]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5-cache.c
md/r5cache: handle alloc_page failure
[karo-tx-linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include "md.h"
24 #include "raid5.h"
25 #include "bitmap.h"
26
27 /*
28  * metadata/data stored in disk with 4k size unit (a block) regardless
29  * underneath hardware sector size. only works with PAGE_SIZE == 4096
30  */
31 #define BLOCK_SECTORS (8)
32
33 /*
34  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
35  *
36  * In write through mode, the reclaim runs every log->max_free_space.
37  * This can prevent the recovery scans for too long
38  */
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
41
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
48
49 /*
50  * We only need 2 bios per I/O unit to make progress, but ensure we
51  * have a few more available to not get too tight.
52  */
53 #define R5L_POOL_SIZE   4
54
55 /*
56  * r5c journal modes of the array: write-back or write-through.
57  * write-through mode has identical behavior as existing log only
58  * implementation.
59  */
60 enum r5c_journal_mode {
61         R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
62         R5C_JOURNAL_MODE_WRITE_BACK = 1,
63 };
64
65 static char *r5c_journal_mode_str[] = {"write-through",
66                                        "write-back"};
67 /*
68  * raid5 cache state machine
69  *
70  * With rhe RAID cache, each stripe works in two phases:
71  *      - caching phase
72  *      - writing-out phase
73  *
74  * These two phases are controlled by bit STRIPE_R5C_CACHING:
75  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
77  *
78  * When there is no journal, or the journal is in write-through mode,
79  * the stripe is always in writing-out phase.
80  *
81  * For write-back journal, the stripe is sent to caching phase on write
82  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83  * the write-out phase by clearing STRIPE_R5C_CACHING.
84  *
85  * Stripes in caching phase do not write the raid disks. Instead, all
86  * writes are committed from the log device. Therefore, a stripe in
87  * caching phase handles writes as:
88  *      - write to log device
89  *      - return IO
90  *
91  * Stripes in writing-out phase handle writes as:
92  *      - calculate parity
93  *      - write pending data and parity to journal
94  *      - write data and parity to raid disks
95  *      - return IO for pending writes
96  */
97
98 struct r5l_log {
99         struct md_rdev *rdev;
100
101         u32 uuid_checksum;
102
103         sector_t device_size;           /* log device size, round to
104                                          * BLOCK_SECTORS */
105         sector_t max_free_space;        /* reclaim run if free space is at
106                                          * this size */
107
108         sector_t last_checkpoint;       /* log tail. where recovery scan
109                                          * starts from */
110         u64 last_cp_seq;                /* log tail sequence */
111
112         sector_t log_start;             /* log head. where new data appends */
113         u64 seq;                        /* log head sequence */
114
115         sector_t next_checkpoint;
116         u64 next_cp_seq;
117
118         struct mutex io_mutex;
119         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
120
121         spinlock_t io_list_lock;
122         struct list_head running_ios;   /* io_units which are still running,
123                                          * and have not yet been completely
124                                          * written to the log */
125         struct list_head io_end_ios;    /* io_units which have been completely
126                                          * written to the log but not yet written
127                                          * to the RAID */
128         struct list_head flushing_ios;  /* io_units which are waiting for log
129                                          * cache flush */
130         struct list_head finished_ios;  /* io_units which settle down in log disk */
131         struct bio flush_bio;
132
133         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
134
135         struct kmem_cache *io_kc;
136         mempool_t *io_pool;
137         struct bio_set *bs;
138         mempool_t *meta_pool;
139
140         struct md_thread *reclaim_thread;
141         unsigned long reclaim_target;   /* number of space that need to be
142                                          * reclaimed.  if it's 0, reclaim spaces
143                                          * used by io_units which are in
144                                          * IO_UNIT_STRIPE_END state (eg, reclaim
145                                          * dones't wait for specific io_unit
146                                          * switching to IO_UNIT_STRIPE_END
147                                          * state) */
148         wait_queue_head_t iounit_wait;
149
150         struct list_head no_space_stripes; /* pending stripes, log has no space */
151         spinlock_t no_space_stripes_lock;
152
153         bool need_cache_flush;
154
155         /* for r5c_cache */
156         enum r5c_journal_mode r5c_journal_mode;
157
158         /* all stripes in r5cache, in the order of seq at sh->log_start */
159         struct list_head stripe_in_journal_list;
160
161         spinlock_t stripe_in_journal_lock;
162         atomic_t stripe_in_journal_count;
163
164         /* to submit async io_units, to fulfill ordering of flush */
165         struct work_struct deferred_io_work;
166 };
167
168 /*
169  * an IO range starts from a meta data block and end at the next meta data
170  * block. The io unit's the meta data block tracks data/parity followed it. io
171  * unit is written to log disk with normal write, as we always flush log disk
172  * first and then start move data to raid disks, there is no requirement to
173  * write io unit with FLUSH/FUA
174  */
175 struct r5l_io_unit {
176         struct r5l_log *log;
177
178         struct page *meta_page; /* store meta block */
179         int meta_offset;        /* current offset in meta_page */
180
181         struct bio *current_bio;/* current_bio accepting new data */
182
183         atomic_t pending_stripe;/* how many stripes not flushed to raid */
184         u64 seq;                /* seq number of the metablock */
185         sector_t log_start;     /* where the io_unit starts */
186         sector_t log_end;       /* where the io_unit ends */
187         struct list_head log_sibling; /* log->running_ios */
188         struct list_head stripe_list; /* stripes added to the io_unit */
189
190         int state;
191         bool need_split_bio;
192         struct bio *split_bio;
193
194         unsigned int has_flush:1;      /* include flush request */
195         unsigned int has_fua:1;        /* include fua request */
196         unsigned int has_null_flush:1; /* include empty flush request */
197         /*
198          * io isn't sent yet, flush/fua request can only be submitted till it's
199          * the first IO in running_ios list
200          */
201         unsigned int io_deferred:1;
202
203         struct bio_list flush_barriers;   /* size == 0 flush bios */
204 };
205
206 /* r5l_io_unit state */
207 enum r5l_io_unit_state {
208         IO_UNIT_RUNNING = 0,    /* accepting new IO */
209         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
210                                  * don't accepting new bio */
211         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
212         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
213 };
214
215 bool r5c_is_writeback(struct r5l_log *log)
216 {
217         return (log != NULL &&
218                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
219 }
220
221 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
222 {
223         start += inc;
224         if (start >= log->device_size)
225                 start = start - log->device_size;
226         return start;
227 }
228
229 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
230                                   sector_t end)
231 {
232         if (end >= start)
233                 return end - start;
234         else
235                 return end + log->device_size - start;
236 }
237
238 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
239 {
240         sector_t used_size;
241
242         used_size = r5l_ring_distance(log, log->last_checkpoint,
243                                         log->log_start);
244
245         return log->device_size > used_size + size;
246 }
247
248 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
249                                     enum r5l_io_unit_state state)
250 {
251         if (WARN_ON(io->state >= state))
252                 return;
253         io->state = state;
254 }
255
256 static void
257 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
258                               struct bio_list *return_bi)
259 {
260         struct bio *wbi, *wbi2;
261
262         wbi = dev->written;
263         dev->written = NULL;
264         while (wbi && wbi->bi_iter.bi_sector <
265                dev->sector + STRIPE_SECTORS) {
266                 wbi2 = r5_next_bio(wbi, dev->sector);
267                 if (!raid5_dec_bi_active_stripes(wbi)) {
268                         md_write_end(conf->mddev);
269                         bio_list_add(return_bi, wbi);
270                 }
271                 wbi = wbi2;
272         }
273 }
274
275 void r5c_handle_cached_data_endio(struct r5conf *conf,
276           struct stripe_head *sh, int disks, struct bio_list *return_bi)
277 {
278         int i;
279
280         for (i = sh->disks; i--; ) {
281                 if (sh->dev[i].written) {
282                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
283                         r5c_return_dev_pending_writes(conf, &sh->dev[i],
284                                                       return_bi);
285                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
286                                         STRIPE_SECTORS,
287                                         !test_bit(STRIPE_DEGRADED, &sh->state),
288                                         0);
289                 }
290         }
291 }
292
293 /* Check whether we should flush some stripes to free up stripe cache */
294 void r5c_check_stripe_cache_usage(struct r5conf *conf)
295 {
296         int total_cached;
297
298         if (!r5c_is_writeback(conf->log))
299                 return;
300
301         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
302                 atomic_read(&conf->r5c_cached_full_stripes);
303
304         /*
305          * The following condition is true for either of the following:
306          *   - stripe cache pressure high:
307          *          total_cached > 3/4 min_nr_stripes ||
308          *          empty_inactive_list_nr > 0
309          *   - stripe cache pressure moderate:
310          *          total_cached > 1/2 min_nr_stripes
311          */
312         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
313             atomic_read(&conf->empty_inactive_list_nr) > 0)
314                 r5l_wake_reclaim(conf->log, 0);
315 }
316
317 /*
318  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
319  * stripes in the cache
320  */
321 void r5c_check_cached_full_stripe(struct r5conf *conf)
322 {
323         if (!r5c_is_writeback(conf->log))
324                 return;
325
326         /*
327          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
328          * or a full stripe (chunk size / 4k stripes).
329          */
330         if (atomic_read(&conf->r5c_cached_full_stripes) >=
331             min(R5C_FULL_STRIPE_FLUSH_BATCH,
332                 conf->chunk_sectors >> STRIPE_SHIFT))
333                 r5l_wake_reclaim(conf->log, 0);
334 }
335
336 /*
337  * Total log space (in sectors) needed to flush all data in cache
338  *
339  * Currently, writing-out phase automatically includes all pending writes
340  * to the same sector. So the reclaim of each stripe takes up to
341  * (conf->raid_disks + 1) pages of log space.
342  *
343  * To totally avoid deadlock due to log space, the code reserves
344  * (conf->raid_disks + 1) pages for each stripe in cache, which is not
345  * necessary in most cases.
346  *
347  * To improve this, we will need writing-out phase to be able to NOT include
348  * pending writes, which will reduce the requirement to
349  * (conf->max_degraded + 1) pages per stripe in cache.
