]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
md/raid1: consider WRITE as successful only if at least one non-Faulty and non-rebuil...
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 unsigned long flags;
396                 spin_lock_irqsave(&conf->device_lock, flags);
397                 if (!enough(conf, rdev->raid_disk))
398                         uptodate = 1;
399                 spin_unlock_irqrestore(&conf->device_lock, flags);
400         }
401         if (uptodate) {
402                 raid_end_bio_io(r10_bio);
403                 rdev_dec_pending(rdev, conf->mddev);
404         } else {
405                 /*
406                  * oops, read error - keep the refcount on the rdev
407                  */
408                 char b[BDEVNAME_SIZE];
409                 printk_ratelimited(KERN_ERR
410                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
411                                    mdname(conf->mddev),
412                                    bdevname(rdev->bdev, b),
413                                    (unsigned long long)r10_bio->sector);
414                 set_bit(R10BIO_ReadError, &r10_bio->state);
415                 reschedule_retry(r10_bio);
416         }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421         /* clear the bitmap if all writes complete successfully */
422         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423                         r10_bio->sectors,
424                         !test_bit(R10BIO_Degraded, &r10_bio->state),
425                         0);
426         md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431         if (atomic_dec_and_test(&r10_bio->remaining)) {
432                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433                         reschedule_retry(r10_bio);
434                 else {
435                         close_write(r10_bio);
436                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437                                 reschedule_retry(r10_bio);
438                         else
439                                 raid_end_bio_io(r10_bio);
440                 }
441         }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447         struct r10bio *r10_bio = bio->bi_private;
448         int dev;
449         int dec_rdev = 1;
450         struct r10conf *conf = r10_bio->mddev->private;
451         int slot, repl;
452         struct md_rdev *rdev = NULL;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (!uptodate) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 /*
494                  * Do not set R10BIO_Uptodate if the current device is
495                  * rebuilding or Faulty. This is because we cannot use
496                  * such device for properly reading the data back (we could
497                  * potentially use it, if the current write would have felt
498                  * before rdev->recovery_offset, but for simplicity we don't
499                  * check this here.
500                  */
501                 if (test_bit(In_sync, &rdev->flags) &&
502                     !test_bit(Faulty, &rdev->flags))
503                         set_bit(R10BIO_Uptodate, &r10_bio->state);
504
505                 /* Maybe we can clear some bad blocks. */
506                 if (is_badblock(rdev,
507                                 r10_bio->devs[slot].addr,
508                                 r10_bio->sectors,
509                                 &first_bad, &bad_sectors)) {
510                         bio_put(bio);
511                         if (repl)
512                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513                         else
514                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
515                         dec_rdev = 0;
516                         set_bit(R10BIO_MadeGood, &r10_bio->state);
517                 }
518         }
519
520         /*
521          *
522          * Let's see if all mirrored write operations have finished
523          * already.
524          */
525         one_write_done(r10_bio);
526         if (dec_rdev)
527                 rdev_dec_pending(rdev, conf->mddev);
528 }
529
530 /*
531  * RAID10 layout manager
532  * As well as the chunksize and raid_disks count, there are two
533  * parameters: near_copies and far_copies.
534  * near_copies * far_copies must be <= raid_disks.
535  * Normally one of these will be 1.
536  * If both are 1, we get raid0.
537  * If near_copies == raid_disks, we get raid1.
538  *
539  * Chunks are laid out in raid0 style with near_copies copies of the
540  * first chunk, followed by near_copies copies of the next chunk and
541  * so on.
542  * If far_copies > 1, then after 1/far_copies of the array has been assigned
543  * as described above, we start again with a device offset of near_copies.
544  * So we effectively have another copy of the whole array further down all
545  * the drives, but with blocks on different drives.
546  * With this layout, and block is never stored twice on the one device.
547  *
548  * raid10_find_phys finds the sector offset of a given virtual sector
549  * on each device that it is on.
550  *
551  * raid10_find_virt does the reverse mapping, from a device and a
552  * sector offset to a virtual address
553  */
554
555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
556 {
557         int n,f;
558         sector_t sector;
559         sector_t chunk;
560         sector_t stripe;
561         int dev;
562         int slot = 0;
563         int last_far_set_start, last_far_set_size;
564
565         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566         last_far_set_start *= geo->far_set_size;
567
568         last_far_set_size = geo->far_set_size;
569         last_far_set_size += (geo->raid_disks % geo->far_set_size);
570
571         /* now calculate first sector/dev */
572         chunk = r10bio->sector >> geo->chunk_shift;
573         sector = r10bio->sector & geo->chunk_mask;
574
575         chunk *= geo->near_copies;
576         stripe = chunk;
577         dev = sector_div(stripe, geo->raid_disks);
578         if (geo->far_offset)
579                 stripe *= geo->far_copies;
580
581         sector += stripe << geo->chunk_shift;
582
583         /* and calculate all the others */
584         for (n = 0; n < geo->near_copies; n++) {
585                 int d = dev;
586                 int set;
587                 sector_t s = sector;
588                 r10bio->devs[slot].devnum = d;
589                 r10bio->devs[slot].addr = s;
590                 slot++;
591
592                 for (f = 1; f < geo->far_copies; f++) {
593                         set = d / geo->far_set_size;
594                         d += geo->near_copies;
595
596                         if ((geo->raid_disks % geo->far_set_size) &&
597                             (d > last_far_set_start)) {
598                                 d -= last_far_set_start;
599                                 d %= last_far_set_size;
600                                 d += last_far_set_start;
601                         } else {
602                                 d %= geo->far_set_size;
603                                 d += geo->far_set_size * set;
604                         }
605                         s += geo->stride;
606                         r10bio->devs[slot].devnum = d;
607                         r10bio->devs[slot].addr = s;
608                         slot++;
609                 }
610                 dev++;
611                 if (dev >= geo->raid_disks) {
612                         dev = 0;
613                         sector += (geo->chunk_mask + 1);
614                 }
615         }
616 }
617
618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619 {
620         struct geom *geo = &conf->geo;
621
622         if (conf->reshape_progress != MaxSector &&
623             ((r10bio->sector >= conf->reshape_progress) !=
624              conf->mddev->reshape_backwards)) {
625                 set_bit(R10BIO_Previous, &r10bio->state);
626                 geo = &conf->prev;
627         } else
628                 clear_bit(R10BIO_Previous, &r10bio->state);
629
630         __raid10_find_phys(geo, r10bio);
631 }
632
633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
634 {
635         sector_t offset, chunk, vchunk;
636         /* Never use conf->prev as this is only called during resync
637          * or recovery, so reshape isn't happening
638          */
639         struct geom *geo = &conf->geo;
640         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641         int far_set_size = geo->far_set_size;
642         int last_far_set_start;
643
644         if (geo->raid_disks % geo->far_set_size) {
645                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646                 last_far_set_start *= geo->far_set_size;
647
648                 if (dev >= last_far_set_start) {
649                         far_set_size = geo->far_set_size;
650                         far_set_size += (geo->raid_disks % geo->far_set_size);
651                         far_set_start = last_far_set_start;
652                 }
653         }
654
655         offset = sector & geo->chunk_mask;
656         if (geo->far_offset) {
657                 int fc;
658                 chunk = sector >> geo->chunk_shift;
659                 fc = sector_div(chunk, geo->far_copies);
660                 dev -= fc * geo->near_copies;
661                 if (dev < far_set_start)
662                         dev += far_set_size;
663         } else {
664                 while (sector >= geo->stride) {
665                         sector -= geo->stride;
666                         if (dev < (geo->near_copies + far_set_start))
667                                 dev += far_set_size - geo->near_copies;
668                         else
669                                 dev -= geo->near_copies;
670                 }
671                 chunk = sector >> geo->chunk_shift;
672         }
673         vchunk = chunk * geo->raid_disks + dev;
674         sector_div(vchunk, geo->near_copies);
675         return (vchunk << geo->chunk_shift) + offset;
676 }
677
678 /**
679  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
680  *      @q: request queue
681  *      @bvm: properties of new bio
682  *      @biovec: the request that could be merged to it.
683  *
684  *      Return amount of bytes we can accept at this offset
685  *      This requires checking for end-of-chunk if near_copies != raid_disks,
686  *      and for subordinate merge_bvec_fns if merge_check_needed.
687  */
688 static int raid10_mergeable_bvec(struct request_queue *q,
689                                  struct bvec_merge_data *bvm,
690                                  struct bio_vec *biovec)
691 {
692         struct mddev *mddev = q->queuedata;
693         struct r10conf *conf = mddev->private;
694         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
695         int max;
696         unsigned int chunk_sectors;
697         unsigned int bio_sectors = bvm->bi_size >> 9;
698         struct geom *geo = &conf->geo;
699
700         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
701         if (conf->reshape_progress != MaxSector &&
702             ((sector >= conf->reshape_progress) !=
703              conf->mddev->reshape_backwards))
704                 geo = &conf->prev;
705
706         if (geo->near_copies < geo->raid_disks) {
707                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
708                                         + bio_sectors)) << 9;
709                 if (max < 0)
710                         /* bio_add cannot handle a negative return */
711                         max = 0;
712                 if (max <= biovec->bv_len && bio_sectors == 0)
713                         return biovec->bv_len;
714         } else
715                 max = biovec->bv_len;
716
717         if (mddev->merge_check_needed) {
718                 struct {
719                         struct r10bio r10_bio;
720                         struct r10dev devs[conf->copies];
721                 } on_stack;
722                 struct r10bio *r10_bio = &on_stack.r10_bio;
723                 int s;
724                 if (conf->reshape_progress != MaxSector) {
725                         /* Cannot give any guidance during reshape */
726                         if (max <= biovec->bv_len && bio_sectors == 0)
727                                 return biovec->bv_len;
728                         return 0;
729                 }
730                 r10_bio->sector = sector;
731                 raid10_find_phys(conf, r10_bio);
732                 rcu_read_lock();
733                 for (s = 0; s < conf->copies; s++) {
734                         int disk = r10_bio->devs[s].devnum;
735                         struct md_rdev *rdev = rcu_dereference(
736                                 conf->mirrors[disk].rdev);
737                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
738                                 struct request_queue *q =
739                                         bdev_get_queue(rdev->bdev);
740                                 if (q->merge_bvec_fn) {
741                                         bvm->bi_sector = r10_bio->devs[s].addr
742                                                 + rdev->data_offset;
743                                         bvm->bi_bdev = rdev->bdev;
744                                         max = min(max, q->merge_bvec_fn(
745                                                           q, bvm, biovec));
746                                 }
747                         }
748                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
749                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
750                                 struct request_queue *q =
751                                         bdev_get_queue(rdev->bdev);
752                                 if (q->merge_bvec_fn) {
753                                         bvm->bi_sector = r10_bio->devs[s].addr
754                                                 + rdev->data_offset;
755                                         bvm->bi_bdev = rdev->bdev;
756                                         max = min(max, q->merge_bvec_fn(
757                                                           q, bvm, biovec));
758                                 }
759                         }
760                 }
761                 rcu_read_unlock();
762         }
763         return max;
764 }
765
766 /*
767  * This routine returns the disk from which the requested read should
768  * be done. There is a per-array 'next expected sequential IO' sector
769  * number - if this matches on the next IO then we use the last disk.
770  * There is also a per-disk 'last know head position' sector that is
771  * maintained from IRQ contexts, both the normal and the resync IO
772  * completion handlers update this position correctly. If there is no
773  * perfect sequential match then we pick the disk whose head is closest.
774  *
775  * If there are 2 mirrors in the same 2 devices, performance degrades
776  * because position is mirror, not device based.
777  *
778  * The rdev for the device selected will have nr_pending incremented.
779  */
780
781 /*
782  * FIXME: possibly should rethink readbalancing and do it differently
783  * depending on near_copies / far_copies geometry.
784  */
785 static struct md_rdev *read_balance(struct r10conf *conf,
786                                     struct r10bio *r10_bio,
787                                     int *max_sectors)
788 {
789         const sector_t this_sector = r10_bio->sector;
790         int disk, slot;
791         int sectors = r10_bio->sectors;
792         int best_good_sectors;
793         sector_t new_distance, best_dist;
794         struct md_rdev *best_rdev, *rdev = NULL;
795         int do_balance;
796         int best_slot;
797         struct geom *geo = &conf->geo;
798
799         raid10_find_phys(conf, r10_bio);
800         rcu_read_lock();
801 retry:
802         sectors = r10_bio->sectors;
803         best_slot = -1;
804         best_rdev = NULL;
805         best_dist = MaxSector;
806         best_good_sectors = 0;
807         do_balance = 1;
808         /*
809          * Check if we can balance. We can balance on the whole
810          * device if no resync is going on (recovery is ok), or below
811          * the resync window. We take the first readable disk when
812          * above the resync window.
813          */
814         if (conf->mddev->recovery_cp < MaxSector
815             && (this_sector + sectors >= conf->next_resync))
816                 do_balance = 0;
817
818         for (slot = 0; slot < conf->copies ; slot++) {
819                 sector_t first_bad;
820                 int bad_sectors;
821                 sector_t dev_sector;
822
823                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
824                         continue;
825                 disk = r10_bio->devs[slot].devnum;
826                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
827                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
828                     test_bit(Unmerged, &rdev->flags) ||
829                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
830                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
831                 if (rdev == NULL ||
832                     test_bit(Faulty, &rdev->flags) ||
833                     test_bit(Unmerged, &rdev->flags))
834                         continue;
835                 if (!test_bit(In_sync, &rdev->flags) &&
836                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
837                         continue;
838
839                 dev_sector = r10_bio->devs[slot].addr;
840                 if (is_badblock(rdev, dev_sector, sectors,
841                                 &first_bad, &bad_sectors)) {
842                         if (best_dist < MaxSector)
843                                 /* Already have a better slot */
844                                 continue;
845                         if (first_bad <= dev_sector) {
846                                 /* Cannot read here.  If this is the
847                                  * 'primary' device, then we must not read
848                                  * beyond 'bad_sectors' from another device.
849                                  */
850                                 bad_sectors -= (dev_sector - first_bad);
851                                 if (!do_balance && sectors > bad_sectors)
852                                         sectors = bad_sectors;
853                                 if (best_good_sectors > sectors)
854                                         best_good_sectors = sectors;
855                         } else {
856                                 sector_t good_sectors =
857                                         first_bad - dev_sector;
858                                 if (good_sectors > best_good_sectors) {
859                                         best_good_sectors = good_sectors;
860                                         best_slot = slot;
861                                         best_rdev = rdev;
862                                 }
863                                 if (!do_balance)
864                                         /* Must read from here */
865                                         break;
866                         }
867                         continue;
868                 } else
869                         best_good_sectors = sectors;
870
871                 if (!do_balance)
872                         break;
873
874                 /* This optimisation is debatable, and completely destroys
875                  * sequential read speed for 'far copies' arrays.  So only
876                  * keep it for 'near' arrays, and review those later.
877                  */
878                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
879                         break;
880
881                 /* for far > 1 always use the lowest address */
882                 if (geo->far_copies > 1)
883                         new_distance = r10_bio->devs[slot].addr;
884                 else
885                         new_distance = abs(r10_bio->devs[slot].addr -
886                                            conf->mirrors[disk].head_position);
887                 if (new_distance < best_dist) {
888                         best_dist = new_distance;
889                         best_slot = slot;
890                         best_rdev = rdev;
891                 }
892         }
893         if (slot >= conf->copies) {
894                 slot = best_slot;
895                 rdev = best_rdev;
896         }
897
898         if (slot >= 0) {
899                 atomic_inc(&rdev->nr_pending);
900                 if (test_bit(Faulty, &rdev->flags)) {
901                         /* Cannot risk returning a device that failed
902                          * before we inc'ed nr_pending
903                          */
904                         rdev_dec_pending(rdev, conf->mddev);
905                         goto retry;
906                 }
907                 r10_bio->read_slot = slot;
908         } else
909                 rdev = NULL;
910         rcu_read_unlock();
911         *max_sectors = best_good_sectors;
912
913         return rdev;
914 }
915
916 int md_raid10_congested(struct mddev *mddev, int bits)
917 {
918         struct r10conf *conf = mddev->private;
919         int i, ret = 0;
920
921         if ((bits & (1 << BDI_async_congested)) &&
922             conf->pending_count >= max_queued_requests)
923                 return 1;
924
925         rcu_read_lock();
926         for (i = 0;
927              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
928                      && ret == 0;
929              i++) {
930                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
931                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
932                         struct request_queue *q = bdev_get_queue(rdev->bdev);
933
934                         ret |= bdi_congested(&q->backing_dev_info, bits);
935                 }
936         }
937         rcu_read_unlock();
938         return ret;
939 }
940 EXPORT_SYMBOL_GPL(md_raid10_congested);
941
942 static int raid10_congested(void *data, int bits)
943 {
944         struct mddev *mddev = data;
945
946         return mddev_congested(mddev, bits) ||
947                 md_raid10_congested(mddev, bits);
948 }
949
950 static void flush_pending_writes(struct r10conf *conf)
951 {
952         /* Any writes that have been queued but are awaiting
953          * bitmap updates get flushed here.
954          */
955         spin_lock_irq(&conf->device_lock);
956
957         if (conf->pending_bio_list.head) {
958                 struct bio *bio;
959                 bio = bio_list_get(&conf->pending_bio_list);
960                 conf->pending_count = 0;
961                 spin_unlock_irq(&conf->device_lock);
962                 /* flush any pending bitmap writes to disk
963                  * before proceeding w/ I/O */
964                 bitmap_unplug(conf->mddev->bitmap);
965                 wake_up(&conf->wait_barrier);
966
967                 while (bio) { /* submit pending writes */
968                         struct bio *next = bio->bi_next;
969                         bio->bi_next = NULL;
970                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
971                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
972                                 /* Just ignore it */
973                                 bio_endio(bio, 0);
974                         else
975                                 generic_make_request(bio);
976                         bio = next;
977                 }
978         } else
979                 spin_unlock_irq(&conf->device_lock);
980 }
981
982 /* Barriers....
983  * Sometimes we need to suspend IO while we do something else,
984  * either some resync/recovery, or reconfigure the array.
985  * To do this we raise a 'barrier'.
986  * The 'barrier' is a counter that can be raised multiple times
987  * to count how many activities are happening which preclude
988  * normal IO.
989  * We can only raise the barrier if there is no pending IO.
990  * i.e. if nr_pending == 0.
991  * We choose only to raise the barrier if no-one is waiting for the
992  * barrier to go down.  This means that as soon as an IO request
993  * is ready, no other operations which require a barrier will start
994  * until the IO request has had a chance.
