;
628
629         /* and calculate all the others */
630         for (n = 0; n < geo->near_copies; n++) {
631                 int d = dev;
632                 int set;
633                 sector_t s = sector;
634                 r10bio->devs[slot].devnum = d;
635                 r10bio->devs[slot].addr = s;
636                 slot++;
637
638                 for (f = 1; f < geo->far_copies; f++) {
639                         set = d / geo->far_set_size;
640                         d += geo->near_copies;
641
642                         if ((geo->raid_disks % geo->far_set_size) &&
643                             (d > last_far_set_start)) {
644                                 d -= last_far_set_start;
645                                 d %= last_far_set_size;
646                                 d += last_far_set_start;
647                         } else {
648                                 d %= geo->far_set_size;
649                                 d += geo->far_set_size * set;
650                         }
651                         s += geo->stride;
652                         r10bio->devs[slot].devnum = d;
653                         r10bio->devs[slot].addr = s;
654                         slot++;
655                 }
656                 dev++;
657                 if (dev >= geo->raid_disks) {
658                         dev = 0;
659                         sector += (geo->chunk_mask + 1);
660                 }
661         }
662 }
663
664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
665 {
666         struct geom *geo = &conf->geo;
667
668         if (conf->reshape_progress != MaxSector &&
669             ((r10bio->sector >= conf->reshape_progress) !=
670              conf->mddev->reshape_backwards)) {
671                 set_bit(R10BIO_Previous, &r10bio->state);
672                 geo = &conf->prev;
673         } else
674                 clear_bit(R10BIO_Previous, &r10bio->state);
675
676         __raid10_find_phys(geo, r10bio);
677 }
678
679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
680 {
681         sector_t offset, chunk, vchunk;
682         /* Never use conf->prev as this is only called during resync
683          * or recovery, so reshape isn't happening
684          */
685         struct geom *geo = &conf->geo;
686         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
687         int far_set_size = geo->far_set_size;
688         int last_far_set_start;
689
690         if (geo->raid_disks % geo->far_set_size) {
691                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
692                 last_far_set_start *= geo->far_set_size;
693
694                 if (dev >= last_far_set_start) {
695                         far_set_size = geo->far_set_size;
696                         far_set_size += (geo->raid_disks % geo->far_set_size);
697                         far_set_start = last_far_set_start;
698                 }
699         }
700
701         offset = sector & geo->chunk_mask;
702         if (geo->far_offset) {
703                 int fc;
704                 chunk = sector >> geo->chunk_shift;
705                 fc = sector_div(chunk, geo->far_copies);
706                 dev -= fc * geo->near_copies;
707                 if (dev < far_set_start)
708                         dev += far_set_size;
709         } else {
710                 while (sector >= geo->stride) {
711                         sector -= geo->stride;
712                         if (dev < (geo->near_copies + far_set_start))
713                                 dev += far_set_size - geo->near_copies;
714                         else
715                                 dev -= geo->near_copies;
716                 }
717                 chunk = sector >> geo->chunk_shift;
718         }
719         vchunk = chunk * geo->raid_disks + dev;
720         sector_div(vchunk, geo->near_copies);
721         return (vchunk << geo->chunk_shift) + offset;
722 }
723
724 /*
725  * This routine returns the disk from which the requested read should
726  * be done. There is a per-array 'next expected sequential IO' sector
727  * number - if this matches on the next IO then we use the last disk.
728  * There is also a per-disk 'last know head position' sector that is
729  * maintained from IRQ contexts, both the normal and the resync IO
730  * completion handlers update this position correctly. If there is no
731  * perfect sequential match then we pick the disk whose head is closest.
732  *
733  * If there are 2 mirrors in the same 2 devices, performance degrades
734  * because position is mirror, not device based.
735  *
736  * The rdev for the device selected will have nr_pending incremented.
737  */
738
739 /*
740  * FIXME: possibly should rethink readbalancing and do it differently
741  * depending on near_copies / far_copies geometry.
742  */
743 static struct md_rdev *read_balance(struct r10conf *conf,
744                                     struct r10bio *r10_bio,
745                                     int *max_sectors)
746 {
747         const sector_t this_sector = r10_bio->sector;
748         int disk, slot;
749         int sectors = r10_bio->sectors;
750         int best_good_sectors;
751         sector_t new_distance, best_dist;
752         struct md_rdev *best_rdev, *rdev = NULL;
753         int do_balance;
754         int best_slot;
755         struct geom *geo = &conf->geo;
756
757         raid10_find_phys(conf, r10_bio);
758         rcu_read_lock();
759         sectors = r10_bio->sectors;
760         best_slot = -1;
761         best_rdev = NULL;
762         best_dist = MaxSector;
763         best_good_sectors = 0;
764         do_balance = 1;
765         clear_bit(R10BIO_FailFast, &r10_bio->state);
766         /*
767          * Check if we can balance. We can balance on the whole
768          * device if no resync is going on (recovery is ok), or below
769          * the resync window. We take the first readable disk when
770          * above the resync window.
771          */
772         if (conf->mddev->recovery_cp < MaxSector
773             && (this_sector + sectors >= conf->next_resync))
774                 do_balance = 0;
775
776         for (slot = 0; slot < conf->copies ; slot++) {
777                 sector_t first_bad;
778                 int bad_sectors;
779                 sector_t dev_sector;
780
781                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
782                         continue;
783                 disk = r10_bio->devs[slot].devnum;
784                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
785                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
786                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
787                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
788                 if (rdev == NULL ||
789                     test_bit(Faulty, &rdev->flags))
790                         continue;
791                 if (!test_bit(In_sync, &rdev->flags) &&
792                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
793                         continue;
794
795                 dev_sector = r10_bio->devs[slot].addr;
796                 if (is_badblock(rdev, dev_sector, sectors,
797                                 &first_bad, &bad_sectors)) {
798                         if (best_dist < MaxSector)
799                                 /* Already have a better slot */
800                                 continue;
801                         if (first_bad <= dev_sector) {
802                                 /* Cannot read here.  If this is the
803                                  * 'primary' device, then we must not read
804                                  * beyond 'bad_sectors' from another device.
805                                  */
806                                 bad_sectors -= (dev_sector - first_bad);
807                                 if (!do_balance && sectors > bad_sectors)
808                                         sectors = bad_sectors;
809                                 if (best_good_sectors > sectors)
810                                         best_good_sectors = sectors;
811                         } else {
812                                 sector_t good_sectors =
813                                         first_bad - dev_sector;
814                                 if (good_sectors > best_good_sectors) {
815                                         best_good_sectors = good_sectors;
816                                         best_slot = slot;
817                                         best_rdev = rdev;
818                                 }
819                                 if (!do_balance)
820                                         /* Must read from here */
821                                         break;
822                         }
823                         continue;
824                 } else
825                         best_good_sectors = sectors;
826
827                 if (!do_balance)
828                         break;
829
830                 if (best_slot >= 0)
831                         /* At least 2 disks to choose from so failfast is OK */
832                         set_bit(R10BIO_FailFast, &r10_bio->state);
833                 /* This optimisation is debatable, and completely destroys
834                  * sequential read speed for 'far copies' arrays.  So only
835                  * keep it for 'near' arrays, and review those later.
836                  */
837                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
838                         new_distance = 0;
839
840                 /* for far > 1 always use the lowest address */
841                 else if (geo->far_copies > 1)
842                         new_distance = r10_bio->devs[slot].addr;
843                 else
844                         new_distance = abs(r10_bio->devs[slot].addr -
845                                            conf->mirrors[disk].head_position);
846                 if (new_distance < best_dist) {
847                         best_dist = new_distance;
848                         best_slot = slot;
849                         best_rdev = rdev;
850                 }
851         }
852         if (slot >= conf->copies) {
853                 slot = best_slot;
854                 rdev = best_rdev;
855         }
856
857         if (slot >= 0) {
858                 atomic_inc(&rdev->nr_pending);
859                 r10_bio->read_slot = slot;
860         } else
861                 rdev = NULL;
862         rcu_read_unlock();
863         *max_sectors = best_good_sectors;
864
865         return rdev;
866 }
867
868 static int raid10_congested(struct mddev *mddev, int bits)
869 {
870         struct r10conf *conf = mddev->private;
871         int i, ret = 0;
872
873         if ((bits & (1 << WB_async_congested)) &&
874             conf->pending_count >= max_queued_requests)
875                 return 1;
876
877         rcu_read_lock();
878         for (i = 0;
879              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
880                      && ret == 0;
881              i++) {
882                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
883                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
884                         struct request_queue *q = bdev_get_queue(rdev->bdev);
885
886                         ret |= bdi_congested(q->backing_dev_info, bits);
887                 }
888         }
889         rcu_read_unlock();
890         return ret;
891 }
892
893 static void flush_pending_writes(struct r10conf *conf)
894 {
895         /* Any writes that have been queued but are awaiting
896          * bitmap updates get flushed here.
897          */
898         spin_lock_irq(&conf->device_lock);
899
900         if (conf->pending_bio_list.head) {
901                 struct bio *bio;
902                 bio = bio_list_get(&conf->pending_bio_list);
903                 conf->pending_count = 0;
904                 spin_unlock_irq(&conf->device_lock);
905                 /* flush any pending bitmap writes to disk
906                  * before proceeding w/ I/O */
907                 bitmap_unplug(conf->mddev->bitmap);
908                 wake_up(&conf->wait_barrier);
909
910                 while (bio) { /* submit pending writes */
911                         struct bio *next = bio->bi_next;
912                         struct md_rdev *rdev = (void*)bio->bi_bdev;
913                         bio->bi_next = NULL;
914                         bio->bi_bdev = rdev->bdev;
915                         if (test_bit(Faulty, &rdev->flags)) {
916                                 bio->bi_error = -EIO;
917                                 bio_endio(bio);
918                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
919                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
920                                 /* Just ignore it */
921                                 bio_endio(bio);
922                         else
923                                 generic_make_request(bio);
924                         bio = next;
925                 }
926         } else
927                 spin_unlock_irq(&conf->device_lock);
928 }
929
930 /* Barriers....
931  * Sometimes we need to suspend IO while we do something else,
932  * either some resync/recovery, or reconfigure the array.
933  * To do this we raise a 'barrier'.
934  * The 'barrier' is a counter that can be raised multiple times
935  * to count how many activities are happening which preclude
936  * normal IO.
937  * We can only raise the barrier if there is no pending IO.
938  * i.e. if nr_pending == 0.
939  * We choose only to raise the barrier if no-one is waiting for the
940  * barrier to go down.  This means that as soon as an IO request
941  * is ready, no other operations which require a barrier will start
942  * until the IO request has had a chance.
943  *
944  * So: regular IO calls 'wait_barrier'.  When that returns there
945  *    is no backgroup IO happening,  It must arrange to call
946  *    allow_barrier when it has finished its IO.
947  * backgroup IO calls must call raise_barrier.  Once that returns
948  *    there is no normal IO happeing.  It must arrange to call
949  *    lower_barrier when the particular background IO completes.
950  */
951
952 static void raise_barrier(struct r10conf *conf, int force)
953 {
954         BUG_ON(force && !conf->barrier);
955         spin_lock_irq(&conf->resync_lock);
956
957         /* Wait until no block IO is waiting (unless 'force') */
958         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
959                             conf->resync_lock);
960
961         /* block any new IO from starting */
962         conf->barrier++;
963
964         /* Now wait for all pending IO to complete */
965         wait_event_lock_irq(conf->wait_barrier,
966                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
967                             conf->resync_lock);
968
969         spin_unlock_irq(&conf->resync_lock);
970 }
971
972 static void lower_barrier(struct r10conf *conf)
973 {
974         unsigned long flags;
975         spin_lock_irqsave(&conf->resync_lock, flags);
976         conf->barrier--;
977         spin_unlock_irqrestore(&conf->resync_lock, flags);
978         wake_up(&conf->wait_barrier);
979 }
980
981 static void wait_barrier(struct r10conf *conf)
982 {
983         spin_lock_irq(&conf->resync_lock);
984         if (conf->barrier) {
985                 conf->nr_waiting++;
986                 /* Wait for the barrier to drop.
987                  * However if there are already pending
988                  * requests (preventing the barrier from
989                  * rising completely), and the
990                  * pre-process bio queue isn't empty,
991                  * then don't wait, as we need to empty
992                  * that queue to get the nr_pending
993                  * count down.
994                  */
995                 raid10_log(conf->mddev, "wait barrier");
996                 wait_event_lock_irq(conf->wait_barrier,
997                                     !conf->barrier ||
998                                     (atomic_read(&conf->nr_pending) &&
999                                      current->bio_list &&
1000                                      (!bio_list_empty(&current->bio_list[0]) ||
1001                                       !bio_list_empty(&current->bio_list[1]))),
1002                                     conf->resync_lock);
1003                 conf->nr_waiting--;
1004                 if (!conf->nr_waiting)
1005                         wake_up(&conf->wait_barrier);
1006         }
1007         atomic_inc(&conf->nr_pending);
1008         spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void allow_barrier(struct r10conf *conf)
1012 {
1013         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1014                         (conf->array_freeze_pending))
1015                 wake_up(&conf->wait_barrier);
1016 }
1017
1018 static void freeze_array(struct r10conf *conf, int extra)
1019 {
1020         /* stop syncio and normal IO and wait for everything to
1021          * go quiet.
1022          * We increment barrier and nr_waiting, and then
1023          * wait until nr_pending match nr_queued+extra
1024          * This is called in the context of one normal IO request
1025          * that has failed. Thus any sync request that might be pending
1026          * will be blocked by nr_pending, and we need to wait for
1027          * pending IO requests to complete or be queued for re-try.
1028          * Thus the number queued (nr_queued) plus this request (extra)
1029          * must match the number of pending IOs (nr_pending) before
1030          * we continue.
1031          */
1032         spin_lock_irq(&conf->resync_lock);
1033         conf->array_freeze_pending++;
1034         conf->barrier++;
1035         conf->nr_waiting++;
1036         wait_event_lock_irq_cmd(conf->wait_barrier,
1037                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1038                                 conf->resync_lock,
1039                                 flush_pending_writes(conf));
1040
1041         conf->array_freeze_pending--;
1042         spin_unlock_irq(&conf->resync_lock);
1043 }
1044
1045 static void unfreeze_array(struct r10conf *conf)
1046 {
1047         /* reverse the effect of the freeze */
1048         spin_lock_irq(&conf->resync_lock);
1049         conf->barrier--;
1050         conf->nr_waiting--;
1051         wake_up(&conf->wait_barrier);
1052         spin_unlock_irq(&conf->resync_lock);
1053 }
1054
1055 static sector_t choose_data_offset(struct r10bio *r10_bio,
1056                                    struct md_rdev *rdev)
1057 {
1058         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1059             test_bit(R10BIO_Previous, &r10_bio->state))
1060                 return rdev->data_offset;
1061         else
1062                 return rdev->new_data_offset;
1063 }
1064
1065 struct raid10_plug_cb {
1066         struct blk_plug_cb      cb;
1067         struct bio_list         pending;
1068         int                     pending_cnt;
1069 };
1070
1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1072 {
1073         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1074                                                    cb);
1075         struct mddev *mddev = plug->cb.data;
1076         struct r10conf *conf = mddev->private;
1077         struct bio *bio;
1078
1079         if (from_schedule || current->bio_list) {
1080                 spin_lock_irq(&conf->device_lock);
1081                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1082                 conf->pending_count += plug->pending_cnt;
1083                 spin_unlock_irq(&conf->device_lock);
1084                 wake_up(&conf->wait_barrier);
1085                 md_wakeup_thread(mddev->thread);
1086                 kfree(plug);
1087                 return;
1088         }
1089
1090         /* we aren't scheduling, so we can do the write-out directly. */
1091         bio = bio_list_get(&plug->pending);
1092         bitmap_unplug(mddev->bitmap);
1093         wake_up(&conf->wait_barrier);
1094
1095         while (bio) { /* submit pending writes */
1096                 struct bio *next = bio->bi_next;
1097                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1098                 bio->bi_next = NULL;
1099                 bio->bi_bdev = rdev->bdev;
1100                 if (test_bit(Faulty, &rdev->flags)) {
1101                         bio->bi_error = -EIO;
1102                         bio_endio(bio);
1103                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1104                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1105                         /* Just ignore it */
1106                         bio_endio(bio);
1107                 else
1108                         generic_make_request(bio);
1109                 bio = next;
1110         }
1111         kfree(plug);
1112 }
1113
1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1115                                 struct r10bio *r10_bio)
1116 {
1117         struct r10conf *conf = mddev->private;
1118         struct bio *read_bio;
1119         const int op = bio_op(bio);
1120         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1121         int max_sectors;
1122         sector_t sectors;
1123         struct md_rdev *rdev;
1124         char b[BDEVNAME_SIZE];
1125         int slot = r10_bio->read_slot;
1126         struct md_rdev *err_rdev = NULL;
1127         gfp_t gfp = GFP_NOIO;
1128
1129         if (r10_bio->devs[slot].rdev) {
1130                 /*
1131                  * This is an error retry, but we cannot
1132                  * safely dereference the rdev in the r10_bio,
1133                  * we must use the one in conf.
1134                  * If it has already been disconnected (unlikely)
1135                  * we lose the device name in error messages.
1136                  */
1137                 int disk;
1138                 /*
1139                  * As we are blocking raid10, it is a little safer to
1140                  * use __GFP_HIGH.
