]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/md/raid10.c
aa8ba0760cac35778dbd9c71dceea233fcd6f0b7
[linux-beck.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445         struct r10bio *r10_bio = bio->bi_private;
446         int dev;
447         int dec_rdev = 1;
448         struct r10conf *conf = r10_bio->mddev->private;
449         int slot, repl;
450         struct md_rdev *rdev = NULL;
451
452         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454         if (repl)
455                 rdev = conf->mirrors[dev].replacement;
456         if (!rdev) {
457                 smp_rmb();
458                 repl = 0;
459                 rdev = conf->mirrors[dev].rdev;
460         }
461         /*
462          * this branch is our 'one mirror IO has finished' event handler:
463          */
464         if (!uptodate) {
465                 if (repl)
466                         /* Never record new bad blocks to replacement,
467                          * just fail it.
468                          */
469                         md_error(rdev->mddev, rdev);
470                 else {
471                         set_bit(WriteErrorSeen, &rdev->flags);
472                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
473                                 set_bit(MD_RECOVERY_NEEDED,
474                                         &rdev->mddev->recovery);
475                         set_bit(R10BIO_WriteError, &r10_bio->state);
476                         dec_rdev = 0;
477                 }
478         } else {
479                 /*
480                  * Set R10BIO_Uptodate in our master bio, so that
481                  * we will return a good error code for to the higher
482                  * levels even if IO on some other mirrored buffer fails.
483                  *
484                  * The 'master' represents the composite IO operation to
485                  * user-side. So if something waits for IO, then it will
486                  * wait for the 'master' bio.
487                  */
488                 sector_t first_bad;
489                 int bad_sectors;
490
491                 /*
492                  * Do not set R10BIO_Uptodate if the current device is
493                  * rebuilding or Faulty. This is because we cannot use
494                  * such device for properly reading the data back (we could
495                  * potentially use it, if the current write would have felt
496                  * before rdev->recovery_offset, but for simplicity we don't
497                  * check this here.
498                  */
499                 if (test_bit(In_sync, &rdev->flags) &&
500                     !test_bit(Faulty, &rdev->flags))
501                         set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503                 /* Maybe we can clear some bad blocks. */
504                 if (is_badblock(rdev,
505                                 r10_bio->devs[slot].addr,
506                                 r10_bio->sectors,
507                                 &first_bad, &bad_sectors)) {
508                         bio_put(bio);
509                         if (repl)
510                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511                         else
512                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513                         dec_rdev = 0;
514                         set_bit(R10BIO_MadeGood, &r10_bio->state);
515                 }
516         }
517
518         /*
519          *
520          * Let's see if all mirrored write operations have finished
521          * already.
522          */
523         one_write_done(r10_bio);
524         if (dec_rdev)
525                 rdev_dec_pending(rdev, conf->mddev);
526 }
527
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555         int n,f;
556         sector_t sector;
557         sector_t chunk;
558         sector_t stripe;
559         int dev;
560         int slot = 0;
561         int last_far_set_start, last_far_set_size;
562
563         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564         last_far_set_start *= geo->far_set_size;
565
566         last_far_set_size = geo->far_set_size;
567         last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569         /* now calculate first sector/dev */
570         chunk = r10bio->sector >> geo->chunk_shift;
571         sector = r10bio->sector & geo->chunk_mask;
572
573         chunk *= geo->near_copies;
574         stripe = chunk;
575         dev = sector_div(stripe, geo->raid_disks);
576         if (geo->far_offset)
577                 stripe *= geo->far_copies;
578
579         sector += stripe << geo->chunk_shift;
580
581         /* and calculate all the others */
582         for (n = 0; n < geo->near_copies; n++) {
583                 int d = dev;
584                 int set;
585                 sector_t s = sector;
586                 r10bio->devs[slot].devnum = d;
587                 r10bio->devs[slot].addr = s;
588                 slot++;
589
590                 for (f = 1; f < geo->far_copies; f++) {
591                         set = d / geo->far_set_size;
592                         d += geo->near_copies;
593
594                         if ((geo->raid_disks % geo->far_set_size) &&
595                             (d > last_far_set_start)) {
596                                 d -= last_far_set_start;
597                                 d %= last_far_set_size;
598                                 d += last_far_set_start;
599                         } else {
600                                 d %= geo->far_set_size;
601                                 d += geo->far_set_size * set;
602                         }
603                         s += geo->stride;
604                         r10bio->devs[slot].devnum = d;
605                         r10bio->devs[slot].addr = s;
606                         slot++;
607                 }
608                 dev++;
609                 if (dev >= geo->raid_disks) {
610                         dev = 0;
611                         sector += (geo->chunk_mask + 1);
612                 }
613         }
614 }
615
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618         struct geom *geo = &conf->geo;
619
620         if (conf->reshape_progress != MaxSector &&
621             ((r10bio->sector >= conf->reshape_progress) !=
622              conf->mddev->reshape_backwards)) {
623                 set_bit(R10BIO_Previous, &r10bio->state);
624                 geo = &conf->prev;
625         } else
626                 clear_bit(R10BIO_Previous, &r10bio->state);
627
628         __raid10_find_phys(geo, r10bio);
629 }
630
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633         sector_t offset, chunk, vchunk;
634         /* Never use conf->prev as this is only called during resync
635          * or recovery, so reshape isn't happening
636          */
637         struct geom *geo = &conf->geo;
638         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639         int far_set_size = geo->far_set_size;
640         int last_far_set_start;
641
642         if (geo->raid_disks % geo->far_set_size) {
643                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644                 last_far_set_start *= geo->far_set_size;
645
646                 if (dev >= last_far_set_start) {
647                         far_set_size = geo->far_set_size;
648                         far_set_size += (geo->raid_disks % geo->far_set_size);
649                         far_set_start = last_far_set_start;
650                 }
651         }
652
653         offset = sector & geo->chunk_mask;
654         if (geo->far_offset) {
655                 int fc;
656                 chunk = sector >> geo->chunk_shift;
657                 fc = sector_div(chunk, geo->far_copies);
658                 dev -= fc * geo->near_copies;
659                 if (dev < far_set_start)
660                         dev += far_set_size;
661         } else {
662                 while (sector >= geo->stride) {
663                         sector -= geo->stride;
664                         if (dev < (geo->near_copies + far_set_start))
665                                 dev += far_set_size - geo->near_copies;
666                         else
667                                 dev -= geo->near_copies;
668                 }
669                 chunk = sector >> geo->chunk_shift;
670         }
671         vchunk = chunk * geo->raid_disks + dev;
672         sector_div(vchunk, geo->near_copies);
673         return (vchunk << geo->chunk_shift) + offset;
674 }
675
676 /**
677  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *      @q: request queue
679  *      @bvm: properties of new bio
680  *      @biovec: the request that could be merged to it.
681  *
682  *      Return amount of bytes we can accept at this offset
683  *      This requires checking for end-of-chunk if near_copies != raid_disks,
684  *      and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687                                  struct bvec_merge_data *bvm,
688                                  struct bio_vec *biovec)
689 {
690         struct mddev *mddev = q->queuedata;
691         struct r10conf *conf = mddev->private;
692         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693         int max;
694         unsigned int chunk_sectors;
695         unsigned int bio_sectors = bvm->bi_size >> 9;
696         struct geom *geo = &conf->geo;
697
698         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699         if (conf->reshape_progress != MaxSector &&
700             ((sector >= conf->reshape_progress) !=
701              conf->mddev->reshape_backwards))
702                 geo = &conf->prev;
703
704         if (geo->near_copies < geo->raid_disks) {
705                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706                                         + bio_sectors)) << 9;
707                 if (max < 0)
708                         /* bio_add cannot handle a negative return */
709                         max = 0;
710                 if (max <= biovec->bv_len && bio_sectors == 0)
711                         return biovec->bv_len;
712         } else
713                 max = biovec->bv_len;
714
715         if (mddev->merge_check_needed) {
716                 struct {
717                         struct r10bio r10_bio;
718                         struct r10dev devs[conf->copies];
719                 } on_stack;
720                 struct r10bio *r10_bio = &on_stack.r10_bio;
721                 int s;
722                 if (conf->reshape_progress != MaxSector) {
723                         /* Cannot give any guidance during reshape */
724                         if (max <= biovec->bv_len && bio_sectors == 0)
725                                 return biovec->bv_len;
726                         return 0;
727                 }
728                 r10_bio->sector = sector;
729                 raid10_find_phys(conf, r10_bio);
730                 rcu_read_lock();
731                 for (s = 0; s < conf->copies; s++) {
732                         int disk = r10_bio->devs[s].devnum;
733                         struct md_rdev *rdev = rcu_dereference(
734                                 conf->mirrors[disk].rdev);
735                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
736                                 struct request_queue *q =
737                                         bdev_get_queue(rdev->bdev);
738                                 if (q->merge_bvec_fn) {
739                                         bvm->bi_sector = r10_bio->devs[s].addr
740                                                 + rdev->data_offset;
741                                         bvm->bi_bdev = rdev->bdev;
742                                         max = min(max, q->merge_bvec_fn(
743                                                           q, bvm, biovec));
744                                 }
745                         }
746                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
747                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
748                                 struct request_queue *q =
749                                         bdev_get_queue(rdev->bdev);
750                                 if (q->merge_bvec_fn) {
751                                         bvm->bi_sector = r10_bio->devs[s].addr
752                                                 + rdev->data_offset;
753                                         bvm->bi_bdev = rdev->bdev;
754                                         max = min(max, q->merge_bvec_fn(
755                                                           q, bvm, biovec));
756                                 }
757                         }
758                 }
759                 rcu_read_unlock();
760         }
761         return max;
762 }
763
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784                                     struct r10bio *r10_bio,
785                                     int *max_sectors)
786 {
787         const sector_t this_sector = r10_bio->sector;
788         int disk, slot;
789         int sectors = r10_bio->sectors;
790         int best_good_sectors;
791         sector_t new_distance, best_dist;
792         struct md_rdev *best_rdev, *rdev = NULL;
793         int do_balance;
794         int best_slot;
795         struct geom *geo = &conf->geo;
796
797         raid10_find_phys(conf, r10_bio);
798         rcu_read_lock();
799 retry:
800         sectors = r10_bio->sectors;
801         best_slot = -1;
802         best_rdev = NULL;
803         best_dist = MaxSector;
804         best_good_sectors = 0;
805         do_balance = 1;
806         /*
807          * Check if we can balance. We can balance on the whole
808          * device if no resync is going on (recovery is ok), or below
809          * the resync window. We take the first readable disk when
810          * above the resync window.
811          */
812         if (conf->mddev->recovery_cp < MaxSector
813             && (this_sector + sectors >= conf->next_resync))
814                 do_balance = 0;
815
816         for (slot = 0; slot < conf->copies ; slot++) {
817                 sector_t first_bad;
818                 int bad_sectors;
819                 sector_t dev_sector;
820
821                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822                         continue;
823                 disk = r10_bio->devs[slot].devnum;
824                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826                     test_bit(Unmerged, &rdev->flags) ||
827                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
829                 if (rdev == NULL ||
830                     test_bit(Faulty, &rdev->flags) ||
831                     test_bit(Unmerged, &rdev->flags))
832                         continue;
833                 if (!test_bit(In_sync, &rdev->flags) &&
834                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835                         continue;
836
837                 dev_sector = r10_bio->devs[slot].addr;
838                 if (is_badblock(rdev, dev_sector, sectors,
839                                 &first_bad, &bad_sectors)) {
840                         if (best_dist < MaxSector)
841                                 /* Already have a better slot */
842                                 continue;
843                         if (first_bad <= dev_sector) {
844                                 /* Cannot read here.  If this is the
845                                  * 'primary' device, then we must not read
846                                  * beyond 'bad_sectors' from another device.
847                                  */
848                                 bad_sectors -= (dev_sector - first_bad);
849                                 if (!do_balance && sectors > bad_sectors)
850                                         sectors = bad_sectors;
851                                 if (best_good_sectors > sectors)
852                                         best_good_sectors = sectors;
853                         } else {
854                                 sector_t good_sectors =
855                                         first_bad - dev_sector;
856                                 if (good_sectors > best_good_sectors) {
857                                         best_good_sectors = good_sectors;
858                                         best_slot = slot;
859                                         best_rdev = rdev;
860                                 }
861                                 if (!do_balance)
862                                         /* Must read from here */
863                                         break;
864                         }
865                         continue;
866                 } else
867                         best_good_sectors = sectors;
868
869                 if (!do_balance)
870                         break;
871
872                 /* This optimisation is debatable, and completely destroys
873                  * sequential read speed for 'far copies' arrays.  So only
874                  * keep it for 'near' arrays, and review those later.
875                  */
876                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877                         break;
878
879                 /* for far > 1 always use the lowest address */
880                 if (geo->far_copies > 1)
881                         new_distance = r10_bio->devs[slot].addr;
882                 else
883                         new_distance = abs(r10_bio->devs[slot].addr -
884                                            conf->mirrors[disk].head_position);
885                 if (new_distance < best_dist) {
886                         best_dist = new_distance;
887                         best_slot = slot;
888                         best_rdev = rdev;
889                 }
890         }
891         if (slot >= conf->copies) {
892                 slot = best_slot;
893                 rdev = best_rdev;
894         }
895
896         if (slot >= 0) {
897                 atomic_inc(&rdev->nr_pending);
898                 if (test_bit(Faulty, &rdev->flags)) {
899                         /* Cannot risk returning a device that failed
900                          * before we inc'ed nr_pending
901                          */
902                         rdev_dec_pending(rdev, conf->mddev);
903                         goto retry;
904                 }
905                 r10_bio->read_slot = slot;
906         } else
907                 rdev = NULL;
908         rcu_read_unlock();
909         *max_sectors = best_good_sectors;
910
911         return rdev;
912 }
913
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916         struct r10conf *conf = mddev->private;
917         int i, ret = 0;
918
919         if ((bits & (1 << BDI_async_congested)) &&
920             conf->pending_count >= max_queued_requests)
921                 return 1;
922
923         rcu_read_lock();
924         for (i = 0;
925              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926                      && ret == 0;
927              i++) {
928                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930                         struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932                         ret |= bdi_congested(&q->backing_dev_info, bits);
933                 }
934         }
935         rcu_read_unlock();
936         return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940 static int raid10_congested(void *data, int bits)
941 {
942         struct mddev *mddev = data;
943
944         return mddev_congested(mddev, bits) ||
945                 md_raid10_congested(mddev, bits);
946 }
947
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950         /* Any writes that have been queued but are awaiting
951          * bitmap updates get flushed here.
952          */
953         spin_lock_irq(&conf->device_lock);
954
955         if (conf->pending_bio_list.head) {
956                 struct bio *bio;
957                 bio = bio_list_get(&conf->pending_bio_list);
958                 conf->pending_count = 0;
959                 spin_unlock_irq(&conf->device_lock);
960                 /* flush any pending bitmap writes to disk
961                  * before proceeding w/ I/O */
962                 bitmap_unplug(conf->mddev->bitmap);
963                 wake_up(&conf->wait_barrier);
964
965                 while (bio) { /* submit pending writes */
966                         struct bio *next = bio->bi_next;
967                         bio->bi_next = NULL;
968                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970                                 /* Just ignore it */
971                                 bio_endio(bio, 0);
972                         else
973                                 generic_make_request(bio);
974                         bio = next;
975                 }
976         } else
977                 spin_unlock_irq(&conf->device_lock);
978 }
979
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004         BUG_ON(force && !conf->barrier);
1005         spin_lock_irq(&conf->resync_lock);
1006
1007         /* Wait until no block IO is waiting (unless 'force') */
1008         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009                             conf->resync_lock);
1010
1011         /* block any new IO from starting */
1012         conf->barrier++;
1013
1014         /* Now wait for all pending IO to complete */
1015         wait_event_lock_irq(conf->wait_barrier,
1016                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017                             conf->resync_lock);
1018
1019         spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024         unsigned long flags;
1025         spin_lock_irqsave(&conf->resync_lock, flags);
1026         conf->barrier--;
1027         spin_unlock_irqrestore(&conf->resync_lock, flags);
1028         wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033         spin_lock_irq(&conf->resync_lock);
1034         if (conf->barrier) {
1035                 conf->nr_waiting++;
1036                 /* Wait for the barrier to drop.
1037                  * However if there are already pending
1038                  * requests (preventing the barrier from
1039                  * rising completely), and the
1040                  * pre-process bio queue isn't empty,
1041                  * then don't wait, as we need to empty
1042                  * that queue to get the nr_pending
1043                  * count down.
1044                  */
1045                 wait_event_lock_irq(conf->wait_barrier,
1046                                     !conf->barrier ||
1047                                     (conf->nr_pending &&
1048                                      current->bio_list &&
1049                                      !bio_list_empty(current->bio_list)),
1050                                     conf->resync_lock);
1051                 conf->nr_waiting--;
1052         }
1053         conf->nr_pending++;
1054         spin_unlock_irq(&conf->resync_lock);
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059         unsigned long flags;
1060         spin_lock_irqsave(&conf->resync_lock, flags);
1061         conf->nr_pending--;
1062         spin_unlock_irqrestore(&conf->resync_lock, flags);
1063         wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068         /* stop syncio and normal IO and wait for everything to
1069          * go quiet.
1070          * We increment barrier and nr_waiting, and then
1071          * wait until nr_pending match nr_queued+extra
1072          * This is called in the context of one normal IO request
1073          * that has failed. Thus any sync request that might be pending
1074          * will be blocked by nr_pending, and we need to wait for
1075          * pending IO requests to complete or be queued for re-try.
1076          * Thus the number queued (nr_queued) plus this request (extra)
1077          * must match the number of pending IOs (nr_pending) before
1078          * we continue.
