]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge tag 'hwspinlock-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad...
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int enough(struct r10conf *conf, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 unsigned long flags;
396                 spin_lock_irqsave(&conf->device_lock, flags);
397                 if (!enough(conf, rdev->raid_disk))
398                         uptodate = 1;
399                 spin_unlock_irqrestore(&conf->device_lock, flags);
400         }
401         if (uptodate) {
402                 raid_end_bio_io(r10_bio);
403                 rdev_dec_pending(rdev, conf->mddev);
404         } else {
405                 /*
406                  * oops, read error - keep the refcount on the rdev
407                  */
408                 char b[BDEVNAME_SIZE];
409                 printk_ratelimited(KERN_ERR
410                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
411                                    mdname(conf->mddev),
412                                    bdevname(rdev->bdev, b),
413                                    (unsigned long long)r10_bio->sector);
414                 set_bit(R10BIO_ReadError, &r10_bio->state);
415                 reschedule_retry(r10_bio);
416         }
417 }
418
419 static void close_write(struct r10bio *r10_bio)
420 {
421         /* clear the bitmap if all writes complete successfully */
422         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423                         r10_bio->sectors,
424                         !test_bit(R10BIO_Degraded, &r10_bio->state),
425                         0);
426         md_write_end(r10_bio->mddev);
427 }
428
429 static void one_write_done(struct r10bio *r10_bio)
430 {
431         if (atomic_dec_and_test(&r10_bio->remaining)) {
432                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433                         reschedule_retry(r10_bio);
434                 else {
435                         close_write(r10_bio);
436                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437                                 reschedule_retry(r10_bio);
438                         else
439                                 raid_end_bio_io(r10_bio);
440                 }
441         }
442 }
443
444 static void raid10_end_write_request(struct bio *bio, int error)
445 {
446         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
447         struct r10bio *r10_bio = bio->bi_private;
448         int dev;
449         int dec_rdev = 1;
450         struct r10conf *conf = r10_bio->mddev->private;
451         int slot, repl;
452         struct md_rdev *rdev = NULL;
453
454         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
455
456         if (repl)
457                 rdev = conf->mirrors[dev].replacement;
458         if (!rdev) {
459                 smp_rmb();
460                 repl = 0;
461                 rdev = conf->mirrors[dev].rdev;
462         }
463         /*
464          * this branch is our 'one mirror IO has finished' event handler:
465          */
466         if (!uptodate) {
467                 if (repl)
468                         /* Never record new bad blocks to replacement,
469                          * just fail it.
470                          */
471                         md_error(rdev->mddev, rdev);
472                 else {
473                         set_bit(WriteErrorSeen, &rdev->flags);
474                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
475                                 set_bit(MD_RECOVERY_NEEDED,
476                                         &rdev->mddev->recovery);
477                         set_bit(R10BIO_WriteError, &r10_bio->state);
478                         dec_rdev = 0;
479                 }
480         } else {
481                 /*
482                  * Set R10BIO_Uptodate in our master bio, so that
483                  * we will return a good error code for to the higher
484                  * levels even if IO on some other mirrored buffer fails.
485                  *
486                  * The 'master' represents the composite IO operation to
487                  * user-side. So if something waits for IO, then it will
488                  * wait for the 'master' bio.
489                  */
490                 sector_t first_bad;
491                 int bad_sectors;
492
493                 set_bit(R10BIO_Uptodate, &r10_bio->state);
494
495                 /* Maybe we can clear some bad blocks. */
496                 if (is_badblock(rdev,
497                                 r10_bio->devs[slot].addr,
498                                 r10_bio->sectors,
499                                 &first_bad, &bad_sectors)) {
500                         bio_put(bio);
501                         if (repl)
502                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
503                         else
504                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
505                         dec_rdev = 0;
506                         set_bit(R10BIO_MadeGood, &r10_bio->state);
507                 }
508         }
509
510         /*
511          *
512          * Let's see if all mirrored write operations have finished
513          * already.
514          */
515         one_write_done(r10_bio);
516         if (dec_rdev)
517                 rdev_dec_pending(rdev, conf->mddev);
518 }
519
520 /*
521  * RAID10 layout manager
522  * As well as the chunksize and raid_disks count, there are two
523  * parameters: near_copies and far_copies.
524  * near_copies * far_copies must be <= raid_disks.
525  * Normally one of these will be 1.
526  * If both are 1, we get raid0.
527  * If near_copies == raid_disks, we get raid1.
528  *
529  * Chunks are laid out in raid0 style with near_copies copies of the
530  * first chunk, followed by near_copies copies of the next chunk and
531  * so on.
532  * If far_copies > 1, then after 1/far_copies of the array has been assigned
533  * as described above, we start again with a device offset of near_copies.
534  * So we effectively have another copy of the whole array further down all
535  * the drives, but with blocks on different drives.
536  * With this layout, and block is never stored twice on the one device.
537  *
538  * raid10_find_phys finds the sector offset of a given virtual sector
539  * on each device that it is on.
540  *
541  * raid10_find_virt does the reverse mapping, from a device and a
542  * sector offset to a virtual address
543  */
544
545 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
546 {
547         int n,f;
548         sector_t sector;
549         sector_t chunk;
550         sector_t stripe;
551         int dev;
552         int slot = 0;
553         int last_far_set_start, last_far_set_size;
554
555         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
556         last_far_set_start *= geo->far_set_size;
557
558         last_far_set_size = geo->far_set_size;
559         last_far_set_size += (geo->raid_disks % geo->far_set_size);
560
561         /* now calculate first sector/dev */
562         chunk = r10bio->sector >> geo->chunk_shift;
563         sector = r10bio->sector & geo->chunk_mask;
564
565         chunk *= geo->near_copies;
566         stripe = chunk;
567         dev = sector_div(stripe, geo->raid_disks);
568         if (geo->far_offset)
569                 stripe *= geo->far_copies;
570
571         sector += stripe << geo->chunk_shift;
572
573         /* and calculate all the others */
574         for (n = 0; n < geo->near_copies; n++) {
575                 int d = dev;
576                 int set;
577                 sector_t s = sector;
578                 r10bio->devs[slot].devnum = d;
579                 r10bio->devs[slot].addr = s;
580                 slot++;
581
582                 for (f = 1; f < geo->far_copies; f++) {
583                         set = d / geo->far_set_size;
584                         d += geo->near_copies;
585
586                         if ((geo->raid_disks % geo->far_set_size) &&
587                             (d > last_far_set_start)) {
588                                 d -= last_far_set_start;
589                                 d %= last_far_set_size;
590                                 d += last_far_set_start;
591                         } else {
592                                 d %= geo->far_set_size;
593                                 d += geo->far_set_size * set;
594                         }
595                         s += geo->stride;
596                         r10bio->devs[slot].devnum = d;
597                         r10bio->devs[slot].addr = s;
598                         slot++;
599                 }
600                 dev++;
601                 if (dev >= geo->raid_disks) {
602                         dev = 0;
603                         sector += (geo->chunk_mask + 1);
604                 }
605         }
606 }
607
608 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
609 {
610         struct geom *geo = &conf->geo;
611
612         if (conf->reshape_progress != MaxSector &&
613             ((r10bio->sector >= conf->reshape_progress) !=
614              conf->mddev->reshape_backwards)) {
615                 set_bit(R10BIO_Previous, &r10bio->state);
616                 geo = &conf->prev;
617         } else
618                 clear_bit(R10BIO_Previous, &r10bio->state);
619
620         __raid10_find_phys(geo, r10bio);
621 }
622
623 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
624 {
625         sector_t offset, chunk, vchunk;
626         /* Never use conf->prev as this is only called during resync
627          * or recovery, so reshape isn't happening
628          */
629         struct geom *geo = &conf->geo;
630         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
631         int far_set_size = geo->far_set_size;
632         int last_far_set_start;
633
634         if (geo->raid_disks % geo->far_set_size) {
635                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
636                 last_far_set_start *= geo->far_set_size;
637
638                 if (dev >= last_far_set_start) {
639                         far_set_size = geo->far_set_size;
640                         far_set_size += (geo->raid_disks % geo->far_set_size);
641                         far_set_start = last_far_set_start;
642                 }
643         }
644
645         offset = sector & geo->chunk_mask;
646         if (geo->far_offset) {
647                 int fc;
648                 chunk = sector >> geo->chunk_shift;
649                 fc = sector_div(chunk, geo->far_copies);
650                 dev -= fc * geo->near_copies;
651                 if (dev < far_set_start)
652                         dev += far_set_size;
653         } else {
654                 while (sector >= geo->stride) {
655                         sector -= geo->stride;
656                         if (dev < (geo->near_copies + far_set_start))
657                                 dev += far_set_size - geo->near_copies;
658                         else
659                                 dev -= geo->near_copies;
660                 }
661                 chunk = sector >> geo->chunk_shift;
662         }
663         vchunk = chunk * geo->raid_disks + dev;
664         sector_div(vchunk, geo->near_copies);
665         return (vchunk << geo->chunk_shift) + offset;
666 }
667
668 /**
669  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
670  *      @q: request queue
671  *      @bvm: properties of new bio
672  *      @biovec: the request that could be merged to it.
673  *
674  *      Return amount of bytes we can accept at this offset
675  *      This requires checking for end-of-chunk if near_copies != raid_disks,
676  *      and for subordinate merge_bvec_fns if merge_check_needed.
677  */
678 static int raid10_mergeable_bvec(struct request_queue *q,
679                                  struct bvec_merge_data *bvm,
680                                  struct bio_vec *biovec)
681 {
682         struct mddev *mddev = q->queuedata;
683         struct r10conf *conf = mddev->private;
684         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
685         int max;
686         unsigned int chunk_sectors;
687         unsigned int bio_sectors = bvm->bi_size >> 9;
688         struct geom *geo = &conf->geo;
689
690         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
691         if (conf->reshape_progress != MaxSector &&
692             ((sector >= conf->reshape_progress) !=
693              conf->mddev->reshape_backwards))
694                 geo = &conf->prev;
695
696         if (geo->near_copies < geo->raid_disks) {
697                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
698                                         + bio_sectors)) << 9;
699                 if (max < 0)
700                         /* bio_add cannot handle a negative return */
701                         max = 0;
702                 if (max <= biovec->bv_len && bio_sectors == 0)
703                         return biovec->bv_len;
704         } else
705                 max = biovec->bv_len;
706
707         if (mddev->merge_check_needed) {
708                 struct {
709                         struct r10bio r10_bio;
710                         struct r10dev devs[conf->copies];
711                 } on_stack;
712                 struct r10bio *r10_bio = &on_stack.r10_bio;
713                 int s;
714                 if (conf->reshape_progress != MaxSector) {
715                         /* Cannot give any guidance during reshape */
716                         if (max <= biovec->bv_len && bio_sectors == 0)
717                                 return biovec->bv_len;
718                         return 0;
719                 }
720                 r10_bio->sector = sector;
721                 raid10_find_phys(conf, r10_bio);
722                 rcu_read_lock();
723                 for (s = 0; s < conf->copies; s++) {
724                         int disk = r10_bio->devs[s].devnum;
725                         struct md_rdev *rdev = rcu_dereference(
726                                 conf->mirrors[disk].rdev);
727                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
728                                 struct request_queue *q =
729                                         bdev_get_queue(rdev->bdev);
730                                 if (q->merge_bvec_fn) {
731                                         bvm->bi_sector = r10_bio->devs[s].addr
732                                                 + rdev->data_offset;
733                                         bvm->bi_bdev = rdev->bdev;
734                                         max = min(max, q->merge_bvec_fn(
735                                                           q, bvm, biovec));
736                                 }
737                         }
738                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
739                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
740                                 struct request_queue *q =
741                                         bdev_get_queue(rdev->bdev);
742                                 if (q->merge_bvec_fn) {
743                                         bvm->bi_sector = r10_bio->devs[s].addr
744                                                 + rdev->data_offset;
745                                         bvm->bi_bdev = rdev->bdev;
746                                         max = min(max, q->merge_bvec_fn(
747                                                           q, bvm, biovec));
748                                 }
749                         }
750                 }
751                 rcu_read_unlock();
752         }
753         return max;
754 }
755
756 /*
757  * This routine returns the disk from which the requested read should
758  * be done. There is a per-array 'next expected sequential IO' sector
759  * number - if this matches on the next IO then we use the last disk.
760  * There is also a per-disk 'last know head position' sector that is
761  * maintained from IRQ contexts, both the normal and the resync IO
762  * completion handlers update this position correctly. If there is no
763  * perfect sequential match then we pick the disk whose head is closest.
764  *
765  * If there are 2 mirrors in the same 2 devices, performance degrades
766  * because position is mirror, not device based.
767  *
768  * The rdev for the device selected will have nr_pending incremented.
769  */
770
771 /*
772  * FIXME: possibly should rethink readbalancing and do it differently
773  * depending on near_copies / far_copies geometry.
774  */
775 static struct md_rdev *read_balance(struct r10conf *conf,
776                                     struct r10bio *r10_bio,
777                                     int *max_sectors)
778 {
779         const sector_t this_sector = r10_bio->sector;
780         int disk, slot;
781         int sectors = r10_bio->sectors;
782         int best_good_sectors;
783         sector_t new_distance, best_dist;
784         struct md_rdev *best_rdev, *rdev = NULL;
785         int do_balance;
786         int best_slot;
787         struct geom *geo = &conf->geo;
788
789         raid10_find_phys(conf, r10_bio);
790         rcu_read_lock();
791 retry:
792         sectors = r10_bio->sectors;
793         best_slot = -1;
794         best_rdev = NULL;
795         best_dist = MaxSector;
796         best_good_sectors = 0;
797         do_balance = 1;
798         /*
799          * Check if we can balance. We can balance on the whole
800          * device if no resync is going on (recovery is ok), or below
801          * the resync window. We take the first readable disk when
802          * above the resync window.
803          */
804         if (conf->mddev->recovery_cp < MaxSector
805             && (this_sector + sectors >= conf->next_resync))
806                 do_balance = 0;
807
808         for (slot = 0; slot < conf->copies ; slot++) {
809                 sector_t first_bad;
810                 int bad_sectors;
811                 sector_t dev_sector;
812
813                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
814                         continue;
815                 disk = r10_bio->devs[slot].devnum;
816                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
817                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
818                     test_bit(Unmerged, &rdev->flags) ||
819                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
820                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
821                 if (rdev == NULL ||
822                     test_bit(Faulty, &rdev->flags) ||
823                     test_bit(Unmerged, &rdev->flags))
824                         continue;
825                 if (!test_bit(In_sync, &rdev->flags) &&
826                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827                         continue;
828
829                 dev_sector = r10_bio->devs[slot].addr;
830                 if (is_badblock(rdev, dev_sector, sectors,
831                                 &first_bad, &bad_sectors)) {
832                         if (best_dist < MaxSector)
833                                 /* Already have a better slot */
834                                 continue;
835                         if (first_bad <= dev_sector) {
836                                 /* Cannot read here.  If this is the
837                                  * 'primary' device, then we must not read
838                                  * beyond 'bad_sectors' from another device.
839                                  */
840                                 bad_sectors -= (dev_sector - first_bad);
841                                 if (!do_balance && sectors > bad_sectors)
842                                         sectors = bad_sectors;
843                                 if (best_good_sectors > sectors)
844                                         best_good_sectors = sectors;
845                         } else {
846                                 sector_t good_sectors =
847                                         first_bad - dev_sector;
848                                 if (good_sectors > best_good_sectors) {
849                                         best_good_sectors = good_sectors;
850                                         best_slot = slot;
851                                         best_rdev = rdev;
852                                 }
853                                 if (!do_balance)
854                                         /* Must read from here */
855                                         break;
856                         }
857                         continue;
858                 } else
859                         best_good_sectors = sectors;
860
861                 if (!do_balance)
862                         break;
863
864                 /* This optimisation is debatable, and completely destroys
865                  * sequential read speed for 'far copies' arrays.  So only
866                  * keep it for 'near' arrays, and review those later.
867                  */
868                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
869                         break;
870
871                 /* for far > 1 always use the lowest address */
872                 if (geo->far_copies > 1)
873                         new_distance = r10_bio->devs[slot].addr;
874                 else
875                         new_distance = abs(r10_bio->devs[slot].addr -
876                                            conf->mirrors[disk].head_position);
877                 if (new_distance < best_dist) {
878                         best_dist = new_distance;
879                         best_slot = slot;
880                         best_rdev = rdev;
881                 }
882         }
883         if (slot >= conf->copies) {
884                 slot = best_slot;
885                 rdev = best_rdev;
886         }
887
888         if (slot >= 0) {
889                 atomic_inc(&rdev->nr_pending);
890                 if (test_bit(Faulty, &rdev->flags)) {
891                         /* Cannot risk returning a device that failed
892                          * before we inc'ed nr_pending
893                          */
894                         rdev_dec_pending(rdev, conf->mddev);
895                         goto retry;
896                 }
897                 r10_bio->read_slot = slot;
898         } else
899                 rdev = NULL;
900         rcu_read_unlock();
901         *max_sectors = best_good_sectors;
902
903         return rdev;
904 }
905
906 int md_raid10_congested(struct mddev *mddev, int bits)
907 {
908         struct r10conf *conf = mddev->private;
909         int i, ret = 0;
910
911         if ((bits & (1 << BDI_async_congested)) &&
912             conf->pending_count >= max_queued_requests)
913                 return 1;
914
915         rcu_read_lock();
916         for (i = 0;
917              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
918                      && ret == 0;
919              i++) {
920                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
921                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
922                         struct request_queue *q = bdev_get_queue(rdev->bdev);
923
924                         ret |= bdi_congested(&q->backing_dev_info, bits);
925                 }
926         }
927         rcu_read_unlock();
928         return ret;
929 }
930 EXPORT_SYMBOL_GPL(md_raid10_congested);
931
932 static int raid10_congested(void *data, int bits)
933 {
934         struct mddev *mddev = data;
935
936         return mddev_congested(mddev, bits) ||
937                 md_raid10_congested(mddev, bits);
938 }
939
940 static void flush_pending_writes(struct r10conf *conf)
941 {
942         /* Any writes that have been queued but are awaiting
943          * bitmap updates get flushed here.
944          */
945         spin_lock_irq(&conf->device_lock);
946
947         if (conf->pending_bio_list.head) {
948                 struct bio *bio;
949                 bio = bio_list_get(&conf->pending_bio_list);
950                 conf->pending_count = 0;
951                 spin_unlock_irq(&conf->device_lock);
952                 /* flush any pending bitmap writes to disk
953                  * before proceeding w/ I/O */
954                 bitmap_unplug(conf->mddev->bitmap);
955                 wake_up(&conf->wait_barrier);
956
957                 while (bio) { /* submit pending writes */
958                         struct bio *next = bio->bi_next;
959                         bio->bi_next = NULL;
960                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
961                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
962                                 /* Just ignore it */
963                                 bio_endio(bio, 0);
964                         else
965                                 generic_make_request(bio);
966                         bio = next;
967                 }
968         } else
969                 spin_unlock_irq(&conf->device_lock);
970 }
971
972 /* Barriers....
