]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5-cache.c
raid5-cache: clean up r5l_get_meta
[karo-tx-linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 struct r5l_log {
38         struct md_rdev *rdev;
39
40         u32 uuid_checksum;
41
42         sector_t device_size;           /* log device size, round to
43                                          * BLOCK_SECTORS */
44         sector_t max_free_space;        /* reclaim run if free space is at
45                                          * this size */
46
47         sector_t last_checkpoint;       /* log tail. where recovery scan
48                                          * starts from */
49         u64 last_cp_seq;                /* log tail sequence */
50
51         sector_t log_start;             /* log head. where new data appends */
52         u64 seq;                        /* log head sequence */
53
54         sector_t next_checkpoint;
55         u64 next_cp_seq;
56
57         struct mutex io_mutex;
58         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
59
60         spinlock_t io_list_lock;
61         struct list_head running_ios;   /* io_units which are still running,
62                                          * and have not yet been completely
63                                          * written to the log */
64         struct list_head io_end_ios;    /* io_units which have been completely
65                                          * written to the log but not yet written
66                                          * to the RAID */
67         struct list_head flushing_ios;  /* io_units which are waiting for log
68                                          * cache flush */
69         struct list_head finished_ios;  /* io_units which settle down in log disk */
70         struct bio flush_bio;
71
72         struct kmem_cache *io_kc;
73
74         struct md_thread *reclaim_thread;
75         unsigned long reclaim_target;   /* number of space that need to be
76                                          * reclaimed.  if it's 0, reclaim spaces
77                                          * used by io_units which are in
78                                          * IO_UNIT_STRIPE_END state (eg, reclaim
79                                          * dones't wait for specific io_unit
80                                          * switching to IO_UNIT_STRIPE_END
81                                          * state) */
82         wait_queue_head_t iounit_wait;
83
84         struct list_head no_space_stripes; /* pending stripes, log has no space */
85         spinlock_t no_space_stripes_lock;
86
87         bool need_cache_flush;
88 };
89
90 /*
91  * an IO range starts from a meta data block and end at the next meta data
92  * block. The io unit's the meta data block tracks data/parity followed it. io
93  * unit is written to log disk with normal write, as we always flush log disk
94  * first and then start move data to raid disks, there is no requirement to
95  * write io unit with FLUSH/FUA
96  */
97 struct r5l_io_unit {
98         struct r5l_log *log;
99
100         struct page *meta_page; /* store meta block */
101         int meta_offset;        /* current offset in meta_page */
102
103         struct bio_list bios;
104         atomic_t pending_io;    /* pending bios not written to log yet */
105         struct bio *current_bio;/* current_bio accepting new data */
106
107         atomic_t pending_stripe;/* how many stripes not flushed to raid */
108         u64 seq;                /* seq number of the metablock */
109         sector_t log_start;     /* where the io_unit starts */
110         sector_t log_end;       /* where the io_unit ends */
111         struct list_head log_sibling; /* log->running_ios */
112         struct list_head stripe_list; /* stripes added to the io_unit */
113
114         int state;
115 };
116
117 /* r5l_io_unit state */
118 enum r5l_io_unit_state {
119         IO_UNIT_RUNNING = 0,    /* accepting new IO */
120         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
121                                  * don't accepting new bio */
122         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
123         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
124 };
125
126 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
127 {
128         start += inc;
129         if (start >= log->device_size)
130                 start = start - log->device_size;
131         return start;
132 }
133
134 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135                                   sector_t end)
136 {
137         if (end >= start)
138                 return end - start;
139         else
140                 return end + log->device_size - start;
141 }
142
143 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
144 {
145         sector_t used_size;
146
147         used_size = r5l_ring_distance(log, log->last_checkpoint,
148                                         log->log_start);
149
150         return log->device_size > used_size + size;
151 }
152
153 static struct r5l_io_unit *r5l_alloc_io_unit(struct r5l_log *log)
154 {
155         struct r5l_io_unit *io;
156         /* We can't handle memory allocate failure so far */
157         gfp_t gfp = GFP_NOIO | __GFP_NOFAIL;
158
159         io = kmem_cache_zalloc(log->io_kc, gfp);
160         io->log = log;
161         io->meta_page = alloc_page(gfp | __GFP_ZERO);
162
163         bio_list_init(&io->bios);
164         INIT_LIST_HEAD(&io->log_sibling);
165         INIT_LIST_HEAD(&io->stripe_list);
166         io->state = IO_UNIT_RUNNING;
167         return io;
168 }
169
170 static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
171 {
172         __free_page(io->meta_page);
173         kmem_cache_free(log->io_kc, io);
174 }
175
176 static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