1079          */
1080         spin_lock_irq(&conf->resync_lock);
1081         conf->barrier++;
1082         conf->nr_waiting++;
1083         wait_event_lock_irq_cmd(conf->wait_barrier,
1084                                 conf->nr_pending == conf->nr_queued+extra,
1085                                 conf->resync_lock,
1086                                 flush_pending_writes(conf));
1087
1088         spin_unlock_irq(&conf->resync_lock);
1089 }
1090
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093         /* reverse the effect of the freeze */
1094         spin_lock_irq(&conf->resync_lock);
1095         conf->barrier--;
1096         conf->nr_waiting--;
1097         wake_up(&conf->wait_barrier);
1098         spin_unlock_irq(&conf->resync_lock);
1099 }
1100
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102                                    struct md_rdev *rdev)
1103 {
1104         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105             test_bit(R10BIO_Previous, &r10_bio->state))
1106                 return rdev->data_offset;
1107         else
1108                 return rdev->new_data_offset;
1109 }
1110
1111 struct raid10_plug_cb {
1112         struct blk_plug_cb      cb;
1113         struct bio_list         pending;
1114         int                     pending_cnt;
1115 };
1116
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120                                                    cb);
1121         struct mddev *mddev = plug->cb.data;
1122         struct r10conf *conf = mddev->private;
1123         struct bio *bio;
1124
1125         if (from_schedule || current->bio_list) {
1126                 spin_lock_irq(&conf->device_lock);
1127                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128                 conf->pending_count += plug->pending_cnt;
1129                 spin_unlock_irq(&conf->device_lock);
1130                 wake_up(&conf->wait_barrier);
1131                 md_wakeup_thread(mddev->thread);
1132                 kfree(plug);
1133                 return;
1134         }
1135
1136         /* we aren't scheduling, so we can do the write-out directly. */
1137         bio = bio_list_get(&plug->pending);
1138         bitmap_unplug(mddev->bitmap);
1139         wake_up(&conf->wait_barrier);
1140
1141         while (bio) { /* submit pending writes */
1142                 struct bio *next = bio->bi_next;
1143                 bio->bi_next = NULL;
1144                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                         /* Just ignore it */
1147                         bio_endio(bio, 0);
1148                 else
1149                         generic_make_request(bio);
1150                 bio = next;
1151         }
1152         kfree(plug);
1153 }
1154
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157         struct r10conf *conf = mddev->private;
1158         struct r10bio *r10_bio;
1159         struct bio *read_bio;
1160         int i;
1161         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162         int chunk_sects = chunk_mask + 1;
1163         const int rw = bio_data_dir(bio);
1164         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166         const unsigned long do_discard = (bio->bi_rw
1167                                           & (REQ_DISCARD | REQ_SECURE));
1168         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169         unsigned long flags;
1170         struct md_rdev *blocked_rdev;
1171         struct blk_plug_cb *cb;
1172         struct raid10_plug_cb *plug = NULL;
1173         int sectors_handled;
1174         int max_sectors;
1175         int sectors;
1176
1177         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178                 md_flush_request(mddev, bio);
1179                 return;
1180         }
1181
1182         /* If this request crosses a chunk boundary, we need to
1183          * split it.  This will only happen for 1 PAGE (or less) requests.
1184          */
1185         if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1186                      > chunk_sects
1187                      && (conf->geo.near_copies < conf->geo.raid_disks
1188                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1189                 struct bio_pair *bp;
1190                 /* Sanity check -- queue functions should prevent this happening */
1191                 if (bio_segments(bio) > 1)
1192                         goto bad_map;
1193                 /* This is a one page bio that upper layers
1194                  * refuse to split for us, so we need to split it.
1195                  */
1196                 bp = bio_split(bio,
1197                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1198
1199                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200                  * If the first succeeds but the second blocks due to the resync
1201                  * thread raising the barrier, we will deadlock because the
1202                  * IO to the underlying device will be queued in generic_make_request
1203                  * and will never complete, so will never reduce nr_pending.
1204                  * So increment nr_waiting here so no new raise_barriers will
1205                  * succeed, and so the second wait_barrier cannot block.
1206                  */
1207                 spin_lock_irq(&conf->resync_lock);
1208                 conf->nr_waiting++;
1209                 spin_unlock_irq(&conf->resync_lock);
1210
1211                 make_request(mddev, &bp->bio1);
1212                 make_request(mddev, &bp->bio2);
1213
1214                 spin_lock_irq(&conf->resync_lock);
1215                 conf->nr_waiting--;
1216                 wake_up(&conf->wait_barrier);
1217                 spin_unlock_irq(&conf->resync_lock);
1218
1219                 bio_pair_release(bp);
1220                 return;
1221         bad_map:
1222                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224                        (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1225
1226                 bio_io_error(bio);
1227                 return;
1228         }
1229
1230         md_write_start(mddev, bio);
1231
1232         /*
1233          * Register the new request and wait if the reconstruction
1234          * thread has put up a bar for new requests.
1235          * Continue immediately if no resync is active currently.
1236          */
1237         wait_barrier(conf);
1238
1239         sectors = bio_sectors(bio);
1240         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241             bio->bi_sector < conf->reshape_progress &&
1242             bio->bi_sector + sectors > conf->reshape_progress) {
1243                 /* IO spans the reshape position.  Need to wait for
1244                  * reshape to pass
1245                  */
1246                 allow_barrier(conf);
1247                 wait_event(conf->wait_barrier,
1248                            conf->reshape_progress <= bio->bi_sector ||
1249                            conf->reshape_progress >= bio->bi_sector + sectors);
1250                 wait_barrier(conf);
1251         }
1252         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253             bio_data_dir(bio) == WRITE &&
1254             (mddev->reshape_backwards
1255              ? (bio->bi_sector < conf->reshape_safe &&
1256                 bio->bi_sector + sectors > conf->reshape_progress)
1257              : (bio->bi_sector + sectors > conf->reshape_safe &&
1258                 bio->bi_sector < conf->reshape_progress))) {
1259                 /* Need to update reshape_position in metadata */
1260                 mddev->reshape_position = conf->reshape_progress;
1261                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263                 md_wakeup_thread(mddev->thread);
1264                 wait_event(mddev->sb_wait,
1265                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266
1267                 conf->reshape_safe = mddev->reshape_position;
1268         }
1269
1270         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271
1272         r10_bio->master_bio = bio;
1273         r10_bio->sectors = sectors;
1274
1275         r10_bio->mddev = mddev;
1276         r10_bio->sector = bio->bi_sector;
1277         r10_bio->state = 0;
1278
1279         /* We might need to issue multiple reads to different
1280          * devices if there are bad blocks around, so we keep
1281          * track of the number of reads in bio->bi_phys_segments.
1282          * If this is 0, there is only one r10_bio and no locking
1283          * will be needed when the request completes.  If it is
1284          * non-zero, then it is the number of not-completed requests.
1285          */
1286         bio->bi_phys_segments = 0;
1287         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288
1289         if (rw == READ) {
1290                 /*
1291                  * read balancing logic:
1292                  */
1293                 struct md_rdev *rdev;
1294                 int slot;
1295
1296 read_again:
1297                 rdev = read_balance(conf, r10_bio, &max_sectors);
1298                 if (!rdev) {
1299                         raid_end_bio_io(r10_bio);
1300                         return;
1301                 }
1302                 slot = r10_bio->read_slot;
1303
1304                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1305                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306                             max_sectors);
1307
1308                 r10_bio->devs[slot].bio = read_bio;
1309                 r10_bio->devs[slot].rdev = rdev;
1310
1311                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1312                         choose_data_offset(r10_bio, rdev);
1313                 read_bio->bi_bdev = rdev->bdev;
1314                 read_bio->bi_end_io = raid10_end_read_request;
1315                 read_bio->bi_rw = READ | do_sync;
1316                 read_bio->bi_private = r10_bio;
1317
1318                 if (max_sectors < r10_bio->sectors) {
1319                         /* Could not read all from this device, so we will
1320                          * need another r10_bio.
1321                          */
1322                         sectors_handled = (r10_bio->sectors + max_sectors
1323                                            - bio->bi_sector);
1324                         r10_bio->sectors = max_sectors;
1325                         spin_lock_irq(&conf->device_lock);
1326                         if (bio->bi_phys_segments == 0)
1327                                 bio->bi_phys_segments = 2;
1328                         else
1329                                 bio->bi_phys_segments++;
1330                         spin_unlock(&conf->device_lock);
1331                         /* Cannot call generic_make_request directly
1332                          * as that will be queued in __generic_make_request
1333                          * and subsequent mempool_alloc might block
1334                          * waiting for it.  so hand bio over to raid10d.
1335                          */
1336                         reschedule_retry(r10_bio);
1337
1338                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339
1340                         r10_bio->master_bio = bio;
1341                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1342                         r10_bio->state = 0;
1343                         r10_bio->mddev = mddev;
1344                         r10_bio->sector = bio->bi_sector + sectors_handled;
1345                         goto read_again;
1346                 } else
1347                         generic_make_request(read_bio);
1348                 return;
1349         }
1350
1351         /*
1352          * WRITE:
1353          */
1354         if (conf->pending_count >= max_queued_requests) {
1355                 md_wakeup_thread(mddev->thread);
1356                 wait_event(conf->wait_barrier,
1357                            conf->pending_count < max_queued_requests);
1358         }
1359         /* first select target devices under rcu_lock and
1360          * inc refcount on their rdev.  Record them by setting
1361          * bios[x] to bio
1362          * If there are known/acknowledged bad blocks on any device
1363          * on which we have seen a write error, we want to avoid
1364          * writing to those blocks.  This potentially requires several
1365          * writes to write around the bad blocks.  Each set of writes
1366          * gets its own r10_bio with a set of bios attached.  The number
1367          * of r10_bios is recored in bio->bi_phys_segments just as with
1368          * the read case.
1369          */
1370
1371         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1372         raid10_find_phys(conf, r10_bio);
1373 retry_write:
1374         blocked_rdev = NULL;
1375         rcu_read_lock();
1376         max_sectors = r10_bio->sectors;
1377
1378         for (i = 0;  i < conf->copies; i++) {
1379                 int d = r10_bio->devs[i].devnum;
1380                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1381                 struct md_rdev *rrdev = rcu_dereference(
1382                         conf->mirrors[d].replacement);
1383                 if (rdev == rrdev)
1384                         rrdev = NULL;
1385                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386                         atomic_inc(&rdev->nr_pending);
1387                         blocked_rdev = rdev;
1388                         break;
1389                 }
1390                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391                         atomic_inc(&rrdev->nr_pending);
1392                         blocked_rdev = rrdev;
1393                         break;
1394                 }
1395                 if (rdev && (test_bit(Faulty, &rdev->flags)
1396                              || test_bit(Unmerged, &rdev->flags)))
1397                         rdev = NULL;
1398                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399                               || test_bit(Unmerged, &rrdev->flags)))
1400                         rrdev = NULL;
1401
1402                 r10_bio->devs[i].bio = NULL;
1403                 r10_bio->devs[i].repl_bio = NULL;
1404
1405                 if (!rdev && !rrdev) {
1406                         set_bit(R10BIO_Degraded, &r10_bio->state);
1407                         continue;
1408                 }
1409                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1410                         sector_t first_bad;
1411                         sector_t dev_sector = r10_bio->devs[i].addr;
1412                         int bad_sectors;
1413                         int is_bad;
1414
1415                         is_bad = is_badblock(rdev, dev_sector,
1416                                              max_sectors,
1417                                              &first_bad, &bad_sectors);
1418                         if (is_bad < 0) {
1419                                 /* Mustn't write here until the bad block
1420                                  * is acknowledged
1421                                  */
1422                                 atomic_inc(&rdev->nr_pending);
1423                                 set_bit(BlockedBadBlocks, &rdev->flags);
1424                                 blocked_rdev = rdev;
1425                                 break;
1426                         }
1427                         if (is_bad && first_bad <= dev_sector) {
1428                                 /* Cannot write here at all */
1429                                 bad_sectors -= (dev_sector - first_bad);
1430                                 if (bad_sectors < max_sectors)
1431                                         /* Mustn't write more than bad_sectors
1432                                          * to other devices yet
1433                                          */
1434                                         max_sectors = bad_sectors;
1435                                 /* We don't set R10BIO_Degraded as that
1436                                  * only applies if the disk is missing,
1437                                  * so it might be re-added, and we want to
1438                                  * know to recover this chunk.
1439                                  * In this case the device is here, and the
1440                                  * fact that this chunk is not in-sync is
1441                                  * recorded in the bad block log.
1442                                  */
1443                                 continue;
1444                         }
1445                         if (is_bad) {
1446                                 int good_sectors = first_bad - dev_sector;
1447                                 if (good_sectors < max_sectors)
1448                                         max_sectors = good_sectors;
1449                         }
1450                 }
1451                 if (rdev) {
1452                         r10_bio->devs[i].bio = bio;
1453                         atomic_inc(&rdev->nr_pending);
1454                 }
1455                 if (rrdev) {
1456                         r10_bio->devs[i].repl_bio = bio;
1457                         atomic_inc(&rrdev->nr_pending);
1458                 }
1459         }
1460         rcu_read_unlock();
1461
1462         if (unlikely(blocked_rdev)) {
1463                 /* Have to wait for this device to get unblocked, then retry */
1464                 int j;
1465                 int d;
1466
1467                 for (j = 0; j < i; j++) {
1468                         if (r10_bio->devs[j].bio) {
1469                                 d = r10_bio->devs[j].devnum;
1470                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471                         }
1472                         if (r10_bio->devs[j].repl_bio) {
1473                                 struct md_rdev *rdev;
1474                                 d = r10_bio->devs[j].devnum;
1475                                 rdev = conf->mirrors[d].replacement;
1476                                 if (!rdev) {
1477                                         /* Race with remove_disk */
1478                                         smp_mb();
1479                                         rdev = conf->mirrors[d].rdev;
1480                                 }
1481                                 rdev_dec_pending(rdev, mddev);
1482                         }
1483                 }
1484                 allow_barrier(conf);
1485                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486                 wait_barrier(conf);
1487                 goto retry_write;
1488         }
1489
1490         if (max_sectors < r10_bio->sectors) {
1491                 /* We are splitting this into multiple parts, so
1492                  * we need to prepare for allocating another r10_bio.
1493                  */
1494                 r10_bio->sectors = max_sectors;
1495                 spin_lock_irq(&conf->device_lock);
1496                 if (bio->bi_phys_segments == 0)
1497                         bio->bi_phys_segments = 2;
1498                 else
1499                         bio->bi_phys_segments++;
1500                 spin_unlock_irq(&conf->device_lock);
1501         }
1502         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503
1504         atomic_set(&r10_bio->remaining, 1);
1505         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506
1507         for (i = 0; i < conf->copies; i++) {
1508                 struct bio *mbio;
1509                 int d = r10_bio->devs[i].devnum;
1510                 if (r10_bio->devs[i].bio) {
1511                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1512                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514                                     max_sectors);
1515                         r10_bio->devs[i].bio = mbio;
1516
1517                         mbio->bi_sector = (r10_bio->devs[i].addr+
1518                                            choose_data_offset(r10_bio,
1519                                                               rdev));
1520                         mbio->bi_bdev = rdev->bdev;
1521                         mbio->bi_end_io = raid10_end_write_request;
1522                         mbio->bi_rw =
1523                                 WRITE | do_sync | do_fua | do_discard | do_same;
1524                         mbio->bi_private = r10_bio;
1525
1526                         atomic_inc(&r10_bio->remaining);
1527
1528                         cb = blk_check_plugged(raid10_unplug, mddev,
1529                                                sizeof(*plug));
1530                         if (cb)
1531                                 plug = container_of(cb, struct raid10_plug_cb,
1532                                                     cb);
1533                         else
1534                                 plug = NULL;
1535                         spin_lock_irqsave(&conf->device_lock, flags);
1536                         if (plug) {
1537                                 bio_list_add(&plug->pending, mbio);
1538                                 plug->pending_cnt++;
1539                         } else {
1540                                 bio_list_add(&conf->pending_bio_list, mbio);
1541                                 conf->pending_count++;
1542                         }
1543                         spin_unlock_irqrestore(&conf->device_lock, flags);
1544                         if (!plug)
1545                                 md_wakeup_thread(mddev->thread);
1546                 }
1547
1548                 if (r10_bio->devs[i].repl_bio) {
1549                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1550                         if (rdev == NULL) {
1551                                 /* Replacement just got moved to main 'rdev' */
1552                                 smp_mb();
1553                                 rdev = conf->mirrors[d].rdev;
1554                         }
1555                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557                                     max_sectors);
1558                         r10_bio->devs[i].repl_bio = mbio;
1559
1560                         mbio->bi_sector = (r10_bio->devs[i].addr +
1561                                            choose_data_offset(
1562                                                    r10_bio, rdev));
1563                         mbio->bi_bdev = rdev->bdev;
1564                         mbio->bi_end_io = raid10_end_write_request;
1565                         mbio->bi_rw =
1566                                 WRITE | do_sync | do_fua | do_discard | do_same;
1567                         mbio->bi_private = r10_bio;
1568
1569                         atomic_inc(&r10_bio->remaining);
1570                         spin_lock_irqsave(&conf->device_lock, flags);
1571                         bio_list_add(&conf->pending_bio_list, mbio);
1572                         conf->pending_count++;
1573                         spin_unlock_irqrestore(&conf->device_lock, flags);
1574                         if (!mddev_check_plugged(mddev))
1575                                 md_wakeup_thread(mddev->thread);
1576                 }
1577         }
1578
1579         /* Don't remove the bias on 'remaining' (one_write_done) until
1580          * after checking if we need to go around again.
1581          */
1582
1583         if (sectors_handled < bio_sectors(bio)) {
1584                 one_write_done(r10_bio);
1585                 /* We need another r10_bio.  It has already been counted
1586                  * in bio->bi_phys_segments.
