]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
Merge tag 'powerpc-4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68
69 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83         return &conf->stripe_hashtbl[hash];
84 }
85
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93         spin_lock_irq(conf->hash_locks + hash);
94         spin_lock(&conf->device_lock);
95 }
96
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99         spin_unlock(&conf->device_lock);
100         spin_unlock_irq(conf->hash_locks + hash);
101 }
102
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105         int i;
106         spin_lock_irq(conf->hash_locks);
107         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
108                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
109         spin_lock(&conf->device_lock);
110 }
111
112 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
113 {
114         int i;
115         spin_unlock(&conf->device_lock);
116         for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
117                 spin_unlock(conf->hash_locks + i);
118         spin_unlock_irq(conf->hash_locks);
119 }
120
121 /* Find first data disk in a raid6 stripe */
122 static inline int raid6_d0(struct stripe_head *sh)
123 {
124         if (sh->ddf_layout)
125                 /* ddf always start from first device */
126                 return 0;
127         /* md starts just after Q block */
128         if (sh->qd_idx == sh->disks - 1)
129                 return 0;
130         else
131                 return sh->qd_idx + 1;
132 }
133 static inline int raid6_next_disk(int disk, int raid_disks)
134 {
135         disk++;
136         return (disk < raid_disks) ? disk : 0;
137 }
138
139 /* When walking through the disks in a raid5, starting at raid6_d0,
140  * We need to map each disk to a 'slot', where the data disks are slot
141  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
142  * is raid_disks-1.  This help does that mapping.
143  */
144 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
145                              int *count, int syndrome_disks)
146 {
147         int slot = *count;
148
149         if (sh->ddf_layout)
150                 (*count)++;
151         if (idx == sh->pd_idx)
152                 return syndrome_disks;
153         if (idx == sh->qd_idx)
154                 return syndrome_disks + 1;
155         if (!sh->ddf_layout)
156                 (*count)++;
157         return slot;
158 }
159
160 static void print_raid5_conf (struct r5conf *conf);
161
162 static int stripe_operations_active(struct stripe_head *sh)
163 {
164         return sh->check_state || sh->reconstruct_state ||
165                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
166                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
167 }
168
169 static bool stripe_is_lowprio(struct stripe_head *sh)
170 {
171         return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
172                 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
173                !test_bit(STRIPE_R5C_CACHING, &sh->state);
174 }
175
176 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 {
178         struct r5conf *conf = sh->raid_conf;
179         struct r5worker_group *group;
180         int thread_cnt;
181         int i, cpu = sh->cpu;
182
183         if (!cpu_online(cpu)) {
184                 cpu = cpumask_any(cpu_online_mask);
185                 sh->cpu = cpu;
186         }
187
188         if (list_empty(&sh->lru)) {
189                 struct r5worker_group *group;
190                 group = conf->worker_groups + cpu_to_group(cpu);
191                 if (stripe_is_lowprio(sh))
192                         list_add_tail(&sh->lru, &group->loprio_list);
193                 else
194                         list_add_tail(&sh->lru, &group->handle_list);
195                 group->stripes_cnt++;
196                 sh->group = group;
197         }
198
199         if (conf->worker_cnt_per_group == 0) {
200                 md_wakeup_thread(conf->mddev->thread);
201                 return;
202         }
203
204         group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206         group->workers[0].working = true;
207         /* at least one worker should run to avoid race */
208         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211         /* wakeup more workers */
212         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213                 if (group->workers[i].working == false) {
214                         group->workers[i].working = true;
215                         queue_work_on(sh->cpu, raid5_wq,
216                                       &group->workers[i].work);
217                         thread_cnt--;
218                 }
219         }
220 }
221
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223                               struct list_head *temp_inactive_list)
224 {
225         int i;
226         int injournal = 0;      /* number of date pages with R5_InJournal */
227
228         BUG_ON(!list_empty(&sh->lru));
229         BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231         if (r5c_is_writeback(conf->log))
232                 for (i = sh->disks; i--; )
233                         if (test_bit(R5_InJournal, &sh->dev[i].flags))
234                                 injournal++;
235         /*
236          * In the following cases, the stripe cannot be released to cached
237          * lists. Therefore, we make the stripe write out and set
238          * STRIPE_HANDLE:
239          *   1. when quiesce in r5c write back;
240          *   2. when resync is requested fot the stripe.
241          */
242         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243             (conf->quiesce && r5c_is_writeback(conf->log) &&
244              !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245                 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246                         r5c_make_stripe_write_out(sh);
247                 set_bit(STRIPE_HANDLE, &sh->state);
248         }
249
250         if (test_bit(STRIPE_HANDLE, &sh->state)) {
251                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253                         list_add_tail(&sh->lru, &conf->delayed_list);
254                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255                            sh->bm_seq - conf->seq_write > 0)
256                         list_add_tail(&sh->lru, &conf->bitmap_list);
257                 else {
258                         clear_bit(STRIPE_DELAYED, &sh->state);
259                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
260                         if (conf->worker_cnt_per_group == 0) {
261                                 if (stripe_is_lowprio(sh))
262                                         list_add_tail(&sh->lru,
263                                                         &conf->loprio_list);
264                                 else
265                                         list_add_tail(&sh->lru,
266                                                         &conf->handle_list);
267                         } else {
268                                 raid5_wakeup_stripe_thread(sh);
269                                 return;
270                         }
271                 }
272                 md_wakeup_thread(conf->mddev->thread);
273         } else {
274                 BUG_ON(stripe_operations_active(sh));
275                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276                         if (atomic_dec_return(&conf->preread_active_stripes)
277                             < IO_THRESHOLD)
278                                 md_wakeup_thread(conf->mddev->thread);
279                 atomic_dec(&conf->active_stripes);
280                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281                         if (!r5c_is_writeback(conf->log))
282                                 list_add_tail(&sh->lru, temp_inactive_list);
283                         else {
284                                 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285                                 if (injournal == 0)
286                                         list_add_tail(&sh->lru, temp_inactive_list);
287                                 else if (injournal == conf->raid_disks - conf->max_degraded) {
288                                         /* full stripe */
289                                         if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290                                                 atomic_inc(&conf->r5c_cached_full_stripes);
291                                         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292                                                 atomic_dec(&conf->r5c_cached_partial_stripes);
293                                         list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294                                         r5c_check_cached_full_stripe(conf);
295                                 } else
296                                         /*
297                                          * STRIPE_R5C_PARTIAL_STRIPE is set in
298                                          * r5c_try_caching_write(). No need to
299                                          * set it again.
300                                          */
301                                         list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302                         }
303                 }
304         }
305 }
306
307 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308                              struct list_head *temp_inactive_list)
309 {
310         if (atomic_dec_and_test(&sh->count))
311                 do_release_stripe(conf, sh, temp_inactive_list);
312 }
313
314 /*
315  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316  *
317  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318  * given time. Adding stripes only takes device lock, while deleting stripes
319  * only takes hash lock.
320  */
321 static void release_inactive_stripe_list(struct r5conf *conf,
322                                          struct list_head *temp_inactive_list,
323                                          int hash)
324 {
325         int size;
326         bool do_wakeup = false;
327         unsigned long flags;
328
329         if (hash == NR_STRIPE_HASH_LOCKS) {
330                 size = NR_STRIPE_HASH_LOCKS;
331                 hash = NR_STRIPE_HASH_LOCKS - 1;
332         } else
333                 size = 1;
334         while (size) {
335                 struct list_head *list = &temp_inactive_list[size - 1];
336
337                 /*
338                  * We don't hold any lock here yet, raid5_get_active_stripe() might
339                  * remove stripes from the list
340                  */
341                 if (!list_empty_careful(list)) {
342                         spin_lock_irqsave(conf->hash_locks + hash, flags);
343                         if (list_empty(conf->inactive_list + hash) &&
344                             !list_empty(list))
345                                 atomic_dec(&conf->empty_inactive_list_nr);
346                         list_splice_tail_init(list, conf->inactive_list + hash);
347                         do_wakeup = true;
348                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349                 }
350                 size--;
351                 hash--;
352         }
353
354         if (do_wakeup) {
355                 wake_up(&conf->wait_for_stripe);
356                 if (atomic_read(&conf->active_stripes) == 0)
357                         wake_up(&conf->wait_for_quiescent);
358                 if (conf->retry_read_aligned)
359                         md_wakeup_thread(conf->mddev->thread);
360         }
361 }
362
363 /* should hold conf->device_lock already */
364 static int release_stripe_list(struct r5conf *conf,
365                                struct list_head *temp_inactive_list)
366 {
367         struct stripe_head *sh, *t;
368         int count = 0;
369         struct llist_node *head;
370
371         head = llist_del_all(&conf->released_stripes);
372         head = llist_reverse_order(head);
373         llist_for_each_entry_safe(sh, t, head, release_list) {
374                 int hash;
375
376                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377                 smp_mb();
378                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379                 /*
380                  * Don't worry the bit is set here, because if the bit is set
381                  * again, the count is always > 1. This is true for
382                  * STRIPE_ON_UNPLUG_LIST bit too.
383                  */
384                 hash = sh->hash_lock_index;
385                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
386                 count++;
387         }
388
389         return count;
390 }
391
392 void raid5_release_stripe(struct stripe_head *sh)
393 {
394         struct r5conf *conf = sh->raid_conf;
395         unsigned long flags;
396         struct list_head list;
397         int hash;
398         bool wakeup;
399
400         /* Avoid release_list until the last reference.
401          */
402         if (atomic_add_unless(&sh->count, -1, 1))
403                 return;
404
405         if (unlikely(!conf->mddev->thread) ||
406                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407                 goto slow_path;
408         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409         if (wakeup)
410                 md_wakeup_thread(conf->mddev->thread);
411         return;
412 slow_path:
413         local_irq_save(flags);
414         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
416                 INIT_LIST_HEAD(&list);
417                 hash = sh->hash_lock_index;
418                 do_release_stripe(conf, sh, &list);
419                 spin_unlock(&conf->device_lock);
420                 release_inactive_stripe_list(conf, &list, hash);
421         }
422         local_irq_restore(flags);
423 }
424
425 static inline void remove_hash(struct stripe_head *sh)
426 {
427         pr_debug("remove_hash(), stripe %llu\n",
428                 (unsigned long long)sh->sector);
429
430         hlist_del_init(&sh->hash);
431 }
432
433 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 {
435         struct hlist_head *hp = stripe_hash(conf, sh->sector);
436
437         pr_debug("insert_hash(), stripe %llu\n",
438                 (unsigned long long)sh->sector);
439
440         hlist_add_head(&sh->hash, hp);
441 }
442
443 /* find an idle stripe, make sure it is unhashed, and return it. */
444 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 {
446         struct stripe_head *sh = NULL;
447         struct list_head *first;
448
449         if (list_empty(conf->inactive_list + hash))
450                 goto out;
451         first = (conf->inactive_list + hash)->next;
452         sh = list_entry(first, struct stripe_head, lru);
453         list_del_init(first);
454         remove_hash(sh);
455         atomic_inc(&conf->active_stripes);
456         BUG_ON(hash != sh->hash_lock_index);
457         if (list_empty(conf->inactive_list + hash))
458                 atomic_inc(&conf->empty_inactive_list_nr);
459 out:
460         return sh;
461 }
462
463 static void shrink_buffers(struct stripe_head *sh)
464 {
465         struct page *p;
466         int i;
467         int num = sh->raid_conf->pool_size;
468
469         for (i = 0; i < num ; i++) {
470                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
471                 p = sh->dev[i].page;
472                 if (!p)
473                         continue;
474                 sh->dev[i].page = NULL;
475                 put_page(p);
476         }
477 }
478
479 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
480 {
481         int i;
482         int num = sh->raid_conf->pool_size;
483
484         for (i = 0; i < num; i++) {
485                 struct page *page;
486
487                 if (!(page = alloc_page(gfp))) {
488                         return 1;
489                 }
490                 sh->dev[i].page = page;
491                 sh->dev[i].orig_page = page;
492         }
493
494         return 0;
495 }
496
497 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
498 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
499                             struct stripe_head *sh);
500
501 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
502 {
503         struct r5conf *conf = sh->raid_conf;
504         int i, seq;
505
506         BUG_ON(atomic_read(&sh->count) != 0);
507         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
508         BUG_ON(stripe_operations_active(sh));
509         BUG_ON(sh->batch_head);
510
511         pr_debug("init_stripe called, stripe %llu\n",
512                 (unsigned long long)sector);
513 retry:
514         seq = read_seqcount_begin(&conf->gen_lock);
515         sh->generation = conf->generation - previous;
516         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
517         sh->sector = sector;
518         stripe_set_idx(sector, conf, previous, sh);
519         sh->state = 0;
520
521         for (i = sh->disks; i--; ) {
522                 struct r5dev *dev = &sh->dev[i];
523
524                 if (dev->toread || dev->read || dev->towrite || dev->written ||
525                     test_bit(R5_LOCKED, &dev->flags)) {
526                         pr_err("sector=%llx i=%d %p %p %p %p %d\n",
527                                (unsigned long long)sh->sector, i, dev->toread,
528                                dev->read, dev->towrite, dev->written,
529                                test_bit(R5_LOCKED, &dev->flags));
530                         WARN_ON(1);
531                 }
532                 dev->flags = 0;
533                 raid5_build_block(sh, i, previous);
534         }
535         if (read_seqcount_retry(&conf->gen_lock, seq))
536                 goto retry;
537         sh->overwrite_disks = 0;
538         insert_hash(conf, sh);
539         sh->cpu = smp_processor_id();
540         set_bit(STRIPE_BATCH_READY, &sh->state);
541 }
542
543 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
544                                          short generation)
545 {
546         struct stripe_head *sh;
547
548         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
549         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
550                 if (sh->sector == sector && sh->generation == generation)
551                         return sh;
552         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
553         return NULL;
554 }
555
556 /*
557  * Need to check if array has failed when deciding whether to:
558  *  - start an array
559  *  - remove non-faulty devices
560  *  - add a spare
561  *  - allow a reshape
562  * This determination is simple when no reshape is happening.
563  * However if there is a reshape, we need to carefully check
564  * both the before and after sections.
565  * This is because some failed devices may only affect one
566  * of the two sections, and some non-in_sync devices may
567  * be insync in the section most affected by failed devices.
568  */
569 int raid5_calc_degraded(struct r5conf *conf)
570 {
571         int degraded, degraded2;
572         int i;
573
574         rcu_read_lock();
575         degraded = 0;
576         for (i = 0; i < conf->previous_raid_disks; i++) {
577                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
578                 if (rdev && test_bit(Faulty, &rdev->flags))
579                         rdev = rcu_dereference(conf->disks[i].replacement);
580                 if (!rdev || test_bit(Faulty, &rdev->flags))
581                         degraded++;
582                 else if (test_bit(In_sync, &rdev->flags))
583                         ;
584                 else
585                         /* not in-sync or faulty.
586                          * If the reshape increases the number of devices,
587                          * this is being recovered by the reshape, so
588                          * this 'previous' section is not in_sync.
589                          * If the number of devices is being reduced however,
590                          * the device can only be part of the array if
591                          * we are reverting a reshape, so this section will
592                          * be in-sync.
593                          */
594                         if (conf->raid_disks >= conf->previous_raid_disks)
595                                 degraded++;
596         }
597         rcu_read_unlock();
598         if (conf->raid_disks == conf->previous_raid_disks)
599                 return degraded;
600         rcu_read_lock();
601         degraded2 = 0;
602         for (i = 0; i < conf->raid_disks; i++) {
603                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
604                 if (rdev && test_bit(Faulty, &rdev->flags))
605                         rdev = rcu_dereference(conf->disks[i].replacement);
606                 if (!rdev || test_bit(Faulty, &rdev->flags))
607                         degraded2++;
608                 else if (test_bit(In_sync, &rdev->flags))
609                         ;
610                 else
611                         /* not in-sync or faulty.
612                          * If reshape increases the number of devices, this
613                          * section has already been recovered, else it
614                          * almost certainly hasn't.