973  * Sometimes we need to suspend IO while we do something else,
974  * either some resync/recovery, or reconfigure the array.
975  * To do this we raise a 'barrier'.
976  * The 'barrier' is a counter that can be raised multiple times
977  * to count how many activities are happening which preclude
978  * normal IO.
979  * We can only raise the barrier if there is no pending IO.
980  * i.e. if nr_pending == 0.
981  * We choose only to raise the barrier if no-one is waiting for the
982  * barrier to go down.  This means that as soon as an IO request
983  * is ready, no other operations which require a barrier will start
984  * until the IO request has had a chance.
985  *
986  * So: regular IO calls 'wait_barrier'.  When that returns there
987  *    is no backgroup IO happening,  It must arrange to call
988  *    allow_barrier when it has finished its IO.
989  * backgroup IO calls must call raise_barrier.  Once that returns
990  *    there is no normal IO happeing.  It must arrange to call
991  *    lower_barrier when the particular background IO completes.
992  */
993
994 static void raise_barrier(struct r10conf *conf, int force)
995 {
996         BUG_ON(force && !conf->barrier);
997         spin_lock_irq(&conf->resync_lock);
998
999         /* Wait until no block IO is waiting (unless 'force') */
1000         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1001                             conf->resync_lock);
1002
1003         /* block any new IO from starting */
1004         conf->barrier++;
1005
1006         /* Now wait for all pending IO to complete */
1007         wait_event_lock_irq(conf->wait_barrier,
1008                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1009                             conf->resync_lock);
1010
1011         spin_unlock_irq(&conf->resync_lock);
1012 }
1013
1014 static void lower_barrier(struct r10conf *conf)
1015 {
1016         unsigned long flags;
1017         spin_lock_irqsave(&conf->resync_lock, flags);
1018         conf->barrier--;
1019         spin_unlock_irqrestore(&conf->resync_lock, flags);
1020         wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void wait_barrier(struct r10conf *conf)
1024 {
1025         spin_lock_irq(&conf->resync_lock);
1026         if (conf->barrier) {
1027                 conf->nr_waiting++;
1028                 /* Wait for the barrier to drop.
1029                  * However if there are already pending
1030                  * requests (preventing the barrier from
1031                  * rising completely), and the
1032                  * pre-process bio queue isn't empty,
1033                  * then don't wait, as we need to empty
1034                  * that queue to get the nr_pending
1035                  * count down.
1036                  */
1037                 wait_event_lock_irq(conf->wait_barrier,
1038                                     !conf->barrier ||
1039                                     (conf->nr_pending &&
1040                                      current->bio_list &&
1041                                      !bio_list_empty(current->bio_list)),
1042                                     conf->resync_lock);
1043                 conf->nr_waiting--;
1044         }
1045         conf->nr_pending++;
1046         spin_unlock_irq(&conf->resync_lock);
1047 }
1048
1049 static void allow_barrier(struct r10conf *conf)
1050 {
1051         unsigned long flags;
1052         spin_lock_irqsave(&conf->resync_lock, flags);
1053         conf->nr_pending--;
1054         spin_unlock_irqrestore(&conf->resync_lock, flags);
1055         wake_up(&conf->wait_barrier);
1056 }
1057
1058 static void freeze_array(struct r10conf *conf)
1059 {
1060         /* stop syncio and normal IO and wait for everything to
1061          * go quiet.
1062          * We increment barrier and nr_waiting, and then
1063          * wait until nr_pending match nr_queued+1
1064          * This is called in the context of one normal IO request
1065          * that has failed. Thus any sync request that might be pending
1066          * will be blocked by nr_pending, and we need to wait for
1067          * pending IO requests to complete or be queued for re-try.
1068          * Thus the number queued (nr_queued) plus this request (1)
1069          * must match the number of pending IOs (nr_pending) before
1070          * we continue.
1071          */
1072         spin_lock_irq(&conf->resync_lock);
1073         conf->barrier++;
1074         conf->nr_waiting++;
1075         wait_event_lock_irq_cmd(conf->wait_barrier,
1076                                 conf->nr_pending == conf->nr_queued+1,
1077                                 conf->resync_lock,
1078                                 flush_pending_writes(conf));
1079
1080         spin_unlock_irq(&conf->resync_lock);
1081 }
1082
1083 static void unfreeze_array(struct r10conf *conf)
1084 {
1085         /* reverse the effect of the freeze */
1086         spin_lock_irq(&conf->resync_lock);
1087         conf->barrier--;
1088         conf->nr_waiting--;
1089         wake_up(&conf->wait_barrier);
1090         spin_unlock_irq(&conf->resync_lock);
1091 }
1092
1093 static sector_t choose_data_offset(struct r10bio *r10_bio,
1094                                    struct md_rdev *rdev)
1095 {
1096         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097             test_bit(R10BIO_Previous, &r10_bio->state))
1098                 return rdev->data_offset;
1099         else
1100                 return rdev->new_data_offset;
1101 }
1102
1103 struct raid10_plug_cb {
1104         struct blk_plug_cb      cb;
1105         struct bio_list         pending;
1106         int                     pending_cnt;
1107 };
1108
1109 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1112                                                    cb);
1113         struct mddev *mddev = plug->cb.data;
1114         struct r10conf *conf = mddev->private;
1115         struct bio *bio;
1116
1117         if (from_schedule || current->bio_list) {
1118                 spin_lock_irq(&conf->device_lock);
1119                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120                 conf->pending_count += plug->pending_cnt;
1121                 spin_unlock_irq(&conf->device_lock);
1122                 wake_up(&conf->wait_barrier);
1123                 md_wakeup_thread(mddev->thread);
1124                 kfree(plug);
1125                 return;
1126         }
1127
1128         /* we aren't scheduling, so we can do the write-out directly. */
1129         bio = bio_list_get(&plug->pending);
1130         bitmap_unplug(mddev->bitmap);
1131         wake_up(&conf->wait_barrier);
1132
1133         while (bio) { /* submit pending writes */
1134                 struct bio *next = bio->bi_next;
1135                 bio->bi_next = NULL;
1136                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1137                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1138                         /* Just ignore it */
1139                         bio_endio(bio, 0);
1140                 else
1141                         generic_make_request(bio);
1142                 bio = next;
1143         }
1144         kfree(plug);
1145 }
1146
1147 static void make_request(struct mddev *mddev, struct bio * bio)
1148 {
1149         struct r10conf *conf = mddev->private;
1150         struct r10bio *r10_bio;
1151         struct bio *read_bio;
1152         int i;
1153         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1154         int chunk_sects = chunk_mask + 1;
1155         const int rw = bio_data_dir(bio);
1156         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1157         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1158         const unsigned long do_discard = (bio->bi_rw
1159                                           & (REQ_DISCARD | REQ_SECURE));
1160         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1161         unsigned long flags;
1162         struct md_rdev *blocked_rdev;
1163         struct blk_plug_cb *cb;
1164         struct raid10_plug_cb *plug = NULL;
1165         int sectors_handled;
1166         int max_sectors;
1167         int sectors;
1168
1169         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1170                 md_flush_request(mddev, bio);
1171                 return;
1172         }
1173
1174         /* If this request crosses a chunk boundary, we need to
1175          * split it.  This will only happen for 1 PAGE (or less) requests.
1176          */
1177         if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1178                      > chunk_sects
1179                      && (conf->geo.near_copies < conf->geo.raid_disks
1180                          || conf->prev.near_copies < conf->prev.raid_disks))) {
1181                 struct bio_pair *bp;
1182                 /* Sanity check -- queue functions should prevent this happening */
1183                 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1184                     bio->bi_idx != 0)
1185                         goto bad_map;
1186                 /* This is a one page bio that upper layers
1187                  * refuse to split for us, so we need to split it.
1188                  */
1189                 bp = bio_split(bio,
1190                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1191
1192                 /* Each of these 'make_request' calls will call 'wait_barrier'.
1193                  * If the first succeeds but the second blocks due to the resync
1194                  * thread raising the barrier, we will deadlock because the
1195                  * IO to the underlying device will be queued in generic_make_request
1196                  * and will never complete, so will never reduce nr_pending.
1197                  * So increment nr_waiting here so no new raise_barriers will
1198                  * succeed, and so the second wait_barrier cannot block.
1199                  */
1200                 spin_lock_irq(&conf->resync_lock);
1201                 conf->nr_waiting++;
1202                 spin_unlock_irq(&conf->resync_lock);
1203
1204                 make_request(mddev, &bp->bio1);
1205                 make_request(mddev, &bp->bio2);
1206
1207                 spin_lock_irq(&conf->resync_lock);
1208                 conf->nr_waiting--;
1209                 wake_up(&conf->wait_barrier);
1210                 spin_unlock_irq(&conf->resync_lock);
1211
1212                 bio_pair_release(bp);
1213                 return;
1214         bad_map:
1215                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1216                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1217                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1218
1219                 bio_io_error(bio);
1220                 return;
1221         }
1222
1223         md_write_start(mddev, bio);
1224
1225         /*
1226          * Register the new request and wait if the reconstruction
1227          * thread has put up a bar for new requests.
1228          * Continue immediately if no resync is active currently.
1229          */
1230         wait_barrier(conf);
1231
1232         sectors = bio->bi_size >> 9;
1233         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1234             bio->bi_sector < conf->reshape_progress &&
1235             bio->bi_sector + sectors > conf->reshape_progress) {
1236                 /* IO spans the reshape position.  Need to wait for
1237                  * reshape to pass
1238                  */
1239                 allow_barrier(conf);
1240                 wait_event(conf->wait_barrier,
1241                            conf->reshape_progress <= bio->bi_sector ||
1242                            conf->reshape_progress >= bio->bi_sector + sectors);
1243                 wait_barrier(conf);
1244         }
1245         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1246             bio_data_dir(bio) == WRITE &&
1247             (mddev->reshape_backwards
1248              ? (bio->bi_sector < conf->reshape_safe &&
1249                 bio->bi_sector + sectors > conf->reshape_progress)
1250              : (bio->bi_sector + sectors > conf->reshape_safe &&
1251                 bio->bi_sector < conf->reshape_progress))) {
1252                 /* Need to update reshape_position in metadata */
1253                 mddev->reshape_position = conf->reshape_progress;
1254                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1255                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1256                 md_wakeup_thread(mddev->thread);
1257                 wait_event(mddev->sb_wait,
1258                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1259
1260                 conf->reshape_safe = mddev->reshape_position;
1261         }
1262
1263         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1264
1265         r10_bio->master_bio = bio;
1266         r10_bio->sectors = sectors;
1267
1268         r10_bio->mddev = mddev;
1269         r10_bio->sector = bio->bi_sector;
1270         r10_bio->state = 0;
1271
1272         /* We might need to issue multiple reads to different
1273          * devices if there are bad blocks around, so we keep
1274          * track of the number of reads in bio->bi_phys_segments.
1275          * If this is 0, there is only one r10_bio and no locking
1276          * will be needed when the request completes.  If it is
1277          * non-zero, then it is the number of not-completed requests.
1278          */
1279         bio->bi_phys_segments = 0;
1280         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1281
1282         if (rw == READ) {
1283                 /*
1284                  * read balancing logic:
1285                  */
1286                 struct md_rdev *rdev;
1287                 int slot;
1288
1289 read_again:
1290                 rdev = read_balance(conf, r10_bio, &max_sectors);
1291                 if (!rdev) {
1292                         raid_end_bio_io(r10_bio);
1293                         return;
1294                 }
1295                 slot = r10_bio->read_slot;
1296
1297                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1298                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1299                             max_sectors);
1300
1301                 r10_bio->devs[slot].bio = read_bio;
1302                 r10_bio->devs[slot].rdev = rdev;
1303
1304                 read_bio->bi_sector = r10_bio->devs[slot].addr +
1305                         choose_data_offset(r10_bio, rdev);
1306                 read_bio->bi_bdev = rdev->bdev;
1307                 read_bio->bi_end_io = raid10_end_read_request;
1308                 read_bio->bi_rw = READ | do_sync;
1309                 read_bio->bi_private = r10_bio;
1310
1311                 if (max_sectors < r10_bio->sectors) {
1312                         /* Could not read all from this device, so we will
1313                          * need another r10_bio.
1314                          */
1315                         sectors_handled = (r10_bio->sectors + max_sectors
1316                                            - bio->bi_sector);
1317                         r10_bio->sectors = max_sectors;
1318                         spin_lock_irq(&conf->device_lock);
1319                         if (bio->bi_phys_segments == 0)
1320                                 bio->bi_phys_segments = 2;
1321                         else
1322                                 bio->bi_phys_segments++;
1323                         spin_unlock(&conf->device_lock);
1324                         /* Cannot call generic_make_request directly
1325                          * as that will be queued in __generic_make_request
1326                          * and subsequent mempool_alloc might block
1327                          * waiting for it.  so hand bio over to raid10d.
1328                          */
1329                         reschedule_retry(r10_bio);
1330
1331                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1332
1333                         r10_bio->master_bio = bio;
1334                         r10_bio->sectors = ((bio->bi_size >> 9)
1335                                             - sectors_handled);
1336                         r10_bio->state = 0;
1337                         r10_bio->mddev = mddev;
1338                         r10_bio->sector = bio->bi_sector + sectors_handled;
1339                         goto read_again;
1340                 } else
1341                         generic_make_request(read_bio);
1342                 return;
1343         }
1344
1345         /*
1346          * WRITE:
1347          */
1348         if (conf->pending_count >= max_queued_requests) {
1349                 md_wakeup_thread(mddev->thread);
1350                 wait_event(conf->wait_barrier,
1351                            conf->pending_count < max_queued_requests);
1352         }
1353         /* first select target devices under rcu_lock and
1354          * inc refcount on their rdev.  Record them by setting
1355          * bios[x] to bio
1356          * If there are known/acknowledged bad blocks on any device
1357          * on which we have seen a write error, we want to avoid
1358          * writing to those blocks.  This potentially requires several
1359          * writes to write around the bad blocks.  Each set of writes
1360          * gets its own r10_bio with a set of bios attached.  The number
1361          * of r10_bios is recored in bio->bi_phys_segments just as with
1362          * the read case.
1363          */
1364
1365         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1366         raid10_find_phys(conf, r10_bio);
1367 retry_write:
1368         blocked_rdev = NULL;
1369         rcu_read_lock();
1370         max_sectors = r10_bio->sectors;
1371
1372         for (i = 0;  i < conf->copies; i++) {
1373                 int d = r10_bio->devs[i].devnum;
1374                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1375                 struct md_rdev *rrdev = rcu_dereference(
1376                         conf->mirrors[d].replacement);
1377                 if (rdev == rrdev)
1378                         rrdev = NULL;
1379                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380                         atomic_inc(&rdev->nr_pending);
1381                         blocked_rdev = rdev;
1382                         break;
1383                 }
1384                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1385                         atomic_inc(&rrdev->nr_pending);
1386                         blocked_rdev = rrdev;
1387                         break;
1388                 }
1389                 if (rdev && (test_bit(Faulty, &rdev->flags)
1390                              || test_bit(Unmerged, &rdev->flags)))
1391                         rdev = NULL;
1392                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1393                               || test_bit(Unmerged, &rrdev->flags)))
1394                         rrdev = NULL;
1395
1396                 r10_bio->devs[i].bio = NULL;
1397                 r10_bio->devs[i].repl_bio = NULL;
1398
1399                 if (!rdev && !rrdev) {
1400                         set_bit(R10BIO_Degraded, &r10_bio->state);
1401                         continue;
1402                 }
1403                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1404                         sector_t first_bad;
1405                         sector_t dev_sector = r10_bio->devs[i].addr;
1406                         int bad_sectors;
1407                         int is_bad;
1408
1409                         is_bad = is_badblock(rdev, dev_sector,
1410                                              max_sectors,
1411                                              &first_bad, &bad_sectors);
1412                         if (is_bad < 0) {
1413                                 /* Mustn't write here until the bad block
1414                                  * is acknowledged
1415                                  */
1416                                 atomic_inc(&rdev->nr_pending);
1417                                 set_bit(BlockedBadBlocks, &rdev->flags);
1418                                 blocked_rdev = rdev;
1419                                 break;
1420                         }
1421                         if (is_bad && first_bad <= dev_sector) {
1422                                 /* Cannot write here at all */
1423                                 bad_sectors -= (dev_sector - first_bad);
1424                                 if (bad_sectors < max_sectors)
1425                                         /* Mustn't write more than bad_sectors
1426                                          * to other devices yet
1427                                          */
1428                                         max_sectors = bad_sectors;
1429                                 /* We don't set R10BIO_Degraded as that
1430                                  * only applies if the disk is missing,
1431                                  * so it might be re-added, and we want to
1432                                  * know to recover this chunk.
1433                                  * In this case the device is here, and the
1434                                  * fact that this chunk is not in-sync is
1435                                  * recorded in the bad block log.
1436                                  */
1437                                 continue;
1438                         }
1439                         if (is_bad) {
1440                                 int good_sectors = first_bad - dev_sector;
1441                                 if (good_sectors < max_sectors)
1442                                         max_sectors = good_sectors;
1443                         }
1444                 }
1445                 if (rdev) {
1446                         r10_bio->devs[i].bio = bio;
1447                         atomic_inc(&rdev->nr_pending);
1448                 }
1449                 if (rrdev) {
1450                         r10_bio->devs[i].repl_bio = bio;
1451                         atomic_inc(&rrdev->nr_pending);
1452                 }
1453         }
1454         rcu_read_unlock();
1455
1456         if (unlikely(blocked_rdev)) {
1457                 /* Have to wait for this device to get unblocked, then retry */
1458                 int j;
1459                 int d;
1460
1461                 for (j = 0; j < i; j++) {
1462                         if (r10_bio->devs[j].bio) {
1463                                 d = r10_bio->devs[j].devnum;
1464                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1465                         }
1466                         if (r10_bio->devs[j].repl_bio) {
1467                                 struct md_rdev *rdev;
1468                                 d = r10_bio->devs[j].devnum;
1469                                 rdev = conf->mirrors[d].replacement;
1470                                 if (!rdev) {
1471                                         /* Race with remove_disk */
1472                                         smp_mb();
1473                                         rdev = conf->mirrors[d].rdev;
1474                                 }
1475                                 rdev_dec_pending(rdev, mddev);
1476                         }
1477                 }
1478                 allow_barrier(conf);
1479                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1480                 wait_barrier(conf);
1481                 goto retry_write;
1482         }
1483
1484         if (max_sectors < r10_bio->sectors) {
1485                 /* We are splitting this into multiple parts, so
1486                  * we need to prepare for allocating another r10_bio.