1587                  */
1588                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589
1590                 r10_bio->master_bio = bio;
1591                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1592
1593                 r10_bio->mddev = mddev;
1594                 r10_bio->sector = bio->bi_sector + sectors_handled;
1595                 r10_bio->state = 0;
1596                 goto retry_write;
1597         }
1598         one_write_done(r10_bio);
1599
1600         /* In case raid10d snuck in to freeze_array */
1601         wake_up(&conf->wait_barrier);
1602 }
1603
1604 static void status(struct seq_file *seq, struct mddev *mddev)
1605 {
1606         struct r10conf *conf = mddev->private;
1607         int i;
1608
1609         if (conf->geo.near_copies < conf->geo.raid_disks)
1610                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1611         if (conf->geo.near_copies > 1)
1612                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613         if (conf->geo.far_copies > 1) {
1614                 if (conf->geo.far_offset)
1615                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1616                 else
1617                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1618         }
1619         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620                                         conf->geo.raid_disks - mddev->degraded);
1621         for (i = 0; i < conf->geo.raid_disks; i++)
1622                 seq_printf(seq, "%s",
1623                               conf->mirrors[i].rdev &&
1624                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1625         seq_printf(seq, "]");
1626 }
1627
1628 /* check if there are enough drives for
1629  * every block to appear on atleast one.
1630  * Don't consider the device numbered 'ignore'
1631  * as we might be about to remove it.
1632  */
1633 static int _enough(struct r10conf *conf, int previous, int ignore)
1634 {
1635         int first = 0;
1636         int has_enough = 0;
1637         int disks, ncopies;
1638         if (previous) {
1639                 disks = conf->prev.raid_disks;
1640                 ncopies = conf->prev.near_copies;
1641         } else {
1642                 disks = conf->geo.raid_disks;
1643                 ncopies = conf->geo.near_copies;
1644         }
1645
1646         rcu_read_lock();
1647         do {
1648                 int n = conf->copies;
1649                 int cnt = 0;
1650                 int this = first;
1651                 while (n--) {
1652                         struct md_rdev *rdev;
1653                         if (this != ignore &&
1654                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655                             test_bit(In_sync, &rdev->flags))
1656                                 cnt++;
1657                         this = (this+1) % disks;
1658                 }
1659                 if (cnt == 0)
1660                         goto out;
1661                 first = (first + ncopies) % disks;
1662         } while (first != 0);
1663         has_enough = 1;
1664 out:
1665         rcu_read_unlock();
1666         return has_enough;
1667 }
1668
1669 static int enough(struct r10conf *conf, int ignore)
1670 {
1671         /* when calling 'enough', both 'prev' and 'geo' must
1672          * be stable.
1673          * This is ensured if ->reconfig_mutex or ->device_lock
1674          * is held.
1675          */
1676         return _enough(conf, 0, ignore) &&
1677                 _enough(conf, 1, ignore);
1678 }
1679
1680 static void error(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682         char b[BDEVNAME_SIZE];
1683         struct r10conf *conf = mddev->private;
1684         unsigned long flags;
1685
1686         /*
1687          * If it is not operational, then we have already marked it as dead
1688          * else if it is the last working disks, ignore the error, let the
1689          * next level up know.
1690          * else mark the drive as failed
1691          */
1692         spin_lock_irqsave(&conf->device_lock, flags);
1693         if (test_bit(In_sync, &rdev->flags)
1694             && !enough(conf, rdev->raid_disk)) {
1695                 /*
1696                  * Don't fail the drive, just return an IO error.
1697                  */
1698                 spin_unlock_irqrestore(&conf->device_lock, flags);
1699                 return;
1700         }
1701         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702                 mddev->degraded++;
1703                         /*
1704                  * if recovery is running, make sure it aborts.
1705                  */
1706                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1707         }
1708         set_bit(Blocked, &rdev->flags);
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         spin_unlock_irqrestore(&conf->device_lock, flags);
1712         printk(KERN_ALERT
1713                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714                "md/raid10:%s: Operation continuing on %d devices.\n",
1715                mdname(mddev), bdevname(rdev->bdev, b),
1716                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1717 }
1718
1719 static void print_conf(struct r10conf *conf)
1720 {
1721         int i;
1722         struct raid10_info *tmp;
1723
1724         printk(KERN_DEBUG "RAID10 conf printout:\n");
1725         if (!conf) {
1726                 printk(KERN_DEBUG "(!conf)\n");
1727                 return;
1728         }
1729         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730                 conf->geo.raid_disks);
1731
1732         for (i = 0; i < conf->geo.raid_disks; i++) {
1733                 char b[BDEVNAME_SIZE];
1734                 tmp = conf->mirrors + i;
1735                 if (tmp->rdev)
1736                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1737                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1738                                 !test_bit(Faulty, &tmp->rdev->flags),
1739                                 bdevname(tmp->rdev->bdev,b));
1740         }
1741 }
1742
1743 static void close_sync(struct r10conf *conf)
1744 {
1745         wait_barrier(conf);
1746         allow_barrier(conf);
1747
1748         mempool_destroy(conf->r10buf_pool);
1749         conf->r10buf_pool = NULL;
1750 }
1751
1752 static int raid10_spare_active(struct mddev *mddev)
1753 {
1754         int i;
1755         struct r10conf *conf = mddev->private;
1756         struct raid10_info *tmp;
1757         int count = 0;
1758         unsigned long flags;
1759
1760         /*
1761          * Find all non-in_sync disks within the RAID10 configuration
1762          * and mark them in_sync
1763          */
1764         for (i = 0; i < conf->geo.raid_disks; i++) {
1765                 tmp = conf->mirrors + i;
1766                 if (tmp->replacement
1767                     && tmp->replacement->recovery_offset == MaxSector
1768                     && !test_bit(Faulty, &tmp->replacement->flags)
1769                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770                         /* Replacement has just become active */
1771                         if (!tmp->rdev
1772                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773                                 count++;
1774                         if (tmp->rdev) {
1775                                 /* Replaced device not technically faulty,
1776                                  * but we need to be sure it gets removed
1777                                  * and never re-added.
1778                                  */
1779                                 set_bit(Faulty, &tmp->rdev->flags);
1780                                 sysfs_notify_dirent_safe(
1781                                         tmp->rdev->sysfs_state);
1782                         }
1783                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784                 } else if (tmp->rdev
1785                            && !test_bit(Faulty, &tmp->rdev->flags)
1786                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1787                         count++;
1788                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1789                 }
1790         }
1791         spin_lock_irqsave(&conf->device_lock, flags);
1792         mddev->degraded -= count;
1793         spin_unlock_irqrestore(&conf->device_lock, flags);
1794
1795         print_conf(conf);
1796         return count;
1797 }
1798
1799
1800 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 {
1802         struct r10conf *conf = mddev->private;
1803         int err = -EEXIST;
1804         int mirror;
1805         int first = 0;
1806         int last = conf->geo.raid_disks - 1;
1807         struct request_queue *q = bdev_get_queue(rdev->bdev);
1808
1809         if (mddev->recovery_cp < MaxSector)
1810                 /* only hot-add to in-sync arrays, as recovery is
1811                  * very different from resync
1812                  */
1813                 return -EBUSY;
1814         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1815                 return -EINVAL;
1816
1817         if (rdev->raid_disk >= 0)
1818                 first = last = rdev->raid_disk;
1819
1820         if (q->merge_bvec_fn) {
1821                 set_bit(Unmerged, &rdev->flags);
1822                 mddev->merge_check_needed = 1;
1823         }
1824
1825         if (rdev->saved_raid_disk >= first &&
1826             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1827                 mirror = rdev->saved_raid_disk;
1828         else
1829                 mirror = first;
1830         for ( ; mirror <= last ; mirror++) {
1831                 struct raid10_info *p = &conf->mirrors[mirror];
1832                 if (p->recovery_disabled == mddev->recovery_disabled)
1833                         continue;
1834                 if (p->rdev) {
1835                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1836                             p->replacement != NULL)
1837                                 continue;
1838                         clear_bit(In_sync, &rdev->flags);
1839                         set_bit(Replacement, &rdev->flags);
1840                         rdev->raid_disk = mirror;
1841                         err = 0;
1842                         if (mddev->gendisk)
1843                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1844                                                   rdev->data_offset << 9);
1845                         conf->fullsync = 1;
1846                         rcu_assign_pointer(p->replacement, rdev);
1847                         break;
1848                 }
1849
1850                 if (mddev->gendisk)
1851                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1852                                           rdev->data_offset << 9);
1853
1854                 p->head_position = 0;
1855                 p->recovery_disabled = mddev->recovery_disabled - 1;
1856                 rdev->raid_disk = mirror;
1857                 err = 0;
1858                 if (rdev->saved_raid_disk != mirror)
1859                         conf->fullsync = 1;
1860                 rcu_assign_pointer(p->rdev, rdev);
1861                 break;
1862         }
1863         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1864                 /* Some requests might not have seen this new
1865                  * merge_bvec_fn.  We must wait for them to complete
1866                  * before merging the device fully.
1867                  * First we make sure any code which has tested
1868                  * our function has submitted the request, then
1869                  * we wait for all outstanding requests to complete.
1870                  */
1871                 synchronize_sched();
1872                 freeze_array(conf, 0);
1873                 unfreeze_array(conf);
1874                 clear_bit(Unmerged, &rdev->flags);
1875         }
1876         md_integrity_add_rdev(rdev, mddev);
1877         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1878                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1879
1880         print_conf(conf);
1881         return err;
1882 }
1883
1884 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1885 {
1886         struct r10conf *conf = mddev->private;
1887         int err = 0;
1888         int number = rdev->raid_disk;
1889         struct md_rdev **rdevp;
1890         struct raid10_info *p = conf->mirrors + number;
1891
1892         print_conf(conf);
1893         if (rdev == p->rdev)
1894                 rdevp = &p->rdev;
1895         else if (rdev == p->replacement)
1896                 rdevp = &p->replacement;
1897         else
1898                 return 0;
1899
1900         if (test_bit(In_sync, &rdev->flags) ||
1901             atomic_read(&rdev->nr_pending)) {
1902                 err = -EBUSY;
1903                 goto abort;
1904         }
1905         /* Only remove faulty devices if recovery
1906          * is not possible.
1907          */
1908         if (!test_bit(Faulty, &rdev->flags) &&
1909             mddev->recovery_disabled != p->recovery_disabled &&
1910             (!p->replacement || p->replacement == rdev) &&
1911             number < conf->geo.raid_disks &&
1912             enough(conf, -1)) {
1913                 err = -EBUSY;
1914                 goto abort;
1915         }
1916         *rdevp = NULL;
1917         synchronize_rcu();
1918         if (atomic_read(&rdev->nr_pending)) {
1919                 /* lost the race, try later */
1920                 err = -EBUSY;
1921                 *rdevp = rdev;
1922                 goto abort;
1923         } else if (p->replacement) {
1924                 /* We must have just cleared 'rdev' */
1925                 p->rdev = p->replacement;
1926                 clear_bit(Replacement, &p->replacement->flags);
1927                 smp_mb(); /* Make sure other CPUs may see both as identical
1928                            * but will never see neither -- if they are careful.
1929                            */
1930                 p->replacement = NULL;
1931                 clear_bit(WantReplacement, &rdev->flags);
1932         } else
1933                 /* We might have just remove the Replacement as faulty
1934                  * Clear the flag just in case
1935                  */
1936                 clear_bit(WantReplacement, &rdev->flags);
1937
1938         err = md_integrity_register(mddev);
1939
1940 abort:
1941
1942         print_conf(conf);
1943         return err;
1944 }
1945
1946
1947 static void end_sync_read(struct bio *bio, int error)
1948 {
1949         struct r10bio *r10_bio = bio->bi_private;
1950         struct r10conf *conf = r10_bio->mddev->private;
1951         int d;
1952
1953         if (bio == r10_bio->master_bio) {
1954                 /* this is a reshape read */
1955                 d = r10_bio->read_slot; /* really the read dev */
1956         } else
1957                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1958
1959         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1960                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1961         else
1962                 /* The write handler will notice the lack of
1963                  * R10BIO_Uptodate and record any errors etc
1964                  */
1965                 atomic_add(r10_bio->sectors,
1966                            &conf->mirrors[d].rdev->corrected_errors);
1967
1968         /* for reconstruct, we always reschedule after a read.
1969          * for resync, only after all reads
1970          */
1971         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1972         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1973             atomic_dec_and_test(&r10_bio->remaining)) {
1974                 /* we have read all the blocks,
1975                  * do the comparison in process context in raid10d
1976                  */
1977                 reschedule_retry(r10_bio);
1978         }
1979 }
1980
1981 static void end_sync_request(struct r10bio *r10_bio)
1982 {
1983         struct mddev *mddev = r10_bio->mddev;
1984
1985         while (atomic_dec_and_test(&r10_bio->remaining)) {
1986                 if (r10_bio->master_bio == NULL) {
1987                         /* the primary of several recovery bios */
1988                         sector_t s = r10_bio->sectors;
1989                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1990                             test_bit(R10BIO_WriteError, &r10_bio->state))
1991                                 reschedule_retry(r10_bio);
1992                         else
1993                                 put_buf(r10_bio);
1994                         md_done_sync(mddev, s, 1);
1995                         break;
1996                 } else {
1997                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1998                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1999                             test_bit(R10BIO_WriteError, &r10_bio->state))
2000                                 reschedule_retry(r10_bio);
2001                         else
2002                                 put_buf(r10_bio);
2003                         r10_bio = r10_bio2;
2004                 }
2005         }
2006 }
2007
2008 static void end_sync_write(struct bio *bio, int error)
2009 {
2010         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2011         struct r10bio *r10_bio = bio->bi_private;
2012         struct mddev *mddev = r10_bio->mddev;
2013         struct r10conf *conf = mddev->private;
2014         int d;
2015         sector_t first_bad;
2016         int bad_sectors;
2017         int slot;
2018         int repl;
2019         struct md_rdev *rdev = NULL;
2020
2021         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2022         if (repl)
2023                 rdev = conf->mirrors[d].replacement;
2024         else
2025                 rdev = conf->mirrors[d].rdev;
2026
2027         if (!uptodate) {
2028                 if (repl)
2029                         md_error(mddev, rdev);
2030                 else {
2031                         set_bit(WriteErrorSeen, &rdev->flags);
2032                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2033                                 set_bit(MD_RECOVERY_NEEDED,
2034                                         &rdev->mddev->recovery);
2035                         set_bit(R10BIO_WriteError, &r10_bio->state);
2036                 }
2037         } else if (is_badblock(rdev,
2038                              r10_bio->devs[slot].addr,
2039                              r10_bio->sectors,
2040                              &first_bad, &bad_sectors))
2041                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2042
2043         rdev_dec_pending(rdev, mddev);
2044
2045         end_sync_request(r10_bio);
2046 }
2047
2048 /*
2049  * Note: sync and recover and handled very differently for raid10
2050  * This code is for resync.
2051  * For resync, we read through virtual addresses and read all blocks.
2052  * If there is any error, we schedule a write.  The lowest numbered
2053  * drive is authoritative.
2054  * However requests come for physical address, so we need to map.
2055  * For every physical address there are raid_disks/copies virtual addresses,
2056  * which is always are least one, but is not necessarly an integer.
2057  * This means that a physical address can span multiple chunks, so we may
2058  * have to submit multiple io requests for a single sync request.
2059  */
2060 /*
2061  * We check if all blocks are in-sync and only write to blocks that
2062  * aren't in sync
2063  */
2064 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2065 {
2066         struct r10conf *conf = mddev->private;
2067         int i, first;
2068         struct bio *tbio, *fbio;
2069         int vcnt;
2070
2071         atomic_set(&r10_bio->remaining, 1);
2072
2073         /* find the first device with a block */
2074         for (i=0; i<conf->copies; i++)
2075                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2076                         break;
2077
2078         if (i == conf->copies)
2079                 goto done;
2080
2081         first = i;
2082         fbio = r10_bio->devs[i].bio;
2083
2084         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2085         /* now find blocks with errors */
2086         for (i=0 ; i < conf->copies ; i++) {
2087                 int  j, d;
2088
2089                 tbio = r10_bio->devs[i].bio;
2090
2091                 if (tbio->bi_end_io != end_sync_read)
2092                         continue;
2093                 if (i == first)
2094                         continue;
2095                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2096                         /* We know that the bi_io_vec layout is the same for
2097                          * both 'first' and 'i', so we just compare them.
2098                          * All vec entries are PAGE_SIZE;
2099                          */
2100                         for (j = 0; j < vcnt; j++)
2101                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2102                                            page_address(tbio->bi_io_vec[j].bv_page),
2103                                            fbio->bi_io_vec[j].bv_len))
2104                                         break;
2105                         if (j == vcnt)
2106                                 continue;
2107                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2108                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2109                                 /* Don't fix anything. */
2110                                 continue;
2111                 }
2112                 /* Ok, we need to write this bio, either to correct an
2113                  * inconsistency or to correct an unreadable block.
2114                  * First we need to fixup bv_offset, bv_len and
2115                  * bi_vecs, as the read request might have corrupted these
2116                  */
2117                 bio_reset(tbio);
2118
2119                 tbio->bi_vcnt = vcnt;
2120                 tbio->bi_size = r10_bio->sectors << 9;
2121                 tbio->bi_rw = WRITE;
2122                 tbio->bi_private = r10_bio;
2123                 tbio->bi_sector = r10_bio->devs[i].addr;
2124
2125                 for (j=0; j < vcnt ; j++) {
2126                         tbio->bi_io_vec[j].bv_offset = 0;
2127                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2128
2129                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2130                                page_address(fbio->bi_io_vec[j].bv_page),
2131                                PAGE_SIZE);
2132                 }
2133                 tbio->bi_end_io = end_sync_write;
2134
2135                 d = r10_bio->devs[i].devnum;
2136                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2137                 atomic_inc(&r10_bio->remaining);
2138                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2139
2140                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2141                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2142                 generic_make_request(tbio);
2143         }
2144
2145         /* Now write out to any replacement devices
2146          * that are active
2147          */
2148         for (i = 0; i < conf->copies; i++) {
2149                 int j, d;
2150
2151                 tbio = r10_bio->devs[i].repl_bio;
2152                 if (!tbio || !tbio->bi_end_io)
2153                         continue;
2154                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2155                     && r10_bio->devs[i].bio != fbio)
2156                         for (j = 0; j < vcnt; j++)
2157                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2158                                        page_address(fbio->bi_io_vec[j].bv_page),
2159                                        PAGE_SIZE);
2160                 d = r10_bio->devs[i].devnum;
2161                 atomic_inc(&r10_bio->remaining);
2162                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2163                              bio_sectors(tbio));
2164                 generic_make_request(tbio);
2165         }
2166
2167 done:
2168         if (atomic_dec_and_test(&r10_bio->remaining)) {
2169                 md_done_sync(mddev, r10_bio->sectors, 1);
2170                 put_buf(r10_bio);
2171         }
2172 }
2173
2174 /*
2175  * Now for the recovery code.