350  */
351 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
352 {
353         struct r5l_log *log = conf->log;
354
355         if (!r5c_is_writeback(log))
356                 return 0;
357
358         return BLOCK_SECTORS * (conf->raid_disks + 1) *
359                 atomic_read(&log->stripe_in_journal_count);
360 }
361
362 /*
363  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
364  *
365  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
366  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
367  * device is less than 2x of reclaim_required_space.
368  */
369 static inline void r5c_update_log_state(struct r5l_log *log)
370 {
371         struct r5conf *conf = log->rdev->mddev->private;
372         sector_t free_space;
373         sector_t reclaim_space;
374
375         if (!r5c_is_writeback(log))
376                 return;
377
378         free_space = r5l_ring_distance(log, log->log_start,
379                                        log->last_checkpoint);
380         reclaim_space = r5c_log_required_to_flush_cache(conf);
381         if (free_space < 2 * reclaim_space)
382                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
383         else
384                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
385         if (free_space < 3 * reclaim_space)
386                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
387         else
388                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
389 }
390
391 /*
392  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
393  * This function should only be called in write-back mode.
394  */
395 void r5c_make_stripe_write_out(struct stripe_head *sh)
396 {
397         struct r5conf *conf = sh->raid_conf;
398         struct r5l_log *log = conf->log;
399
400         BUG_ON(!r5c_is_writeback(log));
401
402         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
403         clear_bit(STRIPE_R5C_CACHING, &sh->state);
404
405         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
406                 atomic_inc(&conf->preread_active_stripes);
407
408         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
409                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
410                 atomic_dec(&conf->r5c_cached_partial_stripes);
411         }
412
413         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
414                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
415                 atomic_dec(&conf->r5c_cached_full_stripes);
416         }
417 }
418
419 static void r5c_handle_data_cached(struct stripe_head *sh)
420 {
421         int i;
422
423         for (i = sh->disks; i--; )
424                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
425                         set_bit(R5_InJournal, &sh->dev[i].flags);
426                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
427                 }
428         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
429 }
430
431 /*
432  * this journal write must contain full parity,
433  * it may also contain some data pages
434  */
435 static void r5c_handle_parity_cached(struct stripe_head *sh)
436 {
437         int i;
438
439         for (i = sh->disks; i--; )
440                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
441                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
442 }
443
444 /*
445  * Setting proper flags after writing (or flushing) data and/or parity to the
446  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
447  */
448 static void r5c_finish_cache_stripe(struct stripe_head *sh)
449 {
450         struct r5l_log *log = sh->raid_conf->log;
451
452         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
453                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
454                 /*
455                  * Set R5_InJournal for parity dev[pd_idx]. This means
456                  * all data AND parity in the journal. For RAID 6, it is
457                  * NOT necessary to set the flag for dev[qd_idx], as the
458                  * two parities are written out together.
459                  */
460                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
461         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
462                 r5c_handle_data_cached(sh);
463         } else {
464                 r5c_handle_parity_cached(sh);
465                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
466         }
467 }
468
469 static void r5l_io_run_stripes(struct r5l_io_unit *io)
470 {
471         struct stripe_head *sh, *next;
472
473         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
474                 list_del_init(&sh->log_list);
475
476                 r5c_finish_cache_stripe(sh);
477
478                 set_bit(STRIPE_HANDLE, &sh->state);
479                 raid5_release_stripe(sh);
480         }
481 }
482
483 static void r5l_log_run_stripes(struct r5l_log *log)
484 {
485         struct r5l_io_unit *io, *next;
486
487         assert_spin_locked(&log->io_list_lock);
488
489         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
490                 /* don't change list order */
491                 if (io->state < IO_UNIT_IO_END)
492                         break;
493
494                 list_move_tail(&io->log_sibling, &log->finished_ios);
495                 r5l_io_run_stripes(io);
496         }
497 }
498
499 static void r5l_move_to_end_ios(struct r5l_log *log)
500 {
501         struct r5l_io_unit *io, *next;
502
503         assert_spin_locked(&log->io_list_lock);
504
505         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
506                 /* don't change list order */
507                 if (io->state < IO_UNIT_IO_END)
508                         break;
509                 list_move_tail(&io->log_sibling, &log->io_end_ios);
510         }
511 }
512
513 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
514 static void r5l_log_endio(struct bio *bio)
515 {
516         struct r5l_io_unit *io = bio->bi_private;
517         struct r5l_io_unit *io_deferred;
518         struct r5l_log *log = io->log;
519         unsigned long flags;
520
521         if (bio->bi_error)
522                 md_error(log->rdev->mddev, log->rdev);
523
524         bio_put(bio);
525         mempool_free(io->meta_page, log->meta_pool);
526
527         spin_lock_irqsave(&log->io_list_lock, flags);
528         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
529         if (log->need_cache_flush)
530                 r5l_move_to_end_ios(log);
531         else
532                 r5l_log_run_stripes(log);
533         if (!list_empty(&log->running_ios)) {
534                 /*
535                  * FLUSH/FUA io_unit is deferred because of ordering, now we
536                  * can dispatch it
537                  */
538                 io_deferred = list_first_entry(&log->running_ios,
539                                                struct r5l_io_unit, log_sibling);
540                 if (io_deferred->io_deferred)
541                         schedule_work(&log->deferred_io_work);
542         }
543
544         spin_unlock_irqrestore(&log->io_list_lock, flags);
545
546         if (log->need_cache_flush)
547                 md_wakeup_thread(log->rdev->mddev->thread);
548
549         if (io->has_null_flush) {
550                 struct bio *bi;
551
552                 WARN_ON(bio_list_empty(&io->flush_barriers));
553                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
554                         bio_endio(bi);
555                         atomic_dec(&io->pending_stripe);
556                 }
557                 if (atomic_read(&io->pending_stripe) == 0)
558                         __r5l_stripe_write_finished(io);
559         }
560 }
561
562 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
563 {
564         unsigned long flags;
565
566         spin_lock_irqsave(&log->io_list_lock, flags);
567         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
568         spin_unlock_irqrestore(&log->io_list_lock, flags);
569
570         if (io->has_flush)
571                 bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FLUSH);
572         if (io->has_fua)
573                 bio_set_op_attrs(io->current_bio, REQ_OP_WRITE, WRITE_FUA);
574         submit_bio(io->current_bio);
575
576         if (!io->split_bio)
577                 return;
578
579         if (io->has_flush)
580                 bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FLUSH);
581         if (io->has_fua)
582                 bio_set_op_attrs(io->split_bio, REQ_OP_WRITE, WRITE_FUA);
583         submit_bio(io->split_bio);
584 }
585
586 /* deferred io_unit will be dispatched here */
587 static void r5l_submit_io_async(struct work_struct *work)
588 {
589         struct r5l_log *log = container_of(work, struct r5l_log,
590                                            deferred_io_work);
591         struct r5l_io_unit *io = NULL;
592         unsigned long flags;
593
594         spin_lock_irqsave(&log->io_list_lock, flags);
595         if (!list_empty(&log->running_ios)) {
596                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
597                                       log_sibling);
598                 if (!io->io_deferred)
599                         io = NULL;
600                 else
601                         io->io_deferred = 0;
602         }
603         spin_unlock_irqrestore(&log->io_list_lock, flags);
604         if (io)
605                 r5l_do_submit_io(log, io);
606 }
607
608 static void r5l_submit_current_io(struct r5l_log *log)
609 {
610         struct r5l_io_unit *io = log->current_io;
611         struct bio *bio;
612         struct r5l_meta_block *block;
613         unsigned long flags;
614         u32 crc;
615         bool do_submit = true;
616
617         if (!io)
618                 return;
619
620         block = page_address(io->meta_page);
621         block->meta_size = cpu_to_le32(io->meta_offset);
622         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
623         block->checksum = cpu_to_le32(crc);
624         bio = io->current_bio;
625
626         log->current_io = NULL;
627         spin_lock_irqsave(&log->io_list_lock, flags);
628         if (io->has_flush || io->has_fua) {
629                 if (io != list_first_entry(&log->running_ios,
630                                            struct r5l_io_unit, log_sibling)) {
631                         io->io_deferred = 1;
632                         do_submit = false;
633                 }
634         }
635         spin_unlock_irqrestore(&log->io_list_lock, flags);
636         if (do_submit)
637                 r5l_do_submit_io(log, io);
638 }
639
640 static struct bio *r5l_bio_alloc(struct r5l_log *log)
641 {
642         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
643
644         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
645         bio->bi_bdev = log->rdev->bdev;
646         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
647
648         return bio;
649 }
650
651 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
652 {
653         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
654
655         r5c_update_log_state(log);
656         /*
657          * If we filled up the log device start from the beginning again,
658          * which will require a new bio.
659          *
660          * Note: for this to work properly the log size needs to me a multiple
661          * of BLOCK_SECTORS.