615                          */
616                         if (conf->raid_disks <= conf->previous_raid_disks)
617                                 degraded2++;
618         }
619         rcu_read_unlock();
620         if (degraded2 > degraded)
621                 return degraded2;
622         return degraded;
623 }
624
625 static int has_failed(struct r5conf *conf)
626 {
627         int degraded;
628
629         if (conf->mddev->reshape_position == MaxSector)
630                 return conf->mddev->degraded > conf->max_degraded;
631
632         degraded = raid5_calc_degraded(conf);
633         if (degraded > conf->max_degraded)
634                 return 1;
635         return 0;
636 }
637
638 struct stripe_head *
639 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
640                         int previous, int noblock, int noquiesce)
641 {
642         struct stripe_head *sh;
643         int hash = stripe_hash_locks_hash(sector);
644         int inc_empty_inactive_list_flag;
645
646         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
647
648         spin_lock_irq(conf->hash_locks + hash);
649
650         do {
651                 wait_event_lock_irq(conf->wait_for_quiescent,
652                                     conf->quiesce == 0 || noquiesce,
653                                     *(conf->hash_locks + hash));
654                 sh = __find_stripe(conf, sector, conf->generation - previous);
655                 if (!sh) {
656                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
657                                 sh = get_free_stripe(conf, hash);
658                                 if (!sh && !test_bit(R5_DID_ALLOC,
659                                                      &conf->cache_state))
660                                         set_bit(R5_ALLOC_MORE,
661                                                 &conf->cache_state);
662                         }
663                         if (noblock && sh == NULL)
664                                 break;
665
666                         r5c_check_stripe_cache_usage(conf);
667                         if (!sh) {
668                                 set_bit(R5_INACTIVE_BLOCKED,
669                                         &conf->cache_state);
670                                 r5l_wake_reclaim(conf->log, 0);
671                                 wait_event_lock_irq(
672                                         conf->wait_for_stripe,
673                                         !list_empty(conf->inactive_list + hash) &&
674                                         (atomic_read(&conf->active_stripes)
675                                          < (conf->max_nr_stripes * 3 / 4)
676                                          || !test_bit(R5_INACTIVE_BLOCKED,
677                                                       &conf->cache_state)),
678                                         *(conf->hash_locks + hash));
679                                 clear_bit(R5_INACTIVE_BLOCKED,
680                                           &conf->cache_state);
681                         } else {
682                                 init_stripe(sh, sector, previous);
683                                 atomic_inc(&sh->count);
684                         }
685                 } else if (!atomic_inc_not_zero(&sh->count)) {
686                         spin_lock(&conf->device_lock);
687                         if (!atomic_read(&sh->count)) {
688                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
689                                         atomic_inc(&conf->active_stripes);
690                                 BUG_ON(list_empty(&sh->lru) &&
691                                        !test_bit(STRIPE_EXPANDING, &sh->state));
692                                 inc_empty_inactive_list_flag = 0;
693                                 if (!list_empty(conf->inactive_list + hash))
694                                         inc_empty_inactive_list_flag = 1;
695                                 list_del_init(&sh->lru);
696                                 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
697                                         atomic_inc(&conf->empty_inactive_list_nr);
698                                 if (sh->group) {
699                                         sh->group->stripes_cnt--;
700                                         sh->group = NULL;
701                                 }
702                         }
703                         atomic_inc(&sh->count);
704                         spin_unlock(&conf->device_lock);
705                 }
706         } while (sh == NULL);
707
708         spin_unlock_irq(conf->hash_locks + hash);
709         return sh;
710 }
711
712 static bool is_full_stripe_write(struct stripe_head *sh)
713 {
714         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
715         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716 }
717
718 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 {
720         if (sh1 > sh2) {
721                 spin_lock_irq(&sh2->stripe_lock);
722                 spin_lock_nested(&sh1->stripe_lock, 1);
723         } else {
724                 spin_lock_irq(&sh1->stripe_lock);
725                 spin_lock_nested(&sh2->stripe_lock, 1);
726         }
727 }
728
729 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         spin_unlock(&sh1->stripe_lock);
732         spin_unlock_irq(&sh2->stripe_lock);
733 }
734
735 /* Only freshly new full stripe normal write stripe can be added to a batch list */
736 static bool stripe_can_batch(struct stripe_head *sh)
737 {
738         struct r5conf *conf = sh->raid_conf;
739
740         if (conf->log || raid5_has_ppl(conf))
741                 return false;
742         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
743                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
744                 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750         struct stripe_head *head;
751         sector_t head_sector, tmp_sec;
752         int hash;
753         int dd_idx;
754         int inc_empty_inactive_list_flag;
755
756         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
757         tmp_sec = sh->sector;
758         if (!sector_div(tmp_sec, conf->chunk_sectors))
759                 return;
760         head_sector = sh->sector - STRIPE_SECTORS;
761
762         hash = stripe_hash_locks_hash(head_sector);
763         spin_lock_irq(conf->hash_locks + hash);
764         head = __find_stripe(conf, head_sector, conf->generation);
765         if (head && !atomic_inc_not_zero(&head->count)) {
766                 spin_lock(&conf->device_lock);
767                 if (!atomic_read(&head->count)) {
768                         if (!test_bit(STRIPE_HANDLE, &head->state))
769                                 atomic_inc(&conf->active_stripes);
770                         BUG_ON(list_empty(&head->lru) &&
771                                !test_bit(STRIPE_EXPANDING, &head->state));
772                         inc_empty_inactive_list_flag = 0;
773                         if (!list_empty(conf->inactive_list + hash))
774                                 inc_empty_inactive_list_flag = 1;
775                         list_del_init(&head->lru);
776                         if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
777                                 atomic_inc(&conf->empty_inactive_list_nr);
778                         if (head->group) {
779                                 head->group->stripes_cnt--;
780                                 head->group = NULL;
781                         }
782                 }
783                 atomic_inc(&head->count);
784                 spin_unlock(&conf->device_lock);
785         }
786         spin_unlock_irq(conf->hash_locks + hash);
787
788         if (!head)
789                 return;
790         if (!stripe_can_batch(head))
791                 goto out;
792
793         lock_two_stripes(head, sh);
794         /* clear_batch_ready clear the flag */
795         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
796                 goto unlock_out;
797
798         if (sh->batch_head)
799                 goto unlock_out;
800
801         dd_idx = 0;
802         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
803                 dd_idx++;
804         if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
805             bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
806                 goto unlock_out;
807
808         if (head->batch_head) {
809                 spin_lock(&head->batch_head->batch_lock);
810                 /* This batch list is already running */
811                 if (!stripe_can_batch(head)) {
812                         spin_unlock(&head->batch_head->batch_lock);
813                         goto unlock_out;
814                 }
815
816                 /*
817                  * at this point, head's BATCH_READY could be cleared, but we
818                  * can still add the stripe to batch list
819                  */
820                 list_add(&sh->batch_list, &head->batch_list);
821                 spin_unlock(&head->batch_head->batch_lock);
822
823                 sh->batch_head = head->batch_head;
824         } else {
825                 head->batch_head = head;
826                 sh->batch_head = head->batch_head;
827                 spin_lock(&head->batch_lock);
828                 list_add_tail(&sh->batch_list, &head->batch_list);
829                 spin_unlock(&head->batch_lock);
830         }
831
832         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
833                 if (atomic_dec_return(&conf->preread_active_stripes)
834                     < IO_THRESHOLD)
835                         md_wakeup_thread(conf->mddev->thread);
836
837         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
838                 int seq = sh->bm_seq;
839                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
840                     sh->batch_head->bm_seq > seq)
841                         seq = sh->batch_head->bm_seq;
842                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
843                 sh->batch_head->bm_seq = seq;
844         }
845
846         atomic_inc(&sh->count);
847 unlock_out:
848         unlock_two_stripes(head, sh);
849 out:
850         raid5_release_stripe(head);
851 }
852
853 /* Determine if 'data_offset' or 'new_data_offset' should be used
854  * in this stripe_head.
855  */
856 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
857 {
858         sector_t progress = conf->reshape_progress;
859         /* Need a memory barrier to make sure we see the value
860          * of conf->generation, or ->data_offset that was set before
861          * reshape_progress was updated.
862          */
863         smp_rmb();
864         if (progress == MaxSector)
865                 return 0;
866         if (sh->generation == conf->generation - 1)
867                 return 0;
868         /* We are in a reshape, and this is a new-generation stripe,
869          * so use new_data_offset.
870          */
871         return 1;
872 }
873
874 static void dispatch_bio_list(struct bio_list *tmp)
875 {
876         struct bio *bio;
877
878         while ((bio = bio_list_pop(tmp)))
879                 generic_make_request(bio);
880 }
881
882 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
883 {
884         const struct r5pending_data *da = list_entry(a,
885                                 struct r5pending_data, sibling);
886         const struct r5pending_data *db = list_entry(b,
887                                 struct r5pending_data, sibling);
888         if (da->sector > db->sector)
889                 return 1;
890         if (da->sector < db->sector)
891                 return -1;
892         return 0;
893 }
894
895 static void dispatch_defer_bios(struct r5conf *conf, int target,
896                                 struct bio_list *list)
897 {
898         struct r5pending_data *data;
899         struct list_head *first, *next = NULL;
900         int cnt = 0;
901
902         if (conf->pending_data_cnt == 0)
903                 return;
904
905         list_sort(NULL, &conf->pending_list, cmp_stripe);
906
907         first = conf->pending_list.next;
908
909         /* temporarily move the head */
910         if (conf->next_pending_data)
911                 list_move_tail(&conf->pending_list,
912                                 &conf->next_pending_data->sibling);
913
914         while (!list_empty(&conf->pending_list)) {
915                 data = list_first_entry(&conf->pending_list,
916                         struct r5pending_data, sibling);
917                 if (&data->sibling == first)
918                         first = data->sibling.next;
919                 next = data->sibling.next;
920
921                 bio_list_merge(list, &data->bios);
922                 list_move(&data->sibling, &conf->free_list);
923                 cnt++;
924                 if (cnt >= target)
925                         break;
926         }
927         conf->pending_data_cnt -= cnt;
928         BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
929
930         if (next != &conf->pending_list)
931                 conf->next_pending_data = list_entry(next,
932                                 struct r5pending_data, sibling);
933         else
934                 conf->next_pending_data = NULL;
935         /* list isn't empty */
936         if (first != &conf->pending_list)
937                 list_move_tail(&conf->pending_list, first);
938 }
939
940 static void flush_deferred_bios(struct r5conf *conf)
941 {
942         struct bio_list tmp = BIO_EMPTY_LIST;
943
944         if (conf->pending_data_cnt == 0)
945                 return;
946
947         spin_lock(&conf->pending_bios_lock);
948         dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
949         BUG_ON(conf->pending_data_cnt != 0);
950         spin_unlock(&conf->pending_bios_lock);
951
952         dispatch_bio_list(&tmp);
953 }
954
955 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
956                                 struct bio_list *bios)
957 {
958         struct bio_list tmp = BIO_EMPTY_LIST;
959         struct r5pending_data *ent;
960
961         spin_lock(&conf->pending_bios_lock);
962         ent = list_first_entry(&conf->free_list, struct r5pending_data,
963                                                         sibling);
964         list_move_tail(&ent->sibling, &conf->pending_list);
965         ent->sector = sector;
966         bio_list_init(&ent->bios);
967         bio_list_merge(&ent->bios, bios);
968         conf->pending_data_cnt++;
969         if (conf->pending_data_cnt >= PENDING_IO_MAX)
970                 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
971
972         spin_unlock(&conf->pending_bios_lock);
973
974         dispatch_bio_list(&tmp);
975 }
976
977 static void
978 raid5_end_read_request(struct bio *bi);
979 static void
980 raid5_end_write_request(struct bio *bi);
981
982 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
983 {
984         struct r5conf *conf = sh->raid_conf;
985         int i, disks = sh->disks;
986         struct stripe_head *head_sh = sh;
987         struct bio_list pending_bios = BIO_EMPTY_LIST;
988         bool should_defer;
989
990         might_sleep();
991
992         if (log_stripe(sh, s) == 0)
993                 return;
994
995         should_defer = conf->batch_bio_dispatch && conf->group_cnt;
996
997         for (i = disks; i--; ) {
998                 int op, op_flags = 0;
999                 int replace_only = 0;
1000                 struct bio *bi, *rbi;
1001                 struct md_rdev *rdev, *rrdev = NULL;
1002
1003                 sh = head_sh;
1004                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1005                         op = REQ_OP_WRITE;
1006                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1007                                 op_flags = REQ_FUA;
1008                         if (test_bit(R5_Discard, &sh->dev[i].flags))
1009                                 op = REQ_OP_DISCARD;
1010                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1011                         op = REQ_OP_READ;
1012                 else if (test_and_clear_bit(R5_WantReplace,
1013                                             &sh->dev[i].flags)) {
1014                         op = REQ_OP_WRITE;
1015                         replace_only = 1;
1016                 } else
1017                         continue;
1018                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1019                         op_flags |= REQ_SYNC;
1020
1021 again:
1022                 bi = &sh->dev[i].req;
1023                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1024
1025                 rcu_read_lock();
1026                 rrdev = rcu_dereference(conf->disks[i].replacement);
1027                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1028                 rdev = rcu_dereference(conf->disks[i].rdev);
1029                 if (!rdev) {
1030                         rdev = rrdev;
1031                         rrdev = NULL;
1032                 }
1033                 if (op_is_write(op)) {
1034                         if (replace_only)
1035                                 rdev = NULL;
1036                         if (rdev == rrdev)
1037                                 /* We raced and saw duplicates */
1038                                 rrdev = NULL;
1039                 } else {
1040                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1041                                 rdev = rrdev;
1042                         rrdev = NULL;
1043                 }
1044
1045                 if (rdev && test_bit(Faulty, &rdev->flags))
1046                         rdev = NULL;
1047                 if (rdev)
1048                         atomic_inc(&rdev->nr_pending);
1049                 if (rrdev && test_bit(Faulty, &rrdev->flags))
1050                         rrdev = NULL;
1051                 if (rrdev)
1052                         atomic_inc(&rrdev->nr_pending);
1053                 rcu_read_unlock();
1054
1055                 /* We have already checked bad blocks for reads.  Now
1056                  * need to check for writes.  We never accept write errors
1057                  * on the replacement, so we don't to check rrdev.
1058                  */
1059                 while (op_is_write(op) && rdev &&
1060                        test_bit(WriteErrorSeen, &rdev->flags)) {
1061                         sector_t first_bad;
1062                         int bad_sectors;
1063                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1064                                               &first_bad, &bad_sectors);
1065                         if (!bad)
1066                                 break;
1067
1068                         if (bad < 0) {
1069                                 set_bit(BlockedBadBlocks, &rdev->flags);
1070                                 if (!conf->mddev->external &&
1071                                     conf->mddev->sb_flags) {
1072                                         /* It is very unlikely, but we might
1073                                          * still need to write out the
1074                                          * bad block log - better give it
1075                                          * a chance*/
1076                                         md_check_recovery(conf->mddev);
1077                                 }
1078                                 /*
1079                                  * Because md_wait_for_blocked_rdev
1080                                  * will dec nr_pending, we must
1081                                  * increment it first.