1141                  */
1142                 gfp = GFP_NOIO | __GFP_HIGH;
1143
1144                 rcu_read_lock();
1145                 disk = r10_bio->devs[slot].devnum;
1146                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1147                 if (err_rdev)
1148                         bdevname(err_rdev->bdev, b);
1149                 else {
1150                         strcpy(b, "???");
1151                         /* This never gets dereferenced */
1152                         err_rdev = r10_bio->devs[slot].rdev;
1153                 }
1154                 rcu_read_unlock();
1155         }
1156         /*
1157          * Register the new request and wait if the reconstruction
1158          * thread has put up a bar for new requests.
1159          * Continue immediately if no resync is active currently.
1160          */
1161         wait_barrier(conf);
1162
1163         sectors = r10_bio->sectors;
1164         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1165             bio->bi_iter.bi_sector < conf->reshape_progress &&
1166             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1167                 /*
1168                  * IO spans the reshape position.  Need to wait for reshape to
1169                  * pass
1170                  */
1171                 raid10_log(conf->mddev, "wait reshape");
1172                 allow_barrier(conf);
1173                 wait_event(conf->wait_barrier,
1174                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1175                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1176                            sectors);
1177                 wait_barrier(conf);
1178         }
1179
1180         rdev = read_balance(conf, r10_bio, &max_sectors);
1181         if (!rdev) {
1182                 if (err_rdev) {
1183                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1184                                             mdname(mddev), b,
1185                                             (unsigned long long)r10_bio->sector);
1186                 }
1187                 raid_end_bio_io(r10_bio);
1188                 return;
1189         }
1190         if (err_rdev)
1191                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1192                                    mdname(mddev),
1193                                    bdevname(rdev->bdev, b),
1194                                    (unsigned long long)r10_bio->sector);
1195         if (max_sectors < bio_sectors(bio)) {
1196                 struct bio *split = bio_split(bio, max_sectors,
1197                                               gfp, conf->bio_split);
1198                 bio_chain(split, bio);
1199                 generic_make_request(bio);
1200                 bio = split;
1201                 r10_bio->master_bio = bio;
1202                 r10_bio->sectors = max_sectors;
1203         }
1204         slot = r10_bio->read_slot;
1205
1206         read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1207
1208         r10_bio->devs[slot].bio = read_bio;
1209         r10_bio->devs[slot].rdev = rdev;
1210
1211         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1212                 choose_data_offset(r10_bio, rdev);
1213         read_bio->bi_bdev = rdev->bdev;
1214         read_bio->bi_end_io = raid10_end_read_request;
1215         bio_set_op_attrs(read_bio, op, do_sync);
1216         if (test_bit(FailFast, &rdev->flags) &&
1217             test_bit(R10BIO_FailFast, &r10_bio->state))
1218                 read_bio->bi_opf |= MD_FAILFAST;
1219         read_bio->bi_private = r10_bio;
1220
1221         if (mddev->gendisk)
1222                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1223                                       read_bio, disk_devt(mddev->gendisk),
1224                                       r10_bio->sector);
1225         generic_make_request(read_bio);
1226         return;
1227 }
1228
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230                                   struct bio *bio, bool replacement,
1231                                   int n_copy)
1232 {
1233         const int op = bio_op(bio);
1234         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1235         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1236         unsigned long flags;
1237         struct blk_plug_cb *cb;
1238         struct raid10_plug_cb *plug = NULL;
1239         struct r10conf *conf = mddev->private;
1240         struct md_rdev *rdev;
1241         int devnum = r10_bio->devs[n_copy].devnum;
1242         struct bio *mbio;
1243
1244         if (replacement) {
1245                 rdev = conf->mirrors[devnum].replacement;
1246                 if (rdev == NULL) {
1247                         /* Replacement just got moved to main 'rdev' */
1248                         smp_mb();
1249                         rdev = conf->mirrors[devnum].rdev;
1250                 }
1251         } else
1252                 rdev = conf->mirrors[devnum].rdev;
1253
1254         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1255         if (replacement)
1256                 r10_bio->devs[n_copy].repl_bio = mbio;
1257         else
1258                 r10_bio->devs[n_copy].bio = mbio;
1259
1260         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1261                                    choose_data_offset(r10_bio, rdev));
1262         mbio->bi_bdev = rdev->bdev;
1263         mbio->bi_end_io = raid10_end_write_request;
1264         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1265         if (!replacement && test_bit(FailFast,
1266                                      &conf->mirrors[devnum].rdev->flags)
1267                          && enough(conf, devnum))
1268                 mbio->bi_opf |= MD_FAILFAST;
1269         mbio->bi_private = r10_bio;
1270
1271         if (conf->mddev->gendisk)
1272                 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1273                                       mbio, disk_devt(conf->mddev->gendisk),
1274                                       r10_bio->sector);
1275         /* flush_pending_writes() needs access to the rdev so...*/
1276         mbio->bi_bdev = (void *)rdev;
1277
1278         atomic_inc(&r10_bio->remaining);
1279
1280         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1281         if (cb)
1282                 plug = container_of(cb, struct raid10_plug_cb, cb);
1283         else
1284                 plug = NULL;
1285         if (plug) {
1286                 bio_list_add(&plug->pending, mbio);
1287                 plug->pending_cnt++;
1288         } else {
1289                 spin_lock_irqsave(&conf->device_lock, flags);
1290                 bio_list_add(&conf->pending_bio_list, mbio);
1291                 conf->pending_count++;
1292                 spin_unlock_irqrestore(&conf->device_lock, flags);
1293                 md_wakeup_thread(mddev->thread);
1294         }
1295 }
1296
1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1298                                  struct r10bio *r10_bio)
1299 {
1300         struct r10conf *conf = mddev->private;
1301         int i;
1302         struct md_rdev *blocked_rdev;
1303         sector_t sectors;
1304         int max_sectors;
1305
1306         md_write_start(mddev, bio);
1307
1308         /*
1309          * Register the new request and wait if the reconstruction
1310          * thread has put up a bar for new requests.
1311          * Continue immediately if no resync is active currently.
1312          */
1313         wait_barrier(conf);
1314
1315         sectors = r10_bio->sectors;
1316         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1317             bio->bi_iter.bi_sector < conf->reshape_progress &&
1318             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1319                 /*
1320                  * IO spans the reshape position.  Need to wait for reshape to
1321                  * pass
1322                  */
1323                 raid10_log(conf->mddev, "wait reshape");
1324                 allow_barrier(conf);
1325                 wait_event(conf->wait_barrier,
1326                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1327                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1328                            sectors);
1329                 wait_barrier(conf);
1330         }
1331
1332         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1333             (mddev->reshape_backwards
1334              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1335                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1336              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1337                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1338                 /* Need to update reshape_position in metadata */
1339                 mddev->reshape_position = conf->reshape_progress;
1340                 set_mask_bits(&mddev->sb_flags, 0,
1341                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1342                 md_wakeup_thread(mddev->thread);
1343                 raid10_log(conf->mddev, "wait reshape metadata");
1344                 wait_event(mddev->sb_wait,
1345                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1346
1347                 conf->reshape_safe = mddev->reshape_position;
1348         }
1349
1350         if (conf->pending_count >= max_queued_requests) {
1351                 md_wakeup_thread(mddev->thread);
1352                 raid10_log(mddev, "wait queued");
1353                 wait_event(conf->wait_barrier,
1354                            conf->pending_count < max_queued_requests);
1355         }
1356         /* first select target devices under rcu_lock and
1357          * inc refcount on their rdev.  Record them by setting
1358          * bios[x] to bio
1359          * If there are known/acknowledged bad blocks on any device
1360          * on which we have seen a write error, we want to avoid
1361          * writing to those blocks.  This potentially requires several
1362          * writes to write around the bad blocks.  Each set of writes
1363          * gets its own r10_bio with a set of bios attached.
1364          */
1365
1366         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1367         raid10_find_phys(conf, r10_bio);
1368 retry_write:
1369         blocked_rdev = NULL;
1370         rcu_read_lock();
1371         max_sectors = r10_bio->sectors;
1372
1373         for (i = 0;  i < conf->copies; i++) {
1374                 int d = r10_bio->devs[i].devnum;
1375                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1376                 struct md_rdev *rrdev = rcu_dereference(
1377                         conf->mirrors[d].replacement);
1378                 if (rdev == rrdev)
1379                         rrdev = NULL;
1380                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1381                         atomic_inc(&rdev->nr_pending);
1382                         blocked_rdev = rdev;
1383                         break;
1384                 }
1385                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1386                         atomic_inc(&rrdev->nr_pending);
1387                         blocked_rdev = rrdev;
1388                         break;
1389                 }
1390                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1391                         rdev = NULL;
1392                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1393                         rrdev = NULL;
1394
1395                 r10_bio->devs[i].bio = NULL;
1396                 r10_bio->devs[i].repl_bio = NULL;
1397
1398                 if (!rdev && !rrdev) {
1399                         set_bit(R10BIO_Degraded, &r10_bio->state);
1400                         continue;
1401                 }
1402                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1403                         sector_t first_bad;
1404                         sector_t dev_sector = r10_bio->devs[i].addr;
1405                         int bad_sectors;
1406                         int is_bad;
1407
1408                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1409                                              &first_bad, &bad_sectors);
1410                         if (is_bad < 0) {
1411                                 /* Mustn't write here until the bad block
1412                                  * is acknowledged
1413                                  */
1414                                 atomic_inc(&rdev->nr_pending);
1415                                 set_bit(BlockedBadBlocks, &rdev->flags);
1416                                 blocked_rdev = rdev;
1417                                 break;
1418                         }
1419                         if (is_bad && first_bad <= dev_sector) {
1420                                 /* Cannot write here at all */
1421                                 bad_sectors -= (dev_sector - first_bad);
1422                                 if (bad_sectors < max_sectors)
1423                                         /* Mustn't write more than bad_sectors
1424                                          * to other devices yet
1425                                          */
1426                                         max_sectors = bad_sectors;
1427                                 /* We don't set R10BIO_Degraded as that
1428                                  * only applies if the disk is missing,
1429                                  * so it might be re-added, and we want to
1430                                  * know to recover this chunk.
1431                                  * In this case the device is here, and the
1432                                  * fact that this chunk is not in-sync is
1433                                  * recorded in the bad block log.
1434                                  */
1435                                 continue;
1436                         }
1437                         if (is_bad) {
1438                                 int good_sectors = first_bad - dev_sector;
1439                                 if (good_sectors < max_sectors)
1440                                         max_sectors = good_sectors;
1441                         }
1442                 }
1443                 if (rdev) {
1444                         r10_bio->devs[i].bio = bio;
1445                         atomic_inc(&rdev->nr_pending);
1446                 }
1447                 if (rrdev) {
1448                         r10_bio->devs[i].repl_bio = bio;
1449                         atomic_inc(&rrdev->nr_pending);
1450                 }
1451         }
1452         rcu_read_unlock();
1453
1454         if (unlikely(blocked_rdev)) {
1455                 /* Have to wait for this device to get unblocked, then retry */
1456                 int j;
1457                 int d;
1458
1459                 for (j = 0; j < i; j++) {
1460                         if (r10_bio->devs[j].bio) {
1461                                 d = r10_bio->devs[j].devnum;
1462                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1463                         }
1464                         if (r10_bio->devs[j].repl_bio) {
1465                                 struct md_rdev *rdev;
1466                                 d = r10_bio->devs[j].devnum;
1467                                 rdev = conf->mirrors[d].replacement;
1468                                 if (!rdev) {
1469                                         /* Race with remove_disk */
1470                                         smp_mb();
1471                                         rdev = conf->mirrors[d].rdev;
1472                                 }
1473                                 rdev_dec_pending(rdev, mddev);
1474                         }
1475                 }
1476                 allow_barrier(conf);
1477                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1478                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1479                 wait_barrier(conf);
1480                 goto retry_write;
1481         }
1482
1483         if (max_sectors < r10_bio->sectors)
1484                 r10_bio->sectors = max_sectors;
1485
1486         if (r10_bio->sectors < bio_sectors(bio)) {
1487                 struct bio *split = bio_split(bio, r10_bio->sectors,
1488                                               GFP_NOIO, conf->bio_split);
1489                 bio_chain(split, bio);
1490                 generic_make_request(bio);
1491                 bio = split;
1492                 r10_bio->master_bio = bio;
1493         }
1494
1495         atomic_set(&r10_bio->remaining, 1);
1496         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1497
1498         for (i = 0; i < conf->copies; i++) {
1499                 if (r10_bio->devs[i].bio)
1500                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1501                 if (r10_bio->devs[i].repl_bio)
1502                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1503         }
1504         one_write_done(r10_bio);
1505 }
1506
1507 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1508 {
1509         struct r10conf *conf = mddev->private;
1510         struct r10bio *r10_bio;
1511
1512         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1513
1514         r10_bio->master_bio = bio;
1515         r10_bio->sectors = sectors;
1516
1517         r10_bio->mddev = mddev;
1518         r10_bio->sector = bio->bi_iter.bi_sector;
1519         r10_bio->state = 0;
1520         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1521
1522         if (bio_data_dir(bio) == READ)
1523                 raid10_read_request(mddev, bio, r10_bio);
1524         else
1525                 raid10_write_request(mddev, bio, r10_bio);
1526 }
1527
1528 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1529 {
1530         struct r10conf *conf = mddev->private;
1531         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1532         int chunk_sects = chunk_mask + 1;
1533         int sectors = bio_sectors(bio);
1534
1535         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1536                 md_flush_request(mddev, bio);
1537                 return;
1538         }
1539
1540         /*
1541          * If this request crosses a chunk boundary, we need to split
1542          * it.
1543          */
1544         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1545                      sectors > chunk_sects
1546                      && (conf->geo.near_copies < conf->geo.raid_disks
1547                          || conf->prev.near_copies <
1548                          conf->prev.raid_disks)))
1549                 sectors = chunk_sects -
1550                         (bio->bi_iter.bi_sector &
1551                          (chunk_sects - 1));
1552         __make_request(mddev, bio, sectors);
1553
1554         /* In case raid10d snuck in to freeze_array */
1555         wake_up(&conf->wait_barrier);
1556 }
1557
1558 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1559 {
1560         struct r10conf *conf = mddev->private;
1561         int i;
1562
1563         if (conf->geo.near_copies < conf->geo.raid_disks)
1564                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1565         if (conf->geo.near_copies > 1)
1566                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1567         if (conf->geo.far_copies > 1) {
1568                 if (conf->geo.far_offset)
1569                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1570                 else
1571                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1572                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1573                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1574         }
1575         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1576                                         conf->geo.raid_disks - mddev->degraded);
1577         rcu_read_lock();
1578         for (i = 0; i < conf->geo.raid_disks; i++) {
1579                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1580                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581         }
1582         rcu_read_unlock();
1583         seq_printf(seq, "]");
1584 }
1585
1586 /* check if there are enough drives for
1587  * every block to appear on atleast one.
1588  * Don't consider the device numbered 'ignore'
1589  * as we might be about to remove it.
1590  */
1591 static int _enough(struct r10conf *conf, int previous, int ignore)
1592 {
1593         int first = 0;
1594         int has_enough = 0;
1595         int disks, ncopies;
1596         if (previous) {
1597                 disks = conf->prev.raid_disks;
1598                 ncopies = conf->prev.near_copies;
1599         } else {
1600                 disks = conf->geo.raid_disks;
1601                 ncopies = conf->geo.near_copies;
1602         }
1603
1604         rcu_read_lock();
1605         do {
1606                 int n = conf->copies;
1607                 int cnt = 0;
1608                 int this = first;
1609                 while (n--) {
1610                         struct md_rdev *rdev;
1611                         if (this != ignore &&
1612                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1613                             test_bit(In_sync, &rdev->flags))
1614                                 cnt++;
1615                         this = (this+1) % disks;
1616                 }
1617                 if (cnt == 0)
1618                         goto out;
1619                 first = (first + ncopies) % disks;
1620         } while (first != 0);
1621         has_enough = 1;
1622 out:
1623         rcu_read_unlock();
1624         return has_enough;
1625 }
1626
1627 static int enough(struct r10conf *conf, int ignore)
1628 {
1629         /* when calling 'enough', both 'prev' and 'geo' must
1630          * be stable.
1631          * This is ensured if ->reconfig_mutex or ->device_lock
1632          * is held.
1633          */
1634         return _enough(conf, 0, ignore) &&
1635                 _enough(conf, 1, ignore);
1636 }
1637
1638 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1639 {
1640         char b[BDEVNAME_SIZE];
1641         struct r10conf *conf = mddev->private;
1642         unsigned long flags;
1643
1644         /*
1645          * If it is not operational, then we have already marked it as dead
1646          * else if it is the last working disks, ignore the error, let the
1647          * next level up know.
1648          * else mark the drive as failed
1649          */
1650         spin_lock_irqsave(&conf->device_lock, flags);
1651         if (test_bit(In_sync, &rdev->flags)
1652             && !enough(conf, rdev->raid_disk)) {
1653                 /*
1654                  * Don't fail the drive, just return an IO error.
1655                  */
1656                 spin_unlock_irqrestore(&conf->device_lock, flags);
1657                 return;
1658         }
1659         if (test_and_clear_bit(In_sync, &rdev->flags))
1660                 mddev->degraded++;
1661         /*
1662          * If recovery is running, make sure it aborts.