995  *
996  * So: regular IO calls 'wait_barrier'.  When that returns there
997  *    is no backgroup IO happening,  It must arrange to call
998  *    allow_barrier when it has finished its IO.
999  * backgroup IO calls must call raise_barrier.  Once that returns
1000  *    there is no normal IO happeing.  It must arrange to call
1001  *    lower_barrier when the particular background IO completes.
1002  */
1003
1004 static void raise_barrier(struct r10conf *conf, int force)
1005 {
1006         BUG_ON(force && !conf->barrier);
1007         spin_lock_irq(&conf->resync_lock);
1008
1009         /* Wait until no block IO is waiting (unless 'force') */
1010         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1011                             conf->resync_lock);
1012
1013         /* block any new IO from starting */
1014         conf->barrier++;
1015
1016         /* Now wait for all pending IO to complete */
1017         wait_event_lock_irq(conf->wait_barrier,
1018                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1019                             conf->resync_lock);
1020
1021         spin_unlock_irq(&conf->resync_lock);
1022 }
1023
1024 static void lower_barrier(struct r10conf *conf)
1025 {
1026         unsigned long flags;
1027         spin_lock_irqsave(&conf->resync_lock, flags);
1028         conf->barrier--;
1029         spin_unlock_irqrestore(&conf->resync_lock, flags);
1030         wake_up(&conf->wait_barrier);
1031 }
1032
1033 static void wait_barrier(struct r10conf *conf)
1034 {
1035         spin_lock_irq(&conf->resync_lock);
1036         if (conf->barrier) {
1037                 conf->nr_waiting++;
1038                 /* Wait for the barrier to drop.
1039                  * However if there are already pending
1040                  * requests (preventing the barrier from
1041                  * rising completely), and the
1042                  * pre-process bio queue isn't empty,
1043                  * then don't wait, as we need to empty
1044                  * that queue to get the nr_pending
1045                  * count down.
1046                  */
1047                 wait_event_lock_irq(conf->wait_barrier,
1048                                     !conf->barrier ||
1049                                     (conf->nr_pending &&
1050                                      current->bio_list &&
1051                                      !bio_list_empty(current->bio_list)),
1052                                     conf->resync_lock);
1053                 conf->nr_waiting--;
1054         }
1055         conf->nr_pending++;
1056         spin_unlock_irq(&conf->resync_lock);
1057 }
1058
1059 static void allow_barrier(struct r10conf *conf)
1060 {
1061         unsigned long flags;
1062         spin_lock_irqsave(&conf->resync_lock, flags);
1063         conf->nr_pending--;
1064         spin_unlock_irqrestore(&conf->resync_lock, flags);
1065         wake_up(&conf->wait_barrier);
1066 }
1067
1068 static void freeze_array(struct r10conf *conf)
1069 {
1070         /* stop syncio and normal IO and wait for everything to
1071          * go quiet.
1072          * We increment barrier and nr_waiting, and then
1073          * wait until nr_pending match nr_queued+1
1074          * This is called in the context of one normal IO request
1075          * that has failed. Thus any sync request that might be pending
1076          * will be blocked by nr_pending, and we need to wait for
1077          * pending IO requests to complete or be queued for re-try.
1078          * Thus the number queued (nr_queued) plus this request (1)
1079          * must match the number of pending IOs (nr_pending) before
1080          * we continue.
1081          */
1082         spin_lock_irq(&conf->resync_lock);
1083         conf->barrier++;
1084         conf->nr_waiting++;
1085         wait_event_lock_irq_cmd(conf->wait_barrier,
1086                                 conf->nr_pending == conf->nr_queued+1,
1087                                 conf->resync_lock,
1088                                 flush_pending_writes(conf));
1089
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static void unfreeze_array(struct r10conf *conf)
1094 {
1095         /* reverse the effect of the freeze */
1096         spin_lock_irq(&conf->resync_lock);
1097         conf->barrier--;
1098         conf->nr_waiting--;
1099         wake_up(&conf->wait_barrier);
1100         spin_unlock_irq(&conf->resync_lock);
1101 }
1102
1103 static sector_t choose_data_offset(struct r10bio *r10_bio,
1104                                    struct md_rdev *rdev)
1105 {
1106         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1107             test_bit(R10BIO_Previous, &r10_bio->state))
1108                 return rdev->data_offset;
1109         else
1110                 return rdev->new_data_offset;
1111 }
1112
1113 struct raid10_plug_cb {
1114         struct blk_plug_cb      cb;
1115         struct bio_list         pending;
1116         int                     pending_cnt;
1117 };
1118
1119 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1120 {
1121         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1122                                                    cb);
1123         struct mddev *mddev = plug->cb.data;
1124         struct r10conf *conf = mddev->private;
1125         struct bio *bio;
1126
1127         if (from_schedule || current->bio_list) {
1128                 spin_lock_irq(&conf->device_lock);
1129                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130                 conf->pending_count += plug->pending_cnt;
1131                 spin_unlock_irq(&conf->device_lock);
1132                 wake_up(&conf->wait_barrier);
1133                 md_wakeup_thread(mddev->thread);
1134                 kfree(plug);
1135                 return;
1136         }
1137
1138         /* we aren't scheduling, so we can do the write-out directly. */
1139         bio = bio_list_get(&plug->pending);
1140         bitmap_unplug(mddev->bitmap);
1141         wake_up(&conf->wait_barrier);
1142
1143         while (bio) { /* submit pending writes */
1144                 struct bio *next = bio->bi_next;
1145                 bio->bi_next = NULL;
1146                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1147                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1148                         /* Just ignore it */
1149                         bio_endio(bio, 0);
1150                 else
1151                         generic_make_request(bio);
1152                 bio = next;
1153         }
1154         kfree(plug);
1155 }
1156
1157 static void make_request(struct mddev *mddev, struct bio * bio)
1158 {
1159         struct r10conf *conf = mddev->private;
1160         struct r10bio *r10_bio;
1161         struct bio *read_bio;
1162         int i;
1163         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1164         int chunk_sects = chunk_mask + 1;
1165         const int rw = bio_data_dir(bio);
1166         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1167         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1168         const unsigned long do_discard = (bio->bi_rw
1169                                           & (REQ_DISCARD | REQ_SECURE));
1170         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1171         unsigned long flags;
1172         struct md_rdev *blocked_rdev;
1173         struct blk_plug_cb *cb;
1174         struct raid10_plug_cb *plug = NULL;
1175         int sectors_handled;
1176         int max_sectors;
1177         int sectors;
1178
1179         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1180                 md_flush_request(mddev, bio);
1181                 return;
1182         }
1183
1184         /* If this request crosses a chunk boundary, we need to
1185          * split it.  This will only happen for 1 PAGE (or less) requests.
1186          */
1187         if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1188                      > chunk_sects
1189                      && (conf->geo.near_copies < conf->geo.raid_disks
1190                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1191                 struct bio_pair *bp;
1192                 /* Sanity check -- queue functions should prevent this happening */
1193                 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1194                     bio->bi_idx != 0)
1195                         goto bad_map;
1196                 /* This is a one page bio that upper layers
1197                  * refuse to split for us, so we need to split it.
1198                  */
1199                 bp = bio_split(bio,
1200                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1201
1202                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1203                  * If the first succeeds but the second blocks due to the resync
1204                  * thread raising the barrier, we will deadlock because the
1205                  * IO to the underlying device will be queued in generic_make_request
1206                  * and will never complete, so will never reduce nr_pending.
1207                  * So increment nr_waiting here so no new raise_barriers will
1208                  * succeed, and so the second wait_barrier cannot block.
1209                  */
1210                 spin_lock_irq(&conf->resync_lock);
1211                 conf->nr_waiting++;
1212                 spin_unlock_irq(&conf->resync_lock);
1213
1214                 make_request(mddev, &bp->bio1);
1215                 make_request(mddev, &bp->bio2);
1216
1217                 spin_lock_irq(&conf->resync_lock);
1218                 conf->nr_waiting--;
1219                 wake_up(&conf->wait_barrier);
1220                 spin_unlock_irq(&conf->resync_lock);
1221
1222                 bio_pair_release(bp);
1223                 return;
1224         bad_map:
1225                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1226                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1227                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1228
1229                 bio_io_error(bio);
1230                 return;
1231         }
1232
1233         md_write_start(mddev, bio);
1234
1235         /*
1236          * Register the new request and wait if the reconstruction
1237          * thread has put up a bar for new requests.
1238          * Continue immediately if no resync is active currently.
1239          */
1240         wait_barrier(conf);
1241
1242         sectors = bio->bi_size >> 9;
1243         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1244             bio->bi_sector < conf->reshape_progress &&
1245             bio->bi_sector + sectors > conf->reshape_progress) {
1246                 /* IO spans the reshape position.  Need to wait for
1247                  * reshape to pass
1248                  */
1249                 allow_barrier(conf);
1250                 wait_event(conf->wait_barrier,
1251                            conf->reshape_progress <= bio->bi_sector ||
1252                            conf->reshape_progress >= bio->bi_sector + sectors);
1253                 wait_barrier(conf);
1254         }
1255         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1256             bio_data_dir(bio) == WRITE &&
1257             (mddev->reshape_backwards
1258              ? (bio->bi_sector < conf->reshape_safe &&
1259                 bio->bi_sector + sectors > conf->reshape_progress)
1260              : (bio->bi_sector + sectors > conf->reshape_safe &&
1261                 bio->bi_sector < conf->reshape_progress))) {
1262                 /* Need to update reshape_position in metadata */
1263                 mddev->reshape_position = conf->reshape_progress;
1264                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1265                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1266                 md_wakeup_thread(mddev->thread);
1267                 wait_event(mddev->sb_wait,
1268                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1269
1270                 conf->reshape_safe = mddev->reshape_position;
1271         }
1272
1273         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1274
1275         r10_bio->master_bio = bio;
1276         r10_bio->sectors = sectors;
1277
1278         r10_bio->mddev = mddev;
1279         r10_bio->sector = bio->bi_sector;
1280         r10_bio->state = 0;
1281
1282         /* We might need to issue multiple reads to different
1283          * devices if there are bad blocks around, so we keep
1284          * track of the number of reads in bio->bi_phys_segments.
1285          * If this is 0, there is only one r10_bio and no locking
1286          * will be needed when the request completes.  If it is
1287          * non-zero, then it is the number of not-completed requests.
1288          */
1289         bio->bi_phys_segments = 0;
1290         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1291
1292         if (rw == READ) {
1293                 /*
1294                  * read balancing logic:
1295                  */
1296                 struct md_rdev *rdev;
1297                 int slot;
1298
1299 read_again:
1300                 rdev = read_balance(conf, r10_bio, &max_sectors);
1301                 if (!rdev) {
1302                         raid_end_bio_io(r10_bio);
1303                         return;
1304                 }
1305                 slot = r10_bio->read_slot;
1306
1307                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1308                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1309                             max_sectors);
1310
1311                 r10_bio->devs[slot].bio = read_bio;
1312                 r10_bio->devs[slot].rdev = rdev;
1313
1314                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1315                         choose_data_offset(r10_bio, rdev);
1316                 read_bio->bi_bdev = rdev->bdev;
1317                 read_bio->bi_end_io = raid10_end_read_request;
1318                 read_bio->bi_rw = READ | do_sync;
1319                 read_bio->bi_private = r10_bio;
1320
1321                 if (max_sectors < r10_bio->sectors) {
1322                         /* Could not read all from this device, so we will
1323                          * need another r10_bio.
1324                          */
1325                         sectors_handled = (r10_bio->sectors + max_sectors
1326                                            - bio->bi_sector);
1327                         r10_bio->sectors = max_sectors;
1328                         spin_lock_irq(&conf->device_lock);
1329                         if (bio->bi_phys_segments == 0)
1330                                 bio->bi_phys_segments = 2;
1331                         else
1332                                 bio->bi_phys_segments++;
1333                         spin_unlock(&conf->device_lock);
1334                         /* Cannot call generic_make_request directly
1335                          * as that will be queued in __generic_make_request
1336                          * and subsequent mempool_alloc might block
1337                          * waiting for it.  so hand bio over to raid10d.
1338                          */
1339                         reschedule_retry(r10_bio);
1340
1341                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1342
1343                         r10_bio->master_bio = bio;
1344                         r10_bio->sectors = ((bio->bi_size >> 9)
1345                                             - sectors_handled);
1346                         r10_bio->state = 0;
1347                         r10_bio->mddev = mddev;
1348                         r10_bio->sector = bio->bi_sector + sectors_handled;
1349                         goto read_again;
1350                 } else
1351                         generic_make_request(read_bio);
1352                 return;
1353         }
1354
1355         /*
1356          * WRITE:
1357          */
1358         if (conf->pending_count >= max_queued_requests) {
1359                 md_wakeup_thread(mddev->thread);
1360                 wait_event(conf->wait_barrier,
1361                            conf->pending_count < max_queued_requests);
1362         }
1363         /* first select target devices under rcu_lock and
1364          * inc refcount on their rdev.  Record them by setting
1365          * bios[x] to bio
1366          * If there are known/acknowledged bad blocks on any device
1367          * on which we have seen a write error, we want to avoid
1368          * writing to those blocks.  This potentially requires several
1369          * writes to write around the bad blocks.  Each set of writes
1370          * gets its own r10_bio with a set of bios attached.  The number
1371          * of r10_bios is recored in bio->bi_phys_segments just as with
1372          * the read case.
1373          */
1374
1375         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1376         raid10_find_phys(conf, r10_bio);
1377 retry_write:
1378         blocked_rdev = NULL;
1379         rcu_read_lock();
1380         max_sectors = r10_bio->sectors;
1381
1382         for (i = 0;  i < conf->copies; i++) {
1383                 int d = r10_bio->devs[i].devnum;
1384                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1385                 struct md_rdev *rrdev = rcu_dereference(
1386                         conf->mirrors[d].replacement);
1387                 if (rdev == rrdev)
1388                         rrdev = NULL;
1389                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1390                         atomic_inc(&rdev->nr_pending);
1391                         blocked_rdev = rdev;
1392                         break;
1393                 }
1394                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1395                         atomic_inc(&rrdev->nr_pending);
1396                         blocked_rdev = rrdev;
1397                         break;
1398                 }
1399                 if (rdev && (test_bit(Faulty, &rdev->flags)
1400                              || test_bit(Unmerged, &rdev->flags)))
1401                         rdev = NULL;
1402                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1403                               || test_bit(Unmerged, &rrdev->flags)))
1404                         rrdev = NULL;
1405
1406                 r10_bio->devs[i].bio = NULL;
1407                 r10_bio->devs[i].repl_bio = NULL;
1408
1409                 if (!rdev && !rrdev) {
1410                         set_bit(R10BIO_Degraded, &r10_bio->state);
1411                         continue;
1412                 }
1413                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1414                         sector_t first_bad;
1415                         sector_t dev_sector = r10_bio->devs[i].addr;
1416                         int bad_sectors;
1417                         int is_bad;
1418
1419                         is_bad = is_badblock(rdev, dev_sector,
1420                                              max_sectors,
1421                                              &first_bad, &bad_sectors);
1422                         if (is_bad < 0) {
1423                                 /* Mustn't write here until the bad block
1424                                  * is acknowledged
1425                                  */
1426                                 atomic_inc(&rdev->nr_pending);
1427                                 set_bit(BlockedBadBlocks, &rdev->flags);
1428                                 blocked_rdev = rdev;
1429                                 break;
1430                         }
1431                         if (is_bad && first_bad <= dev_sector) {
1432                                 /* Cannot write here at all */
1433                                 bad_sectors -= (dev_sector - first_bad);
1434                                 if (bad_sectors < max_sectors)
1435                                         /* Mustn't write more than bad_sectors
1436                                          * to other devices yet
1437                                          */
1438                                         max_sectors = bad_sectors;
1439                                 /* We don't set R10BIO_Degraded as that
1440                                  * only applies if the disk is missing,
1441                                  * so it might be re-added, and we want to
1442                                  * know to recover this chunk.
1443                                  * In this case the device is here, and the
1444                                  * fact that this chunk is not in-sync is
1445                                  * recorded in the bad block log.
1446                                  */
1447                                 continue;
1448                         }
1449                         if (is_bad) {
1450                                 int good_sectors = first_bad - dev_sector;
1451                                 if (good_sectors < max_sectors)
1452                                         max_sectors = good_sectors;
1453                         }
1454                 }
1455                 if (rdev) {
1456                         r10_bio->devs[i].bio = bio;
1457                         atomic_inc(&rdev->nr_pending);
1458                 }
1459                 if (rrdev) {
1460                         r10_bio->devs[i].repl_bio = bio;
1461                         atomic_inc(&rrdev->nr_pending);
1462                 }
1463         }
1464         rcu_read_unlock();
1465
1466         if (unlikely(blocked_rdev)) {
1467                 /* Have to wait for this device to get unblocked, then retry */
1468                 int j;
1469                 int d;
1470
1471                 for (j = 0; j < i; j++) {
1472                         if (r10_bio->devs[j].bio) {
1473                                 d = r10_bio->devs[j].devnum;
1474                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1475                         }
1476                         if (r10_bio->devs[j].repl_bio) {
1477                                 struct md_rdev *rdev;
1478                                 d = r10_bio->devs[j].devnum;
1479                                 rdev = conf->mirrors[d].replacement;
1480                                 if (!rdev) {
1481                                         /* Race with remove_disk */
1482                                         smp_mb();
1483                                         rdev = conf->mirrors[d].rdev;
1484                                 }
1485                                 rdev_dec_pending(rdev, mddev);
1486                         }
1487                 }
1488                 allow_barrier(conf);
1489                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1490                 wait_barrier(conf);
1491                 goto retry_write;
1492         }
1493
1494         if (max_sectors < r10_bio->sectors) {
1495                 /* We are splitting this into multiple parts, so
1496                  * we need to prepare for allocating another r10_bio.