1082                                  */
1083                                 atomic_inc(&rdev->nr_pending);
1084                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
1085                         } else {
1086                                 /* Acknowledged bad block - skip the write */
1087                                 rdev_dec_pending(rdev, conf->mddev);
1088                                 rdev = NULL;
1089                         }
1090                 }
1091
1092                 if (rdev) {
1093                         if (s->syncing || s->expanding || s->expanded
1094                             || s->replacing)
1095                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1096
1097                         set_bit(STRIPE_IO_STARTED, &sh->state);
1098
1099                         bi->bi_bdev = rdev->bdev;
1100                         bio_set_op_attrs(bi, op, op_flags);
1101                         bi->bi_end_io = op_is_write(op)
1102                                 ? raid5_end_write_request
1103                                 : raid5_end_read_request;
1104                         bi->bi_private = sh;
1105
1106                         pr_debug("%s: for %llu schedule op %d on disc %d\n",
1107                                 __func__, (unsigned long long)sh->sector,
1108                                 bi->bi_opf, i);
1109                         atomic_inc(&sh->count);
1110                         if (sh != head_sh)
1111                                 atomic_inc(&head_sh->count);
1112                         if (use_new_offset(conf, sh))
1113                                 bi->bi_iter.bi_sector = (sh->sector
1114                                                  + rdev->new_data_offset);
1115                         else
1116                                 bi->bi_iter.bi_sector = (sh->sector
1117                                                  + rdev->data_offset);
1118                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1119                                 bi->bi_opf |= REQ_NOMERGE;
1120
1121                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1122                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1123
1124                         if (!op_is_write(op) &&
1125                             test_bit(R5_InJournal, &sh->dev[i].flags))
1126                                 /*
1127                                  * issuing read for a page in journal, this
1128                                  * must be preparing for prexor in rmw; read
1129                                  * the data into orig_page
1130                                  */
1131                                 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1132                         else
1133                                 sh->dev[i].vec.bv_page = sh->dev[i].page;
1134                         bi->bi_vcnt = 1;
1135                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1136                         bi->bi_io_vec[0].bv_offset = 0;
1137                         bi->bi_iter.bi_size = STRIPE_SIZE;
1138                         /*
1139                          * If this is discard request, set bi_vcnt 0. We don't
1140                          * want to confuse SCSI because SCSI will replace payload
1141                          */
1142                         if (op == REQ_OP_DISCARD)
1143                                 bi->bi_vcnt = 0;
1144                         if (rrdev)
1145                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147                         if (conf->mddev->gendisk)
1148                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1149                                                       bi, disk_devt(conf->mddev->gendisk),
1150                                                       sh->dev[i].sector);
1151                         if (should_defer && op_is_write(op))
1152                                 bio_list_add(&pending_bios, bi);
1153                         else
1154                                 generic_make_request(bi);
1155                 }
1156                 if (rrdev) {
1157                         if (s->syncing || s->expanding || s->expanded
1158                             || s->replacing)
1159                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161                         set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163                         rbi->bi_bdev = rrdev->bdev;
1164                         bio_set_op_attrs(rbi, op, op_flags);
1165                         BUG_ON(!op_is_write(op));
1166                         rbi->bi_end_io = raid5_end_write_request;
1167                         rbi->bi_private = sh;
1168
1169                         pr_debug("%s: for %llu schedule op %d on "
1170                                  "replacement disc %d\n",
1171                                 __func__, (unsigned long long)sh->sector,
1172                                 rbi->bi_opf, i);
1173                         atomic_inc(&sh->count);
1174                         if (sh != head_sh)
1175                                 atomic_inc(&head_sh->count);
1176                         if (use_new_offset(conf, sh))
1177                                 rbi->bi_iter.bi_sector = (sh->sector
1178                                                   + rrdev->new_data_offset);
1179                         else
1180                                 rbi->bi_iter.bi_sector = (sh->sector
1181                                                   + rrdev->data_offset);
1182                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185                         rbi->bi_vcnt = 1;
1186                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187                         rbi->bi_io_vec[0].bv_offset = 0;
1188                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1189                         /*
1190                          * If this is discard request, set bi_vcnt 0. We don't
1191                          * want to confuse SCSI because SCSI will replace payload
1192                          */
1193                         if (op == REQ_OP_DISCARD)
1194                                 rbi->bi_vcnt = 0;
1195                         if (conf->mddev->gendisk)
1196                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1197                                                       rbi, disk_devt(conf->mddev->gendisk),
1198                                                       sh->dev[i].sector);
1199                         if (should_defer && op_is_write(op))
1200                                 bio_list_add(&pending_bios, rbi);
1201                         else
1202                                 generic_make_request(rbi);
1203                 }
1204                 if (!rdev && !rrdev) {
1205                         if (op_is_write(op))
1206                                 set_bit(STRIPE_DEGRADED, &sh->state);
1207                         pr_debug("skip op %d on disc %d for sector %llu\n",
1208                                 bi->bi_opf, i, (unsigned long long)sh->sector);
1209                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210                         set_bit(STRIPE_HANDLE, &sh->state);
1211                 }
1212
1213                 if (!head_sh->batch_head)
1214                         continue;
1215                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1216                                       batch_list);
1217                 if (sh != head_sh)
1218                         goto again;
1219         }
1220
1221         if (should_defer && !bio_list_empty(&pending_bios))
1222                 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 async_copy_data(int frombio, struct bio *bio, struct page **page,
1227         sector_t sector, struct dma_async_tx_descriptor *tx,
1228         struct stripe_head *sh, int no_skipcopy)
1229 {
1230         struct bio_vec bvl;
1231         struct bvec_iter iter;
1232         struct page *bio_page;
1233         int page_offset;
1234         struct async_submit_ctl submit;
1235         enum async_tx_flags flags = 0;
1236
1237         if (bio->bi_iter.bi_sector >= sector)
1238                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1239         else
1240                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1241
1242         if (frombio)
1243                 flags |= ASYNC_TX_FENCE;
1244         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1245
1246         bio_for_each_segment(bvl, bio, iter) {
1247                 int len = bvl.bv_len;
1248                 int clen;
1249                 int b_offset = 0;
1250
1251                 if (page_offset < 0) {
1252                         b_offset = -page_offset;
1253                         page_offset += b_offset;
1254                         len -= b_offset;
1255                 }
1256
1257                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1258                         clen = STRIPE_SIZE - page_offset;
1259                 else
1260                         clen = len;
1261
1262                 if (clen > 0) {
1263                         b_offset += bvl.bv_offset;
1264                         bio_page = bvl.bv_page;
1265                         if (frombio) {
1266                                 if (sh->raid_conf->skip_copy &&
1267                                     b_offset == 0 && page_offset == 0 &&
1268                                     clen == STRIPE_SIZE &&
1269                                     !no_skipcopy)
1270                                         *page = bio_page;
1271                                 else
1272                                         tx = async_memcpy(*page, bio_page, page_offset,
1273                                                   b_offset, clen, &submit);
1274                         } else
1275                                 tx = async_memcpy(bio_page, *page, b_offset,
1276                                                   page_offset, clen, &submit);
1277                 }
1278                 /* chain the operations */
1279                 submit.depend_tx = tx;
1280
1281                 if (clen < len) /* hit end of page */
1282                         break;
1283                 page_offset +=  len;
1284         }
1285
1286         return tx;
1287 }
1288
1289 static void ops_complete_biofill(void *stripe_head_ref)
1290 {
1291         struct stripe_head *sh = stripe_head_ref;
1292         int i;
1293
1294         pr_debug("%s: stripe %llu\n", __func__,
1295                 (unsigned long long)sh->sector);
1296
1297         /* clear completed biofills */
1298         for (i = sh->disks; i--; ) {
1299                 struct r5dev *dev = &sh->dev[i];
1300
1301                 /* acknowledge completion of a biofill operation */
1302                 /* and check if we need to reply to a read request,
1303                  * new R5_Wantfill requests are held off until
1304                  * !STRIPE_BIOFILL_RUN
1305                  */
1306                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1307                         struct bio *rbi, *rbi2;
1308
1309                         BUG_ON(!dev->read);
1310                         rbi = dev->read;
1311                         dev->read = NULL;
1312                         while (rbi && rbi->bi_iter.bi_sector <
1313                                 dev->sector + STRIPE_SECTORS) {
1314                                 rbi2 = r5_next_bio(rbi, dev->sector);
1315                                 bio_endio(rbi);
1316                                 rbi = rbi2;
1317                         }
1318                 }
1319         }
1320         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1321
1322         set_bit(STRIPE_HANDLE, &sh->state);
1323         raid5_release_stripe(sh);
1324 }
1325
1326 static void ops_run_biofill(struct stripe_head *sh)
1327 {
1328         struct dma_async_tx_descriptor *tx = NULL;
1329         struct async_submit_ctl submit;
1330         int i;
1331
1332         BUG_ON(sh->batch_head);
1333         pr_debug("%s: stripe %llu\n", __func__,
1334                 (unsigned long long)sh->sector);
1335
1336         for (i = sh->disks; i--; ) {
1337                 struct r5dev *dev = &sh->dev[i];
1338                 if (test_bit(R5_Wantfill, &dev->flags)) {
1339                         struct bio *rbi;
1340                         spin_lock_irq(&sh->stripe_lock);
1341                         dev->read = rbi = dev->toread;
1342                         dev->toread = NULL;
1343                         spin_unlock_irq(&sh->stripe_lock);
1344                         while (rbi && rbi->bi_iter.bi_sector <
1345                                 dev->sector + STRIPE_SECTORS) {
1346                                 tx = async_copy_data(0, rbi, &dev->page,
1347                                                      dev->sector, tx, sh, 0);
1348                                 rbi = r5_next_bio(rbi, dev->sector);
1349                         }
1350                 }
1351         }
1352
1353         atomic_inc(&sh->count);
1354         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1355         async_trigger_callback(&submit);
1356 }
1357
1358 static void mark_target_uptodate(struct stripe_head *sh, int target)
1359 {
1360         struct r5dev *tgt;
1361
1362         if (target < 0)
1363                 return;
1364
1365         tgt = &sh->dev[target];
1366         set_bit(R5_UPTODATE, &tgt->flags);
1367         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368         clear_bit(R5_Wantcompute, &tgt->flags);
1369 }
1370
1371 static void ops_complete_compute(void *stripe_head_ref)
1372 {
1373         struct stripe_head *sh = stripe_head_ref;
1374
1375         pr_debug("%s: stripe %llu\n", __func__,
1376                 (unsigned long long)sh->sector);
1377
1378         /* mark the computed target(s) as uptodate */
1379         mark_target_uptodate(sh, sh->ops.target);
1380         mark_target_uptodate(sh, sh->ops.target2);
1381
1382         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1383         if (sh->check_state == check_state_compute_run)
1384                 sh->check_state = check_state_compute_result;
1385         set_bit(STRIPE_HANDLE, &sh->state);
1386         raid5_release_stripe(sh);
1387 }
1388
1389 /* return a pointer to the address conversion region of the scribble buffer */
1390 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1391                                  struct raid5_percpu *percpu, int i)
1392 {
1393         void *addr;
1394
1395         addr = flex_array_get(percpu->scribble, i);
1396         return addr + sizeof(struct page *) * (sh->disks + 2);
1397 }
1398
1399 /* return a pointer to the address conversion region of the scribble buffer */
1400 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1401 {
1402         void *addr;
1403
1404         addr = flex_array_get(percpu->scribble, i);
1405         return addr;
1406 }
1407
1408 static struct dma_async_tx_descriptor *
1409 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1410 {
1411         int disks = sh->disks;
1412         struct page **xor_srcs = to_addr_page(percpu, 0);
1413         int target = sh->ops.target;
1414         struct r5dev *tgt = &sh->dev[target];
1415         struct page *xor_dest = tgt->page;
1416         int count = 0;
1417         struct dma_async_tx_descriptor *tx;
1418         struct async_submit_ctl submit;
1419         int i;
1420
1421         BUG_ON(sh->batch_head);
1422
1423         pr_debug("%s: stripe %llu block: %d\n",
1424                 __func__, (unsigned long long)sh->sector, target);
1425         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1426
1427         for (i = disks; i--; )
1428                 if (i != target)
1429                         xor_srcs[count++] = sh->dev[i].page;
1430
1431         atomic_inc(&sh->count);
1432
1433         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1434                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1435         if (unlikely(count == 1))
1436                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1437         else
1438                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439
1440         return tx;
1441 }
1442
1443 /* set_syndrome_sources - populate source buffers for gen_syndrome
1444  * @srcs - (struct page *) array of size sh->disks
1445  * @sh - stripe_head to parse
1446  *
1447  * Populates srcs in proper layout order for the stripe and returns the
1448  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1449  * destination buffer is recorded in srcs[count] and the Q destination
1450  * is recorded in srcs[count+1]].
1451  */
1452 static int set_syndrome_sources(struct page **srcs,
1453                                 struct stripe_head *sh,
1454                                 int srctype)
1455 {
1456         int disks = sh->disks;
1457         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1458         int d0_idx = raid6_d0(sh);
1459         int count;
1460         int i;
1461
1462         for (i = 0; i < disks; i++)
1463                 srcs[i] = NULL;
1464
1465         count = 0;
1466         i = d0_idx;
1467         do {
1468                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1469                 struct r5dev *dev = &sh->dev[i];
1470
1471                 if (i == sh->qd_idx || i == sh->pd_idx ||
1472                     (srctype == SYNDROME_SRC_ALL) ||
1473                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1474                      (test_bit(R5_Wantdrain, &dev->flags) ||
1475                       test_bit(R5_InJournal, &dev->flags))) ||
1476                     (srctype == SYNDROME_SRC_WRITTEN &&
1477                      (dev->written ||
1478                       test_bit(R5_InJournal, &dev->flags)))) {
1479                         if (test_bit(R5_InJournal, &dev->flags))
1480                                 srcs[slot] = sh->dev[i].orig_page;
1481                         else
1482                                 srcs[slot] = sh->dev[i].page;
1483                 }
1484                 i = raid6_next_disk(i, disks);
1485         } while (i != d0_idx);
1486
1487         return syndrome_disks;
1488 }
1489
1490 static struct dma_async_tx_descriptor *
1491 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1492 {
1493         int disks = sh->disks;
1494         struct page **blocks = to_addr_page(percpu, 0);
1495         int target;
1496         int qd_idx = sh->qd_idx;
1497         struct dma_async_tx_descriptor *tx;
1498         struct async_submit_ctl submit;
1499         struct r5dev *tgt;
1500         struct page *dest;
1501         int i;
1502         int count;
1503
1504         BUG_ON(sh->batch_head);
1505         if (sh->ops.target < 0)
1506                 target = sh->ops.target2;
1507         else if (sh->ops.target2 < 0)
1508                 target = sh->ops.target;
1509         else
1510                 /* we should only have one valid target */
1511                 BUG();
1512         BUG_ON(target < 0);
1513         pr_debug("%s: stripe %llu block: %d\n",
1514                 __func__, (unsigned long long)sh->sector, target);
1515
1516         tgt = &sh->dev[target];
1517         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1518         dest = tgt->page;
1519
1520         atomic_inc(&sh->count);
1521
1522         if (target == qd_idx) {
1523                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1524                 blocks[count] = NULL; /* regenerating p is not necessary */
1525                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1526                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527                                   ops_complete_compute, sh,
1528                                   to_addr_conv(sh, percpu, 0));
1529                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1530         } else {
1531                 /* Compute any data- or p-drive using XOR */
1532                 count = 0;
1533                 for (i = disks; i-- ; ) {
1534                         if (i == target || i == qd_idx)
1535                                 continue;
1536                         blocks[count++] = sh->dev[i].page;
1537                 }
1538
1539                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1540                                   NULL, ops_complete_compute, sh,
1541                                   to_addr_conv(sh, percpu, 0));
1542                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1543         }
1544
1545         return tx;
1546 }
1547
1548 static struct dma_async_tx_descriptor *
1549 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1550 {
1551         int i, count, disks = sh->disks;
1552         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1553         int d0_idx = raid6_d0(sh);
1554         int faila = -1, failb = -1;
1555         int target = sh->ops.target;
1556         int target2 = sh->ops.target2;
1557         struct r5dev *tgt = &sh->dev[target];
1558         struct r5dev *tgt2 = &sh->dev[target2];
1559         struct dma_async_tx_descriptor *tx;
1560         struct page **blocks = to_addr_page(percpu, 0);
1561         struct async_submit_ctl submit;
1562
1563         BUG_ON(sh->batch_head);
1564         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1565                  __func__, (unsigned long long)sh->sector, target, target2);
1566         BUG_ON(target < 0 || target2 < 0);
1567         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1568         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1569
1570         /* we need to open-code set_syndrome_sources to handle the
1571          * slot number conversion for 'faila' and 'failb'
1572          */
1573         for (i = 0; i < disks ; i++)
1574                 blocks[i] = NULL;
1575         count = 0;
1576         i = d0_idx;
1577         do {
1578                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1579
1580                 blocks[slot] = sh->dev[i].page;
1581
1582                 if (i == target)
1583                         faila = slot;
1584                 if (i == target2)
1585                         failb = slot;
1586                 i = raid6_next_disk(i, disks);
1587         } while (i != d0_idx);
1588
1589         BUG_ON(faila == failb);
1590         if (failb < faila)
1591                 swap(faila, failb);
1592         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1593                  __func__, (unsigned long long)sh->sector, faila, failb);
1594
1595         atomic_inc(&sh->count);
1596
1597         if (failb == syndrome_disks+1) {
1598                 /* Q disk is one of the missing disks */
1599                 if (faila == syndrome_disks) {
1600                         /* Missing P+Q, just recompute */
1601                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1602                                           ops_complete_compute, sh,
1603                                           to_addr_conv(sh, percpu, 0));
1604                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1605                                                   STRIPE_SIZE, &submit);
1606                 } else {
1607                         struct page *dest;
1608                         int data_target;
1609                         int qd_idx = sh->qd_idx;
1610
1611                         /* Missing D+Q: recompute D from P, then recompute Q */
1612                         if (target == qd_idx)
1613                                 data_target = target2;
1614                         else
1615                                 data_target = target;
1616
1617                         count = 0;
1618                         for (i = disks; i-- ; ) {
1619                                 if (i == data_target || i == qd_idx)
1620                                         continue;
1621                                 blocks[count++] = sh->dev[i].page;
1622                         }
1623                         dest = sh->dev[data_target].page;
1624                         init_async_submit(&submit,
1625                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1626                                           NULL, NULL, NULL,
1627                                           to_addr_conv(sh, percpu, 0));
1628                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1629                                        &submit);
1630
1631                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1632                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1633                                           ops_complete_compute, sh,
1634                                           to_addr_conv(sh, percpu, 0));
1635                         return async_gen_syndrome(blocks, 0, count+2,
1636                                                   STRIPE_SIZE, &submit);
1637                 }
1638         } else {
1639                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1640                                   ops_complete_compute, sh,
1641                                   to_addr_conv(sh, percpu, 0));
1642                 if (failb == syndrome_disks) {
1643                         /* We're missing D+P. */
1644                         return async_raid6_datap_recov(syndrome_disks+2,
1645                                                        STRIPE_SIZE, faila,
1646                                                        blocks, &submit);
1647                 } else {
1648                         /* We're missing D+D. */
1649                         return async_raid6_2data_recov(syndrome_disks+2,
1650                                                        STRIPE_SIZE, faila, failb,
1651                                                        blocks, &submit);
1652                 }
1653         }
1654 }
1655
1656 static void ops_complete_prexor(void *stripe_head_ref)
1657 {
1658         struct stripe_head *sh = stripe_head_ref;
1659
1660         pr_debug("%s: stripe %llu\n", __func__,
1661                 (unsigned long long)sh->sector);
1662
1663         if (r5c_is_writeback(sh->raid_conf->log))
1664                 /*
1665                  * raid5-cache write back uses orig_page during prexor.