662          */
663         if (log->log_start == 0)
664                 io->need_split_bio = true;
665
666         io->log_end = log->log_start;
667 }
668
669 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
670 {
671         struct r5l_io_unit *io;
672         struct r5l_meta_block *block;
673
674         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
675         if (!io)
676                 return NULL;
677         memset(io, 0, sizeof(*io));
678
679         io->log = log;
680         INIT_LIST_HEAD(&io->log_sibling);
681         INIT_LIST_HEAD(&io->stripe_list);
682         bio_list_init(&io->flush_barriers);
683         io->state = IO_UNIT_RUNNING;
684
685         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
686         block = page_address(io->meta_page);
687         clear_page(block);
688         block->magic = cpu_to_le32(R5LOG_MAGIC);
689         block->version = R5LOG_VERSION;
690         block->seq = cpu_to_le64(log->seq);
691         block->position = cpu_to_le64(log->log_start);
692
693         io->log_start = log->log_start;
694         io->meta_offset = sizeof(struct r5l_meta_block);
695         io->seq = log->seq++;
696
697         io->current_bio = r5l_bio_alloc(log);
698         io->current_bio->bi_end_io = r5l_log_endio;
699         io->current_bio->bi_private = io;
700         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
701
702         r5_reserve_log_entry(log, io);
703
704         spin_lock_irq(&log->io_list_lock);
705         list_add_tail(&io->log_sibling, &log->running_ios);
706         spin_unlock_irq(&log->io_list_lock);
707
708         return io;
709 }
710
711 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
712 {
713         if (log->current_io &&
714             log->current_io->meta_offset + payload_size > PAGE_SIZE)
715                 r5l_submit_current_io(log);
716
717         if (!log->current_io) {
718                 log->current_io = r5l_new_meta(log);
719                 if (!log->current_io)
720                         return -ENOMEM;
721         }
722
723         return 0;
724 }
725
726 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
727                                     sector_t location,
728                                     u32 checksum1, u32 checksum2,
729                                     bool checksum2_valid)
730 {
731         struct r5l_io_unit *io = log->current_io;
732         struct r5l_payload_data_parity *payload;
733
734         payload = page_address(io->meta_page) + io->meta_offset;
735         payload->header.type = cpu_to_le16(type);
736         payload->header.flags = cpu_to_le16(0);
737         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
738                                     (PAGE_SHIFT - 9));
739         payload->location = cpu_to_le64(location);
740         payload->checksum[0] = cpu_to_le32(checksum1);
741         if (checksum2_valid)
742                 payload->checksum[1] = cpu_to_le32(checksum2);
743
744         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
745                 sizeof(__le32) * (1 + !!checksum2_valid);
746 }
747
748 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
749 {
750         struct r5l_io_unit *io = log->current_io;
751
752         if (io->need_split_bio) {
753                 BUG_ON(io->split_bio);
754                 io->split_bio = io->current_bio;
755                 io->current_bio = r5l_bio_alloc(log);
756                 bio_chain(io->current_bio, io->split_bio);
757                 io->need_split_bio = false;
758         }
759
760         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
761                 BUG();
762
763         r5_reserve_log_entry(log, io);
764 }
765
766 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
767                            int data_pages, int parity_pages)
768 {
769         int i;
770         int meta_size;
771         int ret;
772         struct r5l_io_unit *io;
773
774         meta_size =
775                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
776                  * data_pages) +
777                 sizeof(struct r5l_payload_data_parity) +
778                 sizeof(__le32) * parity_pages;
779
780         ret = r5l_get_meta(log, meta_size);
781         if (ret)
782                 return ret;
783
784         io = log->current_io;
785
786         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
787                 io->has_flush = 1;
788
789         for (i = 0; i < sh->disks; i++) {
790                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
791                     test_bit(R5_InJournal, &sh->dev[i].flags))
792                         continue;
793                 if (i == sh->pd_idx || i == sh->qd_idx)
794                         continue;
795                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
796                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
797                         io->has_fua = 1;
798                         /*
799                          * we need to flush journal to make sure recovery can
800                          * reach the data with fua flag
801                          */
802                         io->has_flush = 1;
803                 }
804                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
805                                         raid5_compute_blocknr(sh, i, 0),
806                                         sh->dev[i].log_checksum, 0, false);
807                 r5l_append_payload_page(log, sh->dev[i].page);
808         }
809
810         if (parity_pages == 2) {
811                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
812                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
813                                         sh->dev[sh->qd_idx].log_checksum, true);
814                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
815                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
816         } else if (parity_pages == 1) {
817                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
818                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
819                                         0, false);
820                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
821         } else  /* Just writing data, not parity, in caching phase */
822                 BUG_ON(parity_pages != 0);
823
824         list_add_tail(&sh->log_list, &io->stripe_list);
825         atomic_inc(&io->pending_stripe);
826         sh->log_io = io;
827
828         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
829                 return 0;
830
831         if (sh->log_start == MaxSector) {
832                 BUG_ON(!list_empty(&sh->r5c));
833                 sh->log_start = io->log_start;
834                 spin_lock_irq(&log->stripe_in_journal_lock);
835                 list_add_tail(&sh->r5c,
836                               &log->stripe_in_journal_list);
837                 spin_unlock_irq(&log->stripe_in_journal_lock);
838                 atomic_inc(&log->stripe_in_journal_count);
839         }
840         return 0;
841 }
842
843 /* add stripe to no_space_stripes, and then wake up reclaim */
844 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
845                                            struct stripe_head *sh)
846 {
847         spin_lock(&log->no_space_stripes_lock);
848         list_add_tail(&sh->log_list, &log->no_space_stripes);
849         spin_unlock(&log->no_space_stripes_lock);
850 }
851
852 /*
853  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
854  * data from log to raid disks), so we shouldn't wait for reclaim here
855  */
856 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
857 {
858         struct r5conf *conf = sh->raid_conf;
859         int write_disks = 0;
860         int data_pages, parity_pages;
861         int reserve;
862         int i;
863         int ret = 0;
864         bool wake_reclaim = false;
865
866         if (!log)
867                 return -EAGAIN;
868         /* Don't support stripe batch */
869         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
870             test_bit(STRIPE_SYNCING, &sh->state)) {
871                 /* the stripe is written to log, we start writing it to raid */
872                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
873                 return -EAGAIN;
874         }
875
876         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
877
878         for (i = 0; i < sh->disks; i++) {
879                 void *addr;
880
881                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
882                     test_bit(R5_InJournal, &sh->dev[i].flags))
883                         continue;
884
885                 write_disks++;
886                 /* checksum is already calculated in last run */
887                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
888                         continue;
889                 addr = kmap_atomic(sh->dev[i].page);
890                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
891                                                     addr, PAGE_SIZE);
892                 kunmap_atomic(addr);
893         }
894         parity_pages = 1 + !!(sh->qd_idx >= 0);
895         data_pages = write_disks - parity_pages;
896
897         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
898         /*
899          * The stripe must enter state machine again to finish the write, so
900          * don't delay.
901          */
902         clear_bit(STRIPE_DELAYED, &sh->state);
903         atomic_inc(&sh->count);
904
905         mutex_lock(&log->io_mutex);
906         /* meta + data */
907         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
908
909         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
910                 if (!r5l_has_free_space(log, reserve)) {
911                         r5l_add_no_space_stripe(log, sh);
912                         wake_reclaim = true;
913                 } else {
914                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
915                         if (ret) {
916                                 spin_lock_irq(&log->io_list_lock);
917                                 list_add_tail(&sh->log_list,
918                                               &log->no_mem_stripes);
919                                 spin_unlock_irq(&log->io_list_lock);
920                         }
921                 }
922         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
923                 /*
924                  * log space critical, do not process stripes that are
925                  * not in cache yet (sh->log_start == MaxSector).
926                  */
927                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
928                     sh->log_start == MaxSector) {
929                         r5l_add_no_space_stripe(log, sh);
930                         wake_reclaim = true;
931                         reserve = 0;
932                 } else if (!r5l_has_free_space(log, reserve)) {
933                         if (sh->log_start == log->last_checkpoint)
934                                 BUG();
935                         else
936                                 r5l_add_no_space_stripe(log, sh);
937                 } else {
938                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
939                         if (ret) {
940                                 spin_lock_irq(&log->io_list_lock);
941                                 list_add_tail(&sh->log_list,
942                                               &log->no_mem_stripes);
943                                 spin_unlock_irq(&log->io_list_lock);
944                         }
945                 }
946         }
947
948         mutex_unlock(&log->io_mutex);
949         if (wake_reclaim)
950                 r5l_wake_reclaim(log, reserve);
951         return 0;
952 }
953
954 void r5l_write_stripe_run(struct r5l_log *log)
955 {
956         if (!log)
957                 return;
958         mutex_lock(&log->io_mutex);
959         r5l_submit_current_io(log);
960         mutex_unlock(&log->io_mutex);
961 }
962
963 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
964 {
965         if (!log)
966                 return -ENODEV;
967
968         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
969                 /*
970                  * in write through (journal only)
971                  * we flush log disk cache first, then write stripe data to
972                  * raid disks. So if bio is finished, the log disk cache is
973                  * flushed already. The recovery guarantees we can recovery
974                  * the bio from log disk, so we don't need to flush again
975                  */
976                 if (bio->bi_iter.bi_size == 0) {
977                         bio_endio(bio);
978                         return 0;
979                 }
980                 bio->bi_opf &= ~REQ_PREFLUSH;
981         } else {
982                 /* write back (with cache) */
983                 if (bio->bi_iter.bi_size == 0) {
984                         mutex_lock(&log->io_mutex);
985                         r5l_get_meta(log, 0);
986                         bio_list_add(&log->current_io->flush_barriers, bio);
987                         log->current_io->has_flush = 1;
988                         log->current_io->has_null_flush = 1;
989                         atomic_inc(&log->current_io->pending_stripe);
990                         r5l_submit_current_io(log);
991                         mutex_unlock(&log->io_mutex);
992                         return 0;
993                 }
994         }
