]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5-cache.c
raid5-cache: small log->seq cleanup
[karo-tx-linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  */
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
23
24 /*
25  * metadata/data stored in disk with 4k size unit (a block) regardless
26  * underneath hardware sector size. only works with PAGE_SIZE == 4096
27  */
28 #define BLOCK_SECTORS (8)
29
30 /*
31  * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32  * recovery scans a very long log
33  */
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
37 struct r5l_log {
38         struct md_rdev *rdev;
39
40         u32 uuid_checksum;
41
42         sector_t device_size;           /* log device size, round to
43                                          * BLOCK_SECTORS */
44         sector_t max_free_space;        /* reclaim run if free space is at
45                                          * this size */
46
47         sector_t last_checkpoint;       /* log tail. where recovery scan
48                                          * starts from */
49         u64 last_cp_seq;                /* log tail sequence */
50
51         sector_t log_start;             /* log head. where new data appends */
52         u64 seq;                        /* log head sequence */
53
54         sector_t next_checkpoint;
55         u64 next_cp_seq;
56
57         struct mutex io_mutex;
58         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
59
60         spinlock_t io_list_lock;
61         struct list_head running_ios;   /* io_units which are still running,
62                                          * and have not yet been completely
63                                          * written to the log */
64         struct list_head io_end_ios;    /* io_units which have been completely
65                                          * written to the log but not yet written
66                                          * to the RAID */
67         struct list_head flushing_ios;  /* io_units which are waiting for log
68                                          * cache flush */
69         struct list_head finished_ios;  /* io_units which settle down in log disk */
70         struct bio flush_bio;
71
72         struct kmem_cache *io_kc;
73
74         struct md_thread *reclaim_thread;
75         unsigned long reclaim_target;   /* number of space that need to be
76                                          * reclaimed.  if it's 0, reclaim spaces
77                                          * used by io_units which are in
78                                          * IO_UNIT_STRIPE_END state (eg, reclaim
79                                          * dones't wait for specific io_unit
80                                          * switching to IO_UNIT_STRIPE_END
81                                          * state) */
82         wait_queue_head_t iounit_wait;
83
84         struct list_head no_space_stripes; /* pending stripes, log has no space */
85         spinlock_t no_space_stripes_lock;
86
87         bool need_cache_flush;
88 };
89
90 /*
91  * an IO range starts from a meta data block and end at the next meta data
92  * block. The io unit's the meta data block tracks data/parity followed it. io
93  * unit is written to log disk with normal write, as we always flush log disk
94  * first and then start move data to raid disks, there is no requirement to
95  * write io unit with FLUSH/FUA
96  */
97 struct r5l_io_unit {
98         struct r5l_log *log;
99
100         struct page *meta_page; /* store meta block */
101         int meta_offset;        /* current offset in meta_page */
102
103         struct bio_list bios;
104         atomic_t pending_io;    /* pending bios not written to log yet */
105         struct bio *current_bio;/* current_bio accepting new data */
106
107         atomic_t pending_stripe;/* how many stripes not flushed to raid */
108         u64 seq;                /* seq number of the metablock */
109         sector_t log_start;     /* where the io_unit starts */
110         sector_t log_end;       /* where the io_unit ends */
111         struct list_head log_sibling; /* log->running_ios */
112         struct list_head stripe_list; /* stripes added to the io_unit */
113
114         int state;
115 };
116
117 /* r5l_io_unit state */
118 enum r5l_io_unit_state {
119         IO_UNIT_RUNNING = 0,    /* accepting new IO */
120         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
121                                  * don't accepting new bio */
122         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
123         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
124 };
125
126 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
127 {
128         start += inc;
129         if (start >= log->device_size)
130                 start = start - log->device_size;
131         return start;
132 }
133
134 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135                                   sector_t end)