1663          */
1664         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1665         set_bit(Blocked, &rdev->flags);
1666         set_bit(Faulty, &rdev->flags);
1667         set_mask_bits(&mddev->sb_flags, 0,
1668                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1669         spin_unlock_irqrestore(&conf->device_lock, flags);
1670         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1671                 "md/raid10:%s: Operation continuing on %d devices.\n",
1672                 mdname(mddev), bdevname(rdev->bdev, b),
1673                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1674 }
1675
1676 static void print_conf(struct r10conf *conf)
1677 {
1678         int i;
1679         struct md_rdev *rdev;
1680
1681         pr_debug("RAID10 conf printout:\n");
1682         if (!conf) {
1683                 pr_debug("(!conf)\n");
1684                 return;
1685         }
1686         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1687                  conf->geo.raid_disks);
1688
1689         /* This is only called with ->reconfix_mutex held, so
1690          * rcu protection of rdev is not needed */
1691         for (i = 0; i < conf->geo.raid_disks; i++) {
1692                 char b[BDEVNAME_SIZE];
1693                 rdev = conf->mirrors[i].rdev;
1694                 if (rdev)
1695                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1696                                  i, !test_bit(In_sync, &rdev->flags),
1697                                  !test_bit(Faulty, &rdev->flags),
1698                                  bdevname(rdev->bdev,b));
1699         }
1700 }
1701
1702 static void close_sync(struct r10conf *conf)
1703 {
1704         wait_barrier(conf);
1705         allow_barrier(conf);
1706
1707         mempool_destroy(conf->r10buf_pool);
1708         conf->r10buf_pool = NULL;
1709 }
1710
1711 static int raid10_spare_active(struct mddev *mddev)
1712 {
1713         int i;
1714         struct r10conf *conf = mddev->private;
1715         struct raid10_info *tmp;
1716         int count = 0;
1717         unsigned long flags;
1718
1719         /*
1720          * Find all non-in_sync disks within the RAID10 configuration
1721          * and mark them in_sync
1722          */
1723         for (i = 0; i < conf->geo.raid_disks; i++) {
1724                 tmp = conf->mirrors + i;
1725                 if (tmp->replacement
1726                     && tmp->replacement->recovery_offset == MaxSector
1727                     && !test_bit(Faulty, &tmp->replacement->flags)
1728                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1729                         /* Replacement has just become active */
1730                         if (!tmp->rdev
1731                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1732                                 count++;
1733                         if (tmp->rdev) {
1734                                 /* Replaced device not technically faulty,
1735                                  * but we need to be sure it gets removed
1736                                  * and never re-added.
1737                                  */
1738                                 set_bit(Faulty, &tmp->rdev->flags);
1739                                 sysfs_notify_dirent_safe(
1740                                         tmp->rdev->sysfs_state);
1741                         }
1742                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1743                 } else if (tmp->rdev
1744                            && tmp->rdev->recovery_offset == MaxSector
1745                            && !test_bit(Faulty, &tmp->rdev->flags)
1746                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1747                         count++;
1748                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1749                 }
1750         }
1751         spin_lock_irqsave(&conf->device_lock, flags);
1752         mddev->degraded -= count;
1753         spin_unlock_irqrestore(&conf->device_lock, flags);
1754
1755         print_conf(conf);
1756         return count;
1757 }
1758
1759 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1760 {
1761         struct r10conf *conf = mddev->private;
1762         int err = -EEXIST;
1763         int mirror;
1764         int first = 0;
1765         int last = conf->geo.raid_disks - 1;
1766
1767         if (mddev->recovery_cp < MaxSector)
1768                 /* only hot-add to in-sync arrays, as recovery is
1769                  * very different from resync
1770                  */
1771                 return -EBUSY;
1772         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1773                 return -EINVAL;
1774
1775         if (md_integrity_add_rdev(rdev, mddev))
1776                 return -ENXIO;
1777
1778         if (rdev->raid_disk >= 0)
1779                 first = last = rdev->raid_disk;
1780
1781         if (rdev->saved_raid_disk >= first &&
1782             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1783                 mirror = rdev->saved_raid_disk;
1784         else
1785                 mirror = first;
1786         for ( ; mirror <= last ; mirror++) {
1787                 struct raid10_info *p = &conf->mirrors[mirror];
1788                 if (p->recovery_disabled == mddev->recovery_disabled)
1789                         continue;
1790                 if (p->rdev) {
1791                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1792                             p->replacement != NULL)
1793                                 continue;
1794                         clear_bit(In_sync, &rdev->flags);
1795                         set_bit(Replacement, &rdev->flags);
1796                         rdev->raid_disk = mirror;
1797                         err = 0;
1798                         if (mddev->gendisk)
1799                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1800                                                   rdev->data_offset << 9);
1801                         conf->fullsync = 1;
1802                         rcu_assign_pointer(p->replacement, rdev);
1803                         break;
1804                 }
1805
1806                 if (mddev->gendisk)
1807                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1808                                           rdev->data_offset << 9);
1809
1810                 p->head_position = 0;
1811                 p->recovery_disabled = mddev->recovery_disabled - 1;
1812                 rdev->raid_disk = mirror;
1813                 err = 0;
1814                 if (rdev->saved_raid_disk != mirror)
1815                         conf->fullsync = 1;
1816                 rcu_assign_pointer(p->rdev, rdev);
1817                 break;
1818         }
1819         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1820                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1821
1822         print_conf(conf);
1823         return err;
1824 }
1825
1826 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1827 {
1828         struct r10conf *conf = mddev->private;
1829         int err = 0;
1830         int number = rdev->raid_disk;
1831         struct md_rdev **rdevp;
1832         struct raid10_info *p = conf->mirrors + number;
1833
1834         print_conf(conf);
1835         if (rdev == p->rdev)
1836                 rdevp = &p->rdev;
1837         else if (rdev == p->replacement)
1838                 rdevp = &p->replacement;
1839         else
1840                 return 0;
1841
1842         if (test_bit(In_sync, &rdev->flags) ||
1843             atomic_read(&rdev->nr_pending)) {
1844                 err = -EBUSY;
1845                 goto abort;
1846         }
1847         /* Only remove non-faulty devices if recovery
1848          * is not possible.
1849          */
1850         if (!test_bit(Faulty, &rdev->flags) &&
1851             mddev->recovery_disabled != p->recovery_disabled &&
1852             (!p->replacement || p->replacement == rdev) &&
1853             number < conf->geo.raid_disks &&
1854             enough(conf, -1)) {
1855                 err = -EBUSY;
1856                 goto abort;
1857         }
1858         *rdevp = NULL;
1859         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1860                 synchronize_rcu();
1861                 if (atomic_read(&rdev->nr_pending)) {
1862                         /* lost the race, try later */
1863                         err = -EBUSY;
1864                         *rdevp = rdev;
1865                         goto abort;
1866                 }
1867         }
1868         if (p->replacement) {
1869                 /* We must have just cleared 'rdev' */
1870                 p->rdev = p->replacement;
1871                 clear_bit(Replacement, &p->replacement->flags);
1872                 smp_mb(); /* Make sure other CPUs may see both as identical
1873                            * but will never see neither -- if they are careful.
1874                            */
1875                 p->replacement = NULL;
1876         }
1877
1878         clear_bit(WantReplacement, &rdev->flags);
1879         err = md_integrity_register(mddev);
1880
1881 abort:
1882
1883         print_conf(conf);
1884         return err;
1885 }
1886
1887 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1888 {
1889         struct r10conf *conf = r10_bio->mddev->private;
1890
1891         if (!bio->bi_error)
1892                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1893         else
1894                 /* The write handler will notice the lack of
1895                  * R10BIO_Uptodate and record any errors etc
1896                  */
1897                 atomic_add(r10_bio->sectors,
1898                            &conf->mirrors[d].rdev->corrected_errors);
1899
1900         /* for reconstruct, we always reschedule after a read.
1901          * for resync, only after all reads
1902          */
1903         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1904         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1905             atomic_dec_and_test(&r10_bio->remaining)) {
1906                 /* we have read all the blocks,
1907                  * do the comparison in process context in raid10d
1908                  */
1909                 reschedule_retry(r10_bio);
1910         }
1911 }
1912
1913 static void end_sync_read(struct bio *bio)
1914 {
1915         struct r10bio *r10_bio = get_resync_r10bio(bio);
1916         struct r10conf *conf = r10_bio->mddev->private;
1917         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1918
1919         __end_sync_read(r10_bio, bio, d);
1920 }
1921
1922 static void end_reshape_read(struct bio *bio)
1923 {
1924         /* reshape read bio isn't allocated from r10buf_pool */
1925         struct r10bio *r10_bio = bio->bi_private;
1926
1927         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1928 }
1929
1930 static void end_sync_request(struct r10bio *r10_bio)
1931 {
1932         struct mddev *mddev = r10_bio->mddev;
1933
1934         while (atomic_dec_and_test(&r10_bio->remaining)) {
1935                 if (r10_bio->master_bio == NULL) {
1936                         /* the primary of several recovery bios */
1937                         sector_t s = r10_bio->sectors;
1938                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1939                             test_bit(R10BIO_WriteError, &r10_bio->state))
1940                                 reschedule_retry(r10_bio);
1941                         else
1942                                 put_buf(r10_bio);
1943                         md_done_sync(mddev, s, 1);
1944                         break;
1945                 } else {
1946                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1947                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1948                             test_bit(R10BIO_WriteError, &r10_bio->state))
1949                                 reschedule_retry(r10_bio);
1950                         else
1951                                 put_buf(r10_bio);
1952                         r10_bio = r10_bio2;
1953                 }
1954         }
1955 }
1956
1957 static void end_sync_write(struct bio *bio)
1958 {
1959         struct r10bio *r10_bio = get_resync_r10bio(bio);
1960         struct mddev *mddev = r10_bio->mddev;
1961         struct r10conf *conf = mddev->private;
1962         int d;
1963         sector_t first_bad;
1964         int bad_sectors;
1965         int slot;
1966         int repl;
1967         struct md_rdev *rdev = NULL;
1968
1969         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1970         if (repl)
1971                 rdev = conf->mirrors[d].replacement;
1972         else
1973                 rdev = conf->mirrors[d].rdev;
1974
1975         if (bio->bi_error) {
1976                 if (repl)
1977                         md_error(mddev, rdev);
1978                 else {
1979                         set_bit(WriteErrorSeen, &rdev->flags);
1980                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1981                                 set_bit(MD_RECOVERY_NEEDED,
1982                                         &rdev->mddev->recovery);
1983                         set_bit(R10BIO_WriteError, &r10_bio->state);
1984                 }
1985         } else if (is_badblock(rdev,
1986                              r10_bio->devs[slot].addr,
1987                              r10_bio->sectors,
1988                              &first_bad, &bad_sectors))
1989                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1990
1991         rdev_dec_pending(rdev, mddev);
1992
1993         end_sync_request(r10_bio);
1994 }
1995
1996 /*
1997  * Note: sync and recover and handled very differently for raid10
1998  * This code is for resync.
1999  * For resync, we read through virtual addresses and read all blocks.
2000  * If there is any error, we schedule a write.  The lowest numbered
2001  * drive is authoritative.
2002  * However requests come for physical address, so we need to map.
2003  * For every physical address there are raid_disks/copies virtual addresses,
2004  * which is always are least one, but is not necessarly an integer.
2005  * This means that a physical address can span multiple chunks, so we may
2006  * have to submit multiple io requests for a single sync request.
2007  */
2008 /*
2009  * We check if all blocks are in-sync and only write to blocks that
2010  * aren't in sync
2011  */
2012 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2013 {
2014         struct r10conf *conf = mddev->private;
2015         int i, first;
2016         struct bio *tbio, *fbio;
2017         int vcnt;
2018         struct page **tpages, **fpages;
2019
2020         atomic_set(&r10_bio->remaining, 1);
2021
2022         /* find the first device with a block */
2023         for (i=0; i<conf->copies; i++)
2024                 if (!r10_bio->devs[i].bio->bi_error)
2025                         break;
2026
2027         if (i == conf->copies)
2028                 goto done;
2029
2030         first = i;
2031         fbio = r10_bio->devs[i].bio;
2032         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2033         fbio->bi_iter.bi_idx = 0;
2034         fpages = get_resync_pages(fbio)->pages;
2035
2036         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2037         /* now find blocks with errors */
2038         for (i=0 ; i < conf->copies ; i++) {
2039                 int  j, d;
2040                 struct md_rdev *rdev;
2041                 struct resync_pages *rp;
2042
2043                 tbio = r10_bio->devs[i].bio;
2044
2045                 if (tbio->bi_end_io != end_sync_read)
2046                         continue;
2047                 if (i == first)
2048                         continue;
2049
2050                 tpages = get_resync_pages(tbio)->pages;
2051                 d = r10_bio->devs[i].devnum;
2052                 rdev = conf->mirrors[d].rdev;
2053                 if (!r10_bio->devs[i].bio->bi_error) {
2054                         /* We know that the bi_io_vec layout is the same for
2055                          * both 'first' and 'i', so we just compare them.
2056                          * All vec entries are PAGE_SIZE;
2057                          */
2058                         int sectors = r10_bio->sectors;
2059                         for (j = 0; j < vcnt; j++) {
2060                                 int len = PAGE_SIZE;
2061                                 if (sectors < (len / 512))
2062                                         len = sectors * 512;
2063                                 if (memcmp(page_address(fpages[j]),
2064                                            page_address(tpages[j]),
2065                                            len))
2066                                         break;
2067                                 sectors -= len/512;
2068                         }
2069                         if (j == vcnt)
2070                                 continue;
2071                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2072                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2073                                 /* Don't fix anything. */
2074                                 continue;
2075                 } else if (test_bit(FailFast, &rdev->flags)) {
2076                         /* Just give up on this device */
2077                         md_error(rdev->mddev, rdev);
2078                         continue;
2079                 }
2080                 /* Ok, we need to write this bio, either to correct an
2081                  * inconsistency or to correct an unreadable block.
2082                  * First we need to fixup bv_offset, bv_len and
2083                  * bi_vecs, as the read request might have corrupted these
2084                  */
2085                 rp = get_resync_pages(tbio);
2086                 bio_reset(tbio);
2087
2088                 tbio->bi_vcnt = vcnt;
2089                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2090                 rp->raid_bio = r10_bio;
2091                 tbio->bi_private = rp;
2092                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2093                 tbio->bi_end_io = end_sync_write;
2094                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2095
2096                 bio_copy_data(tbio, fbio);
2097
2098                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2099                 atomic_inc(&r10_bio->remaining);
2100                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2101
2102                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2103                         tbio->bi_opf |= MD_FAILFAST;
2104                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2105                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2106                 generic_make_request(tbio);
2107         }
2108
2109         /* Now write out to any replacement devices
2110          * that are active
2111          */
2112         for (i = 0; i < conf->copies; i++) {
2113                 int d;
2114
2115                 tbio = r10_bio->devs[i].repl_bio;
2116                 if (!tbio || !tbio->bi_end_io)
2117                         continue;
2118                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2119                     && r10_bio->devs[i].bio != fbio)
2120                         bio_copy_data(tbio, fbio);
2121                 d = r10_bio->devs[i].devnum;
2122                 atomic_inc(&r10_bio->remaining);
2123                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2124                              bio_sectors(tbio));
2125                 generic_make_request(tbio);
2126         }
2127
2128 done:
2129         if (atomic_dec_and_test(&r10_bio->remaining)) {
2130                 md_done_sync(mddev, r10_bio->sectors, 1);
2131                 put_buf(r10_bio);
2132         }
2133 }
2134
2135 /*
2136  * Now for the recovery code.
2137  * Recovery happens across physical sectors.
2138  * We recover all non-is_sync drives by finding the virtual address of
2139  * each, and then choose a working drive that also has that virt address.
2140  * There is a separate r10_bio for each non-in_sync drive.
2141  * Only the first two slots are in use. The first for reading,
2142  * The second for writing.
2143  *
2144  */
2145 static void fix_recovery_read_error(struct r10bio *r10_bio)
2146 {
2147         /* We got a read error during recovery.
2148          * We repeat the read in smaller page-sized sections.
2149          * If a read succeeds, write it to the new device or record
2150          * a bad block if we cannot.
2151          * If a read fails, record a bad block on both old and
2152          * new devices.