2176  * Recovery happens across physical sectors.
2177  * We recover all non-is_sync drives by finding the virtual address of
2178  * each, and then choose a working drive that also has that virt address.
2179  * There is a separate r10_bio for each non-in_sync drive.
2180  * Only the first two slots are in use. The first for reading,
2181  * The second for writing.
2182  *
2183  */
2184 static void fix_recovery_read_error(struct r10bio *r10_bio)
2185 {
2186         /* We got a read error during recovery.
2187          * We repeat the read in smaller page-sized sections.
2188          * If a read succeeds, write it to the new device or record
2189          * a bad block if we cannot.
2190          * If a read fails, record a bad block on both old and
2191          * new devices.
2192          */
2193         struct mddev *mddev = r10_bio->mddev;
2194         struct r10conf *conf = mddev->private;
2195         struct bio *bio = r10_bio->devs[0].bio;
2196         sector_t sect = 0;
2197         int sectors = r10_bio->sectors;
2198         int idx = 0;
2199         int dr = r10_bio->devs[0].devnum;
2200         int dw = r10_bio->devs[1].devnum;
2201
2202         while (sectors) {
2203                 int s = sectors;
2204                 struct md_rdev *rdev;
2205                 sector_t addr;
2206                 int ok;
2207
2208                 if (s > (PAGE_SIZE>>9))
2209                         s = PAGE_SIZE >> 9;
2210
2211                 rdev = conf->mirrors[dr].rdev;
2212                 addr = r10_bio->devs[0].addr + sect,
2213                 ok = sync_page_io(rdev,
2214                                   addr,
2215                                   s << 9,
2216                                   bio->bi_io_vec[idx].bv_page,
2217                                   READ, false);
2218                 if (ok) {
2219                         rdev = conf->mirrors[dw].rdev;
2220                         addr = r10_bio->devs[1].addr + sect;
2221                         ok = sync_page_io(rdev,
2222                                           addr,
2223                                           s << 9,
2224                                           bio->bi_io_vec[idx].bv_page,
2225                                           WRITE, false);
2226                         if (!ok) {
2227                                 set_bit(WriteErrorSeen, &rdev->flags);
2228                                 if (!test_and_set_bit(WantReplacement,
2229                                                       &rdev->flags))
2230                                         set_bit(MD_RECOVERY_NEEDED,
2231                                                 &rdev->mddev->recovery);
2232                         }
2233                 }
2234                 if (!ok) {
2235                         /* We don't worry if we cannot set a bad block -
2236                          * it really is bad so there is no loss in not
2237                          * recording it yet
2238                          */
2239                         rdev_set_badblocks(rdev, addr, s, 0);
2240
2241                         if (rdev != conf->mirrors[dw].rdev) {
2242                                 /* need bad block on destination too */
2243                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2244                                 addr = r10_bio->devs[1].addr + sect;
2245                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2246                                 if (!ok) {
2247                                         /* just abort the recovery */
2248                                         printk(KERN_NOTICE
2249                                                "md/raid10:%s: recovery aborted"
2250                                                " due to read error\n",
2251                                                mdname(mddev));
2252
2253                                         conf->mirrors[dw].recovery_disabled
2254                                                 = mddev->recovery_disabled;
2255                                         set_bit(MD_RECOVERY_INTR,
2256                                                 &mddev->recovery);
2257                                         break;
2258                                 }
2259                         }
2260                 }
2261
2262                 sectors -= s;
2263                 sect += s;
2264                 idx++;
2265         }
2266 }
2267
2268 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2269 {
2270         struct r10conf *conf = mddev->private;
2271         int d;
2272         struct bio *wbio, *wbio2;
2273
2274         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2275                 fix_recovery_read_error(r10_bio);
2276                 end_sync_request(r10_bio);
2277                 return;
2278         }
2279
2280         /*
2281          * share the pages with the first bio
2282          * and submit the write request
2283          */
2284         d = r10_bio->devs[1].devnum;
2285         wbio = r10_bio->devs[1].bio;
2286         wbio2 = r10_bio->devs[1].repl_bio;
2287         if (wbio->bi_end_io) {
2288                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2289                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2290                 generic_make_request(wbio);
2291         }
2292         if (wbio2 && wbio2->bi_end_io) {
2293                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2294                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2295                              bio_sectors(wbio2));
2296                 generic_make_request(wbio2);
2297         }
2298 }
2299
2300
2301 /*
2302  * Used by fix_read_error() to decay the per rdev read_errors.
2303  * We halve the read error count for every hour that has elapsed
2304  * since the last recorded read error.
2305  *
2306  */
2307 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2308 {
2309         struct timespec cur_time_mon;
2310         unsigned long hours_since_last;
2311         unsigned int read_errors = atomic_read(&rdev->read_errors);
2312
2313         ktime_get_ts(&cur_time_mon);
2314
2315         if (rdev->last_read_error.tv_sec == 0 &&
2316             rdev->last_read_error.tv_nsec == 0) {
2317                 /* first time we've seen a read error */
2318                 rdev->last_read_error = cur_time_mon;
2319                 return;
2320         }
2321
2322         hours_since_last = (cur_time_mon.tv_sec -
2323                             rdev->last_read_error.tv_sec) / 3600;
2324
2325         rdev->last_read_error = cur_time_mon;
2326
2327         /*
2328          * if hours_since_last is > the number of bits in read_errors
2329          * just set read errors to 0. We do this to avoid
2330          * overflowing the shift of read_errors by hours_since_last.
2331          */
2332         if (hours_since_last >= 8 * sizeof(read_errors))
2333                 atomic_set(&rdev->read_errors, 0);
2334         else
2335                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2336 }
2337
2338 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2339                             int sectors, struct page *page, int rw)
2340 {
2341         sector_t first_bad;
2342         int bad_sectors;
2343
2344         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2345             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2346                 return -1;
2347         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2348                 /* success */
2349                 return 1;
2350         if (rw == WRITE) {
2351                 set_bit(WriteErrorSeen, &rdev->flags);
2352                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2353                         set_bit(MD_RECOVERY_NEEDED,
2354                                 &rdev->mddev->recovery);
2355         }
2356         /* need to record an error - either for the block or the device */
2357         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2358                 md_error(rdev->mddev, rdev);
2359         return 0;
2360 }
2361
2362 /*
2363  * This is a kernel thread which:
2364  *
2365  *      1.      Retries failed read operations on working mirrors.
2366  *      2.      Updates the raid superblock when problems encounter.
2367  *      3.      Performs writes following reads for array synchronising.
2368  */
2369
2370 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2371 {
2372         int sect = 0; /* Offset from r10_bio->sector */
2373         int sectors = r10_bio->sectors;
2374         struct md_rdev*rdev;
2375         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2376         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2377
2378         /* still own a reference to this rdev, so it cannot
2379          * have been cleared recently.
2380          */
2381         rdev = conf->mirrors[d].rdev;
2382
2383         if (test_bit(Faulty, &rdev->flags))
2384                 /* drive has already been failed, just ignore any
2385                    more fix_read_error() attempts */
2386                 return;
2387
2388         check_decay_read_errors(mddev, rdev);
2389         atomic_inc(&rdev->read_errors);
2390         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2391                 char b[BDEVNAME_SIZE];
2392                 bdevname(rdev->bdev, b);
2393
2394                 printk(KERN_NOTICE
2395                        "md/raid10:%s: %s: Raid device exceeded "
2396                        "read_error threshold [cur %d:max %d]\n",
2397                        mdname(mddev), b,
2398                        atomic_read(&rdev->read_errors), max_read_errors);
2399                 printk(KERN_NOTICE
2400                        "md/raid10:%s: %s: Failing raid device\n",
2401                        mdname(mddev), b);
2402                 md_error(mddev, conf->mirrors[d].rdev);
2403                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2404                 return;
2405         }
2406
2407         while(sectors) {
2408                 int s = sectors;
2409                 int sl = r10_bio->read_slot;
2410                 int success = 0;
2411                 int start;
2412
2413                 if (s > (PAGE_SIZE>>9))
2414                         s = PAGE_SIZE >> 9;
2415
2416                 rcu_read_lock();
2417                 do {
2418                         sector_t first_bad;
2419                         int bad_sectors;
2420
2421                         d = r10_bio->devs[sl].devnum;
2422                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2423                         if (rdev &&
2424                             !test_bit(Unmerged, &rdev->flags) &&
2425                             test_bit(In_sync, &rdev->flags) &&
2426                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2427                                         &first_bad, &bad_sectors) == 0) {
2428                                 atomic_inc(&rdev->nr_pending);
2429                                 rcu_read_unlock();
2430                                 success = sync_page_io(rdev,
2431                                                        r10_bio->devs[sl].addr +
2432                                                        sect,
2433                                                        s<<9,
2434                                                        conf->tmppage, READ, false);
2435                                 rdev_dec_pending(rdev, mddev);
2436                                 rcu_read_lock();
2437                                 if (success)
2438                                         break;
2439                         }
2440                         sl++;
2441                         if (sl == conf->copies)
2442                                 sl = 0;
2443                 } while (!success && sl != r10_bio->read_slot);
2444                 rcu_read_unlock();
2445
2446                 if (!success) {
2447                         /* Cannot read from anywhere, just mark the block
2448                          * as bad on the first device to discourage future
2449                          * reads.
2450                          */
2451                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2452                         rdev = conf->mirrors[dn].rdev;
2453
2454                         if (!rdev_set_badblocks(
2455                                     rdev,
2456                                     r10_bio->devs[r10_bio->read_slot].addr
2457                                     + sect,
2458                                     s, 0)) {
2459                                 md_error(mddev, rdev);
2460                                 r10_bio->devs[r10_bio->read_slot].bio
2461                                         = IO_BLOCKED;
2462                         }
2463                         break;
2464                 }
2465
2466                 start = sl;
2467                 /* write it back and re-read */
2468                 rcu_read_lock();
2469                 while (sl != r10_bio->read_slot) {
2470                         char b[BDEVNAME_SIZE];
2471
2472                         if (sl==0)
2473                                 sl = conf->copies;
2474                         sl--;
2475                         d = r10_bio->devs[sl].devnum;
2476                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2477                         if (!rdev ||
2478                             test_bit(Unmerged, &rdev->flags) ||
2479                             !test_bit(In_sync, &rdev->flags))
2480                                 continue;
2481
2482                         atomic_inc(&rdev->nr_pending);
2483                         rcu_read_unlock();
2484                         if (r10_sync_page_io(rdev,
2485                                              r10_bio->devs[sl].addr +
2486                                              sect,
2487                                              s, conf->tmppage, WRITE)
2488                             == 0) {
2489                                 /* Well, this device is dead */
2490                                 printk(KERN_NOTICE
2491                                        "md/raid10:%s: read correction "
2492                                        "write failed"
2493                                        " (%d sectors at %llu on %s)\n",
2494                                        mdname(mddev), s,
2495                                        (unsigned long long)(
2496                                                sect +
2497                                                choose_data_offset(r10_bio,
2498                                                                   rdev)),
2499                                        bdevname(rdev->bdev, b));
2500                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2501                                        "drive\n",
2502                                        mdname(mddev),
2503                                        bdevname(rdev->bdev, b));
2504                         }
2505                         rdev_dec_pending(rdev, mddev);
2506                         rcu_read_lock();
2507                 }
2508                 sl = start;
2509                 while (sl != r10_bio->read_slot) {
2510                         char b[BDEVNAME_SIZE];
2511
2512                         if (sl==0)
2513                                 sl = conf->copies;
2514                         sl--;
2515                         d = r10_bio->devs[sl].devnum;
2516                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2517                         if (!rdev ||
2518                             !test_bit(In_sync, &rdev->flags))
2519                                 continue;
2520
2521                         atomic_inc(&rdev->nr_pending);
2522                         rcu_read_unlock();
2523                         switch (r10_sync_page_io(rdev,
2524                                              r10_bio->devs[sl].addr +
2525                                              sect,
2526                                              s, conf->tmppage,
2527                                                  READ)) {
2528                         case 0:
2529                                 /* Well, this device is dead */
2530                                 printk(KERN_NOTICE
2531                                        "md/raid10:%s: unable to read back "
2532                                        "corrected sectors"
2533                                        " (%d sectors at %llu on %s)\n",
2534                                        mdname(mddev), s,
2535                                        (unsigned long long)(
2536                                                sect +
2537                                                choose_data_offset(r10_bio, rdev)),
2538                                        bdevname(rdev->bdev, b));
2539                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2540                                        "drive\n",
2541                                        mdname(mddev),
2542                                        bdevname(rdev->bdev, b));
2543                                 break;
2544                         case 1:
2545                                 printk(KERN_INFO
2546                                        "md/raid10:%s: read error corrected"
2547                                        " (%d sectors at %llu on %s)\n",
2548                                        mdname(mddev), s,
2549                                        (unsigned long long)(
2550                                                sect +
2551                                                choose_data_offset(r10_bio, rdev)),
2552                                        bdevname(rdev->bdev, b));
2553                                 atomic_add(s, &rdev->corrected_errors);
2554                         }
2555
2556                         rdev_dec_pending(rdev, mddev);
2557                         rcu_read_lock();
2558                 }
2559                 rcu_read_unlock();
2560
2561                 sectors -= s;
2562                 sect += s;
2563         }
2564 }
2565
2566 static int narrow_write_error(struct r10bio *r10_bio, int i)
2567 {
2568         struct bio *bio = r10_bio->master_bio;
2569         struct mddev *mddev = r10_bio->mddev;
2570         struct r10conf *conf = mddev->private;
2571         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2572         /* bio has the data to be written to slot 'i' where
2573          * we just recently had a write error.
2574          * We repeatedly clone the bio and trim down to one block,
2575          * then try the write.  Where the write fails we record
2576          * a bad block.
2577          * It is conceivable that the bio doesn't exactly align with
2578          * blocks.  We must handle this.
2579          *
2580          * We currently own a reference to the rdev.
2581          */
2582
2583         int block_sectors;
2584         sector_t sector;
2585         int sectors;
2586         int sect_to_write = r10_bio->sectors;
2587         int ok = 1;
2588
2589         if (rdev->badblocks.shift < 0)
2590                 return 0;
2591
2592         block_sectors = 1 << rdev->badblocks.shift;
2593         sector = r10_bio->sector;
2594         sectors = ((r10_bio->sector + block_sectors)
2595                    & ~(sector_t)(block_sectors - 1))
2596                 - sector;
2597
2598         while (sect_to_write) {
2599                 struct bio *wbio;
2600                 if (sectors > sect_to_write)
2601                         sectors = sect_to_write;
2602                 /* Write at 'sector' for 'sectors' */
2603                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2604                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2605                 wbio->bi_sector = (r10_bio->devs[i].addr+
2606                                    choose_data_offset(r10_bio, rdev) +
2607                                    (sector - r10_bio->sector));
2608                 wbio->bi_bdev = rdev->bdev;
2609                 if (submit_bio_wait(WRITE, wbio) == 0)
2610                         /* Failure! */
2611                         ok = rdev_set_badblocks(rdev, sector,
2612                                                 sectors, 0)
2613                                 && ok;
2614
2615                 bio_put(wbio);
2616                 sect_to_write -= sectors;
2617                 sector += sectors;
2618                 sectors = block_sectors;
2619         }
2620         return ok;
2621 }
2622
2623 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2624 {
2625         int slot = r10_bio->read_slot;
2626         struct bio *bio;
2627         struct r10conf *conf = mddev->private;
2628         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2629         char b[BDEVNAME_SIZE];
2630         unsigned long do_sync;
2631         int max_sectors;
2632
2633         /* we got a read error. Maybe the drive is bad.  Maybe just
2634          * the block and we can fix it.
2635          * We freeze all other IO, and try reading the block from
2636          * other devices.  When we find one, we re-write
2637          * and check it that fixes the read error.
2638          * This is all done synchronously while the array is
2639          * frozen.