1487                  */
1488                 r10_bio->sectors = max_sectors;
1489                 spin_lock_irq(&conf->device_lock);
1490                 if (bio->bi_phys_segments == 0)
1491                         bio->bi_phys_segments = 2;
1492                 else
1493                         bio->bi_phys_segments++;
1494                 spin_unlock_irq(&conf->device_lock);
1495         }
1496         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1497
1498         atomic_set(&r10_bio->remaining, 1);
1499         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1500
1501         for (i = 0; i < conf->copies; i++) {
1502                 struct bio *mbio;
1503                 int d = r10_bio->devs[i].devnum;
1504                 if (r10_bio->devs[i].bio) {
1505                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1506                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1507                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1508                                     max_sectors);
1509                         r10_bio->devs[i].bio = mbio;
1510
1511                         mbio->bi_sector = (r10_bio->devs[i].addr+
1512                                            choose_data_offset(r10_bio,
1513                                                               rdev));
1514                         mbio->bi_bdev = rdev->bdev;
1515                         mbio->bi_end_io = raid10_end_write_request;
1516                         mbio->bi_rw =
1517                                 WRITE | do_sync | do_fua | do_discard | do_same;
1518                         mbio->bi_private = r10_bio;
1519
1520                         atomic_inc(&r10_bio->remaining);
1521
1522                         cb = blk_check_plugged(raid10_unplug, mddev,
1523                                                sizeof(*plug));
1524                         if (cb)
1525                                 plug = container_of(cb, struct raid10_plug_cb,
1526                                                     cb);
1527                         else
1528                                 plug = NULL;
1529                         spin_lock_irqsave(&conf->device_lock, flags);
1530                         if (plug) {
1531                                 bio_list_add(&plug->pending, mbio);
1532                                 plug->pending_cnt++;
1533                         } else {
1534                                 bio_list_add(&conf->pending_bio_list, mbio);
1535                                 conf->pending_count++;
1536                         }
1537                         spin_unlock_irqrestore(&conf->device_lock, flags);
1538                         if (!plug)
1539                                 md_wakeup_thread(mddev->thread);
1540                 }
1541
1542                 if (r10_bio->devs[i].repl_bio) {
1543                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1544                         if (rdev == NULL) {
1545                                 /* Replacement just got moved to main 'rdev' */
1546                                 smp_mb();
1547                                 rdev = conf->mirrors[d].rdev;
1548                         }
1549                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1550                         md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1551                                     max_sectors);
1552                         r10_bio->devs[i].repl_bio = mbio;
1553
1554                         mbio->bi_sector = (r10_bio->devs[i].addr +
1555                                            choose_data_offset(
1556                                                    r10_bio, rdev));
1557                         mbio->bi_bdev = rdev->bdev;
1558                         mbio->bi_end_io = raid10_end_write_request;
1559                         mbio->bi_rw =
1560                                 WRITE | do_sync | do_fua | do_discard | do_same;
1561                         mbio->bi_private = r10_bio;
1562
1563                         atomic_inc(&r10_bio->remaining);
1564                         spin_lock_irqsave(&conf->device_lock, flags);
1565                         bio_list_add(&conf->pending_bio_list, mbio);
1566                         conf->pending_count++;
1567                         spin_unlock_irqrestore(&conf->device_lock, flags);
1568                         if (!mddev_check_plugged(mddev))
1569                                 md_wakeup_thread(mddev->thread);
1570                 }
1571         }
1572
1573         /* Don't remove the bias on 'remaining' (one_write_done) until
1574          * after checking if we need to go around again.
1575          */
1576
1577         if (sectors_handled < (bio->bi_size >> 9)) {
1578                 one_write_done(r10_bio);
1579                 /* We need another r10_bio.  It has already been counted
1580                  * in bio->bi_phys_segments.
1581                  */
1582                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1583
1584                 r10_bio->master_bio = bio;
1585                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1586
1587                 r10_bio->mddev = mddev;
1588                 r10_bio->sector = bio->bi_sector + sectors_handled;
1589                 r10_bio->state = 0;
1590                 goto retry_write;
1591         }
1592         one_write_done(r10_bio);
1593
1594         /* In case raid10d snuck in to freeze_array */
1595         wake_up(&conf->wait_barrier);
1596 }
1597
1598 static void status(struct seq_file *seq, struct mddev *mddev)
1599 {
1600         struct r10conf *conf = mddev->private;
1601         int i;
1602
1603         if (conf->geo.near_copies < conf->geo.raid_disks)
1604                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1605         if (conf->geo.near_copies > 1)
1606                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1607         if (conf->geo.far_copies > 1) {
1608                 if (conf->geo.far_offset)
1609                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1610                 else
1611                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1612         }
1613         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1614                                         conf->geo.raid_disks - mddev->degraded);
1615         for (i = 0; i < conf->geo.raid_disks; i++)
1616                 seq_printf(seq, "%s",
1617                               conf->mirrors[i].rdev &&
1618                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1619         seq_printf(seq, "]");
1620 }
1621
1622 /* check if there are enough drives for
1623  * every block to appear on atleast one.
1624  * Don't consider the device numbered 'ignore'
1625  * as we might be about to remove it.
1626  */
1627 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1628 {
1629         int first = 0;
1630
1631         do {
1632                 int n = conf->copies;
1633                 int cnt = 0;
1634                 int this = first;
1635                 while (n--) {
1636                         if (conf->mirrors[this].rdev &&
1637                             this != ignore)
1638                                 cnt++;
1639                         this = (this+1) % geo->raid_disks;
1640                 }
1641                 if (cnt == 0)
1642                         return 0;
1643                 first = (first + geo->near_copies) % geo->raid_disks;
1644         } while (first != 0);
1645         return 1;
1646 }
1647
1648 static int enough(struct r10conf *conf, int ignore)
1649 {
1650         return _enough(conf, &conf->geo, ignore) &&
1651                 _enough(conf, &conf->prev, ignore);
1652 }
1653
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656         char b[BDEVNAME_SIZE];
1657         struct r10conf *conf = mddev->private;
1658
1659         /*
1660          * If it is not operational, then we have already marked it as dead
1661          * else if it is the last working disks, ignore the error, let the
1662          * next level up know.
1663          * else mark the drive as failed
1664          */
1665         if (test_bit(In_sync, &rdev->flags)
1666             && !enough(conf, rdev->raid_disk))
1667                 /*
1668                  * Don't fail the drive, just return an IO error.
1669                  */
1670                 return;
1671         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1672                 unsigned long flags;
1673                 spin_lock_irqsave(&conf->device_lock, flags);
1674                 mddev->degraded++;
1675                 spin_unlock_irqrestore(&conf->device_lock, flags);
1676                 /*
1677                  * if recovery is running, make sure it aborts.
1678                  */
1679                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1680         }
1681         set_bit(Blocked, &rdev->flags);
1682         set_bit(Faulty, &rdev->flags);
1683         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1684         printk(KERN_ALERT
1685                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1686                "md/raid10:%s: Operation continuing on %d devices.\n",
1687                mdname(mddev), bdevname(rdev->bdev, b),
1688                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1689 }
1690
1691 static void print_conf(struct r10conf *conf)
1692 {
1693         int i;
1694         struct raid10_info *tmp;
1695
1696         printk(KERN_DEBUG "RAID10 conf printout:\n");
1697         if (!conf) {
1698                 printk(KERN_DEBUG "(!conf)\n");
1699                 return;
1700         }
1701         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1702                 conf->geo.raid_disks);
1703
1704         for (i = 0; i < conf->geo.raid_disks; i++) {
1705                 char b[BDEVNAME_SIZE];
1706                 tmp = conf->mirrors + i;
1707                 if (tmp->rdev)
1708                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1709                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1710                                 !test_bit(Faulty, &tmp->rdev->flags),
1711                                 bdevname(tmp->rdev->bdev,b));
1712         }
1713 }
1714
1715 static void close_sync(struct r10conf *conf)
1716 {
1717         wait_barrier(conf);
1718         allow_barrier(conf);
1719
1720         mempool_destroy(conf->r10buf_pool);
1721         conf->r10buf_pool = NULL;
1722 }
1723
1724 static int raid10_spare_active(struct mddev *mddev)
1725 {
1726         int i;
1727         struct r10conf *conf = mddev->private;
1728         struct raid10_info *tmp;
1729         int count = 0;
1730         unsigned long flags;
1731
1732         /*
1733          * Find all non-in_sync disks within the RAID10 configuration
1734          * and mark them in_sync
1735          */
1736         for (i = 0; i < conf->geo.raid_disks; i++) {
1737                 tmp = conf->mirrors + i;
1738                 if (tmp->replacement
1739                     && tmp->replacement->recovery_offset == MaxSector
1740                     && !test_bit(Faulty, &tmp->replacement->flags)
1741                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1742                         /* Replacement has just become active */
1743                         if (!tmp->rdev
1744                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1745                                 count++;
1746                         if (tmp->rdev) {
1747                                 /* Replaced device not technically faulty,
1748                                  * but we need to be sure it gets removed
1749                                  * and never re-added.
1750                                  */
1751                                 set_bit(Faulty, &tmp->rdev->flags);
1752                                 sysfs_notify_dirent_safe(
1753                                         tmp->rdev->sysfs_state);
1754                         }
1755                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1756                 } else if (tmp->rdev
1757                            && !test_bit(Faulty, &tmp->rdev->flags)
1758                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1759                         count++;
1760                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1761                 }
1762         }
1763         spin_lock_irqsave(&conf->device_lock, flags);
1764         mddev->degraded -= count;
1765         spin_unlock_irqrestore(&conf->device_lock, flags);
1766
1767         print_conf(conf);
1768         return count;
1769 }
1770
1771
1772 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1773 {
1774         struct r10conf *conf = mddev->private;
1775         int err = -EEXIST;
1776         int mirror;
1777         int first = 0;
1778         int last = conf->geo.raid_disks - 1;
1779         struct request_queue *q = bdev_get_queue(rdev->bdev);
1780
1781         if (mddev->recovery_cp < MaxSector)
1782                 /* only hot-add to in-sync arrays, as recovery is
1783                  * very different from resync
1784                  */
1785                 return -EBUSY;
1786         if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1787                 return -EINVAL;
1788
1789         if (rdev->raid_disk >= 0)
1790                 first = last = rdev->raid_disk;
1791
1792         if (q->merge_bvec_fn) {
1793                 set_bit(Unmerged, &rdev->flags);
1794                 mddev->merge_check_needed = 1;
1795         }
1796
1797         if (rdev->saved_raid_disk >= first &&
1798             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1799                 mirror = rdev->saved_raid_disk;
1800         else
1801                 mirror = first;
1802         for ( ; mirror <= last ; mirror++) {
1803                 struct raid10_info *p = &conf->mirrors[mirror];
1804                 if (p->recovery_disabled == mddev->recovery_disabled)
1805                         continue;
1806                 if (p->rdev) {
1807                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1808                             p->replacement != NULL)
1809                                 continue;
1810                         clear_bit(In_sync, &rdev->flags);
1811                         set_bit(Replacement, &rdev->flags);
1812                         rdev->raid_disk = mirror;
1813                         err = 0;
1814                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1815                                           rdev->data_offset << 9);
1816                         conf->fullsync = 1;
1817                         rcu_assign_pointer(p->replacement, rdev);
1818                         break;
1819                 }
1820
1821                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1822                                   rdev->data_offset << 9);
1823
1824                 p->head_position = 0;
1825                 p->recovery_disabled = mddev->recovery_disabled - 1;
1826                 rdev->raid_disk = mirror;
1827                 err = 0;
1828                 if (rdev->saved_raid_disk != mirror)
1829                         conf->fullsync = 1;
1830                 rcu_assign_pointer(p->rdev, rdev);
1831                 break;
1832         }
1833         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1834                 /* Some requests might not have seen this new
1835                  * merge_bvec_fn.  We must wait for them to complete
1836                  * before merging the device fully.
1837                  * First we make sure any code which has tested
1838                  * our function has submitted the request, then
1839                  * we wait for all outstanding requests to complete.
1840                  */
1841                 synchronize_sched();
1842                 raise_barrier(conf, 0);
1843                 lower_barrier(conf);
1844                 clear_bit(Unmerged, &rdev->flags);
1845         }
1846         md_integrity_add_rdev(rdev, mddev);
1847         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1849
1850         print_conf(conf);
1851         return err;
1852 }
1853
1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1855 {
1856         struct r10conf *conf = mddev->private;
1857         int err = 0;
1858         int number = rdev->raid_disk;
1859         struct md_rdev **rdevp;
1860         struct raid10_info *p = conf->mirrors + number;
1861
1862         print_conf(conf);
1863         if (rdev == p->rdev)
1864                 rdevp = &p->rdev;
1865         else if (rdev == p->replacement)
1866                 rdevp = &p->replacement;
1867         else
1868                 return 0;
1869
1870         if (test_bit(In_sync, &rdev->flags) ||
1871             atomic_read(&rdev->nr_pending)) {
1872                 err = -EBUSY;
1873                 goto abort;
1874         }
1875         /* Only remove faulty devices if recovery
1876          * is not possible.
1877          */
1878         if (!test_bit(Faulty, &rdev->flags) &&
1879             mddev->recovery_disabled != p->recovery_disabled &&
1880             (!p->replacement || p->replacement == rdev) &&
1881             number < conf->geo.raid_disks &&
1882             enough(conf, -1)) {
1883                 err = -EBUSY;
1884                 goto abort;
1885         }
1886         *rdevp = NULL;
1887         synchronize_rcu();
1888         if (atomic_read(&rdev->nr_pending)) {
1889                 /* lost the race, try later */
1890                 err = -EBUSY;
1891                 *rdevp = rdev;
1892                 goto abort;
1893         } else if (p->replacement) {
1894                 /* We must have just cleared 'rdev' */
1895                 p->rdev = p->replacement;
1896                 clear_bit(Replacement, &p->replacement->flags);
1897                 smp_mb(); /* Make sure other CPUs may see both as identical
1898                            * but will never see neither -- if they are careful.
1899                            */
1900                 p->replacement = NULL;
1901                 clear_bit(WantReplacement, &rdev->flags);
1902         } else
1903                 /* We might have just remove the Replacement as faulty
1904                  * Clear the flag just in case
1905                  */
1906                 clear_bit(WantReplacement, &rdev->flags);
1907
1908         err = md_integrity_register(mddev);
1909
1910 abort:
1911
1912         print_conf(conf);
1913         return err;
1914 }
1915
1916
1917 static void end_sync_read(struct bio *bio, int error)
1918 {
1919         struct r10bio *r10_bio = bio->bi_private;
1920         struct r10conf *conf = r10_bio->mddev->private;
1921         int d;
1922
1923         if (bio == r10_bio->master_bio) {
1924                 /* this is a reshape read */
1925                 d = r10_bio->read_slot; /* really the read dev */
1926         } else
1927                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1928
1929         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1930                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1931         else
1932                 /* The write handler will notice the lack of
1933                  * R10BIO_Uptodate and record any errors etc
1934                  */
1935                 atomic_add(r10_bio->sectors,
1936                            &conf->mirrors[d].rdev->corrected_errors);
1937
1938         /* for reconstruct, we always reschedule after a read.
1939          * for resync, only after all reads
1940          */
1941         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1942         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1943             atomic_dec_and_test(&r10_bio->remaining)) {
1944                 /* we have read all the blocks,
1945                  * do the comparison in process context in raid10d
1946                  */
1947                 reschedule_retry(r10_bio);
1948         }
1949 }
1950
1951 static void end_sync_request(struct r10bio *r10_bio)
1952 {
1953         struct mddev *mddev = r10_bio->mddev;
1954
1955         while (atomic_dec_and_test(&r10_bio->remaining)) {
1956                 if (r10_bio->master_bio == NULL) {
1957                         /* the primary of several recovery bios */
1958                         sector_t s = r10_bio->sectors;
1959                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1960                             test_bit(R10BIO_WriteError, &r10_bio->state))
1961                                 reschedule_retry(r10_bio);
1962                         else
1963                                 put_buf(r10_bio);
1964                         md_done_sync(mddev, s, 1);
1965                         break;
1966                 } else {
1967                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1968                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1969                             test_bit(R10BIO_WriteError, &r10_bio->state))
1970                                 reschedule_retry(r10_bio);
1971                         else
1972                                 put_buf(r10_bio);
1973                         r10_bio = r10_bio2;
1974                 }
1975         }
1976 }
1977
1978 static void end_sync_write(struct bio *bio, int error)
1979 {
1980         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1981         struct r10bio *r10_bio = bio->bi_private;
1982         struct mddev *mddev = r10_bio->mddev;
1983         struct r10conf *conf = mddev->private;
1984         int d;
1985         sector_t first_bad;
1986         int bad_sectors;
1987         int slot;
1988         int repl;
1989         struct md_rdev *rdev = NULL;
1990
1991         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1992         if (repl)
1993                 rdev = conf->mirrors[d].replacement;
1994         else
1995                 rdev = conf->mirrors[d].rdev;
1996
1997         if (!uptodate) {
1998                 if (repl)
1999                         md_error(mddev, rdev);
2000                 else {
2001                         set_bit(WriteErrorSeen, &rdev->flags);
2002                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2003                                 set_bit(MD_RECOVERY_NEEDED,
2004                                         &rdev->mddev->recovery);
2005                         set_bit(R10BIO_WriteError, &r10_bio->state);
2006                 }
2007         } else if (is_badblock(rdev,
2008                              r10_bio->devs[slot].addr,
2009                              r10_bio->sectors,
2010                              &first_bad, &bad_sectors))
2011                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2012
2013         rdev_dec_pending(rdev, mddev);
2014
2015         end_sync_request(r10_bio);
2016 }
2017
2018 /*
2019  * Note: sync and recover and handled very differently for raid10
2020  * This code is for resync.
2021  * For resync, we read through virtual addresses and read all blocks.
2022  * If there is any error, we schedule a write.  The lowest numbered
2023  * drive is authoritative.
2024  * However requests come for physical address, so we need to map.
2025  * For every physical address there are raid_disks/copies virtual addresses,
2026  * which is always are least one, but is not necessarly an integer.
2027  * This means that a physical address can span multiple chunks, so we may
2028  * have to submit multiple io requests for a single sync request.