1666                  * After prexor, it is time to free orig_page
1667                  */
1668                 r5c_release_extra_page(sh);
1669 }
1670
1671 static struct dma_async_tx_descriptor *
1672 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1673                 struct dma_async_tx_descriptor *tx)
1674 {
1675         int disks = sh->disks;
1676         struct page **xor_srcs = to_addr_page(percpu, 0);
1677         int count = 0, pd_idx = sh->pd_idx, i;
1678         struct async_submit_ctl submit;
1679
1680         /* existing parity data subtracted */
1681         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1682
1683         BUG_ON(sh->batch_head);
1684         pr_debug("%s: stripe %llu\n", __func__,
1685                 (unsigned long long)sh->sector);
1686
1687         for (i = disks; i--; ) {
1688                 struct r5dev *dev = &sh->dev[i];
1689                 /* Only process blocks that are known to be uptodate */
1690                 if (test_bit(R5_InJournal, &dev->flags))
1691                         xor_srcs[count++] = dev->orig_page;
1692                 else if (test_bit(R5_Wantdrain, &dev->flags))
1693                         xor_srcs[count++] = dev->page;
1694         }
1695
1696         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1697                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1698         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699
1700         return tx;
1701 }
1702
1703 static struct dma_async_tx_descriptor *
1704 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1705                 struct dma_async_tx_descriptor *tx)
1706 {
1707         struct page **blocks = to_addr_page(percpu, 0);
1708         int count;
1709         struct async_submit_ctl submit;
1710
1711         pr_debug("%s: stripe %llu\n", __func__,
1712                 (unsigned long long)sh->sector);
1713
1714         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1715
1716         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1717                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1718         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1719
1720         return tx;
1721 }
1722
1723 static struct dma_async_tx_descriptor *
1724 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1725 {
1726         struct r5conf *conf = sh->raid_conf;
1727         int disks = sh->disks;
1728         int i;
1729         struct stripe_head *head_sh = sh;
1730
1731         pr_debug("%s: stripe %llu\n", __func__,
1732                 (unsigned long long)sh->sector);
1733
1734         for (i = disks; i--; ) {
1735                 struct r5dev *dev;
1736                 struct bio *chosen;
1737
1738                 sh = head_sh;
1739                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1740                         struct bio *wbi;
1741
1742 again:
1743                         dev = &sh->dev[i];
1744                         /*
1745                          * clear R5_InJournal, so when rewriting a page in
1746                          * journal, it is not skipped by r5l_log_stripe()
1747                          */
1748                         clear_bit(R5_InJournal, &dev->flags);
1749                         spin_lock_irq(&sh->stripe_lock);
1750                         chosen = dev->towrite;
1751                         dev->towrite = NULL;
1752                         sh->overwrite_disks = 0;
1753                         BUG_ON(dev->written);
1754                         wbi = dev->written = chosen;
1755                         spin_unlock_irq(&sh->stripe_lock);
1756                         WARN_ON(dev->page != dev->orig_page);
1757
1758                         while (wbi && wbi->bi_iter.bi_sector <
1759                                 dev->sector + STRIPE_SECTORS) {
1760                                 if (wbi->bi_opf & REQ_FUA)
1761                                         set_bit(R5_WantFUA, &dev->flags);
1762                                 if (wbi->bi_opf & REQ_SYNC)
1763                                         set_bit(R5_SyncIO, &dev->flags);
1764                                 if (bio_op(wbi) == REQ_OP_DISCARD)
1765                                         set_bit(R5_Discard, &dev->flags);
1766                                 else {
1767                                         tx = async_copy_data(1, wbi, &dev->page,
1768                                                              dev->sector, tx, sh,
1769                                                              r5c_is_writeback(conf->log));
1770                                         if (dev->page != dev->orig_page &&
1771                                             !r5c_is_writeback(conf->log)) {
1772                                                 set_bit(R5_SkipCopy, &dev->flags);
1773                                                 clear_bit(R5_UPTODATE, &dev->flags);
1774                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1775                                         }
1776                                 }
1777                                 wbi = r5_next_bio(wbi, dev->sector);
1778                         }
1779
1780                         if (head_sh->batch_head) {
1781                                 sh = list_first_entry(&sh->batch_list,
1782                                                       struct stripe_head,
1783                                                       batch_list);
1784                                 if (sh == head_sh)
1785                                         continue;
1786                                 goto again;
1787                         }
1788                 }
1789         }
1790
1791         return tx;
1792 }
1793
1794 static void ops_complete_reconstruct(void *stripe_head_ref)
1795 {
1796         struct stripe_head *sh = stripe_head_ref;
1797         int disks = sh->disks;
1798         int pd_idx = sh->pd_idx;
1799         int qd_idx = sh->qd_idx;
1800         int i;
1801         bool fua = false, sync = false, discard = false;
1802
1803         pr_debug("%s: stripe %llu\n", __func__,
1804                 (unsigned long long)sh->sector);
1805
1806         for (i = disks; i--; ) {
1807                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1808                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1809                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1810         }
1811
1812         for (i = disks; i--; ) {
1813                 struct r5dev *dev = &sh->dev[i];
1814
1815                 if (dev->written || i == pd_idx || i == qd_idx) {
1816                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1817                                 set_bit(R5_UPTODATE, &dev->flags);
1818                         if (fua)
1819                                 set_bit(R5_WantFUA, &dev->flags);
1820                         if (sync)
1821                                 set_bit(R5_SyncIO, &dev->flags);
1822                 }
1823         }
1824
1825         if (sh->reconstruct_state == reconstruct_state_drain_run)
1826                 sh->reconstruct_state = reconstruct_state_drain_result;
1827         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1828                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829         else {
1830                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1831                 sh->reconstruct_state = reconstruct_state_result;
1832         }
1833
1834         set_bit(STRIPE_HANDLE, &sh->state);
1835         raid5_release_stripe(sh);
1836 }
1837
1838 static void
1839 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1840                      struct dma_async_tx_descriptor *tx)
1841 {
1842         int disks = sh->disks;
1843         struct page **xor_srcs;
1844         struct async_submit_ctl submit;
1845         int count, pd_idx = sh->pd_idx, i;
1846         struct page *xor_dest;
1847         int prexor = 0;
1848         unsigned long flags;
1849         int j = 0;
1850         struct stripe_head *head_sh = sh;
1851         int last_stripe;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         for (i = 0; i < sh->disks; i++) {
1857                 if (pd_idx == i)
1858                         continue;
1859                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1860                         break;
1861         }
1862         if (i >= sh->disks) {
1863                 atomic_inc(&sh->count);
1864                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1865                 ops_complete_reconstruct(sh);
1866                 return;
1867         }
1868 again:
1869         count = 0;
1870         xor_srcs = to_addr_page(percpu, j);
1871         /* check if prexor is active which means only process blocks
1872          * that are part of a read-modify-write (written)
1873          */
1874         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875                 prexor = 1;
1876                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1877                 for (i = disks; i--; ) {
1878                         struct r5dev *dev = &sh->dev[i];
1879                         if (head_sh->dev[i].written ||
1880                             test_bit(R5_InJournal, &head_sh->dev[i].flags))
1881                                 xor_srcs[count++] = dev->page;
1882                 }
1883         } else {
1884                 xor_dest = sh->dev[pd_idx].page;
1885                 for (i = disks; i--; ) {
1886                         struct r5dev *dev = &sh->dev[i];
1887                         if (i != pd_idx)
1888                                 xor_srcs[count++] = dev->page;
1889                 }
1890         }
1891
1892         /* 1/ if we prexor'd then the dest is reused as a source
1893          * 2/ if we did not prexor then we are redoing the parity
1894          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1895          * for the synchronous xor case
1896          */
1897         last_stripe = !head_sh->batch_head ||
1898                 list_first_entry(&sh->batch_list,
1899                                  struct stripe_head, batch_list) == head_sh;
1900         if (last_stripe) {
1901                 flags = ASYNC_TX_ACK |
1902                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903
1904                 atomic_inc(&head_sh->count);
1905                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1906                                   to_addr_conv(sh, percpu, j));
1907         } else {
1908                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1909                 init_async_submit(&submit, flags, tx, NULL, NULL,
1910                                   to_addr_conv(sh, percpu, j));
1911         }
1912
1913         if (unlikely(count == 1))
1914                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915         else
1916                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1917         if (!last_stripe) {
1918                 j++;
1919                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1920                                       batch_list);
1921                 goto again;
1922         }
1923 }
1924
1925 static void
1926 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1927                      struct dma_async_tx_descriptor *tx)
1928 {
1929         struct async_submit_ctl submit;
1930         struct page **blocks;
1931         int count, i, j = 0;
1932         struct stripe_head *head_sh = sh;
1933         int last_stripe;
1934         int synflags;
1935         unsigned long txflags;
1936
1937         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938
1939         for (i = 0; i < sh->disks; i++) {
1940                 if (sh->pd_idx == i || sh->qd_idx == i)
1941                         continue;
1942                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1943                         break;
1944         }
1945         if (i >= sh->disks) {
1946                 atomic_inc(&sh->count);
1947                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1948                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1949                 ops_complete_reconstruct(sh);
1950                 return;
1951         }
1952
1953 again:
1954         blocks = to_addr_page(percpu, j);
1955
1956         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1957                 synflags = SYNDROME_SRC_WRITTEN;
1958                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959         } else {
1960                 synflags = SYNDROME_SRC_ALL;
1961                 txflags = ASYNC_TX_ACK;
1962         }
1963
1964         count = set_syndrome_sources(blocks, sh, synflags);
1965         last_stripe = !head_sh->batch_head ||
1966                 list_first_entry(&sh->batch_list,
1967                                  struct stripe_head, batch_list) == head_sh;
1968
1969         if (last_stripe) {
1970                 atomic_inc(&head_sh->count);
1971                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1972                                   head_sh, to_addr_conv(sh, percpu, j));
1973         } else
1974                 init_async_submit(&submit, 0, tx, NULL, NULL,
1975                                   to_addr_conv(sh, percpu, j));
1976         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1977         if (!last_stripe) {
1978                 j++;
1979                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1980                                       batch_list);
1981                 goto again;
1982         }
1983 }
1984
1985 static void ops_complete_check(void *stripe_head_ref)
1986 {
1987         struct stripe_head *sh = stripe_head_ref;
1988
1989         pr_debug("%s: stripe %llu\n", __func__,
1990                 (unsigned long long)sh->sector);
1991
1992         sh->check_state = check_state_check_result;
1993         set_bit(STRIPE_HANDLE, &sh->state);
1994         raid5_release_stripe(sh);
1995 }
1996
1997 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 {
1999         int disks = sh->disks;
2000         int pd_idx = sh->pd_idx;
2001         int qd_idx = sh->qd_idx;
2002         struct page *xor_dest;
2003         struct page **xor_srcs = to_addr_page(percpu, 0);
2004         struct dma_async_tx_descriptor *tx;
2005         struct async_submit_ctl submit;
2006         int count;
2007         int i;
2008
2009         pr_debug("%s: stripe %llu\n", __func__,
2010                 (unsigned long long)sh->sector);
2011
2012         BUG_ON(sh->batch_head);
2013         count = 0;
2014         xor_dest = sh->dev[pd_idx].page;
2015         xor_srcs[count++] = xor_dest;
2016         for (i = disks; i--; ) {
2017                 if (i == pd_idx || i == qd_idx)
2018                         continue;
2019                 xor_srcs[count++] = sh->dev[i].page;
2020         }
2021
2022         init_async_submit(&submit, 0, NULL, NULL, NULL,
2023                           to_addr_conv(sh, percpu, 0));
2024         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2025                            &sh->ops.zero_sum_result, &submit);
2026
2027         atomic_inc(&sh->count);
2028         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2029         tx = async_trigger_callback(&submit);
2030 }
2031
2032 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 {
2034         struct page **srcs = to_addr_page(percpu, 0);
2035         struct async_submit_ctl submit;
2036         int count;
2037
2038         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2039                 (unsigned long long)sh->sector, checkp);
2040
2041         BUG_ON(sh->batch_head);
2042         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2043         if (!checkp)
2044                 srcs[count] = NULL;
2045
2046         atomic_inc(&sh->count);
2047         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2048                           sh, to_addr_conv(sh, percpu, 0));
2049         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2050                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2051 }
2052
2053 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 {
2055         int overlap_clear = 0, i, disks = sh->disks;
2056         struct dma_async_tx_descriptor *tx = NULL;
2057         struct r5conf *conf = sh->raid_conf;
2058         int level = conf->level;
2059         struct raid5_percpu *percpu;
2060         unsigned long cpu;
2061
2062         cpu = get_cpu();
2063         percpu = per_cpu_ptr(conf->percpu, cpu);
2064         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2065                 ops_run_biofill(sh);
2066                 overlap_clear++;
2067         }
2068
2069         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070                 if (level < 6)
2071                         tx = ops_run_compute5(sh, percpu);
2072                 else {
2073                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
2074                                 tx = ops_run_compute6_1(sh, percpu);
2075                         else
2076                                 tx = ops_run_compute6_2(sh, percpu);
2077                 }
2078                 /* terminate the chain if reconstruct is not set to be run */
2079                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2080                         async_tx_ack(tx);
2081         }
2082
2083         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084                 if (level < 6)
2085                         tx = ops_run_prexor5(sh, percpu, tx);
2086                 else
2087                         tx = ops_run_prexor6(sh, percpu, tx);
2088         }
2089
2090         if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2091                 tx = ops_run_partial_parity(sh, percpu, tx);
2092
2093         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2094                 tx = ops_run_biodrain(sh, tx);
2095                 overlap_clear++;
2096         }
2097
2098         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099                 if (level < 6)
2100                         ops_run_reconstruct5(sh, percpu, tx);
2101                 else
2102                         ops_run_reconstruct6(sh, percpu, tx);
2103         }
2104
2105         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2106                 if (sh->check_state == check_state_run)
2107                         ops_run_check_p(sh, percpu);
2108                 else if (sh->check_state == check_state_run_q)
2109                         ops_run_check_pq(sh, percpu, 0);
2110                 else if (sh->check_state == check_state_run_pq)
2111                         ops_run_check_pq(sh, percpu, 1);
2112                 else
2113                         BUG();
2114         }
2115
2116         if (overlap_clear && !sh->batch_head)
2117                 for (i = disks; i--; ) {
2118                         struct r5dev *dev = &sh->dev[i];
2119                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2120                                 wake_up(&sh->raid_conf->wait_for_overlap);
2121                 }
2122         put_cpu();
2123 }
2124
2125 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2126 {
2127         if (sh->ppl_page)
2128                 __free_page(sh->ppl_page);
2129         kmem_cache_free(sc, sh);
2130 }
2131
2132 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2133         int disks, struct r5conf *conf)
2134 {
2135         struct stripe_head *sh;
2136         int i;
2137
2138         sh = kmem_cache_zalloc(sc, gfp);
2139         if (sh) {
2140                 spin_lock_init(&sh->stripe_lock);
2141                 spin_lock_init(&sh->batch_lock);
2142                 INIT_LIST_HEAD(&sh->batch_list);
2143                 INIT_LIST_HEAD(&sh->lru);
2144                 INIT_LIST_HEAD(&sh->r5c);
2145                 INIT_LIST_HEAD(&sh->log_list);
2146                 atomic_set(&sh->count, 1);
2147                 sh->raid_conf = conf;
2148                 sh->log_start = MaxSector;
2149                 for (i = 0; i < disks; i++) {
2150                         struct r5dev *dev = &sh->dev[i];
2151
2152                         bio_init(&dev->req, &dev->vec, 1);
2153                         bio_init(&dev->rreq, &dev->rvec, 1);
2154                 }
2155
2156                 if (raid5_has_ppl(conf)) {
2157                         sh->ppl_page = alloc_page(gfp);
2158                         if (!sh->ppl_page) {
2159                                 free_stripe(sc, sh);
2160                                 sh = NULL;
2161                         }
2162                 }
2163         }
2164         return sh;
2165 }
2166 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 {
2168         struct stripe_head *sh;
2169
2170         sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2171         if (!sh)
2172                 return 0;
2173
2174         if (grow_buffers(sh, gfp)) {
2175                 shrink_buffers(sh);
2176                 free_stripe(conf->slab_cache, sh);
2177                 return 0;
2178         }
2179         sh->hash_lock_index =
2180                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2181         /* we just created an active stripe so... */
2182         atomic_inc(&conf->active_stripes);
2183
2184         raid5_release_stripe(sh);
2185         conf->max_nr_stripes++;
2186         return 1;
2187 }
2188
2189 static int grow_stripes(struct r5conf *conf, int num)
2190 {
2191         struct kmem_cache *sc;
2192         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194         if (conf->mddev->gendisk)
2195                 sprintf(conf->cache_name[0],
2196                         "raid%d-%s", conf->level, mdname(conf->mddev));
2197         else
2198                 sprintf(conf->cache_name[0],
2199                         "raid%d-%p", conf->level, conf->mddev);
2200         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2201
2202         conf->active_name = 0;
2203         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205                                0, 0, NULL);
2206         if (!sc)
2207                 return 1;
2208         conf->slab_cache = sc;
2209         conf->pool_size = devs;
2210         while (num--)
2211                 if (!grow_one_stripe(conf, GFP_KERNEL))
2212                         return 1;
2213
2214         return 0;
2215 }
2216
2217 /**
2218  * scribble_len - return the required size of the scribble region
2219  * @num - total number of disks in the array
2220  *
2221  * The size must be enough to contain:
2222  * 1/ a struct page pointer for each device in the array +2
2223  * 2/ room to convert each entry in (1) to its corresponding dma
2224  *    (dma_map_page()) or page (page_address()) address.