2153          */
2154         struct mddev *mddev = r10_bio->mddev;
2155         struct r10conf *conf = mddev->private;
2156         struct bio *bio = r10_bio->devs[0].bio;
2157         sector_t sect = 0;
2158         int sectors = r10_bio->sectors;
2159         int idx = 0;
2160         int dr = r10_bio->devs[0].devnum;
2161         int dw = r10_bio->devs[1].devnum;
2162         struct page **pages = get_resync_pages(bio)->pages;
2163
2164         while (sectors) {
2165                 int s = sectors;
2166                 struct md_rdev *rdev;
2167                 sector_t addr;
2168                 int ok;
2169
2170                 if (s > (PAGE_SIZE>>9))
2171                         s = PAGE_SIZE >> 9;
2172
2173                 rdev = conf->mirrors[dr].rdev;
2174                 addr = r10_bio->devs[0].addr + sect,
2175                 ok = sync_page_io(rdev,
2176                                   addr,
2177                                   s << 9,
2178                                   pages[idx],
2179                                   REQ_OP_READ, 0, false);
2180                 if (ok) {
2181                         rdev = conf->mirrors[dw].rdev;
2182                         addr = r10_bio->devs[1].addr + sect;
2183                         ok = sync_page_io(rdev,
2184                                           addr,
2185                                           s << 9,
2186                                           pages[idx],
2187                                           REQ_OP_WRITE, 0, false);
2188                         if (!ok) {
2189                                 set_bit(WriteErrorSeen, &rdev->flags);
2190                                 if (!test_and_set_bit(WantReplacement,
2191                                                       &rdev->flags))
2192                                         set_bit(MD_RECOVERY_NEEDED,
2193                                                 &rdev->mddev->recovery);
2194                         }
2195                 }
2196                 if (!ok) {
2197                         /* We don't worry if we cannot set a bad block -
2198                          * it really is bad so there is no loss in not
2199                          * recording it yet
2200                          */
2201                         rdev_set_badblocks(rdev, addr, s, 0);
2202
2203                         if (rdev != conf->mirrors[dw].rdev) {
2204                                 /* need bad block on destination too */
2205                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2206                                 addr = r10_bio->devs[1].addr + sect;
2207                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2208                                 if (!ok) {
2209                                         /* just abort the recovery */
2210                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2211                                                   mdname(mddev));
2212
2213                                         conf->mirrors[dw].recovery_disabled
2214                                                 = mddev->recovery_disabled;
2215                                         set_bit(MD_RECOVERY_INTR,
2216                                                 &mddev->recovery);
2217                                         break;
2218                                 }
2219                         }
2220                 }
2221
2222                 sectors -= s;
2223                 sect += s;
2224                 idx++;
2225         }
2226 }
2227
2228 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2229 {
2230         struct r10conf *conf = mddev->private;
2231         int d;
2232         struct bio *wbio, *wbio2;
2233
2234         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2235                 fix_recovery_read_error(r10_bio);
2236                 end_sync_request(r10_bio);
2237                 return;
2238         }
2239
2240         /*
2241          * share the pages with the first bio
2242          * and submit the write request
2243          */
2244         d = r10_bio->devs[1].devnum;
2245         wbio = r10_bio->devs[1].bio;
2246         wbio2 = r10_bio->devs[1].repl_bio;
2247         /* Need to test wbio2->bi_end_io before we call
2248          * generic_make_request as if the former is NULL,
2249          * the latter is free to free wbio2.
2250          */
2251         if (wbio2 && !wbio2->bi_end_io)
2252                 wbio2 = NULL;
2253         if (wbio->bi_end_io) {
2254                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2255                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2256                 generic_make_request(wbio);
2257         }
2258         if (wbio2) {
2259                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2260                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2261                              bio_sectors(wbio2));
2262                 generic_make_request(wbio2);
2263         }
2264 }
2265
2266 /*
2267  * Used by fix_read_error() to decay the per rdev read_errors.
2268  * We halve the read error count for every hour that has elapsed
2269  * since the last recorded read error.
2270  *
2271  */
2272 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2273 {
2274         long cur_time_mon;
2275         unsigned long hours_since_last;
2276         unsigned int read_errors = atomic_read(&rdev->read_errors);
2277
2278         cur_time_mon = ktime_get_seconds();
2279
2280         if (rdev->last_read_error == 0) {
2281                 /* first time we've seen a read error */
2282                 rdev->last_read_error = cur_time_mon;
2283                 return;
2284         }
2285
2286         hours_since_last = (long)(cur_time_mon -
2287                             rdev->last_read_error) / 3600;
2288
2289         rdev->last_read_error = cur_time_mon;
2290
2291         /*
2292          * if hours_since_last is > the number of bits in read_errors
2293          * just set read errors to 0. We do this to avoid
2294          * overflowing the shift of read_errors by hours_since_last.
2295          */
2296         if (hours_since_last >= 8 * sizeof(read_errors))
2297                 atomic_set(&rdev->read_errors, 0);
2298         else
2299                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2300 }
2301
2302 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2303                             int sectors, struct page *page, int rw)
2304 {
2305         sector_t first_bad;
2306         int bad_sectors;
2307
2308         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2309             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2310                 return -1;
2311         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2312                 /* success */
2313                 return 1;
2314         if (rw == WRITE) {
2315                 set_bit(WriteErrorSeen, &rdev->flags);
2316                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2317                         set_bit(MD_RECOVERY_NEEDED,
2318                                 &rdev->mddev->recovery);
2319         }
2320         /* need to record an error - either for the block or the device */
2321         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2322                 md_error(rdev->mddev, rdev);
2323         return 0;
2324 }
2325
2326 /*
2327  * This is a kernel thread which:
2328  *
2329  *      1.      Retries failed read operations on working mirrors.
2330  *      2.      Updates the raid superblock when problems encounter.
2331  *      3.      Performs writes following reads for array synchronising.
2332  */
2333
2334 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2335 {
2336         int sect = 0; /* Offset from r10_bio->sector */
2337         int sectors = r10_bio->sectors;
2338         struct md_rdev*rdev;
2339         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2340         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2341
2342         /* still own a reference to this rdev, so it cannot
2343          * have been cleared recently.
2344          */
2345         rdev = conf->mirrors[d].rdev;
2346
2347         if (test_bit(Faulty, &rdev->flags))
2348                 /* drive has already been failed, just ignore any
2349                    more fix_read_error() attempts */
2350                 return;
2351
2352         check_decay_read_errors(mddev, rdev);
2353         atomic_inc(&rdev->read_errors);
2354         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2355                 char b[BDEVNAME_SIZE];
2356                 bdevname(rdev->bdev, b);
2357
2358                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2359                           mdname(mddev), b,
2360                           atomic_read(&rdev->read_errors), max_read_errors);
2361                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2362                           mdname(mddev), b);
2363                 md_error(mddev, rdev);
2364                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2365                 return;
2366         }
2367
2368         while(sectors) {
2369                 int s = sectors;
2370                 int sl = r10_bio->read_slot;
2371                 int success = 0;
2372                 int start;
2373
2374                 if (s > (PAGE_SIZE>>9))
2375                         s = PAGE_SIZE >> 9;
2376
2377                 rcu_read_lock();
2378                 do {
2379                         sector_t first_bad;
2380                         int bad_sectors;
2381
2382                         d = r10_bio->devs[sl].devnum;
2383                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2384                         if (rdev &&
2385                             test_bit(In_sync, &rdev->flags) &&
2386                             !test_bit(Faulty, &rdev->flags) &&
2387                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2388                                         &first_bad, &bad_sectors) == 0) {
2389                                 atomic_inc(&rdev->nr_pending);
2390                                 rcu_read_unlock();
2391                                 success = sync_page_io(rdev,
2392                                                        r10_bio->devs[sl].addr +
2393                                                        sect,
2394                                                        s<<9,
2395                                                        conf->tmppage,
2396                                                        REQ_OP_READ, 0, false);
2397                                 rdev_dec_pending(rdev, mddev);
2398                                 rcu_read_lock();
2399                                 if (success)
2400                                         break;
2401                         }
2402                         sl++;
2403                         if (sl == conf->copies)
2404                                 sl = 0;
2405                 } while (!success && sl != r10_bio->read_slot);
2406                 rcu_read_unlock();
2407
2408                 if (!success) {
2409                         /* Cannot read from anywhere, just mark the block
2410                          * as bad on the first device to discourage future
2411                          * reads.
2412                          */
2413                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2414                         rdev = conf->mirrors[dn].rdev;
2415
2416                         if (!rdev_set_badblocks(
2417                                     rdev,
2418                                     r10_bio->devs[r10_bio->read_slot].addr
2419                                     + sect,
2420                                     s, 0)) {
2421                                 md_error(mddev, rdev);
2422                                 r10_bio->devs[r10_bio->read_slot].bio
2423                                         = IO_BLOCKED;
2424                         }
2425                         break;
2426                 }
2427
2428                 start = sl;
2429                 /* write it back and re-read */
2430                 rcu_read_lock();
2431                 while (sl != r10_bio->read_slot) {
2432                         char b[BDEVNAME_SIZE];
2433
2434                         if (sl==0)
2435                                 sl = conf->copies;
2436                         sl--;
2437                         d = r10_bio->devs[sl].devnum;
2438                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2439                         if (!rdev ||
2440                             test_bit(Faulty, &rdev->flags) ||
2441                             !test_bit(In_sync, &rdev->flags))
2442                                 continue;
2443
2444                         atomic_inc(&rdev->nr_pending);
2445                         rcu_read_unlock();
2446                         if (r10_sync_page_io(rdev,
2447                                              r10_bio->devs[sl].addr +
2448                                              sect,
2449                                              s, conf->tmppage, WRITE)
2450                             == 0) {
2451                                 /* Well, this device is dead */
2452                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2453                                           mdname(mddev), s,
2454                                           (unsigned long long)(
2455                                                   sect +
2456                                                   choose_data_offset(r10_bio,
2457                                                                      rdev)),
2458                                           bdevname(rdev->bdev, b));
2459                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2460                                           mdname(mddev),
2461                                           bdevname(rdev->bdev, b));
2462                         }
2463                         rdev_dec_pending(rdev, mddev);
2464                         rcu_read_lock();
2465                 }
2466                 sl = start;
2467                 while (sl != r10_bio->read_slot) {
2468                         char b[BDEVNAME_SIZE];
2469
2470                         if (sl==0)
2471                                 sl = conf->copies;
2472                         sl--;
2473                         d = r10_bio->devs[sl].devnum;
2474                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2475                         if (!rdev ||
2476                             test_bit(Faulty, &rdev->flags) ||
2477                             !test_bit(In_sync, &rdev->flags))
2478                                 continue;
2479
2480                         atomic_inc(&rdev->nr_pending);
2481                         rcu_read_unlock();
2482                         switch (r10_sync_page_io(rdev,
2483                                              r10_bio->devs[sl].addr +
2484                                              sect,
2485                                              s, conf->tmppage,
2486                                                  READ)) {
2487                         case 0:
2488                                 /* Well, this device is dead */
2489                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2490                                        mdname(mddev), s,
2491                                        (unsigned long long)(
2492                                                sect +
2493                                                choose_data_offset(r10_bio, rdev)),
2494                                        bdevname(rdev->bdev, b));
2495                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2496                                        mdname(mddev),
2497                                        bdevname(rdev->bdev, b));
2498                                 break;
2499                         case 1:
2500                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2501                                        mdname(mddev), s,
2502                                        (unsigned long long)(
2503                                                sect +
2504                                                choose_data_offset(r10_bio, rdev)),
2505                                        bdevname(rdev->bdev, b));
2506                                 atomic_add(s, &rdev->corrected_errors);
2507                         }
2508
2509                         rdev_dec_pending(rdev, mddev);
2510                         rcu_read_lock();
2511                 }
2512                 rcu_read_unlock();
2513
2514                 sectors -= s;
2515                 sect += s;
2516         }
2517 }
2518
2519 static int narrow_write_error(struct r10bio *r10_bio, int i)
2520 {
2521         struct bio *bio = r10_bio->master_bio;
2522         struct mddev *mddev = r10_bio->mddev;
2523         struct r10conf *conf = mddev->private;
2524         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2525         /* bio has the data to be written to slot 'i' where
2526          * we just recently had a write error.
2527          * We repeatedly clone the bio and trim down to one block,
2528          * then try the write.  Where the write fails we record
2529          * a bad block.
2530          * It is conceivable that the bio doesn't exactly align with
2531          * blocks.  We must handle this.
2532          *
2533          * We currently own a reference to the rdev.
2534          */
2535
2536         int block_sectors;
2537         sector_t sector;
2538         int sectors;
2539         int sect_to_write = r10_bio->sectors;
2540         int ok = 1;
2541
2542         if (rdev->badblocks.shift < 0)
2543                 return 0;
2544
2545         block_sectors = roundup(1 << rdev->badblocks.shift,
2546                                 bdev_logical_block_size(rdev->bdev) >> 9);
2547         sector = r10_bio->sector;
2548         sectors = ((r10_bio->sector + block_sectors)
2549                    & ~(sector_t)(block_sectors - 1))
2550                 - sector;
2551
2552         while (sect_to_write) {
2553                 struct bio *wbio;
2554                 sector_t wsector;
2555                 if (sectors > sect_to_write)
2556                         sectors = sect_to_write;
2557                 /* Write at 'sector' for 'sectors' */
2558                 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2559                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2560                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2561                 wbio->bi_iter.bi_sector = wsector +
2562                                    choose_data_offset(r10_bio, rdev);
2563                 wbio->bi_bdev = rdev->bdev;
2564                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2565
2566                 if (submit_bio_wait(wbio) < 0)
2567                         /* Failure! */
2568                         ok = rdev_set_badblocks(rdev, wsector,
2569                                                 sectors, 0)
2570                                 && ok;
2571
2572                 bio_put(wbio);
2573                 sect_to_write -= sectors;
2574                 sector += sectors;
2575                 sectors = block_sectors;
2576         }
2577         return ok;
2578 }
2579
2580 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2581 {
2582         int slot = r10_bio->read_slot;
2583         struct bio *bio;
2584         struct r10conf *conf = mddev->private;
2585         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2586         dev_t bio_dev;
2587         sector_t bio_last_sector;
2588
2589         /* we got a read error. Maybe the drive is bad.  Maybe just
2590          * the block and we can fix it.
2591          * We freeze all other IO, and try reading the block from
2592          * other devices.  When we find one, we re-write
2593          * and check it that fixes the read error.
2594          * This is all done synchronously while the array is
2595          * frozen.
2596          */
2597         bio = r10_bio->devs[slot].bio;
2598         bio_dev = bio->bi_bdev->bd_dev;
2599         bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2600         bio_put(bio);
2601         r10_bio->devs[slot].bio = NULL;
2602
2603         if (mddev->ro)
2604                 r10_bio->devs[slot].bio = IO_BLOCKED;
2605         else if (!test_bit(FailFast, &rdev->flags)) {
2606                 freeze_array(conf, 1);
2607                 fix_read_error(conf, mddev, r10_bio);
2608                 unfreeze_array(conf);
2609         } else
2610                 md_error(mddev, rdev);
2611
2612         rdev_dec_pending(rdev, mddev);
2613         allow_barrier(conf);
2614         r10_bio->state = 0;
2615         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2616 }
2617
2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2619 {
2620         /* Some sort of write request has finished and it
2621          * succeeded in writing where we thought there was a
2622          * bad block.  So forget the bad block.
2623          * Or possibly if failed and we need to record
2624          * a bad block.
2625          */
2626         int m;
2627         struct md_rdev *rdev;
2628
2629         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2630             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2631                 for (m = 0; m < conf->copies; m++) {
2632                         int dev = r10_bio->devs[m].devnum;
2633                         rdev = conf->mirrors[dev].rdev;
2634                         if (r10_bio->devs[m].bio == NULL)
2635                                 continue;
2636                         if (!r10_bio->devs[m].bio->bi_error) {
2637                                 rdev_clear_badblocks(
2638                                         rdev,
2639                                         r10_bio->devs[m].addr,
2640                                         r10_bio->sectors, 0);
2641                         } else {
2642                                 if (!rdev_set_badblocks(
2643                                             rdev,
2644                                             r10_bio->devs[m].addr,
2645                                             r10_bio->sectors, 0))
2646                                         md_error(conf->mddev, rdev);
2647                         }
2648                         rdev = conf->mirrors[dev].replacement;
2649                         if (r10_bio->devs[m].repl_bio == NULL)
2650                                 continue;
2651
2652                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2653                                 rdev_clear_badblocks(
2654                                         rdev,
2655                                         r10_bio->devs[m].addr,
2656                                         r10_bio->sectors, 0);
2657                         } else {
2658                                 if (!rdev_set_badblocks(
2659                                             rdev,
2660                                             r10_bio->devs[m].addr,
2661                                             r10_bio->sectors, 0))
2662                                         md_error(conf->mddev, rdev);
2663                         }
2664                 }
2665                 put_buf(r10_bio);
2666         } else {
2667                 bool fail = false;
2668                 for (m = 0; m < conf->copies; m++) {
2669                         int dev = r10_bio->devs[m].devnum;
2670                         struct bio *bio = r10_bio->devs[m].bio;
2671                         rdev = conf->mirrors[dev].rdev;
2672                         if (bio == IO_MADE_GOOD) {
2673                                 rdev_clear_badblocks(
2674                                         rdev,
2675                                         r10_bio->devs[m].addr,
2676                                         r10_bio->sectors, 0);
2677                                 rdev_dec_pending(rdev, conf->mddev);
2678                         } else if (bio != NULL && bio->bi_error) {
2679                                 fail = true;
2680                                 if (!narrow_write_error(r10_bio, m)) {
2681                                         md_error(conf->mddev, rdev);
2682                                         set_bit(R10BIO_Degraded,
2683                                                 &r10_bio->state);
2684                                 }
2685                                 rdev_dec_pending(rdev, conf->mddev);
2686                         }
2687                         bio = r10_bio->devs[m].repl_bio;
2688                         rdev = conf->mirrors[dev].replacement;
2689                         if (rdev && bio == IO_MADE_GOOD) {
2690                                 rdev_clear_badblocks(
2691                                         rdev,
2692                                         r10_bio->devs[m].addr,
2693                                         r10_bio->sectors, 0);
2694                                 rdev_dec_pending(rdev, conf->mddev);
2695                         }
2696                 }
2697                 if (fail) {
2698                         spin_lock_irq(&conf->device_lock);
2699                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2700                         conf->nr_queued++;
2701                         spin_unlock_irq(&conf->device_lock);
2702                         /*
2703                          * In case freeze_array() is waiting for condition
2704                          * nr_pending == nr_queued + extra to be true.