177                                   enum r5l_io_unit_state state)
178 {
179         struct r5l_io_unit *io;
180
181         while (!list_empty(from)) {
182                 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
183                 /* don't change list order */
184                 if (io->state >= state)
185                         list_move_tail(&io->log_sibling, to);
186                 else
187                         break;
188         }
189 }
190
191 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
192                                     enum r5l_io_unit_state state)
193 {
194         if (WARN_ON(io->state >= state))
195                 return;
196         io->state = state;
197 }
198
199 static void r5l_io_run_stripes(struct r5l_io_unit *io)
200 {
201         struct stripe_head *sh, *next;
202
203         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
204                 list_del_init(&sh->log_list);
205                 set_bit(STRIPE_HANDLE, &sh->state);
206                 raid5_release_stripe(sh);
207         }
208 }
209
210 /* XXX: totally ignores I/O errors */
211 static void r5l_log_run_stripes(struct r5l_log *log)
212 {
213         struct r5l_io_unit *io, *next;
214
215         assert_spin_locked(&log->io_list_lock);
216
217         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
218                 /* don't change list order */
219                 if (io->state < IO_UNIT_IO_END)
220                         break;
221
222                 list_move_tail(&io->log_sibling, &log->finished_ios);
223                 r5l_io_run_stripes(io);
224         }
225 }
226
227 static void r5l_log_endio(struct bio *bio)
228 {
229         struct r5l_io_unit *io = bio->bi_private;
230         struct r5l_log *log = io->log;
231         unsigned long flags;
232
233         bio_put(bio);
234
235         if (!atomic_dec_and_test(&io->pending_io))
236                 return;
237
238         spin_lock_irqsave(&log->io_list_lock, flags);
239         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
240         if (log->need_cache_flush)
241                 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
242                                       IO_UNIT_IO_END);
243         else
244                 r5l_log_run_stripes(log);
245         spin_unlock_irqrestore(&log->io_list_lock, flags);
246
247         if (log->need_cache_flush)
248                 md_wakeup_thread(log->rdev->mddev->thread);
249 }
250
251 static void r5l_submit_current_io(struct r5l_log *log)
252 {
253         struct r5l_io_unit *io = log->current_io;
254         struct r5l_meta_block *block;
255         struct bio *bio;
256         unsigned long flags;
257         u32 crc;
258
259         if (!io)
260                 return;
261
262         block = page_address(io->meta_page);
263         block->meta_size = cpu_to_le32(io->meta_offset);
264         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
265         block->checksum = cpu_to_le32(crc);
266
267         log->current_io = NULL;
268         spin_lock_irqsave(&log->io_list_lock, flags);
269         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
270         spin_unlock_irqrestore(&log->io_list_lock, flags);
271
272         while ((bio = bio_list_pop(&io->bios))) {
273                 /* all IO must start from rdev->data_offset */
274                 bio->bi_iter.bi_sector += log->rdev->data_offset;
275                 submit_bio(WRITE, bio);
276         }
277 }
278
279 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
280 {
281         struct r5l_io_unit *io;
282         struct r5l_meta_block *block;
283         struct bio *bio;
284
285         io = r5l_alloc_io_unit(log);
286
287         block = page_address(io->meta_page);
288         block->magic = cpu_to_le32(R5LOG_MAGIC);
289         block->version = R5LOG_VERSION;
290         block->seq = cpu_to_le64(log->seq);
291         block->position = cpu_to_le64(log->log_start);
292
293         io->log_start = log->log_start;
294         io->meta_offset = sizeof(struct r5l_meta_block);
295         io->seq = log->seq;
296
297         bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
298         io->current_bio = bio;
299         bio->bi_rw = WRITE;
300         bio->bi_bdev = log->rdev->bdev;
301         bio->bi_iter.bi_sector = log->log_start;
302         bio_add_page(bio, io->meta_page, PAGE_SIZE, 0);
303         bio->bi_end_io = r5l_log_endio;
304         bio->bi_private = io;
305
306         bio_list_add(&io->bios, bio);
307         atomic_inc(&io->pending_io);
308
309         log->seq++;
310         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
311         io->log_end = log->log_start;
312         /* current bio hit disk end */
313         if (log->log_start == 0)
314                 io->current_bio = NULL;
315
316         spin_lock_irq(&log->io_list_lock);
317         list_add_tail(&io->log_sibling, &log->running_ios);
318         spin_unlock_irq(&log->io_list_lock);
319
320         return io;
321 }
322
323 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
324 {
325         if (log->current_io &&
326             log->current_io->meta_offset + payload_size > PAGE_SIZE)
327                 r5l_submit_current_io(log);
328
329         if (!log->current_io)
330                 log->current_io = r5l_new_meta(log);
331         return 0;
332 }
333
334 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
335                                     sector_t location,
336                                     u32 checksum1, u32 checksum2,
337                                     bool checksum2_valid)
338 {
339         struct r5l_io_unit *io = log->current_io;
340         struct r5l_payload_data_parity *payload;
341
342         payload = page_address(io->meta_page) + io->meta_offset;
343         payload->header.type = cpu_to_le16(type);
344         payload->header.flags = cpu_to_le16(0);