2029  */
2030 /*
2031  * We check if all blocks are in-sync and only write to blocks that
2032  * aren't in sync
2033  */
2034 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2035 {
2036         struct r10conf *conf = mddev->private;
2037         int i, first;
2038         struct bio *tbio, *fbio;
2039         int vcnt;
2040
2041         atomic_set(&r10_bio->remaining, 1);
2042
2043         /* find the first device with a block */
2044         for (i=0; i<conf->copies; i++)
2045                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2046                         break;
2047
2048         if (i == conf->copies)
2049                 goto done;
2050
2051         first = i;
2052         fbio = r10_bio->devs[i].bio;
2053
2054         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2055         /* now find blocks with errors */
2056         for (i=0 ; i < conf->copies ; i++) {
2057                 int  j, d;
2058
2059                 tbio = r10_bio->devs[i].bio;
2060
2061                 if (tbio->bi_end_io != end_sync_read)
2062                         continue;
2063                 if (i == first)
2064                         continue;
2065                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2066                         /* We know that the bi_io_vec layout is the same for
2067                          * both 'first' and 'i', so we just compare them.
2068                          * All vec entries are PAGE_SIZE;
2069                          */
2070                         for (j = 0; j < vcnt; j++)
2071                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2072                                            page_address(tbio->bi_io_vec[j].bv_page),
2073                                            fbio->bi_io_vec[j].bv_len))
2074                                         break;
2075                         if (j == vcnt)
2076                                 continue;
2077                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2078                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2079                                 /* Don't fix anything. */
2080                                 continue;
2081                 }
2082                 /* Ok, we need to write this bio, either to correct an
2083                  * inconsistency or to correct an unreadable block.
2084                  * First we need to fixup bv_offset, bv_len and
2085                  * bi_vecs, as the read request might have corrupted these
2086                  */
2087                 tbio->bi_vcnt = vcnt;
2088                 tbio->bi_size = r10_bio->sectors << 9;
2089                 tbio->bi_idx = 0;
2090                 tbio->bi_phys_segments = 0;
2091                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2092                 tbio->bi_flags |= 1 << BIO_UPTODATE;
2093                 tbio->bi_next = NULL;
2094                 tbio->bi_rw = WRITE;
2095                 tbio->bi_private = r10_bio;
2096                 tbio->bi_sector = r10_bio->devs[i].addr;
2097
2098                 for (j=0; j < vcnt ; j++) {
2099                         tbio->bi_io_vec[j].bv_offset = 0;
2100                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2101
2102                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2103                                page_address(fbio->bi_io_vec[j].bv_page),
2104                                PAGE_SIZE);
2105                 }
2106                 tbio->bi_end_io = end_sync_write;
2107
2108                 d = r10_bio->devs[i].devnum;
2109                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2110                 atomic_inc(&r10_bio->remaining);
2111                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2112
2113                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2114                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2115                 generic_make_request(tbio);
2116         }
2117
2118         /* Now write out to any replacement devices
2119          * that are active
2120          */
2121         for (i = 0; i < conf->copies; i++) {
2122                 int j, d;
2123
2124                 tbio = r10_bio->devs[i].repl_bio;
2125                 if (!tbio || !tbio->bi_end_io)
2126                         continue;
2127                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2128                     && r10_bio->devs[i].bio != fbio)
2129                         for (j = 0; j < vcnt; j++)
2130                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2131                                        page_address(fbio->bi_io_vec[j].bv_page),
2132                                        PAGE_SIZE);
2133                 d = r10_bio->devs[i].devnum;
2134                 atomic_inc(&r10_bio->remaining);
2135                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2136                              tbio->bi_size >> 9);
2137                 generic_make_request(tbio);
2138         }
2139
2140 done:
2141         if (atomic_dec_and_test(&r10_bio->remaining)) {
2142                 md_done_sync(mddev, r10_bio->sectors, 1);
2143                 put_buf(r10_bio);
2144         }
2145 }
2146
2147 /*
2148  * Now for the recovery code.
2149  * Recovery happens across physical sectors.
2150  * We recover all non-is_sync drives by finding the virtual address of
2151  * each, and then choose a working drive that also has that virt address.
2152  * There is a separate r10_bio for each non-in_sync drive.
2153  * Only the first two slots are in use. The first for reading,
2154  * The second for writing.
2155  *
2156  */
2157 static void fix_recovery_read_error(struct r10bio *r10_bio)
2158 {
2159         /* We got a read error during recovery.
2160          * We repeat the read in smaller page-sized sections.
2161          * If a read succeeds, write it to the new device or record
2162          * a bad block if we cannot.
2163          * If a read fails, record a bad block on both old and
2164          * new devices.
2165          */
2166         struct mddev *mddev = r10_bio->mddev;
2167         struct r10conf *conf = mddev->private;
2168         struct bio *bio = r10_bio->devs[0].bio;
2169         sector_t sect = 0;
2170         int sectors = r10_bio->sectors;
2171         int idx = 0;
2172         int dr = r10_bio->devs[0].devnum;
2173         int dw = r10_bio->devs[1].devnum;
2174
2175         while (sectors) {
2176                 int s = sectors;
2177                 struct md_rdev *rdev;
2178                 sector_t addr;
2179                 int ok;
2180
2181                 if (s > (PAGE_SIZE>>9))
2182                         s = PAGE_SIZE >> 9;
2183
2184                 rdev = conf->mirrors[dr].rdev;
2185                 addr = r10_bio->devs[0].addr + sect,
2186                 ok = sync_page_io(rdev,
2187                                   addr,
2188                                   s << 9,
2189                                   bio->bi_io_vec[idx].bv_page,
2190                                   READ, false);
2191                 if (ok) {
2192                         rdev = conf->mirrors[dw].rdev;
2193                         addr = r10_bio->devs[1].addr + sect;
2194                         ok = sync_page_io(rdev,
2195                                           addr,
2196                                           s << 9,
2197                                           bio->bi_io_vec[idx].bv_page,
2198                                           WRITE, false);
2199                         if (!ok) {
2200                                 set_bit(WriteErrorSeen, &rdev->flags);
2201                                 if (!test_and_set_bit(WantReplacement,
2202                                                       &rdev->flags))
2203                                         set_bit(MD_RECOVERY_NEEDED,
2204                                                 &rdev->mddev->recovery);
2205                         }
2206                 }
2207                 if (!ok) {
2208                         /* We don't worry if we cannot set a bad block -
2209                          * it really is bad so there is no loss in not
2210                          * recording it yet
2211                          */
2212                         rdev_set_badblocks(rdev, addr, s, 0);
2213
2214                         if (rdev != conf->mirrors[dw].rdev) {
2215                                 /* need bad block on destination too */
2216                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2217                                 addr = r10_bio->devs[1].addr + sect;
2218                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2219                                 if (!ok) {
2220                                         /* just abort the recovery */
2221                                         printk(KERN_NOTICE
2222                                                "md/raid10:%s: recovery aborted"
2223                                                " due to read error\n",
2224                                                mdname(mddev));
2225
2226                                         conf->mirrors[dw].recovery_disabled
2227                                                 = mddev->recovery_disabled;
2228                                         set_bit(MD_RECOVERY_INTR,
2229                                                 &mddev->recovery);
2230                                         break;
2231                                 }
2232                         }
2233                 }
2234
2235                 sectors -= s;
2236                 sect += s;
2237                 idx++;
2238         }
2239 }
2240
2241 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2242 {
2243         struct r10conf *conf = mddev->private;
2244         int d;
2245         struct bio *wbio, *wbio2;
2246
2247         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2248                 fix_recovery_read_error(r10_bio);
2249                 end_sync_request(r10_bio);
2250                 return;
2251         }
2252
2253         /*
2254          * share the pages with the first bio
2255          * and submit the write request
2256          */
2257         d = r10_bio->devs[1].devnum;
2258         wbio = r10_bio->devs[1].bio;
2259         wbio2 = r10_bio->devs[1].repl_bio;
2260         if (wbio->bi_end_io) {
2261                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2262                 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2263                 generic_make_request(wbio);
2264         }
2265         if (wbio2 && wbio2->bi_end_io) {
2266                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2267                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2268                              wbio2->bi_size >> 9);
2269                 generic_make_request(wbio2);
2270         }
2271 }
2272
2273
2274 /*
2275  * Used by fix_read_error() to decay the per rdev read_errors.
2276  * We halve the read error count for every hour that has elapsed
2277  * since the last recorded read error.
2278  *
2279  */
2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2281 {
2282         struct timespec cur_time_mon;
2283         unsigned long hours_since_last;
2284         unsigned int read_errors = atomic_read(&rdev->read_errors);
2285
2286         ktime_get_ts(&cur_time_mon);
2287
2288         if (rdev->last_read_error.tv_sec == 0 &&
2289             rdev->last_read_error.tv_nsec == 0) {
2290                 /* first time we've seen a read error */
2291                 rdev->last_read_error = cur_time_mon;
2292                 return;
2293         }
2294
2295         hours_since_last = (cur_time_mon.tv_sec -
2296                             rdev->last_read_error.tv_sec) / 3600;
2297
2298         rdev->last_read_error = cur_time_mon;
2299
2300         /*
2301          * if hours_since_last is > the number of bits in read_errors
2302          * just set read errors to 0. We do this to avoid
2303          * overflowing the shift of read_errors by hours_since_last.
2304          */
2305         if (hours_since_last >= 8 * sizeof(read_errors))
2306                 atomic_set(&rdev->read_errors, 0);
2307         else
2308                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2309 }
2310
2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2312                             int sectors, struct page *page, int rw)
2313 {
2314         sector_t first_bad;
2315         int bad_sectors;
2316
2317         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2318             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2319                 return -1;
2320         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2321                 /* success */
2322                 return 1;
2323         if (rw == WRITE) {
2324                 set_bit(WriteErrorSeen, &rdev->flags);
2325                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2326                         set_bit(MD_RECOVERY_NEEDED,
2327                                 &rdev->mddev->recovery);
2328         }
2329         /* need to record an error - either for the block or the device */
2330         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2331                 md_error(rdev->mddev, rdev);
2332         return 0;
2333 }
2334
2335 /*
2336  * This is a kernel thread which:
2337  *
2338  *      1.      Retries failed read operations on working mirrors.
2339  *      2.      Updates the raid superblock when problems encounter.
2340  *      3.      Performs writes following reads for array synchronising.
2341  */
2342
2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2344 {
2345         int sect = 0; /* Offset from r10_bio->sector */
2346         int sectors = r10_bio->sectors;
2347         struct md_rdev*rdev;
2348         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2349         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2350
2351         /* still own a reference to this rdev, so it cannot
2352          * have been cleared recently.
2353          */
2354         rdev = conf->mirrors[d].rdev;
2355
2356         if (test_bit(Faulty, &rdev->flags))
2357                 /* drive has already been failed, just ignore any
2358                    more fix_read_error() attempts */
2359                 return;
2360
2361         check_decay_read_errors(mddev, rdev);
2362         atomic_inc(&rdev->read_errors);
2363         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2364                 char b[BDEVNAME_SIZE];
2365                 bdevname(rdev->bdev, b);
2366
2367                 printk(KERN_NOTICE
2368                        "md/raid10:%s: %s: Raid device exceeded "
2369                        "read_error threshold [cur %d:max %d]\n",
2370                        mdname(mddev), b,
2371                        atomic_read(&rdev->read_errors), max_read_errors);
2372                 printk(KERN_NOTICE
2373                        "md/raid10:%s: %s: Failing raid device\n",
2374                        mdname(mddev), b);
2375                 md_error(mddev, conf->mirrors[d].rdev);
2376                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2377                 return;
2378         }
2379
2380         while(sectors) {
2381                 int s = sectors;
2382                 int sl = r10_bio->read_slot;
2383                 int success = 0;
2384                 int start;
2385
2386                 if (s > (PAGE_SIZE>>9))
2387                         s = PAGE_SIZE >> 9;
2388
2389                 rcu_read_lock();
2390                 do {
2391                         sector_t first_bad;
2392                         int bad_sectors;
2393
2394                         d = r10_bio->devs[sl].devnum;
2395                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2396                         if (rdev &&
2397                             !test_bit(Unmerged, &rdev->flags) &&
2398                             test_bit(In_sync, &rdev->flags) &&
2399                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400                                         &first_bad, &bad_sectors) == 0) {
2401                                 atomic_inc(&rdev->nr_pending);
2402                                 rcu_read_unlock();
2403                                 success = sync_page_io(rdev,
2404                                                        r10_bio->devs[sl].addr +
2405                                                        sect,
2406                                                        s<<9,
2407                                                        conf->tmppage, READ, false);
2408                                 rdev_dec_pending(rdev, mddev);
2409                                 rcu_read_lock();
2410                                 if (success)
2411                                         break;
2412                         }
2413                         sl++;
2414                         if (sl == conf->copies)
2415                                 sl = 0;
2416                 } while (!success && sl != r10_bio->read_slot);
2417                 rcu_read_unlock();
2418
2419                 if (!success) {
2420                         /* Cannot read from anywhere, just mark the block
2421                          * as bad on the first device to discourage future
2422                          * reads.
2423                          */
2424                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2425                         rdev = conf->mirrors[dn].rdev;
2426
2427                         if (!rdev_set_badblocks(
2428                                     rdev,
2429                                     r10_bio->devs[r10_bio->read_slot].addr
2430                                     + sect,
2431                                     s, 0)) {
2432                                 md_error(mddev, rdev);
2433                                 r10_bio->devs[r10_bio->read_slot].bio
2434                                         = IO_BLOCKED;
2435                         }
2436                         break;
2437                 }
2438
2439                 start = sl;
2440                 /* write it back and re-read */
2441                 rcu_read_lock();
2442                 while (sl != r10_bio->read_slot) {
2443                         char b[BDEVNAME_SIZE];
2444
2445                         if (sl==0)
2446                                 sl = conf->copies;
2447                         sl--;
2448                         d = r10_bio->devs[sl].devnum;
2449                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2450                         if (!rdev ||
2451                             test_bit(Unmerged, &rdev->flags) ||
2452                             !test_bit(In_sync, &rdev->flags))
2453                                 continue;
2454
2455                         atomic_inc(&rdev->nr_pending);
2456                         rcu_read_unlock();
2457                         if (r10_sync_page_io(rdev,
2458                                              r10_bio->devs[sl].addr +
2459                                              sect,
2460                                              s, conf->tmppage, WRITE)
2461                             == 0) {
2462                                 /* Well, this device is dead */
2463                                 printk(KERN_NOTICE
2464                                        "md/raid10:%s: read correction "
2465                                        "write failed"
2466                                        " (%d sectors at %llu on %s)\n",
2467                                        mdname(mddev), s,
2468                                        (unsigned long long)(
2469                                                sect +
2470                                                choose_data_offset(r10_bio,
2471                                                                   rdev)),
2472                                        bdevname(rdev->bdev, b));
2473                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2474                                        "drive\n",
2475                                        mdname(mddev),
2476                                        bdevname(rdev->bdev, b));
2477                         }
2478                         rdev_dec_pending(rdev, mddev);
2479                         rcu_read_lock();
2480                 }
2481                 sl = start;
2482                 while (sl != r10_bio->read_slot) {
2483                         char b[BDEVNAME_SIZE];
2484
2485                         if (sl==0)
2486                                 sl = conf->copies;
2487                         sl--;
2488                         d = r10_bio->devs[sl].devnum;
2489                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2490                         if (!rdev ||
2491                             !test_bit(In_sync, &rdev->flags))
2492                                 continue;
2493
2494                         atomic_inc(&rdev->nr_pending);
2495                         rcu_read_unlock();
2496                         switch (r10_sync_page_io(rdev,
2497                                              r10_bio->devs[sl].addr +
2498                                              sect,
2499                                              s, conf->tmppage,
2500                                                  READ)) {
2501                         case 0:
2502                                 /* Well, this device is dead */
2503                                 printk(KERN_NOTICE
2504                                        "md/raid10:%s: unable to read back "
2505                                        "corrected sectors"
2506                                        " (%d sectors at %llu on %s)\n",
2507                                        mdname(mddev), s,
2508                                        (unsigned long long)(
2509                                                sect +
2510                                                choose_data_offset(r10_bio, rdev)),
2511                                        bdevname(rdev->bdev, b));
2512                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2513                                        "drive\n",
2514                                        mdname(mddev),
2515                                        bdevname(rdev->bdev, b));
2516                                 break;
2517                         case 1:
2518                                 printk(KERN_INFO
2519                                        "md/raid10:%s: read error corrected"
2520                                        " (%d sectors at %llu on %s)\n",
2521                                        mdname(mddev), s,
2522                                        (unsigned long long)(
2523                                                sect +
2524                                                choose_data_offset(r10_bio, rdev)),
2525                                        bdevname(rdev->bdev, b));
2526                                 atomic_add(s, &rdev->corrected_errors);
2527                         }
2528
2529                         rdev_dec_pending(rdev, mddev);
2530                         rcu_read_lock();
2531                 }
2532                 rcu_read_unlock();
2533
2534                 sectors -= s;
2535                 sect += s;
2536         }
2537 }
2538
2539 static void bi_complete(struct bio *bio, int error)
2540 {
2541         complete((struct completion *)bio->bi_private);
2542 }
2543
2544 static int submit_bio_wait(int rw, struct bio *bio)
2545 {
2546         struct completion event;
2547         rw |= REQ_SYNC;
2548
2549         init_completion(&event);
2550         bio->bi_private = &event;
2551         bio->bi_end_io = bi_complete;
2552         submit_bio(rw, bio);
2553         wait_for_completion(&event);
2554
2555         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2556 }
2557
2558 static int narrow_write_error(struct r10bio *r10_bio, int i)
2559 {
2560         struct bio *bio = r10_bio->master_bio;
2561         struct mddev *mddev = r10_bio->mddev;
2562         struct r10conf *conf = mddev->private;
2563         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2564         /* bio has the data to be written to slot 'i' where
2565          * we just recently had a write error.
2566          * We repeatedly clone the bio and trim down to one block,
2567          * then try the write.  Where the write fails we record
2568          * a bad block.
2569          * It is conceivable that the bio doesn't exactly align with
2570          * blocks.  We must handle this.
2571          *
2572          * We currently own a reference to the rdev.