136 {
137         if (end >= start)
138                 return end - start;
139         else
140                 return end + log->device_size - start;
141 }
142
143 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
144 {
145         sector_t used_size;
146
147         used_size = r5l_ring_distance(log, log->last_checkpoint,
148                                         log->log_start);
149
150         return log->device_size > used_size + size;
151 }
152
153 static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
154 {
155         __free_page(io->meta_page);
156         kmem_cache_free(log->io_kc, io);
157 }
158
159 static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
160                                   enum r5l_io_unit_state state)
161 {
162         struct r5l_io_unit *io;
163
164         while (!list_empty(from)) {
165                 io = list_first_entry(from, struct r5l_io_unit, log_sibling);
166                 /* don't change list order */
167                 if (io->state >= state)
168                         list_move_tail(&io->log_sibling, to);
169                 else
170                         break;
171         }
172 }
173
174 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
175                                     enum r5l_io_unit_state state)
176 {
177         if (WARN_ON(io->state >= state))
178                 return;
179         io->state = state;
180 }
181
182 static void r5l_io_run_stripes(struct r5l_io_unit *io)
183 {
184         struct stripe_head *sh, *next;
185
186         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
187                 list_del_init(&sh->log_list);
188                 set_bit(STRIPE_HANDLE, &sh->state);
189                 raid5_release_stripe(sh);
190         }
191 }
192
193 /* XXX: totally ignores I/O errors */
194 static void r5l_log_run_stripes(struct r5l_log *log)
195 {
196         struct r5l_io_unit *io, *next;
197
198         assert_spin_locked(&log->io_list_lock);
199
200         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
201                 /* don't change list order */
202                 if (io->state < IO_UNIT_IO_END)
203                         break;
204
205                 list_move_tail(&io->log_sibling, &log->finished_ios);
206                 r5l_io_run_stripes(io);
207         }
208 }
209
210 static void r5l_log_endio(struct bio *bio)
211 {
212         struct r5l_io_unit *io = bio->bi_private;
213         struct r5l_log *log = io->log;
214         unsigned long flags;
215
216         bio_put(bio);
217
218         if (!atomic_dec_and_test(&io->pending_io))
219                 return;
220
221         spin_lock_irqsave(&log->io_list_lock, flags);
222         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
223         if (log->need_cache_flush)
224                 r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
225                                       IO_UNIT_IO_END);
226         else
227                 r5l_log_run_stripes(log);
228         spin_unlock_irqrestore(&log->io_list_lock, flags);
229
230         if (log->need_cache_flush)
231                 md_wakeup_thread(log->rdev->mddev->thread);
232 }
233
234 static void r5l_submit_current_io(struct r5l_log *log)
235 {
236         struct r5l_io_unit *io = log->current_io;
237         struct r5l_meta_block *block;
238         struct bio *bio;
239         unsigned long flags;
240         u32 crc;
241
242         if (!io)
243                 return;
244
245         block = page_address(io->meta_page);
246         block->meta_size = cpu_to_le32(io->meta_offset);
247         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
248         block->checksum = cpu_to_le32(crc);
249
250         log->current_io = NULL;
251         spin_lock_irqsave(&log->io_list_lock, flags);
252         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
253         spin_unlock_irqrestore(&log->io_list_lock, flags);
254
255         while ((bio = bio_list_pop(&io->bios)))
256                 submit_bio(WRITE, bio);
257 }
258
259 static struct bio *r5l_bio_alloc(struct r5l_log *log, struct r5l_io_unit *io)
260 {
261         struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
262
263         bio->bi_rw = WRITE;
264         bio->bi_bdev = log->rdev->bdev;
265         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
266         bio->bi_end_io = r5l_log_endio;
267         bio->bi_private = io;
268
269         bio_list_add(&io->bios, bio);
270         atomic_inc(&io->pending_io);
271         return bio;
272 }
273
274 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
275 {
276         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
277
278         /*
279          * If we filled up the log device start from the beginning again,
280          * which will require a new bio.
281          *
282          * Note: for this to work properly the log size needs to me a multiple
283          * of BLOCK_SECTORS.