2225  *
2226  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227  * calculate over all devices (not just the data blocks), using zeros in place
2228  * of the P and Q blocks.
2229  */
2230 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2231 {
2232         struct flex_array *ret;
2233         size_t len;
2234
2235         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2236         ret = flex_array_alloc(len, cnt, flags);
2237         if (!ret)
2238                 return NULL;
2239         /* always prealloc all elements, so no locking is required */
2240         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2241                 flex_array_free(ret);
2242                 return NULL;
2243         }
2244         return ret;
2245 }
2246
2247 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2248 {
2249         unsigned long cpu;
2250         int err = 0;
2251
2252         /*
2253          * Never shrink. And mddev_suspend() could deadlock if this is called
2254          * from raid5d. In that case, scribble_disks and scribble_sectors
2255          * should equal to new_disks and new_sectors
2256          */
2257         if (conf->scribble_disks >= new_disks &&
2258             conf->scribble_sectors >= new_sectors)
2259                 return 0;
2260         mddev_suspend(conf->mddev);
2261         get_online_cpus();
2262         for_each_present_cpu(cpu) {
2263                 struct raid5_percpu *percpu;
2264                 struct flex_array *scribble;
2265
2266                 percpu = per_cpu_ptr(conf->percpu, cpu);
2267                 scribble = scribble_alloc(new_disks,
2268                                           new_sectors / STRIPE_SECTORS,
2269                                           GFP_NOIO);
2270
2271                 if (scribble) {
2272                         flex_array_free(percpu->scribble);
2273                         percpu->scribble = scribble;
2274                 } else {
2275                         err = -ENOMEM;
2276                         break;
2277                 }
2278         }
2279         put_online_cpus();
2280         mddev_resume(conf->mddev);
2281         if (!err) {
2282                 conf->scribble_disks = new_disks;
2283                 conf->scribble_sectors = new_sectors;
2284         }
2285         return err;
2286 }
2287
2288 static int resize_stripes(struct r5conf *conf, int newsize)
2289 {
2290         /* Make all the stripes able to hold 'newsize' devices.
2291          * New slots in each stripe get 'page' set to a new page.
2292          *
2293          * This happens in stages:
2294          * 1/ create a new kmem_cache and allocate the required number of
2295          *    stripe_heads.
2296          * 2/ gather all the old stripe_heads and transfer the pages across
2297          *    to the new stripe_heads.  This will have the side effect of
2298          *    freezing the array as once all stripe_heads have been collected,
2299          *    no IO will be possible.  Old stripe heads are freed once their
2300          *    pages have been transferred over, and the old kmem_cache is
2301          *    freed when all stripes are done.
2302          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2303          *    we simple return a failure status - no need to clean anything up.
2304          * 4/ allocate new pages for the new slots in the new stripe_heads.
2305          *    If this fails, we don't bother trying the shrink the
2306          *    stripe_heads down again, we just leave them as they are.
2307          *    As each stripe_head is processed the new one is released into
2308          *    active service.
2309          *
2310          * Once step2 is started, we cannot afford to wait for a write,
2311          * so we use GFP_NOIO allocations.
2312          */
2313         struct stripe_head *osh, *nsh;
2314         LIST_HEAD(newstripes);
2315         struct disk_info *ndisks;
2316         int err = 0;
2317         struct kmem_cache *sc;
2318         int i;
2319         int hash, cnt;
2320
2321         md_allow_write(conf->mddev);
2322
2323         /* Step 1 */
2324         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2325                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2326                                0, 0, NULL);
2327         if (!sc)
2328                 return -ENOMEM;
2329
2330         /* Need to ensure auto-resizing doesn't interfere */
2331         mutex_lock(&conf->cache_size_mutex);
2332
2333         for (i = conf->max_nr_stripes; i; i--) {
2334                 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2335                 if (!nsh)
2336                         break;
2337
2338                 list_add(&nsh->lru, &newstripes);
2339         }
2340         if (i) {
2341                 /* didn't get enough, give up */
2342                 while (!list_empty(&newstripes)) {
2343                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2344                         list_del(&nsh->lru);
2345                         free_stripe(sc, nsh);
2346                 }
2347                 kmem_cache_destroy(sc);
2348                 mutex_unlock(&conf->cache_size_mutex);
2349                 return -ENOMEM;
2350         }
2351         /* Step 2 - Must use GFP_NOIO now.
2352          * OK, we have enough stripes, start collecting inactive
2353          * stripes and copying them over
2354          */
2355         hash = 0;
2356         cnt = 0;
2357         list_for_each_entry(nsh, &newstripes, lru) {
2358                 lock_device_hash_lock(conf, hash);
2359                 wait_event_cmd(conf->wait_for_stripe,
2360                                     !list_empty(conf->inactive_list + hash),
2361                                     unlock_device_hash_lock(conf, hash),
2362                                     lock_device_hash_lock(conf, hash));
2363                 osh = get_free_stripe(conf, hash);
2364                 unlock_device_hash_lock(conf, hash);
2365
2366                 for(i=0; i<conf->pool_size; i++) {
2367                         nsh->dev[i].page = osh->dev[i].page;
2368                         nsh->dev[i].orig_page = osh->dev[i].page;
2369                 }
2370                 nsh->hash_lock_index = hash;
2371                 free_stripe(conf->slab_cache, osh);
2372                 cnt++;
2373                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2374                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2375                         hash++;
2376                         cnt = 0;
2377                 }
2378         }
2379         kmem_cache_destroy(conf->slab_cache);
2380
2381         /* Step 3.
2382          * At this point, we are holding all the stripes so the array
2383          * is completely stalled, so now is a good time to resize
2384          * conf->disks and the scribble region
2385          */
2386         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2387         if (ndisks) {
2388                 for (i = 0; i < conf->pool_size; i++)
2389                         ndisks[i] = conf->disks[i];
2390
2391                 for (i = conf->pool_size; i < newsize; i++) {
2392                         ndisks[i].extra_page = alloc_page(GFP_NOIO);
2393                         if (!ndisks[i].extra_page)
2394                                 err = -ENOMEM;
2395                 }
2396
2397                 if (err) {
2398                         for (i = conf->pool_size; i < newsize; i++)
2399                                 if (ndisks[i].extra_page)
2400                                         put_page(ndisks[i].extra_page);
2401                         kfree(ndisks);
2402                 } else {
2403                         kfree(conf->disks);
2404                         conf->disks = ndisks;
2405                 }
2406         } else
2407                 err = -ENOMEM;
2408
2409         mutex_unlock(&conf->cache_size_mutex);
2410
2411         conf->slab_cache = sc;
2412         conf->active_name = 1-conf->active_name;
2413
2414         /* Step 4, return new stripes to service */
2415         while(!list_empty(&newstripes)) {
2416                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2417                 list_del_init(&nsh->lru);
2418
2419                 for (i=conf->raid_disks; i < newsize; i++)
2420                         if (nsh->dev[i].page == NULL) {
2421                                 struct page *p = alloc_page(GFP_NOIO);
2422                                 nsh->dev[i].page = p;
2423                                 nsh->dev[i].orig_page = p;
2424                                 if (!p)
2425                                         err = -ENOMEM;
2426                         }
2427                 raid5_release_stripe(nsh);
2428         }
2429         /* critical section pass, GFP_NOIO no longer needed */
2430
2431         if (!err)
2432                 conf->pool_size = newsize;
2433         return err;
2434 }
2435
2436 static int drop_one_stripe(struct r5conf *conf)
2437 {
2438         struct stripe_head *sh;
2439         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2440
2441         spin_lock_irq(conf->hash_locks + hash);
2442         sh = get_free_stripe(conf, hash);
2443         spin_unlock_irq(conf->hash_locks + hash);
2444         if (!sh)
2445                 return 0;
2446         BUG_ON(atomic_read(&sh->count));
2447         shrink_buffers(sh);
2448         free_stripe(conf->slab_cache, sh);
2449         atomic_dec(&conf->active_stripes);
2450         conf->max_nr_stripes--;
2451         return 1;
2452 }
2453
2454 static void shrink_stripes(struct r5conf *conf)
2455 {
2456         while (conf->max_nr_stripes &&
2457                drop_one_stripe(conf))
2458                 ;
2459
2460         kmem_cache_destroy(conf->slab_cache);
2461         conf->slab_cache = NULL;
2462 }
2463
2464 static void raid5_end_read_request(struct bio * bi)
2465 {
2466         struct stripe_head *sh = bi->bi_private;
2467         struct r5conf *conf = sh->raid_conf;
2468         int disks = sh->disks, i;
2469         char b[BDEVNAME_SIZE];
2470         struct md_rdev *rdev = NULL;
2471         sector_t s;
2472
2473         for (i=0 ; i<disks; i++)
2474                 if (bi == &sh->dev[i].req)
2475                         break;
2476
2477         pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2478                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2479                 bi->bi_status);
2480         if (i == disks) {
2481                 bio_reset(bi);
2482                 BUG();
2483                 return;
2484         }
2485         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2486                 /* If replacement finished while this request was outstanding,
2487                  * 'replacement' might be NULL already.
2488                  * In that case it moved down to 'rdev'.
2489                  * rdev is not removed until all requests are finished.
2490                  */
2491                 rdev = conf->disks[i].replacement;
2492         if (!rdev)
2493                 rdev = conf->disks[i].rdev;
2494
2495         if (use_new_offset(conf, sh))
2496                 s = sh->sector + rdev->new_data_offset;
2497         else
2498                 s = sh->sector + rdev->data_offset;
2499         if (!bi->bi_status) {
2500                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2501                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2502                         /* Note that this cannot happen on a
2503                          * replacement device.  We just fail those on
2504                          * any error
2505                          */
2506                         pr_info_ratelimited(
2507                                 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2508                                 mdname(conf->mddev), STRIPE_SECTORS,
2509                                 (unsigned long long)s,
2510                                 bdevname(rdev->bdev, b));
2511                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2512                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2513                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2514                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2515                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2516
2517                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2518                         /*
2519                          * end read for a page in journal, this
2520                          * must be preparing for prexor in rmw
2521                          */
2522                         set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2523
2524                 if (atomic_read(&rdev->read_errors))
2525                         atomic_set(&rdev->read_errors, 0);
2526         } else {
2527                 const char *bdn = bdevname(rdev->bdev, b);
2528                 int retry = 0;
2529                 int set_bad = 0;
2530
2531                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2532                 atomic_inc(&rdev->read_errors);
2533                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2534                         pr_warn_ratelimited(
2535                                 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2536                                 mdname(conf->mddev),
2537                                 (unsigned long long)s,
2538                                 bdn);
2539                 else if (conf->mddev->degraded >= conf->max_degraded) {
2540                         set_bad = 1;
2541                         pr_warn_ratelimited(
2542                                 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2543                                 mdname(conf->mddev),
2544                                 (unsigned long long)s,
2545                                 bdn);
2546                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2547                         /* Oh, no!!! */
2548                         set_bad = 1;
2549                         pr_warn_ratelimited(
2550                                 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2551                                 mdname(conf->mddev),
2552                                 (unsigned long long)s,
2553                                 bdn);
2554                 } else if (atomic_read(&rdev->read_errors)
2555                          > conf->max_nr_stripes)
2556                         pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2557                                mdname(conf->mddev), bdn);
2558                 else
2559                         retry = 1;
2560                 if (set_bad && test_bit(In_sync, &rdev->flags)
2561                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2562                         retry = 1;
2563                 if (retry)
2564                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2565                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2566                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2567                         } else
2568                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2569                 else {
2570                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2571                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2572                         if (!(set_bad
2573                               && test_bit(In_sync, &rdev->flags)
2574                               && rdev_set_badblocks(
2575                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2576                                 md_error(conf->mddev, rdev);
2577                 }
2578         }
2579         rdev_dec_pending(rdev, conf->mddev);
2580         bio_reset(bi);
2581         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2582         set_bit(STRIPE_HANDLE, &sh->state);
2583         raid5_release_stripe(sh);
2584 }
2585
2586 static void raid5_end_write_request(struct bio *bi)
2587 {
2588         struct stripe_head *sh = bi->bi_private;
2589         struct r5conf *conf = sh->raid_conf;
2590         int disks = sh->disks, i;
2591         struct md_rdev *uninitialized_var(rdev);
2592         sector_t first_bad;
2593         int bad_sectors;
2594         int replacement = 0;
2595
2596         for (i = 0 ; i < disks; i++) {
2597                 if (bi == &sh->dev[i].req) {
2598                         rdev = conf->disks[i].rdev;
2599                         break;
2600                 }
2601                 if (bi == &sh->dev[i].rreq) {
2602                         rdev = conf->disks[i].replacement;
2603                         if (rdev)
2604                                 replacement = 1;
2605                         else
2606                                 /* rdev was removed and 'replacement'
2607                                  * replaced it.  rdev is not removed
2608                                  * until all requests are finished.
2609                                  */
2610                                 rdev = conf->disks[i].rdev;
2611                         break;
2612                 }
2613         }
2614         pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2615                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2616                 bi->bi_status);
2617         if (i == disks) {
2618                 bio_reset(bi);
2619                 BUG();
2620                 return;
2621         }
2622
2623         if (replacement) {
2624                 if (bi->bi_status)
2625                         md_error(conf->mddev, rdev);
2626                 else if (is_badblock(rdev, sh->sector,
2627                                      STRIPE_SECTORS,
2628                                      &first_bad, &bad_sectors))
2629                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2630         } else {
2631                 if (bi->bi_status) {
2632                         set_bit(STRIPE_DEGRADED, &sh->state);
2633                         set_bit(WriteErrorSeen, &rdev->flags);
2634                         set_bit(R5_WriteError, &sh->dev[i].flags);
2635                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2636                                 set_bit(MD_RECOVERY_NEEDED,
2637                                         &rdev->mddev->recovery);
2638                 } else if (is_badblock(rdev, sh->sector,
2639                                        STRIPE_SECTORS,
2640                                        &first_bad, &bad_sectors)) {
2641                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2642                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2643                                 /* That was a successful write so make
2644                                  * sure it looks like we already did
2645                                  * a re-write.
2646                                  */
2647                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2648                 }
2649         }
2650         rdev_dec_pending(rdev, conf->mddev);
2651
2652         if (sh->batch_head && bi->bi_status && !replacement)
2653                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2654
2655         bio_reset(bi);
2656         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2657                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2658         set_bit(STRIPE_HANDLE, &sh->state);
2659         raid5_release_stripe(sh);
2660
2661         if (sh->batch_head && sh != sh->batch_head)
2662                 raid5_release_stripe(sh->batch_head);
2663 }
2664
2665 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2666 {
2667         struct r5dev *dev = &sh->dev[i];
2668
2669         dev->flags = 0;
2670         dev->sector = raid5_compute_blocknr(sh, i, previous);
2671 }
2672
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675         char b[BDEVNAME_SIZE];
2676         struct r5conf *conf = mddev->private;
2677         unsigned long flags;
2678         pr_debug("raid456: error called\n");
2679
2680         spin_lock_irqsave(&conf->device_lock, flags);
2681         clear_bit(In_sync, &rdev->flags);
2682         mddev->degraded = raid5_calc_degraded(conf);
2683         spin_unlock_irqrestore(&conf->device_lock, flags);
2684         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2685
2686         set_bit(Blocked, &rdev->flags);
2687         set_bit(Faulty, &rdev->flags);
2688         set_mask_bits(&mddev->sb_flags, 0,
2689                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690         pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691                 "md/raid:%s: Operation continuing on %d devices.\n",
2692                 mdname(mddev),
2693                 bdevname(rdev->bdev, b),
2694                 mdname(mddev),
2695                 conf->raid_disks - mddev->degraded);
2696         r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698
2699 /*
2700  * Input: a 'big' sector number,
2701  * Output: index of the data and parity disk, and the sector # in them.