2573          */
2574
2575         int block_sectors;
2576         sector_t sector;
2577         int sectors;
2578         int sect_to_write = r10_bio->sectors;
2579         int ok = 1;
2580
2581         if (rdev->badblocks.shift < 0)
2582                 return 0;
2583
2584         block_sectors = 1 << rdev->badblocks.shift;
2585         sector = r10_bio->sector;
2586         sectors = ((r10_bio->sector + block_sectors)
2587                    & ~(sector_t)(block_sectors - 1))
2588                 - sector;
2589
2590         while (sect_to_write) {
2591                 struct bio *wbio;
2592                 if (sectors > sect_to_write)
2593                         sectors = sect_to_write;
2594                 /* Write at 'sector' for 'sectors' */
2595                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2596                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2597                 wbio->bi_sector = (r10_bio->devs[i].addr+
2598                                    choose_data_offset(r10_bio, rdev) +
2599                                    (sector - r10_bio->sector));
2600                 wbio->bi_bdev = rdev->bdev;
2601                 if (submit_bio_wait(WRITE, wbio) == 0)
2602                         /* Failure! */
2603                         ok = rdev_set_badblocks(rdev, sector,
2604                                                 sectors, 0)
2605                                 && ok;
2606
2607                 bio_put(wbio);
2608                 sect_to_write -= sectors;
2609                 sector += sectors;
2610                 sectors = block_sectors;
2611         }
2612         return ok;
2613 }
2614
2615 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2616 {
2617         int slot = r10_bio->read_slot;
2618         struct bio *bio;
2619         struct r10conf *conf = mddev->private;
2620         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2621         char b[BDEVNAME_SIZE];
2622         unsigned long do_sync;
2623         int max_sectors;
2624
2625         /* we got a read error. Maybe the drive is bad.  Maybe just
2626          * the block and we can fix it.
2627          * We freeze all other IO, and try reading the block from
2628          * other devices.  When we find one, we re-write
2629          * and check it that fixes the read error.
2630          * This is all done synchronously while the array is
2631          * frozen.
2632          */
2633         bio = r10_bio->devs[slot].bio;
2634         bdevname(bio->bi_bdev, b);
2635         bio_put(bio);
2636         r10_bio->devs[slot].bio = NULL;
2637
2638         if (mddev->ro == 0) {
2639                 freeze_array(conf);
2640                 fix_read_error(conf, mddev, r10_bio);
2641                 unfreeze_array(conf);
2642         } else
2643                 r10_bio->devs[slot].bio = IO_BLOCKED;
2644
2645         rdev_dec_pending(rdev, mddev);
2646
2647 read_more:
2648         rdev = read_balance(conf, r10_bio, &max_sectors);
2649         if (rdev == NULL) {
2650                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2651                        " read error for block %llu\n",
2652                        mdname(mddev), b,
2653                        (unsigned long long)r10_bio->sector);
2654                 raid_end_bio_io(r10_bio);
2655                 return;
2656         }
2657
2658         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2659         slot = r10_bio->read_slot;
2660         printk_ratelimited(
2661                 KERN_ERR
2662                 "md/raid10:%s: %s: redirecting "
2663                 "sector %llu to another mirror\n",
2664                 mdname(mddev),
2665                 bdevname(rdev->bdev, b),
2666                 (unsigned long long)r10_bio->sector);
2667         bio = bio_clone_mddev(r10_bio->master_bio,
2668                               GFP_NOIO, mddev);
2669         md_trim_bio(bio,
2670                     r10_bio->sector - bio->bi_sector,
2671                     max_sectors);
2672         r10_bio->devs[slot].bio = bio;
2673         r10_bio->devs[slot].rdev = rdev;
2674         bio->bi_sector = r10_bio->devs[slot].addr
2675                 + choose_data_offset(r10_bio, rdev);
2676         bio->bi_bdev = rdev->bdev;
2677         bio->bi_rw = READ | do_sync;
2678         bio->bi_private = r10_bio;
2679         bio->bi_end_io = raid10_end_read_request;
2680         if (max_sectors < r10_bio->sectors) {
2681                 /* Drat - have to split this up more */
2682                 struct bio *mbio = r10_bio->master_bio;
2683                 int sectors_handled =
2684                         r10_bio->sector + max_sectors
2685                         - mbio->bi_sector;
2686                 r10_bio->sectors = max_sectors;
2687                 spin_lock_irq(&conf->device_lock);
2688                 if (mbio->bi_phys_segments == 0)
2689                         mbio->bi_phys_segments = 2;
2690                 else
2691                         mbio->bi_phys_segments++;
2692                 spin_unlock_irq(&conf->device_lock);
2693                 generic_make_request(bio);
2694
2695                 r10_bio = mempool_alloc(conf->r10bio_pool,
2696                                         GFP_NOIO);
2697                 r10_bio->master_bio = mbio;
2698                 r10_bio->sectors = (mbio->bi_size >> 9)
2699                         - sectors_handled;
2700                 r10_bio->state = 0;
2701                 set_bit(R10BIO_ReadError,
2702                         &r10_bio->state);
2703                 r10_bio->mddev = mddev;
2704                 r10_bio->sector = mbio->bi_sector
2705                         + sectors_handled;
2706
2707                 goto read_more;
2708         } else
2709                 generic_make_request(bio);
2710 }
2711
2712 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2713 {
2714         /* Some sort of write request has finished and it
2715          * succeeded in writing where we thought there was a
2716          * bad block.  So forget the bad block.
2717          * Or possibly if failed and we need to record
2718          * a bad block.
2719          */
2720         int m;
2721         struct md_rdev *rdev;
2722
2723         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2724             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2725                 for (m = 0; m < conf->copies; m++) {
2726                         int dev = r10_bio->devs[m].devnum;
2727                         rdev = conf->mirrors[dev].rdev;
2728                         if (r10_bio->devs[m].bio == NULL)
2729                                 continue;
2730                         if (test_bit(BIO_UPTODATE,
2731                                      &r10_bio->devs[m].bio->bi_flags)) {
2732                                 rdev_clear_badblocks(
2733                                         rdev,
2734                                         r10_bio->devs[m].addr,
2735                                         r10_bio->sectors, 0);
2736                         } else {
2737                                 if (!rdev_set_badblocks(
2738                                             rdev,
2739                                             r10_bio->devs[m].addr,
2740                                             r10_bio->sectors, 0))
2741                                         md_error(conf->mddev, rdev);
2742                         }
2743                         rdev = conf->mirrors[dev].replacement;
2744                         if (r10_bio->devs[m].repl_bio == NULL)
2745                                 continue;
2746                         if (test_bit(BIO_UPTODATE,
2747                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2748                                 rdev_clear_badblocks(
2749                                         rdev,
2750                                         r10_bio->devs[m].addr,
2751                                         r10_bio->sectors, 0);
2752                         } else {
2753                                 if (!rdev_set_badblocks(
2754                                             rdev,
2755                                             r10_bio->devs[m].addr,
2756                                             r10_bio->sectors, 0))
2757                                         md_error(conf->mddev, rdev);
2758                         }
2759                 }
2760                 put_buf(r10_bio);
2761         } else {
2762                 for (m = 0; m < conf->copies; m++) {
2763                         int dev = r10_bio->devs[m].devnum;
2764                         struct bio *bio = r10_bio->devs[m].bio;
2765                         rdev = conf->mirrors[dev].rdev;
2766                         if (bio == IO_MADE_GOOD) {
2767                                 rdev_clear_badblocks(
2768                                         rdev,
2769                                         r10_bio->devs[m].addr,
2770                                         r10_bio->sectors, 0);
2771                                 rdev_dec_pending(rdev, conf->mddev);
2772                         } else if (bio != NULL &&
2773                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2774                                 if (!narrow_write_error(r10_bio, m)) {
2775                                         md_error(conf->mddev, rdev);
2776                                         set_bit(R10BIO_Degraded,
2777                                                 &r10_bio->state);
2778                                 }
2779                                 rdev_dec_pending(rdev, conf->mddev);
2780                         }
2781                         bio = r10_bio->devs[m].repl_bio;
2782                         rdev = conf->mirrors[dev].replacement;
2783                         if (rdev && bio == IO_MADE_GOOD) {
2784                                 rdev_clear_badblocks(
2785                                         rdev,
2786                                         r10_bio->devs[m].addr,
2787                                         r10_bio->sectors, 0);
2788                                 rdev_dec_pending(rdev, conf->mddev);
2789                         }
2790                 }
2791                 if (test_bit(R10BIO_WriteError,
2792                              &r10_bio->state))
2793                         close_write(r10_bio);
2794                 raid_end_bio_io(r10_bio);
2795         }
2796 }
2797
2798 static void raid10d(struct md_thread *thread)
2799 {
2800         struct mddev *mddev = thread->mddev;
2801         struct r10bio *r10_bio;
2802         unsigned long flags;
2803         struct r10conf *conf = mddev->private;
2804         struct list_head *head = &conf->retry_list;
2805         struct blk_plug plug;
2806
2807         md_check_recovery(mddev);
2808
2809         blk_start_plug(&plug);
2810         for (;;) {
2811
2812                 flush_pending_writes(conf);
2813
2814                 spin_lock_irqsave(&conf->device_lock, flags);
2815                 if (list_empty(head)) {
2816                         spin_unlock_irqrestore(&conf->device_lock, flags);
2817                         break;
2818                 }
2819                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2820                 list_del(head->prev);
2821                 conf->nr_queued--;
2822                 spin_unlock_irqrestore(&conf->device_lock, flags);
2823
2824                 mddev = r10_bio->mddev;
2825                 conf = mddev->private;
2826                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2827                     test_bit(R10BIO_WriteError, &r10_bio->state))
2828                         handle_write_completed(conf, r10_bio);
2829                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2830                         reshape_request_write(mddev, r10_bio);
2831                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2832                         sync_request_write(mddev, r10_bio);
2833                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2834                         recovery_request_write(mddev, r10_bio);
2835                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2836                         handle_read_error(mddev, r10_bio);
2837                 else {
2838                         /* just a partial read to be scheduled from a
2839                          * separate context
2840                          */
2841                         int slot = r10_bio->read_slot;
2842                         generic_make_request(r10_bio->devs[slot].bio);
2843                 }
2844
2845                 cond_resched();
2846                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2847                         md_check_recovery(mddev);
2848         }
2849         blk_finish_plug(&plug);
2850 }
2851
2852
2853 static int init_resync(struct r10conf *conf)
2854 {
2855         int buffs;
2856         int i;
2857
2858         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2859         BUG_ON(conf->r10buf_pool);
2860         conf->have_replacement = 0;
2861         for (i = 0; i < conf->geo.raid_disks; i++)
2862                 if (conf->mirrors[i].replacement)
2863                         conf->have_replacement = 1;
2864         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2865         if (!conf->r10buf_pool)
2866                 return -ENOMEM;
2867         conf->next_resync = 0;
2868         return 0;
2869 }
2870
2871 /*
2872  * perform a "sync" on one "block"
2873  *
2874  * We need to make sure that no normal I/O request - particularly write
2875  * requests - conflict with active sync requests.
2876  *
2877  * This is achieved by tracking pending requests and a 'barrier' concept
2878  * that can be installed to exclude normal IO requests.
2879  *
2880  * Resync and recovery are handled very differently.
2881  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2882  *
2883  * For resync, we iterate over virtual addresses, read all copies,
2884  * and update if there are differences.  If only one copy is live,
2885  * skip it.
2886  * For recovery, we iterate over physical addresses, read a good
2887  * value for each non-in_sync drive, and over-write.
2888  *
2889  * So, for recovery we may have several outstanding complex requests for a
2890  * given address, one for each out-of-sync device.  We model this by allocating
2891  * a number of r10_bio structures, one for each out-of-sync device.
2892  * As we setup these structures, we collect all bio's together into a list
2893  * which we then process collectively to add pages, and then process again
2894  * to pass to generic_make_request.
2895  *
2896  * The r10_bio structures are linked using a borrowed master_bio pointer.
2897  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2898  * has its remaining count decremented to 0, the whole complex operation
2899  * is complete.
2900  *
2901  */
2902
2903 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2904                              int *skipped, int go_faster)
2905 {
2906         struct r10conf *conf = mddev->private;
2907         struct r10bio *r10_bio;
2908         struct bio *biolist = NULL, *bio;
2909         sector_t max_sector, nr_sectors;
2910         int i;
2911         int max_sync;
2912         sector_t sync_blocks;
2913         sector_t sectors_skipped = 0;
2914         int chunks_skipped = 0;
2915         sector_t chunk_mask = conf->geo.chunk_mask;
2916
2917         if (!conf->r10buf_pool)
2918                 if (init_resync(conf))
2919                         return 0;
2920
2921         /*
2922          * Allow skipping a full rebuild for incremental assembly
2923          * of a clean array, like RAID1 does.
2924          */
2925         if (mddev->bitmap == NULL &&
2926             mddev->recovery_cp == MaxSector &&
2927             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2928             conf->fullsync == 0) {
2929                 *skipped = 1;
2930                 max_sector = mddev->dev_sectors;
2931                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2932                     test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2933                         max_sector = mddev->resync_max_sectors;
2934                 return max_sector - sector_nr;
2935         }
2936
2937  skipped:
2938         max_sector = mddev->dev_sectors;
2939         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2940             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2941                 max_sector = mddev->resync_max_sectors;
2942         if (sector_nr >= max_sector) {
2943                 /* If we aborted, we need to abort the
2944                  * sync on the 'current' bitmap chucks (there can
2945                  * be several when recovering multiple devices).
2946                  * as we may have started syncing it but not finished.
2947                  * We can find the current address in
2948                  * mddev->curr_resync, but for recovery,
2949                  * we need to convert that to several
2950                  * virtual addresses.
2951                  */
2952                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2953                         end_reshape(conf);
2954                         return 0;
2955                 }
2956
2957                 if (mddev->curr_resync < max_sector) { /* aborted */
2958                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2959                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2960                                                 &sync_blocks, 1);
2961                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2962                                 sector_t sect =
2963                                         raid10_find_virt(conf, mddev->curr_resync, i);
2964                                 bitmap_end_sync(mddev->bitmap, sect,
2965                                                 &sync_blocks, 1);
2966                         }
2967                 } else {
2968                         /* completed sync */
2969                         if ((!mddev->bitmap || conf->fullsync)
2970                             && conf->have_replacement
2971                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2972                                 /* Completed a full sync so the replacements
2973                                  * are now fully recovered.
2974                                  */
2975                                 for (i = 0; i < conf->geo.raid_disks; i++)
2976                                         if (conf->mirrors[i].replacement)
2977                                                 conf->mirrors[i].replacement
2978                                                         ->recovery_offset
2979                                                         = MaxSector;
2980                         }
2981                         conf->fullsync = 0;
2982                 }
2983                 bitmap_close_sync(mddev->bitmap);
2984                 close_sync(conf);
2985                 *skipped = 1;
2986                 return sectors_skipped;
2987         }
2988
2989         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2990                 return reshape_request(mddev, sector_nr, skipped);
2991
2992         if (chunks_skipped >= conf->geo.raid_disks) {
2993                 /* if there has been nothing to do on any drive,
2994                  * then there is nothing to do at all..
2995                  */
2996                 *skipped = 1;
2997                 return (max_sector - sector_nr) + sectors_skipped;
2998         }
2999
3000         if (max_sector > mddev->resync_max)
3001                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3002
3003         /* make sure whole request will fit in a chunk - if chunks
3004          * are meaningful
3005          */
3006         if (conf->geo.near_copies < conf->geo.raid_disks &&
3007             max_sector > (sector_nr | chunk_mask))
3008                 max_sector = (sector_nr | chunk_mask) + 1;
3009         /*
3010          * If there is non-resync activity waiting for us then
3011          * put in a delay to throttle resync.
3012          */
3013         if (!go_faster && conf->nr_waiting)
3014                 msleep_interruptible(1000);
3015
3016         /* Again, very different code for resync and recovery.
3017          * Both must result in an r10bio with a list of bios that
3018          * have bi_end_io, bi_sector, bi_bdev set,
3019          * and bi_private set to the r10bio.
3020          * For recovery, we may actually create several r10bios
3021          * with 2 bios in each, that correspond to the bios in the main one.
3022          * In this case, the subordinate r10bios link back through a
3023          * borrowed master_bio pointer, and the counter in the master
3024          * includes a ref from each subordinate.
3025          */
3026         /* First, we decide what to do and set ->bi_end_io
3027          * To end_sync_read if we want to read, and
3028          * end_sync_write if we will want to write.
3029          */
3030
3031         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3032         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3033                 /* recovery... the complicated one */
3034                 int j;
3035                 r10_bio = NULL;
3036
3037                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3038                         int still_degraded;
3039                         struct r10bio *rb2;
3040                         sector_t sect;
3041                         int must_sync;
3042                         int any_working;
3043                         struct raid10_info *mirror = &conf->mirrors[i];
3044
3045                         if ((mirror->rdev == NULL ||
3046                              test_bit(In_sync, &mirror->rdev->flags))
3047                             &&
3048                             (mirror->replacement == NULL ||
3049                              test_bit(Faulty,
3050                                       &mirror->replacement->flags)))
3051                                 continue;
3052
3053                         still_degraded = 0;
3054                         /* want to reconstruct this device */
3055                         rb2 = r10_bio;
3056                         sect = raid10_find_virt(conf, sector_nr, i);
3057                         if (sect >= mddev->resync_max_sectors) {
3058                                 /* last stripe is not complete - don't
3059                                  * try to recover this sector.