995         return -EAGAIN;
996 }
997
998 /* This will run after log space is reclaimed */
999 static void r5l_run_no_space_stripes(struct r5l_log *log)
1000 {
1001         struct stripe_head *sh;
1002
1003         spin_lock(&log->no_space_stripes_lock);
1004         while (!list_empty(&log->no_space_stripes)) {
1005                 sh = list_first_entry(&log->no_space_stripes,
1006                                       struct stripe_head, log_list);
1007                 list_del_init(&sh->log_list);
1008                 set_bit(STRIPE_HANDLE, &sh->state);
1009                 raid5_release_stripe(sh);
1010         }
1011         spin_unlock(&log->no_space_stripes_lock);
1012 }
1013
1014 /*
1015  * calculate new last_checkpoint
1016  * for write through mode, returns log->next_checkpoint
1017  * for write back, returns log_start of first sh in stripe_in_journal_list
1018  */
1019 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1020 {
1021         struct stripe_head *sh;
1022         struct r5l_log *log = conf->log;
1023         sector_t new_cp;
1024         unsigned long flags;
1025
1026         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1027                 return log->next_checkpoint;
1028
1029         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1030         if (list_empty(&conf->log->stripe_in_journal_list)) {
1031                 /* all stripes flushed */
1032                 spin_unlock(&log->stripe_in_journal_lock);
1033                 return log->next_checkpoint;
1034         }
1035         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1036                               struct stripe_head, r5c);
1037         new_cp = sh->log_start;
1038         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1039         return new_cp;
1040 }
1041
1042 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1043 {
1044         struct r5conf *conf = log->rdev->mddev->private;
1045
1046         return r5l_ring_distance(log, log->last_checkpoint,
1047                                  r5c_calculate_new_cp(conf));
1048 }
1049
1050 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1051 {
1052         struct stripe_head *sh;
1053
1054         assert_spin_locked(&log->io_list_lock);
1055
1056         if (!list_empty(&log->no_mem_stripes)) {
1057                 sh = list_first_entry(&log->no_mem_stripes,
1058                                       struct stripe_head, log_list);
1059                 list_del_init(&sh->log_list);
1060                 set_bit(STRIPE_HANDLE, &sh->state);
1061                 raid5_release_stripe(sh);
1062         }
1063 }
1064
1065 static bool r5l_complete_finished_ios(struct r5l_log *log)
1066 {
1067         struct r5l_io_unit *io, *next;
1068         bool found = false;
1069
1070         assert_spin_locked(&log->io_list_lock);
1071
1072         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1073                 /* don't change list order */
1074                 if (io->state < IO_UNIT_STRIPE_END)
1075                         break;
1076
1077                 log->next_checkpoint = io->log_start;
1078                 log->next_cp_seq = io->seq;
1079
1080                 list_del(&io->log_sibling);
1081                 mempool_free(io, log->io_pool);
1082                 r5l_run_no_mem_stripe(log);
1083
1084                 found = true;
1085         }
1086
1087         return found;
1088 }
1089
1090 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1091 {
1092         struct r5l_log *log = io->log;
1093         struct r5conf *conf = log->rdev->mddev->private;
1094         unsigned long flags;
1095
1096         spin_lock_irqsave(&log->io_list_lock, flags);
1097         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1098
1099         if (!r5l_complete_finished_ios(log)) {
1100                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1101                 return;
1102         }
1103
1104         if (r5l_reclaimable_space(log) > log->max_free_space ||
1105             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1106                 r5l_wake_reclaim(log, 0);
1107
1108         spin_unlock_irqrestore(&log->io_list_lock, flags);
1109         wake_up(&log->iounit_wait);
1110 }
1111
1112 void r5l_stripe_write_finished(struct stripe_head *sh)
1113 {
1114         struct r5l_io_unit *io;
1115
1116         io = sh->log_io;
1117         sh->log_io = NULL;
1118
1119         if (io && atomic_dec_and_test(&io->pending_stripe))
1120                 __r5l_stripe_write_finished(io);
1121 }
1122
1123 static void r5l_log_flush_endio(struct bio *bio)
1124 {
1125         struct r5l_log *log = container_of(bio, struct r5l_log,
1126                 flush_bio);
1127         unsigned long flags;
1128         struct r5l_io_unit *io;
1129
1130         if (bio->bi_error)
1131                 md_error(log->rdev->mddev, log->rdev);
1132
1133         spin_lock_irqsave(&log->io_list_lock, flags);
1134         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1135                 r5l_io_run_stripes(io);
1136         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1137         spin_unlock_irqrestore(&log->io_list_lock, flags);
1138 }
1139
1140 /*
1141  * Starting dispatch IO to raid.
1142  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1143  * broken meta in the middle of a log causes recovery can't find meta at the
1144  * head of log. If operations require meta at the head persistent in log, we
1145  * must make sure meta before it persistent in log too. A case is:
1146  *
1147  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1148  * data/parity must be persistent in log before we do the write to raid disks.
1149  *
1150  * The solution is we restrictly maintain io_unit list order. In this case, we
1151  * only write stripes of an io_unit to raid disks till the io_unit is the first
1152  * one whose data/parity is in log.
1153  */
1154 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1155 {
1156         bool do_flush;
1157
1158         if (!log || !log->need_cache_flush)
1159                 return;
1160
1161         spin_lock_irq(&log->io_list_lock);
1162         /* flush bio is running */
1163         if (!list_empty(&log->flushing_ios)) {
1164                 spin_unlock_irq(&log->io_list_lock);
1165                 return;
1166         }
1167         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1168         do_flush = !list_empty(&log->flushing_ios);
1169         spin_unlock_irq(&log->io_list_lock);
1170
1171         if (!do_flush)
1172                 return;
1173         bio_reset(&log->flush_bio);
1174         log->flush_bio.bi_bdev = log->rdev->bdev;
1175         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1176         bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1177         submit_bio(&log->flush_bio);
1178 }
1179
1180 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1181 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1182         sector_t end)
1183 {
1184         struct block_device *bdev = log->rdev->bdev;
1185         struct mddev *mddev;
1186
1187         r5l_write_super(log, end);
1188
1189         if (!blk_queue_discard(bdev_get_queue(bdev)))
1190                 return;
1191
1192         mddev = log->rdev->mddev;
1193         /*
1194          * Discard could zero data, so before discard we must make sure
1195          * superblock is updated to new log tail. Updating superblock (either
1196          * directly call md_update_sb() or depend on md thread) must hold
1197          * reconfig mutex. On the other hand, raid5_quiesce is called with
1198          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1199          * for all IO finish, hence waitting for reclaim thread, while reclaim
1200          * thread is calling this function and waitting for reconfig mutex. So
1201          * there is a deadlock. We workaround this issue with a trylock.
1202          * FIXME: we could miss discard if we can't take reconfig mutex
1203          */
1204         set_mask_bits(&mddev->flags, 0,
1205                 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1206         if (!mddev_trylock(mddev))
1207                 return;
1208         md_update_sb(mddev, 1);
1209         mddev_unlock(mddev);
1210
1211         /* discard IO error really doesn't matter, ignore it */
1212         if (log->last_checkpoint < end) {
1213                 blkdev_issue_discard(bdev,
1214                                 log->last_checkpoint + log->rdev->data_offset,
1215                                 end - log->last_checkpoint, GFP_NOIO, 0);
1216         } else {
1217                 blkdev_issue_discard(bdev,
1218                                 log->last_checkpoint + log->rdev->data_offset,
1219                                 log->device_size - log->last_checkpoint,
1220                                 GFP_NOIO, 0);
1221                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1222                                 GFP_NOIO, 0);
1223         }
1224 }
1225
1226 /*
1227  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1228  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1229  *
1230  * must hold conf->device_lock
1231  */
1232 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1233 {
1234         BUG_ON(list_empty(&sh->lru));
1235         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1236         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1237
1238         /*
1239          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1240          * raid5_release_stripe() while holding conf->device_lock
1241          */
1242         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1243         assert_spin_locked(&conf->device_lock);
1244
1245         list_del_init(&sh->lru);
1246         atomic_inc(&sh->count);
1247
1248         set_bit(STRIPE_HANDLE, &sh->state);
1249         atomic_inc(&conf->active_stripes);
1250         r5c_make_stripe_write_out(sh);
1251
1252         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1253                 atomic_inc(&conf->preread_active_stripes);
1254         raid5_release_stripe(sh);
1255 }
1256
1257 /*
1258  * if num == 0, flush all full stripes
1259  * if num > 0, flush all full stripes. If less than num full stripes are
1260  *             flushed, flush some partial stripes until totally num stripes are
1261  *             flushed or there is no more cached stripes.
1262  */
1263 void r5c_flush_cache(struct r5conf *conf, int num)
1264 {
1265         int count;
1266         struct stripe_head *sh, *next;
1267
1268         assert_spin_locked(&conf->device_lock);
1269         if (!conf->log)
1270                 return;
1271
1272         count = 0;
1273         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1274                 r5c_flush_stripe(conf, sh);
1275                 count++;
1276         }
1277
1278         if (count >= num)
1279                 return;
1280         list_for_each_entry_safe(sh, next,
1281                                  &conf->r5c_partial_stripe_list, lru) {
1282                 r5c_flush_stripe(conf, sh);
1283                 if (++count >= num)
1284                         break;
1285         }
1286 }
1287
1288 static void r5c_do_reclaim(struct r5conf *conf)
1289 {
1290         struct r5l_log *log = conf->log;
1291         struct stripe_head *sh;
1292         int count = 0;
1293         unsigned long flags;
1294         int total_cached;
1295         int stripes_to_flush;
1296
1297         if (!r5c_is_writeback(log))
1298                 return;
1299
1300         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1301                 atomic_read(&conf->r5c_cached_full_stripes);
1302
1303         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1304             atomic_read(&conf->empty_inactive_list_nr) > 0)
1305                 /*
1306                  * if stripe cache pressure high, flush all full stripes and
1307                  * some partial stripes
1308                  */
1309                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1310         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1311                  atomic_read(&conf->r5c_cached_full_stripes) >
1312                  R5C_FULL_STRIPE_FLUSH_BATCH)
1313                 /*
1314                  * if stripe cache pressure moderate, or if there is many full
1315                  * stripes,flush all full stripes
1316                  */
1317                 stripes_to_flush = 0;
1318         else
1319                 /* no need to flush */
1320                 stripes_to_flush = -1;
1321
1322         if (stripes_to_flush >= 0) {
1323                 spin_lock_irqsave(&conf->device_lock, flags);
1324                 r5c_flush_cache(conf, stripes_to_flush);
1325                 spin_unlock_irqrestore(&conf->device_lock, flags);
1326         }
1327
1328         /* if log space is tight, flush stripes on stripe_in_journal_list */
1329         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1330                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1331                 spin_lock(&conf->device_lock);
1332                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1333                         /*
1334                          * stripes on stripe_in_journal_list could be in any
1335                          * state of the stripe_cache state machine. In this
1336                          * case, we only want to flush stripe on
1337                          * r5c_cached_full/partial_stripes. The following
1338                          * condition makes sure the stripe is on one of the
1339                          * two lists.