284          */
285         if (log->log_start == 0)
286                 io->current_bio = NULL;
287
288         io->log_end = log->log_start;
289 }
290
291 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
292 {
293         struct r5l_io_unit *io;
294         struct r5l_meta_block *block;
295
296         /* We can't handle memory allocate failure so far */
297         io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL);
298         io->log = log;
299         bio_list_init(&io->bios);
300         INIT_LIST_HEAD(&io->log_sibling);
301         INIT_LIST_HEAD(&io->stripe_list);
302         io->state = IO_UNIT_RUNNING;
303
304         io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO);
305         block = page_address(io->meta_page);
306         block->magic = cpu_to_le32(R5LOG_MAGIC);
307         block->version = R5LOG_VERSION;
308         block->seq = cpu_to_le64(log->seq);
309         block->position = cpu_to_le64(log->log_start);
310
311         io->log_start = log->log_start;
312         io->meta_offset = sizeof(struct r5l_meta_block);
313         io->seq = log->seq++;
314
315         io->current_bio = r5l_bio_alloc(log, io);
316         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
317
318         r5_reserve_log_entry(log, io);
319
320         spin_lock_irq(&log->io_list_lock);
321         list_add_tail(&io->log_sibling, &log->running_ios);
322         spin_unlock_irq(&log->io_list_lock);
323
324         return io;
325 }
326
327 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
328 {
329         if (log->current_io &&
330             log->current_io->meta_offset + payload_size > PAGE_SIZE)
331                 r5l_submit_current_io(log);
332
333         if (!log->current_io)
334                 log->current_io = r5l_new_meta(log);
335         return 0;
336 }
337
338 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
339                                     sector_t location,
340                                     u32 checksum1, u32 checksum2,
341                                     bool checksum2_valid)
342 {
343         struct r5l_io_unit *io = log->current_io;
344         struct r5l_payload_data_parity *payload;
345
346         payload = page_address(io->meta_page) + io->meta_offset;
347         payload->header.type = cpu_to_le16(type);
348         payload->header.flags = cpu_to_le16(0);
349         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
350                                     (PAGE_SHIFT - 9));
351         payload->location = cpu_to_le64(location);
352         payload->checksum[0] = cpu_to_le32(checksum1);
353         if (checksum2_valid)
354                 payload->checksum[1] = cpu_to_le32(checksum2);
355
356         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
357                 sizeof(__le32) * (1 + !!checksum2_valid);
358 }
359
360 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
361 {
362         struct r5l_io_unit *io = log->current_io;
363
364 alloc_bio:
365         if (!io->current_bio)
366                 io->current_bio = r5l_bio_alloc(log, io);
367
368         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) {
369                 io->current_bio = NULL;
370                 goto alloc_bio;
371         }
372
373         r5_reserve_log_entry(log, io);
374 }
375
376 static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
377                            int data_pages, int parity_pages)
378 {
379         int i;
380         int meta_size;
381         struct r5l_io_unit *io;
382
383         meta_size =
384                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
385                  * data_pages) +
386                 sizeof(struct r5l_payload_data_parity) +
387                 sizeof(__le32) * parity_pages;
388
389         r5l_get_meta(log, meta_size);
390         io = log->current_io;
391
392         for (i = 0; i < sh->disks; i++) {
393                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
394                         continue;
395                 if (i == sh->pd_idx || i == sh->qd_idx)
396                         continue;
397                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
398                                         raid5_compute_blocknr(sh, i, 0),
399                                         sh->dev[i].log_checksum, 0, false);
400                 r5l_append_payload_page(log, sh->dev[i].page);
401         }
402
403         if (sh->qd_idx >= 0) {
404                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
405                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
406                                         sh->dev[sh->qd_idx].log_checksum, true);
407                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
408                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
409         } else {
410                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
411                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
412                                         0, false);
413                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
414         }
415
416         list_add_tail(&sh->log_list, &io->stripe_list);
417         atomic_inc(&io->pending_stripe);
418         sh->log_io = io;
419 }
420
421 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
422 /*
423  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
424  * data from log to raid disks), so we shouldn't wait for reclaim here
425  */
426 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
427 {
428         int write_disks = 0;
429         int data_pages, parity_pages;
430         int meta_size;
431         int reserve;
432         int i;
433
434         if (!log)
435                 return -EAGAIN;
436         /* Don't support stripe batch */
437         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
438             test_bit(STRIPE_SYNCING, &sh->state)) {
439                 /* the stripe is written to log, we start writing it to raid */
440                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
441                 return -EAGAIN;
442         }
443
444         for (i = 0; i < sh->disks; i++) {
445                 void *addr;
446
447                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
448                         continue;
449                 write_disks++;
450                 /* checksum is already calculated in last run */
451                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
452                         continue;
453                 addr = kmap_atomic(sh->dev[i].page);
454                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
455                                                     addr, PAGE_SIZE);
456                 kunmap_atomic(addr);
457         }
458         parity_pages = 1 + !!(sh->qd_idx >= 0);
459         data_pages = write_disks - parity_pages;
460
461         meta_size =
462                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
463                  * data_pages) +
464                 sizeof(struct r5l_payload_data_parity) +
465                 sizeof(__le32) * parity_pages;
466         /* Doesn't work with very big raid array */
467         if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
468                 return -EINVAL;
469
470         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
471         /*
472          * The stripe must enter state machine again to finish the write, so
473          * don't delay.