345         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
346                                     (PAGE_SHIFT - 9));
347         payload->location = cpu_to_le64(location);
348         payload->checksum[0] = cpu_to_le32(checksum1);
349         if (checksum2_valid)
350                 payload->checksum[1] = cpu_to_le32(checksum2);
351
352         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
353                 sizeof(__le32) * (1 + !!checksum2_valid);
354 }
355
356 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
357 {
358         struct r5l_io_unit *io = log->current_io;
359
360 alloc_bio:
361         if (!io->current_bio) {
362                 struct bio *bio;
363
364                 bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
365                 bio->bi_rw = WRITE;
366                 bio->bi_bdev = log->rdev->bdev;
367                 bio->bi_iter.bi_sector = log->log_start;
368                 bio->bi_end_io = r5l_log_endio;
369                 bio->bi_private = io;
370                 bio_list_add(&io->bios, bio);
371                 atomic_inc(&io->pending_io);
372                 io->current_bio = bio;
373         }
374         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) {
375                 io->current_bio = NULL;
376                 goto alloc_bio;
377         }
378         log->log_start = r5l_ring_add(log, log->log_start,
379                                       BLOCK_SECTORS);
380         /* current bio hit disk end */
381         if (log->log_start == 0)
382                 io->current_bio = NULL;
383
384         io->log_end = log->log_start;
385 }
386
387 static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
388                            int data_pages, int parity_pages)
389 {
390         int i;
391         int meta_size;
392         struct r5l_io_unit *io;
393
394         meta_size =
395                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
396                  * data_pages) +
397                 sizeof(struct r5l_payload_data_parity) +
398                 sizeof(__le32) * parity_pages;
399
400         r5l_get_meta(log, meta_size);
401         io = log->current_io;
402
403         for (i = 0; i < sh->disks; i++) {
404                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
405                         continue;
406                 if (i == sh->pd_idx || i == sh->qd_idx)
407                         continue;
408                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
409                                         raid5_compute_blocknr(sh, i, 0),
410                                         sh->dev[i].log_checksum, 0, false);
411                 r5l_append_payload_page(log, sh->dev[i].page);
412         }
413
414         if (sh->qd_idx >= 0) {
415                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
416                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
417                                         sh->dev[sh->qd_idx].log_checksum, true);
418                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
419                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
420         } else {
421                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
422                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
423                                         0, false);
424                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
425         }
426
427         list_add_tail(&sh->log_list, &io->stripe_list);
428         atomic_inc(&io->pending_stripe);
429         sh->log_io = io;
430 }
431
432 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
433 /*
434  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
435  * data from log to raid disks), so we shouldn't wait for reclaim here
436  */
437 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
438 {
439         int write_disks = 0;
440         int data_pages, parity_pages;
441         int meta_size;
442         int reserve;
443         int i;
444
445         if (!log)
446                 return -EAGAIN;
447         /* Don't support stripe batch */
448         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
449             test_bit(STRIPE_SYNCING, &sh->state)) {
450                 /* the stripe is written to log, we start writing it to raid */
451                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
452                 return -EAGAIN;
453         }
454
455         for (i = 0; i < sh->disks; i++) {
456                 void *addr;
457
458                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
459                         continue;
460                 write_disks++;
461                 /* checksum is already calculated in last run */
462                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
463                         continue;
464                 addr = kmap_atomic(sh->dev[i].page);
465                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
466                                                     addr, PAGE_SIZE);
467                 kunmap_atomic(addr);
468         }
469         parity_pages = 1 + !!(sh->qd_idx >= 0);
470         data_pages = write_disks - parity_pages;
471
472         meta_size =
473                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
474                  * data_pages) +
475                 sizeof(struct r5l_payload_data_parity) +
476                 sizeof(__le32) * parity_pages;
477         /* Doesn't work with very big raid array */
478         if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
479                 return -EINVAL;
480
481         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
482         /*
483          * The stripe must enter state machine again to finish the write, so
484          * don't delay.