2640          */
2641         bio = r10_bio->devs[slot].bio;
2642         bdevname(bio->bi_bdev, b);
2643         bio_put(bio);
2644         r10_bio->devs[slot].bio = NULL;
2645
2646         if (mddev->ro == 0) {
2647                 freeze_array(conf, 1);
2648                 fix_read_error(conf, mddev, r10_bio);
2649                 unfreeze_array(conf);
2650         } else
2651                 r10_bio->devs[slot].bio = IO_BLOCKED;
2652
2653         rdev_dec_pending(rdev, mddev);
2654
2655 read_more:
2656         rdev = read_balance(conf, r10_bio, &max_sectors);
2657         if (rdev == NULL) {
2658                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2659                        " read error for block %llu\n",
2660                        mdname(mddev), b,
2661                        (unsigned long long)r10_bio->sector);
2662                 raid_end_bio_io(r10_bio);
2663                 return;
2664         }
2665
2666         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2667         slot = r10_bio->read_slot;
2668         printk_ratelimited(
2669                 KERN_ERR
2670                 "md/raid10:%s: %s: redirecting "
2671                 "sector %llu to another mirror\n",
2672                 mdname(mddev),
2673                 bdevname(rdev->bdev, b),
2674                 (unsigned long long)r10_bio->sector);
2675         bio = bio_clone_mddev(r10_bio->master_bio,
2676                               GFP_NOIO, mddev);
2677         md_trim_bio(bio,
2678                     r10_bio->sector - bio->bi_sector,
2679                     max_sectors);
2680         r10_bio->devs[slot].bio = bio;
2681         r10_bio->devs[slot].rdev = rdev;
2682         bio->bi_sector = r10_bio->devs[slot].addr
2683                 + choose_data_offset(r10_bio, rdev);
2684         bio->bi_bdev = rdev->bdev;
2685         bio->bi_rw = READ | do_sync;
2686         bio->bi_private = r10_bio;
2687         bio->bi_end_io = raid10_end_read_request;
2688         if (max_sectors < r10_bio->sectors) {
2689                 /* Drat - have to split this up more */
2690                 struct bio *mbio = r10_bio->master_bio;
2691                 int sectors_handled =
2692                         r10_bio->sector + max_sectors
2693                         - mbio->bi_sector;
2694                 r10_bio->sectors = max_sectors;
2695                 spin_lock_irq(&conf->device_lock);
2696                 if (mbio->bi_phys_segments == 0)
2697                         mbio->bi_phys_segments = 2;
2698                 else
2699                         mbio->bi_phys_segments++;
2700                 spin_unlock_irq(&conf->device_lock);
2701                 generic_make_request(bio);
2702
2703                 r10_bio = mempool_alloc(conf->r10bio_pool,
2704                                         GFP_NOIO);
2705                 r10_bio->master_bio = mbio;
2706                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2707                 r10_bio->state = 0;
2708                 set_bit(R10BIO_ReadError,
2709                         &r10_bio->state);
2710                 r10_bio->mddev = mddev;
2711                 r10_bio->sector = mbio->bi_sector
2712                         + sectors_handled;
2713
2714                 goto read_more;
2715         } else
2716                 generic_make_request(bio);
2717 }
2718
2719 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2720 {
2721         /* Some sort of write request has finished and it
2722          * succeeded in writing where we thought there was a
2723          * bad block.  So forget the bad block.
2724          * Or possibly if failed and we need to record
2725          * a bad block.
2726          */
2727         int m;
2728         struct md_rdev *rdev;
2729
2730         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2731             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2732                 for (m = 0; m < conf->copies; m++) {
2733                         int dev = r10_bio->devs[m].devnum;
2734                         rdev = conf->mirrors[dev].rdev;
2735                         if (r10_bio->devs[m].bio == NULL)
2736                                 continue;
2737                         if (test_bit(BIO_UPTODATE,
2738                                      &r10_bio->devs[m].bio->bi_flags)) {
2739                                 rdev_clear_badblocks(
2740                                         rdev,
2741                                         r10_bio->devs[m].addr,
2742                                         r10_bio->sectors, 0);
2743                         } else {
2744                                 if (!rdev_set_badblocks(
2745                                             rdev,
2746                                             r10_bio->devs[m].addr,
2747                                             r10_bio->sectors, 0))
2748                                         md_error(conf->mddev, rdev);
2749                         }
2750                         rdev = conf->mirrors[dev].replacement;
2751                         if (r10_bio->devs[m].repl_bio == NULL)
2752                                 continue;
2753                         if (test_bit(BIO_UPTODATE,
2754                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2755                                 rdev_clear_badblocks(
2756                                         rdev,
2757                                         r10_bio->devs[m].addr,
2758                                         r10_bio->sectors, 0);
2759                         } else {
2760                                 if (!rdev_set_badblocks(
2761                                             rdev,
2762                                             r10_bio->devs[m].addr,
2763                                             r10_bio->sectors, 0))
2764                                         md_error(conf->mddev, rdev);
2765                         }
2766                 }
2767                 put_buf(r10_bio);
2768         } else {
2769                 for (m = 0; m < conf->copies; m++) {
2770                         int dev = r10_bio->devs[m].devnum;
2771                         struct bio *bio = r10_bio->devs[m].bio;
2772                         rdev = conf->mirrors[dev].rdev;
2773                         if (bio == IO_MADE_GOOD) {
2774                                 rdev_clear_badblocks(
2775                                         rdev,
2776                                         r10_bio->devs[m].addr,
2777                                         r10_bio->sectors, 0);
2778                                 rdev_dec_pending(rdev, conf->mddev);
2779                         } else if (bio != NULL &&
2780                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2781                                 if (!narrow_write_error(r10_bio, m)) {
2782                                         md_error(conf->mddev, rdev);
2783                                         set_bit(R10BIO_Degraded,
2784                                                 &r10_bio->state);
2785                                 }
2786                                 rdev_dec_pending(rdev, conf->mddev);
2787                         }
2788                         bio = r10_bio->devs[m].repl_bio;
2789                         rdev = conf->mirrors[dev].replacement;
2790                         if (rdev && bio == IO_MADE_GOOD) {
2791                                 rdev_clear_badblocks(
2792                                         rdev,
2793                                         r10_bio->devs[m].addr,
2794                                         r10_bio->sectors, 0);
2795                                 rdev_dec_pending(rdev, conf->mddev);
2796                         }
2797                 }
2798                 if (test_bit(R10BIO_WriteError,
2799                              &r10_bio->state))
2800                         close_write(r10_bio);
2801                 raid_end_bio_io(r10_bio);
2802         }
2803 }
2804
2805 static void raid10d(struct md_thread *thread)
2806 {
2807         struct mddev *mddev = thread->mddev;
2808         struct r10bio *r10_bio;
2809         unsigned long flags;
2810         struct r10conf *conf = mddev->private;
2811         struct list_head *head = &conf->retry_list;
2812         struct blk_plug plug;
2813
2814         md_check_recovery(mddev);
2815
2816         blk_start_plug(&plug);
2817         for (;;) {
2818
2819                 flush_pending_writes(conf);
2820
2821                 spin_lock_irqsave(&conf->device_lock, flags);
2822                 if (list_empty(head)) {
2823                         spin_unlock_irqrestore(&conf->device_lock, flags);
2824                         break;
2825                 }
2826                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2827                 list_del(head->prev);
2828                 conf->nr_queued--;
2829                 spin_unlock_irqrestore(&conf->device_lock, flags);
2830
2831                 mddev = r10_bio->mddev;
2832                 conf = mddev->private;
2833                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2834                     test_bit(R10BIO_WriteError, &r10_bio->state))
2835                         handle_write_completed(conf, r10_bio);
2836                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2837                         reshape_request_write(mddev, r10_bio);
2838                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2839                         sync_request_write(mddev, r10_bio);
2840                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2841                         recovery_request_write(mddev, r10_bio);
2842                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2843                         handle_read_error(mddev, r10_bio);
2844                 else {
2845                         /* just a partial read to be scheduled from a
2846                          * separate context
2847                          */
2848                         int slot = r10_bio->read_slot;
2849                         generic_make_request(r10_bio->devs[slot].bio);
2850                 }
2851
2852                 cond_resched();
2853                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2854                         md_check_recovery(mddev);
2855         }
2856         blk_finish_plug(&plug);
2857 }
2858
2859
2860 static int init_resync(struct r10conf *conf)
2861 {
2862         int buffs;
2863         int i;
2864
2865         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2866         BUG_ON(conf->r10buf_pool);
2867         conf->have_replacement = 0;
2868         for (i = 0; i < conf->geo.raid_disks; i++)
2869                 if (conf->mirrors[i].replacement)
2870                         conf->have_replacement = 1;
2871         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2872         if (!conf->r10buf_pool)
2873                 return -ENOMEM;
2874         conf->next_resync = 0;
2875         return 0;
2876 }
2877
2878 /*
2879  * perform a "sync" on one "block"
2880  *
2881  * We need to make sure that no normal I/O request - particularly write
2882  * requests - conflict with active sync requests.
2883  *
2884  * This is achieved by tracking pending requests and a 'barrier' concept
2885  * that can be installed to exclude normal IO requests.
2886  *
2887  * Resync and recovery are handled very differently.
2888  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2889  *
2890  * For resync, we iterate over virtual addresses, read all copies,
2891  * and update if there are differences.  If only one copy is live,
2892  * skip it.
2893  * For recovery, we iterate over physical addresses, read a good
2894  * value for each non-in_sync drive, and over-write.
2895  *
2896  * So, for recovery we may have several outstanding complex requests for a
2897  * given address, one for each out-of-sync device.  We model this by allocating
2898  * a number of r10_bio structures, one for each out-of-sync device.
2899  * As we setup these structures, we collect all bio's together into a list
2900  * which we then process collectively to add pages, and then process again
2901  * to pass to generic_make_request.
2902  *
2903  * The r10_bio structures are linked using a borrowed master_bio pointer.
2904  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2905  * has its remaining count decremented to 0, the whole complex operation
2906  * is complete.
2907  *
2908  */
2909
2910 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2911                              int *skipped, int go_faster)
2912 {
2913         struct r10conf *conf = mddev->private;
2914         struct r10bio *r10_bio;
2915         struct bio *biolist = NULL, *bio;
2916         sector_t max_sector, nr_sectors;
2917         int i;
2918         int max_sync;
2919         sector_t sync_blocks;
2920         sector_t sectors_skipped = 0;
2921         int chunks_skipped = 0;
2922         sector_t chunk_mask = conf->geo.chunk_mask;
2923
2924         if (!conf->r10buf_pool)
2925                 if (init_resync(conf))
2926                         return 0;
2927
2928         /*
2929          * Allow skipping a full rebuild for incremental assembly
2930          * of a clean array, like RAID1 does.
2931          */
2932         if (mddev->bitmap == NULL &&
2933             mddev->recovery_cp == MaxSector &&
2934             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2935             conf->fullsync == 0) {
2936                 *skipped = 1;
2937                 max_sector = mddev->dev_sectors;
2938                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939                     test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940                         max_sector = mddev->resync_max_sectors;
2941                 return max_sector - sector_nr;
2942         }
2943
2944  skipped:
2945         max_sector = mddev->dev_sectors;
2946         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2947             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2948                 max_sector = mddev->resync_max_sectors;
2949         if (sector_nr >= max_sector) {
2950                 /* If we aborted, we need to abort the
2951                  * sync on the 'current' bitmap chucks (there can
2952                  * be several when recovering multiple devices).
2953                  * as we may have started syncing it but not finished.
2954                  * We can find the current address in
2955                  * mddev->curr_resync, but for recovery,
2956                  * we need to convert that to several
2957                  * virtual addresses.
2958                  */
2959                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2960                         end_reshape(conf);
2961                         return 0;
2962                 }
2963
2964                 if (mddev->curr_resync < max_sector) { /* aborted */
2965                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2966                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2967                                                 &sync_blocks, 1);
2968                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2969                                 sector_t sect =
2970                                         raid10_find_virt(conf, mddev->curr_resync, i);
2971                                 bitmap_end_sync(mddev->bitmap, sect,
2972                                                 &sync_blocks, 1);
2973                         }
2974                 } else {
2975                         /* completed sync */
2976                         if ((!mddev->bitmap || conf->fullsync)
2977                             && conf->have_replacement
2978                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2979                                 /* Completed a full sync so the replacements
2980                                  * are now fully recovered.
2981                                  */
2982                                 for (i = 0; i < conf->geo.raid_disks; i++)
2983                                         if (conf->mirrors[i].replacement)
2984                                                 conf->mirrors[i].replacement
2985                                                         ->recovery_offset
2986                                                         = MaxSector;
2987                         }
2988                         conf->fullsync = 0;
2989                 }
2990                 bitmap_close_sync(mddev->bitmap);
2991                 close_sync(conf);
2992                 *skipped = 1;
2993                 return sectors_skipped;
2994         }
2995
2996         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2997                 return reshape_request(mddev, sector_nr, skipped);
2998
2999         if (chunks_skipped >= conf->geo.raid_disks) {
3000                 /* if there has been nothing to do on any drive,
3001                  * then there is nothing to do at all..
3002                  */
3003                 *skipped = 1;
3004                 return (max_sector - sector_nr) + sectors_skipped;
3005         }
3006
3007         if (max_sector > mddev->resync_max)
3008                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3009
3010         /* make sure whole request will fit in a chunk - if chunks
3011          * are meaningful
3012          */
3013         if (conf->geo.near_copies < conf->geo.raid_disks &&
3014             max_sector > (sector_nr | chunk_mask))
3015                 max_sector = (sector_nr | chunk_mask) + 1;
3016         /*
3017          * If there is non-resync activity waiting for us then
3018          * put in a delay to throttle resync.
3019          */
3020         if (!go_faster && conf->nr_waiting)
3021                 msleep_interruptible(1000);
3022
3023         /* Again, very different code for resync and recovery.
3024          * Both must result in an r10bio with a list of bios that
3025          * have bi_end_io, bi_sector, bi_bdev set,
3026          * and bi_private set to the r10bio.
3027          * For recovery, we may actually create several r10bios
3028          * with 2 bios in each, that correspond to the bios in the main one.
3029          * In this case, the subordinate r10bios link back through a
3030          * borrowed master_bio pointer, and the counter in the master
3031          * includes a ref from each subordinate.
3032          */
3033         /* First, we decide what to do and set ->bi_end_io
3034          * To end_sync_read if we want to read, and
3035          * end_sync_write if we will want to write.
3036          */
3037
3038         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3039         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040                 /* recovery... the complicated one */
3041                 int j;
3042                 r10_bio = NULL;
3043
3044                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3045                         int still_degraded;
3046                         struct r10bio *rb2;
3047                         sector_t sect;
3048                         int must_sync;
3049                         int any_working;
3050                         struct raid10_info *mirror = &conf->mirrors[i];
3051
3052                         if ((mirror->rdev == NULL ||
3053                              test_bit(In_sync, &mirror->rdev->flags))
3054                             &&
3055                             (mirror->replacement == NULL ||
3056                              test_bit(Faulty,
3057                                       &mirror->replacement->flags)))
3058                                 continue;
3059
3060                         still_degraded = 0;
3061                         /* want to reconstruct this device */
3062                         rb2 = r10_bio;
3063                         sect = raid10_find_virt(conf, sector_nr, i);
3064                         if (sect >= mddev->resync_max_sectors) {
3065                                 /* last stripe is not complete - don't
3066                                  * try to recover this sector.
3067                                  */
3068                                 continue;
3069                         }
3070                         /* Unless we are doing a full sync, or a replacement
3071                          * we only need to recover the block if it is set in
3072                          * the bitmap
3073                          */
3074                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3075                                                       &sync_blocks, 1);
3076                         if (sync_blocks < max_sync)
3077                                 max_sync = sync_blocks;
3078                         if (!must_sync &&
3079                             mirror->replacement == NULL &&
3080                             !conf->fullsync) {
3081                                 /* yep, skip the sync_blocks here, but don't assume
3082                                  * that there will never be anything to do here
3083                                  */
3084                                 chunks_skipped = -1;
3085                                 continue;
3086                         }
3087
3088                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3089                         raise_barrier(conf, rb2 != NULL);
3090                         atomic_set(&r10_bio->remaining, 0);
3091
3092                         r10_bio->master_bio = (struct bio*)rb2;
3093                         if (rb2)
3094                                 atomic_inc(&rb2->remaining);
3095                         r10_bio->mddev = mddev;
3096                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3097                         r10_bio->sector = sect;
3098
3099                         raid10_find_phys(conf, r10_bio);
3100
3101                         /* Need to check if the array will still be
3102                          * degraded
3103                          */
3104                         for (j = 0; j < conf->geo.raid_disks; j++)
3105                                 if (conf->mirrors[j].rdev == NULL ||
3106                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3107                                         still_degraded = 1;
3108                                         break;
3109                                 }
3110
3111                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3112                                                       &sync_blocks, still_degraded);
3113
3114                         any_working = 0;
3115                         for (j=0; j<conf->copies;j++) {
3116                                 int k;
3117                                 int d = r10_bio->devs[j].devnum;
3118                                 sector_t from_addr, to_addr;
3119                                 struct md_rdev *rdev;
3120                                 sector_t sector, first_bad;
3121                                 int bad_sectors;
3122                                 if (!conf->mirrors[d].rdev ||
3123                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3124                                         continue;
3125                                 /* This is where we read from */
3126                                 any_working = 1;
3127                                 rdev = conf->mirrors[d].rdev;
3128                                 sector = r10_bio->devs[j].addr;
3129
3130                                 if (is_badblock(rdev, sector, max_sync,
3131                                                 &first_bad, &bad_sectors)) {
3132                                         if (first_bad > sector)
3133                                                 max_sync = first_bad - sector;
3134                                         else {
3135                                                 bad_sectors -= (sector
3136                                                                 - first_bad);
3137                                                 if (max_sync > bad_sectors)
3138                                                         max_sync = bad_sectors;
3139                                                 continue;
3140                                         }
3141                                 }
3142                                 bio = r10_bio->devs[0].bio;
3143                                 bio_reset(bio);
3144                                 bio->bi_next = biolist;
3145                                 biolist = bio;
3146                                 bio->bi_private = r10_bio;
3147                                 bio->bi_end_io = end_sync_read;
3148                                 bio->bi_rw = READ;
3149                                 from_addr = r10_bio->devs[j].addr;
3150                                 bio->bi_sector = from_addr + rdev->data_offset;
3151                                 bio->bi_bdev = rdev->bdev;
3152                                 atomic_inc(&rdev->nr_pending);
3153                                 /* and we write to 'i' (if not in_sync) */
3154
3155                                 for (k=0; k<conf->copies; k++)
3156                                         if (r10_bio->devs[k].devnum == i)
3157                                                 break;
3158                                 BUG_ON(k == conf->copies);
3159                                 to_addr = r10_bio->devs[k].addr;
3160                                 r10_bio->devs[0].devnum = d;
3161                                 r10_bio->devs[0].addr = from_addr;
3162                                 r10_bio->devs[1].devnum = i;
3163                                 r10_bio->devs[1].addr = to_addr;
3164
3165                                 rdev = mirror->rdev;
3166                                 if (!test_bit(In_sync, &rdev->flags)) {
3167                                         bio = r10_bio->devs[1].bio;
3168                                         bio_reset(bio);
3169                                         bio->bi_next = biolist;
3170                                         biolist = bio;
3171                                         bio->bi_private = r10_bio;
3172                                         bio->bi_end_io = end_sync_write;
3173                                         bio->bi_rw = WRITE;
3174                                         bio->bi_sector = to_addr
3175                                                 + rdev->data_offset;
3176                                         bio->bi_bdev = rdev->bdev;
3177                                         atomic_inc(&r10_bio->remaining);
3178                                 } else
3179                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3180
3181                                 /* and maybe write to replacement */
3182                                 bio = r10_bio->devs[1].repl_bio;
3183                                 if (bio)
3184                                         bio->bi_end_io = NULL;
3185                                 rdev = mirror->replacement;
3186                                 /* Note: if rdev != NULL, then bio
3187                                  * cannot be NULL as r10buf_pool_alloc will
3188                                  * have allocated it.