2705                          */
2706                         wake_up(&conf->wait_barrier);
2707                         md_wakeup_thread(conf->mddev->thread);
2708                 } else {
2709                         if (test_bit(R10BIO_WriteError,
2710                                      &r10_bio->state))
2711                                 close_write(r10_bio);
2712                         raid_end_bio_io(r10_bio);
2713                 }
2714         }
2715 }
2716
2717 static void raid10d(struct md_thread *thread)
2718 {
2719         struct mddev *mddev = thread->mddev;
2720         struct r10bio *r10_bio;
2721         unsigned long flags;
2722         struct r10conf *conf = mddev->private;
2723         struct list_head *head = &conf->retry_list;
2724         struct blk_plug plug;
2725
2726         md_check_recovery(mddev);
2727
2728         if (!list_empty_careful(&conf->bio_end_io_list) &&
2729             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2730                 LIST_HEAD(tmp);
2731                 spin_lock_irqsave(&conf->device_lock, flags);
2732                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2733                         while (!list_empty(&conf->bio_end_io_list)) {
2734                                 list_move(conf->bio_end_io_list.prev, &tmp);
2735                                 conf->nr_queued--;
2736                         }
2737                 }
2738                 spin_unlock_irqrestore(&conf->device_lock, flags);
2739                 while (!list_empty(&tmp)) {
2740                         r10_bio = list_first_entry(&tmp, struct r10bio,
2741                                                    retry_list);
2742                         list_del(&r10_bio->retry_list);
2743                         if (mddev->degraded)
2744                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2745
2746                         if (test_bit(R10BIO_WriteError,
2747                                      &r10_bio->state))
2748                                 close_write(r10_bio);
2749                         raid_end_bio_io(r10_bio);
2750                 }
2751         }
2752
2753         blk_start_plug(&plug);
2754         for (;;) {
2755
2756                 flush_pending_writes(conf);
2757
2758                 spin_lock_irqsave(&conf->device_lock, flags);
2759                 if (list_empty(head)) {
2760                         spin_unlock_irqrestore(&conf->device_lock, flags);
2761                         break;
2762                 }
2763                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2764                 list_del(head->prev);
2765                 conf->nr_queued--;
2766                 spin_unlock_irqrestore(&conf->device_lock, flags);
2767
2768                 mddev = r10_bio->mddev;
2769                 conf = mddev->private;
2770                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2771                     test_bit(R10BIO_WriteError, &r10_bio->state))
2772                         handle_write_completed(conf, r10_bio);
2773                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2774                         reshape_request_write(mddev, r10_bio);
2775                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2776                         sync_request_write(mddev, r10_bio);
2777                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2778                         recovery_request_write(mddev, r10_bio);
2779                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2780                         handle_read_error(mddev, r10_bio);
2781                 else
2782                         WARN_ON_ONCE(1);
2783
2784                 cond_resched();
2785                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2786                         md_check_recovery(mddev);
2787         }
2788         blk_finish_plug(&plug);
2789 }
2790
2791 static int init_resync(struct r10conf *conf)
2792 {
2793         int buffs;
2794         int i;
2795
2796         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2797         BUG_ON(conf->r10buf_pool);
2798         conf->have_replacement = 0;
2799         for (i = 0; i < conf->geo.raid_disks; i++)
2800                 if (conf->mirrors[i].replacement)
2801                         conf->have_replacement = 1;
2802         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2803         if (!conf->r10buf_pool)
2804                 return -ENOMEM;
2805         conf->next_resync = 0;
2806         return 0;
2807 }
2808
2809 /*
2810  * perform a "sync" on one "block"
2811  *
2812  * We need to make sure that no normal I/O request - particularly write
2813  * requests - conflict with active sync requests.
2814  *
2815  * This is achieved by tracking pending requests and a 'barrier' concept
2816  * that can be installed to exclude normal IO requests.
2817  *
2818  * Resync and recovery are handled very differently.
2819  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2820  *
2821  * For resync, we iterate over virtual addresses, read all copies,
2822  * and update if there are differences.  If only one copy is live,
2823  * skip it.
2824  * For recovery, we iterate over physical addresses, read a good
2825  * value for each non-in_sync drive, and over-write.
2826  *
2827  * So, for recovery we may have several outstanding complex requests for a
2828  * given address, one for each out-of-sync device.  We model this by allocating
2829  * a number of r10_bio structures, one for each out-of-sync device.
2830  * As we setup these structures, we collect all bio's together into a list
2831  * which we then process collectively to add pages, and then process again
2832  * to pass to generic_make_request.
2833  *
2834  * The r10_bio structures are linked using a borrowed master_bio pointer.
2835  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2836  * has its remaining count decremented to 0, the whole complex operation
2837  * is complete.
2838  *
2839  */
2840
2841 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2842                              int *skipped)
2843 {
2844         struct r10conf *conf = mddev->private;
2845         struct r10bio *r10_bio;
2846         struct bio *biolist = NULL, *bio;
2847         sector_t max_sector, nr_sectors;
2848         int i;
2849         int max_sync;
2850         sector_t sync_blocks;
2851         sector_t sectors_skipped = 0;
2852         int chunks_skipped = 0;
2853         sector_t chunk_mask = conf->geo.chunk_mask;
2854
2855         if (!conf->r10buf_pool)
2856                 if (init_resync(conf))
2857                         return 0;
2858
2859         /*
2860          * Allow skipping a full rebuild for incremental assembly
2861          * of a clean array, like RAID1 does.
2862          */
2863         if (mddev->bitmap == NULL &&
2864             mddev->recovery_cp == MaxSector &&
2865             mddev->reshape_position == MaxSector &&
2866             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2867             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2868             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2869             conf->fullsync == 0) {
2870                 *skipped = 1;
2871                 return mddev->dev_sectors - sector_nr;
2872         }
2873
2874  skipped:
2875         max_sector = mddev->dev_sectors;
2876         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2877             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2878                 max_sector = mddev->resync_max_sectors;
2879         if (sector_nr >= max_sector) {
2880                 /* If we aborted, we need to abort the
2881                  * sync on the 'current' bitmap chucks (there can
2882                  * be several when recovering multiple devices).
2883                  * as we may have started syncing it but not finished.
2884                  * We can find the current address in
2885                  * mddev->curr_resync, but for recovery,
2886                  * we need to convert that to several
2887                  * virtual addresses.
2888                  */
2889                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2890                         end_reshape(conf);
2891                         close_sync(conf);
2892                         return 0;
2893                 }
2894
2895                 if (mddev->curr_resync < max_sector) { /* aborted */
2896                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2897                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2898                                                 &sync_blocks, 1);
2899                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2900                                 sector_t sect =
2901                                         raid10_find_virt(conf, mddev->curr_resync, i);
2902                                 bitmap_end_sync(mddev->bitmap, sect,
2903                                                 &sync_blocks, 1);
2904                         }
2905                 } else {
2906                         /* completed sync */
2907                         if ((!mddev->bitmap || conf->fullsync)
2908                             && conf->have_replacement
2909                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2910                                 /* Completed a full sync so the replacements
2911                                  * are now fully recovered.
2912                                  */
2913                                 rcu_read_lock();
2914                                 for (i = 0; i < conf->geo.raid_disks; i++) {
2915                                         struct md_rdev *rdev =
2916                                                 rcu_dereference(conf->mirrors[i].replacement);
2917                                         if (rdev)
2918                                                 rdev->recovery_offset = MaxSector;
2919                                 }
2920                                 rcu_read_unlock();
2921                         }
2922                         conf->fullsync = 0;
2923                 }
2924                 bitmap_close_sync(mddev->bitmap);
2925                 close_sync(conf);
2926                 *skipped = 1;
2927                 return sectors_skipped;
2928         }
2929
2930         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2931                 return reshape_request(mddev, sector_nr, skipped);
2932
2933         if (chunks_skipped >= conf->geo.raid_disks) {
2934                 /* if there has been nothing to do on any drive,
2935                  * then there is nothing to do at all..
2936                  */
2937                 *skipped = 1;
2938                 return (max_sector - sector_nr) + sectors_skipped;
2939         }
2940
2941         if (max_sector > mddev->resync_max)
2942                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2943
2944         /* make sure whole request will fit in a chunk - if chunks
2945          * are meaningful
2946          */
2947         if (conf->geo.near_copies < conf->geo.raid_disks &&
2948             max_sector > (sector_nr | chunk_mask))
2949                 max_sector = (sector_nr | chunk_mask) + 1;
2950
2951         /*
2952          * If there is non-resync activity waiting for a turn, then let it
2953          * though before starting on this new sync request.
2954          */
2955         if (conf->nr_waiting)
2956                 schedule_timeout_uninterruptible(1);
2957
2958         /* Again, very different code for resync and recovery.
2959          * Both must result in an r10bio with a list of bios that
2960          * have bi_end_io, bi_sector, bi_bdev set,
2961          * and bi_private set to the r10bio.
2962          * For recovery, we may actually create several r10bios
2963          * with 2 bios in each, that correspond to the bios in the main one.
2964          * In this case, the subordinate r10bios link back through a
2965          * borrowed master_bio pointer, and the counter in the master
2966          * includes a ref from each subordinate.
2967          */
2968         /* First, we decide what to do and set ->bi_end_io
2969          * To end_sync_read if we want to read, and
2970          * end_sync_write if we will want to write.
2971          */
2972
2973         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2974         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975                 /* recovery... the complicated one */
2976                 int j;
2977                 r10_bio = NULL;
2978
2979                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2980                         int still_degraded;
2981                         struct r10bio *rb2;
2982                         sector_t sect;
2983                         int must_sync;
2984                         int any_working;
2985                         struct raid10_info *mirror = &conf->mirrors[i];
2986                         struct md_rdev *mrdev, *mreplace;
2987
2988                         rcu_read_lock();
2989                         mrdev = rcu_dereference(mirror->rdev);
2990                         mreplace = rcu_dereference(mirror->replacement);
2991
2992                         if ((mrdev == NULL ||
2993                              test_bit(Faulty, &mrdev->flags) ||
2994                              test_bit(In_sync, &mrdev->flags)) &&
2995                             (mreplace == NULL ||
2996                              test_bit(Faulty, &mreplace->flags))) {
2997                                 rcu_read_unlock();
2998                                 continue;
2999                         }
3000
3001                         still_degraded = 0;
3002                         /* want to reconstruct this device */
3003                         rb2 = r10_bio;
3004                         sect = raid10_find_virt(conf, sector_nr, i);
3005                         if (sect >= mddev->resync_max_sectors) {
3006                                 /* last stripe is not complete - don't
3007                                  * try to recover this sector.
3008                                  */
3009                                 rcu_read_unlock();
3010                                 continue;
3011                         }
3012                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3013                                 mreplace = NULL;
3014                         /* Unless we are doing a full sync, or a replacement
3015                          * we only need to recover the block if it is set in
3016                          * the bitmap
3017                          */
3018                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3019                                                       &sync_blocks, 1);
3020                         if (sync_blocks < max_sync)
3021                                 max_sync = sync_blocks;
3022                         if (!must_sync &&
3023                             mreplace == NULL &&
3024                             !conf->fullsync) {
3025                                 /* yep, skip the sync_blocks here, but don't assume
3026                                  * that there will never be anything to do here
3027                                  */
3028                                 chunks_skipped = -1;
3029                                 rcu_read_unlock();
3030                                 continue;
3031                         }
3032                         atomic_inc(&mrdev->nr_pending);
3033                         if (mreplace)
3034                                 atomic_inc(&mreplace->nr_pending);
3035                         rcu_read_unlock();
3036
3037                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3038                         r10_bio->state = 0;
3039                         raise_barrier(conf, rb2 != NULL);
3040                         atomic_set(&r10_bio->remaining, 0);
3041
3042                         r10_bio->master_bio = (struct bio*)rb2;
3043                         if (rb2)
3044                                 atomic_inc(&rb2->remaining);
3045                         r10_bio->mddev = mddev;
3046                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3047                         r10_bio->sector = sect;
3048
3049                         raid10_find_phys(conf, r10_bio);
3050
3051                         /* Need to check if the array will still be
3052                          * degraded
3053                          */
3054                         rcu_read_lock();
3055                         for (j = 0; j < conf->geo.raid_disks; j++) {
3056                                 struct md_rdev *rdev = rcu_dereference(
3057                                         conf->mirrors[j].rdev);
3058                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3059                                         still_degraded = 1;
3060                                         break;
3061                                 }
3062                         }
3063
3064                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065                                                       &sync_blocks, still_degraded);
3066
3067                         any_working = 0;
3068                         for (j=0; j<conf->copies;j++) {
3069                                 int k;
3070                                 int d = r10_bio->devs[j].devnum;
3071                                 sector_t from_addr, to_addr;
3072                                 struct md_rdev *rdev =
3073                                         rcu_dereference(conf->mirrors[d].rdev);
3074                                 sector_t sector, first_bad;
3075                                 int bad_sectors;
3076                                 if (!rdev ||
3077                                     !test_bit(In_sync, &rdev->flags))
3078                                         continue;
3079                                 /* This is where we read from */
3080                                 any_working = 1;
3081                                 sector = r10_bio->devs[j].addr;
3082
3083                                 if (is_badblock(rdev, sector, max_sync,
3084                                                 &first_bad, &bad_sectors)) {
3085                                         if (first_bad > sector)
3086                                                 max_sync = first_bad - sector;
3087                                         else {
3088                                                 bad_sectors -= (sector
3089                                                                 - first_bad);
3090                                                 if (max_sync > bad_sectors)
3091                                                         max_sync = bad_sectors;
3092                                                 continue;
3093                                         }
3094                                 }
3095                                 bio = r10_bio->devs[0].bio;
3096                                 bio->bi_next = biolist;
3097                                 biolist = bio;
3098                                 bio->bi_end_io = end_sync_read;
3099                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3100                                 if (test_bit(FailFast, &rdev->flags))
3101                                         bio->bi_opf |= MD_FAILFAST;
3102                                 from_addr = r10_bio->devs[j].addr;
3103                                 bio->bi_iter.bi_sector = from_addr +
3104                                         rdev->data_offset;
3105                                 bio->bi_bdev = rdev->bdev;
3106                                 atomic_inc(&rdev->nr_pending);
3107                                 /* and we write to 'i' (if not in_sync) */
3108
3109                                 for (k=0; k<conf->copies; k++)
3110                                         if (r10_bio->devs[k].devnum == i)
3111                                                 break;
3112                                 BUG_ON(k == conf->copies);
3113                                 to_addr = r10_bio->devs[k].addr;
3114                                 r10_bio->devs[0].devnum = d;
3115                                 r10_bio->devs[0].addr = from_addr;
3116                                 r10_bio->devs[1].devnum = i;
3117                                 r10_bio->devs[1].addr = to_addr;
3118
3119                                 if (!test_bit(In_sync, &mrdev->flags)) {
3120                                         bio = r10_bio->devs[1].bio;
3121                                         bio->bi_next = biolist;
3122                                         biolist = bio;
3123                                         bio->bi_end_io = end_sync_write;
3124                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3125                                         bio->bi_iter.bi_sector = to_addr
3126                                                 + mrdev->data_offset;
3127                                         bio->bi_bdev = mrdev->bdev;
3128                                         atomic_inc(&r10_bio->remaining);
3129                                 } else
3130                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3131
3132                                 /* and maybe write to replacement */
3133                                 bio = r10_bio->devs[1].repl_bio;
3134                                 if (bio)
3135                                         bio->bi_end_io = NULL;
3136                                 /* Note: if mreplace != NULL, then bio
3137                                  * cannot be NULL as r10buf_pool_alloc will
3138                                  * have allocated it.
3139                                  * So the second test here is pointless.
3140                                  * But it keeps semantic-checkers happy, and
3141                                  * this comment keeps human reviewers
3142                                  * happy.
3143                                  */
3144                                 if (mreplace == NULL || bio == NULL ||
3145                                     test_bit(Faulty, &mreplace->flags))
3146                                         break;
3147                                 bio->bi_next = biolist;
3148                                 biolist = bio;
3149                                 bio->bi_end_io = end_sync_write;
3150                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3151                                 bio->bi_iter.bi_sector = to_addr +
3152                                         mreplace->data_offset;
3153                                 bio->bi_bdev = mreplace->bdev;
3154                                 atomic_inc(&r10_bio->remaining);
3155                                 break;
3156                         }
3157                         rcu_read_unlock();
3158                         if (j == conf->copies) {
3159                                 /* Cannot recover, so abort the recovery or
3160                                  * record a bad block */
3161                                 if (any_working) {
3162                                         /* problem is that there are bad blocks
3163                                          * on other device(s)
3164                                          */
3165                                         int k;
3166                                         for (k = 0; k < conf->copies; k++)
3167                                                 if (r10_bio->devs[k].devnum == i)
3168                                                         break;
3169                                         if (!test_bit(In_sync,
3170                                                       &mrdev->flags)
3171                                             && !rdev_set_badblocks(
3172                                                     mrdev,
3173                                                     r10_bio->devs[k].addr,
3174                                                     max_sync, 0))
3175                                                 any_working = 0;
3176                                         if (mreplace &&
3177                                             !rdev_set_badblocks(
3178                                                     mreplace,
3179                                                     r10_bio->devs[k].addr,
3180                                                     max_sync, 0))
3181                                                 any_working = 0;
3182                                 }
3183                                 if (!any_working)  {
3184                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3185                                                               &mddev->recovery))
3186                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3187                                                        mdname(mddev));
3188                                         mirror->recovery_disabled
3189                                                 = mddev->recovery_disabled;
3190                                 }
3191                                 put_buf(r10_bio);
3192                                 if (rb2)
3193                                         atomic_dec(&rb2->remaining);
3194                                 r10_bio = rb2;
3195                                 rdev_dec_pending(mrdev, mddev);
3196                                 if (mreplace)
3197                                         rdev_dec_pending(mreplace, mddev);
3198                                 break;
3199                         }
3200                         rdev_dec_pending(mrdev, mddev);
3201                         if (mreplace)
3202                                 rdev_dec_pending(mreplace, mddev);
3203                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3204                                 /* Only want this if there is elsewhere to
3205                                  * read from. 'j' is currently the first
3206                                  * readable copy.