485          */
486         clear_bit(STRIPE_DELAYED, &sh->state);
487         atomic_inc(&sh->count);
488
489         mutex_lock(&log->io_mutex);
490         /* meta + data */
491         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
492         if (r5l_has_free_space(log, reserve))
493                 r5l_log_stripe(log, sh, data_pages, parity_pages);
494         else {
495                 spin_lock(&log->no_space_stripes_lock);
496                 list_add_tail(&sh->log_list, &log->no_space_stripes);
497                 spin_unlock(&log->no_space_stripes_lock);
498
499                 r5l_wake_reclaim(log, reserve);
500         }
501         mutex_unlock(&log->io_mutex);
502
503         return 0;
504 }
505
506 void r5l_write_stripe_run(struct r5l_log *log)
507 {
508         if (!log)
509                 return;
510         mutex_lock(&log->io_mutex);
511         r5l_submit_current_io(log);
512         mutex_unlock(&log->io_mutex);
513 }
514
515 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
516 {
517         if (!log)
518                 return -ENODEV;
519         /*
520          * we flush log disk cache first, then write stripe data to raid disks.
521          * So if bio is finished, the log disk cache is flushed already. The
522          * recovery guarantees we can recovery the bio from log disk, so we
523          * don't need to flush again
524          */
525         if (bio->bi_iter.bi_size == 0) {
526                 bio_endio(bio);
527                 return 0;
528         }
529         bio->bi_rw &= ~REQ_FLUSH;
530         return -EAGAIN;
531 }
532
533 /* This will run after log space is reclaimed */
534 static void r5l_run_no_space_stripes(struct r5l_log *log)
535 {
536         struct stripe_head *sh;
537
538         spin_lock(&log->no_space_stripes_lock);
539         while (!list_empty(&log->no_space_stripes)) {
540                 sh = list_first_entry(&log->no_space_stripes,
541                                       struct stripe_head, log_list);
542                 list_del_init(&sh->log_list);
543                 set_bit(STRIPE_HANDLE, &sh->state);
544                 raid5_release_stripe(sh);
545         }
546         spin_unlock(&log->no_space_stripes_lock);
547 }
548
549 static sector_t r5l_reclaimable_space(struct r5l_log *log)
550 {
551         return r5l_ring_distance(log, log->last_checkpoint,
552                                  log->next_checkpoint);
553 }
554
555 static bool r5l_complete_finished_ios(struct r5l_log *log)
556 {
557         struct r5l_io_unit *io, *next;
558         bool found = false;
559
560         assert_spin_locked(&log->io_list_lock);
561
562         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
563                 /* don't change list order */
564                 if (io->state < IO_UNIT_STRIPE_END)
565                         break;
566
567                 log->next_checkpoint = io->log_start;
568                 log->next_cp_seq = io->seq;
569
570                 list_del(&io->log_sibling);
571                 r5l_free_io_unit(log, io);
572
573                 found = true;
574         }
575
576         return found;
577 }
578
579 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
580 {
581         struct r5l_log *log = io->log;
582         unsigned long flags;
583
584         spin_lock_irqsave(&log->io_list_lock, flags);
585         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
586
587         if (!r5l_complete_finished_ios(log)) {
588                 spin_unlock_irqrestore(&log->io_list_lock, flags);
589                 return;
590         }
591
592         if (r5l_reclaimable_space(log) > log->max_free_space)
593                 r5l_wake_reclaim(log, 0);
594
595         spin_unlock_irqrestore(&log->io_list_lock, flags);
596         wake_up(&log->iounit_wait);
597 }
598
599 void r5l_stripe_write_finished(struct stripe_head *sh)
600 {
601         struct r5l_io_unit *io;
602
603         io = sh->log_io;
604         sh->log_io = NULL;
605
606         if (io && atomic_dec_and_test(&io->pending_stripe))
607                 __r5l_stripe_write_finished(io);
608 }
609
610 static void r5l_log_flush_endio(struct bio *bio)
611 {
612         struct r5l_log *log = container_of(bio, struct r5l_log,
613                 flush_bio);
614         unsigned long flags;
615         struct r5l_io_unit *io;
616
617         spin_lock_irqsave(&log->io_list_lock, flags);
618         list_for_each_entry(io, &log->flushing_ios, log_sibling)
619                 r5l_io_run_stripes(io);
620         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
621         spin_unlock_irqrestore(&log->io_list_lock, flags);
622 }
623
624 /*
625  * Starting dispatch IO to raid.