2702  */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704                               int previous, int *dd_idx,
2705                               struct stripe_head *sh)
2706 {
2707         sector_t stripe, stripe2;
2708         sector_t chunk_number;
2709         unsigned int chunk_offset;
2710         int pd_idx, qd_idx;
2711         int ddf_layout = 0;
2712         sector_t new_sector;
2713         int algorithm = previous ? conf->prev_algo
2714                                  : conf->algorithm;
2715         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716                                          : conf->chunk_sectors;
2717         int raid_disks = previous ? conf->previous_raid_disks
2718                                   : conf->raid_disks;
2719         int data_disks = raid_disks - conf->max_degraded;
2720
2721         /* First compute the information on this sector */
2722
2723         /*
2724          * Compute the chunk number and the sector offset inside the chunk
2725          */
2726         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727         chunk_number = r_sector;
2728
2729         /*
2730          * Compute the stripe number
2731          */
2732         stripe = chunk_number;
2733         *dd_idx = sector_div(stripe, data_disks);
2734         stripe2 = stripe;
2735         /*
2736          * Select the parity disk based on the user selected algorithm.
2737          */
2738         pd_idx = qd_idx = -1;
2739         switch(conf->level) {
2740         case 4:
2741                 pd_idx = data_disks;
2742                 break;
2743         case 5:
2744                 switch (algorithm) {
2745                 case ALGORITHM_LEFT_ASYMMETRIC:
2746                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747                         if (*dd_idx >= pd_idx)
2748                                 (*dd_idx)++;
2749                         break;
2750                 case ALGORITHM_RIGHT_ASYMMETRIC:
2751                         pd_idx = sector_div(stripe2, raid_disks);
2752                         if (*dd_idx >= pd_idx)
2753                                 (*dd_idx)++;
2754                         break;
2755                 case ALGORITHM_LEFT_SYMMETRIC:
2756                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758                         break;
2759                 case ALGORITHM_RIGHT_SYMMETRIC:
2760                         pd_idx = sector_div(stripe2, raid_disks);
2761                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762                         break;
2763                 case ALGORITHM_PARITY_0:
2764                         pd_idx = 0;
2765                         (*dd_idx)++;
2766                         break;
2767                 case ALGORITHM_PARITY_N:
2768                         pd_idx = data_disks;
2769                         break;
2770                 default:
2771                         BUG();
2772                 }
2773                 break;
2774         case 6:
2775
2776                 switch (algorithm) {
2777                 case ALGORITHM_LEFT_ASYMMETRIC:
2778                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779                         qd_idx = pd_idx + 1;
2780                         if (pd_idx == raid_disks-1) {
2781                                 (*dd_idx)++;    /* Q D D D P */
2782                                 qd_idx = 0;
2783                         } else if (*dd_idx >= pd_idx)
2784                                 (*dd_idx) += 2; /* D D P Q D */
2785                         break;
2786                 case ALGORITHM_RIGHT_ASYMMETRIC:
2787                         pd_idx = sector_div(stripe2, raid_disks);
2788                         qd_idx = pd_idx + 1;
2789                         if (pd_idx == raid_disks-1) {
2790                                 (*dd_idx)++;    /* Q D D D P */
2791                                 qd_idx = 0;
2792                         } else if (*dd_idx >= pd_idx)
2793                                 (*dd_idx) += 2; /* D D P Q D */
2794                         break;
2795                 case ALGORITHM_LEFT_SYMMETRIC:
2796                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797                         qd_idx = (pd_idx + 1) % raid_disks;
2798                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799                         break;
2800                 case ALGORITHM_RIGHT_SYMMETRIC:
2801                         pd_idx = sector_div(stripe2, raid_disks);
2802                         qd_idx = (pd_idx + 1) % raid_disks;
2803                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804                         break;
2805
2806                 case ALGORITHM_PARITY_0:
2807                         pd_idx = 0;
2808                         qd_idx = 1;
2809                         (*dd_idx) += 2;
2810                         break;
2811                 case ALGORITHM_PARITY_N:
2812                         pd_idx = data_disks;
2813                         qd_idx = data_disks + 1;
2814                         break;
2815
2816                 case ALGORITHM_ROTATING_ZERO_RESTART:
2817                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2818                          * of blocks for computing Q is different.
2819                          */
2820                         pd_idx = sector_div(stripe2, raid_disks);
2821                         qd_idx = pd_idx + 1;
2822                         if (pd_idx == raid_disks-1) {
2823                                 (*dd_idx)++;    /* Q D D D P */
2824                                 qd_idx = 0;
2825                         } else if (*dd_idx >= pd_idx)
2826                                 (*dd_idx) += 2; /* D D P Q D */
2827                         ddf_layout = 1;
2828                         break;
2829
2830                 case ALGORITHM_ROTATING_N_RESTART:
2831                         /* Same a left_asymmetric, by first stripe is
2832                          * D D D P Q  rather than
2833                          * Q D D D P
2834                          */
2835                         stripe2 += 1;
2836                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837                         qd_idx = pd_idx + 1;
2838                         if (pd_idx == raid_disks-1) {
2839                                 (*dd_idx)++;    /* Q D D D P */
2840                                 qd_idx = 0;
2841                         } else if (*dd_idx >= pd_idx)
2842                                 (*dd_idx) += 2; /* D D P Q D */
2843                         ddf_layout = 1;
2844                         break;
2845
2846                 case ALGORITHM_ROTATING_N_CONTINUE:
2847                         /* Same as left_symmetric but Q is before P */
2848                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851                         ddf_layout = 1;
2852                         break;
2853
2854                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2855                         /* RAID5 left_asymmetric, with Q on last device */
2856                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857                         if (*dd_idx >= pd_idx)
2858                                 (*dd_idx)++;
2859                         qd_idx = raid_disks - 1;
2860                         break;
2861
2862                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863                         pd_idx = sector_div(stripe2, raid_disks-1);
2864                         if (*dd_idx >= pd_idx)
2865                                 (*dd_idx)++;
2866                         qd_idx = raid_disks - 1;
2867                         break;
2868
2869                 case ALGORITHM_LEFT_SYMMETRIC_6:
2870                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872                         qd_idx = raid_disks - 1;
2873                         break;
2874
2875                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2876                         pd_idx = sector_div(stripe2, raid_disks-1);
2877                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878                         qd_idx = raid_disks - 1;
2879                         break;
2880
2881                 case ALGORITHM_PARITY_0_6:
2882                         pd_idx = 0;
2883                         (*dd_idx)++;
2884                         qd_idx = raid_disks - 1;
2885                         break;
2886
2887                 default:
2888                         BUG();
2889                 }
2890                 break;
2891         }
2892
2893         if (sh) {
2894                 sh->pd_idx = pd_idx;
2895                 sh->qd_idx = qd_idx;
2896                 sh->ddf_layout = ddf_layout;
2897         }
2898         /*
2899          * Finally, compute the new sector number
2900          */
2901         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902         return new_sector;
2903 }
2904
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907         struct r5conf *conf = sh->raid_conf;
2908         int raid_disks = sh->disks;
2909         int data_disks = raid_disks - conf->max_degraded;
2910         sector_t new_sector = sh->sector, check;
2911         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912                                          : conf->chunk_sectors;
2913         int algorithm = previous ? conf->prev_algo
2914                                  : conf->algorithm;
2915         sector_t stripe;
2916         int chunk_offset;
2917         sector_t chunk_number;
2918         int dummy1, dd_idx = i;
2919         sector_t r_sector;
2920         struct stripe_head sh2;
2921
2922         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923         stripe = new_sector;
2924
2925         if (i == sh->pd_idx)
2926                 return 0;
2927         switch(conf->level) {
2928         case 4: break;
2929         case 5:
2930                 switch (algorithm) {
2931                 case ALGORITHM_LEFT_ASYMMETRIC:
2932                 case ALGORITHM_RIGHT_ASYMMETRIC:
2933                         if (i > sh->pd_idx)
2934                                 i--;
2935                         break;
2936                 case ALGORITHM_LEFT_SYMMETRIC:
2937                 case ALGORITHM_RIGHT_SYMMETRIC:
2938                         if (i < sh->pd_idx)
2939                                 i += raid_disks;
2940                         i -= (sh->pd_idx + 1);
2941                         break;
2942                 case ALGORITHM_PARITY_0:
2943                         i -= 1;
2944                         break;
2945                 case ALGORITHM_PARITY_N:
2946                         break;
2947                 default:
2948                         BUG();
2949                 }
2950                 break;
2951         case 6:
2952                 if (i == sh->qd_idx)
2953                         return 0; /* It is the Q disk */
2954                 switch (algorithm) {
2955                 case ALGORITHM_LEFT_ASYMMETRIC:
2956                 case ALGORITHM_RIGHT_ASYMMETRIC:
2957                 case ALGORITHM_ROTATING_ZERO_RESTART:
2958                 case ALGORITHM_ROTATING_N_RESTART:
2959                         if (sh->pd_idx == raid_disks-1)
2960                                 i--;    /* Q D D D P */
2961                         else if (i > sh->pd_idx)
2962                                 i -= 2; /* D D P Q D */
2963                         break;
2964                 case ALGORITHM_LEFT_SYMMETRIC:
2965                 case ALGORITHM_RIGHT_SYMMETRIC:
2966                         if (sh->pd_idx == raid_disks-1)
2967                                 i--; /* Q D D D P */
2968                         else {
2969                                 /* D D P Q D */
2970                                 if (i < sh->pd_idx)
2971                                         i += raid_disks;
2972                                 i -= (sh->pd_idx + 2);
2973                         }
2974                         break;
2975                 case ALGORITHM_PARITY_0:
2976                         i -= 2;
2977                         break;
2978                 case ALGORITHM_PARITY_N:
2979                         break;
2980                 case ALGORITHM_ROTATING_N_CONTINUE:
2981                         /* Like left_symmetric, but P is before Q */
2982                         if (sh->pd_idx == 0)
2983                                 i--;    /* P D D D Q */
2984                         else {
2985                                 /* D D Q P D */
2986                                 if (i < sh->pd_idx)
2987                                         i += raid_disks;
2988                                 i -= (sh->pd_idx + 1);
2989                         }
2990                         break;
2991                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2992                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993                         if (i > sh->pd_idx)
2994                                 i--;
2995                         break;
2996                 case ALGORITHM_LEFT_SYMMETRIC_6:
2997                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998                         if (i < sh->pd_idx)
2999                                 i += data_disks + 1;
3000                         i -= (sh->pd_idx + 1);
3001                         break;
3002                 case ALGORITHM_PARITY_0_6:
3003                         i -= 1;
3004                         break;
3005                 default:
3006                         BUG();
3007                 }
3008                 break;
3009         }
3010
3011         chunk_number = stripe * data_disks + i;
3012         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014         check = raid5_compute_sector(conf, r_sector,
3015                                      previous, &dummy1, &sh2);
3016         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017                 || sh2.qd_idx != sh->qd_idx) {
3018                 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019                         mdname(conf->mddev));
3020                 return 0;
3021         }
3022         return r_sector;
3023 }
3024
3025 /*
3026  * There are cases where we want handle_stripe_dirtying() and
3027  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028  *
3029  * This function checks whether we want to delay the towrite. Specifically,
3030  * we delay the towrite when:
3031  *
3032  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3033  *      stripe has data in journal (for other devices).
3034  *
3035  *      In this case, when reading data for the non-overwrite dev, it is
3036  *      necessary to handle complex rmw of write back cache (prexor with
3037  *      orig_page, and xor with page). To keep read path simple, we would
3038  *      like to flush data in journal to RAID disks first, so complex rmw
3039  *      is handled in the write patch (handle_stripe_dirtying).
3040  *
3041  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042  *
3043  *      It is important to be able to flush all stripes in raid5-cache.
3044  *      Therefore, we need reserve some space on the journal device for
3045  *      these flushes. If flush operation includes pending writes to the
3046  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047  *      for the flush out. If we exclude these pending writes from flush
3048  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3049  *      Therefore, excluding pending writes in these cases enables more
3050  *      efficient use of the journal device.
3051  *
3052  *      Note: To make sure the stripe makes progress, we only delay
3053  *      towrite for stripes with data already in journal (injournal > 0).
3054  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055  *      no_space_stripes list.
3056  *
3057  *   3. during journal failure
3058  *      In journal failure, we try to flush all cached data to raid disks
3059  *      based on data in stripe cache. The array is read-only to upper
3060  *      layers, so we would skip all pending writes.
3061  *
3062  */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064                                  struct r5dev *dev,
3065                                  struct stripe_head_state *s)
3066 {
3067         /* case 1 above */
3068         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069             !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070                 return true;
3071         /* case 2 above */
3072         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073             s->injournal > 0)
3074                 return true;
3075         /* case 3 above */
3076         if (s->log_failed && s->injournal)
3077                 return true;
3078         return false;
3079 }
3080
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083                          int rcw, int expand)
3084 {
3085         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086         struct r5conf *conf = sh->raid_conf;
3087         int level = conf->level;
3088
3089         if (rcw) {
3090                 /*
3091                  * In some cases, handle_stripe_dirtying initially decided to
3092                  * run rmw and allocates extra page for prexor. However, rcw is
3093                  * cheaper later on. We need to free the extra page now,
3094                  * because we won't be able to do that in ops_complete_prexor().
3095                  */
3096                 r5c_release_extra_page(sh);
3097
3098                 for (i = disks; i--; ) {
3099                         struct r5dev *dev = &sh->dev[i];
3100
3101                         if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102                                 set_bit(R5_LOCKED, &dev->flags);
3103                                 set_bit(R5_Wantdrain, &dev->flags);
3104                                 if (!expand)
3105                                         clear_bit(R5_UPTODATE, &dev->flags);
3106                                 s->locked++;
3107                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3108                                 set_bit(R5_LOCKED, &dev->flags);
3109                                 s->locked++;
3110                         }
3111                 }
3112                 /* if we are not expanding this is a proper write request, and
3113                  * there will be bios with new data to be drained into the
3114                  * stripe cache
3115                  */
3116                 if (!expand) {
3117                         if (!s->locked)
3118                                 /* False alarm, nothing to do */
3119                                 return;
3120                         sh->reconstruct_state = reconstruct_state_drain_run;
3121                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122                 } else
3123                         sh->reconstruct_state = reconstruct_state_run;
3124
3125                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127                 if (s->locked + conf->max_degraded == disks)
3128                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129                                 atomic_inc(&conf->pending_full_writes);
3130         } else {
3131                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133                 BUG_ON(level == 6 &&
3134                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136
3137                 for (i = disks; i--; ) {
3138                         struct r5dev *dev = &sh->dev[i];
3139                         if (i == pd_idx || i == qd_idx)
3140                                 continue;
3141
3142                         if (dev->towrite &&
3143                             (test_bit(R5_UPTODATE, &dev->flags) ||
3144                              test_bit(R5_Wantcompute, &dev->flags))) {
3145                                 set_bit(R5_Wantdrain, &dev->flags);
3146                                 set_bit(R5_LOCKED, &dev->flags);
3147                                 clear_bit(R5_UPTODATE, &dev->flags);
3148                                 s->locked++;
3149                         } else if (test_bit(R5_InJournal, &dev->flags)) {
3150                                 set_bit(R5_LOCKED, &dev->flags);
3151                                 s->locked++;
3152                         }
3153                 }
3154                 if (!s->locked)
3155                         /* False alarm - nothing to do */
3156                         return;
3157                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161         }
3162
3163         /* keep the parity disk(s) locked while asynchronous operations
3164          * are in flight
3165          */
3166         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168         s->locked++;
3169
3170         if (level == 6) {
3171                 int qd_idx = sh->qd_idx;
3172                 struct r5dev *dev = &sh->dev[qd_idx];
3173
3174                 set_bit(R5_LOCKED, &dev->flags);
3175                 clear_bit(R5_UPTODATE, &dev->flags);
3176                 s->locked++;
3177         }
3178
3179         if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180             test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181             !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182             test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183                 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186                 __func__, (unsigned long long)sh->sector,
3187                 s->locked, s->ops_request);
3188 }
3189
3190 /*
3191  * Each stripe/dev can have one or more bion attached.
3192  * toread/towrite point to the first in a chain.
3193  * The bi_next chain must be in order.
3194  */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196                           int forwrite, int previous)
3197 {
3198         struct bio **bip;
3199         struct r5conf *conf = sh->raid_conf;
3200         int firstwrite=0;
3201
3202         pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203                 (unsigned long long)bi->bi_iter.bi_sector,
3204                 (unsigned long long)sh->sector);
3205
3206         spin_lock_irq(&sh->stripe_lock);
3207         /* Don't allow new IO added to stripes in batch list */
3208         if (sh->batch_head)
3209                 goto overlap;
3210         if (forwrite) {
3211                 bip = &sh->dev[dd_idx].towrite;
3212                 if (*bip == NULL)
3213                         firstwrite = 1;
3214         } else
3215                 bip = &sh->dev[dd_idx].toread;
3216         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218                         goto overlap;
3219                 bip = & (*bip)->bi_next;
3220         }
3221         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222                 goto overlap;
3223
3224         if (forwrite && raid5_has_ppl(conf)) {
3225                 /*
3226                  * With PPL only writes to consecutive data chunks within a
3227                  * stripe are allowed because for a single stripe_head we can
3228                  * only have one PPL entry at a time, which describes one data
3229                  * range. Not really an overlap, but wait_for_overlap can be
3230                  * used to handle this.