474          */
475         clear_bit(STRIPE_DELAYED, &sh->state);
476         atomic_inc(&sh->count);
477
478         mutex_lock(&log->io_mutex);
479         /* meta + data */
480         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
481         if (r5l_has_free_space(log, reserve))
482                 r5l_log_stripe(log, sh, data_pages, parity_pages);
483         else {
484                 spin_lock(&log->no_space_stripes_lock);
485                 list_add_tail(&sh->log_list, &log->no_space_stripes);
486                 spin_unlock(&log->no_space_stripes_lock);
487
488                 r5l_wake_reclaim(log, reserve);
489         }
490         mutex_unlock(&log->io_mutex);
491
492         return 0;
493 }
494
495 void r5l_write_stripe_run(struct r5l_log *log)
496 {
497         if (!log)
498                 return;
499         mutex_lock(&log->io_mutex);
500         r5l_submit_current_io(log);
501         mutex_unlock(&log->io_mutex);
502 }
503
504 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
505 {
506         if (!log)
507                 return -ENODEV;
508         /*
509          * we flush log disk cache first, then write stripe data to raid disks.
510          * So if bio is finished, the log disk cache is flushed already. The
511          * recovery guarantees we can recovery the bio from log disk, so we
512          * don't need to flush again
513          */
514         if (bio->bi_iter.bi_size == 0) {
515                 bio_endio(bio);
516                 return 0;
517         }
518         bio->bi_rw &= ~REQ_FLUSH;
519         return -EAGAIN;
520 }
521
522 /* This will run after log space is reclaimed */
523 static void r5l_run_no_space_stripes(struct r5l_log *log)
524 {
525         struct stripe_head *sh;
526
527         spin_lock(&log->no_space_stripes_lock);
528         while (!list_empty(&log->no_space_stripes)) {
529                 sh = list_first_entry(&log->no_space_stripes,
530                                       struct stripe_head, log_list);
531                 list_del_init(&sh->log_list);
532                 set_bit(STRIPE_HANDLE, &sh->state);
533                 raid5_release_stripe(sh);
534         }
535         spin_unlock(&log->no_space_stripes_lock);
536 }
537
538 static sector_t r5l_reclaimable_space(struct r5l_log *log)
539 {
540         return r5l_ring_distance(log, log->last_checkpoint,
541                                  log->next_checkpoint);
542 }
543
544 static bool r5l_complete_finished_ios(struct r5l_log *log)
545 {
546         struct r5l_io_unit *io, *next;
547         bool found = false;
548
549         assert_spin_locked(&log->io_list_lock);
550
551         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
552                 /* don't change list order */
553                 if (io->state < IO_UNIT_STRIPE_END)
554                         break;
555
556                 log->next_checkpoint = io->log_start;
557                 log->next_cp_seq = io->seq;
558
559                 list_del(&io->log_sibling);
560                 r5l_free_io_unit(log, io);
561
562                 found = true;
563         }
564
565         return found;
566 }
567
568 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
569 {
570         struct r5l_log *log = io->log;
571         unsigned long flags;
572
573         spin_lock_irqsave(&log->io_list_lock, flags);
574         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
575
576         if (!r5l_complete_finished_ios(log)) {
577                 spin_unlock_irqrestore(&log->io_list_lock, flags);
578                 return;
579         }
580
581         if (r5l_reclaimable_space(log) > log->max_free_space)
582                 r5l_wake_reclaim(log, 0);
583
584         spin_unlock_irqrestore(&log->io_list_lock, flags);
585         wake_up(&log->iounit_wait);
586 }
587
588 void r5l_stripe_write_finished(struct stripe_head *sh)
589 {
590         struct r5l_io_unit *io;
591
592         io = sh->log_io;
593         sh->log_io = NULL;
594
595         if (io && atomic_dec_and_test(&io->pending_stripe))
596                 __r5l_stripe_write_finished(io);
597 }
598
599 static void r5l_log_flush_endio(struct bio *bio)
600 {
601         struct r5l_log *log = container_of(bio, struct r5l_log,
602                 flush_bio);
603         unsigned long flags;
604         struct r5l_io_unit *io;
605
606         spin_lock_irqsave(&log->io_list_lock, flags);
607         list_for_each_entry(io, &log->flushing_ios, log_sibling)
608                 r5l_io_run_stripes(io);
609         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
610         spin_unlock_irqrestore(&log->io_list_lock, flags);
611 }
612
613 /*
614  * Starting dispatch IO to raid.