626  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
627  * broken meta in the middle of a log causes recovery can't find meta at the
628  * head of log. If operations require meta at the head persistent in log, we
629  * must make sure meta before it persistent in log too. A case is:
630  *
631  * stripe data/parity is in log, we start write stripe to raid disks. stripe
632  * data/parity must be persistent in log before we do the write to raid disks.
633  *
634  * The solution is we restrictly maintain io_unit list order. In this case, we
635  * only write stripes of an io_unit to raid disks till the io_unit is the first
636  * one whose data/parity is in log.
637  */
638 void r5l_flush_stripe_to_raid(struct r5l_log *log)
639 {
640         bool do_flush;
641
642         if (!log || !log->need_cache_flush)
643                 return;
644
645         spin_lock_irq(&log->io_list_lock);
646         /* flush bio is running */
647         if (!list_empty(&log->flushing_ios)) {
648                 spin_unlock_irq(&log->io_list_lock);
649                 return;
650         }
651         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
652         do_flush = !list_empty(&log->flushing_ios);
653         spin_unlock_irq(&log->io_list_lock);
654
655         if (!do_flush)
656                 return;
657         bio_reset(&log->flush_bio);
658         log->flush_bio.bi_bdev = log->rdev->bdev;
659         log->flush_bio.bi_end_io = r5l_log_flush_endio;
660         submit_bio(WRITE_FLUSH, &log->flush_bio);
661 }
662
663 static void r5l_write_super(struct r5l_log *log, sector_t cp);
664 static void r5l_do_reclaim(struct r5l_log *log)
665 {
666         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
667         sector_t reclaimable;
668         sector_t next_checkpoint;
669         u64 next_cp_seq;
670
671         spin_lock_irq(&log->io_list_lock);
672         /*
673          * move proper io_unit to reclaim list. We should not change the order.
674          * reclaimable/unreclaimable io_unit can be mixed in the list, we
675          * shouldn't reuse space of an unreclaimable io_unit
676          */
677         while (1) {
678                 reclaimable = r5l_reclaimable_space(log);
679                 if (reclaimable >= reclaim_target ||
680                     (list_empty(&log->running_ios) &&
681                      list_empty(&log->io_end_ios) &&
682                      list_empty(&log->flushing_ios) &&
683                      list_empty(&log->finished_ios)))
684                         break;
685
686                 md_wakeup_thread(log->rdev->mddev->thread);
687                 wait_event_lock_irq(log->iounit_wait,
688                                     r5l_reclaimable_space(log) > reclaimable,
689                                     log->io_list_lock);
690         }
691
692         next_checkpoint = log->next_checkpoint;
693         next_cp_seq = log->next_cp_seq;
694         spin_unlock_irq(&log->io_list_lock);
695
696         BUG_ON(reclaimable < 0);
697         if (reclaimable == 0)
698                 return;
699
700         /*
701          * write_super will flush cache of each raid disk. We must write super
702          * here, because the log area might be reused soon and we don't want to
703          * confuse recovery
704          */
705         r5l_write_super(log, next_checkpoint);
706
707         mutex_lock(&log->io_mutex);
708         log->last_checkpoint = next_checkpoint;
709         log->last_cp_seq = next_cp_seq;
710         mutex_unlock(&log->io_mutex);
711
712         r5l_run_no_space_stripes(log);
713 }
714
715 static void r5l_reclaim_thread(struct md_thread *thread)
716 {
717         struct mddev *mddev = thread->mddev;
718         struct r5conf *conf = mddev->private;
719         struct r5l_log *log = conf->log;
720
721         if (!log)
722                 return;
723         r5l_do_reclaim(log);
724 }
725
726 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
727 {
728         unsigned long target;
729         unsigned long new = (unsigned long)space; /* overflow in theory */
730
731         do {
732                 target = log->reclaim_target;
733                 if (new < target)
734                         return;
735         } while (cmpxchg(&log->reclaim_target, target, new) != target);
736         md_wakeup_thread(log->reclaim_thread);
737 }
738
739 void r5l_quiesce(struct r5l_log *log, int state)
740 {
741         if (!log || state == 2)
742                 return;
743         if (state == 0) {
744                 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
745                                         log->rdev->mddev, "reclaim");
746         } else if (state == 1) {
747                 /*
748                  * at this point all stripes are finished, so io_unit is at
749                  * least in STRIPE_END state
750                  */
751                 r5l_wake_reclaim(log, -1L);