1497                  */
1498                 r10_bio->sectors = max_sectors;
1499                 spin_lock_irq(&conf->device_lock);
1500                 if (bio->bi_phys_segments == 0)
1501                         bio->bi_phys_segments = 2;
1502                 else
1503                         bio->bi_phys_segments++;
1504                 spin_unlock_irq(&conf->device_lock);
1505         }
1506         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1507
1508         atomic_set(&r10_bio->remaining, 1);
1509         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1510
1511         for (i = 0; i < conf->copies; i++) {
1512                 struct bio *mbio;
1513                 int d = r10_bio->devs[i].devnum;
1514                 if (r10_bio->devs[i].bio) {
1515                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1516                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1517                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1518                                     max_sectors);
1519                         r10_bio->devs[i].bio = mbio;
1520
1521                         mbio->bi_sector = (r10_bio->devs[i].addr+
1522                                            choose_data_offset(r10_bio,
1523                                                               rdev));
1524                         mbio->bi_bdev = rdev->bdev;
1525                         mbio->bi_end_io = raid10_end_write_request;
1526                         mbio->bi_rw =
1527                                 WRITE | do_sync | do_fua | do_discard | do_same;
1528                         mbio->bi_private = r10_bio;
1529
1530                         atomic_inc(&r10_bio->remaining);
1531
1532                         cb = blk_check_plugged(raid10_unplug, mddev,
1533                                                sizeof(*plug));
1534                         if (cb)
1535                                 plug = container_of(cb, struct raid10_plug_cb,
1536                                                     cb);
1537                         else
1538                                 plug = NULL;
1539                         spin_lock_irqsave(&conf->device_lock, flags);
1540                         if (plug) {
1541                                 bio_list_add(&plug->pending, mbio);
1542                                 plug->pending_cnt++;
1543                         } else {
1544                                 bio_list_add(&conf->pending_bio_list, mbio);
1545                                 conf->pending_count++;
1546                         }
1547                         spin_unlock_irqrestore(&conf->device_lock, flags);
1548                         if (!plug)
1549                                 md_wakeup_thread(mddev->thread);
1550                 }
1551
1552                 if (r10_bio->devs[i].repl_bio) {
1553                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1554                         if (rdev == NULL) {
1555                                 /* Replacement just got moved to main 'rdev' */
1556                                 smp_mb();
1557                                 rdev = conf->mirrors[d].rdev;
1558                         }
1559                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1560                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1561                                     max_sectors);
1562                         r10_bio->devs[i].repl_bio = mbio;
1563
1564                         mbio->bi_sector = (r10_bio->devs[i].addr +
1565                                            choose_data_offset(
1566                                                    r10_bio, rdev));
1567                         mbio->bi_bdev = rdev->bdev;
1568                         mbio->bi_end_io = raid10_end_write_request;
1569                         mbio->bi_rw =
1570                                 WRITE | do_sync | do_fua | do_discard | do_same;
1571                         mbio->bi_private = r10_bio;
1572
1573                         atomic_inc(&r10_bio->remaining);
1574                         spin_lock_irqsave(&conf->device_lock, flags);
1575                         bio_list_add(&conf->pending_bio_list, mbio);
1576                         conf->pending_count++;
1577                         spin_unlock_irqrestore(&conf->device_lock, flags);
1578                         if (!mddev_check_plugged(mddev))
1579                                 md_wakeup_thread(mddev->thread);
1580                 }
1581         }
1582
1583         /* Don't remove the bias on 'remaining' (one_write_done) until
1584          * after checking if we need to go around again.
1585          */
1586
1587         if (sectors_handled < (bio->bi_size >> 9)) {
1588                 one_write_done(r10_bio);
1589                 /* We need another r10_bio.  It has already been counted
1590                  * in bio->bi_phys_segments.
1591                  */
1592                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1593
1594                 r10_bio->master_bio = bio;
1595                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1596
1597                 r10_bio->mddev = mddev;
1598                 r10_bio->sector = bio->bi_sector + sectors_handled;
1599                 r10_bio->state = 0;
1600                 goto retry_write;
1601         }
1602         one_write_done(r10_bio);
1603
1604         /* In case raid10d snuck in to freeze_array */
1605         wake_up(&conf->wait_barrier);
1606 }
1607
1608 static void status(struct seq_file *seq, struct mddev *mddev)
1609 {
1610         struct r10conf *conf = mddev->private;
1611         int i;
1612
1613         if (conf->geo.near_copies < conf->geo.raid_disks)
1614                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1615         if (conf->geo.near_copies > 1)
1616                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1617         if (conf->geo.far_copies > 1) {
1618                 if (conf->geo.far_offset)
1619                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1620                 else
1621                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1622         }
1623         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1624                                         conf->geo.raid_disks - mddev->degraded);
1625         for (i = 0; i < conf->geo.raid_disks; i++)
1626                 seq_printf(seq, "%s",
1627                               conf->mirrors[i].rdev &&
1628                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1629         seq_printf(seq, "]");
1630 }
1631
1632 /* check if there are enough drives for
1633  * every block to appear on atleast one.
1634  * Don't consider the device numbered 'ignore'
1635  * as we might be about to remove it.
1636  */
1637 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1638 {
1639         int first = 0;
1640
1641         do {
1642                 int n = conf->copies;
1643                 int cnt = 0;
1644                 int this = first;
1645                 while (n--) {
1646                         if (conf->mirrors[this].rdev &&
1647                             this != ignore)
1648                                 cnt++;
1649                         this = (this+1) % geo->raid_disks;
1650                 }
1651                 if (cnt == 0)
1652                         return 0;
1653                 first = (first + geo->near_copies) % geo->raid_disks;
1654         } while (first != 0);
1655         return 1;
1656 }
1657
1658 static int enough(struct r10conf *conf, int ignore)
1659 {
1660         return _enough(conf, &conf->geo, ignore) &&
1661                 _enough(conf, &conf->prev, ignore);
1662 }
1663
1664 static void error(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666         char b[BDEVNAME_SIZE];
1667         struct r10conf *conf = mddev->private;
1668
1669         /*
1670          * If it is not operational, then we have already marked it as dead
1671          * else if it is the last working disks, ignore the error, let the
1672          * next level up know.
1673          * else mark the drive as failed
1674          */
1675         if (test_bit(In_sync, &rdev->flags)
1676             && !enough(conf, rdev->raid_disk))
1677                 /*
1678                  * Don't fail the drive, just return an IO error.
1679                  */
1680                 return;
1681         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1682                 unsigned long flags;
1683                 spin_lock_irqsave(&conf->device_lock, flags);
1684                 mddev->degraded++;
1685                 spin_unlock_irqrestore(&conf->device_lock, flags);
1686                 /*
1687                  * if recovery is running, make sure it aborts.
1688                  */
1689                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1690         }
1691         set_bit(Blocked, &rdev->flags);
1692         set_bit(Faulty, &rdev->flags);
1693         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1694         printk(KERN_ALERT
1695                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1696                "md/raid10:%s: Operation continuing on %d devices.\n",
1697                mdname(mddev), bdevname(rdev->bdev, b),
1698                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1699 }
1700
1701 static void print_conf(struct r10conf *conf)
1702 {
1703         int i;
1704         struct raid10_info *tmp;
1705
1706         printk(KERN_DEBUG "RAID10 conf printout:\n");
1707         if (!conf) {
1708                 printk(KERN_DEBUG "(!conf)\n");
1709                 return;
1710         }
1711         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1712                 conf->geo.raid_disks);
1713
1714         for (i = 0; i < conf->geo.raid_disks; i++) {
1715                 char b[BDEVNAME_SIZE];
1716                 tmp = conf->mirrors + i;
1717                 if (tmp->rdev)
1718                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1719                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1720                                 !test_bit(Faulty, &tmp->rdev->flags),
1721                                 bdevname(tmp->rdev->bdev,b));
1722         }
1723 }
1724
1725 static void close_sync(struct r10conf *conf)
1726 {
1727         wait_barrier(conf);
1728         allow_barrier(conf);
1729
1730         mempool_destroy(conf->r10buf_pool);
1731         conf->r10buf_pool = NULL;
1732 }
1733
1734 static int raid10_spare_active(struct mddev *mddev)
1735 {
1736         int i;
1737         struct r10conf *conf = mddev->private;
1738         struct raid10_info *tmp;
1739         int count = 0;
1740         unsigned long flags;
1741
1742         /*
1743          * Find all non-in_sync disks within the RAID10 configuration
1744          * and mark them in_sync
1745          */
1746         for (i = 0; i < conf->geo.raid_disks; i++) {
1747                 tmp = conf->mirrors + i;
1748                 if (tmp->replacement
1749                     && tmp->replacement->recovery_offset == MaxSector
1750                     && !test_bit(Faulty, &tmp->replacement->flags)
1751                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1752                         /* Replacement has just become active */
1753                         if (!tmp->rdev
1754                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1755                                 count++;
1756                         if (tmp->rdev) {
1757                                 /* Replaced device not technically faulty,
1758                                  * but we need to be sure it gets removed
1759                                  * and never re-added.
1760                                  */
1761                                 set_bit(Faulty, &tmp->rdev->flags);
1762                                 sysfs_notify_dirent_safe(
1763                                         tmp->rdev->sysfs_state);
1764                         }
1765                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1766                 } else if (tmp->rdev
1767                            && !test_bit(Faulty, &tmp->rdev->flags)
1768                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1769                         count++;
1770                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1771                 }
1772         }
1773         spin_lock_irqsave(&conf->device_lock, flags);
1774         mddev->degraded -= count;
1775         spin_unlock_irqrestore(&conf->device_lock, flags);
1776
1777         print_conf(conf);
1778         return count;
1779 }
1780
1781
1782 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1783 {
1784         struct r10conf *conf = mddev->private;
1785         int err = -EEXIST;
1786         int mirror;
1787         int first = 0;
1788         int last = conf->geo.raid_disks - 1;
1789         struct request_queue *q = bdev_get_queue(rdev->bdev);
1790
1791         if (mddev->recovery_cp < MaxSector)
1792                 /* only hot-add to in-sync arrays, as recovery is
1793                  * very different from resync
1794                  */
1795                 return -EBUSY;
1796         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1797                 return -EINVAL;
1798
1799         if (rdev->raid_disk >= 0)
1800                 first = last = rdev->raid_disk;
1801
1802         if (q->merge_bvec_fn) {
1803                 set_bit(Unmerged, &rdev->flags);
1804                 mddev->merge_check_needed = 1;
1805         }
1806
1807         if (rdev->saved_raid_disk >= first &&
1808             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1809                 mirror = rdev->saved_raid_disk;
1810         else
1811                 mirror = first;
1812         for ( ; mirror <= last ; mirror++) {
1813                 struct raid10_info *p = &conf->mirrors[mirror];
1814                 if (p->recovery_disabled == mddev->recovery_disabled)
1815                         continue;
1816                 if (p->rdev) {
1817                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1818                             p->replacement != NULL)
1819                                 continue;
1820                         clear_bit(In_sync, &rdev->flags);
1821                         set_bit(Replacement, &rdev->flags);
1822                         rdev->raid_disk = mirror;
1823                         err = 0;
1824                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1825                                           rdev->data_offset << 9);
1826                         conf->fullsync = 1;
1827                         rcu_assign_pointer(p->replacement, rdev);
1828                         break;
1829                 }
1830
1831                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1832                                   rdev->data_offset << 9);
1833
1834                 p->head_position = 0;
1835                 p->recovery_disabled = mddev->recovery_disabled - 1;
1836                 rdev->raid_disk = mirror;
1837                 err = 0;
1838                 if (rdev->saved_raid_disk != mirror)
1839                         conf->fullsync = 1;
1840                 rcu_assign_pointer(p->rdev, rdev);
1841                 break;
1842         }
1843         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1844                 /* Some requests might not have seen this new
1845                  * merge_bvec_fn.  We must wait for them to complete
1846                  * before merging the device fully.
1847                  * First we make sure any code which has tested
1848                  * our function has submitted the request, then
1849                  * we wait for all outstanding requests to complete.
1850                  */
1851                 synchronize_sched();
1852                 raise_barrier(conf, 0);
1853                 lower_barrier(conf);
1854                 clear_bit(Unmerged, &rdev->flags);
1855         }
1856         md_integrity_add_rdev(rdev, mddev);
1857         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1858                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1859
1860         print_conf(conf);
1861         return err;
1862 }
1863
1864 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1865 {
1866         struct r10conf *conf = mddev->private;
1867         int err = 0;
1868         int number = rdev->raid_disk;
1869         struct md_rdev **rdevp;
1870         struct raid10_info *p = conf->mirrors + number;
1871
1872         print_conf(conf);
1873         if (rdev == p->rdev)
1874                 rdevp = &p->rdev;
1875         else if (rdev == p->replacement)
1876                 rdevp = &p->replacement;
1877         else
1878                 return 0;
1879
1880         if (test_bit(In_sync, &rdev->flags) ||
1881             atomic_read(&rdev->nr_pending)) {
1882                 err = -EBUSY;
1883                 goto abort;
1884         }
1885         /* Only remove faulty devices if recovery
1886          * is not possible.
1887          */
1888         if (!test_bit(Faulty, &rdev->flags) &&
1889             mddev->recovery_disabled != p->recovery_disabled &&
1890             (!p->replacement || p->replacement == rdev) &&
1891             number < conf->geo.raid_disks &&
1892             enough(conf, -1)) {
1893                 err = -EBUSY;
1894                 goto abort;
1895         }
1896         *rdevp = NULL;
1897         synchronize_rcu();
1898         if (atomic_read(&rdev->nr_pending)) {
1899                 /* lost the race, try later */
1900                 err = -EBUSY;
1901                 *rdevp = rdev;
1902                 goto abort;
1903         } else if (p->replacement) {
1904                 /* We must have just cleared 'rdev' */
1905                 p->rdev = p->replacement;
1906                 clear_bit(Replacement, &p->replacement->flags);
1907                 smp_mb(); /* Make sure other CPUs may see both as identical
1908                            * but will never see neither -- if they are careful.
1909                            */
1910                 p->replacement = NULL;
1911                 clear_bit(WantReplacement, &rdev->flags);
1912         } else
1913                 /* We might have just remove the Replacement as faulty
1914                  * Clear the flag just in case
1915                  */
1916                 clear_bit(WantReplacement, &rdev->flags);
1917
1918         err = md_integrity_register(mddev);
1919
1920 abort:
1921
1922         print_conf(conf);
1923         return err;
1924 }
1925
1926
1927 static void end_sync_read(struct bio *bio, int error)
1928 {
1929         struct r10bio *r10_bio = bio->bi_private;
1930         struct r10conf *conf = r10_bio->mddev->private;
1931         int d;
1932
1933         if (bio == r10_bio->master_bio) {
1934                 /* this is a reshape read */
1935                 d = r10_bio->read_slot; /* really the read dev */
1936         } else
1937                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1938
1939         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1940                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1941         else
1942                 /* The write handler will notice the lack of
1943                  * R10BIO_Uptodate and record any errors etc
1944                  */
1945                 atomic_add(r10_bio->sectors,
1946                            &conf->mirrors[d].rdev->corrected_errors);
1947
1948         /* for reconstruct, we always reschedule after a read.
1949          * for resync, only after all reads
1950          */
1951         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1952         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1953             atomic_dec_and_test(&r10_bio->remaining)) {
1954                 /* we have read all the blocks,
1955                  * do the comparison in process context in raid10d
1956                  */
1957                 reschedule_retry(r10_bio);
1958         }
1959 }
1960
1961 static void end_sync_request(struct r10bio *r10_bio)
1962 {
1963         struct mddev *mddev = r10_bio->mddev;
1964
1965         while (atomic_dec_and_test(&r10_bio->remaining)) {
1966                 if (r10_bio->master_bio == NULL) {
1967                         /* the primary of several recovery bios */
1968                         sector_t s = r10_bio->sectors;
1969                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1970                             test_bit(R10BIO_WriteError, &r10_bio->state))
1971                                 reschedule_retry(r10_bio);
1972                         else
1973                                 put_buf(r10_bio);
1974                         md_done_sync(mddev, s, 1);
1975                         break;
1976                 } else {
1977                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1978                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1979                             test_bit(R10BIO_WriteError, &r10_bio->state))
1980                                 reschedule_retry(r10_bio);
1981                         else
1982                                 put_buf(r10_bio);
1983                         r10_bio = r10_bio2;
1984                 }
1985         }
1986 }
1987
1988 static void end_sync_write(struct bio *bio, int error)
1989 {
1990         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1991         struct r10bio *r10_bio = bio->bi_private;
1992         struct mddev *mddev = r10_bio->mddev;
1993         struct r10conf *conf = mddev->private;
1994         int d;
1995         sector_t first_bad;
1996         int bad_sectors;
1997         int slot;
1998         int repl;
1999         struct md_rdev *rdev = NULL;
2000
2001         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2002         if (repl)
2003                 rdev = conf->mirrors[d].replacement;
2004         else
2005                 rdev = conf->mirrors[d].rdev;
2006
2007         if (!uptodate) {
2008                 if (repl)
2009                         md_error(mddev, rdev);
2010                 else {
2011                         set_bit(WriteErrorSeen, &rdev->flags);
2012                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2013                                 set_bit(MD_RECOVERY_NEEDED,
2014                                         &rdev->mddev->recovery);
2015                         set_bit(R10BIO_WriteError, &r10_bio->state);
2016                 }
2017         } else if (is_badblock(rdev,
2018                              r10_bio->devs[slot].addr,
2019                              r10_bio->sectors,
2020                              &first_bad, &bad_sectors))
2021                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2022
2023         rdev_dec_pending(rdev, mddev);
2024
2025         end_sync_request(r10_bio);
2026 }
2027
2028 /*
2029  * Note: sync and recover and handled very differently for raid10
2030  * This code is for resync.
2031  * For resync, we read through virtual addresses and read all blocks.
2032  * If there is any error, we schedule a write.  The lowest numbered
2033  * drive is authoritative.
2034  * However requests come for physical address, so we need to map.
2035  * For every physical address there are raid_disks/copies virtual addresses,
2036  * which is always are least one, but is not necessarly an integer.
2037  * This means that a physical address can span multiple chunks, so we may
2038  * have to submit multiple io requests for a single sync request.
2039  */
2040 /*
2041  * We check if all blocks are in-sync and only write to blocks that
2042  * aren't in sync
2043  */
2044 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2045 {
2046         struct r10conf *conf = mddev->private;
2047         int i, first;
2048         struct bio *tbio, *fbio;
2049         int vcnt;
2050
2051         atomic_set(&r10_bio->remaining, 1);
2052
2053         /* find the first device with a block */
2054         for (i=0; i<conf->copies; i++)
2055                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2056                         break;
2057
2058         if (i == conf->copies)
2059                 goto done;
2060
2061         first = i;
2062         fbio = r10_bio->devs[i].bio;
2063
2064         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2065         /* now find blocks with errors */
2066         for (i=0 ; i < conf->copies ; i++) {
2067                 int  j, d;
2068
2069                 tbio = r10_bio->devs[i].bio;
2070
2071                 if (tbio->bi_end_io != end_sync_read)
2072                         continue;
2073                 if (i == first)
2074                         continue;
2075                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2076                         /* We know that the bi_io_vec layout is the same for
2077                          * both 'first' and 'i', so we just compare them.