615  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
616  * broken meta in the middle of a log causes recovery can't find meta at the
617  * head of log. If operations require meta at the head persistent in log, we
618  * must make sure meta before it persistent in log too. A case is:
619  *
620  * stripe data/parity is in log, we start write stripe to raid disks. stripe
621  * data/parity must be persistent in log before we do the write to raid disks.
622  *
623  * The solution is we restrictly maintain io_unit list order. In this case, we
624  * only write stripes of an io_unit to raid disks till the io_unit is the first
625  * one whose data/parity is in log.
626  */
627 void r5l_flush_stripe_to_raid(struct r5l_log *log)
628 {
629         bool do_flush;
630
631         if (!log || !log->need_cache_flush)
632                 return;
633
634         spin_lock_irq(&log->io_list_lock);
635         /* flush bio is running */
636         if (!list_empty(&log->flushing_ios)) {
637                 spin_unlock_irq(&log->io_list_lock);
638                 return;
639         }
640         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
641         do_flush = !list_empty(&log->flushing_ios);
642         spin_unlock_irq(&log->io_list_lock);
643
644         if (!do_flush)
645                 return;
646         bio_reset(&log->flush_bio);
647         log->flush_bio.bi_bdev = log->rdev->bdev;
648         log->flush_bio.bi_end_io = r5l_log_flush_endio;
649         submit_bio(WRITE_FLUSH, &log->flush_bio);
650 }
651
652 static void r5l_write_super(struct r5l_log *log, sector_t cp);
653 static void r5l_do_reclaim(struct r5l_log *log)
654 {
655         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
656         sector_t reclaimable;
657         sector_t next_checkpoint;
658         u64 next_cp_seq;
659
660         spin_lock_irq(&log->io_list_lock);
661         /*
662          * move proper io_unit to reclaim list. We should not change the order.
663          * reclaimable/unreclaimable io_unit can be mixed in the list, we
664          * shouldn't reuse space of an unreclaimable io_unit
665          */
666         while (1) {
667                 reclaimable = r5l_reclaimable_space(log);
668                 if (reclaimable >= reclaim_target ||
669                     (list_empty(&log->running_ios) &&
670                      list_empty(&log->io_end_ios) &&
671                      list_empty(&log->flushing_ios) &&
672                      list_empty(&log->finished_ios)))
673                         break;
674
675                 md_wakeup_thread(log->rdev->mddev->thread);
676                 wait_event_lock_irq(log->iounit_wait,
677                                     r5l_reclaimable_space(log) > reclaimable,
678                                     log->io_list_lock);
679         }
680
681         next_checkpoint = log->next_checkpoint;
682         next_cp_seq = log->next_cp_seq;
683         spin_unlock_irq(&log->io_list_lock);
684
685         BUG_ON(reclaimable < 0);
686         if (reclaimable == 0)
687                 return;
688
689         /*
690          * write_super will flush cache of each raid disk. We must write super
691          * here, because the log area might be reused soon and we don't want to
692          * confuse recovery
693          */
694         r5l_write_super(log, next_checkpoint);
695
696         mutex_lock(&log->io_mutex);
697         log->last_checkpoint = next_checkpoint;
698         log->last_cp_seq = next_cp_seq;
699         mutex_unlock(&log->io_mutex);
700
701         r5l_run_no_space_stripes(log);
702 }
703
704 static void r5l_reclaim_thread(struct md_thread *thread)
705 {
706         struct mddev *mddev = thread->mddev;
707         struct r5conf *conf = mddev->private;
708         struct r5l_log *log = conf->log;
709
710         if (!log)
711                 return;
712         r5l_do_reclaim(log);
713 }
714
715 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
716 {
717         unsigned long target;
718         unsigned long new = (unsigned long)space; /* overflow in theory */
719
720         do {
721                 target = log->reclaim_target;
722                 if (new < target)
723                         return;
724         } while (cmpxchg(&log->reclaim_target, target, new) != target);
725         md_wakeup_thread(log->reclaim_thread);
726 }
727
728 void r5l_quiesce(struct r5l_log *log, int state)
729 {
730         if (!log || state == 2)
731                 return;
732         if (state == 0) {
733                 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
734                                         log->rdev->mddev, "reclaim");
735         } else if (state == 1) {
736                 /*
737                  * at this point all stripes are finished, so io_unit is at
738                  * least in STRIPE_END state
739                  */
740                 r5l_wake_reclaim(log, -1L);