752                 md_unregister_thread(&log->reclaim_thread);
753                 r5l_do_reclaim(log);
754         }
755 }
756
757 struct r5l_recovery_ctx {
758         struct page *meta_page;         /* current meta */
759         sector_t meta_total_blocks;     /* total size of current meta and data */
760         sector_t pos;                   /* recovery position */
761         u64 seq;                        /* recovery position seq */
762 };
763
764 static int r5l_read_meta_block(struct r5l_log *log,
765                                struct r5l_recovery_ctx *ctx)
766 {
767         struct page *page = ctx->meta_page;
768         struct r5l_meta_block *mb;
769         u32 crc, stored_crc;
770
771         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
772                 return -EIO;
773
774         mb = page_address(page);
775         stored_crc = le32_to_cpu(mb->checksum);
776         mb->checksum = 0;
777
778         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
779             le64_to_cpu(mb->seq) != ctx->seq ||
780             mb->version != R5LOG_VERSION ||
781             le64_to_cpu(mb->position) != ctx->pos)
782                 return -EINVAL;
783
784         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
785         if (stored_crc != crc)
786                 return -EINVAL;
787
788         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
789                 return -EINVAL;
790
791         ctx->meta_total_blocks = BLOCK_SECTORS;
792
793         return 0;
794 }
795
796 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
797                                          struct r5l_recovery_ctx *ctx,
798                                          sector_t stripe_sect,
799                                          int *offset, sector_t *log_offset)
800 {
801         struct r5conf *conf = log->rdev->mddev->private;
802         struct stripe_head *sh;
803         struct r5l_payload_data_parity *payload;
804         int disk_index;
805
806         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
807         while (1) {
808                 payload = page_address(ctx->meta_page) + *offset;
809
810                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
811                         raid5_compute_sector(conf,
812                                              le64_to_cpu(payload->location), 0,
813                                              &disk_index, sh);
814
815                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
816                                      sh->dev[disk_index].page, READ, false);
817                         sh->dev[disk_index].log_checksum =
818                                 le32_to_cpu(payload->checksum[0]);
819                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
820                         ctx->meta_total_blocks += BLOCK_SECTORS;
821                 } else {
822                         disk_index = sh->pd_idx;
823                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
824                                      sh->dev[disk_index].page, READ, false);
825                         sh->dev[disk_index].log_checksum =
826                                 le32_to_cpu(payload->checksum[0]);
827                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
828
829                         if (sh->qd_idx >= 0) {
830                                 disk_index = sh->qd_idx;
831                                 sync_page_io(log->rdev,
832                                              r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
833                                              PAGE_SIZE, sh->dev[disk_index].page,
834                                              READ, false);
835                                 sh->dev[disk_index].log_checksum =
836                                         le32_to_cpu(payload->checksum[1]);
837                                 set_bit(R5_Wantwrite,
838                                         &sh->dev[disk_index].flags);
839                         }
840                         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
841                 }
842
843                 *log_offset = r5l_ring_add(log, *log_offset,
844                                            le32_to_cpu(payload->size));
845                 *offset += sizeof(struct r5l_payload_data_parity) +
846                         sizeof(__le32) *
847                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
848                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
849                         break;
850         }
851
852         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
853                 void *addr;
854                 u32 checksum;
855
856                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
857                         continue;
858                 addr = kmap_atomic(sh->dev[disk_index].page);