3231                  */
3232                 sector_t sector;
3233                 sector_t first = 0;
3234                 sector_t last = 0;
3235                 int count = 0;
3236                 int i;
3237
3238                 for (i = 0; i < sh->disks; i++) {
3239                         if (i != sh->pd_idx &&
3240                             (i == dd_idx || sh->dev[i].towrite)) {
3241                                 sector = sh->dev[i].sector;
3242                                 if (count == 0 || sector < first)
3243                                         first = sector;
3244                                 if (sector > last)
3245                                         last = sector;
3246                                 count++;
3247                         }
3248                 }
3249
3250                 if (first + conf->chunk_sectors * (count - 1) != last)
3251                         goto overlap;
3252         }
3253
3254         if (!forwrite || previous)
3255                 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258         if (*bip)
3259                 bi->bi_next = *bip;
3260         *bip = bi;
3261         bio_inc_remaining(bi);
3262         md_write_inc(conf->mddev, bi);
3263
3264         if (forwrite) {
3265                 /* check if page is covered */
3266                 sector_t sector = sh->dev[dd_idx].sector;
3267                 for (bi=sh->dev[dd_idx].towrite;
3268                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269                              bi && bi->bi_iter.bi_sector <= sector;
3270                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271                         if (bio_end_sector(bi) >= sector)
3272                                 sector = bio_end_sector(bi);
3273                 }
3274                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276                                 sh->overwrite_disks++;
3277         }
3278
3279         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3281                 (unsigned long long)sh->sector, dd_idx);
3282
3283         if (conf->mddev->bitmap && firstwrite) {
3284                 /* Cannot hold spinlock over bitmap_startwrite,
3285                  * but must ensure this isn't added to a batch until
3286                  * we have added to the bitmap and set bm_seq.
3287                  * So set STRIPE_BITMAP_PENDING to prevent
3288                  * batching.
3289                  * If multiple add_stripe_bio() calls race here they
3290                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3291                  * to complete "bitmap_startwrite" gets to set
3292                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3293                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294                  * any more.
3295                  */
3296                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297                 spin_unlock_irq(&sh->stripe_lock);
3298                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299                                   STRIPE_SECTORS, 0);
3300                 spin_lock_irq(&sh->stripe_lock);
3301                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302                 if (!sh->batch_head) {
3303                         sh->bm_seq = conf->seq_flush+1;
3304                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3305                 }
3306         }
3307         spin_unlock_irq(&sh->stripe_lock);
3308
3309         if (stripe_can_batch(sh))
3310                 stripe_add_to_batch_list(conf, sh);
3311         return 1;
3312
3313  overlap:
3314         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315         spin_unlock_irq(&sh->stripe_lock);
3316         return 0;
3317 }
3318
3319 static void end_reshape(struct r5conf *conf);
3320
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322                             struct stripe_head *sh)
3323 {
3324         int sectors_per_chunk =
3325                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326         int dd_idx;
3327         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330         raid5_compute_sector(conf,
3331                              stripe * (disks - conf->max_degraded)
3332                              *sectors_per_chunk + chunk_offset,
3333                              previous,
3334                              &dd_idx, sh);
3335 }
3336
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339                      struct stripe_head_state *s, int disks)
3340 {
3341         int i;
3342         BUG_ON(sh->batch_head);
3343         for (i = disks; i--; ) {
3344                 struct bio *bi;
3345                 int bitmap_end = 0;
3346
3347                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348                         struct md_rdev *rdev;
3349                         rcu_read_lock();
3350                         rdev = rcu_dereference(conf->disks[i].rdev);
3351                         if (rdev && test_bit(In_sync, &rdev->flags) &&
3352                             !test_bit(Faulty, &rdev->flags))
3353                                 atomic_inc(&rdev->nr_pending);
3354                         else
3355                                 rdev = NULL;
3356                         rcu_read_unlock();
3357                         if (rdev) {
3358                                 if (!rdev_set_badblocks(
3359                                             rdev,
3360                                             sh->sector,
3361                                             STRIPE_SECTORS, 0))
3362                                         md_error(conf->mddev, rdev);
3363                                 rdev_dec_pending(rdev, conf->mddev);
3364                         }
3365                 }
3366                 spin_lock_irq(&sh->stripe_lock);
3367                 /* fail all writes first */
3368                 bi = sh->dev[i].towrite;
3369                 sh->dev[i].towrite = NULL;
3370                 sh->overwrite_disks = 0;
3371                 spin_unlock_irq(&sh->stripe_lock);
3372                 if (bi)
3373                         bitmap_end = 1;
3374
3375                 log_stripe_write_finished(sh);
3376
3377                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378                         wake_up(&conf->wait_for_overlap);
3379
3380                 while (bi && bi->bi_iter.bi_sector <
3381                         sh->dev[i].sector + STRIPE_SECTORS) {
3382                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384                         bi->bi_status = BLK_STS_IOERR;
3385                         md_write_end(conf->mddev);
3386                         bio_endio(bi);
3387                         bi = nextbi;
3388                 }
3389                 if (bitmap_end)
3390                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3391                                 STRIPE_SECTORS, 0, 0);
3392                 bitmap_end = 0;
3393                 /* and fail all 'written' */
3394                 bi = sh->dev[i].written;
3395                 sh->dev[i].written = NULL;
3396                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3397                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3398                         sh->dev[i].page = sh->dev[i].orig_page;
3399                 }
3400
3401                 if (bi) bitmap_end = 1;
3402                 while (bi && bi->bi_iter.bi_sector <
3403                        sh->dev[i].sector + STRIPE_SECTORS) {
3404                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3405
3406                         bi->bi_status = BLK_STS_IOERR;
3407                         md_write_end(conf->mddev);
3408                         bio_endio(bi);
3409                         bi = bi2;
3410                 }
3411
3412                 /* fail any reads if this device is non-operational and
3413                  * the data has not reached the cache yet.
3414                  */
3415                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416                     s->failed > conf->max_degraded &&
3417                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419                         spin_lock_irq(&sh->stripe_lock);
3420                         bi = sh->dev[i].toread;
3421                         sh->dev[i].toread = NULL;
3422                         spin_unlock_irq(&sh->stripe_lock);
3423                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424                                 wake_up(&conf->wait_for_overlap);
3425                         if (bi)
3426                                 s->to_read--;
3427                         while (bi && bi->bi_iter.bi_sector <
3428                                sh->dev[i].sector + STRIPE_SECTORS) {
3429                                 struct bio *nextbi =
3430                                         r5_next_bio(bi, sh->dev[i].sector);
3431
3432                                 bi->bi_status = BLK_STS_IOERR;
3433                                 bio_endio(bi);
3434                                 bi = nextbi;
3435                         }
3436                 }
3437                 if (bitmap_end)
3438                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3439                                         STRIPE_SECTORS, 0, 0);
3440                 /* If we were in the middle of a write the parity block might
3441                  * still be locked - so just clear all R5_LOCKED flags
3442                  */
3443                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3444         }
3445         s->to_write = 0;
3446         s->written = 0;
3447
3448         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3449                 if (atomic_dec_and_test(&conf->pending_full_writes))
3450                         md_wakeup_thread(conf->mddev->thread);
3451 }
3452
3453 static void
3454 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3455                    struct stripe_head_state *s)
3456 {
3457         int abort = 0;
3458         int i;
3459
3460         BUG_ON(sh->batch_head);
3461         clear_bit(STRIPE_SYNCING, &sh->state);
3462         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3463                 wake_up(&conf->wait_for_overlap);
3464         s->syncing = 0;
3465         s->replacing = 0;
3466         /* There is nothing more to do for sync/check/repair.
3467          * Don't even need to abort as that is handled elsewhere
3468          * if needed, and not always wanted e.g. if there is a known
3469          * bad block here.
3470          * For recover/replace we need to record a bad block on all
3471          * non-sync devices, or abort the recovery
3472          */
3473         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3474                 /* During recovery devices cannot be removed, so
3475                  * locking and refcounting of rdevs is not needed
3476                  */
3477                 rcu_read_lock();
3478                 for (i = 0; i < conf->raid_disks; i++) {
3479                         struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3480                         if (rdev
3481                             && !test_bit(Faulty, &rdev->flags)
3482                             && !test_bit(In_sync, &rdev->flags)
3483                             && !rdev_set_badblocks(rdev, sh->sector,
3484                                                    STRIPE_SECTORS, 0))
3485                                 abort = 1;
3486                         rdev = rcu_dereference(conf->disks[i].replacement);
3487                         if (rdev
3488                             && !test_bit(Faulty, &rdev->flags)
3489                             && !test_bit(In_sync, &rdev->flags)
3490                             && !rdev_set_badblocks(rdev, sh->sector,
3491                                                    STRIPE_SECTORS, 0))
3492                                 abort = 1;
3493                 }
3494                 rcu_read_unlock();
3495                 if (abort)
3496                         conf->recovery_disabled =
3497                                 conf->mddev->recovery_disabled;
3498         }
3499         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3500 }
3501
3502 static int want_replace(struct stripe_head *sh, int disk_idx)
3503 {
3504         struct md_rdev *rdev;
3505         int rv = 0;
3506
3507         rcu_read_lock();
3508         rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3509         if (rdev
3510             && !test_bit(Faulty, &rdev->flags)
3511             && !test_bit(In_sync, &rdev->flags)
3512             && (rdev->recovery_offset <= sh->sector
3513                 || rdev->mddev->recovery_cp <= sh->sector))
3514                 rv = 1;
3515         rcu_read_unlock();
3516         return rv;
3517 }
3518
3519 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3520                            int disk_idx, int disks)
3521 {
3522         struct r5dev *dev = &sh->dev[disk_idx];
3523         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3524                                   &sh->dev[s->failed_num[1]] };
3525         int i;
3526
3527
3528         if (test_bit(R5_LOCKED, &dev->flags) ||
3529             test_bit(R5_UPTODATE, &dev->flags))
3530                 /* No point reading this as we already have it or have
3531                  * decided to get it.
3532                  */
3533                 return 0;
3534
3535         if (dev->toread ||
3536             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3537                 /* We need this block to directly satisfy a request */
3538                 return 1;
3539
3540         if (s->syncing || s->expanding ||
3541             (s->replacing && want_replace(sh, disk_idx)))
3542                 /* When syncing, or expanding we read everything.
3543                  * When replacing, we need the replaced block.
3544                  */
3545                 return 1;
3546
3547         if ((s->failed >= 1 && fdev[0]->toread) ||
3548             (s->failed >= 2 && fdev[1]->toread))
3549                 /* If we want to read from a failed device, then
3550                  * we need to actually read every other device.
3551                  */
3552                 return 1;
3553
3554         /* Sometimes neither read-modify-write nor reconstruct-write
3555          * cycles can work.  In those cases we read every block we
3556          * can.  Then the parity-update is certain to have enough to
3557          * work with.
3558          * This can only be a problem when we need to write something,
3559          * and some device has failed.  If either of those tests
3560          * fail we need look no further.
3561          */
3562         if (!s->failed || !s->to_write)
3563                 return 0;
3564
3565         if (test_bit(R5_Insync, &dev->flags) &&
3566             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3567                 /* Pre-reads at not permitted until after short delay
3568                  * to gather multiple requests.  However if this
3569                  * device is no Insync, the block could only be computed
3570                  * and there is no need to delay that.
3571                  */
3572                 return 0;
3573
3574         for (i = 0; i < s->failed && i < 2; i++) {
3575                 if (fdev[i]->towrite &&
3576                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3577                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3578                         /* If we have a partial write to a failed
3579                          * device, then we will need to reconstruct
3580                          * the content of that device, so all other
3581                          * devices must be read.
3582                          */
3583                         return 1;
3584         }
3585
3586         /* If we are forced to do a reconstruct-write, either because
3587          * the current RAID6 implementation only supports that, or
3588          * because parity cannot be trusted and we are currently
3589          * recovering it, there is extra need to be careful.
3590          * If one of the devices that we would need to read, because
3591          * it is not being overwritten (and maybe not written at all)
3592          * is missing/faulty, then we need to read everything we can.
3593          */
3594         if (sh->raid_conf->level != 6 &&
3595             sh->sector < sh->raid_conf->mddev->recovery_cp)
3596                 /* reconstruct-write isn't being forced */
3597                 return 0;
3598         for (i = 0; i < s->failed && i < 2; i++) {
3599                 if (s->failed_num[i] != sh->pd_idx &&
3600                     s->failed_num[i] != sh->qd_idx &&
3601                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3602                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3603                         return 1;
3604         }
3605
3606         return 0;
3607 }
3608
3609 /* fetch_block - checks the given member device to see if its data needs
3610  * to be read or computed to satisfy a request.
3611  *
3612  * Returns 1 when no more member devices need to be checked, otherwise returns
3613  * 0 to tell the loop in handle_stripe_fill to continue
3614  */
3615 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3616                        int disk_idx, int disks)
3617 {
3618         struct r5dev *dev = &sh->dev[disk_idx];
3619
3620         /* is the data in this block needed, and can we get it? */
3621         if (need_this_block(sh, s, disk_idx, disks)) {
3622                 /* we would like to get this block, possibly by computing it,
3623                  * otherwise read it if the backing disk is insync
3624                  */
3625                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3626                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3627                 BUG_ON(sh->batch_head);
3628
3629                 /*
3630                  * In the raid6 case if the only non-uptodate disk is P
3631                  * then we already trusted P to compute the other failed
3632                  * drives. It is safe to compute rather than re-read P.
3633                  * In other cases we only compute blocks from failed
3634                  * devices, otherwise check/repair might fail to detect
3635                  * a real inconsistency.
3636                  */
3637
3638                 if ((s->uptodate == disks - 1) &&
3639                     ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3640                     (s->failed && (disk_idx == s->failed_num[0] ||
3641                                    disk_idx == s->failed_num[1])))) {
3642                         /* have disk failed, and we're requested to fetch it;
3643                          * do compute it
3644                          */
3645                         pr_debug("Computing stripe %llu block %d\n",
3646                                (unsigned long long)sh->sector, disk_idx);
3647                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3648                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3649                         set_bit(R5_Wantcompute, &dev->flags);
3650                         sh->ops.target = disk_idx;
3651                         sh->ops.target2 = -1; /* no 2nd target */
3652                         s->req_compute = 1;
3653                         /* Careful: from this point on 'uptodate' is in the eye
3654                          * of raid_run_ops which services 'compute' operations
3655                          * before writes. R5_Wantcompute flags a block that will
3656                          * be R5_UPTODATE by the time it is needed for a
3657                          * subsequent operation.
3658                          */
3659                         s->uptodate++;
3660                         return 1;
3661                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3662                         /* Computing 2-failure is *very* expensive; only
3663                          * do it if failed >= 2
3664                          */
3665                         int other;
3666                         for (other = disks; other--; ) {
3667                                 if (other == disk_idx)
3668                                         continue;
3669                                 if (!test_bit(R5_UPTODATE,
3670                                       &sh->dev[other].flags))
3671                                         break;
3672                         }
3673                         BUG_ON(other < 0);
3674                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3675                                (unsigned long long)sh->sector,
3676                                disk_idx, other);
3677                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3678                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3679                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3680                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3681                         sh->ops.target = disk_idx;
3682                         sh->ops.target2 = other;
3683                         s->uptodate += 2;
3684                         s->req_compute = 1;
3685                         return 1;
3686                 } else if (test_bit(R5_Insync, &dev->flags)) {
3687                         set_bit(R5_LOCKED, &dev->flags);
3688                         set_bit(R5_Wantread, &dev->flags);
3689                         s->locked++;
3690                         pr_debug("Reading block %d (sync=%d)\n",
3691                                 disk_idx, s->syncing);
3692                 }
3693         }
3694
3695         return 0;
3696 }
3697
3698 /**
3699  * handle_stripe_fill - read or compute data to satisfy pending requests.