1340                          */
1341                         if (!list_empty(&sh->lru) &&
1342                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1343                             atomic_read(&sh->count) == 0) {
1344                                 r5c_flush_stripe(conf, sh);
1345                         }
1346                         if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1347                                 break;
1348                 }
1349                 spin_unlock(&conf->device_lock);
1350                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1351         }
1352         md_wakeup_thread(conf->mddev->thread);
1353 }
1354
1355 static void r5l_do_reclaim(struct r5l_log *log)
1356 {
1357         struct r5conf *conf = log->rdev->mddev->private;
1358         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1359         sector_t reclaimable;
1360         sector_t next_checkpoint;
1361         bool write_super;
1362
1363         spin_lock_irq(&log->io_list_lock);
1364         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1365                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1366         /*
1367          * move proper io_unit to reclaim list. We should not change the order.
1368          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1369          * shouldn't reuse space of an unreclaimable io_unit
1370          */
1371         while (1) {
1372                 reclaimable = r5l_reclaimable_space(log);
1373                 if (reclaimable >= reclaim_target ||
1374                     (list_empty(&log->running_ios) &&
1375                      list_empty(&log->io_end_ios) &&
1376                      list_empty(&log->flushing_ios) &&
1377                      list_empty(&log->finished_ios)))
1378                         break;
1379
1380                 md_wakeup_thread(log->rdev->mddev->thread);
1381                 wait_event_lock_irq(log->iounit_wait,
1382                                     r5l_reclaimable_space(log) > reclaimable,
1383                                     log->io_list_lock);
1384         }
1385
1386         next_checkpoint = r5c_calculate_new_cp(conf);
1387         spin_unlock_irq(&log->io_list_lock);
1388
1389         BUG_ON(reclaimable < 0);
1390
1391         if (reclaimable == 0 || !write_super)
1392                 return;
1393
1394         /*
1395          * write_super will flush cache of each raid disk. We must write super
1396          * here, because the log area might be reused soon and we don't want to
1397          * confuse recovery
1398          */
1399         r5l_write_super_and_discard_space(log, next_checkpoint);
1400
1401         mutex_lock(&log->io_mutex);
1402         log->last_checkpoint = next_checkpoint;
1403         r5c_update_log_state(log);
1404         mutex_unlock(&log->io_mutex);
1405
1406         r5l_run_no_space_stripes(log);
1407 }
1408
1409 static void r5l_reclaim_thread(struct md_thread *thread)
1410 {
1411         struct mddev *mddev = thread->mddev;
1412         struct r5conf *conf = mddev->private;
1413         struct r5l_log *log = conf->log;
1414
1415         if (!log)
1416                 return;
1417         r5c_do_reclaim(conf);
1418         r5l_do_reclaim(log);
1419 }
1420
1421 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1422 {
1423         unsigned long target;
1424         unsigned long new = (unsigned long)space; /* overflow in theory */
1425
1426         if (!log)
1427                 return;
1428         do {
1429                 target = log->reclaim_target;
1430                 if (new < target)
1431                         return;
1432         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1433         md_wakeup_thread(log->reclaim_thread);
1434 }
1435
1436 void r5l_quiesce(struct r5l_log *log, int state)
1437 {
1438         struct mddev *mddev;
1439         if (!log || state == 2)
1440                 return;
1441         if (state == 0)
1442                 kthread_unpark(log->reclaim_thread->tsk);
1443         else if (state == 1) {
1444                 /* make sure r5l_write_super_and_discard_space exits */
1445                 mddev = log->rdev->mddev;
1446                 wake_up(&mddev->sb_wait);
1447                 kthread_park(log->reclaim_thread->tsk);
1448                 r5l_wake_reclaim(log, MaxSector);
1449                 r5l_do_reclaim(log);
1450         }
1451 }
1452
1453 bool r5l_log_disk_error(struct r5conf *conf)
1454 {
1455         struct r5l_log *log;
1456         bool ret;
1457         /* don't allow write if journal disk is missing */
1458         rcu_read_lock();
1459         log = rcu_dereference(conf->log);
1460
1461         if (!log)
1462                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1463         else
1464                 ret = test_bit(Faulty, &log->rdev->flags);
1465         rcu_read_unlock();
1466         return ret;
1467 }
1468
1469 struct r5l_recovery_ctx {
1470         struct page *meta_page;         /* current meta */
1471         sector_t meta_total_blocks;     /* total size of current meta and data */
1472         sector_t pos;                   /* recovery position */
1473         u64 seq;                        /* recovery position seq */
1474         int data_parity_stripes;        /* number of data_parity stripes */
1475         int data_only_stripes;          /* number of data_only stripes */
1476         struct list_head cached_list;
1477 };
1478
1479 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1480                                         struct r5l_recovery_ctx *ctx)
1481 {
1482         struct page *page = ctx->meta_page;
1483         struct r5l_meta_block *mb;
1484         u32 crc, stored_crc;
1485
1486         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1487                           false))
1488                 return -EIO;
1489
1490         mb = page_address(page);
1491         stored_crc = le32_to_cpu(mb->checksum);
1492         mb->checksum = 0;
1493
1494         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1495             le64_to_cpu(mb->seq) != ctx->seq ||
1496             mb->version != R5LOG_VERSION ||
1497             le64_to_cpu(mb->position) != ctx->pos)
1498                 return -EINVAL;
1499
1500         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1501         if (stored_crc != crc)
1502                 return -EINVAL;
1503
1504         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1505                 return -EINVAL;
1506
1507         ctx->meta_total_blocks = BLOCK_SECTORS;
1508
1509         return 0;
1510 }
1511
1512 static void
1513 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1514                                      struct page *page,
1515                                      sector_t pos, u64 seq)
1516 {
1517         struct r5l_meta_block *mb;
1518         u32 crc;
1519
1520         mb = page_address(page);
1521         clear_page(mb);
1522         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1523         mb->version = R5LOG_VERSION;
1524         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1525         mb->seq = cpu_to_le64(seq);
1526         mb->position = cpu_to_le64(pos);
1527         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1528         mb->checksum = cpu_to_le32(crc);
1529 }
1530
1531 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1532                                           u64 seq)
1533 {
1534         struct page *page;
1535
1536         page = alloc_page(GFP_KERNEL);
1537         if (!page)
1538                 return -ENOMEM;
1539         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1540         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1541                           WRITE_FUA, false)) {
1542                 __free_page(page);
1543                 return -EIO;
1544         }
1545         __free_page(page);
1546         return 0;
1547 }
1548
1549 /*
1550  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1551  * to mark valid (potentially not flushed) data in the journal.
1552  *
1553  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1554  * so there should not be any mismatch here.
1555  */
1556 static void r5l_recovery_load_data(struct r5l_log *log,
1557                                    struct stripe_head *sh,
1558                                    struct r5l_recovery_ctx *ctx,
1559                                    struct r5l_payload_data_parity *payload,
1560                                    sector_t log_offset)
1561 {
1562         struct mddev *mddev = log->rdev->mddev;
1563         struct r5conf *conf = mddev->private;
1564         int dd_idx;
1565
1566         raid5_compute_sector(conf,
1567                              le64_to_cpu(payload->location), 0,
1568                              &dd_idx, sh);
1569         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1570                      sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1571         sh->dev[dd_idx].log_checksum =
1572                 le32_to_cpu(payload->checksum[0]);
1573         ctx->meta_total_blocks += BLOCK_SECTORS;
1574
1575         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1576         set_bit(STRIPE_R5C_CACHING, &sh->state);
1577 }
1578
1579 static void r5l_recovery_load_parity(struct r5l_log *log,
1580                                      struct stripe_head *sh,
1581                                      struct r5l_recovery_ctx *ctx,
1582                                      struct r5l_payload_data_parity *payload,
1583                                      sector_t log_offset)
1584 {
1585         struct mddev *mddev = log->rdev->mddev;
1586         struct r5conf *conf = mddev->private;
1587
1588         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1589         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1590                      sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1591         sh->dev[sh->pd_idx].log_checksum =
1592                 le32_to_cpu(payload->checksum[0]);
1593         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1594
1595         if (sh->qd_idx >= 0) {
1596                 sync_page_io(log->rdev,
1597                              r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1598                              PAGE_SIZE, sh->dev[sh->qd_idx].page,
1599                              REQ_OP_READ, 0, false);
1600                 sh->dev[sh->qd_idx].log_checksum =
1601                         le32_to_cpu(payload->checksum[1]);
1602                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1603         }
1604         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1605 }
1606
1607 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1608 {
1609         int i;
1610
1611         sh->state = 0;
1612         sh->log_start = MaxSector;
1613         for (i = sh->disks; i--; )
1614                 sh->dev[i].flags = 0;
1615 }
1616
1617 static void
1618 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1619                                struct stripe_head *sh,
1620                                struct r5l_recovery_ctx *ctx)
1621 {
1622         struct md_rdev *rdev, *rrdev;
1623         int disk_index;
1624         int data_count = 0;
1625
1626         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1627                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1628                         continue;
1629                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1630                         continue;
1631                 data_count++;
1632         }
1633
1634         /*
1635          * stripes that only have parity must have been flushed
1636          * before the crash that we are now recovering from, so
1637          * there is nothing more to recovery.