2078                          * All vec entries are PAGE_SIZE;
2079                          */
2080                         for (j = 0; j < vcnt; j++)
2081                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2082                                            page_address(tbio->bi_io_vec[j].bv_page),
2083                                            fbio->bi_io_vec[j].bv_len))
2084                                         break;
2085                         if (j == vcnt)
2086                                 continue;
2087                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2088                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2089                                 /* Don't fix anything. */
2090                                 continue;
2091                 }
2092                 /* Ok, we need to write this bio, either to correct an
2093                  * inconsistency or to correct an unreadable block.
2094                  * First we need to fixup bv_offset, bv_len and
2095                  * bi_vecs, as the read request might have corrupted these
2096                  */
2097                 tbio->bi_vcnt = vcnt;
2098                 tbio->bi_size = r10_bio->sectors << 9;
2099                 tbio->bi_idx = 0;
2100                 tbio->bi_phys_segments = 0;
2101                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2102                 tbio->bi_flags |= 1 << BIO_UPTODATE;
2103                 tbio->bi_next = NULL;
2104                 tbio->bi_rw = WRITE;
2105                 tbio->bi_private = r10_bio;
2106                 tbio->bi_sector = r10_bio->devs[i].addr;
2107
2108                 for (j=0; j < vcnt ; j++) {
2109                         tbio->bi_io_vec[j].bv_offset = 0;
2110                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2111
2112                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2113                                page_address(fbio->bi_io_vec[j].bv_page),
2114                                PAGE_SIZE);
2115                 }
2116                 tbio->bi_end_io = end_sync_write;
2117
2118                 d = r10_bio->devs[i].devnum;
2119                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2120                 atomic_inc(&r10_bio->remaining);
2121                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2122
2123                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2124                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2125                 generic_make_request(tbio);
2126         }
2127
2128         /* Now write out to any replacement devices
2129          * that are active
2130          */
2131         for (i = 0; i < conf->copies; i++) {
2132                 int j, d;
2133
2134                 tbio = r10_bio->devs[i].repl_bio;
2135                 if (!tbio || !tbio->bi_end_io)
2136                         continue;
2137                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2138                     && r10_bio->devs[i].bio != fbio)
2139                         for (j = 0; j < vcnt; j++)
2140                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2141                                        page_address(fbio->bi_io_vec[j].bv_page),
2142                                        PAGE_SIZE);
2143                 d = r10_bio->devs[i].devnum;
2144                 atomic_inc(&r10_bio->remaining);
2145                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2146                              tbio->bi_size >> 9);
2147                 generic_make_request(tbio);
2148         }
2149
2150 done:
2151         if (atomic_dec_and_test(&r10_bio->remaining)) {
2152                 md_done_sync(mddev, r10_bio->sectors, 1);
2153                 put_buf(r10_bio);
2154         }
2155 }
2156
2157 /*
2158  * Now for the recovery code.
2159  * Recovery happens across physical sectors.
2160  * We recover all non-is_sync drives by finding the virtual address of
2161  * each, and then choose a working drive that also has that virt address.
2162  * There is a separate r10_bio for each non-in_sync drive.
2163  * Only the first two slots are in use. The first for reading,
2164  * The second for writing.
2165  *
2166  */
2167 static void fix_recovery_read_error(struct r10bio *r10_bio)
2168 {
2169         /* We got a read error during recovery.
2170          * We repeat the read in smaller page-sized sections.
2171          * If a read succeeds, write it to the new device or record
2172          * a bad block if we cannot.
2173          * If a read fails, record a bad block on both old and
2174          * new devices.
2175          */
2176         struct mddev *mddev = r10_bio->mddev;
2177         struct r10conf *conf = mddev->private;
2178         struct bio *bio = r10_bio->devs[0].bio;
2179         sector_t sect = 0;
2180         int sectors = r10_bio->sectors;
2181         int idx = 0;
2182         int dr = r10_bio->devs[0].devnum;
2183         int dw = r10_bio->devs[1].devnum;
2184
2185         while (sectors) {
2186                 int s = sectors;
2187                 struct md_rdev *rdev;
2188                 sector_t addr;
2189                 int ok;
2190
2191                 if (s > (PAGE_SIZE>>9))
2192                         s = PAGE_SIZE >> 9;
2193
2194                 rdev = conf->mirrors[dr].rdev;
2195                 addr = r10_bio->devs[0].addr + sect,
2196                 ok = sync_page_io(rdev,
2197                                   addr,
2198                                   s << 9,
2199                                   bio->bi_io_vec[idx].bv_page,
2200                                   READ, false);
2201                 if (ok) {
2202                         rdev = conf->mirrors[dw].rdev;
2203                         addr = r10_bio->devs[1].addr + sect;
2204                         ok = sync_page_io(rdev,
2205                                           addr,
2206                                           s << 9,
2207                                           bio->bi_io_vec[idx].bv_page,
2208                                           WRITE, false);
2209                         if (!ok) {
2210                                 set_bit(WriteErrorSeen, &rdev->flags);
2211                                 if (!test_and_set_bit(WantReplacement,
2212                                                       &rdev->flags))
2213                                         set_bit(MD_RECOVERY_NEEDED,
2214                                                 &rdev->mddev->recovery);
2215                         }
2216                 }
2217                 if (!ok) {
2218                         /* We don't worry if we cannot set a bad block -
2219                          * it really is bad so there is no loss in not
2220                          * recording it yet
2221                          */
2222                         rdev_set_badblocks(rdev, addr, s, 0);
2223
2224                         if (rdev != conf->mirrors[dw].rdev) {
2225                                 /* need bad block on destination too */
2226                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2227                                 addr = r10_bio->devs[1].addr + sect;
2228                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2229                                 if (!ok) {
2230                                         /* just abort the recovery */
2231                                         printk(KERN_NOTICE
2232                                                "md/raid10:%s: recovery aborted"
2233                                                " due to read error\n",
2234                                                mdname(mddev));
2235
2236                                         conf->mirrors[dw].recovery_disabled
2237                                                 = mddev->recovery_disabled;
2238                                         set_bit(MD_RECOVERY_INTR,
2239                                                 &mddev->recovery);
2240                                         break;
2241                                 }
2242                         }
2243                 }
2244
2245                 sectors -= s;
2246                 sect += s;
2247                 idx++;
2248         }
2249 }
2250
2251 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2252 {
2253         struct r10conf *conf = mddev->private;
2254         int d;
2255         struct bio *wbio, *wbio2;
2256
2257         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2258                 fix_recovery_read_error(r10_bio);
2259                 end_sync_request(r10_bio);
2260                 return;
2261         }
2262
2263         /*
2264          * share the pages with the first bio
2265          * and submit the write request
2266          */
2267         d = r10_bio->devs[1].devnum;
2268         wbio = r10_bio->devs[1].bio;
2269         wbio2 = r10_bio->devs[1].repl_bio;
2270         if (wbio->bi_end_io) {
2271                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2272                 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2273                 generic_make_request(wbio);
2274         }
2275         if (wbio2 && wbio2->bi_end_io) {
2276                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2277                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2278                              wbio2->bi_size >> 9);
2279                 generic_make_request(wbio2);
2280         }
2281 }
2282
2283
2284 /*
2285  * Used by fix_read_error() to decay the per rdev read_errors.
2286  * We halve the read error count for every hour that has elapsed
2287  * since the last recorded read error.
2288  *
2289  */
2290 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2291 {
2292         struct timespec cur_time_mon;
2293         unsigned long hours_since_last;
2294         unsigned int read_errors = atomic_read(&rdev->read_errors);
2295
2296         ktime_get_ts(&cur_time_mon);
2297
2298         if (rdev->last_read_error.tv_sec == 0 &&
2299             rdev->last_read_error.tv_nsec == 0) {
2300                 /* first time we've seen a read error */
2301                 rdev->last_read_error = cur_time_mon;
2302                 return;
2303         }
2304
2305         hours_since_last = (cur_time_mon.tv_sec -
2306                             rdev->last_read_error.tv_sec) / 3600;
2307
2308         rdev->last_read_error = cur_time_mon;
2309
2310         /*
2311          * if hours_since_last is > the number of bits in read_errors
2312          * just set read errors to 0. We do this to avoid
2313          * overflowing the shift of read_errors by hours_since_last.
2314          */
2315         if (hours_since_last >= 8 * sizeof(read_errors))
2316                 atomic_set(&rdev->read_errors, 0);
2317         else
2318                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2319 }
2320
2321 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2322                             int sectors, struct page *page, int rw)
2323 {
2324         sector_t first_bad;
2325         int bad_sectors;
2326
2327         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2328             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2329                 return -1;
2330         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2331                 /* success */
2332                 return 1;
2333         if (rw == WRITE) {
2334                 set_bit(WriteErrorSeen, &rdev->flags);
2335                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2336                         set_bit(MD_RECOVERY_NEEDED,
2337                                 &rdev->mddev->recovery);
2338         }
2339         /* need to record an error - either for the block or the device */
2340         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2341                 md_error(rdev->mddev, rdev);
2342         return 0;
2343 }
2344
2345 /*
2346  * This is a kernel thread which:
2347  *
2348  *      1.      Retries failed read operations on working mirrors.
2349  *      2.      Updates the raid superblock when problems encounter.
2350  *      3.      Performs writes following reads for array synchronising.
2351  */
2352
2353 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2354 {
2355         int sect = 0; /* Offset from r10_bio->sector */
2356         int sectors = r10_bio->sectors;
2357         struct md_rdev*rdev;
2358         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2359         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2360
2361         /* still own a reference to this rdev, so it cannot
2362          * have been cleared recently.
2363          */
2364         rdev = conf->mirrors[d].rdev;
2365
2366         if (test_bit(Faulty, &rdev->flags))
2367                 /* drive has already been failed, just ignore any
2368                    more fix_read_error() attempts */
2369                 return;
2370
2371         check_decay_read_errors(mddev, rdev);
2372         atomic_inc(&rdev->read_errors);
2373         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2374                 char b[BDEVNAME_SIZE];
2375                 bdevname(rdev->bdev, b);
2376
2377                 printk(KERN_NOTICE
2378                        "md/raid10:%s: %s: Raid device exceeded "
2379                        "read_error threshold [cur %d:max %d]\n",
2380                        mdname(mddev), b,
2381                        atomic_read(&rdev->read_errors), max_read_errors);
2382                 printk(KERN_NOTICE
2383                        "md/raid10:%s: %s: Failing raid device\n",
2384                        mdname(mddev), b);
2385                 md_error(mddev, conf->mirrors[d].rdev);
2386                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2387                 return;
2388         }
2389
2390         while(sectors) {
2391                 int s = sectors;
2392                 int sl = r10_bio->read_slot;
2393                 int success = 0;
2394                 int start;
2395
2396                 if (s > (PAGE_SIZE>>9))
2397                         s = PAGE_SIZE >> 9;
2398
2399                 rcu_read_lock();
2400                 do {
2401                         sector_t first_bad;
2402                         int bad_sectors;
2403
2404                         d = r10_bio->devs[sl].devnum;
2405                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2406                         if (rdev &&
2407                             !test_bit(Unmerged, &rdev->flags) &&
2408                             test_bit(In_sync, &rdev->flags) &&
2409                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2410                                         &first_bad, &bad_sectors) == 0) {
2411                                 atomic_inc(&rdev->nr_pending);
2412                                 rcu_read_unlock();
2413                                 success = sync_page_io(rdev,
2414                                                        r10_bio->devs[sl].addr +
2415                                                        sect,
2416                                                        s<<9,
2417                                                        conf->tmppage, READ, false);
2418                                 rdev_dec_pending(rdev, mddev);
2419                                 rcu_read_lock();
2420                                 if (success)
2421                                         break;
2422                         }
2423                         sl++;
2424                         if (sl == conf->copies)
2425                                 sl = 0;
2426                 } while (!success && sl != r10_bio->read_slot);
2427                 rcu_read_unlock();
2428
2429                 if (!success) {
2430                         /* Cannot read from anywhere, just mark the block
2431                          * as bad on the first device to discourage future
2432                          * reads.
2433                          */
2434                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2435                         rdev = conf->mirrors[dn].rdev;
2436
2437                         if (!rdev_set_badblocks(
2438                                     rdev,
2439                                     r10_bio->devs[r10_bio->read_slot].addr
2440                                     + sect,
2441                                     s, 0)) {
2442                                 md_error(mddev, rdev);
2443                                 r10_bio->devs[r10_bio->read_slot].bio
2444                                         = IO_BLOCKED;
2445                         }
2446                         break;
2447                 }
2448
2449                 start = sl;
2450                 /* write it back and re-read */
2451                 rcu_read_lock();
2452                 while (sl != r10_bio->read_slot) {
2453                         char b[BDEVNAME_SIZE];
2454
2455                         if (sl==0)
2456                                 sl = conf->copies;
2457                         sl--;
2458                         d = r10_bio->devs[sl].devnum;
2459                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2460                         if (!rdev ||
2461                             test_bit(Unmerged, &rdev->flags) ||
2462                             !test_bit(In_sync, &rdev->flags))
2463                                 continue;
2464
2465                         atomic_inc(&rdev->nr_pending);
2466                         rcu_read_unlock();
2467                         if (r10_sync_page_io(rdev,
2468                                              r10_bio->devs[sl].addr +
2469                                              sect,
2470                                              s, conf->tmppage, WRITE)
2471                             == 0) {
2472                                 /* Well, this device is dead */
2473                                 printk(KERN_NOTICE
2474                                        "md/raid10:%s: read correction "
2475                                        "write failed"
2476                                        " (%d sectors at %llu on %s)\n",
2477                                        mdname(mddev), s,
2478                                        (unsigned long long)(
2479                                                sect +
2480                                                choose_data_offset(r10_bio,
2481                                                                   rdev)),
2482                                        bdevname(rdev->bdev, b));
2483                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2484                                        "drive\n",
2485                                        mdname(mddev),
2486                                        bdevname(rdev->bdev, b));
2487                         }
2488                         rdev_dec_pending(rdev, mddev);
2489                         rcu_read_lock();
2490                 }
2491                 sl = start;
2492                 while (sl != r10_bio->read_slot) {
2493                         char b[BDEVNAME_SIZE];
2494
2495                         if (sl==0)
2496                                 sl = conf->copies;
2497                         sl--;
2498                         d = r10_bio->devs[sl].devnum;
2499                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2500                         if (!rdev ||
2501                             !test_bit(In_sync, &rdev->flags))
2502                                 continue;
2503
2504                         atomic_inc(&rdev->nr_pending);
2505                         rcu_read_unlock();
2506                         switch (r10_sync_page_io(rdev,
2507                                              r10_bio->devs[sl].addr +
2508                                              sect,
2509                                              s, conf->tmppage,
2510                                                  READ)) {
2511                         case 0:
2512                                 /* Well, this device is dead */
2513                                 printk(KERN_NOTICE
2514                                        "md/raid10:%s: unable to read back "
2515                                        "corrected sectors"
2516                                        " (%d sectors at %llu on %s)\n",
2517                                        mdname(mddev), s,
2518                                        (unsigned long long)(
2519                                                sect +
2520                                                choose_data_offset(r10_bio, rdev)),
2521                                        bdevname(rdev->bdev, b));
2522                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2523                                        "drive\n",
2524                                        mdname(mddev),
2525                                        bdevname(rdev->bdev, b));
2526                                 break;
2527                         case 1:
2528                                 printk(KERN_INFO
2529                                        "md/raid10:%s: read error corrected"
2530                                        " (%d sectors at %llu on %s)\n",
2531                                        mdname(mddev), s,
2532                                        (unsigned long long)(
2533                                                sect +
2534                                                choose_data_offset(r10_bio, rdev)),
2535                                        bdevname(rdev->bdev, b));
2536                                 atomic_add(s, &rdev->corrected_errors);
2537                         }
2538
2539                         rdev_dec_pending(rdev, mddev);
2540                         rcu_read_lock();
2541                 }
2542                 rcu_read_unlock();
2543
2544                 sectors -= s;
2545                 sect += s;
2546         }
2547 }
2548
2549 static void bi_complete(struct bio *bio, int error)
2550 {
2551         complete((struct completion *)bio->bi_private);
2552 }
2553
2554 static int submit_bio_wait(int rw, struct bio *bio)
2555 {
2556         struct completion event;
2557         rw |= REQ_SYNC;
2558
2559         init_completion(&event);
2560         bio->bi_private = &event;
2561         bio->bi_end_io = bi_complete;
2562         submit_bio(rw, bio);
2563         wait_for_completion(&event);
2564
2565         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2566 }
2567
2568 static int narrow_write_error(struct r10bio *r10_bio, int i)
2569 {
2570         struct bio *bio = r10_bio->master_bio;
2571         struct mddev *mddev = r10_bio->mddev;
2572         struct r10conf *conf = mddev->private;
2573         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2574         /* bio has the data to be written to slot 'i' where
2575          * we just recently had a write error.
2576          * We repeatedly clone the bio and trim down to one block,
2577          * then try the write.  Where the write fails we record
2578          * a bad block.
2579          * It is conceivable that the bio doesn't exactly align with
2580          * blocks.  We must handle this.
2581          *
2582          * We currently own a reference to the rdev.
2583          */
2584
2585         int block_sectors;
2586         sector_t sector;
2587         int sectors;
2588         int sect_to_write = r10_bio->sectors;
2589         int ok = 1;
2590
2591         if (rdev->badblocks.shift < 0)
2592                 return 0;
2593
2594         block_sectors = 1 << rdev->badblocks.shift;
2595         sector = r10_bio->sector;
2596         sectors = ((r10_bio->sector + block_sectors)
2597                    & ~(sector_t)(block_sectors - 1))
2598                 - sector;
2599
2600         while (sect_to_write) {
2601                 struct bio *wbio;
2602                 if (sectors > sect_to_write)
2603                         sectors = sect_to_write;
2604                 /* Write at 'sector' for 'sectors' */
2605                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2606                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2607                 wbio->bi_sector = (r10_bio->devs[i].addr+
2608                                    choose_data_offset(r10_bio, rdev) +
2609                                    (sector - r10_bio->sector));
2610                 wbio->bi_bdev = rdev->bdev;
2611                 if (submit_bio_wait(WRITE, wbio) == 0)
2612                         /* Failure! */
2613                         ok = rdev_set_badblocks(rdev, sector,
2614                                                 sectors, 0)
2615                                 && ok;
2616
2617                 bio_put(wbio);
2618                 sect_to_write -= sectors;
2619                 sector += sectors;
2620                 sectors = block_sectors;
2621         }
2622         return ok;
2623 }
2624
2625 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2626 {
2627         int slot = r10_bio->read_slot;
2628         struct bio *bio;
2629         struct r10conf *conf = mddev->private;
2630         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2631         char b[BDEVNAME_SIZE];
2632         unsigned long do_sync;
2633         int max_sectors;
2634
2635         /* we got a read error. Maybe the drive is bad.  Maybe just
2636          * the block and we can fix it.