3060                                  */
3061                                 continue;
3062                         }
3063                         /* Unless we are doing a full sync, or a replacement
3064                          * we only need to recover the block if it is set in
3065                          * the bitmap
3066                          */
3067                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3068                                                       &sync_blocks, 1);
3069                         if (sync_blocks < max_sync)
3070                                 max_sync = sync_blocks;
3071                         if (!must_sync &&
3072                             mirror->replacement == NULL &&
3073                             !conf->fullsync) {
3074                                 /* yep, skip the sync_blocks here, but don't assume
3075                                  * that there will never be anything to do here
3076                                  */
3077                                 chunks_skipped = -1;
3078                                 continue;
3079                         }
3080
3081                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3082                         raise_barrier(conf, rb2 != NULL);
3083                         atomic_set(&r10_bio->remaining, 0);
3084
3085                         r10_bio->master_bio = (struct bio*)rb2;
3086                         if (rb2)
3087                                 atomic_inc(&rb2->remaining);
3088                         r10_bio->mddev = mddev;
3089                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3090                         r10_bio->sector = sect;
3091
3092                         raid10_find_phys(conf, r10_bio);
3093
3094                         /* Need to check if the array will still be
3095                          * degraded
3096                          */
3097                         for (j = 0; j < conf->geo.raid_disks; j++)
3098                                 if (conf->mirrors[j].rdev == NULL ||
3099                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3100                                         still_degraded = 1;
3101                                         break;
3102                                 }
3103
3104                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3105                                                       &sync_blocks, still_degraded);
3106
3107                         any_working = 0;
3108                         for (j=0; j<conf->copies;j++) {
3109                                 int k;
3110                                 int d = r10_bio->devs[j].devnum;
3111                                 sector_t from_addr, to_addr;
3112                                 struct md_rdev *rdev;
3113                                 sector_t sector, first_bad;
3114                                 int bad_sectors;
3115                                 if (!conf->mirrors[d].rdev ||
3116                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3117                                         continue;
3118                                 /* This is where we read from */
3119                                 any_working = 1;
3120                                 rdev = conf->mirrors[d].rdev;
3121                                 sector = r10_bio->devs[j].addr;
3122
3123                                 if (is_badblock(rdev, sector, max_sync,
3124                                                 &first_bad, &bad_sectors)) {
3125                                         if (first_bad > sector)
3126                                                 max_sync = first_bad - sector;
3127                                         else {
3128                                                 bad_sectors -= (sector
3129                                                                 - first_bad);
3130                                                 if (max_sync > bad_sectors)
3131                                                         max_sync = bad_sectors;
3132                                                 continue;
3133                                         }
3134                                 }
3135                                 bio = r10_bio->devs[0].bio;
3136                                 bio->bi_next = biolist;
3137                                 biolist = bio;
3138                                 bio->bi_private = r10_bio;
3139                                 bio->bi_end_io = end_sync_read;
3140                                 bio->bi_rw = READ;
3141                                 from_addr = r10_bio->devs[j].addr;
3142                                 bio->bi_sector = from_addr + rdev->data_offset;
3143                                 bio->bi_bdev = rdev->bdev;
3144                                 atomic_inc(&rdev->nr_pending);
3145                                 /* and we write to 'i' (if not in_sync) */
3146
3147                                 for (k=0; k<conf->copies; k++)
3148                                         if (r10_bio->devs[k].devnum == i)
3149                                                 break;
3150                                 BUG_ON(k == conf->copies);
3151                                 to_addr = r10_bio->devs[k].addr;
3152                                 r10_bio->devs[0].devnum = d;
3153                                 r10_bio->devs[0].addr = from_addr;
3154                                 r10_bio->devs[1].devnum = i;
3155                                 r10_bio->devs[1].addr = to_addr;
3156
3157                                 rdev = mirror->rdev;
3158                                 if (!test_bit(In_sync, &rdev->flags)) {
3159                                         bio = r10_bio->devs[1].bio;
3160                                         bio->bi_next = biolist;
3161                                         biolist = bio;
3162                                         bio->bi_private = r10_bio;
3163                                         bio->bi_end_io = end_sync_write;
3164                                         bio->bi_rw = WRITE;
3165                                         bio->bi_sector = to_addr
3166                                                 + rdev->data_offset;
3167                                         bio->bi_bdev = rdev->bdev;
3168                                         atomic_inc(&r10_bio->remaining);
3169                                 } else
3170                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3171
3172                                 /* and maybe write to replacement */
3173                                 bio = r10_bio->devs[1].repl_bio;
3174                                 if (bio)
3175                                         bio->bi_end_io = NULL;
3176                                 rdev = mirror->replacement;
3177                                 /* Note: if rdev != NULL, then bio
3178                                  * cannot be NULL as r10buf_pool_alloc will
3179                                  * have allocated it.
3180                                  * So the second test here is pointless.
3181                                  * But it keeps semantic-checkers happy, and
3182                                  * this comment keeps human reviewers
3183                                  * happy.
3184                                  */
3185                                 if (rdev == NULL || bio == NULL ||
3186                                     test_bit(Faulty, &rdev->flags))
3187                                         break;
3188                                 bio->bi_next = biolist;
3189                                 biolist = bio;
3190                                 bio->bi_private = r10_bio;
3191                                 bio->bi_end_io = end_sync_write;
3192                                 bio->bi_rw = WRITE;
3193                                 bio->bi_sector = to_addr + rdev->data_offset;
3194                                 bio->bi_bdev = rdev->bdev;
3195                                 atomic_inc(&r10_bio->remaining);
3196                                 break;
3197                         }
3198                         if (j == conf->copies) {
3199                                 /* Cannot recover, so abort the recovery or
3200                                  * record a bad block */
3201                                 put_buf(r10_bio);
3202                                 if (rb2)
3203                                         atomic_dec(&rb2->remaining);
3204                                 r10_bio = rb2;
3205                                 if (any_working) {
3206                                         /* problem is that there are bad blocks
3207                                          * on other device(s)
3208                                          */
3209                                         int k;
3210                                         for (k = 0; k < conf->copies; k++)
3211                                                 if (r10_bio->devs[k].devnum == i)
3212                                                         break;
3213                                         if (!test_bit(In_sync,
3214                                                       &mirror->rdev->flags)
3215                                             && !rdev_set_badblocks(
3216                                                     mirror->rdev,
3217                                                     r10_bio->devs[k].addr,
3218                                                     max_sync, 0))
3219                                                 any_working = 0;
3220                                         if (mirror->replacement &&
3221                                             !rdev_set_badblocks(
3222                                                     mirror->replacement,
3223                                                     r10_bio->devs[k].addr,
3224                                                     max_sync, 0))
3225                                                 any_working = 0;
3226                                 }
3227                                 if (!any_working)  {
3228                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3229                                                               &mddev->recovery))
3230                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3231                                                        "working devices for recovery.\n",
3232                                                        mdname(mddev));
3233                                         mirror->recovery_disabled
3234                                                 = mddev->recovery_disabled;
3235                                 }
3236                                 break;
3237                         }
3238                 }
3239                 if (biolist == NULL) {
3240                         while (r10_bio) {
3241                                 struct r10bio *rb2 = r10_bio;
3242                                 r10_bio = (struct r10bio*) rb2->master_bio;
3243                                 rb2->master_bio = NULL;
3244                                 put_buf(rb2);
3245                         }
3246                         goto giveup;
3247                 }
3248         } else {
3249                 /* resync. Schedule a read for every block at this virt offset */
3250                 int count = 0;
3251
3252                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3253
3254                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3255                                        &sync_blocks, mddev->degraded) &&
3256                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3257                                                  &mddev->recovery)) {
3258                         /* We can skip this block */
3259                         *skipped = 1;
3260                         return sync_blocks + sectors_skipped;
3261                 }
3262                 if (sync_blocks < max_sync)
3263                         max_sync = sync_blocks;
3264                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3265
3266                 r10_bio->mddev = mddev;
3267                 atomic_set(&r10_bio->remaining, 0);
3268                 raise_barrier(conf, 0);
3269                 conf->next_resync = sector_nr;
3270
3271                 r10_bio->master_bio = NULL;
3272                 r10_bio->sector = sector_nr;
3273                 set_bit(R10BIO_IsSync, &r10_bio->state);
3274                 raid10_find_phys(conf, r10_bio);
3275                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3276
3277                 for (i = 0; i < conf->copies; i++) {
3278                         int d = r10_bio->devs[i].devnum;
3279                         sector_t first_bad, sector;
3280                         int bad_sectors;
3281
3282                         if (r10_bio->devs[i].repl_bio)
3283                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3284
3285                         bio = r10_bio->devs[i].bio;
3286                         bio->bi_end_io = NULL;
3287                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3288                         if (conf->mirrors[d].rdev == NULL ||
3289                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3290                                 continue;
3291                         sector = r10_bio->devs[i].addr;
3292                         if (is_badblock(conf->mirrors[d].rdev,
3293                                         sector, max_sync,
3294                                         &first_bad, &bad_sectors)) {
3295                                 if (first_bad > sector)
3296                                         max_sync = first_bad - sector;
3297                                 else {
3298                                         bad_sectors -= (sector - first_bad);
3299                                         if (max_sync > bad_sectors)
3300                                                 max_sync = bad_sectors;
3301                                         continue;
3302                                 }
3303                         }
3304                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3305                         atomic_inc(&r10_bio->remaining);
3306                         bio->bi_next = biolist;
3307                         biolist = bio;
3308                         bio->bi_private = r10_bio;
3309                         bio->bi_end_io = end_sync_read;
3310                         bio->bi_rw = READ;
3311                         bio->bi_sector = sector +
3312                                 conf->mirrors[d].rdev->data_offset;
3313                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3314                         count++;
3315
3316                         if (conf->mirrors[d].replacement == NULL ||
3317                             test_bit(Faulty,
3318                                      &conf->mirrors[d].replacement->flags))
3319                                 continue;
3320
3321                         /* Need to set up for writing to the replacement */
3322                         bio = r10_bio->devs[i].repl_bio;
3323                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3324
3325                         sector = r10_bio->devs[i].addr;
3326                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3327                         bio->bi_next = biolist;
3328                         biolist = bio;
3329                         bio->bi_private = r10_bio;
3330                         bio->bi_end_io = end_sync_write;
3331                         bio->bi_rw = WRITE;
3332                         bio->bi_sector = sector +
3333                                 conf->mirrors[d].replacement->data_offset;
3334                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3335                         count++;
3336                 }
3337
3338                 if (count < 2) {
3339                         for (i=0; i<conf->copies; i++) {
3340                                 int d = r10_bio->devs[i].devnum;
3341                                 if (r10_bio->devs[i].bio->bi_end_io)
3342                                         rdev_dec_pending(conf->mirrors[d].rdev,
3343                                                          mddev);
3344                                 if (r10_bio->devs[i].repl_bio &&
3345                                     r10_bio->devs[i].repl_bio->bi_end_io)
3346                                         rdev_dec_pending(
3347                                                 conf->mirrors[d].replacement,
3348                                                 mddev);
3349                         }
3350                         put_buf(r10_bio);
3351                         biolist = NULL;
3352                         goto giveup;
3353                 }
3354         }
3355
3356         for (bio = biolist; bio ; bio=bio->bi_next) {
3357
3358                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3359                 if (bio->bi_end_io)
3360                         bio->bi_flags |= 1 << BIO_UPTODATE;
3361                 bio->bi_vcnt = 0;
3362                 bio->bi_idx = 0;
3363                 bio->bi_phys_segments = 0;
3364                 bio->bi_size = 0;
3365         }
3366
3367         nr_sectors = 0;
3368         if (sector_nr + max_sync < max_sector)
3369                 max_sector = sector_nr + max_sync;
3370         do {
3371                 struct page *page;
3372                 int len = PAGE_SIZE;
3373                 if (sector_nr + (len>>9) > max_sector)
3374                         len = (max_sector - sector_nr) << 9;
3375                 if (len == 0)
3376                         break;
3377                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3378                         struct bio *bio2;
3379                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3380                         if (bio_add_page(bio, page, len, 0))
3381                                 continue;
3382
3383                         /* stop here */
3384                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3385                         for (bio2 = biolist;
3386                              bio2 && bio2 != bio;
3387                              bio2 = bio2->bi_next) {
3388                                 /* remove last page from this bio */
3389                                 bio2->bi_vcnt--;
3390                                 bio2->bi_size -= len;
3391                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3392                         }
3393                         goto bio_full;
3394                 }
3395                 nr_sectors += len>>9;
3396                 sector_nr += len>>9;
3397         } while (biolist->bi_vcnt < RESYNC_PAGES);
3398  bio_full:
3399         r10_bio->sectors = nr_sectors;
3400
3401         while (biolist) {
3402                 bio = biolist;
3403                 biolist = biolist->bi_next;
3404
3405                 bio->bi_next = NULL;
3406                 r10_bio = bio->bi_private;
3407                 r10_bio->sectors = nr_sectors;
3408
3409                 if (bio->bi_end_io == end_sync_read) {
3410                         md_sync_acct(bio->bi_bdev, nr_sectors);
3411                         generic_make_request(bio);
3412                 }
3413         }
3414
3415         if (sectors_skipped)
3416                 /* pretend they weren't skipped, it makes
3417                  * no important difference in this case
3418                  */
3419                 md_done_sync(mddev, sectors_skipped, 1);
3420
3421         return sectors_skipped + nr_sectors;
3422  giveup:
3423         /* There is nowhere to write, so all non-sync
3424          * drives must be failed or in resync, all drives
3425          * have a bad block, so try the next chunk...
3426          */
3427         if (sector_nr + max_sync < max_sector)
3428                 max_sector = sector_nr + max_sync;
3429
3430         sectors_skipped += (max_sector - sector_nr);
3431         chunks_skipped ++;
3432         sector_nr = max_sector;
3433         goto skipped;
3434 }
3435
3436 static sector_t
3437 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3438 {
3439         sector_t size;
3440         struct r10conf *conf = mddev->private;
3441
3442         if (!raid_disks)
3443                 raid_disks = min(conf->geo.raid_disks,
3444                                  conf->prev.raid_disks);
3445         if (!sectors)
3446                 sectors = conf->dev_sectors;
3447
3448         size = sectors >> conf->geo.chunk_shift;
3449         sector_div(size, conf->geo.far_copies);
3450         size = size * raid_disks;
3451         sector_div(size, conf->geo.near_copies);
3452
3453         return size << conf->geo.chunk_shift;
3454 }
3455
3456 static void calc_sectors(struct r10conf *conf, sector_t size)
3457 {
3458         /* Calculate the number of sectors-per-device that will
3459          * actually be used, and set conf->dev_sectors and
3460          * conf->stride
3461          */
3462
3463         size = size >> conf->geo.chunk_shift;
3464         sector_div(size, conf->geo.far_copies);
3465         size = size * conf->geo.raid_disks;
3466         sector_div(size, conf->geo.near_copies);
3467         /* 'size' is now the number of chunks in the array */
3468         /* calculate "used chunks per device" */
3469         size = size * conf->copies;
3470
3471         /* We need to round up when dividing by raid_disks to
3472          * get the stride size.
3473          */
3474         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3475
3476         conf->dev_sectors = size << conf->geo.chunk_shift;
3477
3478         if (conf->geo.far_offset)
3479                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3480         else {
3481                 sector_div(size, conf->geo.far_copies);
3482                 conf->geo.stride = size << conf->geo.chunk_shift;
3483         }
3484 }
3485
3486 enum geo_type {geo_new, geo_old, geo_start};
3487 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3488 {
3489         int nc, fc, fo;
3490         int layout, chunk, disks;
3491         switch (new) {
3492         case geo_old:
3493                 layout = mddev->layout;
3494                 chunk = mddev->chunk_sectors;
3495                 disks = mddev->raid_disks - mddev->delta_disks;
3496                 break;
3497         case geo_new:
3498                 layout = mddev->new_layout;
3499                 chunk = mddev->new_chunk_sectors;
3500                 disks = mddev->raid_disks;
3501                 break;
3502         default: /* avoid 'may be unused' warnings */
3503         case geo_start: /* new when starting reshape - raid_disks not
3504                          * updated yet. */
3505                 layout = mddev->new_layout;
3506                 chunk = mddev->new_chunk_sectors;
3507                 disks = mddev->raid_disks + mddev->delta_disks;
3508                 break;
3509         }
3510         if (layout >> 18)
3511                 return -1;
3512         if (chunk < (PAGE_SIZE >> 9) ||
3513             !is_power_of_2(chunk))
3514                 return -2;
3515         nc = layout & 255;
3516         fc = (layout >> 8) & 255;
3517         fo = layout & (1<<16);
3518         geo->raid_disks = disks;
3519         geo->near_copies = nc;
3520         geo->far_copies = fc;
3521         geo->far_offset = fo;
3522         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3523         geo->chunk_mask = chunk - 1;
3524         geo->chunk_shift = ffz(~chunk);
3525         return nc*fc;
3526 }
3527
3528 static struct r10conf *setup_conf(struct mddev *mddev)
3529 {
3530         struct r10conf *conf = NULL;
3531         int err = -EINVAL;
3532         struct geom geo;
3533         int copies;
3534
3535         copies = setup_geo(&geo, mddev, geo_new);
3536
3537         if (copies == -2) {
3538                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3539                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3540                        mdname(mddev), PAGE_SIZE);
3541                 goto out;
3542         }
3543
3544         if (copies < 2 || copies > mddev->raid_disks) {
3545                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3546                        mdname(mddev), mddev->new_layout);
3547                 goto out;
3548         }
3549
3550         err = -ENOMEM;
3551         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3552         if (!conf)
3553                 goto out;
3554
3555         /* FIXME calc properly */
3556         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3557                                                             max(0,mddev->delta_disks)),
3558                                 GFP_KERNEL);
3559         if (!conf->mirrors)
3560                 goto out;
3561
3562         conf->tmppage = alloc_page(GFP_KERNEL);
3563         if (!conf->tmppage)
3564                 goto out;
3565
3566         conf->geo = geo;
3567         conf->copies = copies;
3568         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3569                                            r10bio_pool_free, conf);
3570         if (!conf->r10bio_pool)
3571                 goto out;
3572
3573         calc_sectors(conf, mddev->dev_sectors);
3574         if (mddev->reshape_position == MaxSector) {
3575                 conf->prev = conf->geo;
3576                 conf->reshape_progress = MaxSector;
3577         } else {
3578                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3579                         err = -EINVAL;
3580                         goto out;
3581                 }
3582                 conf->reshape_progress = mddev->reshape_position;
3583                 if (conf->prev.far_offset)
3584                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3585                 else
3586                         /* far_copies must be 1 */
3587                         conf->prev.stride = conf->dev_sectors;
3588         }
3589         spin_lock_init(&conf->device_lock);
3590         INIT_LIST_HEAD(&conf->retry_list);
3591
3592         spin_lock_init(&conf->resync_lock);
3593         init_waitqueue_head(&conf->wait_barrier);
3594
3595         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3596         if (!conf->thread)
3597                 goto out;
3598
3599         conf->mddev = mddev;
3600         return conf;
3601
3602  out:
3603         if (err == -ENOMEM)
3604                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3605                        mdname(mddev));
3606         if (conf) {
3607                 if (conf->r10bio_pool)
3608                         mempool_destroy(conf->r10bio_pool);
3609                 kfree(conf->mirrors);
3610                 safe_put_page(conf->tmppage);
3611                 kfree(conf);
3612         }
3613         return ERR_PTR(err);
3614 }
3615
3616 static int run(struct mddev *mddev)
3617 {
3618         struct r10conf *conf;
3619         int i, disk_idx, chunk_size;
3620         struct raid10_info *disk;
3621         struct md_rdev *rdev;
3622         sector_t size;
3623         sector_t min_offset_diff = 0;
3624         int first = 1;
3625         bool discard_supported = false;
3626
3627         if (mddev->private == NULL) {
3628                 conf = setup_conf(mddev);
3629                 if (IS_ERR(conf))
3630                         return PTR_ERR(conf);
3631                 mddev->private = conf;
3632         }
3633         conf = mddev->private;
3634         if (!conf)
3635                 goto out;
3636
3637         mddev->thread = conf->thread;
3638         conf->thread = NULL;
3639
3640         chunk_size = mddev->chunk_sectors << 9;
3641         if (mddev->queue) {
3642                 blk_queue_max_discard_sectors(mddev->queue,
3643                                               mddev->chunk_sectors);
3644                 blk_queue_max_write_same_sectors(mddev->queue,
3645                                                  mddev->chunk_sectors);
3646                 blk_queue_io_min(mddev->queue, chunk_size);
3647                 if (conf->geo.raid_disks % conf->geo.near_copies)
3648                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3649                 else
3650                         blk_queue_io_opt(mddev->queue, chunk_size *
3651                                          (conf->geo.raid_disks / conf->geo.near_copies));
3652         }
3653
3654         rdev_for_each(rdev, mddev) {
3655                 long long diff;
3656                 struct request_queue *q;
3657
3658                 disk_idx = rdev->raid_disk;
3659                 if (disk_idx < 0)
3660                         continue;
3661                 if (disk_idx >= conf->geo.raid_disks &&
3662                     disk_idx >= conf->prev.raid_disks)
3663                         continue;
3664                 disk = conf->mirrors + disk_idx;
3665
3666                 if (test_bit(Replacement, &rdev->flags)) {
3667                         if (disk->replacement)
3668                                 goto out_free_conf;
3669                         disk->replacement = rdev;
3670                 } else {
3671                         if (disk->rdev)
3672                                 goto out_free_conf;
3673                         disk->rdev = rdev;
3674                 }
3675                 q = bdev_get_queue(rdev->bdev);
3676                 if (q->merge_bvec_fn)
3677                         mddev->merge_check_needed = 1;
3678                 diff = (rdev->new_data_offset - rdev->data_offset);
3679                 if (!mddev->reshape_backwards)
3680                         diff = -diff;
3681                 if (diff < 0)
3682                         diff = 0;
3683                 if (first || diff < min_offset_diff)
3684                         min_offset_diff = diff;
3685
3686                 if (mddev->gendisk)
3687                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3688                                           rdev->data_offset << 9);
3689
3690                 disk->head_position = 0;
3691
3692                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3693                         discard_supported = true;
3694         }
3695
3696         if (mddev->queue) {
3697                 if (discard_supported)
3698                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3699                                                 mddev->queue);
3700                 else
3701                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3702                                                   mddev->queue);
3703         }
3704         /* need to check that every block has at least one working mirror */
3705         if (!enough(conf, -1)) {
3706                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3707                        mdname(mddev));
3708                 goto out_free_conf;
3709         }
3710
3711         if (conf->reshape_progress != MaxSector) {
3712                 /* must ensure that shape change is supported */
3713                 if (conf->geo.far_copies != 1 &&
3714                     conf->geo.far_offset == 0)
3715                         goto out_free_conf;
3716                 if (conf->prev.far_copies != 1 &&
3717                     conf->geo.far_offset == 0)
3718                         goto out_free_conf;
3719         }
3720
3721         mddev->degraded = 0;
3722         for (i = 0;
3723              i < conf->geo.raid_disks
3724                      || i < conf->prev.raid_disks;
3725              i++) {
3726
3727                 disk = conf->mirrors + i;
3728
3729                 if (!disk->rdev && disk->replacement) {
3730                         /* The replacement is all we have - use it */
3731                         disk->rdev = disk->replacement;
3732                         disk->replacement = NULL;
3733                         clear_bit(Replacement, &disk->rdev->flags);
3734                 }
3735
3736                 if (!disk->rdev ||
3737                     !test_bit(In_sync, &disk->rdev->flags)) {
3738                         disk->head_position = 0;
3739                         mddev->degraded++;
3740                         if (disk->rdev)
3741                                 conf->fullsync = 1;
3742                 }
3743                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3744         }
3745
3746         if (mddev->recovery_cp != MaxSector)
3747                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3748                        " -- starting background reconstruction\n",
3749                        mdname(mddev));
3750         printk(KERN_INFO
3751                 "md/raid10:%s: active with %d out of %d devices\n",
3752                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3753                 conf->geo.raid_disks);
3754         /*
3755          * Ok, everything is just fine now
3756          */
3757         mddev->dev_sectors = conf->dev_sectors;
3758         size = raid10_size(mddev, 0, 0);
3759         md_set_array_sectors(mddev, size);
3760         mddev->resync_max_sectors = size;
3761
3762         if (mddev->queue) {
3763                 int stripe = conf->geo.raid_disks *
3764                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3765                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3766                 mddev->queue->backing_dev_info.congested_data = mddev;
3767
3768                 /* Calculate max read-ahead size.