859                 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
860                 kunmap_atomic(addr);
861                 if (checksum != sh->dev[disk_index].log_checksum)
862                         goto error;
863         }
864
865         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
866                 struct md_rdev *rdev, *rrdev;
867
868                 if (!test_and_clear_bit(R5_Wantwrite,
869                                         &sh->dev[disk_index].flags))
870                         continue;
871
872                 /* in case device is broken */
873                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
874                 if (rdev)
875                         sync_page_io(rdev, stripe_sect, PAGE_SIZE,
876                                      sh->dev[disk_index].page, WRITE, false);
877                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
878                 if (rrdev)
879                         sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
880                                      sh->dev[disk_index].page, WRITE, false);
881         }
882         raid5_release_stripe(sh);
883         return 0;
884
885 error:
886         for (disk_index = 0; disk_index < sh->disks; disk_index++)
887                 sh->dev[disk_index].flags = 0;
888         raid5_release_stripe(sh);
889         return -EINVAL;
890 }
891
892 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
893                                        struct r5l_recovery_ctx *ctx)
894 {
895         struct r5conf *conf = log->rdev->mddev->private;
896         struct r5l_payload_data_parity *payload;
897         struct r5l_meta_block *mb;
898         int offset;
899         sector_t log_offset;
900         sector_t stripe_sector;
901
902         mb = page_address(ctx->meta_page);
903         offset = sizeof(struct r5l_meta_block);
904         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
905
906         while (offset < le32_to_cpu(mb->meta_size)) {
907                 int dd;
908
909                 payload = (void *)mb + offset;
910                 stripe_sector = raid5_compute_sector(conf,
911                                                      le64_to_cpu(payload->location), 0, &dd, NULL);
912                 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
913                                                   &offset, &log_offset))
914                         return -EINVAL;
915         }
916         return 0;
917 }
918
919 /* copy data/parity from log to raid disks */
920 static void r5l_recovery_flush_log(struct r5l_log *log,
921                                    struct r5l_recovery_ctx *ctx)
922 {
923         while (1) {
924                 if (r5l_read_meta_block(log, ctx))
925                         return;
926                 if (r5l_recovery_flush_one_meta(log, ctx))
927                         return;
928                 ctx->seq++;
929                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
930         }
931 }
932
933 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
934                                           u64 seq)
935 {
936         struct page *page;
937         struct r5l_meta_block *mb;
938         u32 crc;
939
940         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
941         if (!page)
942                 return -ENOMEM;
943         mb = page_address(page);
944         mb->magic = cpu_to_le32(R5LOG_MAGIC);
945         mb->version = R5LOG_VERSION;
946         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
947         mb->seq = cpu_to_le64(seq);
948         mb->position = cpu_to_le64(pos);
949         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
950         mb->checksum = cpu_to_le32(crc);
951
952         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
953                 __free_page(page);
954                 return -EIO;
955         }
956         __free_page(page);
957         return 0;
958 }
959
960 static int r5l_recovery_log(struct r5l_log *log)
961 {
962         struct r5l_recovery_ctx ctx;
963
964         ctx.pos = log->last_checkpoint;
965         ctx.seq = log->last_cp_seq;
966         ctx.meta_page = alloc_page(GFP_KERNEL);
967         if (!ctx.meta_page)
968                 return -ENOMEM;
969
970         r5l_recovery_flush_log(log, &ctx);
971         __free_page(ctx.meta_page);
972
973         /*
974          * we did a recovery. Now ctx.pos points to an invalid meta block. New
975          * log will start here. but we can't let superblock point to last valid
976          * meta block. The log might looks like:
977          * | meta 1| meta 2| meta 3|
978          * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
979          * superblock points to meta 1, we write a new valid meta 2n.  if crash
980          * happens again, new recovery will start from meta 1. Since meta 2n is
981          * valid now, recovery will think meta 3 is valid, which is wrong.