1638          */
1639         if (data_count == 0)
1640                 goto out;
1641
1642         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1643                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1644                         continue;
1645
1646                 /* in case device is broken */
1647                 rcu_read_lock();
1648                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1649                 if (rdev) {
1650                         atomic_inc(&rdev->nr_pending);
1651                         rcu_read_unlock();
1652                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1653                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1654                                      false);
1655                         rdev_dec_pending(rdev, rdev->mddev);
1656                         rcu_read_lock();
1657                 }
1658                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1659                 if (rrdev) {
1660                         atomic_inc(&rrdev->nr_pending);
1661                         rcu_read_unlock();
1662                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1663                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1664                                      false);
1665                         rdev_dec_pending(rrdev, rrdev->mddev);
1666                         rcu_read_lock();
1667                 }
1668                 rcu_read_unlock();
1669         }
1670         ctx->data_parity_stripes++;
1671 out:
1672         r5l_recovery_reset_stripe(sh);
1673 }
1674
1675 static struct stripe_head *
1676 r5c_recovery_alloc_stripe(struct r5conf *conf,
1677                           struct list_head *recovery_list,
1678                           sector_t stripe_sect,
1679                           sector_t log_start)
1680 {
1681         struct stripe_head *sh;
1682
1683         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1684         if (!sh)
1685                 return NULL;  /* no more stripe available */
1686
1687         r5l_recovery_reset_stripe(sh);
1688         sh->log_start = log_start;
1689
1690         return sh;
1691 }
1692
1693 static struct stripe_head *
1694 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1695 {
1696         struct stripe_head *sh;
1697
1698         list_for_each_entry(sh, list, lru)
1699                 if (sh->sector == sect)
1700                         return sh;
1701         return NULL;
1702 }
1703
1704 static void
1705 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1706                           struct r5l_recovery_ctx *ctx)
1707 {
1708         struct stripe_head *sh, *next;
1709
1710         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1711                 r5l_recovery_reset_stripe(sh);
1712                 list_del_init(&sh->lru);
1713                 raid5_release_stripe(sh);
1714         }
1715 }
1716
1717 static void
1718 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1719                             struct r5l_recovery_ctx *ctx)
1720 {
1721         struct stripe_head *sh, *next;
1722
1723         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1724                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1725                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1726                         list_del_init(&sh->lru);
1727                         raid5_release_stripe(sh);
1728                 }
1729 }
1730
1731 /* if matches return 0; otherwise return -EINVAL */
1732 static int
1733 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1734                                   sector_t log_offset, __le32 log_checksum)
1735 {
1736         void *addr;
1737         u32 checksum;
1738
1739         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1740                      page, REQ_OP_READ, 0, false);
1741         addr = kmap_atomic(page);
1742         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1743         kunmap_atomic(addr);
1744         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1745 }
1746
1747 /*
1748  * before loading data to stripe cache, we need verify checksum for all data,
1749  * if there is mismatch for any data page, we drop all data in the mata block
1750  */
1751 static int
1752 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1753                                          struct r5l_recovery_ctx *ctx)
1754 {
1755         struct mddev *mddev = log->rdev->mddev;
1756         struct r5conf *conf = mddev->private;
1757         struct r5l_meta_block *mb = page_address(ctx->meta_page);
1758         sector_t mb_offset = sizeof(struct r5l_meta_block);
1759         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1760         struct page *page;
1761         struct r5l_payload_data_parity *payload;
1762
1763         page = alloc_page(GFP_KERNEL);
1764         if (!page)
1765                 return -ENOMEM;
1766
1767         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1768                 payload = (void *)mb + mb_offset;
1769
1770                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1771                         if (r5l_recovery_verify_data_checksum(
1772                                     log, page, log_offset,
1773                                     payload->checksum[0]) < 0)
1774                                 goto mismatch;
1775                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1776                         if (r5l_recovery_verify_data_checksum(
1777                                     log, page, log_offset,
1778                                     payload->checksum[0]) < 0)
1779                                 goto mismatch;
1780                         if (conf->max_degraded == 2 && /* q for RAID 6 */
1781                             r5l_recovery_verify_data_checksum(
1782                                     log, page,
1783                                     r5l_ring_add(log, log_offset,
1784                                                  BLOCK_SECTORS),
1785                                     payload->checksum[1]) < 0)
1786                                 goto mismatch;
1787                 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1788                         goto mismatch;
1789
1790                 log_offset = r5l_ring_add(log, log_offset,
1791                                           le32_to_cpu(payload->size));
1792
1793                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1794                         sizeof(__le32) *
1795                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1796         }
1797
1798         put_page(page);
1799         return 0;
1800
1801 mismatch:
1802         put_page(page);
1803         return -EINVAL;
1804 }
1805
1806 /*
1807  * Analyze all data/parity pages in one meta block
1808  * Returns:
1809  * 0 for success
1810  * -EINVAL for unknown playload type
1811  * -EAGAIN for checksum mismatch of data page
1812  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1813  */
1814 static int
1815 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1816                                 struct r5l_recovery_ctx *ctx,
1817                                 struct list_head *cached_stripe_list)
1818 {
1819         struct mddev *mddev = log->rdev->mddev;
1820         struct r5conf *conf = mddev->private;
1821         struct r5l_meta_block *mb;
1822         struct r5l_payload_data_parity *payload;
1823         int mb_offset;
1824         sector_t log_offset;
1825         sector_t stripe_sect;
1826         struct stripe_head *sh;
1827         int ret;
1828
1829         /*
1830          * for mismatch in data blocks, we will drop all data in this mb, but
1831          * we will still read next mb for other data with FLUSH flag, as
1832          * io_unit could finish out of order.
1833          */
1834         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1835         if (ret == -EINVAL)
1836                 return -EAGAIN;
1837         else if (ret)
1838                 return ret;   /* -ENOMEM duo to alloc_page() failed */
1839
1840         mb = page_address(ctx->meta_page);
1841         mb_offset = sizeof(struct r5l_meta_block);
1842         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1843
1844         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1845                 int dd;
1846
1847                 payload = (void *)mb + mb_offset;
1848                 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1849                         raid5_compute_sector(
1850                                 conf, le64_to_cpu(payload->location), 0, &dd,
1851                                 NULL)
1852                         : le64_to_cpu(payload->location);
1853
1854                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1855                                                 stripe_sect);
1856
1857                 if (!sh) {
1858                         sh = r5c_recovery_alloc_stripe(conf, cached_stripe_list,
1859                                                        stripe_sect, ctx->pos);
1860                         /*
1861                          * cannot get stripe from raid5_get_active_stripe
1862                          * try replay some stripes
1863                          */
1864                         if (!sh) {
1865                                 r5c_recovery_replay_stripes(
1866                                         cached_stripe_list, ctx);
1867                                 sh = r5c_recovery_alloc_stripe(
1868                                         conf, cached_stripe_list,
1869                                         stripe_sect, ctx->pos);
1870                         }
1871                         if (!sh) {
1872                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1873                                         mdname(mddev),
1874                                         conf->min_nr_stripes * 2);
1875                                 raid5_set_cache_size(mddev,
1876                                                      conf->min_nr_stripes * 2);
1877                                 sh = r5c_recovery_alloc_stripe(
1878                                         conf, cached_stripe_list, stripe_sect,
1879                                         ctx->pos);
1880                         }
1881                         if (!sh) {
1882                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1883                                        mdname(mddev));
1884                                 return -ENOMEM;
1885                         }
1886                         list_add_tail(&sh->lru, cached_stripe_list);
1887                 }
1888
1889                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1890                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1891                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
1892                                 r5l_recovery_reset_stripe(sh);
1893                                 sh->log_start = ctx->pos;
1894                                 list_move_tail(&sh->lru, cached_stripe_list);
1895                         }
1896                         r5l_recovery_load_data(log, sh, ctx, payload,
1897                                                log_offset);
1898                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1899                         r5l_recovery_load_parity(log, sh, ctx, payload,
1900                                                  log_offset);
1901                 else
1902                         return -EINVAL;
1903
1904                 log_offset = r5l_ring_add(log, log_offset,
1905                                           le32_to_cpu(payload->size));
1906
1907                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1908                         sizeof(__le32) *
1909                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1910         }
1911
1912         return 0;
1913 }
1914
1915 /*
1916  * Load the stripe into cache. The stripe will be written out later by
1917  * the stripe cache state machine.
1918  */
1919 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1920                                          struct stripe_head *sh)
1921 {
1922         struct r5conf *conf = sh->raid_conf;
1923         struct r5dev *dev;
1924         int i;
1925
1926         for (i = sh->disks; i--; ) {
1927                 dev = sh->dev + i;
1928                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1929                         set_bit(R5_InJournal, &dev->flags);
1930                         set_bit(R5_UPTODATE, &dev->flags);
1931                 }
1932         }
1933         set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
1934         atomic_inc(&conf->r5c_cached_partial_stripes);
1935         list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
1936 }
1937
1938 /*
1939  * Scan through the log for all to-be-flushed data
1940  *
1941  * For stripes with data and parity, namely Data-Parity stripe
1942  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1943  *
1944  * For stripes with only data, namely Data-Only stripe
1945  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1946  *
1947  * For a stripe, if we see data after parity, we should discard all previous
1948  * data and parity for this stripe, as these data are already flushed to
1949  * the array.
1950  *
1951  * At the end of the scan, we return the new journal_tail, which points to
1952  * first data-only stripe on the journal device, or next invalid meta block.
1953  */
1954 static int r5c_recovery_flush_log(struct r5l_log *log,
1955                                   struct r5l_recovery_ctx *ctx)
1956 {
1957         struct stripe_head *sh, *next;
1958         int ret = 0;
1959
1960         /* scan through the log */
1961         while (1) {
1962                 if (r5l_recovery_read_meta_block(log, ctx))
1963                         break;
1964
1965                 ret = r5c_recovery_analyze_meta_block(log, ctx,
1966                                                       &ctx->cached_list);
1967                 /*
1968                  * -EAGAIN means mismatch in data block, in this case, we still
1969                  * try scan the next metablock
1970                  */
1971                 if (ret && ret != -EAGAIN)
1972                         break;   /* ret == -EINVAL or -ENOMEM */
1973                 ctx->seq++;
1974                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1975         }
1976
1977         if (ret == -ENOMEM) {
1978                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1979                 return ret;
1980         }
1981
1982         /* replay data-parity stripes */
1983         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1984
1985         /* load data-only stripes to stripe cache */
1986         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
1987                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1988                 r5c_recovery_load_one_stripe(log, sh);
1989                 list_del_init(&sh->lru);
1990                 raid5_release_stripe(sh);
1991                 ctx->data_only_stripes++;
1992         }
1993
1994         return 0;
1995 }
1996
1997 /*
1998  * we did a recovery. Now ctx.pos points to an invalid meta block. New
1999  * log will start here. but we can't let superblock point to last valid
2000  * meta block. The log might looks like:
2001  * | meta 1| meta 2| meta 3|
2002  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2003  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2004  * happens again, new recovery will start from meta 1. Since meta 2n is
2005  * valid now, recovery will think meta 3 is valid, which is wrong.