741                 md_unregister_thread(&log->reclaim_thread);
742                 r5l_do_reclaim(log);
743         }
744 }
745
746 struct r5l_recovery_ctx {
747         struct page *meta_page;         /* current meta */
748         sector_t meta_total_blocks;     /* total size of current meta and data */
749         sector_t pos;                   /* recovery position */
750         u64 seq;                        /* recovery position seq */
751 };
752
753 static int r5l_read_meta_block(struct r5l_log *log,
754                                struct r5l_recovery_ctx *ctx)
755 {
756         struct page *page = ctx->meta_page;
757         struct r5l_meta_block *mb;
758         u32 crc, stored_crc;
759
760         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
761                 return -EIO;
762
763         mb = page_address(page);
764         stored_crc = le32_to_cpu(mb->checksum);
765         mb->checksum = 0;
766
767         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
768             le64_to_cpu(mb->seq) != ctx->seq ||
769             mb->version != R5LOG_VERSION ||
770             le64_to_cpu(mb->position) != ctx->pos)
771                 return -EINVAL;
772
773         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
774         if (stored_crc != crc)
775                 return -EINVAL;
776
777         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
778                 return -EINVAL;
779
780         ctx->meta_total_blocks = BLOCK_SECTORS;
781
782         return 0;
783 }
784
785 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
786                                          struct r5l_recovery_ctx *ctx,
787                                          sector_t stripe_sect,
788                                          int *offset, sector_t *log_offset)
789 {
790         struct r5conf *conf = log->rdev->mddev->private;
791         struct stripe_head *sh;
792         struct r5l_payload_data_parity *payload;
793         int disk_index;
794
795         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
796         while (1) {
797                 payload = page_address(ctx->meta_page) + *offset;
798
799                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
800                         raid5_compute_sector(conf,
801                                              le64_to_cpu(payload->location), 0,
802                                              &disk_index, sh);
803
804                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
805                                      sh->dev[disk_index].page, READ, false);
806                         sh->dev[disk_index].log_checksum =
807                                 le32_to_cpu(payload->checksum[0]);
808                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
809                         ctx->meta_total_blocks += BLOCK_SECTORS;
810                 } else {
811                         disk_index = sh->pd_idx;
812                         sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
813                                      sh->dev[disk_index].page, READ, false);
814                         sh->dev[disk_index].log_checksum =
815                                 le32_to_cpu(payload->checksum[0]);
816                         set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
817
818                         if (sh->qd_idx >= 0) {
819                                 disk_index = sh->qd_idx;
820                                 sync_page_io(log->rdev,
821                                              r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
822                                              PAGE_SIZE, sh->dev[disk_index].page,
823                                              READ, false);
824                                 sh->dev[disk_index].log_checksum =
825                                         le32_to_cpu(payload->checksum[1]);
826                                 set_bit(R5_Wantwrite,
827                                         &sh->dev[disk_index].flags);
828                         }
829                         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
830                 }
831
832                 *log_offset = r5l_ring_add(log, *log_offset,
833                                            le32_to_cpu(payload->size));
834                 *offset += sizeof(struct r5l_payload_data_parity) +
835                         sizeof(__le32) *
836                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
837                 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
838                         break;
839         }
840
841         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
842                 void *addr;
843                 u32 checksum;
844
845                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
846                         continue;
847                 addr = kmap_atomic(sh->dev[disk_index].page);