3207                                  */
3208                                 int targets = 1;
3209                                 for (; j < conf->copies; j++) {
3210                                         int d = r10_bio->devs[j].devnum;
3211                                         if (conf->mirrors[d].rdev &&
3212                                             test_bit(In_sync,
3213                                                       &conf->mirrors[d].rdev->flags))
3214                                                 targets++;
3215                                 }
3216                                 if (targets == 1)
3217                                         r10_bio->devs[0].bio->bi_opf
3218                                                 &= ~MD_FAILFAST;
3219                         }
3220                 }
3221                 if (biolist == NULL) {
3222                         while (r10_bio) {
3223                                 struct r10bio *rb2 = r10_bio;
3224                                 r10_bio = (struct r10bio*) rb2->master_bio;
3225                                 rb2->master_bio = NULL;
3226                                 put_buf(rb2);
3227                         }
3228                         goto giveup;
3229                 }
3230         } else {
3231                 /* resync. Schedule a read for every block at this virt offset */
3232                 int count = 0;
3233
3234                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3235
3236                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3237                                        &sync_blocks, mddev->degraded) &&
3238                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3239                                                  &mddev->recovery)) {
3240                         /* We can skip this block */
3241                         *skipped = 1;
3242                         return sync_blocks + sectors_skipped;
3243                 }
3244                 if (sync_blocks < max_sync)
3245                         max_sync = sync_blocks;
3246                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3247                 r10_bio->state = 0;
3248
3249                 r10_bio->mddev = mddev;
3250                 atomic_set(&r10_bio->remaining, 0);
3251                 raise_barrier(conf, 0);
3252                 conf->next_resync = sector_nr;
3253
3254                 r10_bio->master_bio = NULL;
3255                 r10_bio->sector = sector_nr;
3256                 set_bit(R10BIO_IsSync, &r10_bio->state);
3257                 raid10_find_phys(conf, r10_bio);
3258                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3259
3260                 for (i = 0; i < conf->copies; i++) {
3261                         int d = r10_bio->devs[i].devnum;
3262                         sector_t first_bad, sector;
3263                         int bad_sectors;
3264                         struct md_rdev *rdev;
3265
3266                         if (r10_bio->devs[i].repl_bio)
3267                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3268
3269                         bio = r10_bio->devs[i].bio;
3270                         bio->bi_error = -EIO;
3271                         rcu_read_lock();
3272                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3273                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3274                                 rcu_read_unlock();
3275                                 continue;
3276                         }
3277                         sector = r10_bio->devs[i].addr;
3278                         if (is_badblock(rdev, sector, max_sync,
3279                                         &first_bad, &bad_sectors)) {
3280                                 if (first_bad > sector)
3281                                         max_sync = first_bad - sector;
3282                                 else {
3283                                         bad_sectors -= (sector - first_bad);
3284                                         if (max_sync > bad_sectors)
3285                                                 max_sync = bad_sectors;
3286                                         rcu_read_unlock();
3287                                         continue;
3288                                 }
3289                         }
3290                         atomic_inc(&rdev->nr_pending);
3291                         atomic_inc(&r10_bio->remaining);
3292                         bio->bi_next = biolist;
3293                         biolist = bio;
3294                         bio->bi_end_io = end_sync_read;
3295                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3296                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3297                                 bio->bi_opf |= MD_FAILFAST;
3298                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3299                         bio->bi_bdev = rdev->bdev;
3300                         count++;
3301
3302                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3303                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3304                                 rcu_read_unlock();
3305                                 continue;
3306                         }
3307                         atomic_inc(&rdev->nr_pending);
3308                         rcu_read_unlock();
3309
3310                         /* Need to set up for writing to the replacement */
3311                         bio = r10_bio->devs[i].repl_bio;
3312                         bio->bi_error = -EIO;
3313
3314                         sector = r10_bio->devs[i].addr;
3315                         bio->bi_next = biolist;
3316                         biolist = bio;
3317                         bio->bi_end_io = end_sync_write;
3318                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3319                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3320                                 bio->bi_opf |= MD_FAILFAST;
3321                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3322                         bio->bi_bdev = rdev->bdev;
3323                         count++;
3324                 }
3325
3326                 if (count < 2) {
3327                         for (i=0; i<conf->copies; i++) {
3328                                 int d = r10_bio->devs[i].devnum;
3329                                 if (r10_bio->devs[i].bio->bi_end_io)
3330                                         rdev_dec_pending(conf->mirrors[d].rdev,
3331                                                          mddev);
3332                                 if (r10_bio->devs[i].repl_bio &&
3333                                     r10_bio->devs[i].repl_bio->bi_end_io)
3334                                         rdev_dec_pending(
3335                                                 conf->mirrors[d].replacement,
3336                                                 mddev);
3337                         }
3338                         put_buf(r10_bio);
3339                         biolist = NULL;
3340                         goto giveup;
3341                 }
3342         }
3343
3344         nr_sectors = 0;
3345         if (sector_nr + max_sync < max_sector)
3346                 max_sector = sector_nr + max_sync;
3347         do {
3348                 struct page *page;
3349                 int len = PAGE_SIZE;
3350                 if (sector_nr + (len>>9) > max_sector)
3351                         len = (max_sector - sector_nr) << 9;
3352                 if (len == 0)
3353                         break;
3354                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3355                         struct resync_pages *rp = get_resync_pages(bio);
3356                         page = resync_fetch_page(rp, rp->idx++);
3357                         /*
3358                          * won't fail because the vec table is big enough
3359                          * to hold all these pages
3360                          */
3361                         bio_add_page(bio, page, len, 0);
3362                 }
3363                 nr_sectors += len>>9;
3364                 sector_nr += len>>9;
3365         } while (get_resync_pages(biolist)->idx < RESYNC_PAGES);
3366         r10_bio->sectors = nr_sectors;
3367
3368         while (biolist) {
3369                 bio = biolist;
3370                 biolist = biolist->bi_next;
3371
3372                 bio->bi_next = NULL;
3373                 r10_bio = get_resync_r10bio(bio);
3374                 r10_bio->sectors = nr_sectors;
3375
3376                 if (bio->bi_end_io == end_sync_read) {
3377                         md_sync_acct(bio->bi_bdev, nr_sectors);
3378                         bio->bi_error = 0;
3379                         generic_make_request(bio);
3380                 }
3381         }
3382
3383         if (sectors_skipped)
3384                 /* pretend they weren't skipped, it makes
3385                  * no important difference in this case
3386                  */
3387                 md_done_sync(mddev, sectors_skipped, 1);
3388
3389         return sectors_skipped + nr_sectors;
3390  giveup:
3391         /* There is nowhere to write, so all non-sync
3392          * drives must be failed or in resync, all drives
3393          * have a bad block, so try the next chunk...
3394          */
3395         if (sector_nr + max_sync < max_sector)
3396                 max_sector = sector_nr + max_sync;
3397
3398         sectors_skipped += (max_sector - sector_nr);
3399         chunks_skipped ++;
3400         sector_nr = max_sector;
3401         goto skipped;
3402 }
3403
3404 static sector_t
3405 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3406 {
3407         sector_t size;
3408         struct r10conf *conf = mddev->private;
3409
3410         if (!raid_disks)
3411                 raid_disks = min(conf->geo.raid_disks,
3412                                  conf->prev.raid_disks);
3413         if (!sectors)
3414                 sectors = conf->dev_sectors;
3415
3416         size = sectors >> conf->geo.chunk_shift;
3417         sector_div(size, conf->geo.far_copies);
3418         size = size * raid_disks;
3419         sector_div(size, conf->geo.near_copies);
3420
3421         return size << conf->geo.chunk_shift;
3422 }
3423
3424 static void calc_sectors(struct r10conf *conf, sector_t size)
3425 {
3426         /* Calculate the number of sectors-per-device that will
3427          * actually be used, and set conf->dev_sectors and
3428          * conf->stride
3429          */
3430
3431         size = size >> conf->geo.chunk_shift;
3432         sector_div(size, conf->geo.far_copies);
3433         size = size * conf->geo.raid_disks;
3434         sector_div(size, conf->geo.near_copies);
3435         /* 'size' is now the number of chunks in the array */
3436         /* calculate "used chunks per device" */
3437         size = size * conf->copies;
3438
3439         /* We need to round up when dividing by raid_disks to
3440          * get the stride size.
3441          */
3442         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3443
3444         conf->dev_sectors = size << conf->geo.chunk_shift;
3445
3446         if (conf->geo.far_offset)
3447                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3448         else {
3449                 sector_div(size, conf->geo.far_copies);
3450                 conf->geo.stride = size << conf->geo.chunk_shift;
3451         }
3452 }
3453
3454 enum geo_type {geo_new, geo_old, geo_start};
3455 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3456 {
3457         int nc, fc, fo;
3458         int layout, chunk, disks;
3459         switch (new) {
3460         case geo_old:
3461                 layout = mddev->layout;
3462                 chunk = mddev->chunk_sectors;
3463                 disks = mddev->raid_disks - mddev->delta_disks;
3464                 break;
3465         case geo_new:
3466                 layout = mddev->new_layout;
3467                 chunk = mddev->new_chunk_sectors;
3468                 disks = mddev->raid_disks;
3469                 break;
3470         default: /* avoid 'may be unused' warnings */
3471         case geo_start: /* new when starting reshape - raid_disks not
3472                          * updated yet. */
3473                 layout = mddev->new_layout;
3474                 chunk = mddev->new_chunk_sectors;
3475                 disks = mddev->raid_disks + mddev->delta_disks;
3476                 break;
3477         }
3478         if (layout >> 19)
3479                 return -1;
3480         if (chunk < (PAGE_SIZE >> 9) ||
3481             !is_power_of_2(chunk))
3482                 return -2;
3483         nc = layout & 255;
3484         fc = (layout >> 8) & 255;
3485         fo = layout & (1<<16);
3486         geo->raid_disks = disks;
3487         geo->near_copies = nc;
3488         geo->far_copies = fc;
3489         geo->far_offset = fo;
3490         switch (layout >> 17) {
3491         case 0: /* original layout.  simple but not always optimal */
3492                 geo->far_set_size = disks;
3493                 break;
3494         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3495                  * actually using this, but leave code here just in case.*/
3496                 geo->far_set_size = disks/fc;
3497                 WARN(geo->far_set_size < fc,
3498                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3499                 break;
3500         case 2: /* "improved" layout fixed to match documentation */
3501                 geo->far_set_size = fc * nc;
3502                 break;
3503         default: /* Not a valid layout */
3504                 return -1;
3505         }
3506         geo->chunk_mask = chunk - 1;
3507         geo->chunk_shift = ffz(~chunk);
3508         return nc*fc;
3509 }
3510
3511 static struct r10conf *setup_conf(struct mddev *mddev)
3512 {
3513         struct r10conf *conf = NULL;
3514         int err = -EINVAL;
3515         struct geom geo;
3516         int copies;
3517
3518         copies = setup_geo(&geo, mddev, geo_new);
3519
3520         if (copies == -2) {
3521                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3522                         mdname(mddev), PAGE_SIZE);
3523                 goto out;
3524         }
3525
3526         if (copies < 2 || copies > mddev->raid_disks) {
3527                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3528                         mdname(mddev), mddev->new_layout);
3529                 goto out;
3530         }
3531
3532         err = -ENOMEM;
3533         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3534         if (!conf)
3535                 goto out;
3536
3537         /* FIXME calc properly */
3538         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3539                                                             max(0,-mddev->delta_disks)),
3540                                 GFP_KERNEL);
3541         if (!conf->mirrors)
3542                 goto out;
3543
3544         conf->tmppage = alloc_page(GFP_KERNEL);
3545         if (!conf->tmppage)
3546                 goto out;
3547
3548         conf->geo = geo;
3549         conf->copies = copies;
3550         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3551                                            r10bio_pool_free, conf);
3552         if (!conf->r10bio_pool)
3553                 goto out;
3554
3555         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
3556         if (!conf->bio_split)
3557                 goto out;
3558
3559         calc_sectors(conf, mddev->dev_sectors);
3560         if (mddev->reshape_position == MaxSector) {
3561                 conf->prev = conf->geo;
3562                 conf->reshape_progress = MaxSector;
3563         } else {
3564                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3565                         err = -EINVAL;
3566                         goto out;
3567                 }
3568                 conf->reshape_progress = mddev->reshape_position;
3569                 if (conf->prev.far_offset)
3570                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3571                 else
3572                         /* far_copies must be 1 */
3573                         conf->prev.stride = conf->dev_sectors;
3574         }
3575         conf->reshape_safe = conf->reshape_progress;
3576         spin_lock_init(&conf->device_lock);
3577         INIT_LIST_HEAD(&conf->retry_list);
3578         INIT_LIST_HEAD(&conf->bio_end_io_list);
3579
3580         spin_lock_init(&conf->resync_lock);
3581         init_waitqueue_head(&conf->wait_barrier);
3582         atomic_set(&conf->nr_pending, 0);
3583
3584         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3585         if (!conf->thread)
3586                 goto out;
3587
3588         conf->mddev = mddev;
3589         return conf;
3590
3591  out:
3592         if (conf) {
3593                 mempool_destroy(conf->r10bio_pool);
3594                 kfree(conf->mirrors);
3595                 safe_put_page(conf->tmppage);
3596                 if (conf->bio_split)
3597                         bioset_free(conf->bio_split);
3598                 kfree(conf);
3599         }
3600         return ERR_PTR(err);
3601 }
3602
3603 static int raid10_run(struct mddev *mddev)
3604 {
3605         struct r10conf *conf;
3606         int i, disk_idx, chunk_size;
3607         struct raid10_info *disk;
3608         struct md_rdev *rdev;
3609         sector_t size;
3610         sector_t min_offset_diff = 0;
3611         int first = 1;
3612         bool discard_supported = false;
3613
3614         if (mddev_init_writes_pending(mddev) < 0)
3615                 return -ENOMEM;
3616
3617         if (mddev->private == NULL) {
3618                 conf = setup_conf(mddev);
3619                 if (IS_ERR(conf))
3620                         return PTR_ERR(conf);
3621                 mddev->private = conf;
3622         }
3623         conf = mddev->private;
3624         if (!conf)
3625                 goto out;
3626
3627         mddev->thread = conf->thread;
3628         conf->thread = NULL;
3629
3630         chunk_size = mddev->chunk_sectors << 9;
3631         if (mddev->queue) {
3632                 blk_queue_max_discard_sectors(mddev->queue,
3633                                               mddev->chunk_sectors);
3634                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3635                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3636                 blk_queue_io_min(mddev->queue, chunk_size);
3637                 if (conf->geo.raid_disks % conf->geo.near_copies)
3638                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3639                 else
3640                         blk_queue_io_opt(mddev->queue, chunk_size *
3641                                          (conf->geo.raid_disks / conf->geo.near_copies));
3642         }
3643
3644         rdev_for_each(rdev, mddev) {
3645                 long long diff;
3646
3647                 disk_idx = rdev->raid_disk;
3648                 if (disk_idx < 0)
3649                         continue;
3650                 if (disk_idx >= conf->geo.raid_disks &&
3651                     disk_idx >= conf->prev.raid_disks)
3652                         continue;
3653                 disk = conf->mirrors + disk_idx;
3654
3655                 if (test_bit(Replacement, &rdev->flags)) {
3656                         if (disk->replacement)
3657                                 goto out_free_conf;
3658                         disk->replacement = rdev;
3659                 } else {
3660                         if (disk->rdev)
3661                                 goto out_free_conf;
3662                         disk->rdev = rdev;
3663                 }
3664                 diff = (rdev->new_data_offset - rdev->data_offset);
3665                 if (!mddev->reshape_backwards)
3666                         diff = -diff;
3667                 if (diff < 0)
3668                         diff = 0;
3669                 if (first || diff < min_offset_diff)
3670                         min_offset_diff = diff;
3671
3672                 if (mddev->gendisk)
3673                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3674                                           rdev->data_offset << 9);
3675
3676                 disk->head_position = 0;
3677
3678                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3679                         discard_supported = true;
3680                 first = 0;
3681         }
3682
3683         if (mddev->queue) {
3684                 if (discard_supported)
3685                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3686                                                 mddev->queue);
3687                 else
3688                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3689                                                   mddev->queue);
3690         }
3691         /* need to check that every block has at least one working mirror */
3692         if (!enough(conf, -1)) {
3693                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3694                        mdname(mddev));
3695                 goto out_free_conf;
3696         }
3697
3698         if (conf->reshape_progress != MaxSector) {
3699                 /* must ensure that shape change is supported */
3700                 if (conf->geo.far_copies != 1 &&
3701                     conf->geo.far_offset == 0)
3702                         goto out_free_conf;
3703                 if (conf->prev.far_copies != 1 &&
3704                     conf->prev.far_offset == 0)
3705                         goto out_free_conf;
3706         }
3707
3708         mddev->degraded = 0;
3709         for (i = 0;
3710              i < conf->geo.raid_disks
3711                      || i < conf->prev.raid_disks;
3712              i++) {
3713
3714                 disk = conf->mirrors + i;
3715
3716                 if (!disk->rdev && disk->replacement) {
3717                         /* The replacement is all we have - use it */
3718                         disk->rdev = disk->replacement;
3719                         disk->replacement = NULL;
3720                         clear_bit(Replacement, &disk->rdev->flags);
3721                 }
3722
3723                 if (!disk->rdev ||
3724                     !test_bit(In_sync, &disk->rdev->flags)) {
3725                         disk->head_position = 0;
3726                         mddev->degraded++;
3727                         if (disk->rdev &&
3728                             disk->rdev->saved_raid_disk < 0)
3729                                 conf->fullsync = 1;
3730                 }
3731                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3732         }
3733
3734         if (mddev->recovery_cp != MaxSector)
3735                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3736                           mdname(mddev));
3737         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3738                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3739                 conf->geo.raid_disks);
3740         /*
3741          * Ok, everything is just fine now
3742          */
3743         mddev->dev_sectors = conf->dev_sectors;
3744         size = raid10_size(mddev, 0, 0);
3745         md_set_array_sectors(mddev, size);
3746         mddev->resync_max_sectors = size;
3747         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3748
3749         if (mddev->queue) {
3750                 int stripe = conf->geo.raid_disks *
3751                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3752
3753                 /* Calculate max read-ahead size.