2006  * The solution is we create a new meta in meta2 with its seq == meta
2007  * 1's seq + 10 and let superblock points to meta2. The same recovery will
2008  * not think meta 3 is a valid meta, because its seq doesn't match
2009  */
2010
2011 /*
2012  * Before recovery, the log looks like the following
2013  *
2014  *   ---------------------------------------------
2015  *   |           valid log        | invalid log  |
2016  *   ---------------------------------------------
2017  *   ^
2018  *   |- log->last_checkpoint
2019  *   |- log->last_cp_seq
2020  *
2021  * Now we scan through the log until we see invalid entry
2022  *
2023  *   ---------------------------------------------
2024  *   |           valid log        | invalid log  |
2025  *   ---------------------------------------------
2026  *   ^                            ^
2027  *   |- log->last_checkpoint      |- ctx->pos
2028  *   |- log->last_cp_seq          |- ctx->seq
2029  *
2030  * From this point, we need to increase seq number by 10 to avoid
2031  * confusing next recovery.
2032  *
2033  *   ---------------------------------------------
2034  *   |           valid log        | invalid log  |
2035  *   ---------------------------------------------
2036  *   ^                              ^
2037  *   |- log->last_checkpoint        |- ctx->pos+1
2038  *   |- log->last_cp_seq            |- ctx->seq+11
2039  *
2040  * However, it is not safe to start the state machine yet, because data only
2041  * parities are not yet secured in RAID. To save these data only parities, we
2042  * rewrite them from seq+11.
2043  *
2044  *   -----------------------------------------------------------------
2045  *   |           valid log        | data only stripes | invalid log  |
2046  *   -----------------------------------------------------------------
2047  *   ^                                                ^
2048  *   |- log->last_checkpoint                          |- ctx->pos+n
2049  *   |- log->last_cp_seq                              |- ctx->seq+10+n
2050  *
2051  * If failure happens again during this process, the recovery can safe start
2052  * again from log->last_checkpoint.
2053  *
2054  * Once data only stripes are rewritten to journal, we move log_tail
2055  *
2056  *   -----------------------------------------------------------------
2057  *   |     old log        |    data only stripes    | invalid log  |
2058  *   -----------------------------------------------------------------
2059  *                        ^                         ^
2060  *                        |- log->last_checkpoint   |- ctx->pos+n
2061  *                        |- log->last_cp_seq       |- ctx->seq+10+n
2062  *
2063  * Then we can safely start the state machine. If failure happens from this
2064  * point on, the recovery will start from new log->last_checkpoint.
2065  */
2066 static int
2067 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2068                                        struct r5l_recovery_ctx *ctx)
2069 {
2070         struct stripe_head *sh;
2071         struct mddev *mddev = log->rdev->mddev;
2072         struct page *page;
2073
2074         page = alloc_page(GFP_KERNEL);
2075         if (!page) {
2076                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2077                        mdname(mddev));
2078                 return -ENOMEM;
2079         }
2080
2081         ctx->seq += 10;
2082         list_for_each_entry(sh, &ctx->cached_list, lru) {
2083                 struct r5l_meta_block *mb;
2084                 int i;
2085                 int offset;
2086                 sector_t write_pos;
2087
2088                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2089                 r5l_recovery_create_empty_meta_block(log, page,
2090                                                      ctx->pos, ctx->seq);
2091                 mb = page_address(page);
2092                 offset = le32_to_cpu(mb->meta_size);
2093                 write_pos = ctx->pos + BLOCK_SECTORS;
2094
2095                 for (i = sh->disks; i--; ) {
2096                         struct r5dev *dev = &sh->dev[i];
2097                         struct r5l_payload_data_parity *payload;
2098                         void *addr;
2099
2100                         if (test_bit(R5_InJournal, &dev->flags)) {
2101                                 payload = (void *)mb + offset;
2102                                 payload->header.type = cpu_to_le16(
2103                                         R5LOG_PAYLOAD_DATA);
2104                                 payload->size = BLOCK_SECTORS;
2105                                 payload->location = cpu_to_le64(
2106                                         raid5_compute_blocknr(sh, i, 0));
2107                                 addr = kmap_atomic(dev->page);
2108                                 payload->checksum[0] = cpu_to_le32(
2109                                         crc32c_le(log->uuid_checksum, addr,
2110                                                   PAGE_SIZE));
2111                                 kunmap_atomic(addr);
2112                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2113                                              dev->page, REQ_OP_WRITE, 0, false);
2114                                 write_pos = r5l_ring_add(log, write_pos,
2115                                                          BLOCK_SECTORS);
2116                                 offset += sizeof(__le32) +
2117                                         sizeof(struct r5l_payload_data_parity);
2118
2119                         }
2120                 }
2121                 mb->meta_size = cpu_to_le32(offset);
2122                 mb->checksum = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2123                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2124                              REQ_OP_WRITE, WRITE_FUA, false);
2125                 sh->log_start = ctx->pos;
2126                 ctx->pos = write_pos;
2127                 ctx->seq += 1;
2128         }
2129         __free_page(page);
2130         return 0;
2131 }
2132
2133 static int r5l_recovery_log(struct r5l_log *log)
2134 {
2135         struct mddev *mddev = log->rdev->mddev;
2136         struct r5l_recovery_ctx ctx;
2137         int ret;
2138
2139         ctx.pos = log->last_checkpoint;
2140         ctx.seq = log->last_cp_seq;
2141         ctx.meta_page = alloc_page(GFP_KERNEL);
2142         ctx.data_only_stripes = 0;
2143         ctx.data_parity_stripes = 0;
2144         INIT_LIST_HEAD(&ctx.cached_list);
2145
2146         if (!ctx.meta_page)
2147                 return -ENOMEM;
2148
2149         ret = r5c_recovery_flush_log(log, &ctx);
2150         __free_page(ctx.meta_page);
2151
2152         if (ret)
2153                 return ret;
2154
2155         if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2156                 pr_debug("md/raid:%s: starting from clean shutdown\n",
2157                          mdname(mddev));
2158         else {
2159                 pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2160                          mdname(mddev), ctx.data_only_stripes,
2161                          ctx.data_parity_stripes);
2162
2163                 if (ctx.data_only_stripes > 0)
2164                         if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2165                                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2166                                        mdname(mddev));
2167                                 return -EIO;
2168                         }
2169         }
2170
2171         log->log_start = ctx.pos;
2172         log->next_checkpoint = ctx.pos;
2173         log->seq = ctx.seq;
2174         r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq);
2175         r5l_write_super(log, ctx.pos);
2176         return 0;
2177 }
2178
2179 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2180 {
2181         struct mddev *mddev = log->rdev->mddev;
2182
2183         log->rdev->journal_tail = cp;
2184         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2185 }
2186
2187 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2188 {
2189         struct r5conf *conf = mddev->private;
2190         int ret;
2191
2192         if (!conf->log)
2193                 return 0;
2194
2195         switch (conf->log->r5c_journal_mode) {
2196         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2197                 ret = snprintf(
2198                         page, PAGE_SIZE, "[%s] %s\n",
2199                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2200                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2201                 break;
2202         case R5C_JOURNAL_MODE_WRITE_BACK:
2203                 ret = snprintf(
2204                         page, PAGE_SIZE, "%s [%s]\n",
2205                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2206                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2207                 break;
2208         default:
2209                 ret = 0;
2210         }
2211         return ret;
2212 }
2213
2214 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2215                                       const char *page, size_t length)
2216 {
2217         struct r5conf *conf = mddev->private;
2218         struct r5l_log *log = conf->log;
2219         int val = -1, i;
2220         int len = length;
2221
2222         if (!log)
2223                 return -ENODEV;
2224
2225         if (len && page[len - 1] == '\n')
2226                 len -= 1;
2227         for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2228                 if (strlen(r5c_journal_mode_str[i]) == len &&
2229                     strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2230                         val = i;
2231                         break;
2232                 }
2233         if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2234             val > R5C_JOURNAL_MODE_WRITE_BACK)
2235                 return -EINVAL;
2236
2237         mddev_suspend(mddev);
2238         conf->log->r5c_journal_mode = val;
2239         mddev_resume(mddev);
2240
2241         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2242                  mdname(mddev), val, r5c_journal_mode_str[val]);
2243         return length;
2244 }
2245
2246 struct md_sysfs_entry
2247 r5c_journal_mode = __ATTR(journal_mode, 0644,
2248                           r5c_journal_mode_show, r5c_journal_mode_store);
2249
2250 /*
2251  * Try handle write operation in caching phase. This function should only
2252  * be called in write-back mode.
2253  *
2254  * If all outstanding writes can be handled in caching phase, returns 0
2255  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2256  * and returns -EAGAIN
2257  */
2258 int r5c_try_caching_write(struct r5conf *conf,
2259                           struct stripe_head *sh,
2260                           struct stripe_head_state *s,
2261                           int disks)
2262 {
2263         struct r5l_log *log = conf->log;
2264         int i;
2265         struct r5dev *dev;
2266         int to_cache = 0;
2267
2268         BUG_ON(!r5c_is_writeback(log));
2269
2270         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2271                 /*
2272                  * There are two different scenarios here:
2273                  *  1. The stripe has some data cached, and it is sent to
2274                  *     write-out phase for reclaim
2275                  *  2. The stripe is clean, and this is the first write
2276                  *
2277                  * For 1, return -EAGAIN, so we continue with
2278                  * handle_stripe_dirtying().
2279                  *
2280                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2281                  * write.