3769                  * We need to readahead at least twice a whole stripe....
3770                  * maybe...
3771                  */
3772                 stripe /= conf->geo.near_copies;
3773                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3774                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3775                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3776         }
3777
3778
3779         if (md_integrity_register(mddev))
3780                 goto out_free_conf;
3781
3782         if (conf->reshape_progress != MaxSector) {
3783                 unsigned long before_length, after_length;
3784
3785                 before_length = ((1 << conf->prev.chunk_shift) *
3786                                  conf->prev.far_copies);
3787                 after_length = ((1 << conf->geo.chunk_shift) *
3788                                 conf->geo.far_copies);
3789
3790                 if (max(before_length, after_length) > min_offset_diff) {
3791                         /* This cannot work */
3792                         printk("md/raid10: offset difference not enough to continue reshape\n");
3793                         goto out_free_conf;
3794                 }
3795                 conf->offset_diff = min_offset_diff;
3796
3797                 conf->reshape_safe = conf->reshape_progress;
3798                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3799                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3800                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3801                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3802                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3803                                                         "reshape");
3804         }
3805
3806         return 0;
3807
3808 out_free_conf:
3809         md_unregister_thread(&mddev->thread);
3810         if (conf->r10bio_pool)
3811                 mempool_destroy(conf->r10bio_pool);
3812         safe_put_page(conf->tmppage);
3813         kfree(conf->mirrors);
3814         kfree(conf);
3815         mddev->private = NULL;
3816 out:
3817         return -EIO;
3818 }
3819
3820 static int stop(struct mddev *mddev)
3821 {
3822         struct r10conf *conf = mddev->private;
3823
3824         raise_barrier(conf, 0);
3825         lower_barrier(conf);
3826
3827         md_unregister_thread(&mddev->thread);
3828         if (mddev->queue)
3829                 /* the unplug fn references 'conf'*/
3830                 blk_sync_queue(mddev->queue);
3831
3832         if (conf->r10bio_pool)
3833                 mempool_destroy(conf->r10bio_pool);
3834         safe_put_page(conf->tmppage);
3835         kfree(conf->mirrors);
3836         kfree(conf);
3837         mddev->private = NULL;
3838         return 0;
3839 }
3840
3841 static void raid10_quiesce(struct mddev *mddev, int state)
3842 {
3843         struct r10conf *conf = mddev->private;
3844
3845         switch(state) {
3846         case 1:
3847                 raise_barrier(conf, 0);
3848                 break;
3849         case 0:
3850                 lower_barrier(conf);
3851                 break;
3852         }
3853 }
3854
3855 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3856 {
3857         /* Resize of 'far' arrays is not supported.
3858          * For 'near' and 'offset' arrays we can set the
3859          * number of sectors used to be an appropriate multiple
3860          * of the chunk size.
3861          * For 'offset', this is far_copies*chunksize.
3862          * For 'near' the multiplier is the LCM of
3863          * near_copies and raid_disks.
3864          * So if far_copies > 1 && !far_offset, fail.
3865          * Else find LCM(raid_disks, near_copy)*far_copies and
3866          * multiply by chunk_size.  Then round to this number.
3867          * This is mostly done by raid10_size()
3868          */
3869         struct r10conf *conf = mddev->private;
3870         sector_t oldsize, size;
3871
3872         if (mddev->reshape_position != MaxSector)
3873                 return -EBUSY;
3874
3875         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3876                 return -EINVAL;
3877
3878         oldsize = raid10_size(mddev, 0, 0);
3879         size = raid10_size(mddev, sectors, 0);
3880         if (mddev->external_size &&
3881             mddev->array_sectors > size)
3882                 return -EINVAL;
3883         if (mddev->bitmap) {
3884                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3885                 if (ret)
3886                         return ret;
3887         }
3888         md_set_array_sectors(mddev, size);
3889         set_capacity(mddev->gendisk, mddev->array_sectors);
3890         revalidate_disk(mddev->gendisk);
3891         if (sectors > mddev->dev_sectors &&
3892             mddev->recovery_cp > oldsize) {
3893                 mddev->recovery_cp = oldsize;
3894                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3895         }
3896         calc_sectors(conf, sectors);
3897         mddev->dev_sectors = conf->dev_sectors;
3898         mddev->resync_max_sectors = size;
3899         return 0;
3900 }
3901
3902 static void *raid10_takeover_raid0(struct mddev *mddev)
3903 {
3904         struct md_rdev *rdev;
3905         struct r10conf *conf;
3906
3907         if (mddev->degraded > 0) {
3908                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3909                        mdname(mddev));
3910                 return ERR_PTR(-EINVAL);
3911         }
3912
3913         /* Set new parameters */
3914         mddev->new_level = 10;
3915         /* new layout: far_copies = 1, near_copies = 2 */
3916         mddev->new_layout = (1<<8) + 2;
3917         mddev->new_chunk_sectors = mddev->chunk_sectors;
3918         mddev->delta_disks = mddev->raid_disks;
3919         mddev->raid_disks *= 2;
3920         /* make sure it will be not marked as dirty */
3921         mddev->recovery_cp = MaxSector;
3922
3923         conf = setup_conf(mddev);
3924         if (!IS_ERR(conf)) {
3925                 rdev_for_each(rdev, mddev)
3926                         if (rdev->raid_disk >= 0)
3927                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3928                 conf->barrier = 1;
3929         }
3930
3931         return conf;
3932 }
3933
3934 static void *raid10_takeover(struct mddev *mddev)
3935 {
3936         struct r0conf *raid0_conf;
3937
3938         /* raid10 can take over:
3939          *  raid0 - providing it has only two drives
3940          */
3941         if (mddev->level == 0) {
3942                 /* for raid0 takeover only one zone is supported */
3943                 raid0_conf = mddev->private;
3944                 if (raid0_conf->nr_strip_zones > 1) {
3945                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3946                                " with more than one zone.\n",
3947                                mdname(mddev));
3948                         return ERR_PTR(-EINVAL);
3949                 }
3950                 return raid10_takeover_raid0(mddev);
3951         }
3952         return ERR_PTR(-EINVAL);
3953 }
3954
3955 static int raid10_check_reshape(struct mddev *mddev)
3956 {
3957         /* Called when there is a request to change
3958          * - layout (to ->new_layout)
3959          * - chunk size (to ->new_chunk_sectors)
3960          * - raid_disks (by delta_disks)
3961          * or when trying to restart a reshape that was ongoing.
3962          *
3963          * We need to validate the request and possibly allocate
3964          * space if that might be an issue later.
3965          *
3966          * Currently we reject any reshape of a 'far' mode array,
3967          * allow chunk size to change if new is generally acceptable,
3968          * allow raid_disks to increase, and allow
3969          * a switch between 'near' mode and 'offset' mode.
3970          */
3971         struct r10conf *conf = mddev->private;
3972         struct geom geo;
3973
3974         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3975                 return -EINVAL;
3976
3977         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3978                 /* mustn't change number of copies */
3979                 return -EINVAL;
3980         if (geo.far_copies > 1 && !geo.far_offset)
3981                 /* Cannot switch to 'far' mode */
3982                 return -EINVAL;
3983
3984         if (mddev->array_sectors & geo.chunk_mask)
3985                         /* not factor of array size */
3986                         return -EINVAL;
3987
3988         if (!enough(conf, -1))
3989                 return -EINVAL;
3990
3991         kfree(conf->mirrors_new);
3992         conf->mirrors_new = NULL;
3993         if (mddev->delta_disks > 0) {
3994                 /* allocate new 'mirrors' list */
3995                 conf->mirrors_new = kzalloc(
3996                         sizeof(struct raid10_info)
3997                         *(mddev->raid_disks +
3998                           mddev->delta_disks),
3999                         GFP_KERNEL);
4000                 if (!conf->mirrors_new)
4001                         return -ENOMEM;
4002         }
4003         return 0;
4004 }
4005
4006 /*
4007  * Need to check if array has failed when deciding whether to:
4008  *  - start an array
4009  *  - remove non-faulty devices
4010  *  - add a spare
4011  *  - allow a reshape
4012  * This determination is simple when no reshape is happening.
4013  * However if there is a reshape, we need to carefully check
4014  * both the before and after sections.
4015  * This is because some failed devices may only affect one
4016  * of the two sections, and some non-in_sync devices may
4017  * be insync in the section most affected by failed devices.
4018  */
4019 static int calc_degraded(struct r10conf *conf)
4020 {
4021         int degraded, degraded2;
4022         int i;
4023
4024         rcu_read_lock();
4025         degraded = 0;
4026         /* 'prev' section first */
4027         for (i = 0; i < conf->prev.raid_disks; i++) {
4028                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4029                 if (!rdev || test_bit(Faulty, &rdev->flags))
4030                         degraded++;
4031                 else if (!test_bit(In_sync, &rdev->flags))
4032                         /* When we can reduce the number of devices in
4033                          * an array, this might not contribute to
4034                          * 'degraded'.  It does now.
4035                          */
4036                         degraded++;
4037         }
4038         rcu_read_unlock();
4039         if (conf->geo.raid_disks == conf->prev.raid_disks)
4040                 return degraded;
4041         rcu_read_lock();
4042         degraded2 = 0;
4043         for (i = 0; i < conf->geo.raid_disks; i++) {
4044                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4045                 if (!rdev || test_bit(Faulty, &rdev->flags))
4046                         degraded2++;
4047                 else if (!test_bit(In_sync, &rdev->flags)) {
4048                         /* If reshape is increasing the number of devices,
4049                          * this section has already been recovered, so
4050                          * it doesn't contribute to degraded.
4051                          * else it does.
4052                          */
4053                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4054                                 degraded2++;
4055                 }
4056         }
4057         rcu_read_unlock();
4058         if (degraded2 > degraded)
4059                 return degraded2;
4060         return degraded;
4061 }
4062
4063 static int raid10_start_reshape(struct mddev *mddev)
4064 {
4065         /* A 'reshape' has been requested. This commits
4066          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4067          * This also checks if there are enough spares and adds them
4068          * to the array.
4069          * We currently require enough spares to make the final
4070          * array non-degraded.  We also require that the difference
4071          * between old and new data_offset - on each device - is
4072          * enough that we never risk over-writing.
4073          */
4074
4075         unsigned long before_length, after_length;
4076         sector_t min_offset_diff = 0;
4077         int first = 1;
4078         struct geom new;
4079         struct r10conf *conf = mddev->private;
4080         struct md_rdev *rdev;
4081         int spares = 0;
4082         int ret;
4083
4084         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4085                 return -EBUSY;
4086
4087         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4088                 return -EINVAL;
4089
4090         before_length = ((1 << conf->prev.chunk_shift) *
4091                          conf->prev.far_copies);
4092         after_length = ((1 << conf->geo.chunk_shift) *
4093                         conf->geo.far_copies);
4094
4095         rdev_for_each(rdev, mddev) {
4096                 if (!test_bit(In_sync, &rdev->flags)
4097                     && !test_bit(Faulty, &rdev->flags))
4098                         spares++;
4099                 if (rdev->raid_disk >= 0) {
4100                         long long diff = (rdev->new_data_offset
4101                                           - rdev->data_offset);
4102                         if (!mddev->reshape_backwards)
4103                                 diff = -diff;
4104                         if (diff < 0)
4105                                 diff = 0;
4106                         if (first || diff < min_offset_diff)
4107                                 min_offset_diff = diff;
4108                 }
4109         }
4110
4111         if (max(before_length, after_length) > min_offset_diff)
4112                 return -EINVAL;
4113
4114         if (spares < mddev->delta_disks)
4115                 return -EINVAL;
4116
4117         conf->offset_diff = min_offset_diff;
4118         spin_lock_irq(&conf->device_lock);
4119         if (conf->mirrors_new) {
4120                 memcpy(conf->mirrors_new, conf->mirrors,
4121                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4122                 smp_mb();
4123                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4124                 conf->mirrors_old = conf->mirrors;
4125                 conf->mirrors = conf->mirrors_new;
4126                 conf->mirrors_new = NULL;
4127         }
4128         setup_geo(&conf->geo, mddev, geo_start);
4129         smp_mb();
4130         if (mddev->reshape_backwards) {
4131                 sector_t size = raid10_size(mddev, 0, 0);
4132                 if (size < mddev->array_sectors) {
4133                         spin_unlock_irq(&conf->device_lock);
4134                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4135                                mdname(mddev));
4136                         return -EINVAL;
4137                 }
4138                 mddev->resync_max_sectors = size;
4139                 conf->reshape_progress = size;
4140         } else
4141                 conf->reshape_progress = 0;
4142         spin_unlock_irq(&conf->device_lock);
4143
4144         if (mddev->delta_disks && mddev->bitmap) {
4145                 ret = bitmap_resize(mddev->bitmap,
4146                                     raid10_size(mddev, 0,
4147                                                 conf->geo.raid_disks),
4148                                     0, 0);
4149                 if (ret)
4150                         goto abort;
4151         }
4152         if (mddev->delta_disks > 0) {
4153                 rdev_for_each(rdev, mddev)
4154                         if (rdev->raid_disk < 0 &&
4155                             !test_bit(Faulty, &rdev->flags)) {
4156                                 if (raid10_add_disk(mddev, rdev) == 0) {
4157                                         if (rdev->raid_disk >=
4158                                             conf->prev.raid_disks)
4159                                                 set_bit(In_sync, &rdev->flags);
4160                                         else
4161                                                 rdev->recovery_offset = 0;
4162
4163                                         if (sysfs_link_rdev(mddev, rdev))
4164                                                 /* Failure here  is OK */;
4165                                 }
4166                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4167                                    && !test_bit(Faulty, &rdev->flags)) {
4168                                 /* This is a spare that was manually added */
4169                                 set_bit(In_sync, &rdev->flags);
4170                         }
4171         }
4172         /* When a reshape changes the number of devices,
4173          * ->degraded is measured against the larger of the
4174          * pre and  post numbers.