848                 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
849                 kunmap_atomic(addr);
850                 if (checksum != sh->dev[disk_index].log_checksum)
851                         goto error;
852         }
853
854         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
855                 struct md_rdev *rdev, *rrdev;
856
857                 if (!test_and_clear_bit(R5_Wantwrite,
858                                         &sh->dev[disk_index].flags))
859                         continue;
860
861                 /* in case device is broken */
862                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
863                 if (rdev)
864                         sync_page_io(rdev, stripe_sect, PAGE_SIZE,
865                                      sh->dev[disk_index].page, WRITE, false);
866                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
867                 if (rrdev)
868                         sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
869                                      sh->dev[disk_index].page, WRITE, false);
870         }
871         raid5_release_stripe(sh);
872         return 0;
873
874 error:
875         for (disk_index = 0; disk_index < sh->disks; disk_index++)
876                 sh->dev[disk_index].flags = 0;
877         raid5_release_stripe(sh);
878         return -EINVAL;
879 }
880
881 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
882                                        struct r5l_recovery_ctx *ctx)
883 {
884         struct r5conf *conf = log->rdev->mddev->private;
885         struct r5l_payload_data_parity *payload;
886         struct r5l_meta_block *mb;
887         int offset;
888         sector_t log_offset;
889         sector_t stripe_sector;
890
891         mb = page_address(ctx->meta_page);
892         offset = sizeof(struct r5l_meta_block);
893         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
894
895         while (offset < le32_to_cpu(mb->meta_size)) {
896                 int dd;
897
898                 payload = (void *)mb + offset;
899                 stripe_sector = raid5_compute_sector(conf,
900                                                      le64_to_cpu(payload->location), 0, &dd, NULL);
901                 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
902                                                   &offset, &log_offset))
903                         return -EINVAL;
904         }
905         return 0;
906 }
907
908 /* copy data/parity from log to raid disks */
909 static void r5l_recovery_flush_log(struct r5l_log *log,
910                                    struct r5l_recovery_ctx *ctx)
911 {
912         while (1) {
913                 if (r5l_read_meta_block(log, ctx))
914                         return;
915                 if (r5l_recovery_flush_one_meta(log, ctx))
916                         return;
917                 ctx->seq++;
918                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
919         }
920 }
921
922 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
923                                           u64 seq)
924 {
925         struct page *page;
926         struct r5l_meta_block *mb;
927         u32 crc;
928
929         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
930         if (!page)
931                 return -ENOMEM;
932         mb = page_address(page);
933         mb->magic = cpu_to_le32(R5LOG_MAGIC);
934         mb->version = R5LOG_VERSION;
935         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
936         mb->seq = cpu_to_le64(seq);
937         mb->position = cpu_to_le64(pos);
938         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
939         mb->checksum = cpu_to_le32(crc);
940
941         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
942                 __free_page(page);
943                 return -EIO;
944         }
945         __free_page(page);
946         return 0;
947 }
948
949 static int r5l_recovery_log(struct r5l_log *log)
950 {
951         struct r5l_recovery_ctx ctx;
952
953         ctx.pos = log->last_checkpoint;
954         ctx.seq = log->last_cp_seq;
955         ctx.meta_page = alloc_page(GFP_KERNEL);
956         if (!ctx.meta_page)
957                 return -ENOMEM;
958
959         r5l_recovery_flush_log(log, &ctx);
960         __free_page(ctx.meta_page);
961
962         /*
963          * we did a recovery. Now ctx.pos points to an invalid meta block. New
964          * log will start here. but we can't let superblock point to last valid
965          * meta block. The log might looks like:
966          * | meta 1| meta 2| meta 3|
967          * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
968          * superblock points to meta 1, we write a new valid meta 2n.  if crash
969          * happens again, new recovery will start from meta 1. Since meta 2n is
970          * valid now, recovery will think meta 3 is valid, which is wrong.