2637          * We freeze all other IO, and try reading the block from
2638          * other devices.  When we find one, we re-write
2639          * and check it that fixes the read error.
2640          * This is all done synchronously while the array is
2641          * frozen.
2642          */
2643         bio = r10_bio->devs[slot].bio;
2644         bdevname(bio->bi_bdev, b);
2645         bio_put(bio);
2646         r10_bio->devs[slot].bio = NULL;
2647
2648         if (mddev->ro == 0) {
2649                 freeze_array(conf);
2650                 fix_read_error(conf, mddev, r10_bio);
2651                 unfreeze_array(conf);
2652         } else
2653                 r10_bio->devs[slot].bio = IO_BLOCKED;
2654
2655         rdev_dec_pending(rdev, mddev);
2656
2657 read_more:
2658         rdev = read_balance(conf, r10_bio, &max_sectors);
2659         if (rdev == NULL) {
2660                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2661                        " read error for block %llu\n",
2662                        mdname(mddev), b,
2663                        (unsigned long long)r10_bio->sector);
2664                 raid_end_bio_io(r10_bio);
2665                 return;
2666         }
2667
2668         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2669         slot = r10_bio->read_slot;
2670         printk_ratelimited(
2671                 KERN_ERR
2672                 "md/raid10:%s: %s: redirecting "
2673                 "sector %llu to another mirror\n",
2674                 mdname(mddev),
2675                 bdevname(rdev->bdev, b),
2676                 (unsigned long long)r10_bio->sector);
2677         bio = bio_clone_mddev(r10_bio->master_bio,
2678                               GFP_NOIO, mddev);
2679         md_trim_bio(bio,
2680                     r10_bio->sector - bio->bi_sector,
2681                     max_sectors);
2682         r10_bio->devs[slot].bio = bio;
2683         r10_bio->devs[slot].rdev = rdev;
2684         bio->bi_sector = r10_bio->devs[slot].addr
2685                 + choose_data_offset(r10_bio, rdev);
2686         bio->bi_bdev = rdev->bdev;
2687         bio->bi_rw = READ | do_sync;
2688         bio->bi_private = r10_bio;
2689         bio->bi_end_io = raid10_end_read_request;
2690         if (max_sectors < r10_bio->sectors) {
2691                 /* Drat - have to split this up more */
2692                 struct bio *mbio = r10_bio->master_bio;
2693                 int sectors_handled =
2694                         r10_bio->sector + max_sectors
2695                         - mbio->bi_sector;
2696                 r10_bio->sectors = max_sectors;
2697                 spin_lock_irq(&conf->device_lock);
2698                 if (mbio->bi_phys_segments == 0)
2699                         mbio->bi_phys_segments = 2;
2700                 else
2701                         mbio->bi_phys_segments++;
2702                 spin_unlock_irq(&conf->device_lock);
2703                 generic_make_request(bio);
2704
2705                 r10_bio = mempool_alloc(conf->r10bio_pool,
2706                                         GFP_NOIO);
2707                 r10_bio->master_bio = mbio;
2708                 r10_bio->sectors = (mbio->bi_size >> 9)
2709                         - sectors_handled;
2710                 r10_bio->state = 0;
2711                 set_bit(R10BIO_ReadError,
2712                         &r10_bio->state);
2713                 r10_bio->mddev = mddev;
2714                 r10_bio->sector = mbio->bi_sector
2715                         + sectors_handled;
2716
2717                 goto read_more;
2718         } else
2719                 generic_make_request(bio);
2720 }
2721
2722 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2723 {
2724         /* Some sort of write request has finished and it
2725          * succeeded in writing where we thought there was a
2726          * bad block.  So forget the bad block.
2727          * Or possibly if failed and we need to record
2728          * a bad block.
2729          */
2730         int m;
2731         struct md_rdev *rdev;
2732
2733         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2734             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2735                 for (m = 0; m < conf->copies; m++) {
2736                         int dev = r10_bio->devs[m].devnum;
2737                         rdev = conf->mirrors[dev].rdev;
2738                         if (r10_bio->devs[m].bio == NULL)
2739                                 continue;
2740                         if (test_bit(BIO_UPTODATE,
2741                                      &r10_bio->devs[m].bio->bi_flags)) {
2742                                 rdev_clear_badblocks(
2743                                         rdev,
2744                                         r10_bio->devs[m].addr,
2745                                         r10_bio->sectors, 0);
2746                         } else {
2747                                 if (!rdev_set_badblocks(
2748                                             rdev,
2749                                             r10_bio->devs[m].addr,
2750                                             r10_bio->sectors, 0))
2751                                         md_error(conf->mddev, rdev);
2752                         }
2753                         rdev = conf->mirrors[dev].replacement;
2754                         if (r10_bio->devs[m].repl_bio == NULL)
2755                                 continue;
2756                         if (test_bit(BIO_UPTODATE,
2757                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2758                                 rdev_clear_badblocks(
2759                                         rdev,
2760                                         r10_bio->devs[m].addr,
2761                                         r10_bio->sectors, 0);
2762                         } else {
2763                                 if (!rdev_set_badblocks(
2764                                             rdev,
2765                                             r10_bio->devs[m].addr,
2766                                             r10_bio->sectors, 0))
2767                                         md_error(conf->mddev, rdev);
2768                         }
2769                 }
2770                 put_buf(r10_bio);
2771         } else {
2772                 for (m = 0; m < conf->copies; m++) {
2773                         int dev = r10_bio->devs[m].devnum;
2774                         struct bio *bio = r10_bio->devs[m].bio;
2775                         rdev = conf->mirrors[dev].rdev;
2776                         if (bio == IO_MADE_GOOD) {
2777                                 rdev_clear_badblocks(
2778                                         rdev,
2779                                         r10_bio->devs[m].addr,
2780                                         r10_bio->sectors, 0);
2781                                 rdev_dec_pending(rdev, conf->mddev);
2782                         } else if (bio != NULL &&
2783                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2784                                 if (!narrow_write_error(r10_bio, m)) {
2785                                         md_error(conf->mddev, rdev);
2786                                         set_bit(R10BIO_Degraded,
2787                                                 &r10_bio->state);
2788                                 }
2789                                 rdev_dec_pending(rdev, conf->mddev);
2790                         }
2791                         bio = r10_bio->devs[m].repl_bio;
2792                         rdev = conf->mirrors[dev].replacement;
2793                         if (rdev && bio == IO_MADE_GOOD) {
2794                                 rdev_clear_badblocks(
2795                                         rdev,
2796                                         r10_bio->devs[m].addr,
2797                                         r10_bio->sectors, 0);
2798                                 rdev_dec_pending(rdev, conf->mddev);
2799                         }
2800                 }
2801                 if (test_bit(R10BIO_WriteError,
2802                              &r10_bio->state))
2803                         close_write(r10_bio);
2804                 raid_end_bio_io(r10_bio);
2805         }
2806 }
2807
2808 static void raid10d(struct md_thread *thread)
2809 {
2810         struct mddev *mddev = thread->mddev;
2811         struct r10bio *r10_bio;
2812         unsigned long flags;
2813         struct r10conf *conf = mddev->private;
2814         struct list_head *head = &conf->retry_list;
2815         struct blk_plug plug;
2816
2817         md_check_recovery(mddev);
2818
2819         blk_start_plug(&plug);
2820         for (;;) {
2821
2822                 flush_pending_writes(conf);
2823
2824                 spin_lock_irqsave(&conf->device_lock, flags);
2825                 if (list_empty(head)) {
2826                         spin_unlock_irqrestore(&conf->device_lock, flags);
2827                         break;
2828                 }
2829                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2830                 list_del(head->prev);
2831                 conf->nr_queued--;
2832                 spin_unlock_irqrestore(&conf->device_lock, flags);
2833
2834                 mddev = r10_bio->mddev;
2835                 conf = mddev->private;
2836                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2837                     test_bit(R10BIO_WriteError, &r10_bio->state))
2838                         handle_write_completed(conf, r10_bio);
2839                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2840                         reshape_request_write(mddev, r10_bio);
2841                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2842                         sync_request_write(mddev, r10_bio);
2843                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2844                         recovery_request_write(mddev, r10_bio);
2845                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2846                         handle_read_error(mddev, r10_bio);
2847                 else {
2848                         /* just a partial read to be scheduled from a
2849                          * separate context
2850                          */
2851                         int slot = r10_bio->read_slot;
2852                         generic_make_request(r10_bio->devs[slot].bio);
2853                 }
2854
2855                 cond_resched();
2856                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2857                         md_check_recovery(mddev);
2858         }
2859         blk_finish_plug(&plug);
2860 }
2861
2862
2863 static int init_resync(struct r10conf *conf)
2864 {
2865         int buffs;
2866         int i;
2867
2868         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2869         BUG_ON(conf->r10buf_pool);
2870         conf->have_replacement = 0;
2871         for (i = 0; i < conf->geo.raid_disks; i++)
2872                 if (conf->mirrors[i].replacement)
2873                         conf->have_replacement = 1;
2874         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2875         if (!conf->r10buf_pool)
2876                 return -ENOMEM;
2877         conf->next_resync = 0;
2878         return 0;
2879 }
2880
2881 /*
2882  * perform a "sync" on one "block"
2883  *
2884  * We need to make sure that no normal I/O request - particularly write
2885  * requests - conflict with active sync requests.
2886  *
2887  * This is achieved by tracking pending requests and a 'barrier' concept
2888  * that can be installed to exclude normal IO requests.
2889  *
2890  * Resync and recovery are handled very differently.
2891  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2892  *
2893  * For resync, we iterate over virtual addresses, read all copies,
2894  * and update if there are differences.  If only one copy is live,
2895  * skip it.
2896  * For recovery, we iterate over physical addresses, read a good
2897  * value for each non-in_sync drive, and over-write.
2898  *
2899  * So, for recovery we may have several outstanding complex requests for a
2900  * given address, one for each out-of-sync device.  We model this by allocating
2901  * a number of r10_bio structures, one for each out-of-sync device.
2902  * As we setup these structures, we collect all bio's together into a list
2903  * which we then process collectively to add pages, and then process again
2904  * to pass to generic_make_request.
2905  *
2906  * The r10_bio structures are linked using a borrowed master_bio pointer.
2907  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2908  * has its remaining count decremented to 0, the whole complex operation
2909  * is complete.
2910  *
2911  */
2912
2913 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2914                              int *skipped, int go_faster)
2915 {
2916         struct r10conf *conf = mddev->private;
2917         struct r10bio *r10_bio;
2918         struct bio *biolist = NULL, *bio;
2919         sector_t max_sector, nr_sectors;
2920         int i;
2921         int max_sync;
2922         sector_t sync_blocks;
2923         sector_t sectors_skipped = 0;
2924         int chunks_skipped = 0;
2925         sector_t chunk_mask = conf->geo.chunk_mask;
2926
2927         if (!conf->r10buf_pool)
2928                 if (init_resync(conf))
2929                         return 0;
2930
2931         /*
2932          * Allow skipping a full rebuild for incremental assembly
2933          * of a clean array, like RAID1 does.
2934          */
2935         if (mddev->bitmap == NULL &&
2936             mddev->recovery_cp == MaxSector &&
2937             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2938             conf->fullsync == 0) {
2939                 *skipped = 1;
2940                 max_sector = mddev->dev_sectors;
2941                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2942                     test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2943                         max_sector = mddev->resync_max_sectors;
2944                 return max_sector - sector_nr;
2945         }
2946
2947  skipped:
2948         max_sector = mddev->dev_sectors;
2949         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2950             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2951                 max_sector = mddev->resync_max_sectors;
2952         if (sector_nr >= max_sector) {
2953                 /* If we aborted, we need to abort the
2954                  * sync on the 'current' bitmap chucks (there can
2955                  * be several when recovering multiple devices).
2956                  * as we may have started syncing it but not finished.
2957                  * We can find the current address in
2958                  * mddev->curr_resync, but for recovery,
2959                  * we need to convert that to several
2960                  * virtual addresses.
2961                  */
2962                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2963                         end_reshape(conf);
2964                         return 0;
2965                 }
2966
2967                 if (mddev->curr_resync < max_sector) { /* aborted */
2968                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2969                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2970                                                 &sync_blocks, 1);
2971                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2972                                 sector_t sect =
2973                                         raid10_find_virt(conf, mddev->curr_resync, i);
2974                                 bitmap_end_sync(mddev->bitmap, sect,
2975                                                 &sync_blocks, 1);
2976                         }
2977                 } else {
2978                         /* completed sync */
2979                         if ((!mddev->bitmap || conf->fullsync)
2980                             && conf->have_replacement
2981                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2982                                 /* Completed a full sync so the replacements
2983                                  * are now fully recovered.
2984                                  */
2985                                 for (i = 0; i < conf->geo.raid_disks; i++)
2986                                         if (conf->mirrors[i].replacement)
2987                                                 conf->mirrors[i].replacement
2988                                                         ->recovery_offset
2989                                                         = MaxSector;
2990                         }
2991                         conf->fullsync = 0;
2992                 }
2993                 bitmap_close_sync(mddev->bitmap);
2994                 close_sync(conf);
2995                 *skipped = 1;
2996                 return sectors_skipped;
2997         }
2998
2999         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3000                 return reshape_request(mddev, sector_nr, skipped);
3001
3002         if (chunks_skipped >= conf->geo.raid_disks) {
3003                 /* if there has been nothing to do on any drive,
3004                  * then there is nothing to do at all..
3005                  */
3006                 *skipped = 1;
3007                 return (max_sector - sector_nr) + sectors_skipped;
3008         }
3009
3010         if (max_sector > mddev->resync_max)
3011                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3012
3013         /* make sure whole request will fit in a chunk - if chunks
3014          * are meaningful
3015          */
3016         if (conf->geo.near_copies < conf->geo.raid_disks &&
3017             max_sector > (sector_nr | chunk_mask))
3018                 max_sector = (sector_nr | chunk_mask) + 1;
3019         /*
3020          * If there is non-resync activity waiting for us then
3021          * put in a delay to throttle resync.
3022          */
3023         if (!go_faster && conf->nr_waiting)
3024                 msleep_interruptible(1000);
3025
3026         /* Again, very different code for resync and recovery.
3027          * Both must result in an r10bio with a list of bios that
3028          * have bi_end_io, bi_sector, bi_bdev set,
3029          * and bi_private set to the r10bio.
3030          * For recovery, we may actually create several r10bios
3031          * with 2 bios in each, that correspond to the bios in the main one.
3032          * In this case, the subordinate r10bios link back through a
3033          * borrowed master_bio pointer, and the counter in the master
3034          * includes a ref from each subordinate.
3035          */
3036         /* First, we decide what to do and set ->bi_end_io
3037          * To end_sync_read if we want to read, and
3038          * end_sync_write if we will want to write.
3039          */
3040
3041         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3042         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3043                 /* recovery... the complicated one */
3044                 int j;
3045                 r10_bio = NULL;
3046
3047                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3048                         int still_degraded;
3049                         struct r10bio *rb2;
3050                         sector_t sect;
3051                         int must_sync;
3052                         int any_working;
3053                         struct raid10_info *mirror = &conf->mirrors[i];
3054
3055                         if ((mirror->rdev == NULL ||
3056                              test_bit(In_sync, &mirror->rdev->flags))
3057                             &&
3058                             (mirror->replacement == NULL ||
3059                              test_bit(Faulty,
3060                                       &mirror->replacement->flags)))
3061                                 continue;
3062
3063                         still_degraded = 0;
3064                         /* want to reconstruct this device */
3065                         rb2 = r10_bio;
3066                         sect = raid10_find_virt(conf, sector_nr, i);
3067                         if (sect >= mddev->resync_max_sectors) {
3068                                 /* last stripe is not complete - don't
3069                                  * try to recover this sector.