4175          */
4176         spin_lock_irq(&conf->device_lock);
4177         mddev->degraded = calc_degraded(conf);
4178         spin_unlock_irq(&conf->device_lock);
4179         mddev->raid_disks = conf->geo.raid_disks;
4180         mddev->reshape_position = conf->reshape_progress;
4181         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4182
4183         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4184         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4185         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4186         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4187
4188         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4189                                                 "reshape");
4190         if (!mddev->sync_thread) {
4191                 ret = -EAGAIN;
4192                 goto abort;
4193         }
4194         conf->reshape_checkpoint = jiffies;
4195         md_wakeup_thread(mddev->sync_thread);
4196         md_new_event(mddev);
4197         return 0;
4198
4199 abort:
4200         mddev->recovery = 0;
4201         spin_lock_irq(&conf->device_lock);
4202         conf->geo = conf->prev;
4203         mddev->raid_disks = conf->geo.raid_disks;
4204         rdev_for_each(rdev, mddev)
4205                 rdev->new_data_offset = rdev->data_offset;
4206         smp_wmb();
4207         conf->reshape_progress = MaxSector;
4208         mddev->reshape_position = MaxSector;
4209         spin_unlock_irq(&conf->device_lock);
4210         return ret;
4211 }
4212
4213 /* Calculate the last device-address that could contain
4214  * any block from the chunk that includes the array-address 's'
4215  * and report the next address.
4216  * i.e. the address returned will be chunk-aligned and after
4217  * any data that is in the chunk containing 's'.
4218  */
4219 static sector_t last_dev_address(sector_t s, struct geom *geo)
4220 {
4221         s = (s | geo->chunk_mask) + 1;
4222         s >>= geo->chunk_shift;
4223         s *= geo->near_copies;
4224         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4225         s *= geo->far_copies;
4226         s <<= geo->chunk_shift;
4227         return s;
4228 }
4229
4230 /* Calculate the first device-address that could contain
4231  * any block from the chunk that includes the array-address 's'.
4232  * This too will be the start of a chunk
4233  */
4234 static sector_t first_dev_address(sector_t s, struct geom *geo)
4235 {
4236         s >>= geo->chunk_shift;
4237         s *= geo->near_copies;
4238         sector_div(s, geo->raid_disks);
4239         s *= geo->far_copies;
4240         s <<= geo->chunk_shift;
4241         return s;
4242 }
4243
4244 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4245                                 int *skipped)
4246 {
4247         /* We simply copy at most one chunk (smallest of old and new)
4248          * at a time, possibly less if that exceeds RESYNC_PAGES,
4249          * or we hit a bad block or something.
4250          * This might mean we pause for normal IO in the middle of
4251          * a chunk, but that is not a problem was mddev->reshape_position
4252          * can record any location.
4253          *
4254          * If we will want to write to a location that isn't
4255          * yet recorded as 'safe' (i.e. in metadata on disk) then
4256          * we need to flush all reshape requests and update the metadata.
4257          *
4258          * When reshaping forwards (e.g. to more devices), we interpret
4259          * 'safe' as the earliest block which might not have been copied
4260          * down yet.  We divide this by previous stripe size and multiply
4261          * by previous stripe length to get lowest device offset that we
4262          * cannot write to yet.
4263          * We interpret 'sector_nr' as an address that we want to write to.
4264          * From this we use last_device_address() to find where we might
4265          * write to, and first_device_address on the  'safe' position.
4266          * If this 'next' write position is after the 'safe' position,
4267          * we must update the metadata to increase the 'safe' position.
4268          *
4269          * When reshaping backwards, we round in the opposite direction
4270          * and perform the reverse test:  next write position must not be
4271          * less than current safe position.
4272          *
4273          * In all this the minimum difference in data offsets
4274          * (conf->offset_diff - always positive) allows a bit of slack,
4275          * so next can be after 'safe', but not by more than offset_disk
4276          *
4277          * We need to prepare all the bios here before we start any IO
4278          * to ensure the size we choose is acceptable to all devices.
4279          * The means one for each copy for write-out and an extra one for
4280          * read-in.
4281          * We store the read-in bio in ->master_bio and the others in
4282          * ->devs[x].bio and ->devs[x].repl_bio.
4283          */
4284         struct r10conf *conf = mddev->private;
4285         struct r10bio *r10_bio;
4286         sector_t next, safe, last;
4287         int max_sectors;
4288         int nr_sectors;
4289         int s;
4290         struct md_rdev *rdev;
4291         int need_flush = 0;
4292         struct bio *blist;
4293         struct bio *bio, *read_bio;
4294         int sectors_done = 0;
4295
4296         if (sector_nr == 0) {
4297                 /* If restarting in the middle, skip the initial sectors */
4298                 if (mddev->reshape_backwards &&
4299                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4300                         sector_nr = (raid10_size(mddev, 0, 0)
4301                                      - conf->reshape_progress);
4302                 } else if (!mddev->reshape_backwards &&
4303                            conf->reshape_progress > 0)
4304                         sector_nr = conf->reshape_progress;
4305                 if (sector_nr) {
4306                         mddev->curr_resync_completed = sector_nr;
4307                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4308                         *skipped = 1;
4309                         return sector_nr;
4310                 }
4311         }
4312
4313         /* We don't use sector_nr to track where we are up to
4314          * as that doesn't work well for ->reshape_backwards.
4315          * So just use ->reshape_progress.
4316          */
4317         if (mddev->reshape_backwards) {
4318                 /* 'next' is the earliest device address that we might
4319                  * write to for this chunk in the new layout
4320                  */
4321                 next = first_dev_address(conf->reshape_progress - 1,
4322                                          &conf->geo);
4323
4324                 /* 'safe' is the last device address that we might read from
4325                  * in the old layout after a restart
4326                  */
4327                 safe = last_dev_address(conf->reshape_safe - 1,
4328                                         &conf->prev);
4329
4330                 if (next + conf->offset_diff < safe)
4331                         need_flush = 1;
4332
4333                 last = conf->reshape_progress - 1;
4334                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4335                                                & conf->prev.chunk_mask);
4336                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4337                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4338         } else {
4339                 /* 'next' is after the last device address that we
4340                  * might write to for this chunk in the new layout
4341                  */
4342                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4343
4344                 /* 'safe' is the earliest device address that we might
4345                  * read from in the old layout after a restart
4346                  */
4347                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4348
4349                 /* Need to update metadata if 'next' might be beyond 'safe'
4350                  * as that would possibly corrupt data
4351                  */
4352                 if (next > safe + conf->offset_diff)
4353                         need_flush = 1;
4354
4355                 sector_nr = conf->reshape_progress;
4356                 last  = sector_nr | (conf->geo.chunk_mask
4357                                      & conf->prev.chunk_mask);
4358
4359                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4360                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4361         }
4362
4363         if (need_flush ||
4364             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4365                 /* Need to update reshape_position in metadata */
4366                 wait_barrier(conf);
4367                 mddev->reshape_position = conf->reshape_progress;
4368                 if (mddev->reshape_backwards)
4369                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4370                                 - conf->reshape_progress;
4371                 else
4372                         mddev->curr_resync_completed = conf->reshape_progress;
4373                 conf->reshape_checkpoint = jiffies;
4374                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4375                 md_wakeup_thread(mddev->thread);
4376                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4377                            kthread_should_stop());
4378                 conf->reshape_safe = mddev->reshape_position;
4379                 allow_barrier(conf);
4380         }
4381
4382 read_more:
4383         /* Now schedule reads for blocks from sector_nr to last */
4384         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385         raise_barrier(conf, sectors_done != 0);
4386         atomic_set(&r10_bio->remaining, 0);
4387         r10_bio->mddev = mddev;
4388         r10_bio->sector = sector_nr;
4389         set_bit(R10BIO_IsReshape, &r10_bio->state);
4390         r10_bio->sectors = last - sector_nr + 1;
4391         rdev = read_balance(conf, r10_bio, &max_sectors);
4392         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4393
4394         if (!rdev) {
4395                 /* Cannot read from here, so need to record bad blocks
4396                  * on all the target devices.
4397                  */
4398                 // FIXME
4399                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4400                 return sectors_done;
4401         }
4402
4403         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4404
4405         read_bio->bi_bdev = rdev->bdev;
4406         read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4407                                + rdev->data_offset);
4408         read_bio->bi_private = r10_bio;
4409         read_bio->bi_end_io = end_sync_read;
4410         read_bio->bi_rw = READ;
4411         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4412         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4413         read_bio->bi_vcnt = 0;
4414         read_bio->bi_idx = 0;
4415         read_bio->bi_size = 0;
4416         r10_bio->master_bio = read_bio;
4417         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4418
4419         /* Now find the locations in the new layout */
4420         __raid10_find_phys(&conf->geo, r10_bio);
4421
4422         blist = read_bio;
4423         read_bio->bi_next = NULL;
4424
4425         for (s = 0; s < conf->copies*2; s++) {
4426                 struct bio *b;
4427                 int d = r10_bio->devs[s/2].devnum;
4428                 struct md_rdev *rdev2;
4429                 if (s&1) {
4430                         rdev2 = conf->mirrors[d].replacement;
4431                         b = r10_bio->devs[s/2].repl_bio;
4432                 } else {
4433                         rdev2 = conf->mirrors[d].rdev;
4434                         b = r10_bio->devs[s/2].bio;
4435                 }
4436                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4437                         continue;
4438                 b->bi_bdev = rdev2->bdev;
4439                 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4440                 b->bi_private = r10_bio;
4441                 b->bi_end_io = end_reshape_write;
4442                 b->bi_rw = WRITE;
4443                 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4444                 b->bi_flags |= 1 << BIO_UPTODATE;
4445                 b->bi_next = blist;
4446                 b->bi_vcnt = 0;
4447                 b->bi_idx = 0;
4448                 b->bi_size = 0;
4449                 blist = b;
4450         }
4451
4452         /* Now add as many pages as possible to all of these bios. */
4453
4454         nr_sectors = 0;
4455         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457                 int len = (max_sectors - s) << 9;
4458                 if (len > PAGE_SIZE)
4459                         len = PAGE_SIZE;
4460                 for (bio = blist; bio ; bio = bio->bi_next) {
4461                         struct bio *bio2;
4462                         if (bio_add_page(bio, page, len, 0))
4463                                 continue;
4464
4465                         /* Didn't fit, must stop */
4466                         for (bio2 = blist;
4467                              bio2 && bio2 != bio;
4468                              bio2 = bio2->bi_next) {
4469                                 /* Remove last page from this bio */
4470                                 bio2->bi_vcnt--;
4471                                 bio2->bi_size -= len;
4472                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473                         }
4474                         goto bio_full;
4475                 }
4476                 sector_nr += len >> 9;
4477                 nr_sectors += len >> 9;
4478         }
4479 bio_full:
4480         r10_bio->sectors = nr_sectors;
4481
4482         /* Now submit the read */
4483         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484         atomic_inc(&r10_bio->remaining);
4485         read_bio->bi_next = NULL;
4486         generic_make_request(read_bio);
4487         sector_nr += nr_sectors;
4488         sectors_done += nr_sectors;
4489         if (sector_nr <= last)
4490                 goto read_more;
4491
4492         /* Now that we have done the whole section we can
4493          * update reshape_progress
4494          */
4495         if (mddev->reshape_backwards)
4496                 conf->reshape_progress -= sectors_done;
4497         else
4498                 conf->reshape_progress += sectors_done;
4499
4500         return sectors_done;
4501 }
4502
4503 static void end_reshape_request(struct r10bio *r10_bio);
4504 static int handle_reshape_read_error(struct mddev *mddev,
4505                                      struct r10bio *r10_bio);
4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507 {
4508         /* Reshape read completed.  Hopefully we have a block
4509          * to write out.
4510          * If we got a read error then we do sync 1-page reads from
4511          * elsewhere until we find the data - or give up.
4512          */
4513         struct r10conf *conf = mddev->private;
4514         int s;
4515
4516         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518                         /* Reshape has been aborted */
4519                         md_done_sync(mddev, r10_bio->sectors, 0);
4520                         return;
4521                 }
4522
4523         /* We definitely have the data in the pages, schedule the
4524          * writes.
4525          */
4526         atomic_set(&r10_bio->remaining, 1);
4527         for (s = 0; s < conf->copies*2; s++) {
4528                 struct bio *b;
4529                 int d = r10_bio->devs[s/2].devnum;
4530                 struct md_rdev *rdev;
4531                 if (s&1) {
4532                         rdev = conf->mirrors[d].replacement;
4533                         b = r10_bio->devs[s/2].repl_bio;
4534                 } else {
4535                         rdev = conf->mirrors[d].rdev;
4536                         b = r10_bio->devs[s/2].bio;
4537                 }
4538                 if (!rdev || test_bit(Faulty, &rdev->flags))
4539                         continue;
4540                 atomic_inc(&rdev->nr_pending);
4541                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542                 atomic_inc(&r10_bio->remaining);
4543                 b->bi_next = NULL;
4544                 generic_make_request(b);
4545         }
4546         end_reshape_request(r10_bio);
4547 }
4548
4549 static void end_reshape(struct r10conf *conf)
4550 {
4551         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552                 return;
4553
4554         spin_lock_irq(&conf->device_lock);
4555         conf->prev = conf->geo;
4556         md_finish_reshape(conf->mddev);
4557         smp_wmb();
4558         conf->reshape_progress = MaxSector;
4559         spin_unlock_irq(&conf->device_lock);
4560
4561         /* read-ahead size must cover two whole stripes, which is
4562          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563          */
4564         if (conf->mddev->queue) {
4565                 int stripe = conf->geo.raid_disks *
4566                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567                 stripe /= conf->geo.near_copies;
4568                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570         }
4571         conf->fullsync = 0;
4572 }
4573
4574
4575 static int handle_reshape_read_error(struct mddev *mddev,
4576                                      struct r10bio *r10_bio)
4577 {
4578         /* Use sync reads to get the blocks from somewhere else */
4579         int sectors = r10_bio->sectors;
4580         struct r10conf *conf = mddev->private;
4581         struct {
4582                 struct r10bio r10_bio;
4583                 struct r10dev devs[conf->copies];
4584         } on_stack;
4585         struct r10bio *r10b = &on_stack.r10_bio;
4586         int slot = 0;
4587         int idx = 0;
4588         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4589
4590         r10b->sector = r10_bio->sector;
4591         __raid10_find_phys(&conf->prev, r10b);
4592
4593         while (sectors) {
4594                 int s = sectors;
4595                 int success = 0;
4596                 int first_slot = slot;
4597
4598                 if (s > (PAGE_SIZE >> 9))
4599                         s = PAGE_SIZE >> 9;
4600
4601                 while (!success) {
4602                         int d = r10b->devs[slot].devnum;
4603                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4604                         sector_t addr;
4605                         if (rdev == NULL ||
4606                             test_bit(Faulty, &rdev->flags) ||
4607                             !test_bit(In_sync, &rdev->flags))
4608                                 goto failed;
4609
4610                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611                         success = sync_page_io(rdev,
4612                                                addr,
4613                                                s << 9,
4614                                                bvec[idx].bv_page,
4615                                                READ, false);
4616                         if (success)
4617                                 break;
4618                 failed:
4619                         slot++;
4620                         if (slot >= conf->copies)
4621                                 slot = 0;
4622                         if (slot == first_slot)
4623                                 break;
4624                 }
4625                 if (!success) {
4626                         /* couldn't read this block, must give up */
4627                         set_bit(MD_RECOVERY_INTR,
4628                                 &mddev->recovery);
4629                         return -EIO;
4630                 }
4631                 sectors -= s;
4632                 idx++;
4633         }
4634         return 0;
4635 }
4636
4637 static void end_reshape_write(struct bio *bio, int error)
4638 {
4639         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640         struct r10bio *r10_bio = bio->bi_private;
4641         struct mddev *mddev = r10_bio->mddev;
4642         struct r10conf *conf = mddev->private;
4643         int d;
4644         int slot;
4645         int repl;
4646         struct md_rdev *rdev = NULL;
4647
4648         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649         if (repl)
4650                 rdev = conf->mirrors[d].replacement;
4651         if (!rdev) {
4652                 smp_mb();
4653                 rdev = conf->mirrors[d].rdev;
4654         }
4655
4656         if (!uptodate) {
4657                 /* FIXME should record badblock */
4658                 md_error(mddev, rdev);
4659         }
4660
4661         rdev_dec_pending(rdev, mddev);
4662         end_reshape_request(r10_bio);
4663 }
4664
4665 static void end_reshape_request(struct r10bio *r10_bio)
4666 {
4667         if (!atomic_dec_and_test(&r10_bio->remaining))
4668                 return;
4669         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670         bio_put(r10_bio->master_bio);
4671         put_buf(r10_bio);
4672 }
4673
4674 static void raid10_finish_reshape(struct mddev *mddev)
4675 {
4676         struct r10conf *conf = mddev->private;
4677
4678         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679                 return;
4680
4681         if (mddev->delta_disks > 0) {
4682                 sector_t size = raid10_size(mddev, 0, 0);
4683                 md_set_array_sectors(mddev, size);
4684                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685                         mddev->recovery_cp = mddev->resync_max_sectors;
4686                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687                 }
4688                 mddev->resync_max_sectors = size;
4689                 set_capacity(mddev->gendisk, mddev->array_sectors);
4690                 revalidate_disk(mddev->gendisk);
4691         } else {
4692                 int d;
4693                 for (d = conf->geo.raid_disks ;
4694                      d < conf->geo.raid_disks - mddev->delta_disks;
4695                      d++) {
4696                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4697                         if (rdev)
4698                                 clear_bit(In_sync, &rdev->flags);
4699                         rdev = conf->mirrors[d].replacement;
4700                         if (rdev)
4701                                 clear_bit(In_sync, &rdev->flags);
4702                 }
4703         }
4704         mddev->layout = mddev->new_layout;
4705         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706         mddev->reshape_position = MaxSector;
4707         mddev->delta_disks = 0;
4708         mddev->reshape_backwards = 0;
4709 }
4710
4711 static struct md_personality raid10_personality =
4712 {
4713         .name           = "raid10",
4714         .level          = 10,
4715         .owner          = THIS_MODULE,
4716         .make_request   = make_request,
4717         .run            = run,
4718         .stop           = stop,
4719         .status         = status,
4720         .error_handler  = error,
4721         .hot_add_disk   = raid10_add_disk,
4722         .hot_remove_disk= raid10_remove_disk,
4723         .spare_active   = raid10_spare_active,
4724         .sync_request   = sync_request,
4725         .quiesce        = raid10_quiesce,
4726         .size           = raid10_size,
4727         .resize         = raid10_resize,
4728         .takeover       = raid10_takeover,
4729         .check_reshape  = raid10_check_reshape,
4730         .start_reshape  = raid10_start_reshape,
4731         .finish_reshape = raid10_finish_reshape,
4732 };
4733
4734 static int __init raid_init(void)
4735 {
4736         return register_md_personality(&raid10_personality);
4737 }
4738
4739 static void raid_exit(void)
4740 {
4741         unregister_md_personality(&raid10_personality);
4742 }
4743
4744 module_init(raid_init);
4745 module_exit(raid_exit);
4746 MODULE_LICENSE("GPL");
4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749 MODULE_ALIAS("md-raid10");
4750 MODULE_ALIAS("md-level-10");
4751
4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);