3189                                  * So the second test here is pointless.
3190                                  * But it keeps semantic-checkers happy, and
3191                                  * this comment keeps human reviewers
3192                                  * happy.
3193                                  */
3194                                 if (rdev == NULL || bio == NULL ||
3195                                     test_bit(Faulty, &rdev->flags))
3196                                         break;
3197                                 bio_reset(bio);
3198                                 bio->bi_next = biolist;
3199                                 biolist = bio;
3200                                 bio->bi_private = r10_bio;
3201                                 bio->bi_end_io = end_sync_write;
3202                                 bio->bi_rw = WRITE;
3203                                 bio->bi_sector = to_addr + rdev->data_offset;
3204                                 bio->bi_bdev = rdev->bdev;
3205                                 atomic_inc(&r10_bio->remaining);
3206                                 break;
3207                         }
3208                         if (j == conf->copies) {
3209                                 /* Cannot recover, so abort the recovery or
3210                                  * record a bad block */
3211                                 put_buf(r10_bio);
3212                                 if (rb2)
3213                                         atomic_dec(&rb2->remaining);
3214                                 r10_bio = rb2;
3215                                 if (any_working) {
3216                                         /* problem is that there are bad blocks
3217                                          * on other device(s)
3218                                          */
3219                                         int k;
3220                                         for (k = 0; k < conf->copies; k++)
3221                                                 if (r10_bio->devs[k].devnum == i)
3222                                                         break;
3223                                         if (!test_bit(In_sync,
3224                                                       &mirror->rdev->flags)
3225                                             && !rdev_set_badblocks(
3226                                                     mirror->rdev,
3227                                                     r10_bio->devs[k].addr,
3228                                                     max_sync, 0))
3229                                                 any_working = 0;
3230                                         if (mirror->replacement &&
3231                                             !rdev_set_badblocks(
3232                                                     mirror->replacement,
3233                                                     r10_bio->devs[k].addr,
3234                                                     max_sync, 0))
3235                                                 any_working = 0;
3236                                 }
3237                                 if (!any_working)  {
3238                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3239                                                               &mddev->recovery))
3240                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3241                                                        "working devices for recovery.\n",
3242                                                        mdname(mddev));
3243                                         mirror->recovery_disabled
3244                                                 = mddev->recovery_disabled;
3245                                 }
3246                                 break;
3247                         }
3248                 }
3249                 if (biolist == NULL) {
3250                         while (r10_bio) {
3251                                 struct r10bio *rb2 = r10_bio;
3252                                 r10_bio = (struct r10bio*) rb2->master_bio;
3253                                 rb2->master_bio = NULL;
3254                                 put_buf(rb2);
3255                         }
3256                         goto giveup;
3257                 }
3258         } else {
3259                 /* resync. Schedule a read for every block at this virt offset */
3260                 int count = 0;
3261
3262                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3263
3264                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3265                                        &sync_blocks, mddev->degraded) &&
3266                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3267                                                  &mddev->recovery)) {
3268                         /* We can skip this block */
3269                         *skipped = 1;
3270                         return sync_blocks + sectors_skipped;
3271                 }
3272                 if (sync_blocks < max_sync)
3273                         max_sync = sync_blocks;
3274                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3275
3276                 r10_bio->mddev = mddev;
3277                 atomic_set(&r10_bio->remaining, 0);
3278                 raise_barrier(conf, 0);
3279                 conf->next_resync = sector_nr;
3280
3281                 r10_bio->master_bio = NULL;
3282                 r10_bio->sector = sector_nr;
3283                 set_bit(R10BIO_IsSync, &r10_bio->state);
3284                 raid10_find_phys(conf, r10_bio);
3285                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3286
3287                 for (i = 0; i < conf->copies; i++) {
3288                         int d = r10_bio->devs[i].devnum;
3289                         sector_t first_bad, sector;
3290                         int bad_sectors;
3291
3292                         if (r10_bio->devs[i].repl_bio)
3293                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3294
3295                         bio = r10_bio->devs[i].bio;
3296                         bio_reset(bio);
3297                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3298                         if (conf->mirrors[d].rdev == NULL ||
3299                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3300                                 continue;
3301                         sector = r10_bio->devs[i].addr;
3302                         if (is_badblock(conf->mirrors[d].rdev,
3303                                         sector, max_sync,
3304                                         &first_bad, &bad_sectors)) {
3305                                 if (first_bad > sector)
3306                                         max_sync = first_bad - sector;
3307                                 else {
3308                                         bad_sectors -= (sector - first_bad);
3309                                         if (max_sync > bad_sectors)
3310                                                 max_sync = bad_sectors;
3311                                         continue;
3312                                 }
3313                         }
3314                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3315                         atomic_inc(&r10_bio->remaining);
3316                         bio->bi_next = biolist;
3317                         biolist = bio;
3318                         bio->bi_private = r10_bio;
3319                         bio->bi_end_io = end_sync_read;
3320                         bio->bi_rw = READ;
3321                         bio->bi_sector = sector +
3322                                 conf->mirrors[d].rdev->data_offset;
3323                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3324                         count++;
3325
3326                         if (conf->mirrors[d].replacement == NULL ||
3327                             test_bit(Faulty,
3328                                      &conf->mirrors[d].replacement->flags))
3329                                 continue;
3330
3331                         /* Need to set up for writing to the replacement */
3332                         bio = r10_bio->devs[i].repl_bio;
3333                         bio_reset(bio);
3334                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3335
3336                         sector = r10_bio->devs[i].addr;
3337                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3338                         bio->bi_next = biolist;
3339                         biolist = bio;
3340                         bio->bi_private = r10_bio;
3341                         bio->bi_end_io = end_sync_write;
3342                         bio->bi_rw = WRITE;
3343                         bio->bi_sector = sector +
3344                                 conf->mirrors[d].replacement->data_offset;
3345                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3346                         count++;
3347                 }
3348
3349                 if (count < 2) {
3350                         for (i=0; i<conf->copies; i++) {
3351                                 int d = r10_bio->devs[i].devnum;
3352                                 if (r10_bio->devs[i].bio->bi_end_io)
3353                                         rdev_dec_pending(conf->mirrors[d].rdev,
3354                                                          mddev);
3355                                 if (r10_bio->devs[i].repl_bio &&
3356                                     r10_bio->devs[i].repl_bio->bi_end_io)
3357                                         rdev_dec_pending(
3358                                                 conf->mirrors[d].replacement,
3359                                                 mddev);
3360                         }
3361                         put_buf(r10_bio);
3362                         biolist = NULL;
3363                         goto giveup;
3364                 }
3365         }
3366
3367         nr_sectors = 0;
3368         if (sector_nr + max_sync < max_sector)
3369                 max_sector = sector_nr + max_sync;
3370         do {
3371                 struct page *page;
3372                 int len = PAGE_SIZE;
3373                 if (sector_nr + (len>>9) > max_sector)
3374                         len = (max_sector - sector_nr) << 9;
3375                 if (len == 0)
3376                         break;
3377                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3378                         struct bio *bio2;
3379                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3380                         if (bio_add_page(bio, page, len, 0))
3381                                 continue;
3382
3383                         /* stop here */
3384                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3385                         for (bio2 = biolist;
3386                              bio2 && bio2 != bio;
3387                              bio2 = bio2->bi_next) {
3388                                 /* remove last page from this bio */
3389                                 bio2->bi_vcnt--;
3390                                 bio2->bi_size -= len;
3391                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3392                         }
3393                         goto bio_full;
3394                 }
3395                 nr_sectors += len>>9;
3396                 sector_nr += len>>9;
3397         } while (biolist->bi_vcnt < RESYNC_PAGES);
3398  bio_full:
3399         r10_bio->sectors = nr_sectors;
3400
3401         while (biolist) {
3402                 bio = biolist;
3403                 biolist = biolist->bi_next;
3404
3405                 bio->bi_next = NULL;
3406                 r10_bio = bio->bi_private;
3407                 r10_bio->sectors = nr_sectors;
3408
3409                 if (bio->bi_end_io == end_sync_read) {
3410                         md_sync_acct(bio->bi_bdev, nr_sectors);
3411                         generic_make_request(bio);
3412                 }
3413         }
3414
3415         if (sectors_skipped)
3416                 /* pretend they weren't skipped, it makes
3417                  * no important difference in this case
3418                  */
3419                 md_done_sync(mddev, sectors_skipped, 1);
3420
3421         return sectors_skipped + nr_sectors;
3422  giveup:
3423         /* There is nowhere to write, so all non-sync
3424          * drives must be failed or in resync, all drives
3425          * have a bad block, so try the next chunk...
3426          */
3427         if (sector_nr + max_sync < max_sector)
3428                 max_sector = sector_nr + max_sync;
3429
3430         sectors_skipped += (max_sector - sector_nr);
3431         chunks_skipped ++;
3432         sector_nr = max_sector;
3433         goto skipped;
3434 }
3435
3436 static sector_t
3437 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3438 {
3439         sector_t size;
3440         struct r10conf *conf = mddev->private;
3441
3442         if (!raid_disks)
3443                 raid_disks = min(conf->geo.raid_disks,
3444                                  conf->prev.raid_disks);
3445         if (!sectors)
3446                 sectors = conf->dev_sectors;
3447
3448         size = sectors >> conf->geo.chunk_shift;
3449         sector_div(size, conf->geo.far_copies);
3450         size = size * raid_disks;
3451         sector_div(size, conf->geo.near_copies);
3452
3453         return size << conf->geo.chunk_shift;
3454 }
3455
3456 static void calc_sectors(struct r10conf *conf, sector_t size)
3457 {
3458         /* Calculate the number of sectors-per-device that will
3459          * actually be used, and set conf->dev_sectors and
3460          * conf->stride
3461          */
3462
3463         size = size >> conf->geo.chunk_shift;
3464         sector_div(size, conf->geo.far_copies);
3465         size = size * conf->geo.raid_disks;
3466         sector_div(size, conf->geo.near_copies);
3467         /* 'size' is now the number of chunks in the array */
3468         /* calculate "used chunks per device" */
3469         size = size * conf->copies;
3470
3471         /* We need to round up when dividing by raid_disks to
3472          * get the stride size.
3473          */
3474         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3475
3476         conf->dev_sectors = size << conf->geo.chunk_shift;
3477
3478         if (conf->geo.far_offset)
3479                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3480         else {
3481                 sector_div(size, conf->geo.far_copies);
3482                 conf->geo.stride = size << conf->geo.chunk_shift;
3483         }
3484 }
3485
3486 enum geo_type {geo_new, geo_old, geo_start};
3487 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3488 {
3489         int nc, fc, fo;
3490         int layout, chunk, disks;
3491         switch (new) {
3492         case geo_old:
3493                 layout = mddev->layout;
3494                 chunk = mddev->chunk_sectors;
3495                 disks = mddev->raid_disks - mddev->delta_disks;
3496                 break;
3497         case geo_new:
3498                 layout = mddev->new_layout;
3499                 chunk = mddev->new_chunk_sectors;
3500                 disks = mddev->raid_disks;
3501                 break;
3502         default: /* avoid 'may be unused' warnings */
3503         case geo_start: /* new when starting reshape - raid_disks not
3504                          * updated yet. */
3505                 layout = mddev->new_layout;
3506                 chunk = mddev->new_chunk_sectors;
3507                 disks = mddev->raid_disks + mddev->delta_disks;
3508                 break;
3509         }
3510         if (layout >> 18)
3511                 return -1;
3512         if (chunk < (PAGE_SIZE >> 9) ||
3513             !is_power_of_2(chunk))
3514                 return -2;
3515         nc = layout & 255;
3516         fc = (layout >> 8) & 255;
3517         fo = layout & (1<<16);
3518         geo->raid_disks = disks;
3519         geo->near_copies = nc;
3520         geo->far_copies = fc;
3521         geo->far_offset = fo;
3522         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3523         geo->chunk_mask = chunk - 1;
3524         geo->chunk_shift = ffz(~chunk);
3525         return nc*fc;
3526 }
3527
3528 static struct r10conf *setup_conf(struct mddev *mddev)
3529 {
3530         struct r10conf *conf = NULL;
3531         int err = -EINVAL;
3532         struct geom geo;
3533         int copies;
3534
3535         copies = setup_geo(&geo, mddev, geo_new);
3536
3537         if (copies == -2) {
3538                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3539                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3540                        mdname(mddev), PAGE_SIZE);
3541                 goto out;
3542         }
3543
3544         if (copies < 2 || copies > mddev->raid_disks) {
3545                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3546                        mdname(mddev), mddev->new_layout);
3547                 goto out;
3548         }
3549
3550         err = -ENOMEM;
3551         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3552         if (!conf)
3553                 goto out;
3554
3555         /* FIXME calc properly */
3556         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3557                                                             max(0,mddev->delta_disks)),
3558                                 GFP_KERNEL);
3559         if (!conf->mirrors)
3560                 goto out;
3561
3562         conf->tmppage = alloc_page(GFP_KERNEL);
3563         if (!conf->tmppage)
3564                 goto out;
3565
3566         conf->geo = geo;
3567         conf->copies = copies;
3568         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3569                                            r10bio_pool_free, conf);
3570         if (!conf->r10bio_pool)
3571                 goto out;
3572
3573         calc_sectors(conf, mddev->dev_sectors);
3574         if (mddev->reshape_position == MaxSector) {
3575                 conf->prev = conf->geo;
3576                 conf->reshape_progress = MaxSector;
3577         } else {
3578                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3579                         err = -EINVAL;
3580                         goto out;
3581                 }
3582                 conf->reshape_progress = mddev->reshape_position;
3583                 if (conf->prev.far_offset)
3584                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3585                 else
3586                         /* far_copies must be 1 */
3587                         conf->prev.stride = conf->dev_sectors;
3588         }
3589         spin_lock_init(&conf->device_lock);
3590         INIT_LIST_HEAD(&conf->retry_list);
3591
3592         spin_lock_init(&conf->resync_lock);
3593         init_waitqueue_head(&conf->wait_barrier);
3594
3595         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3596         if (!conf->thread)
3597                 goto out;
3598
3599         conf->mddev = mddev;
3600         return conf;
3601
3602  out:
3603         if (err == -ENOMEM)
3604                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3605                        mdname(mddev));
3606         if (conf) {
3607                 if (conf->r10bio_pool)
3608                         mempool_destroy(conf->r10bio_pool);
3609                 kfree(conf->mirrors);
3610                 safe_put_page(conf->tmppage);
3611                 kfree(conf);
3612         }
3613         return ERR_PTR(err);
3614 }
3615
3616 static int run(struct mddev *mddev)
3617 {
3618         struct r10conf *conf;
3619         int i, disk_idx, chunk_size;
3620         struct raid10_info *disk;
3621         struct md_rdev *rdev;
3622         sector_t size;
3623         sector_t min_offset_diff = 0;
3624         int first = 1;
3625         bool discard_supported = false;
3626
3627         if (mddev->private == NULL) {
3628                 conf = setup_conf(mddev);
3629                 if (IS_ERR(conf))
3630                         return PTR_ERR(conf);
3631                 mddev->private = conf;
3632         }
3633         conf = mddev->private;
3634         if (!conf)
3635                 goto out;
3636
3637         mddev->thread = conf->thread;
3638         conf->thread = NULL;
3639
3640         chunk_size = mddev->chunk_sectors << 9;
3641         if (mddev->queue) {
3642                 blk_queue_max_discard_sectors(mddev->queue,
3643                                               mddev->chunk_sectors);
3644                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3645                 blk_queue_io_min(mddev->queue, chunk_size);
3646                 if (conf->geo.raid_disks % conf->geo.near_copies)
3647                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3648                 else
3649                         blk_queue_io_opt(mddev->queue, chunk_size *
3650                                          (conf->geo.raid_disks / conf->geo.near_copies));
3651         }
3652
3653         rdev_for_each(rdev, mddev) {
3654                 long long diff;
3655                 struct request_queue *q;
3656
3657                 disk_idx = rdev->raid_disk;
3658                 if (disk_idx < 0)
3659                         continue;
3660                 if (disk_idx >= conf->geo.raid_disks &&
3661                     disk_idx >= conf->prev.raid_disks)
3662                         continue;
3663                 disk = conf->mirrors + disk_idx;
3664
3665                 if (test_bit(Replacement, &rdev->flags)) {
3666                         if (disk->replacement)
3667                                 goto out_free_conf;
3668                         disk->replacement = rdev;
3669                 } else {
3670                         if (disk->rdev)
3671                                 goto out_free_conf;
3672                         disk->rdev = rdev;
3673                 }
3674                 q = bdev_get_queue(rdev->bdev);
3675                 if (q->merge_bvec_fn)
3676                         mddev->merge_check_needed = 1;
3677                 diff = (rdev->new_data_offset - rdev->data_offset);
3678                 if (!mddev->reshape_backwards)
3679                         diff = -diff;
3680                 if (diff < 0)
3681                         diff = 0;
3682                 if (first || diff < min_offset_diff)
3683                         min_offset_diff = diff;
3684
3685                 if (mddev->gendisk)
3686                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3687                                           rdev->data_offset << 9);
3688
3689                 disk->head_position = 0;
3690
3691                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3692                         discard_supported = true;
3693         }
3694
3695         if (mddev->queue) {
3696                 if (discard_supported)
3697                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3698                                                 mddev->queue);
3699                 else
3700                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3701                                                   mddev->queue);
3702         }
3703         /* need to check that every block has at least one working mirror */
3704         if (!enough(conf, -1)) {
3705                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3706                        mdname(mddev));
3707                 goto out_free_conf;
3708         }
3709
3710         if (conf->reshape_progress != MaxSector) {
3711                 /* must ensure that shape change is supported */
3712                 if (conf->geo.far_copies != 1 &&
3713                     conf->geo.far_offset == 0)
3714                         goto out_free_conf;
3715                 if (conf->prev.far_copies != 1 &&
3716                     conf->geo.far_offset == 0)
3717                         goto out_free_conf;
3718         }
3719
3720         mddev->degraded = 0;
3721         for (i = 0;
3722              i < conf->geo.raid_disks
3723                      || i < conf->prev.raid_disks;
3724              i++) {
3725
3726                 disk = conf->mirrors + i;
3727
3728                 if (!disk->rdev && disk->replacement) {
3729                         /* The replacement is all we have - use it */
3730                         disk->rdev = disk->replacement;
3731                         disk->replacement = NULL;
3732                         clear_bit(Replacement, &disk->rdev->flags);
3733                 }
3734
3735                 if (!disk->rdev ||
3736                     !test_bit(In_sync, &disk->rdev->flags)) {
3737                         disk->head_position = 0;
3738                         mddev->degraded++;
3739                         if (disk->rdev)
3740                                 conf->fullsync = 1;
3741                 }
3742                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3743         }
3744
3745         if (mddev->recovery_cp != MaxSector)
3746                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3747                        " -- starting background reconstruction\n",
3748                        mdname(mddev));
3749         printk(KERN_INFO
3750                 "md/raid10:%s: active with %d out of %d devices\n",
3751                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752                 conf->geo.raid_disks);
3753         /*
3754          * Ok, everything is just fine now
3755          */
3756         mddev->dev_sectors = conf->dev_sectors;
3757         size = raid10_size(mddev, 0, 0);
3758         md_set_array_sectors(mddev, size);
3759         mddev->resync_max_sectors = size;
3760
3761         if (mddev->queue) {
3762                 int stripe = conf->geo.raid_disks *
3763                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3764                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765                 mddev->queue->backing_dev_info.congested_data = mddev;
3766
3767                 /* Calculate max read-ahead size.