3754                  * We need to readahead at least twice a whole stripe....
3755                  * maybe...
3756                  */
3757                 stripe /= conf->geo.near_copies;
3758                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3759                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3760         }
3761
3762         if (md_integrity_register(mddev))
3763                 goto out_free_conf;
3764
3765         if (conf->reshape_progress != MaxSector) {
3766                 unsigned long before_length, after_length;
3767
3768                 before_length = ((1 << conf->prev.chunk_shift) *
3769                                  conf->prev.far_copies);
3770                 after_length = ((1 << conf->geo.chunk_shift) *
3771                                 conf->geo.far_copies);
3772
3773                 if (max(before_length, after_length) > min_offset_diff) {
3774                         /* This cannot work */
3775                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3776                         goto out_free_conf;
3777                 }
3778                 conf->offset_diff = min_offset_diff;
3779
3780                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3781                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3782                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3783                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3784                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3785                                                         "reshape");
3786         }
3787
3788         return 0;
3789
3790 out_free_conf:
3791         md_unregister_thread(&mddev->thread);
3792         mempool_destroy(conf->r10bio_pool);
3793         safe_put_page(conf->tmppage);
3794         kfree(conf->mirrors);
3795         kfree(conf);
3796         mddev->private = NULL;
3797 out:
3798         return -EIO;
3799 }
3800
3801 static void raid10_free(struct mddev *mddev, void *priv)
3802 {
3803         struct r10conf *conf = priv;
3804
3805         mempool_destroy(conf->r10bio_pool);
3806         safe_put_page(conf->tmppage);
3807         kfree(conf->mirrors);
3808         kfree(conf->mirrors_old);
3809         kfree(conf->mirrors_new);
3810         if (conf->bio_split)
3811                 bioset_free(conf->bio_split);
3812         kfree(conf);
3813 }
3814
3815 static void raid10_quiesce(struct mddev *mddev, int state)
3816 {
3817         struct r10conf *conf = mddev->private;
3818
3819         switch(state) {
3820         case 1:
3821                 raise_barrier(conf, 0);
3822                 break;
3823         case 0:
3824                 lower_barrier(conf);
3825                 break;
3826         }
3827 }
3828
3829 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3830 {
3831         /* Resize of 'far' arrays is not supported.
3832          * For 'near' and 'offset' arrays we can set the
3833          * number of sectors used to be an appropriate multiple
3834          * of the chunk size.
3835          * For 'offset', this is far_copies*chunksize.
3836          * For 'near' the multiplier is the LCM of
3837          * near_copies and raid_disks.
3838          * So if far_copies > 1 && !far_offset, fail.
3839          * Else find LCM(raid_disks, near_copy)*far_copies and
3840          * multiply by chunk_size.  Then round to this number.
3841          * This is mostly done by raid10_size()
3842          */
3843         struct r10conf *conf = mddev->private;
3844         sector_t oldsize, size;
3845
3846         if (mddev->reshape_position != MaxSector)
3847                 return -EBUSY;
3848
3849         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3850                 return -EINVAL;
3851
3852         oldsize = raid10_size(mddev, 0, 0);
3853         size = raid10_size(mddev, sectors, 0);
3854         if (mddev->external_size &&
3855             mddev->array_sectors > size)
3856                 return -EINVAL;
3857         if (mddev->bitmap) {
3858                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3859                 if (ret)
3860                         return ret;
3861         }
3862         md_set_array_sectors(mddev, size);
3863         if (sectors > mddev->dev_sectors &&
3864             mddev->recovery_cp > oldsize) {
3865                 mddev->recovery_cp = oldsize;
3866                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3867         }
3868         calc_sectors(conf, sectors);
3869         mddev->dev_sectors = conf->dev_sectors;
3870         mddev->resync_max_sectors = size;
3871         return 0;
3872 }
3873
3874 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3875 {
3876         struct md_rdev *rdev;
3877         struct r10conf *conf;
3878
3879         if (mddev->degraded > 0) {
3880                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3881                         mdname(mddev));
3882                 return ERR_PTR(-EINVAL);
3883         }
3884         sector_div(size, devs);
3885
3886         /* Set new parameters */
3887         mddev->new_level = 10;
3888         /* new layout: far_copies = 1, near_copies = 2 */
3889         mddev->new_layout = (1<<8) + 2;
3890         mddev->new_chunk_sectors = mddev->chunk_sectors;
3891         mddev->delta_disks = mddev->raid_disks;
3892         mddev->raid_disks *= 2;
3893         /* make sure it will be not marked as dirty */
3894         mddev->recovery_cp = MaxSector;
3895         mddev->dev_sectors = size;
3896
3897         conf = setup_conf(mddev);
3898         if (!IS_ERR(conf)) {
3899                 rdev_for_each(rdev, mddev)
3900                         if (rdev->raid_disk >= 0) {
3901                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3902                                 rdev->sectors = size;
3903                         }
3904                 conf->barrier = 1;
3905         }
3906
3907         return conf;
3908 }
3909
3910 static void *raid10_takeover(struct mddev *mddev)
3911 {
3912         struct r0conf *raid0_conf;
3913
3914         /* raid10 can take over:
3915          *  raid0 - providing it has only two drives
3916          */
3917         if (mddev->level == 0) {
3918                 /* for raid0 takeover only one zone is supported */
3919                 raid0_conf = mddev->private;
3920                 if (raid0_conf->nr_strip_zones > 1) {
3921                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3922                                 mdname(mddev));
3923                         return ERR_PTR(-EINVAL);
3924                 }
3925                 return raid10_takeover_raid0(mddev,
3926                         raid0_conf->strip_zone->zone_end,
3927                         raid0_conf->strip_zone->nb_dev);
3928         }
3929         return ERR_PTR(-EINVAL);
3930 }
3931
3932 static int raid10_check_reshape(struct mddev *mddev)
3933 {
3934         /* Called when there is a request to change
3935          * - layout (to ->new_layout)
3936          * - chunk size (to ->new_chunk_sectors)
3937          * - raid_disks (by delta_disks)
3938          * or when trying to restart a reshape that was ongoing.
3939          *
3940          * We need to validate the request and possibly allocate
3941          * space if that might be an issue later.
3942          *
3943          * Currently we reject any reshape of a 'far' mode array,
3944          * allow chunk size to change if new is generally acceptable,
3945          * allow raid_disks to increase, and allow
3946          * a switch between 'near' mode and 'offset' mode.
3947          */
3948         struct r10conf *conf = mddev->private;
3949         struct geom geo;
3950
3951         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3952                 return -EINVAL;
3953
3954         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3955                 /* mustn't change number of copies */
3956                 return -EINVAL;
3957         if (geo.far_copies > 1 && !geo.far_offset)
3958                 /* Cannot switch to 'far' mode */
3959                 return -EINVAL;
3960
3961         if (mddev->array_sectors & geo.chunk_mask)
3962                         /* not factor of array size */
3963                         return -EINVAL;
3964
3965         if (!enough(conf, -1))
3966                 return -EINVAL;
3967
3968         kfree(conf->mirrors_new);
3969         conf->mirrors_new = NULL;
3970         if (mddev->delta_disks > 0) {
3971                 /* allocate new 'mirrors' list */
3972                 conf->mirrors_new = kzalloc(
3973                         sizeof(struct raid10_info)
3974                         *(mddev->raid_disks +
3975                           mddev->delta_disks),
3976                         GFP_KERNEL);
3977                 if (!conf->mirrors_new)
3978                         return -ENOMEM;
3979         }
3980         return 0;
3981 }
3982
3983 /*
3984  * Need to check if array has failed when deciding whether to:
3985  *  - start an array
3986  *  - remove non-faulty devices
3987  *  - add a spare
3988  *  - allow a reshape
3989  * This determination is simple when no reshape is happening.
3990  * However if there is a reshape, we need to carefully check
3991  * both the before and after sections.
3992  * This is because some failed devices may only affect one
3993  * of the two sections, and some non-in_sync devices may
3994  * be insync in the section most affected by failed devices.
3995  */
3996 static int calc_degraded(struct r10conf *conf)
3997 {
3998         int degraded, degraded2;
3999         int i;
4000
4001         rcu_read_lock();
4002         degraded = 0;
4003         /* 'prev' section first */
4004         for (i = 0; i < conf->prev.raid_disks; i++) {
4005                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4006                 if (!rdev || test_bit(Faulty, &rdev->flags))
4007                         degraded++;
4008                 else if (!test_bit(In_sync, &rdev->flags))
4009                         /* When we can reduce the number of devices in
4010                          * an array, this might not contribute to
4011                          * 'degraded'.  It does now.
4012                          */
4013                         degraded++;
4014         }
4015         rcu_read_unlock();
4016         if (conf->geo.raid_disks == conf->prev.raid_disks)
4017                 return degraded;
4018         rcu_read_lock();
4019         degraded2 = 0;
4020         for (i = 0; i < conf->geo.raid_disks; i++) {
4021                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4022                 if (!rdev || test_bit(Faulty, &rdev->flags))
4023                         degraded2++;
4024                 else if (!test_bit(In_sync, &rdev->flags)) {
4025                         /* If reshape is increasing the number of devices,
4026                          * this section has already been recovered, so
4027                          * it doesn't contribute to degraded.
4028                          * else it does.
4029                          */
4030                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4031                                 degraded2++;
4032                 }
4033         }
4034         rcu_read_unlock();
4035         if (degraded2 > degraded)
4036                 return degraded2;
4037         return degraded;
4038 }
4039
4040 static int raid10_start_reshape(struct mddev *mddev)
4041 {
4042         /* A 'reshape' has been requested. This commits
4043          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4044          * This also checks if there are enough spares and adds them
4045          * to the array.
4046          * We currently require enough spares to make the final
4047          * array non-degraded.  We also require that the difference
4048          * between old and new data_offset - on each device - is
4049          * enough that we never risk over-writing.
4050          */
4051
4052         unsigned long before_length, after_length;
4053         sector_t min_offset_diff = 0;
4054         int first = 1;
4055         struct geom new;
4056         struct r10conf *conf = mddev->private;
4057         struct md_rdev *rdev;
4058         int spares = 0;
4059         int ret;
4060
4061         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4062                 return -EBUSY;
4063
4064         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4065                 return -EINVAL;
4066
4067         before_length = ((1 << conf->prev.chunk_shift) *
4068                          conf->prev.far_copies);
4069         after_length = ((1 << conf->geo.chunk_shift) *
4070                         conf->geo.far_copies);
4071
4072         rdev_for_each(rdev, mddev) {
4073                 if (!test_bit(In_sync, &rdev->flags)
4074                     && !test_bit(Faulty, &rdev->flags))
4075                         spares++;
4076                 if (rdev->raid_disk >= 0) {
4077                         long long diff = (rdev->new_data_offset
4078                                           - rdev->data_offset);
4079                         if (!mddev->reshape_backwards)
4080                                 diff = -diff;
4081                         if (diff < 0)
4082                                 diff = 0;
4083                         if (first || diff < min_offset_diff)
4084                                 min_offset_diff = diff;
4085                         first = 0;
4086                 }
4087         }
4088
4089         if (max(before_length, after_length) > min_offset_diff)
4090                 return -EINVAL;
4091
4092         if (spares < mddev->delta_disks)
4093                 return -EINVAL;
4094
4095         conf->offset_diff = min_offset_diff;
4096         spin_lock_irq(&conf->device_lock);
4097         if (conf->mirrors_new) {
4098                 memcpy(conf->mirrors_new, conf->mirrors,
4099                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4100                 smp_mb();
4101                 kfree(conf->mirrors_old);
4102                 conf->mirrors_old = conf->mirrors;
4103                 conf->mirrors = conf->mirrors_new;
4104                 conf->mirrors_new = NULL;
4105         }
4106         setup_geo(&conf->geo, mddev, geo_start);
4107         smp_mb();
4108         if (mddev->reshape_backwards) {
4109                 sector_t size = raid10_size(mddev, 0, 0);
4110                 if (size < mddev->array_sectors) {
4111                         spin_unlock_irq(&conf->device_lock);
4112                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4113                                 mdname(mddev));
4114                         return -EINVAL;
4115                 }
4116                 mddev->resync_max_sectors = size;
4117                 conf->reshape_progress = size;
4118         } else
4119                 conf->reshape_progress = 0;
4120         conf->reshape_safe = conf->reshape_progress;
4121         spin_unlock_irq(&conf->device_lock);
4122
4123         if (mddev->delta_disks && mddev->bitmap) {
4124                 ret = bitmap_resize(mddev->bitmap,
4125                                     raid10_size(mddev, 0,
4126                                                 conf->geo.raid_disks),
4127                                     0, 0);
4128                 if (ret)
4129                         goto abort;
4130         }
4131         if (mddev->delta_disks > 0) {
4132                 rdev_for_each(rdev, mddev)
4133                         if (rdev->raid_disk < 0 &&
4134                             !test_bit(Faulty, &rdev->flags)) {
4135                                 if (raid10_add_disk(mddev, rdev) == 0) {
4136                                         if (rdev->raid_disk >=
4137                                             conf->prev.raid_disks)
4138                                                 set_bit(In_sync, &rdev->flags);
4139                                         else
4140                                                 rdev->recovery_offset = 0;
4141
4142                                         if (sysfs_link_rdev(mddev, rdev))
4143                                                 /* Failure here  is OK */;
4144                                 }
4145                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4146                                    && !test_bit(Faulty, &rdev->flags)) {
4147                                 /* This is a spare that was manually added */
4148                                 set_bit(In_sync, &rdev->flags);
4149                         }
4150         }
4151         /* When a reshape changes the number of devices,
4152          * ->degraded is measured against the larger of the
4153          * pre and  post numbers.
4154          */
4155         spin_lock_irq(&conf->device_lock);
4156         mddev->degraded = calc_degraded(conf);
4157         spin_unlock_irq(&conf->device_lock);
4158         mddev->raid_disks = conf->geo.raid_disks;
4159         mddev->reshape_position = conf->reshape_progress;
4160         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4161
4162         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4163         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4164         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4165         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4166         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4167
4168         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4169                                                 "reshape");
4170         if (!mddev->sync_thread) {
4171                 ret = -EAGAIN;
4172                 goto abort;
4173         }
4174         conf->reshape_checkpoint = jiffies;
4175         md_wakeup_thread(mddev->sync_thread);
4176         md_new_event(mddev);
4177         return 0;
4178
4179 abort:
4180         mddev->recovery = 0;
4181         spin_lock_irq(&conf->device_lock);
4182         conf->geo = conf->prev;
4183         mddev->raid_disks = conf->geo.raid_disks;
4184         rdev_for_each(rdev, mddev)
4185                 rdev->new_data_offset = rdev->data_offset;
4186         smp_wmb();
4187         conf->reshape_progress = MaxSector;
4188         conf->reshape_safe = MaxSector;
4189         mddev->reshape_position = MaxSector;
4190         spin_unlock_irq(&conf->device_lock);
4191         return ret;
4192 }
4193
4194 /* Calculate the last device-address that could contain
4195  * any block from the chunk that includes the array-address 's'
4196  * and report the next address.
4197  * i.e. the address returned will be chunk-aligned and after
4198  * any data that is in the chunk containing 's'.
4199  */
4200 static sector_t last_dev_address(sector_t s, struct geom *geo)
4201 {
4202         s = (s | geo->chunk_mask) + 1;
4203         s >>= geo->chunk_shift;
4204         s *= geo->near_copies;
4205         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4206         s *= geo->far_copies;
4207         s <<= geo->chunk_shift;
4208         return s;
4209 }
4210
4211 /* Calculate the first device-address that could contain
4212  * any block from the chunk that includes the array-address 's'.