3070                                  */
3071                                 continue;
3072                         }
3073                         /* Unless we are doing a full sync, or a replacement
3074                          * we only need to recover the block if it is set in
3075                          * the bitmap
3076                          */
3077                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3078                                                       &sync_blocks, 1);
3079                         if (sync_blocks < max_sync)
3080                                 max_sync = sync_blocks;
3081                         if (!must_sync &&
3082                             mirror->replacement == NULL &&
3083                             !conf->fullsync) {
3084                                 /* yep, skip the sync_blocks here, but don't assume
3085                                  * that there will never be anything to do here
3086                                  */
3087                                 chunks_skipped = -1;
3088                                 continue;
3089                         }
3090
3091                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3092                         raise_barrier(conf, rb2 != NULL);
3093                         atomic_set(&r10_bio->remaining, 0);
3094
3095                         r10_bio->master_bio = (struct bio*)rb2;
3096                         if (rb2)
3097                                 atomic_inc(&rb2->remaining);
3098                         r10_bio->mddev = mddev;
3099                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3100                         r10_bio->sector = sect;
3101
3102                         raid10_find_phys(conf, r10_bio);
3103
3104                         /* Need to check if the array will still be
3105                          * degraded
3106                          */
3107                         for (j = 0; j < conf->geo.raid_disks; j++)
3108                                 if (conf->mirrors[j].rdev == NULL ||
3109                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3110                                         still_degraded = 1;
3111                                         break;
3112                                 }
3113
3114                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3115                                                       &sync_blocks, still_degraded);
3116
3117                         any_working = 0;
3118                         for (j=0; j<conf->copies;j++) {
3119                                 int k;
3120                                 int d = r10_bio->devs[j].devnum;
3121                                 sector_t from_addr, to_addr;
3122                                 struct md_rdev *rdev;
3123                                 sector_t sector, first_bad;
3124                                 int bad_sectors;
3125                                 if (!conf->mirrors[d].rdev ||
3126                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3127                                         continue;
3128                                 /* This is where we read from */
3129                                 any_working = 1;
3130                                 rdev = conf->mirrors[d].rdev;
3131                                 sector = r10_bio->devs[j].addr;
3132
3133                                 if (is_badblock(rdev, sector, max_sync,
3134                                                 &first_bad, &bad_sectors)) {
3135                                         if (first_bad > sector)
3136                                                 max_sync = first_bad - sector;
3137                                         else {
3138                                                 bad_sectors -= (sector
3139                                                                 - first_bad);
3140                                                 if (max_sync > bad_sectors)
3141                                                         max_sync = bad_sectors;
3142                                                 continue;
3143                                         }
3144                                 }
3145                                 bio = r10_bio->devs[0].bio;
3146                                 bio->bi_next = biolist;
3147                                 biolist = bio;
3148                                 bio->bi_private = r10_bio;
3149                                 bio->bi_end_io = end_sync_read;
3150                                 bio->bi_rw = READ;
3151                                 from_addr = r10_bio->devs[j].addr;
3152                                 bio->bi_sector = from_addr + rdev->data_offset;
3153                                 bio->bi_bdev = rdev->bdev;
3154                                 atomic_inc(&rdev->nr_pending);
3155                                 /* and we write to 'i' (if not in_sync) */
3156
3157                                 for (k=0; k<conf->copies; k++)
3158                                         if (r10_bio->devs[k].devnum == i)
3159                                                 break;
3160                                 BUG_ON(k == conf->copies);
3161                                 to_addr = r10_bio->devs[k].addr;
3162                                 r10_bio->devs[0].devnum = d;
3163                                 r10_bio->devs[0].addr = from_addr;
3164                                 r10_bio->devs[1].devnum = i;
3165                                 r10_bio->devs[1].addr = to_addr;
3166
3167                                 rdev = mirror->rdev;
3168                                 if (!test_bit(In_sync, &rdev->flags)) {
3169                                         bio = r10_bio->devs[1].bio;
3170                                         bio->bi_next = biolist;
3171                                         biolist = bio;
3172                                         bio->bi_private = r10_bio;
3173                                         bio->bi_end_io = end_sync_write;
3174                                         bio->bi_rw = WRITE;
3175                                         bio->bi_sector = to_addr
3176                                                 + rdev->data_offset;
3177                                         bio->bi_bdev = rdev->bdev;
3178                                         atomic_inc(&r10_bio->remaining);
3179                                 } else
3180                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3181
3182                                 /* and maybe write to replacement */
3183                                 bio = r10_bio->devs[1].repl_bio;
3184                                 if (bio)
3185                                         bio->bi_end_io = NULL;
3186                                 rdev = mirror->replacement;
3187                                 /* Note: if rdev != NULL, then bio
3188                                  * cannot be NULL as r10buf_pool_alloc will
3189                                  * have allocated it.
3190                                  * So the second test here is pointless.
3191                                  * But it keeps semantic-checkers happy, and
3192                                  * this comment keeps human reviewers
3193                                  * happy.
3194                                  */
3195                                 if (rdev == NULL || bio == NULL ||
3196                                     test_bit(Faulty, &rdev->flags))
3197                                         break;
3198                                 bio->bi_next = biolist;
3199                                 biolist = bio;
3200                                 bio->bi_private = r10_bio;
3201                                 bio->bi_end_io = end_sync_write;
3202                                 bio->bi_rw = WRITE;
3203                                 bio->bi_sector = to_addr + rdev->data_offset;
3204                                 bio->bi_bdev = rdev->bdev;
3205                                 atomic_inc(&r10_bio->remaining);
3206                                 break;
3207                         }
3208                         if (j == conf->copies) {
3209                                 /* Cannot recover, so abort the recovery or
3210                                  * record a bad block */
3211                                 put_buf(r10_bio);
3212                                 if (rb2)
3213                                         atomic_dec(&rb2->remaining);
3214                                 r10_bio = rb2;
3215                                 if (any_working) {
3216                                         /* problem is that there are bad blocks
3217                                          * on other device(s)
3218                                          */
3219                                         int k;
3220                                         for (k = 0; k < conf->copies; k++)
3221                                                 if (r10_bio->devs[k].devnum == i)
3222                                                         break;
3223                                         if (!test_bit(In_sync,
3224                                                       &mirror->rdev->flags)
3225                                             && !rdev_set_badblocks(
3226                                                     mirror->rdev,
3227                                                     r10_bio->devs[k].addr,
3228                                                     max_sync, 0))
3229                                                 any_working = 0;
3230                                         if (mirror->replacement &&
3231                                             !rdev_set_badblocks(
3232                                                     mirror->replacement,
3233                                                     r10_bio->devs[k].addr,
3234                                                     max_sync, 0))
3235                                                 any_working = 0;
3236                                 }
3237                                 if (!any_working)  {
3238                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3239                                                               &mddev->recovery))
3240                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3241                                                        "working devices for recovery.\n",
3242                                                        mdname(mddev));
3243                                         mirror->recovery_disabled
3244                                                 = mddev->recovery_disabled;
3245                                 }
3246                                 break;
3247                         }
3248                 }
3249                 if (biolist == NULL) {
3250                         while (r10_bio) {
3251                                 struct r10bio *rb2 = r10_bio;
3252                                 r10_bio = (struct r10bio*) rb2->master_bio;
3253                                 rb2->master_bio = NULL;
3254                                 put_buf(rb2);
3255                         }
3256                         goto giveup;
3257                 }
3258         } else {
3259                 /* resync. Schedule a read for every block at this virt offset */
3260                 int count = 0;
3261
3262                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3263
3264                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3265                                        &sync_blocks, mddev->degraded) &&
3266                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3267                                                  &mddev->recovery)) {
3268                         /* We can skip this block */
3269                         *skipped = 1;
3270                         return sync_blocks + sectors_skipped;
3271                 }
3272                 if (sync_blocks < max_sync)
3273                         max_sync = sync_blocks;
3274                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3275
3276                 r10_bio->mddev = mddev;
3277                 atomic_set(&r10_bio->remaining, 0);
3278                 raise_barrier(conf, 0);
3279                 conf->next_resync = sector_nr;
3280
3281                 r10_bio->master_bio = NULL;
3282                 r10_bio->sector = sector_nr;
3283                 set_bit(R10BIO_IsSync, &r10_bio->state);
3284                 raid10_find_phys(conf, r10_bio);
3285                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3286
3287                 for (i = 0; i < conf->copies; i++) {
3288                         int d = r10_bio->devs[i].devnum;
3289                         sector_t first_bad, sector;
3290                         int bad_sectors;
3291
3292                         if (r10_bio->devs[i].repl_bio)
3293                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3294
3295                         bio = r10_bio->devs[i].bio;
3296                         bio->bi_end_io = NULL;
3297                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3298                         if (conf->mirrors[d].rdev == NULL ||
3299                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3300                                 continue;
3301                         sector = r10_bio->devs[i].addr;
3302                         if (is_badblock(conf->mirrors[d].rdev,
3303                                         sector, max_sync,
3304                                         &first_bad, &bad_sectors)) {
3305                                 if (first_bad > sector)
3306                                         max_sync = first_bad - sector;
3307                                 else {
3308                                         bad_sectors -= (sector - first_bad);
3309                                         if (max_sync > bad_sectors)
3310                                                 max_sync = bad_sectors;
3311                                         continue;
3312                                 }
3313                         }
3314                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3315                         atomic_inc(&r10_bio->remaining);
3316                         bio->bi_next = biolist;
3317                         biolist = bio;
3318                         bio->bi_private = r10_bio;
3319                         bio->bi_end_io = end_sync_read;
3320                         bio->bi_rw = READ;
3321                         bio->bi_sector = sector +
3322                                 conf->mirrors[d].rdev->data_offset;
3323                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3324                         count++;
3325
3326                         if (conf->mirrors[d].replacement == NULL ||
3327                             test_bit(Faulty,
3328                                      &conf->mirrors[d].replacement->flags))
3329                                 continue;
3330
3331                         /* Need to set up for writing to the replacement */
3332                         bio = r10_bio->devs[i].repl_bio;
3333                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3334
3335                         sector = r10_bio->devs[i].addr;
3336                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3337                         bio->bi_next = biolist;
3338                         biolist = bio;
3339                         bio->bi_private = r10_bio;
3340                         bio->bi_end_io = end_sync_write;
3341                         bio->bi_rw = WRITE;
3342                         bio->bi_sector = sector +
3343                                 conf->mirrors[d].replacement->data_offset;
3344                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3345                         count++;
3346                 }
3347
3348                 if (count < 2) {
3349                         for (i=0; i<conf->copies; i++) {
3350                                 int d = r10_bio->devs[i].devnum;
3351                                 if (r10_bio->devs[i].bio->bi_end_io)
3352                                         rdev_dec_pending(conf->mirrors[d].rdev,
3353                                                          mddev);
3354                                 if (r10_bio->devs[i].repl_bio &&
3355                                     r10_bio->devs[i].repl_bio->bi_end_io)
3356                                         rdev_dec_pending(
3357                                                 conf->mirrors[d].replacement,
3358                                                 mddev);
3359                         }
3360                         put_buf(r10_bio);
3361                         biolist = NULL;
3362                         goto giveup;
3363                 }
3364         }
3365
3366         for (bio = biolist; bio ; bio=bio->bi_next) {
3367
3368                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3369                 if (bio->bi_end_io)
3370                         bio->bi_flags |= 1 << BIO_UPTODATE;
3371                 bio->bi_vcnt = 0;
3372                 bio->bi_idx = 0;
3373                 bio->bi_phys_segments = 0;
3374                 bio->bi_size = 0;
3375         }
3376
3377         nr_sectors = 0;
3378         if (sector_nr + max_sync < max_sector)
3379                 max_sector = sector_nr + max_sync;
3380         do {
3381                 struct page *page;
3382                 int len = PAGE_SIZE;
3383                 if (sector_nr + (len>>9) > max_sector)
3384                         len = (max_sector - sector_nr) << 9;
3385                 if (len == 0)
3386                         break;
3387                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3388                         struct bio *bio2;
3389                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3390                         if (bio_add_page(bio, page, len, 0))
3391                                 continue;
3392
3393                         /* stop here */
3394                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3395                         for (bio2 = biolist;
3396                              bio2 && bio2 != bio;
3397                              bio2 = bio2->bi_next) {
3398                                 /* remove last page from this bio */
3399                                 bio2->bi_vcnt--;
3400                                 bio2->bi_size -= len;
3401                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3402                         }
3403                         goto bio_full;
3404                 }
3405                 nr_sectors += len>>9;
3406                 sector_nr += len>>9;
3407         } while (biolist->bi_vcnt < RESYNC_PAGES);
3408  bio_full:
3409         r10_bio->sectors = nr_sectors;
3410
3411         while (biolist) {
3412                 bio = biolist;
3413                 biolist = biolist->bi_next;
3414
3415                 bio->bi_next = NULL;
3416                 r10_bio = bio->bi_private;
3417                 r10_bio->sectors = nr_sectors;
3418
3419                 if (bio->bi_end_io == end_sync_read) {
3420                         md_sync_acct(bio->bi_bdev, nr_sectors);
3421                         generic_make_request(bio);
3422                 }
3423         }
3424
3425         if (sectors_skipped)
3426                 /* pretend they weren't skipped, it makes
3427                  * no important difference in this case
3428                  */
3429                 md_done_sync(mddev, sectors_skipped, 1);
3430
3431         return sectors_skipped + nr_sectors;
3432  giveup:
3433         /* There is nowhere to write, so all non-sync
3434          * drives must be failed or in resync, all drives
3435          * have a bad block, so try the next chunk...
3436          */
3437         if (sector_nr + max_sync < max_sector)
3438                 max_sector = sector_nr + max_sync;
3439
3440         sectors_skipped += (max_sector - sector_nr);
3441         chunks_skipped ++;
3442         sector_nr = max_sector;
3443         goto skipped;
3444 }
3445
3446 static sector_t
3447 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3448 {
3449         sector_t size;
3450         struct r10conf *conf = mddev->private;
3451
3452         if (!raid_disks)
3453                 raid_disks = min(conf->geo.raid_disks,
3454                                  conf->prev.raid_disks);
3455         if (!sectors)
3456                 sectors = conf->dev_sectors;
3457
3458         size = sectors >> conf->geo.chunk_shift;
3459         sector_div(size, conf->geo.far_copies);
3460         size = size * raid_disks;
3461         sector_div(size, conf->geo.near_copies);
3462
3463         return size << conf->geo.chunk_shift;
3464 }
3465
3466 static void calc_sectors(struct r10conf *conf, sector_t size)
3467 {
3468         /* Calculate the number of sectors-per-device that will
3469          * actually be used, and set conf->dev_sectors and
3470          * conf->stride
3471          */
3472
3473         size = size >> conf->geo.chunk_shift;
3474         sector_div(size, conf->geo.far_copies);
3475         size = size * conf->geo.raid_disks;
3476         sector_div(size, conf->geo.near_copies);
3477         /* 'size' is now the number of chunks in the array */
3478         /* calculate "used chunks per device" */
3479         size = size * conf->copies;
3480
3481         /* We need to round up when dividing by raid_disks to
3482          * get the stride size.
3483          */
3484         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3485
3486         conf->dev_sectors = size << conf->geo.chunk_shift;
3487
3488         if (conf->geo.far_offset)
3489                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3490         else {
3491                 sector_div(size, conf->geo.far_copies);
3492                 conf->geo.stride = size << conf->geo.chunk_shift;
3493         }
3494 }
3495
3496 enum geo_type {geo_new, geo_old, geo_start};
3497 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3498 {
3499         int nc, fc, fo;
3500         int layout, chunk, disks;
3501         switch (new) {
3502         case geo_old:
3503                 layout = mddev->layout;
3504                 chunk = mddev->chunk_sectors;
3505                 disks = mddev->raid_disks - mddev->delta_disks;
3506                 break;
3507         case geo_new:
3508                 layout = mddev->new_layout;
3509                 chunk = mddev->new_chunk_sectors;
3510                 disks = mddev->raid_disks;
3511                 break;
3512         default: /* avoid 'may be unused' warnings */
3513         case geo_start: /* new when starting reshape - raid_disks not
3514                          * updated yet. */
3515                 layout = mddev->new_layout;
3516                 chunk = mddev->new_chunk_sectors;
3517                 disks = mddev->raid_disks + mddev->delta_disks;
3518                 break;
3519         }
3520         if (layout >> 18)
3521                 return -1;
3522         if (chunk < (PAGE_SIZE >> 9) ||
3523             !is_power_of_2(chunk))
3524                 return -2;
3525         nc = layout & 255;
3526         fc = (layout >> 8) & 255;
3527         fo = layout & (1<<16);
3528         geo->raid_disks = disks;
3529         geo->near_copies = nc;
3530         geo->far_copies = fc;
3531         geo->far_offset = fo;
3532         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3533         geo->chunk_mask = chunk - 1;
3534         geo->chunk_shift = ffz(~chunk);
3535         return nc*fc;
3536 }
3537
3538 static struct r10conf *setup_conf(struct mddev *mddev)
3539 {
3540         struct r10conf *conf = NULL;
3541         int err = -EINVAL;
3542         struct geom geo;
3543         int copies;
3544
3545         copies = setup_geo(&geo, mddev, geo_new);
3546
3547         if (copies == -2) {
3548                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3549                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3550                        mdname(mddev), PAGE_SIZE);
3551                 goto out;
3552         }
3553
3554         if (copies < 2 || copies > mddev->raid_disks) {
3555                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3556                        mdname(mddev), mddev->new_layout);
3557                 goto out;
3558         }
3559
3560         err = -ENOMEM;
3561         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3562         if (!conf)
3563                 goto out;
3564
3565         /* FIXME calc properly */
3566         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3567                                                             max(0,mddev->delta_disks)),
3568                                 GFP_KERNEL);
3569         if (!conf->mirrors)
3570                 goto out;
3571
3572         conf->tmppage = alloc_page(GFP_KERNEL);
3573         if (!conf->tmppage)
3574                 goto out;
3575
3576         conf->geo = geo;
3577         conf->copies = copies;
3578         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3579                                            r10bio_pool_free, conf);
3580         if (!conf->r10bio_pool)
3581                 goto out;
3582
3583         calc_sectors(conf, mddev->dev_sectors);
3584         if (mddev->reshape_position == MaxSector) {
3585                 conf->prev = conf->geo;
3586                 conf->reshape_progress = MaxSector;
3587         } else {
3588                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3589                         err = -EINVAL;
3590                         goto out;
3591                 }
3592                 conf->reshape_progress = mddev->reshape_position;
3593                 if (conf->prev.far_offset)
3594                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3595                 else
3596                         /* far_copies must be 1 */
3597                         conf->prev.stride = conf->dev_sectors;
3598         }
3599         spin_lock_init(&conf->device_lock);
3600         INIT_LIST_HEAD(&conf->retry_list);
3601
3602         spin_lock_init(&conf->resync_lock);
3603         init_waitqueue_head(&conf->wait_barrier);
3604
3605         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3606         if (!conf->thread)
3607                 goto out;
3608
3609         conf->mddev = mddev;
3610         return conf;
3611
3612  out:
3613         if (err == -ENOMEM)
3614                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3615                        mdname(mddev));
3616         if (conf) {
3617                 if (conf->r10bio_pool)
3618                         mempool_destroy(conf->r10bio_pool);
3619                 kfree(conf->mirrors);
3620                 safe_put_page(conf->tmppage);
3621                 kfree(conf);
3622         }
3623         return ERR_PTR(err);
3624 }
3625
3626 static int run(struct mddev *mddev)
3627 {
3628         struct r10conf *conf;
3629         int i, disk_idx, chunk_size;
3630         struct raid10_info *disk;
3631         struct md_rdev *rdev;
3632         sector_t size;
3633         sector_t min_offset_diff = 0;
3634         int first = 1;
3635         bool discard_supported = false;
3636
3637         if (mddev->private == NULL) {
3638                 conf = setup_conf(mddev);
3639                 if (IS_ERR(conf))
3640                         return PTR_ERR(conf);
3641                 mddev->private = conf;
3642         }
3643         conf = mddev->private;
3644         if (!conf)
3645                 goto out;
3646
3647         mddev->thread = conf->thread;
3648         conf->thread = NULL;
3649
3650         chunk_size = mddev->chunk_sectors << 9;
3651         if (mddev->queue) {
3652                 blk_queue_max_discard_sectors(mddev->queue,
3653                                               mddev->chunk_sectors);
3654                 blk_queue_max_write_same_sectors(mddev->queue,
3655                                                  mddev->chunk_sectors);
3656                 blk_queue_io_min(mddev->queue, chunk_size);
3657                 if (conf->geo.raid_disks % conf->geo.near_copies)
3658                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3659                 else
3660                         blk_queue_io_opt(mddev->queue, chunk_size *
3661                                          (conf->geo.raid_disks / conf->geo.near_copies));
3662         }
3663
3664         rdev_for_each(rdev, mddev) {
3665                 long long diff;
3666                 struct request_queue *q;
3667
3668                 disk_idx = rdev->raid_disk;
3669                 if (disk_idx < 0)
3670                         continue;
3671                 if (disk_idx >= conf->geo.raid_disks &&
3672                     disk_idx >= conf->prev.raid_disks)
3673                         continue;
3674                 disk = conf->mirrors + disk_idx;
3675
3676                 if (test_bit(Replacement, &rdev->flags)) {
3677                         if (disk->replacement)
3678                                 goto out_free_conf;
3679                         disk->replacement = rdev;
3680                 } else {
3681                         if (disk->rdev)
3682                                 goto out_free_conf;
3683                         disk->rdev = rdev;
3684                 }
3685                 q = bdev_get_queue(rdev->bdev);
3686                 if (q->merge_bvec_fn)
3687                         mddev->merge_check_needed = 1;
3688                 diff = (rdev->new_data_offset - rdev->data_offset);
3689                 if (!mddev->reshape_backwards)
3690                         diff = -diff;
3691                 if (diff < 0)
3692                         diff = 0;
3693                 if (first || diff < min_offset_diff)
3694                         min_offset_diff = diff;
3695
3696                 if (mddev->gendisk)
3697                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3698                                           rdev->data_offset << 9);
3699
3700                 disk->head_position = 0;
3701
3702                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3703                         discard_supported = true;
3704         }
3705
3706         if (mddev->queue) {
3707                 if (discard_supported)
3708                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3709                                                 mddev->queue);
3710                 else
3711                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3712                                                   mddev->queue);
3713         }
3714         /* need to check that every block has at least one working mirror */
3715         if (!enough(conf, -1)) {
3716                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3717                        mdname(mddev));
3718                 goto out_free_conf;
3719         }
3720
3721         if (conf->reshape_progress != MaxSector) {
3722                 /* must ensure that shape change is supported */
3723                 if (conf->geo.far_copies != 1 &&
3724                     conf->geo.far_offset == 0)
3725                         goto out_free_conf;
3726                 if (conf->prev.far_copies != 1 &&
3727                     conf->geo.far_offset == 0)
3728                         goto out_free_conf;
3729         }
3730
3731         mddev->degraded = 0;
3732         for (i = 0;
3733              i < conf->geo.raid_disks
3734                      || i < conf->prev.raid_disks;
3735              i++) {
3736
3737                 disk = conf->mirrors + i;
3738
3739                 if (!disk->rdev && disk->replacement) {
3740                         /* The replacement is all we have - use it */
3741                         disk->rdev = disk->replacement;
3742                         disk->replacement = NULL;
3743                         clear_bit(Replacement, &disk->rdev->flags);
3744                 }
3745
3746                 if (!disk->rdev ||
3747                     !test_bit(In_sync, &disk->rdev->flags)) {
3748                         disk->head_position = 0;
3749                         mddev->degraded++;
3750                         if (disk->rdev)
3751                                 conf->fullsync = 1;
3752                 }
3753                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3754         }
3755
3756         if (mddev->recovery_cp != MaxSector)
3757                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3758                        " -- starting background reconstruction\n",
3759                        mdname(mddev));
3760         printk(KERN_INFO
3761                 "md/raid10:%s: active with %d out of %d devices\n",
3762                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3763                 conf->geo.raid_disks);
3764         /*
3765          * Ok, everything is just fine now
3766          */
3767         mddev->dev_sectors = conf->dev_sectors;
3768         size = raid10_size(mddev, 0, 0);
3769         md_set_array_sectors(mddev, size);
3770         mddev->resync_max_sectors = size;
3771
3772         if (mddev->queue) {
3773                 int stripe = conf->geo.raid_disks *
3774                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3775                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3776                 mddev->queue->backing_dev_info.congested_data = mddev;
3777
3778                 /* Calculate max read-ahead size.