2282                  */
2283
2284                 /* case 1: anything injournal or anything in written */
2285                 if (s->injournal > 0 || s->written > 0)
2286                         return -EAGAIN;
2287                 /* case 2 */
2288                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2289         }
2290
2291         for (i = disks; i--; ) {
2292                 dev = &sh->dev[i];
2293                 /* if non-overwrite, use writing-out phase */
2294                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2295                     !test_bit(R5_InJournal, &dev->flags)) {
2296                         r5c_make_stripe_write_out(sh);
2297                         return -EAGAIN;
2298                 }
2299         }
2300
2301         for (i = disks; i--; ) {
2302                 dev = &sh->dev[i];
2303                 if (dev->towrite) {
2304                         set_bit(R5_Wantwrite, &dev->flags);
2305                         set_bit(R5_Wantdrain, &dev->flags);
2306                         set_bit(R5_LOCKED, &dev->flags);
2307                         to_cache++;
2308                 }
2309         }
2310
2311         if (to_cache) {
2312                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2313                 /*
2314                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2315                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2316                  * r5c_handle_data_cached()
2317                  */
2318                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2319         }
2320
2321         return 0;
2322 }
2323
2324 /*
2325  * free extra pages (orig_page) we allocated for prexor
2326  */
2327 void r5c_release_extra_page(struct stripe_head *sh)
2328 {
2329         struct r5conf *conf = sh->raid_conf;
2330         int i;
2331         bool using_disk_info_extra_page;
2332
2333         using_disk_info_extra_page =
2334                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2335
2336         for (i = sh->disks; i--; )
2337                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2338                         struct page *p = sh->dev[i].orig_page;
2339
2340                         sh->dev[i].orig_page = sh->dev[i].page;
2341                         if (!using_disk_info_extra_page)
2342                                 put_page(p);
2343                 }
2344
2345         if (using_disk_info_extra_page) {
2346                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2347                 md_wakeup_thread(conf->mddev->thread);
2348         }
2349 }
2350
2351 void r5c_use_extra_page(struct stripe_head *sh)
2352 {
2353         struct r5conf *conf = sh->raid_conf;
2354         int i;
2355         struct r5dev *dev;
2356
2357         for (i = sh->disks; i--; ) {
2358                 dev = &sh->dev[i];
2359                 if (dev->orig_page != dev->page)
2360                         put_page(dev->orig_page);
2361                 dev->orig_page = conf->disks[i].extra_page;
2362         }
2363 }
2364
2365 /*
2366  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2367  * stripe is committed to RAID disks.
2368  */
2369 void r5c_finish_stripe_write_out(struct r5conf *conf,
2370                                  struct stripe_head *sh,
2371                                  struct stripe_head_state *s)
2372 {
2373         int i;
2374         int do_wakeup = 0;
2375
2376         if (!conf->log ||
2377             !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2378                 return;
2379
2380         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2381         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2382
2383         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2384                 return;
2385
2386         for (i = sh->disks; i--; ) {
2387                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2388                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2389                         do_wakeup = 1;
2390         }
2391
2392         /*
2393          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2394          * We updated R5_InJournal, so we also update s->injournal.
2395          */
2396         s->injournal = 0;
2397
2398         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2399                 if (atomic_dec_and_test(&conf->pending_full_writes))
2400                         md_wakeup_thread(conf->mddev->thread);
2401
2402         if (do_wakeup)
2403                 wake_up(&conf->wait_for_overlap);
2404
2405         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2406                 return;
2407
2408         spin_lock_irq(&conf->log->stripe_in_journal_lock);
2409         list_del_init(&sh->r5c);
2410         spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2411         sh->log_start = MaxSector;
2412         atomic_dec(&conf->log->stripe_in_journal_count);
2413 }
2414
2415 int
2416 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2417                struct stripe_head_state *s)
2418 {
2419         struct r5conf *conf = sh->raid_conf;
2420         int pages = 0;
2421         int reserve;
2422         int i;
2423         int ret = 0;
2424
2425         BUG_ON(!log);
2426
2427         for (i = 0; i < sh->disks; i++) {
2428                 void *addr;
2429
2430                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2431                         continue;
2432                 addr = kmap_atomic(sh->dev[i].page);
2433                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2434                                                     addr, PAGE_SIZE);
2435                 kunmap_atomic(addr);
2436                 pages++;
2437         }
2438         WARN_ON(pages == 0);
2439
2440         /*
2441          * The stripe must enter state machine again to call endio, so
2442          * don't delay.
2443          */
2444         clear_bit(STRIPE_DELAYED, &sh->state);
2445         atomic_inc(&sh->count);
2446
2447         mutex_lock(&log->io_mutex);
2448         /* meta + data */
2449         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2450
2451         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2452             sh->log_start == MaxSector)
2453                 r5l_add_no_space_stripe(log, sh);
2454         else if (!r5l_has_free_space(log, reserve)) {
2455                 if (sh->log_start == log->last_checkpoint)
2456                         BUG();
2457                 else
2458                         r5l_add_no_space_stripe(log, sh);
2459         } else {
2460                 ret = r5l_log_stripe(log, sh, pages, 0);
2461                 if (ret) {
2462                         spin_lock_irq(&log->io_list_lock);
2463                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2464                         spin_unlock_irq(&log->io_list_lock);
2465                 }
2466         }
2467
2468         mutex_unlock(&log->io_mutex);
2469         return 0;
2470 }
2471
2472 static int r5l_load_log(struct r5l_log *log)
2473 {
2474         struct md_rdev *rdev = log->rdev;
2475         struct page *page;
2476         struct r5l_meta_block *mb;
2477         sector_t cp = log->rdev->journal_tail;
2478         u32 stored_crc, expected_crc;
2479         bool create_super = false;
2480         int ret;
2481
2482         /* Make sure it's valid */
2483         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2484                 cp = 0;
2485         page = alloc_page(GFP_KERNEL);
2486         if (!page)
2487                 return -ENOMEM;
2488
2489         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2490                 ret = -EIO;
2491                 goto ioerr;
2492         }
2493         mb = page_address(page);
2494
2495         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2496             mb->version != R5LOG_VERSION) {
2497                 create_super = true;
2498                 goto create;
2499         }
2500         stored_crc = le32_to_cpu(mb->checksum);
2501         mb->checksum = 0;
2502         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2503         if (stored_crc != expected_crc) {
2504                 create_super = true;
2505                 goto create;
2506         }
2507         if (le64_to_cpu(mb->position) != cp) {
2508                 create_super = true;
2509                 goto create;
2510         }
2511 create:
2512         if (create_super) {
2513                 log->last_cp_seq = prandom_u32();
2514                 cp = 0;
2515                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2516                 /*
2517                  * Make sure super points to correct address. Log might have
2518                  * data very soon. If super hasn't correct log tail address,
2519                  * recovery can't find the log
2520                  */
2521                 r5l_write_super(log, cp);
2522         } else
2523                 log->last_cp_seq = le64_to_cpu(mb->seq);
2524
2525         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2526         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2527         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2528                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2529         log->last_checkpoint = cp;
2530         log->next_checkpoint = cp;
2531         mutex_lock(&log->io_mutex);
2532         r5c_update_log_state(log);
2533         mutex_unlock(&log->io_mutex);
2534
2535         __free_page(page);
2536
2537         return r5l_recovery_log(log);
2538 ioerr:
2539         __free_page(page);
2540         return ret;
2541 }
2542
2543 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2544 {
2545         struct request_queue *q = bdev_get_queue(rdev->bdev);
2546         struct r5l_log *log;
2547
2548         if (PAGE_SIZE != 4096)
2549                 return -EINVAL;
2550
2551         /*
2552          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2553          * raid_disks r5l_payload_data_parity.
2554          *
2555          * Write journal and cache does not work for very big array
2556          * (raid_disks > 203)
2557          */
2558         if (sizeof(struct r5l_meta_block) +
2559             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2560              conf->raid_disks) > PAGE_SIZE) {
2561                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2562                        mdname(conf->mddev), conf->raid_disks);
2563                 return -EINVAL;
2564         }
2565
2566         log = kzalloc(sizeof(*log), GFP_KERNEL);
2567         if (!log)
2568                 return -ENOMEM;
2569         log->rdev = rdev;
2570
2571         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2572
2573         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2574                                        sizeof(rdev->mddev->uuid));
2575
2576         mutex_init(&log->io_mutex);
2577
2578         spin_lock_init(&log->io_list_lock);
2579         INIT_LIST_HEAD(&log->running_ios);
2580         INIT_LIST_HEAD(&log->io_end_ios);
2581         INIT_LIST_HEAD(&log->flushing_ios);
2582         INIT_LIST_HEAD(&log->finished_ios);
2583         bio_init(&log->flush_bio);
2584
2585         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2586         if (!log->io_kc)
2587                 goto io_kc;
2588
2589         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2590         if (!log->io_pool)
2591                 goto io_pool;
2592
2593         log->bs = bioset_create(R5L_POOL_SIZE, 0);
2594         if (!log->bs)
2595                 goto io_bs;
2596
2597         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2598         if (!log->meta_pool)
2599                 goto out_mempool;
2600
2601         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2602                                                  log->rdev->mddev, "reclaim");
2603         if (!log->reclaim_thread)
2604                 goto reclaim_thread;
2605         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2606
2607         init_waitqueue_head(&log->iounit_wait);
2608
2609         INIT_LIST_HEAD(&log->no_mem_stripes);
2610
2611         INIT_LIST_HEAD(&log->no_space_stripes);
2612         spin_lock_init(&log->no_space_stripes_lock);
2613
2614         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2615
2616         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2617         INIT_LIST_HEAD(&log->stripe_in_journal_list);
2618         spin_lock_init(&log->stripe_in_journal_lock);
2619         atomic_set(&log->stripe_in_journal_count, 0);
2620
2621         if (r5l_load_log(log))
2622                 goto error;
2623
2624         rcu_assign_pointer(conf->log, log);
2625         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2626         return 0;
2627
2628 error:
2629         md_unregister_thread(&log->reclaim_thread);
2630 reclaim_thread:
2631         mempool_destroy(log->meta_pool);
2632 out_mempool:
2633         bioset_free(log->bs);
2634 io_bs:
2635         mempool_destroy(log->io_pool);
2636 io_pool:
2637         kmem_cache_destroy(log->io_kc);
2638 io_kc:
2639         kfree(log);
2640         return -EINVAL;
2641 }
2642
2643 void r5l_exit_log(struct r5l_log *log)
2644 {
2645         md_unregister_thread(&log->reclaim_thread);
2646         mempool_destroy(log->meta_pool);
2647         bioset_free(log->bs);
2648         mempool_destroy(log->io_pool);
2649         kmem_cache_destroy(log->io_kc);
2650         kfree(log);
2651 }