4213  * This too will be the start of a chunk
4214  */
4215 static sector_t first_dev_address(sector_t s, struct geom *geo)
4216 {
4217         s >>= geo->chunk_shift;
4218         s *= geo->near_copies;
4219         sector_div(s, geo->raid_disks);
4220         s *= geo->far_copies;
4221         s <<= geo->chunk_shift;
4222         return s;
4223 }
4224
4225 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4226                                 int *skipped)
4227 {
4228         /* We simply copy at most one chunk (smallest of old and new)
4229          * at a time, possibly less if that exceeds RESYNC_PAGES,
4230          * or we hit a bad block or something.
4231          * This might mean we pause for normal IO in the middle of
4232          * a chunk, but that is not a problem as mddev->reshape_position
4233          * can record any location.
4234          *
4235          * If we will want to write to a location that isn't
4236          * yet recorded as 'safe' (i.e. in metadata on disk) then
4237          * we need to flush all reshape requests and update the metadata.
4238          *
4239          * When reshaping forwards (e.g. to more devices), we interpret
4240          * 'safe' as the earliest block which might not have been copied
4241          * down yet.  We divide this by previous stripe size and multiply
4242          * by previous stripe length to get lowest device offset that we
4243          * cannot write to yet.
4244          * We interpret 'sector_nr' as an address that we want to write to.
4245          * From this we use last_device_address() to find where we might
4246          * write to, and first_device_address on the  'safe' position.
4247          * If this 'next' write position is after the 'safe' position,
4248          * we must update the metadata to increase the 'safe' position.
4249          *
4250          * When reshaping backwards, we round in the opposite direction
4251          * and perform the reverse test:  next write position must not be
4252          * less than current safe position.
4253          *
4254          * In all this the minimum difference in data offsets
4255          * (conf->offset_diff - always positive) allows a bit of slack,
4256          * so next can be after 'safe', but not by more than offset_diff
4257          *
4258          * We need to prepare all the bios here before we start any IO
4259          * to ensure the size we choose is acceptable to all devices.
4260          * The means one for each copy for write-out and an extra one for
4261          * read-in.
4262          * We store the read-in bio in ->master_bio and the others in
4263          * ->devs[x].bio and ->devs[x].repl_bio.
4264          */
4265         struct r10conf *conf = mddev->private;
4266         struct r10bio *r10_bio;
4267         sector_t next, safe, last;
4268         int max_sectors;
4269         int nr_sectors;
4270         int s;
4271         struct md_rdev *rdev;
4272         int need_flush = 0;
4273         struct bio *blist;
4274         struct bio *bio, *read_bio;
4275         int sectors_done = 0;
4276         struct page **pages;
4277
4278         if (sector_nr == 0) {
4279                 /* If restarting in the middle, skip the initial sectors */
4280                 if (mddev->reshape_backwards &&
4281                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4282                         sector_nr = (raid10_size(mddev, 0, 0)
4283                                      - conf->reshape_progress);
4284                 } else if (!mddev->reshape_backwards &&
4285                            conf->reshape_progress > 0)
4286                         sector_nr = conf->reshape_progress;
4287                 if (sector_nr) {
4288                         mddev->curr_resync_completed = sector_nr;
4289                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4290                         *skipped = 1;
4291                         return sector_nr;
4292                 }
4293         }
4294
4295         /* We don't use sector_nr to track where we are up to
4296          * as that doesn't work well for ->reshape_backwards.
4297          * So just use ->reshape_progress.
4298          */
4299         if (mddev->reshape_backwards) {
4300                 /* 'next' is the earliest device address that we might
4301                  * write to for this chunk in the new layout
4302                  */
4303                 next = first_dev_address(conf->reshape_progress - 1,
4304                                          &conf->geo);
4305
4306                 /* 'safe' is the last device address that we might read from
4307                  * in the old layout after a restart
4308                  */
4309                 safe = last_dev_address(conf->reshape_safe - 1,
4310                                         &conf->prev);
4311
4312                 if (next + conf->offset_diff < safe)
4313                         need_flush = 1;
4314
4315                 last = conf->reshape_progress - 1;
4316                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4317                                                & conf->prev.chunk_mask);
4318                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4319                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4320         } else {
4321                 /* 'next' is after the last device address that we
4322                  * might write to for this chunk in the new layout
4323                  */
4324                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4325
4326                 /* 'safe' is the earliest device address that we might
4327                  * read from in the old layout after a restart
4328                  */
4329                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4330
4331                 /* Need to update metadata if 'next' might be beyond 'safe'
4332                  * as that would possibly corrupt data
4333                  */
4334                 if (next > safe + conf->offset_diff)
4335                         need_flush = 1;
4336
4337                 sector_nr = conf->reshape_progress;
4338                 last  = sector_nr | (conf->geo.chunk_mask
4339                                      & conf->prev.chunk_mask);
4340
4341                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4342                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4343         }
4344
4345         if (need_flush ||
4346             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4347                 /* Need to update reshape_position in metadata */
4348                 wait_barrier(conf);
4349                 mddev->reshape_position = conf->reshape_progress;
4350                 if (mddev->reshape_backwards)
4351                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4352                                 - conf->reshape_progress;
4353                 else
4354                         mddev->curr_resync_completed = conf->reshape_progress;
4355                 conf->reshape_checkpoint = jiffies;
4356                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4357                 md_wakeup_thread(mddev->thread);
4358                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4359                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4360                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4361                         allow_barrier(conf);
4362                         return sectors_done;
4363                 }
4364                 conf->reshape_safe = mddev->reshape_position;
4365                 allow_barrier(conf);
4366         }
4367
4368 read_more:
4369         /* Now schedule reads for blocks from sector_nr to last */
4370         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4371         r10_bio->state = 0;
4372         raise_barrier(conf, sectors_done != 0);
4373         atomic_set(&r10_bio->remaining, 0);
4374         r10_bio->mddev = mddev;
4375         r10_bio->sector = sector_nr;
4376         set_bit(R10BIO_IsReshape, &r10_bio->state);
4377         r10_bio->sectors = last - sector_nr + 1;
4378         rdev = read_balance(conf, r10_bio, &max_sectors);
4379         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4380
4381         if (!rdev) {
4382                 /* Cannot read from here, so need to record bad blocks
4383                  * on all the target devices.
4384                  */
4385                 // FIXME
4386                 mempool_free(r10_bio, conf->r10buf_pool);
4387                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4388                 return sectors_done;
4389         }
4390
4391         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4392
4393         read_bio->bi_bdev = rdev->bdev;
4394         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4395                                + rdev->data_offset);
4396         read_bio->bi_private = r10_bio;
4397         read_bio->bi_end_io = end_reshape_read;
4398         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4399         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4400         read_bio->bi_error = 0;
4401         read_bio->bi_vcnt = 0;
4402         read_bio->bi_iter.bi_size = 0;
4403         r10_bio->master_bio = read_bio;
4404         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4405
4406         /* Now find the locations in the new layout */
4407         __raid10_find_phys(&conf->geo, r10_bio);
4408
4409         blist = read_bio;
4410         read_bio->bi_next = NULL;
4411
4412         rcu_read_lock();
4413         for (s = 0; s < conf->copies*2; s++) {
4414                 struct bio *b;
4415                 int d = r10_bio->devs[s/2].devnum;
4416                 struct md_rdev *rdev2;
4417                 if (s&1) {
4418                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4419                         b = r10_bio->devs[s/2].repl_bio;
4420                 } else {
4421                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4422                         b = r10_bio->devs[s/2].bio;
4423                 }
4424                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4425                         continue;
4426
4427                 b->bi_bdev = rdev2->bdev;
4428                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4429                         rdev2->new_data_offset;
4430                 b->bi_end_io = end_reshape_write;
4431                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4432                 b->bi_next = blist;
4433                 blist = b;
4434         }
4435
4436         /* Now add as many pages as possible to all of these bios. */
4437
4438         nr_sectors = 0;
4439         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4440         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4441                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4442                 int len = (max_sectors - s) << 9;
4443                 if (len > PAGE_SIZE)
4444                         len = PAGE_SIZE;
4445                 for (bio = blist; bio ; bio = bio->bi_next) {
4446                         /*
4447                          * won't fail because the vec table is big enough
4448                          * to hold all these pages
4449                          */
4450                         bio_add_page(bio, page, len, 0);
4451                 }
4452                 sector_nr += len >> 9;
4453                 nr_sectors += len >> 9;
4454         }
4455         rcu_read_unlock();
4456         r10_bio->sectors = nr_sectors;
4457
4458         /* Now submit the read */
4459         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4460         atomic_inc(&r10_bio->remaining);
4461         read_bio->bi_next = NULL;
4462         generic_make_request(read_bio);
4463         sector_nr += nr_sectors;
4464         sectors_done += nr_sectors;
4465         if (sector_nr <= last)
4466                 goto read_more;
4467
4468         /* Now that we have done the whole section we can
4469          * update reshape_progress
4470          */
4471         if (mddev->reshape_backwards)
4472                 conf->reshape_progress -= sectors_done;
4473         else
4474                 conf->reshape_progress += sectors_done;
4475
4476         return sectors_done;
4477 }
4478
4479 static void end_reshape_request(struct r10bio *r10_bio);
4480 static int handle_reshape_read_error(struct mddev *mddev,
4481                                      struct r10bio *r10_bio);
4482 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4483 {
4484         /* Reshape read completed.  Hopefully we have a block
4485          * to write out.
4486          * If we got a read error then we do sync 1-page reads from
4487          * elsewhere until we find the data - or give up.
4488          */
4489         struct r10conf *conf = mddev->private;
4490         int s;
4491
4492         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4493                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4494                         /* Reshape has been aborted */
4495                         md_done_sync(mddev, r10_bio->sectors, 0);
4496                         return;
4497                 }
4498
4499         /* We definitely have the data in the pages, schedule the
4500          * writes.
4501          */
4502         atomic_set(&r10_bio->remaining, 1);
4503         for (s = 0; s < conf->copies*2; s++) {
4504                 struct bio *b;
4505                 int d = r10_bio->devs[s/2].devnum;
4506                 struct md_rdev *rdev;
4507                 rcu_read_lock();
4508                 if (s&1) {
4509                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4510                         b = r10_bio->devs[s/2].repl_bio;
4511                 } else {
4512                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4513                         b = r10_bio->devs[s/2].bio;
4514                 }
4515                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4516                         rcu_read_unlock();
4517                         continue;
4518                 }
4519                 atomic_inc(&rdev->nr_pending);
4520                 rcu_read_unlock();
4521                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4522                 atomic_inc(&r10_bio->remaining);
4523                 b->bi_next = NULL;
4524                 generic_make_request(b);
4525         }
4526         end_reshape_request(r10_bio);
4527 }
4528
4529 static void end_reshape(struct r10conf *conf)
4530 {
4531         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4532                 return;
4533
4534         spin_lock_irq(&conf->device_lock);
4535         conf->prev = conf->geo;
4536         md_finish_reshape(conf->mddev);
4537         smp_wmb();
4538         conf->reshape_progress = MaxSector;
4539         conf->reshape_safe = MaxSector;
4540         spin_unlock_irq(&conf->device_lock);
4541
4542         /* read-ahead size must cover two whole stripes, which is
4543          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4544          */
4545         if (conf->mddev->queue) {
4546                 int stripe = conf->geo.raid_disks *
4547                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4548                 stripe /= conf->geo.near_copies;
4549                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4550                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4551         }
4552         conf->fullsync = 0;
4553 }
4554
4555 static int handle_reshape_read_error(struct mddev *mddev,
4556                                      struct r10bio *r10_bio)
4557 {
4558         /* Use sync reads to get the blocks from somewhere else */
4559         int sectors = r10_bio->sectors;
4560         struct r10conf *conf = mddev->private;
4561         struct {
4562                 struct r10bio r10_bio;
4563                 struct r10dev devs[conf->copies];
4564         } on_stack;
4565         struct r10bio *r10b = &on_stack.r10_bio;
4566         int slot = 0;
4567         int idx = 0;
4568         struct page **pages;
4569
4570         /* reshape IOs share pages from .devs[0].bio */
4571         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4572
4573         r10b->sector = r10_bio->sector;
4574         __raid10_find_phys(&conf->prev, r10b);
4575
4576         while (sectors) {
4577                 int s = sectors;
4578                 int success = 0;
4579                 int first_slot = slot;
4580
4581                 if (s > (PAGE_SIZE >> 9))
4582                         s = PAGE_SIZE >> 9;
4583
4584                 rcu_read_lock();
4585                 while (!success) {
4586                         int d = r10b->devs[slot].devnum;
4587                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4588                         sector_t addr;
4589                         if (rdev == NULL ||
4590                             test_bit(Faulty, &rdev->flags) ||
4591                             !test_bit(In_sync, &rdev->flags))
4592                                 goto failed;
4593
4594                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4595                         atomic_inc(&rdev->nr_pending);
4596                         rcu_read_unlock();
4597                         success = sync_page_io(rdev,
4598                                                addr,
4599                                                s << 9,
4600                                                pages[idx],
4601                                                REQ_OP_READ, 0, false);
4602                         rdev_dec_pending(rdev, mddev);
4603                         rcu_read_lock();
4604                         if (success)
4605                                 break;
4606                 failed:
4607                         slot++;
4608                         if (slot >= conf->copies)
4609                                 slot = 0;
4610                         if (slot == first_slot)
4611                                 break;
4612                 }
4613                 rcu_read_unlock();
4614                 if (!success) {
4615                         /* couldn't read this block, must give up */
4616                         set_bit(MD_RECOVERY_INTR,
4617                                 &mddev->recovery);
4618                         return -EIO;
4619                 }
4620                 sectors -= s;
4621                 idx++;
4622         }
4623         return 0;
4624 }
4625
4626 static void end_reshape_write(struct bio *bio)
4627 {
4628         struct r10bio *r10_bio = get_resync_r10bio(bio);
4629         struct mddev *mddev = r10_bio->mddev;
4630         struct r10conf *conf = mddev->private;
4631         int d;
4632         int slot;
4633         int repl;
4634         struct md_rdev *rdev = NULL;
4635
4636         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4637         if (repl)
4638                 rdev = conf->mirrors[d].replacement;
4639         if (!rdev) {
4640                 smp_mb();
4641                 rdev = conf->mirrors[d].rdev;
4642         }
4643
4644         if (bio->bi_error) {
4645                 /* FIXME should record badblock */
4646                 md_error(mddev, rdev);
4647         }
4648
4649         rdev_dec_pending(rdev, mddev);
4650         end_reshape_request(r10_bio);
4651 }
4652
4653 static void end_reshape_request(struct r10bio *r10_bio)
4654 {
4655         if (!atomic_dec_and_test(&r10_bio->remaining))
4656                 return;
4657         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4658         bio_put(r10_bio->master_bio);
4659         put_buf(r10_bio);
4660 }
4661
4662 static void raid10_finish_reshape(struct mddev *mddev)
4663 {
4664         struct r10conf *conf = mddev->private;
4665
4666         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4667                 return;
4668
4669         if (mddev->delta_disks > 0) {
4670                 sector_t size = raid10_size(mddev, 0, 0);
4671                 md_set_array_sectors(mddev, size);
4672                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4673                         mddev->recovery_cp = mddev->resync_max_sectors;
4674                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4675                 }
4676                 mddev->resync_max_sectors = size;
4677                 if (mddev->queue) {
4678                         set_capacity(mddev->gendisk, mddev->array_sectors);
4679                         revalidate_disk(mddev->gendisk);
4680                 }
4681         } else {
4682                 int d;
4683                 rcu_read_lock();
4684                 for (d = conf->geo.raid_disks ;
4685                      d < conf->geo.raid_disks - mddev->delta_disks;
4686                      d++) {
4687                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4688                         if (rdev)
4689                                 clear_bit(In_sync, &rdev->flags);
4690                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4691                         if (rdev)
4692                                 clear_bit(In_sync, &rdev->flags);
4693                 }
4694                 rcu_read_unlock();
4695         }
4696         mddev->layout = mddev->new_layout;
4697         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4698         mddev->reshape_position = MaxSector;
4699         mddev->delta_disks = 0;
4700         mddev->reshape_backwards = 0;
4701 }
4702
4703 static struct md_personality raid10_personality =
4704 {
4705         .name           = "raid10",
4706         .level          = 10,
4707         .owner          = THIS_MODULE,
4708         .make_request   = raid10_make_request,
4709         .run            = raid10_run,
4710         .free           = raid10_free,
4711         .status         = raid10_status,
4712         .error_handler  = raid10_error,
4713         .hot_add_disk   = raid10_add_disk,
4714         .hot_remove_disk= raid10_remove_disk,
4715         .spare_active   = raid10_spare_active,
4716         .sync_request   = raid10_sync_request,
4717         .quiesce        = raid10_quiesce,
4718         .size           = raid10_size,
4719         .resize         = raid10_resize,
4720         .takeover       = raid10_takeover,
4721         .check_reshape  = raid10_check_reshape,
4722         .start_reshape  = raid10_start_reshape,
4723         .finish_reshape = raid10_finish_reshape,
4724         .congested      = raid10_congested,
4725 };
4726
4727 static int __init raid_init(void)
4728 {
4729         return register_md_personality(&raid10_personality);
4730 }
4731
4732 static void raid_exit(void)
4733 {
4734         unregister_md_personality(&raid10_personality);
4735 }
4736
4737 module_init(raid_init);
4738 module_exit(raid_exit);
4739 MODULE_LICENSE("GPL");
4740 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4741 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4742 MODULE_ALIAS("md-raid10");
4743 MODULE_ALIAS("md-level-10");
4744
4745 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);