982          * The solution is we create a new meta in meta2 with its seq == meta
983          * 1's seq + 10 and let superblock points to meta2. The same recovery will
984          * not think meta 3 is a valid meta, because its seq doesn't match
985          */
986         if (ctx.seq > log->last_cp_seq + 1) {
987                 int ret;
988
989                 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
990                 if (ret)
991                         return ret;
992                 log->seq = ctx.seq + 11;
993                 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
994                 r5l_write_super(log, ctx.pos);
995         } else {
996                 log->log_start = ctx.pos;
997                 log->seq = ctx.seq;
998         }
999         return 0;
1000 }
1001
1002 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1003 {
1004         struct mddev *mddev = log->rdev->mddev;
1005
1006         log->rdev->journal_tail = cp;
1007         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1008 }
1009
1010 static int r5l_load_log(struct r5l_log *log)
1011 {
1012         struct md_rdev *rdev = log->rdev;
1013         struct page *page;
1014         struct r5l_meta_block *mb;
1015         sector_t cp = log->rdev->journal_tail;
1016         u32 stored_crc, expected_crc;
1017         bool create_super = false;
1018         int ret;
1019
1020         /* Make sure it's valid */
1021         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1022                 cp = 0;
1023         page = alloc_page(GFP_KERNEL);
1024         if (!page)
1025                 return -ENOMEM;
1026
1027         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1028                 ret = -EIO;
1029                 goto ioerr;
1030         }
1031         mb = page_address(page);
1032
1033         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1034             mb->version != R5LOG_VERSION) {
1035                 create_super = true;
1036                 goto create;
1037         }
1038         stored_crc = le32_to_cpu(mb->checksum);
1039         mb->checksum = 0;
1040         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1041         if (stored_crc != expected_crc) {
1042                 create_super = true;
1043                 goto create;
1044         }
1045         if (le64_to_cpu(mb->position) != cp) {
1046                 create_super = true;
1047                 goto create;
1048         }
1049 create:
1050         if (create_super) {
1051                 log->last_cp_seq = prandom_u32();
1052                 cp = 0;
1053                 /*
1054                  * Make sure super points to correct address. Log might have
1055                  * data very soon. If super hasn't correct log tail address,
1056                  * recovery can't find the log
1057                  */
1058                 r5l_write_super(log, cp);
1059         } else
1060                 log->last_cp_seq = le64_to_cpu(mb->seq);
1061
1062         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1063         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1064         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1065                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1066         log->last_checkpoint = cp;
1067
1068         __free_page(page);
1069
1070         return r5l_recovery_log(log);
1071 ioerr:
1072         __free_page(page);
1073         return ret;
1074 }
1075
1076 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1077 {
1078         struct r5l_log *log;
1079
1080         if (PAGE_SIZE != 4096)
1081                 return -EINVAL;
1082         log = kzalloc(sizeof(*log), GFP_KERNEL);
1083         if (!log)
1084                 return -ENOMEM;
1085         log->rdev = rdev;
1086
1087         log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1088
1089         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1090                                        sizeof(rdev->mddev->uuid));
1091
1092         mutex_init(&log->io_mutex);
1093
1094         spin_lock_init(&log->io_list_lock);
1095         INIT_LIST_HEAD(&log->running_ios);
1096         INIT_LIST_HEAD(&log->io_end_ios);
1097         INIT_LIST_HEAD(&log->flushing_ios);
1098         INIT_LIST_HEAD(&log->finished_ios);
1099         bio_init(&log->flush_bio);
1100
1101         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1102         if (!log->io_kc)
1103                 goto io_kc;
1104
1105         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1106                                                  log->rdev->mddev, "reclaim");
1107         if (!log->reclaim_thread)
1108                 goto reclaim_thread;
1109         init_waitqueue_head(&log->iounit_wait);
1110
1111         INIT_LIST_HEAD(&log->no_space_stripes);
1112         spin_lock_init(&log->no_space_stripes_lock);
1113
1114         if (r5l_load_log(log))
1115                 goto error;
1116
1117         conf->log = log;
1118         return 0;
1119 error:
1120         md_unregister_thread(&log->reclaim_thread);
1121 reclaim_thread:
1122         kmem_cache_destroy(log->io_kc);
1123 io_kc:
1124         kfree(log);
1125         return -EINVAL;
1126 }
1127
1128 void r5l_exit_log(struct r5l_log *log)
1129 {
1130         md_unregister_thread(&log->reclaim_thread);
1131         kmem_cache_destroy(log->io_kc);
1132         kfree(log);
1133 }