3768                  * We need to readahead at least twice a whole stripe....
3769                  * maybe...
3770                  */
3771                 stripe /= conf->geo.near_copies;
3772                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3774                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3775         }
3776
3777
3778         if (md_integrity_register(mddev))
3779                 goto out_free_conf;
3780
3781         if (conf->reshape_progress != MaxSector) {
3782                 unsigned long before_length, after_length;
3783
3784                 before_length = ((1 << conf->prev.chunk_shift) *
3785                                  conf->prev.far_copies);
3786                 after_length = ((1 << conf->geo.chunk_shift) *
3787                                 conf->geo.far_copies);
3788
3789                 if (max(before_length, after_length) > min_offset_diff) {
3790                         /* This cannot work */
3791                         printk("md/raid10: offset difference not enough to continue reshape\n");
3792                         goto out_free_conf;
3793                 }
3794                 conf->offset_diff = min_offset_diff;
3795
3796                 conf->reshape_safe = conf->reshape_progress;
3797                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802                                                         "reshape");
3803         }
3804
3805         return 0;
3806
3807 out_free_conf:
3808         md_unregister_thread(&mddev->thread);
3809         if (conf->r10bio_pool)
3810                 mempool_destroy(conf->r10bio_pool);
3811         safe_put_page(conf->tmppage);
3812         kfree(conf->mirrors);
3813         kfree(conf);
3814         mddev->private = NULL;
3815 out:
3816         return -EIO;
3817 }
3818
3819 static int stop(struct mddev *mddev)
3820 {
3821         struct r10conf *conf = mddev->private;
3822
3823         raise_barrier(conf, 0);
3824         lower_barrier(conf);
3825
3826         md_unregister_thread(&mddev->thread);
3827         if (mddev->queue)
3828                 /* the unplug fn references 'conf'*/
3829                 blk_sync_queue(mddev->queue);
3830
3831         if (conf->r10bio_pool)
3832                 mempool_destroy(conf->r10bio_pool);
3833         safe_put_page(conf->tmppage);
3834         kfree(conf->mirrors);
3835         kfree(conf);
3836         mddev->private = NULL;
3837         return 0;
3838 }
3839
3840 static void raid10_quiesce(struct mddev *mddev, int state)
3841 {
3842         struct r10conf *conf = mddev->private;
3843
3844         switch(state) {
3845         case 1:
3846                 raise_barrier(conf, 0);
3847                 break;
3848         case 0:
3849                 lower_barrier(conf);
3850                 break;
3851         }
3852 }
3853
3854 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855 {
3856         /* Resize of 'far' arrays is not supported.
3857          * For 'near' and 'offset' arrays we can set the
3858          * number of sectors used to be an appropriate multiple
3859          * of the chunk size.
3860          * For 'offset', this is far_copies*chunksize.
3861          * For 'near' the multiplier is the LCM of
3862          * near_copies and raid_disks.
3863          * So if far_copies > 1 && !far_offset, fail.
3864          * Else find LCM(raid_disks, near_copy)*far_copies and
3865          * multiply by chunk_size.  Then round to this number.
3866          * This is mostly done by raid10_size()
3867          */
3868         struct r10conf *conf = mddev->private;
3869         sector_t oldsize, size;
3870
3871         if (mddev->reshape_position != MaxSector)
3872                 return -EBUSY;
3873
3874         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3875                 return -EINVAL;
3876
3877         oldsize = raid10_size(mddev, 0, 0);
3878         size = raid10_size(mddev, sectors, 0);
3879         if (mddev->external_size &&
3880             mddev->array_sectors > size)
3881                 return -EINVAL;
3882         if (mddev->bitmap) {
3883                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884                 if (ret)
3885                         return ret;
3886         }
3887         md_set_array_sectors(mddev, size);
3888         set_capacity(mddev->gendisk, mddev->array_sectors);
3889         revalidate_disk(mddev->gendisk);
3890         if (sectors > mddev->dev_sectors &&
3891             mddev->recovery_cp > oldsize) {
3892                 mddev->recovery_cp = oldsize;
3893                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894         }
3895         calc_sectors(conf, sectors);
3896         mddev->dev_sectors = conf->dev_sectors;
3897         mddev->resync_max_sectors = size;
3898         return 0;
3899 }
3900
3901 static void *raid10_takeover_raid0(struct mddev *mddev)
3902 {
3903         struct md_rdev *rdev;
3904         struct r10conf *conf;
3905
3906         if (mddev->degraded > 0) {
3907                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908                        mdname(mddev));
3909                 return ERR_PTR(-EINVAL);
3910         }
3911
3912         /* Set new parameters */
3913         mddev->new_level = 10;
3914         /* new layout: far_copies = 1, near_copies = 2 */
3915         mddev->new_layout = (1<<8) + 2;
3916         mddev->new_chunk_sectors = mddev->chunk_sectors;
3917         mddev->delta_disks = mddev->raid_disks;
3918         mddev->raid_disks *= 2;
3919         /* make sure it will be not marked as dirty */
3920         mddev->recovery_cp = MaxSector;
3921
3922         conf = setup_conf(mddev);
3923         if (!IS_ERR(conf)) {
3924                 rdev_for_each(rdev, mddev)
3925                         if (rdev->raid_disk >= 0)
3926                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3927                 conf->barrier = 1;
3928         }
3929
3930         return conf;
3931 }
3932
3933 static void *raid10_takeover(struct mddev *mddev)
3934 {
3935         struct r0conf *raid0_conf;
3936
3937         /* raid10 can take over:
3938          *  raid0 - providing it has only two drives
3939          */
3940         if (mddev->level == 0) {
3941                 /* for raid0 takeover only one zone is supported */
3942                 raid0_conf = mddev->private;
3943                 if (raid0_conf->nr_strip_zones > 1) {
3944                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945                                " with more than one zone.\n",
3946                                mdname(mddev));
3947                         return ERR_PTR(-EINVAL);
3948                 }
3949                 return raid10_takeover_raid0(mddev);
3950         }
3951         return ERR_PTR(-EINVAL);
3952 }
3953
3954 static int raid10_check_reshape(struct mddev *mddev)
3955 {
3956         /* Called when there is a request to change
3957          * - layout (to ->new_layout)
3958          * - chunk size (to ->new_chunk_sectors)
3959          * - raid_disks (by delta_disks)
3960          * or when trying to restart a reshape that was ongoing.
3961          *
3962          * We need to validate the request and possibly allocate
3963          * space if that might be an issue later.
3964          *
3965          * Currently we reject any reshape of a 'far' mode array,
3966          * allow chunk size to change if new is generally acceptable,
3967          * allow raid_disks to increase, and allow
3968          * a switch between 'near' mode and 'offset' mode.
3969          */
3970         struct r10conf *conf = mddev->private;
3971         struct geom geo;
3972
3973         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974                 return -EINVAL;
3975
3976         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977                 /* mustn't change number of copies */
3978                 return -EINVAL;
3979         if (geo.far_copies > 1 && !geo.far_offset)
3980                 /* Cannot switch to 'far' mode */
3981                 return -EINVAL;
3982
3983         if (mddev->array_sectors & geo.chunk_mask)
3984                         /* not factor of array size */
3985                         return -EINVAL;
3986
3987         if (!enough(conf, -1))
3988                 return -EINVAL;
3989
3990         kfree(conf->mirrors_new);
3991         conf->mirrors_new = NULL;
3992         if (mddev->delta_disks > 0) {
3993                 /* allocate new 'mirrors' list */
3994                 conf->mirrors_new = kzalloc(
3995                         sizeof(struct raid10_info)
3996                         *(mddev->raid_disks +
3997                           mddev->delta_disks),
3998                         GFP_KERNEL);
3999                 if (!conf->mirrors_new)
4000                         return -ENOMEM;
4001         }
4002         return 0;
4003 }
4004
4005 /*
4006  * Need to check if array has failed when deciding whether to:
4007  *  - start an array
4008  *  - remove non-faulty devices
4009  *  - add a spare
4010  *  - allow a reshape
4011  * This determination is simple when no reshape is happening.
4012  * However if there is a reshape, we need to carefully check
4013  * both the before and after sections.
4014  * This is because some failed devices may only affect one
4015  * of the two sections, and some non-in_sync devices may
4016  * be insync in the section most affected by failed devices.
4017  */
4018 static int calc_degraded(struct r10conf *conf)
4019 {
4020         int degraded, degraded2;
4021         int i;
4022
4023         rcu_read_lock();
4024         degraded = 0;
4025         /* 'prev' section first */
4026         for (i = 0; i < conf->prev.raid_disks; i++) {
4027                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028                 if (!rdev || test_bit(Faulty, &rdev->flags))
4029                         degraded++;
4030                 else if (!test_bit(In_sync, &rdev->flags))
4031                         /* When we can reduce the number of devices in
4032                          * an array, this might not contribute to
4033                          * 'degraded'.  It does now.
4034                          */
4035                         degraded++;
4036         }
4037         rcu_read_unlock();
4038         if (conf->geo.raid_disks == conf->prev.raid_disks)
4039                 return degraded;
4040         rcu_read_lock();
4041         degraded2 = 0;
4042         for (i = 0; i < conf->geo.raid_disks; i++) {
4043                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044                 if (!rdev || test_bit(Faulty, &rdev->flags))
4045                         degraded2++;
4046                 else if (!test_bit(In_sync, &rdev->flags)) {
4047                         /* If reshape is increasing the number of devices,
4048                          * this section has already been recovered, so
4049                          * it doesn't contribute to degraded.
4050                          * else it does.
4051                          */
4052                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053                                 degraded2++;
4054                 }
4055         }
4056         rcu_read_unlock();
4057         if (degraded2 > degraded)
4058                 return degraded2;
4059         return degraded;
4060 }
4061
4062 static int raid10_start_reshape(struct mddev *mddev)
4063 {
4064         /* A 'reshape' has been requested. This commits
4065          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066          * This also checks if there are enough spares and adds them
4067          * to the array.
4068          * We currently require enough spares to make the final
4069          * array non-degraded.  We also require that the difference
4070          * between old and new data_offset - on each device - is
4071          * enough that we never risk over-writing.
4072          */
4073
4074         unsigned long before_length, after_length;
4075         sector_t min_offset_diff = 0;
4076         int first = 1;
4077         struct geom new;
4078         struct r10conf *conf = mddev->private;
4079         struct md_rdev *rdev;
4080         int spares = 0;
4081         int ret;
4082
4083         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084                 return -EBUSY;
4085
4086         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087                 return -EINVAL;
4088
4089         before_length = ((1 << conf->prev.chunk_shift) *
4090                          conf->prev.far_copies);
4091         after_length = ((1 << conf->geo.chunk_shift) *
4092                         conf->geo.far_copies);
4093
4094         rdev_for_each(rdev, mddev) {
4095                 if (!test_bit(In_sync, &rdev->flags)
4096                     && !test_bit(Faulty, &rdev->flags))
4097                         spares++;
4098                 if (rdev->raid_disk >= 0) {
4099                         long long diff = (rdev->new_data_offset
4100                                           - rdev->data_offset);
4101                         if (!mddev->reshape_backwards)
4102                                 diff = -diff;
4103                         if (diff < 0)
4104                                 diff = 0;
4105                         if (first || diff < min_offset_diff)
4106                                 min_offset_diff = diff;
4107                 }
4108         }
4109
4110         if (max(before_length, after_length) > min_offset_diff)
4111                 return -EINVAL;
4112
4113         if (spares < mddev->delta_disks)
4114                 return -EINVAL;
4115
4116         conf->offset_diff = min_offset_diff;
4117         spin_lock_irq(&conf->device_lock);
4118         if (conf->mirrors_new) {
4119                 memcpy(conf->mirrors_new, conf->mirrors,
4120                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4121                 smp_mb();
4122                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123                 conf->mirrors_old = conf->mirrors;
4124                 conf->mirrors = conf->mirrors_new;
4125                 conf->mirrors_new = NULL;
4126         }
4127         setup_geo(&conf->geo, mddev, geo_start);
4128         smp_mb();
4129         if (mddev->reshape_backwards) {
4130                 sector_t size = raid10_size(mddev, 0, 0);
4131                 if (size < mddev->array_sectors) {
4132                         spin_unlock_irq(&conf->device_lock);
4133                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134                                mdname(mddev));
4135                         return -EINVAL;
4136                 }
4137                 mddev->resync_max_sectors = size;
4138                 conf->reshape_progress = size;
4139         } else
4140                 conf->reshape_progress = 0;
4141         spin_unlock_irq(&conf->device_lock);
4142
4143         if (mddev->delta_disks && mddev->bitmap) {
4144                 ret = bitmap_resize(mddev->bitmap,
4145                                     raid10_size(mddev, 0,
4146                                                 conf->geo.raid_disks),
4147                                     0, 0);
4148                 if (ret)
4149                         goto abort;
4150         }
4151         if (mddev->delta_disks > 0) {
4152                 rdev_for_each(rdev, mddev)
4153                         if (rdev->raid_disk < 0 &&
4154                             !test_bit(Faulty, &rdev->flags)) {
4155                                 if (raid10_add_disk(mddev, rdev) == 0) {
4156                                         if (rdev->raid_disk >=
4157                                             conf->prev.raid_disks)
4158                                                 set_bit(In_sync, &rdev->flags);
4159                                         else
4160                                                 rdev->recovery_offset = 0;
4161
4162                                         if (sysfs_link_rdev(mddev, rdev))
4163                                                 /* Failure here  is OK */;
4164                                 }
4165                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4166                                    && !test_bit(Faulty, &rdev->flags)) {
4167                                 /* This is a spare that was manually added */
4168                                 set_bit(In_sync, &rdev->flags);
4169                         }
4170         }
4171         /* When a reshape changes the number of devices,
4172          * ->degraded is measured against the larger of the
4173          * pre and  post numbers.
4174          */
4175         spin_lock_irq(&conf->device_lock);
4176         mddev->degraded = calc_degraded(conf);
4177         spin_unlock_irq(&conf->device_lock);
4178         mddev->raid_disks = conf->geo.raid_disks;
4179         mddev->reshape_position = conf->reshape_progress;
4180         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
4182         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186
4187         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188                                                 "reshape");
4189         if (!mddev->sync_thread) {
4190                 ret = -EAGAIN;
4191                 goto abort;
4192         }
4193         conf->reshape_checkpoint = jiffies;
4194         md_wakeup_thread(mddev->sync_thread);
4195         md_new_event(mddev);
4196         return 0;
4197
4198 abort:
4199         mddev->recovery = 0;
4200         spin_lock_irq(&conf->device_lock);
4201         conf->geo = conf->prev;
4202         mddev->raid_disks = conf->geo.raid_disks;
4203         rdev_for_each(rdev, mddev)
4204                 rdev->new_data_offset = rdev->data_offset;
4205         smp_wmb();
4206         conf->reshape_progress = MaxSector;
4207         mddev->reshape_position = MaxSector;
4208         spin_unlock_irq(&conf->device_lock);
4209         return ret;
4210 }
4211
4212 /* Calculate the last device-address that could contain
4213  * any block from the chunk that includes the array-address 's'
4214  * and report the next address.