3779                  * We need to readahead at least twice a whole stripe....
3780                  * maybe...
3781                  */
3782                 stripe /= conf->geo.near_copies;
3783                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3784                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3785                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3786         }
3787
3788
3789         if (md_integrity_register(mddev))
3790                 goto out_free_conf;
3791
3792         if (conf->reshape_progress != MaxSector) {
3793                 unsigned long before_length, after_length;
3794
3795                 before_length = ((1 << conf->prev.chunk_shift) *
3796                                  conf->prev.far_copies);
3797                 after_length = ((1 << conf->geo.chunk_shift) *
3798                                 conf->geo.far_copies);
3799
3800                 if (max(before_length, after_length) > min_offset_diff) {
3801                         /* This cannot work */
3802                         printk("md/raid10: offset difference not enough to continue reshape\n");
3803                         goto out_free_conf;
3804                 }
3805                 conf->offset_diff = min_offset_diff;
3806
3807                 conf->reshape_safe = conf->reshape_progress;
3808                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3809                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3810                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3811                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3812                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3813                                                         "reshape");
3814         }
3815
3816         return 0;
3817
3818 out_free_conf:
3819         md_unregister_thread(&mddev->thread);
3820         if (conf->r10bio_pool)
3821                 mempool_destroy(conf->r10bio_pool);
3822         safe_put_page(conf->tmppage);
3823         kfree(conf->mirrors);
3824         kfree(conf);
3825         mddev->private = NULL;
3826 out:
3827         return -EIO;
3828 }
3829
3830 static int stop(struct mddev *mddev)
3831 {
3832         struct r10conf *conf = mddev->private;
3833
3834         raise_barrier(conf, 0);
3835         lower_barrier(conf);
3836
3837         md_unregister_thread(&mddev->thread);
3838         if (mddev->queue)
3839                 /* the unplug fn references 'conf'*/
3840                 blk_sync_queue(mddev->queue);
3841
3842         if (conf->r10bio_pool)
3843                 mempool_destroy(conf->r10bio_pool);
3844         safe_put_page(conf->tmppage);
3845         kfree(conf->mirrors);
3846         kfree(conf);
3847         mddev->private = NULL;
3848         return 0;
3849 }
3850
3851 static void raid10_quiesce(struct mddev *mddev, int state)
3852 {
3853         struct r10conf *conf = mddev->private;
3854
3855         switch(state) {
3856         case 1:
3857                 raise_barrier(conf, 0);
3858                 break;
3859         case 0:
3860                 lower_barrier(conf);
3861                 break;
3862         }
3863 }
3864
3865 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3866 {
3867         /* Resize of 'far' arrays is not supported.
3868          * For 'near' and 'offset' arrays we can set the
3869          * number of sectors used to be an appropriate multiple
3870          * of the chunk size.
3871          * For 'offset', this is far_copies*chunksize.
3872          * For 'near' the multiplier is the LCM of
3873          * near_copies and raid_disks.
3874          * So if far_copies > 1 && !far_offset, fail.
3875          * Else find LCM(raid_disks, near_copy)*far_copies and
3876          * multiply by chunk_size.  Then round to this number.
3877          * This is mostly done by raid10_size()
3878          */
3879         struct r10conf *conf = mddev->private;
3880         sector_t oldsize, size;
3881
3882         if (mddev->reshape_position != MaxSector)
3883                 return -EBUSY;
3884
3885         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3886                 return -EINVAL;
3887
3888         oldsize = raid10_size(mddev, 0, 0);
3889         size = raid10_size(mddev, sectors, 0);
3890         if (mddev->external_size &&
3891             mddev->array_sectors > size)
3892                 return -EINVAL;
3893         if (mddev->bitmap) {
3894                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3895                 if (ret)
3896                         return ret;
3897         }
3898         md_set_array_sectors(mddev, size);
3899         set_capacity(mddev->gendisk, mddev->array_sectors);
3900         revalidate_disk(mddev->gendisk);
3901         if (sectors > mddev->dev_sectors &&
3902             mddev->recovery_cp > oldsize) {
3903                 mddev->recovery_cp = oldsize;
3904                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3905         }
3906         calc_sectors(conf, sectors);
3907         mddev->dev_sectors = conf->dev_sectors;
3908         mddev->resync_max_sectors = size;
3909         return 0;
3910 }
3911
3912 static void *raid10_takeover_raid0(struct mddev *mddev)
3913 {
3914         struct md_rdev *rdev;
3915         struct r10conf *conf;
3916
3917         if (mddev->degraded > 0) {
3918                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3919                        mdname(mddev));
3920                 return ERR_PTR(-EINVAL);
3921         }
3922
3923         /* Set new parameters */
3924         mddev->new_level = 10;
3925         /* new layout: far_copies = 1, near_copies = 2 */
3926         mddev->new_layout = (1<<8) + 2;
3927         mddev->new_chunk_sectors = mddev->chunk_sectors;
3928         mddev->delta_disks = mddev->raid_disks;
3929         mddev->raid_disks *= 2;
3930         /* make sure it will be not marked as dirty */
3931         mddev->recovery_cp = MaxSector;
3932
3933         conf = setup_conf(mddev);
3934         if (!IS_ERR(conf)) {
3935                 rdev_for_each(rdev, mddev)
3936                         if (rdev->raid_disk >= 0)
3937                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3938                 conf->barrier = 1;
3939         }
3940
3941         return conf;
3942 }
3943
3944 static void *raid10_takeover(struct mddev *mddev)
3945 {
3946         struct r0conf *raid0_conf;
3947
3948         /* raid10 can take over:
3949          *  raid0 - providing it has only two drives
3950          */
3951         if (mddev->level == 0) {
3952                 /* for raid0 takeover only one zone is supported */
3953                 raid0_conf = mddev->private;
3954                 if (raid0_conf->nr_strip_zones > 1) {
3955                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3956                                " with more than one zone.\n",
3957                                mdname(mddev));
3958                         return ERR_PTR(-EINVAL);
3959                 }
3960                 return raid10_takeover_raid0(mddev);
3961         }
3962         return ERR_PTR(-EINVAL);
3963 }
3964
3965 static int raid10_check_reshape(struct mddev *mddev)
3966 {
3967         /* Called when there is a request to change
3968          * - layout (to ->new_layout)
3969          * - chunk size (to ->new_chunk_sectors)
3970          * - raid_disks (by delta_disks)
3971          * or when trying to restart a reshape that was ongoing.
3972          *
3973          * We need to validate the request and possibly allocate
3974          * space if that might be an issue later.
3975          *
3976          * Currently we reject any reshape of a 'far' mode array,
3977          * allow chunk size to change if new is generally acceptable,
3978          * allow raid_disks to increase, and allow
3979          * a switch between 'near' mode and 'offset' mode.
3980          */
3981         struct r10conf *conf = mddev->private;
3982         struct geom geo;
3983
3984         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3985                 return -EINVAL;
3986
3987         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3988                 /* mustn't change number of copies */
3989                 return -EINVAL;
3990         if (geo.far_copies > 1 && !geo.far_offset)
3991                 /* Cannot switch to 'far' mode */
3992                 return -EINVAL;
3993
3994         if (mddev->array_sectors & geo.chunk_mask)
3995                         /* not factor of array size */
3996                         return -EINVAL;
3997
3998         if (!enough(conf, -1))
3999                 return -EINVAL;
4000
4001         kfree(conf->mirrors_new);
4002         conf->mirrors_new = NULL;
4003         if (mddev->delta_disks > 0) {
4004                 /* allocate new 'mirrors' list */
4005                 conf->mirrors_new = kzalloc(
4006                         sizeof(struct raid10_info)
4007                         *(mddev->raid_disks +
4008                           mddev->delta_disks),
4009                         GFP_KERNEL);
4010                 if (!conf->mirrors_new)
4011                         return -ENOMEM;
4012         }
4013         return 0;
4014 }
4015
4016 /*
4017  * Need to check if array has failed when deciding whether to:
4018  *  - start an array
4019  *  - remove non-faulty devices
4020  *  - add a spare
4021  *  - allow a reshape
4022  * This determination is simple when no reshape is happening.
4023  * However if there is a reshape, we need to carefully check
4024  * both the before and after sections.
4025  * This is because some failed devices may only affect one
4026  * of the two sections, and some non-in_sync devices may
4027  * be insync in the section most affected by failed devices.
4028  */
4029 static int calc_degraded(struct r10conf *conf)
4030 {
4031         int degraded, degraded2;
4032         int i;
4033
4034         rcu_read_lock();
4035         degraded = 0;
4036         /* 'prev' section first */
4037         for (i = 0; i < conf->prev.raid_disks; i++) {
4038                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4039                 if (!rdev || test_bit(Faulty, &rdev->flags))
4040                         degraded++;
4041                 else if (!test_bit(In_sync, &rdev->flags))
4042                         /* When we can reduce the number of devices in
4043                          * an array, this might not contribute to
4044                          * 'degraded'.  It does now.
4045                          */
4046                         degraded++;
4047         }
4048         rcu_read_unlock();
4049         if (conf->geo.raid_disks == conf->prev.raid_disks)
4050                 return degraded;
4051         rcu_read_lock();
4052         degraded2 = 0;
4053         for (i = 0; i < conf->geo.raid_disks; i++) {
4054                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4055                 if (!rdev || test_bit(Faulty, &rdev->flags))
4056                         degraded2++;
4057                 else if (!test_bit(In_sync, &rdev->flags)) {
4058                         /* If reshape is increasing the number of devices,
4059                          * this section has already been recovered, so
4060                          * it doesn't contribute to degraded.
4061                          * else it does.
4062                          */
4063                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4064                                 degraded2++;
4065                 }
4066         }
4067         rcu_read_unlock();
4068         if (degraded2 > degraded)
4069                 return degraded2;
4070         return degraded;
4071 }
4072
4073 static int raid10_start_reshape(struct mddev *mddev)
4074 {
4075         /* A 'reshape' has been requested. This commits
4076          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4077          * This also checks if there are enough spares and adds them
4078          * to the array.
4079          * We currently require enough spares to make the final
4080          * array non-degraded.  We also require that the difference
4081          * between old and new data_offset - on each device - is
4082          * enough that we never risk over-writing.
4083          */
4084
4085         unsigned long before_length, after_length;
4086         sector_t min_offset_diff = 0;
4087         int first = 1;
4088         struct geom new;
4089         struct r10conf *conf = mddev->private;
4090         struct md_rdev *rdev;
4091         int spares = 0;
4092         int ret;
4093
4094         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4095                 return -EBUSY;
4096
4097         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4098                 return -EINVAL;
4099
4100         before_length = ((1 << conf->prev.chunk_shift) *
4101                          conf->prev.far_copies);
4102         after_length = ((1 << conf->geo.chunk_shift) *
4103                         conf->geo.far_copies);
4104
4105         rdev_for_each(rdev, mddev) {
4106                 if (!test_bit(In_sync, &rdev->flags)
4107                     && !test_bit(Faulty, &rdev->flags))
4108                         spares++;
4109                 if (rdev->raid_disk >= 0) {
4110                         long long diff = (rdev->new_data_offset
4111                                           - rdev->data_offset);
4112                         if (!mddev->reshape_backwards)
4113                                 diff = -diff;
4114                         if (diff < 0)
4115                                 diff = 0;
4116                         if (first || diff < min_offset_diff)
4117                                 min_offset_diff = diff;
4118                 }
4119         }
4120
4121         if (max(before_length, after_length) > min_offset_diff)
4122                 return -EINVAL;
4123
4124         if (spares < mddev->delta_disks)
4125                 return -EINVAL;
4126
4127         conf->offset_diff = min_offset_diff;
4128         spin_lock_irq(&conf->device_lock);
4129         if (conf->mirrors_new) {
4130                 memcpy(conf->mirrors_new, conf->mirrors,
4131                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4132                 smp_mb();
4133                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4134                 conf->mirrors_old = conf->mirrors;
4135                 conf->mirrors = conf->mirrors_new;
4136                 conf->mirrors_new = NULL;
4137         }
4138         setup_geo(&conf->geo, mddev, geo_start);
4139         smp_mb();
4140         if (mddev->reshape_backwards) {
4141                 sector_t size = raid10_size(mddev, 0, 0);
4142                 if (size < mddev->array_sectors) {
4143                         spin_unlock_irq(&conf->device_lock);
4144                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4145                                mdname(mddev));
4146                         return -EINVAL;
4147                 }
4148                 mddev->resync_max_sectors = size;
4149                 conf->reshape_progress = size;
4150         } else
4151                 conf->reshape_progress = 0;
4152         spin_unlock_irq(&conf->device_lock);
4153
4154         if (mddev->delta_disks && mddev->bitmap) {
4155                 ret = bitmap_resize(mddev->bitmap,
4156                                     raid10_size(mddev, 0,
4157                                                 conf->geo.raid_disks),
4158                                     0, 0);
4159                 if (ret)
4160                         goto abort;
4161         }
4162         if (mddev->delta_disks > 0) {
4163                 rdev_for_each(rdev, mddev)
4164                         if (rdev->raid_disk < 0 &&
4165                             !test_bit(Faulty, &rdev->flags)) {
4166                                 if (raid10_add_disk(mddev, rdev) == 0) {
4167                                         if (rdev->raid_disk >=
4168                                             conf->prev.raid_disks)
4169                                                 set_bit(In_sync, &rdev->flags);
4170                                         else
4171                                                 rdev->recovery_offset = 0;
4172
4173                                         if (sysfs_link_rdev(mddev, rdev))
4174                                                 /* Failure here  is OK */;
4175                                 }
4176                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4177                                    && !test_bit(Faulty, &rdev->flags)) {
4178                                 /* This is a spare that was manually added */
4179                                 set_bit(In_sync, &rdev->flags);
4180                         }
4181         }
4182         /* When a reshape changes the number of devices,
4183          * ->degraded is measured against the larger of the
4184          * pre and  post numbers.
4185          */
4186         spin_lock_irq(&conf->device_lock);
4187         mddev->degraded = calc_degraded(conf);
4188         spin_unlock_irq(&conf->device_lock);
4189         mddev->raid_disks = conf->geo.raid_disks;
4190         mddev->reshape_position = conf->reshape_progress;
4191         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4192
4193         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4194         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4195         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4196         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4197
4198         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4199                                                 "reshape");
4200         if (!mddev->sync_thread) {
4201                 ret = -EAGAIN;
4202                 goto abort;
4203         }
4204         conf->reshape_checkpoint = jiffies;
4205         md_wakeup_thread(mddev->sync_thread);
4206         md_new_event(mddev);
4207         return 0;
4208
4209 abort:
4210         mddev->recovery = 0;
4211         spin_lock_irq(&conf->device_lock);
4212         conf->geo = conf->prev;
4213         mddev->raid_disks = conf->geo.raid_disks;
4214         rdev_for_each(rdev, mddev)
4215                 rdev->new_data_offset = rdev->data_offset;
4216         smp_wmb();
4217         conf->reshape_progress = MaxSector;
4218         mddev->reshape_position = MaxSector;
4219         spin_unlock_irq(&conf->device_lock);
4220         return ret;
4221 }
4222
4223 /* Calculate the last device-address that could contain
4224  * any block from the chunk that includes the array-address 's'
4225  * and report the next address.