971          * The solution is we create a new meta in meta2 with its seq == meta
972          * 1's seq + 10 and let superblock points to meta2. The same recovery will
973          * not think meta 3 is a valid meta, because its seq doesn't match
974          */
975         if (ctx.seq > log->last_cp_seq + 1) {
976                 int ret;
977
978                 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
979                 if (ret)
980                         return ret;
981                 log->seq = ctx.seq + 11;
982                 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
983                 r5l_write_super(log, ctx.pos);
984         } else {
985                 log->log_start = ctx.pos;
986                 log->seq = ctx.seq;
987         }
988         return 0;
989 }
990
991 static void r5l_write_super(struct r5l_log *log, sector_t cp)
992 {
993         struct mddev *mddev = log->rdev->mddev;
994
995         log->rdev->journal_tail = cp;
996         set_bit(MD_CHANGE_DEVS, &mddev->flags);
997 }
998
999 static int r5l_load_log(struct r5l_log *log)
1000 {
1001         struct md_rdev *rdev = log->rdev;
1002         struct page *page;
1003         struct r5l_meta_block *mb;
1004         sector_t cp = log->rdev->journal_tail;
1005         u32 stored_crc, expected_crc;
1006         bool create_super = false;
1007         int ret;
1008
1009         /* Make sure it's valid */
1010         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1011                 cp = 0;
1012         page = alloc_page(GFP_KERNEL);
1013         if (!page)
1014                 return -ENOMEM;
1015
1016         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1017                 ret = -EIO;
1018                 goto ioerr;
1019         }
1020         mb = page_address(page);
1021
1022         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1023             mb->version != R5LOG_VERSION) {
1024                 create_super = true;
1025                 goto create;
1026         }
1027         stored_crc = le32_to_cpu(mb->checksum);
1028         mb->checksum = 0;
1029         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1030         if (stored_crc != expected_crc) {
1031                 create_super = true;
1032                 goto create;
1033         }
1034         if (le64_to_cpu(mb->position) != cp) {
1035                 create_super = true;
1036                 goto create;
1037         }
1038 create:
1039         if (create_super) {
1040                 log->last_cp_seq = prandom_u32();
1041                 cp = 0;
1042                 /*
1043                  * Make sure super points to correct address. Log might have
1044                  * data very soon. If super hasn't correct log tail address,
1045                  * recovery can't find the log
1046                  */
1047                 r5l_write_super(log, cp);
1048         } else
1049                 log->last_cp_seq = le64_to_cpu(mb->seq);
1050
1051         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1052         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1053         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1054                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1055         log->last_checkpoint = cp;
1056
1057         __free_page(page);
1058
1059         return r5l_recovery_log(log);
1060 ioerr:
1061         __free_page(page);
1062         return ret;
1063 }
1064
1065 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1066 {
1067         struct r5l_log *log;
1068
1069         if (PAGE_SIZE != 4096)
1070                 return -EINVAL;
1071         log = kzalloc(sizeof(*log), GFP_KERNEL);
1072         if (!log)
1073                 return -ENOMEM;
1074         log->rdev = rdev;
1075
1076         log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1077
1078         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1079                                        sizeof(rdev->mddev->uuid));
1080
1081         mutex_init(&log->io_mutex);
1082
1083         spin_lock_init(&log->io_list_lock);
1084         INIT_LIST_HEAD(&log->running_ios);
1085         INIT_LIST_HEAD(&log->io_end_ios);
1086         INIT_LIST_HEAD(&log->flushing_ios);
1087         INIT_LIST_HEAD(&log->finished_ios);
1088         bio_init(&log->flush_bio);
1089
1090         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1091         if (!log->io_kc)
1092                 goto io_kc;
1093
1094         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1095                                                  log->rdev->mddev, "reclaim");
1096         if (!log->reclaim_thread)
1097                 goto reclaim_thread;
1098         init_waitqueue_head(&log->iounit_wait);
1099
1100         INIT_LIST_HEAD(&log->no_space_stripes);
1101         spin_lock_init(&log->no_space_stripes_lock);
1102
1103         if (r5l_load_log(log))
1104                 goto error;
1105
1106         conf->log = log;
1107         return 0;
1108 error:
1109         md_unregister_thread(&log->reclaim_thread);
1110 reclaim_thread:
1111         kmem_cache_destroy(log->io_kc);
1112 io_kc:
1113         kfree(log);
1114         return -EINVAL;
1115 }
1116
1117 void r5l_exit_log(struct r5l_log *log)
1118 {
1119         md_unregister_thread(&log->reclaim_thread);
1120         kmem_cache_destroy(log->io_kc);
1121         kfree(log);
1122 }