4215  * i.e. the address returned will be chunk-aligned and after
4216  * any data that is in the chunk containing 's'.
4217  */
4218 static sector_t last_dev_address(sector_t s, struct geom *geo)
4219 {
4220         s = (s | geo->chunk_mask) + 1;
4221         s >>= geo->chunk_shift;
4222         s *= geo->near_copies;
4223         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224         s *= geo->far_copies;
4225         s <<= geo->chunk_shift;
4226         return s;
4227 }
4228
4229 /* Calculate the first device-address that could contain
4230  * any block from the chunk that includes the array-address 's'.
4231  * This too will be the start of a chunk
4232  */
4233 static sector_t first_dev_address(sector_t s, struct geom *geo)
4234 {
4235         s >>= geo->chunk_shift;
4236         s *= geo->near_copies;
4237         sector_div(s, geo->raid_disks);
4238         s *= geo->far_copies;
4239         s <<= geo->chunk_shift;
4240         return s;
4241 }
4242
4243 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244                                 int *skipped)
4245 {
4246         /* We simply copy at most one chunk (smallest of old and new)
4247          * at a time, possibly less if that exceeds RESYNC_PAGES,
4248          * or we hit a bad block or something.
4249          * This might mean we pause for normal IO in the middle of
4250          * a chunk, but that is not a problem was mddev->reshape_position
4251          * can record any location.
4252          *
4253          * If we will want to write to a location that isn't
4254          * yet recorded as 'safe' (i.e. in metadata on disk) then
4255          * we need to flush all reshape requests and update the metadata.
4256          *
4257          * When reshaping forwards (e.g. to more devices), we interpret
4258          * 'safe' as the earliest block which might not have been copied
4259          * down yet.  We divide this by previous stripe size and multiply
4260          * by previous stripe length to get lowest device offset that we
4261          * cannot write to yet.
4262          * We interpret 'sector_nr' as an address that we want to write to.
4263          * From this we use last_device_address() to find where we might
4264          * write to, and first_device_address on the  'safe' position.
4265          * If this 'next' write position is after the 'safe' position,
4266          * we must update the metadata to increase the 'safe' position.
4267          *
4268          * When reshaping backwards, we round in the opposite direction
4269          * and perform the reverse test:  next write position must not be
4270          * less than current safe position.
4271          *
4272          * In all this the minimum difference in data offsets
4273          * (conf->offset_diff - always positive) allows a bit of slack,
4274          * so next can be after 'safe', but not by more than offset_disk
4275          *
4276          * We need to prepare all the bios here before we start any IO
4277          * to ensure the size we choose is acceptable to all devices.
4278          * The means one for each copy for write-out and an extra one for
4279          * read-in.
4280          * We store the read-in bio in ->master_bio and the others in
4281          * ->devs[x].bio and ->devs[x].repl_bio.
4282          */
4283         struct r10conf *conf = mddev->private;
4284         struct r10bio *r10_bio;
4285         sector_t next, safe, last;
4286         int max_sectors;
4287         int nr_sectors;
4288         int s;
4289         struct md_rdev *rdev;
4290         int need_flush = 0;
4291         struct bio *blist;
4292         struct bio *bio, *read_bio;
4293         int sectors_done = 0;
4294
4295         if (sector_nr == 0) {
4296                 /* If restarting in the middle, skip the initial sectors */
4297                 if (mddev->reshape_backwards &&
4298                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299                         sector_nr = (raid10_size(mddev, 0, 0)
4300                                      - conf->reshape_progress);
4301                 } else if (!mddev->reshape_backwards &&
4302                            conf->reshape_progress > 0)
4303                         sector_nr = conf->reshape_progress;
4304                 if (sector_nr) {
4305                         mddev->curr_resync_completed = sector_nr;
4306                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307                         *skipped = 1;
4308                         return sector_nr;
4309                 }
4310         }
4311
4312         /* We don't use sector_nr to track where we are up to
4313          * as that doesn't work well for ->reshape_backwards.
4314          * So just use ->reshape_progress.
4315          */
4316         if (mddev->reshape_backwards) {
4317                 /* 'next' is the earliest device address that we might
4318                  * write to for this chunk in the new layout
4319                  */
4320                 next = first_dev_address(conf->reshape_progress - 1,
4321                                          &conf->geo);
4322
4323                 /* 'safe' is the last device address that we might read from
4324                  * in the old layout after a restart
4325                  */
4326                 safe = last_dev_address(conf->reshape_safe - 1,
4327                                         &conf->prev);
4328
4329                 if (next + conf->offset_diff < safe)
4330                         need_flush = 1;
4331
4332                 last = conf->reshape_progress - 1;
4333                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334                                                & conf->prev.chunk_mask);
4335                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337         } else {
4338                 /* 'next' is after the last device address that we
4339                  * might write to for this chunk in the new layout
4340                  */
4341                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4342
4343                 /* 'safe' is the earliest device address that we might
4344                  * read from in the old layout after a restart
4345                  */
4346                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347
4348                 /* Need to update metadata if 'next' might be beyond 'safe'
4349                  * as that would possibly corrupt data
4350                  */
4351                 if (next > safe + conf->offset_diff)
4352                         need_flush = 1;
4353
4354                 sector_nr = conf->reshape_progress;
4355                 last  = sector_nr | (conf->geo.chunk_mask
4356                                      & conf->prev.chunk_mask);
4357
4358                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360         }
4361
4362         if (need_flush ||
4363             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364                 /* Need to update reshape_position in metadata */
4365                 wait_barrier(conf);
4366                 mddev->reshape_position = conf->reshape_progress;
4367                 if (mddev->reshape_backwards)
4368                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369                                 - conf->reshape_progress;
4370                 else
4371                         mddev->curr_resync_completed = conf->reshape_progress;
4372                 conf->reshape_checkpoint = jiffies;
4373                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374                 md_wakeup_thread(mddev->thread);
4375                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376                            kthread_should_stop());
4377                 conf->reshape_safe = mddev->reshape_position;
4378                 allow_barrier(conf);
4379         }
4380
4381 read_more:
4382         /* Now schedule reads for blocks from sector_nr to last */
4383         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4384         raise_barrier(conf, sectors_done != 0);
4385         atomic_set(&r10_bio->remaining, 0);
4386         r10_bio->mddev = mddev;
4387         r10_bio->sector = sector_nr;
4388         set_bit(R10BIO_IsReshape, &r10_bio->state);
4389         r10_bio->sectors = last - sector_nr + 1;
4390         rdev = read_balance(conf, r10_bio, &max_sectors);
4391         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4392
4393         if (!rdev) {
4394                 /* Cannot read from here, so need to record bad blocks
4395                  * on all the target devices.
4396                  */
4397                 // FIXME
4398                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4399                 return sectors_done;
4400         }
4401
4402         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4403
4404         read_bio->bi_bdev = rdev->bdev;
4405         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4406                                + rdev->data_offset);
4407         read_bio->bi_private = r10_bio;
4408         read_bio->bi_end_io = end_sync_read;
4409         read_bio->bi_rw = READ;
4410         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4411         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4412         read_bio->bi_vcnt = 0;
4413         read_bio->bi_size = 0;
4414         r10_bio->master_bio = read_bio;
4415         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4416
4417         /* Now find the locations in the new layout */
4418         __raid10_find_phys(&conf->geo, r10_bio);
4419
4420         blist = read_bio;
4421         read_bio->bi_next = NULL;
4422
4423         for (s = 0; s < conf->copies*2; s++) {
4424                 struct bio *b;
4425                 int d = r10_bio->devs[s/2].devnum;
4426                 struct md_rdev *rdev2;
4427                 if (s&1) {
4428                         rdev2 = conf->mirrors[d].replacement;
4429                         b = r10_bio->devs[s/2].repl_bio;
4430                 } else {
4431                         rdev2 = conf->mirrors[d].rdev;
4432                         b = r10_bio->devs[s/2].bio;
4433                 }
4434                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4435                         continue;
4436
4437                 bio_reset(b);
4438                 b->bi_bdev = rdev2->bdev;
4439                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4440                 b->bi_private = r10_bio;
4441                 b->bi_end_io = end_reshape_write;
4442                 b->bi_rw = WRITE;
4443                 b->bi_next = blist;
4444                 blist = b;
4445         }
4446
4447         /* Now add as many pages as possible to all of these bios. */
4448
4449         nr_sectors = 0;
4450         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4451                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4452                 int len = (max_sectors - s) << 9;
4453                 if (len > PAGE_SIZE)
4454                         len = PAGE_SIZE;
4455                 for (bio = blist; bio ; bio = bio->bi_next) {
4456                         struct bio *bio2;
4457                         if (bio_add_page(bio, page, len, 0))
4458                                 continue;
4459
4460                         /* Didn't fit, must stop */
4461                         for (bio2 = blist;
4462                              bio2 && bio2 != bio;
4463                              bio2 = bio2->bi_next) {
4464                                 /* Remove last page from this bio */
4465                                 bio2->bi_vcnt--;
4466                                 bio2->bi_size -= len;
4467                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4468                         }
4469                         goto bio_full;
4470                 }
4471                 sector_nr += len >> 9;
4472                 nr_sectors += len >> 9;
4473         }
4474 bio_full:
4475         r10_bio->sectors = nr_sectors;
4476
4477         /* Now submit the read */
4478         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4479         atomic_inc(&r10_bio->remaining);
4480         read_bio->bi_next = NULL;
4481         generic_make_request(read_bio);
4482         sector_nr += nr_sectors;
4483         sectors_done += nr_sectors;
4484         if (sector_nr <= last)
4485                 goto read_more;
4486
4487         /* Now that we have done the whole section we can
4488          * update reshape_progress
4489          */
4490         if (mddev->reshape_backwards)
4491                 conf->reshape_progress -= sectors_done;
4492         else
4493                 conf->reshape_progress += sectors_done;
4494
4495         return sectors_done;
4496 }
4497
4498 static void end_reshape_request(struct r10bio *r10_bio);
4499 static int handle_reshape_read_error(struct mddev *mddev,
4500                                      struct r10bio *r10_bio);
4501 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4502 {
4503         /* Reshape read completed.  Hopefully we have a block
4504          * to write out.
4505          * If we got a read error then we do sync 1-page reads from
4506          * elsewhere until we find the data - or give up.
4507          */
4508         struct r10conf *conf = mddev->private;
4509         int s;
4510
4511         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4512                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4513                         /* Reshape has been aborted */
4514                         md_done_sync(mddev, r10_bio->sectors, 0);
4515                         return;
4516                 }
4517
4518         /* We definitely have the data in the pages, schedule the
4519          * writes.
4520          */
4521         atomic_set(&r10_bio->remaining, 1);
4522         for (s = 0; s < conf->copies*2; s++) {
4523                 struct bio *b;
4524                 int d = r10_bio->devs[s/2].devnum;
4525                 struct md_rdev *rdev;
4526                 if (s&1) {
4527                         rdev = conf->mirrors[d].replacement;
4528                         b = r10_bio->devs[s/2].repl_bio;
4529                 } else {
4530                         rdev = conf->mirrors[d].rdev;
4531                         b = r10_bio->devs[s/2].bio;
4532                 }
4533                 if (!rdev || test_bit(Faulty, &rdev->flags))
4534                         continue;
4535                 atomic_inc(&rdev->nr_pending);
4536                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4537                 atomic_inc(&r10_bio->remaining);
4538                 b->bi_next = NULL;
4539                 generic_make_request(b);
4540         }
4541         end_reshape_request(r10_bio);
4542 }
4543
4544 static void end_reshape(struct r10conf *conf)
4545 {
4546         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4547                 return;
4548
4549         spin_lock_irq(&conf->device_lock);
4550         conf->prev = conf->geo;
4551         md_finish_reshape(conf->mddev);
4552         smp_wmb();
4553         conf->reshape_progress = MaxSector;
4554         spin_unlock_irq(&conf->device_lock);
4555
4556         /* read-ahead size must cover two whole stripes, which is
4557          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4558          */
4559         if (conf->mddev->queue) {
4560                 int stripe = conf->geo.raid_disks *
4561                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4562                 stripe /= conf->geo.near_copies;
4563                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4564                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4565         }
4566         conf->fullsync = 0;
4567 }
4568
4569
4570 static int handle_reshape_read_error(struct mddev *mddev,
4571                                      struct r10bio *r10_bio)
4572 {
4573         /* Use sync reads to get the blocks from somewhere else */
4574         int sectors = r10_bio->sectors;
4575         struct r10conf *conf = mddev->private;
4576         struct {
4577                 struct r10bio r10_bio;
4578                 struct r10dev devs[conf->copies];
4579         } on_stack;
4580         struct r10bio *r10b = &on_stack.r10_bio;
4581         int slot = 0;
4582         int idx = 0;
4583         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4584
4585         r10b->sector = r10_bio->sector;
4586         __raid10_find_phys(&conf->prev, r10b);
4587
4588         while (sectors) {
4589                 int s = sectors;
4590                 int success = 0;
4591                 int first_slot = slot;
4592
4593                 if (s > (PAGE_SIZE >> 9))
4594                         s = PAGE_SIZE >> 9;
4595
4596                 while (!success) {
4597                         int d = r10b->devs[slot].devnum;
4598                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4599                         sector_t addr;
4600                         if (rdev == NULL ||
4601                             test_bit(Faulty, &rdev->flags) ||
4602                             !test_bit(In_sync, &rdev->flags))
4603                                 goto failed;
4604
4605                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4606                         success = sync_page_io(rdev,
4607                                                addr,
4608                                                s << 9,
4609                                                bvec[idx].bv_page,
4610                                                READ, false);
4611                         if (success)
4612                                 break;
4613                 failed:
4614                         slot++;
4615                         if (slot >= conf->copies)
4616                                 slot = 0;
4617                         if (slot == first_slot)
4618                                 break;
4619                 }
4620                 if (!success) {
4621                         /* couldn't read this block, must give up */
4622                         set_bit(MD_RECOVERY_INTR,
4623                                 &mddev->recovery);
4624                         return -EIO;
4625                 }
4626                 sectors -= s;
4627                 idx++;
4628         }
4629         return 0;
4630 }
4631
4632 static void end_reshape_write(struct bio *bio, int error)
4633 {
4634         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4635         struct r10bio *r10_bio = bio->bi_private;
4636         struct mddev *mddev = r10_bio->mddev;
4637         struct r10conf *conf = mddev->private;
4638         int d;
4639         int slot;
4640         int repl;
4641         struct md_rdev *rdev = NULL;
4642
4643         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4644         if (repl)
4645                 rdev = conf->mirrors[d].replacement;
4646         if (!rdev) {
4647                 smp_mb();
4648                 rdev = conf->mirrors[d].rdev;
4649         }
4650
4651         if (!uptodate) {
4652                 /* FIXME should record badblock */
4653                 md_error(mddev, rdev);
4654         }
4655
4656         rdev_dec_pending(rdev, mddev);
4657         end_reshape_request(r10_bio);
4658 }
4659
4660 static void end_reshape_request(struct r10bio *r10_bio)
4661 {
4662         if (!atomic_dec_and_test(&r10_bio->remaining))
4663                 return;
4664         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4665         bio_put(r10_bio->master_bio);
4666         put_buf(r10_bio);
4667 }
4668
4669 static void raid10_finish_reshape(struct mddev *mddev)
4670 {
4671         struct r10conf *conf = mddev->private;
4672
4673         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4674                 return;
4675
4676         if (mddev->delta_disks > 0) {
4677                 sector_t size = raid10_size(mddev, 0, 0);
4678                 md_set_array_sectors(mddev, size);
4679                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4680                         mddev->recovery_cp = mddev->resync_max_sectors;
4681                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4682                 }
4683                 mddev->resync_max_sectors = size;
4684                 set_capacity(mddev->gendisk, mddev->array_sectors);
4685                 revalidate_disk(mddev->gendisk);
4686         } else {
4687                 int d;
4688                 for (d = conf->geo.raid_disks ;
4689                      d < conf->geo.raid_disks - mddev->delta_disks;
4690                      d++) {
4691                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4692                         if (rdev)
4693                                 clear_bit(In_sync, &rdev->flags);
4694                         rdev = conf->mirrors[d].replacement;
4695                         if (rdev)
4696                                 clear_bit(In_sync, &rdev->flags);
4697                 }
4698         }
4699         mddev->layout = mddev->new_layout;
4700         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4701         mddev->reshape_position = MaxSector;
4702         mddev->delta_disks = 0;
4703         mddev->reshape_backwards = 0;
4704 }
4705
4706 static struct md_personality raid10_personality =
4707 {
4708         .name           = "raid10",
4709         .level          = 10,
4710         .owner          = THIS_MODULE,
4711         .make_request   = make_request,
4712         .run            = run,
4713         .stop           = stop,
4714         .status         = status,
4715         .error_handler  = error,
4716         .hot_add_disk   = raid10_add_disk,
4717         .hot_remove_disk= raid10_remove_disk,
4718         .spare_active   = raid10_spare_active,
4719         .sync_request   = sync_request,
4720         .quiesce        = raid10_quiesce,
4721         .size           = raid10_size,
4722         .resize         = raid10_resize,
4723         .takeover       = raid10_takeover,
4724         .check_reshape  = raid10_check_reshape,
4725         .start_reshape  = raid10_start_reshape,
4726         .finish_reshape = raid10_finish_reshape,
4727 };
4728
4729 static int __init raid_init(void)
4730 {
4731         return register_md_personality(&raid10_personality);
4732 }
4733
4734 static void raid_exit(void)
4735 {
4736         unregister_md_personality(&raid10_personality);
4737 }
4738
4739 module_init(raid_init);
4740 module_exit(raid_exit);
4741 MODULE_LICENSE("GPL");
4742 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4743 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4744 MODULE_ALIAS("md-raid10");
4745 MODULE_ALIAS("md-level-10");
4746
4747 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);