4226  * i.e. the address returned will be chunk-aligned and after
4227  * any data that is in the chunk containing 's'.
4228  */
4229 static sector_t last_dev_address(sector_t s, struct geom *geo)
4230 {
4231         s = (s | geo->chunk_mask) + 1;
4232         s >>= geo->chunk_shift;
4233         s *= geo->near_copies;
4234         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4235         s *= geo->far_copies;
4236         s <<= geo->chunk_shift;
4237         return s;
4238 }
4239
4240 /* Calculate the first device-address that could contain
4241  * any block from the chunk that includes the array-address 's'.
4242  * This too will be the start of a chunk
4243  */
4244 static sector_t first_dev_address(sector_t s, struct geom *geo)
4245 {
4246         s >>= geo->chunk_shift;
4247         s *= geo->near_copies;
4248         sector_div(s, geo->raid_disks);
4249         s *= geo->far_copies;
4250         s <<= geo->chunk_shift;
4251         return s;
4252 }
4253
4254 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4255                                 int *skipped)
4256 {
4257         /* We simply copy at most one chunk (smallest of old and new)
4258          * at a time, possibly less if that exceeds RESYNC_PAGES,
4259          * or we hit a bad block or something.
4260          * This might mean we pause for normal IO in the middle of
4261          * a chunk, but that is not a problem was mddev->reshape_position
4262          * can record any location.
4263          *
4264          * If we will want to write to a location that isn't
4265          * yet recorded as 'safe' (i.e. in metadata on disk) then
4266          * we need to flush all reshape requests and update the metadata.
4267          *
4268          * When reshaping forwards (e.g. to more devices), we interpret
4269          * 'safe' as the earliest block which might not have been copied
4270          * down yet.  We divide this by previous stripe size and multiply
4271          * by previous stripe length to get lowest device offset that we
4272          * cannot write to yet.
4273          * We interpret 'sector_nr' as an address that we want to write to.
4274          * From this we use last_device_address() to find where we might
4275          * write to, and first_device_address on the  'safe' position.
4276          * If this 'next' write position is after the 'safe' position,
4277          * we must update the metadata to increase the 'safe' position.
4278          *
4279          * When reshaping backwards, we round in the opposite direction
4280          * and perform the reverse test:  next write position must not be
4281          * less than current safe position.
4282          *
4283          * In all this the minimum difference in data offsets
4284          * (conf->offset_diff - always positive) allows a bit of slack,
4285          * so next can be after 'safe', but not by more than offset_disk
4286          *
4287          * We need to prepare all the bios here before we start any IO
4288          * to ensure the size we choose is acceptable to all devices.
4289          * The means one for each copy for write-out and an extra one for
4290          * read-in.
4291          * We store the read-in bio in ->master_bio and the others in
4292          * ->devs[x].bio and ->devs[x].repl_bio.
4293          */
4294         struct r10conf *conf = mddev->private;
4295         struct r10bio *r10_bio;
4296         sector_t next, safe, last;
4297         int max_sectors;
4298         int nr_sectors;
4299         int s;
4300         struct md_rdev *rdev;
4301         int need_flush = 0;
4302         struct bio *blist;
4303         struct bio *bio, *read_bio;
4304         int sectors_done = 0;
4305
4306         if (sector_nr == 0) {
4307                 /* If restarting in the middle, skip the initial sectors */
4308                 if (mddev->reshape_backwards &&
4309                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4310                         sector_nr = (raid10_size(mddev, 0, 0)
4311                                      - conf->reshape_progress);
4312                 } else if (!mddev->reshape_backwards &&
4313                            conf->reshape_progress > 0)
4314                         sector_nr = conf->reshape_progress;
4315                 if (sector_nr) {
4316                         mddev->curr_resync_completed = sector_nr;
4317                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4318                         *skipped = 1;
4319                         return sector_nr;
4320                 }
4321         }
4322
4323         /* We don't use sector_nr to track where we are up to
4324          * as that doesn't work well for ->reshape_backwards.
4325          * So just use ->reshape_progress.
4326          */
4327         if (mddev->reshape_backwards) {
4328                 /* 'next' is the earliest device address that we might
4329                  * write to for this chunk in the new layout
4330                  */
4331                 next = first_dev_address(conf->reshape_progress - 1,
4332                                          &conf->geo);
4333
4334                 /* 'safe' is the last device address that we might read from
4335                  * in the old layout after a restart
4336                  */
4337                 safe = last_dev_address(conf->reshape_safe - 1,
4338                                         &conf->prev);
4339
4340                 if (next + conf->offset_diff < safe)
4341                         need_flush = 1;
4342
4343                 last = conf->reshape_progress - 1;
4344                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4345                                                & conf->prev.chunk_mask);
4346                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4347                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4348         } else {
4349                 /* 'next' is after the last device address that we
4350                  * might write to for this chunk in the new layout
4351                  */
4352                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4353
4354                 /* 'safe' is the earliest device address that we might
4355                  * read from in the old layout after a restart
4356                  */
4357                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4358
4359                 /* Need to update metadata if 'next' might be beyond 'safe'
4360                  * as that would possibly corrupt data
4361                  */
4362                 if (next > safe + conf->offset_diff)
4363                         need_flush = 1;
4364
4365                 sector_nr = conf->reshape_progress;
4366                 last  = sector_nr | (conf->geo.chunk_mask
4367                                      & conf->prev.chunk_mask);
4368
4369                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4370                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4371         }
4372
4373         if (need_flush ||
4374             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4375                 /* Need to update reshape_position in metadata */
4376                 wait_barrier(conf);
4377                 mddev->reshape_position = conf->reshape_progress;
4378                 if (mddev->reshape_backwards)
4379                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4380                                 - conf->reshape_progress;
4381                 else
4382                         mddev->curr_resync_completed = conf->reshape_progress;
4383                 conf->reshape_checkpoint = jiffies;
4384                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4385                 md_wakeup_thread(mddev->thread);
4386                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4387                            kthread_should_stop());
4388                 conf->reshape_safe = mddev->reshape_position;
4389                 allow_barrier(conf);
4390         }
4391
4392 read_more:
4393         /* Now schedule reads for blocks from sector_nr to last */
4394         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4395         raise_barrier(conf, sectors_done != 0);
4396         atomic_set(&r10_bio->remaining, 0);
4397         r10_bio->mddev = mddev;
4398         r10_bio->sector = sector_nr;
4399         set_bit(R10BIO_IsReshape, &r10_bio->state);
4400         r10_bio->sectors = last - sector_nr + 1;
4401         rdev = read_balance(conf, r10_bio, &max_sectors);
4402         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4403
4404         if (!rdev) {
4405                 /* Cannot read from here, so need to record bad blocks
4406                  * on all the target devices.
4407                  */
4408                 // FIXME
4409                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4410                 return sectors_done;
4411         }
4412
4413         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4414
4415         read_bio->bi_bdev = rdev->bdev;
4416         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4417                                + rdev->data_offset);
4418         read_bio->bi_private = r10_bio;
4419         read_bio->bi_end_io = end_sync_read;
4420         read_bio->bi_rw = READ;
4421         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4422         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4423         read_bio->bi_vcnt = 0;
4424         read_bio->bi_idx = 0;
4425         read_bio->bi_size = 0;
4426         r10_bio->master_bio = read_bio;
4427         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4428
4429         /* Now find the locations in the new layout */
4430         __raid10_find_phys(&conf->geo, r10_bio);
4431
4432         blist = read_bio;
4433         read_bio->bi_next = NULL;
4434
4435         for (s = 0; s < conf->copies*2; s++) {
4436                 struct bio *b;
4437                 int d = r10_bio->devs[s/2].devnum;
4438                 struct md_rdev *rdev2;
4439                 if (s&1) {
4440                         rdev2 = conf->mirrors[d].replacement;
4441                         b = r10_bio->devs[s/2].repl_bio;
4442                 } else {
4443                         rdev2 = conf->mirrors[d].rdev;
4444                         b = r10_bio->devs[s/2].bio;
4445                 }
4446                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4447                         continue;
4448                 b->bi_bdev = rdev2->bdev;
4449                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4450                 b->bi_private = r10_bio;
4451                 b->bi_end_io = end_reshape_write;
4452                 b->bi_rw = WRITE;
4453                 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4454                 b->bi_flags |= 1 << BIO_UPTODATE;
4455                 b->bi_next = blist;
4456                 b->bi_vcnt = 0;
4457                 b->bi_idx = 0;
4458                 b->bi_size = 0;
4459                 blist = b;
4460         }
4461
4462         /* Now add as many pages as possible to all of these bios. */
4463
4464         nr_sectors = 0;
4465         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4466                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4467                 int len = (max_sectors - s) << 9;
4468                 if (len > PAGE_SIZE)
4469                         len = PAGE_SIZE;
4470                 for (bio = blist; bio ; bio = bio->bi_next) {
4471                         struct bio *bio2;
4472                         if (bio_add_page(bio, page, len, 0))
4473                                 continue;
4474
4475                         /* Didn't fit, must stop */
4476                         for (bio2 = blist;
4477                              bio2 && bio2 != bio;
4478                              bio2 = bio2->bi_next) {
4479                                 /* Remove last page from this bio */
4480                                 bio2->bi_vcnt--;
4481                                 bio2->bi_size -= len;
4482                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4483                         }
4484                         goto bio_full;
4485                 }
4486                 sector_nr += len >> 9;
4487                 nr_sectors += len >> 9;
4488         }
4489 bio_full:
4490         r10_bio->sectors = nr_sectors;
4491
4492         /* Now submit the read */
4493         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4494         atomic_inc(&r10_bio->remaining);
4495         read_bio->bi_next = NULL;
4496         generic_make_request(read_bio);
4497         sector_nr += nr_sectors;
4498         sectors_done += nr_sectors;
4499         if (sector_nr <= last)
4500                 goto read_more;
4501
4502         /* Now that we have done the whole section we can
4503          * update reshape_progress
4504          */
4505         if (mddev->reshape_backwards)
4506                 conf->reshape_progress -= sectors_done;
4507         else
4508                 conf->reshape_progress += sectors_done;
4509
4510         return sectors_done;
4511 }
4512
4513 static void end_reshape_request(struct r10bio *r10_bio);
4514 static int handle_reshape_read_error(struct mddev *mddev,
4515                                      struct r10bio *r10_bio);
4516 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4517 {
4518         /* Reshape read completed.  Hopefully we have a block
4519          * to write out.
4520          * If we got a read error then we do sync 1-page reads from
4521          * elsewhere until we find the data - or give up.
4522          */
4523         struct r10conf *conf = mddev->private;
4524         int s;
4525
4526         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4527                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4528                         /* Reshape has been aborted */
4529                         md_done_sync(mddev, r10_bio->sectors, 0);
4530                         return;
4531                 }
4532
4533         /* We definitely have the data in the pages, schedule the
4534          * writes.
4535          */
4536         atomic_set(&r10_bio->remaining, 1);
4537         for (s = 0; s < conf->copies*2; s++) {
4538                 struct bio *b;
4539                 int d = r10_bio->devs[s/2].devnum;
4540                 struct md_rdev *rdev;
4541                 if (s&1) {
4542                         rdev = conf->mirrors[d].replacement;
4543                         b = r10_bio->devs[s/2].repl_bio;
4544                 } else {
4545                         rdev = conf->mirrors[d].rdev;
4546                         b = r10_bio->devs[s/2].bio;
4547                 }
4548                 if (!rdev || test_bit(Faulty, &rdev->flags))
4549                         continue;
4550                 atomic_inc(&rdev->nr_pending);
4551                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4552                 atomic_inc(&r10_bio->remaining);
4553                 b->bi_next = NULL;
4554                 generic_make_request(b);
4555         }
4556         end_reshape_request(r10_bio);
4557 }
4558
4559 static void end_reshape(struct r10conf *conf)
4560 {
4561         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4562                 return;
4563
4564         spin_lock_irq(&conf->device_lock);
4565         conf->prev = conf->geo;
4566         md_finish_reshape(conf->mddev);
4567         smp_wmb();
4568         conf->reshape_progress = MaxSector;
4569         spin_unlock_irq(&conf->device_lock);
4570
4571         /* read-ahead size must cover two whole stripes, which is
4572          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4573          */
4574         if (conf->mddev->queue) {
4575                 int stripe = conf->geo.raid_disks *
4576                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4577                 stripe /= conf->geo.near_copies;
4578                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4579                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4580         }
4581         conf->fullsync = 0;
4582 }
4583
4584
4585 static int handle_reshape_read_error(struct mddev *mddev,
4586                                      struct r10bio *r10_bio)
4587 {
4588         /* Use sync reads to get the blocks from somewhere else */
4589         int sectors = r10_bio->sectors;
4590         struct r10conf *conf = mddev->private;
4591         struct {
4592                 struct r10bio r10_bio;
4593                 struct r10dev devs[conf->copies];
4594         } on_stack;
4595         struct r10bio *r10b = &on_stack.r10_bio;
4596         int slot = 0;
4597         int idx = 0;
4598         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4599
4600         r10b->sector = r10_bio->sector;
4601         __raid10_find_phys(&conf->prev, r10b);
4602
4603         while (sectors) {
4604                 int s = sectors;
4605                 int success = 0;
4606                 int first_slot = slot;
4607
4608                 if (s > (PAGE_SIZE >> 9))
4609                         s = PAGE_SIZE >> 9;
4610
4611                 while (!success) {
4612                         int d = r10b->devs[slot].devnum;
4613                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4614                         sector_t addr;
4615                         if (rdev == NULL ||
4616                             test_bit(Faulty, &rdev->flags) ||
4617                             !test_bit(In_sync, &rdev->flags))
4618                                 goto failed;
4619
4620                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4621                         success = sync_page_io(rdev,
4622                                                addr,
4623                                                s << 9,
4624                                                bvec[idx].bv_page,
4625                                                READ, false);
4626                         if (success)
4627                                 break;
4628                 failed:
4629                         slot++;
4630                         if (slot >= conf->copies)
4631                                 slot = 0;
4632                         if (slot == first_slot)
4633                                 break;
4634                 }
4635                 if (!success) {
4636                         /* couldn't read this block, must give up */
4637                         set_bit(MD_RECOVERY_INTR,
4638                                 &mddev->recovery);
4639                         return -EIO;
4640                 }
4641                 sectors -= s;
4642                 idx++;
4643         }
4644         return 0;
4645 }
4646
4647 static void end_reshape_write(struct bio *bio, int error)
4648 {
4649         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4650         struct r10bio *r10_bio = bio->bi_private;
4651         struct mddev *mddev = r10_bio->mddev;
4652         struct r10conf *conf = mddev->private;
4653         int d;
4654         int slot;
4655         int repl;
4656         struct md_rdev *rdev = NULL;
4657
4658         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4659         if (repl)
4660                 rdev = conf->mirrors[d].replacement;
4661         if (!rdev) {
4662                 smp_mb();
4663                 rdev = conf->mirrors[d].rdev;
4664         }
4665
4666         if (!uptodate) {
4667                 /* FIXME should record badblock */
4668                 md_error(mddev, rdev);
4669         }
4670
4671         rdev_dec_pending(rdev, mddev);
4672         end_reshape_request(r10_bio);
4673 }
4674
4675 static void end_reshape_request(struct r10bio *r10_bio)
4676 {
4677         if (!atomic_dec_and_test(&r10_bio->remaining))
4678                 return;
4679         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4680         bio_put(r10_bio->master_bio);
4681         put_buf(r10_bio);
4682 }
4683
4684 static void raid10_finish_reshape(struct mddev *mddev)
4685 {
4686         struct r10conf *conf = mddev->private;
4687
4688         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4689                 return;
4690
4691         if (mddev->delta_disks > 0) {
4692                 sector_t size = raid10_size(mddev, 0, 0);
4693                 md_set_array_sectors(mddev, size);
4694                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4695                         mddev->recovery_cp = mddev->resync_max_sectors;
4696                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4697                 }
4698                 mddev->resync_max_sectors = size;
4699                 set_capacity(mddev->gendisk, mddev->array_sectors);
4700                 revalidate_disk(mddev->gendisk);
4701         } else {
4702                 int d;
4703                 for (d = conf->geo.raid_disks ;
4704                      d < conf->geo.raid_disks - mddev->delta_disks;
4705                      d++) {
4706                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4707                         if (rdev)
4708                                 clear_bit(In_sync, &rdev->flags);
4709                         rdev = conf->mirrors[d].replacement;
4710                         if (rdev)
4711                                 clear_bit(In_sync, &rdev->flags);
4712                 }
4713         }
4714         mddev->layout = mddev->new_layout;
4715         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4716         mddev->reshape_position = MaxSector;
4717         mddev->delta_disks = 0;
4718         mddev->reshape_backwards = 0;
4719 }
4720
4721 static struct md_personality raid10_personality =
4722 {
4723         .name           = "raid10",
4724         .level          = 10,
4725         .owner          = THIS_MODULE,
4726         .make_request   = make_request,
4727         .run            = run,
4728         .stop           = stop,
4729         .status         = status,
4730         .error_handler  = error,
4731         .hot_add_disk   = raid10_add_disk,
4732         .hot_remove_disk= raid10_remove_disk,
4733         .spare_active   = raid10_spare_active,
4734         .sync_request   = sync_request,
4735         .quiesce        = raid10_quiesce,
4736         .size           = raid10_size,
4737         .resize         = raid10_resize,
4738         .takeover       = raid10_takeover,
4739         .check_reshape  = raid10_check_reshape,
4740         .start_reshape  = raid10_start_reshape,
4741         .finish_reshape = raid10_finish_reshape,
4742 };
4743
4744 static int __init raid_init(void)
4745 {
4746         return register_md_personality(&raid10_personality);
4747 }
4748
4749 static void raid_exit(void)
4750 {
4751         unregister_md_personality(&raid10_personality);
4752 }
4753
4754 module_init(raid_init);
4755 module_exit(raid_exit);
4756 MODULE_LICENSE("GPL");
4757 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4758 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4759 MODULE_ALIAS("md-raid10");
4760 MODULE_ALIAS("md-level-10");
4761
4762 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);