3700  */
3701 static void handle_stripe_fill(struct stripe_head *sh,
3702                                struct stripe_head_state *s,
3703                                int disks)
3704 {
3705         int i;
3706
3707         /* look for blocks to read/compute, skip this if a compute
3708          * is already in flight, or if the stripe contents are in the
3709          * midst of changing due to a write
3710          */
3711         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3712             !sh->reconstruct_state) {
3713
3714                 /*
3715                  * For degraded stripe with data in journal, do not handle
3716                  * read requests yet, instead, flush the stripe to raid
3717                  * disks first, this avoids handling complex rmw of write
3718                  * back cache (prexor with orig_page, and then xor with
3719                  * page) in the read path
3720                  */
3721                 if (s->injournal && s->failed) {
3722                         if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3723                                 r5c_make_stripe_write_out(sh);
3724                         goto out;
3725                 }
3726
3727                 for (i = disks; i--; )
3728                         if (fetch_block(sh, s, i, disks))
3729                                 break;
3730         }
3731 out:
3732         set_bit(STRIPE_HANDLE, &sh->state);
3733 }
3734
3735 static void break_stripe_batch_list(struct stripe_head *head_sh,
3736                                     unsigned long handle_flags);
3737 /* handle_stripe_clean_event
3738  * any written block on an uptodate or failed drive can be returned.
3739  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3740  * never LOCKED, so we don't need to test 'failed' directly.
3741  */
3742 static void handle_stripe_clean_event(struct r5conf *conf,
3743         struct stripe_head *sh, int disks)
3744 {
3745         int i;
3746         struct r5dev *dev;
3747         int discard_pending = 0;
3748         struct stripe_head *head_sh = sh;
3749         bool do_endio = false;
3750
3751         for (i = disks; i--; )
3752                 if (sh->dev[i].written) {
3753                         dev = &sh->dev[i];
3754                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3755                             (test_bit(R5_UPTODATE, &dev->flags) ||
3756                              test_bit(R5_Discard, &dev->flags) ||
3757                              test_bit(R5_SkipCopy, &dev->flags))) {
3758                                 /* We can return any write requests */
3759                                 struct bio *wbi, *wbi2;
3760                                 pr_debug("Return write for disc %d\n", i);
3761                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3762                                         clear_bit(R5_UPTODATE, &dev->flags);
3763                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3764                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3765                                 }
3766                                 do_endio = true;
3767
3768 returnbi:
3769                                 dev->page = dev->orig_page;
3770                                 wbi = dev->written;
3771                                 dev->written = NULL;
3772                                 while (wbi && wbi->bi_iter.bi_sector <
3773                                         dev->sector + STRIPE_SECTORS) {
3774                                         wbi2 = r5_next_bio(wbi, dev->sector);
3775                                         md_write_end(conf->mddev);
3776                                         bio_endio(wbi);
3777                                         wbi = wbi2;
3778                                 }
3779                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3780                                                 STRIPE_SECTORS,
3781                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3782                                                 0);
3783                                 if (head_sh->batch_head) {
3784                                         sh = list_first_entry(&sh->batch_list,
3785                                                               struct stripe_head,
3786                                                               batch_list);
3787                                         if (sh != head_sh) {
3788                                                 dev = &sh->dev[i];
3789                                                 goto returnbi;
3790                                         }
3791                                 }
3792                                 sh = head_sh;
3793                                 dev = &sh->dev[i];
3794                         } else if (test_bit(R5_Discard, &dev->flags))
3795                                 discard_pending = 1;
3796                 }
3797
3798         log_stripe_write_finished(sh);
3799
3800         if (!discard_pending &&
3801             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3802                 int hash;
3803                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3804                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3805                 if (sh->qd_idx >= 0) {
3806                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3807                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3808                 }
3809                 /* now that discard is done we can proceed with any sync */
3810                 clear_bit(STRIPE_DISCARD, &sh->state);
3811                 /*
3812                  * SCSI discard will change some bio fields and the stripe has
3813                  * no updated data, so remove it from hash list and the stripe
3814                  * will be reinitialized
3815                  */
3816 unhash:
3817                 hash = sh->hash_lock_index;
3818                 spin_lock_irq(conf->hash_locks + hash);
3819                 remove_hash(sh);
3820                 spin_unlock_irq(conf->hash_locks + hash);
3821                 if (head_sh->batch_head) {
3822                         sh = list_first_entry(&sh->batch_list,
3823                                               struct stripe_head, batch_list);
3824                         if (sh != head_sh)
3825                                         goto unhash;
3826                 }
3827                 sh = head_sh;
3828
3829                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3830                         set_bit(STRIPE_HANDLE, &sh->state);
3831
3832         }
3833
3834         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3835                 if (atomic_dec_and_test(&conf->pending_full_writes))
3836                         md_wakeup_thread(conf->mddev->thread);
3837
3838         if (head_sh->batch_head && do_endio)
3839                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3840 }
3841
3842 /*
3843  * For RMW in write back cache, we need extra page in prexor to store the
3844  * old data. This page is stored in dev->orig_page.
3845  *
3846  * This function checks whether we have data for prexor. The exact logic
3847  * is:
3848  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3849  */
3850 static inline bool uptodate_for_rmw(struct r5dev *dev)
3851 {
3852         return (test_bit(R5_UPTODATE, &dev->flags)) &&
3853                 (!test_bit(R5_InJournal, &dev->flags) ||
3854                  test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3855 }
3856
3857 static int handle_stripe_dirtying(struct r5conf *conf,
3858                                   struct stripe_head *sh,
3859                                   struct stripe_head_state *s,
3860                                   int disks)
3861 {
3862         int rmw = 0, rcw = 0, i;
3863         sector_t recovery_cp = conf->mddev->recovery_cp;
3864
3865         /* Check whether resync is now happening or should start.
3866          * If yes, then the array is dirty (after unclean shutdown or
3867          * initial creation), so parity in some stripes might be inconsistent.
3868          * In this case, we need to always do reconstruct-write, to ensure
3869          * that in case of drive failure or read-error correction, we
3870          * generate correct data from the parity.
3871          */
3872         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3873             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3874              s->failed == 0)) {
3875                 /* Calculate the real rcw later - for now make it
3876                  * look like rcw is cheaper
3877                  */
3878                 rcw = 1; rmw = 2;
3879                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3880                          conf->rmw_level, (unsigned long long)recovery_cp,
3881                          (unsigned long long)sh->sector);
3882         } else for (i = disks; i--; ) {
3883                 /* would I have to read this buffer for read_modify_write */
3884                 struct r5dev *dev = &sh->dev[i];
3885                 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3886                      i == sh->pd_idx || i == sh->qd_idx ||
3887                      test_bit(R5_InJournal, &dev->flags)) &&
3888                     !test_bit(R5_LOCKED, &dev->flags) &&
3889                     !(uptodate_for_rmw(dev) ||
3890                       test_bit(R5_Wantcompute, &dev->flags))) {
3891                         if (test_bit(R5_Insync, &dev->flags))
3892                                 rmw++;
3893                         else
3894                                 rmw += 2*disks;  /* cannot read it */
3895                 }
3896                 /* Would I have to read this buffer for reconstruct_write */
3897                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3898                     i != sh->pd_idx && i != sh->qd_idx &&
3899                     !test_bit(R5_LOCKED, &dev->flags) &&
3900                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3901                       test_bit(R5_Wantcompute, &dev->flags))) {
3902                         if (test_bit(R5_Insync, &dev->flags))
3903                                 rcw++;
3904                         else
3905                                 rcw += 2*disks;
3906                 }
3907         }
3908
3909         pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3910                  (unsigned long long)sh->sector, sh->state, rmw, rcw);
3911         set_bit(STRIPE_HANDLE, &sh->state);
3912         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3913                 /* prefer read-modify-write, but need to get some data */
3914                 if (conf->mddev->queue)
3915                         blk_add_trace_msg(conf->mddev->queue,
3916                                           "raid5 rmw %llu %d",
3917                                           (unsigned long long)sh->sector, rmw);
3918                 for (i = disks; i--; ) {
3919                         struct r5dev *dev = &sh->dev[i];
3920                         if (test_bit(R5_InJournal, &dev->flags) &&
3921                             dev->page == dev->orig_page &&
3922                             !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3923                                 /* alloc page for prexor */
3924                                 struct page *p = alloc_page(GFP_NOIO);
3925
3926                                 if (p) {
3927                                         dev->orig_page = p;
3928                                         continue;
3929                                 }
3930
3931                                 /*
3932                                  * alloc_page() failed, try use
3933                                  * disk_info->extra_page
3934                                  */
3935                                 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3936                                                       &conf->cache_state)) {
3937                                         r5c_use_extra_page(sh);
3938                                         break;
3939                                 }
3940
3941                                 /* extra_page in use, add to delayed_list */
3942                                 set_bit(STRIPE_DELAYED, &sh->state);
3943                                 s->waiting_extra_page = 1;
3944                                 return -EAGAIN;
3945                         }
3946                 }
3947
3948                 for (i = disks; i--; ) {
3949                         struct r5dev *dev = &sh->dev[i];
3950                         if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3951                              i == sh->pd_idx || i == sh->qd_idx ||
3952                              test_bit(R5_InJournal, &dev->flags)) &&
3953                             !test_bit(R5_LOCKED, &dev->flags) &&
3954                             !(uptodate_for_rmw(dev) ||
3955                               test_bit(R5_Wantcompute, &dev->flags)) &&
3956                             test_bit(R5_Insync, &dev->flags)) {
3957                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3958                                              &sh->state)) {
3959                                         pr_debug("Read_old block %d for r-m-w\n",
3960                                                  i);
3961                                         set_bit(R5_LOCKED, &dev->flags);
3962                                         set_bit(R5_Wantread, &dev->flags);
3963                                         s->locked++;
3964                                 } else {
3965                                         set_bit(STRIPE_DELAYED, &sh->state);
3966                                         set_bit(STRIPE_HANDLE, &sh->state);
3967                                 }
3968                         }
3969                 }
3970         }
3971         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3972                 /* want reconstruct write, but need to get some data */
3973                 int qread =0;
3974                 rcw = 0;
3975                 for (i = disks; i--; ) {
3976                         struct r5dev *dev = &sh->dev[i];
3977                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3978                             i != sh->pd_idx && i != sh->qd_idx &&
3979                             !test_bit(R5_LOCKED, &dev->flags) &&
3980                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3981                               test_bit(R5_Wantcompute, &dev->flags))) {
3982                                 rcw++;
3983                                 if (test_bit(R5_Insync, &dev->flags) &&
3984                                     test_bit(STRIPE_PREREAD_ACTIVE,
3985                                              &sh->state)) {
3986                                         pr_debug("Read_old block "
3987                                                 "%d for Reconstruct\n", i);
3988                                         set_bit(R5_LOCKED, &dev->flags);
3989                                         set_bit(R5_Wantread, &dev->flags);
3990                                         s->locked++;
3991                                         qread++;
3992                                 } else {
3993                                         set_bit(STRIPE_DELAYED, &sh->state);
3994                                         set_bit(STRIPE_HANDLE, &sh->state);
3995                                 }
3996                         }
3997                 }
3998                 if (rcw && conf->mddev->queue)
3999                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4000                                           (unsigned long long)sh->sector,
4001                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4002         }
4003
4004         if (rcw > disks && rmw > disks &&
4005             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4006                 set_bit(STRIPE_DELAYED, &sh->state);
4007
4008         /* now if nothing is locked, and if we have enough data,
4009          * we can start a write request
4010          */
4011         /* since handle_stripe can be called at any time we need to handle the
4012          * case where a compute block operation has been submitted and then a
4013          * subsequent call wants to start a write request.  raid_run_ops only
4014          * handles the case where compute block and reconstruct are requested
4015          * simultaneously.  If this is not the case then new writes need to be
4016          * held off until the compute completes.
4017          */
4018         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4019             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4020              !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4021                 schedule_reconstruction(sh, s, rcw == 0, 0);
4022         return 0;
4023 }
4024
4025 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4026                                 struct stripe_head_state *s, int disks)
4027 {
4028         struct r5dev *dev = NULL;
4029
4030         BUG_ON(sh->batch_head);
4031         set_bit(STRIPE_HANDLE, &sh->state);
4032
4033         switch (sh->check_state) {
4034         case check_state_idle:
4035                 /* start a new check operation if there are no failures */
4036                 if (s->failed == 0) {
4037                         BUG_ON(s->uptodate != disks);
4038                         sh->check_state = check_state_run;
4039                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4041                         s->uptodate--;
4042                         break;
4043                 }
4044                 dev = &sh->dev[s->failed_num[0]];
4045                 /* fall through */
4046         case check_state_compute_result:
4047                 sh->check_state = check_state_idle;
4048                 if (!dev)
4049                         dev = &sh->dev[sh->pd_idx];
4050
4051                 /* check that a write has not made the stripe insync */
4052                 if (test_bit(STRIPE_INSYNC, &sh->state))
4053                         break;
4054
4055                 /* either failed parity check, or recovery is happening */
4056                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4057                 BUG_ON(s->uptodate != disks);
4058
4059                 set_bit(R5_LOCKED, &dev->flags);
4060                 s->locked++;
4061                 set_bit(R5_Wantwrite, &dev->flags);
4062
4063                 clear_bit(STRIPE_DEGRADED, &sh->state);
4064                 set_bit(STRIPE_INSYNC, &sh->state);
4065                 break;
4066         case check_state_run:
4067                 break; /* we will be called again upon completion */
4068         case check_state_check_result:
4069                 sh->check_state = check_state_idle;
4070
4071                 /* if a failure occurred during the check operation, leave
4072                  * STRIPE_INSYNC not set and let the stripe be handled again
4073                  */
4074                 if (s->failed)
4075                         break;
4076
4077                 /* handle a successful check operation, if parity is correct
4078                  * we are done.  Otherwise update the mismatch count and repair
4079                  * parity if !MD_RECOVERY_CHECK
4080                  */
4081                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4082                         /* parity is correct (on disc,
4083                          * not in buffer any more)
4084                          */
4085                         set_bit(STRIPE_INSYNC, &sh->state);
4086                 else {
4087                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4088                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4089                                 /* don't try to repair!! */
4090                                 set_bit(STRIPE_INSYNC, &sh->state);
4091                                 pr_warn_ratelimited("%s: mismatch sector in range "
4092                                                     "%llu-%llu\n", mdname(conf->mddev),
4093                                                     (unsigned long long) sh->sector,
4094                                                     (unsigned long long) sh->sector +
4095                                                     STRIPE_SECTORS);
4096                         } else {
4097                                 sh->check_state = check_state_compute_run;
4098                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4099                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4100                                 set_bit(R5_Wantcompute,
4101                                         &sh->dev[sh->pd_idx].flags);
4102                                 sh->ops.target = sh->pd_idx;
4103                                 sh->ops.target2 = -1;
4104                                 s->uptodate++;
4105                         }
4106                 }
4107                 break;
4108         case check_state_compute_run:
4109                 break;
4110         default:
4111                 pr_err("%s: unknown check_state: %d sector: %llu\n",
4112                        __func__, sh->check_state,
4113                        (unsigned long long) sh->sector);
4114                 BUG();
4115         }
4116 }
4117
4118 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4119                                   struct stripe_head_state *s,
4120                                   int disks)
4121 {
4122         int pd_idx = sh->pd_idx;
4123         int qd_idx = sh->qd_idx;
4124         struct r5dev *dev;
4125
4126         BUG_ON(sh->batch_head);
4127         set_bit(STRIPE_HANDLE, &sh->state);
4128
4129         BUG_ON(s->failed > 2);
4130
4131         /* Want to check and possibly repair P and Q.
4132          * However there could be one 'failed' device, in which
4133          * case we can only check one of them, possibly using the
4134          * other to generate missing data
4135          */
4136
4137         switch (sh->check_state) {
4138         case check_state_idle:
4139                 /* start a new check operation if there are < 2 failures */
4140                 if (s->failed == s->q_failed) {
4141                         /* The only possible failed device holds Q, so it
4142                          * makes sense to check P (If anything else were failed,
4143                          * we would have used P to recreate it).
4144                          */
4145                         sh->check_state = check_state_run;
4146                 }
4147                 if (!s->q_failed && s->failed < 2) {
4148                         /* Q is not failed, and we didn't use it to generate
4149                          * anything, so it makes sense to check it
4150                          */
4151                         if (sh->check_state == check_state_run)
4152                                 sh->check_state = check_state_run_pq;
4153                         else
4154                                 sh->check_state = check_state_run_q;
4155                 }
4156
4157                 /* discard potentially stale zero_sum_result */
4158                 sh->ops.zero_sum_result = 0;
4159
4160                 if (sh->check_state == check_state_run) {
4161                         /* async_xor_zero_sum destroys the contents of P */
4162                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4163                         s->uptodate--;
4164                 }
4165                 if (sh->check_state >= check_state_run &&
4166                     sh->check_state <= check_state_run_pq) {
4167                         /* async_syndrome_zero_sum preserves P and Q, so
4168                          * no need to mark them !uptodate here
4169                          */
4170                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
4171                         break;
4172                 }
4173
4174                 /* we have 2-disk failure */
4175                 BUG_ON(s->failed != 2);
4176                 /* fall through */
4177         case check_state_compute_result:
4178                 sh->check_state = check_state_idle;
4179
4180                 /* check that a write has not made the stripe insync */
4181                 if (test_bit(STRIPE_INSYNC, &sh->state))
4182                         break;
4183
4184                 /* now write out any block on a failed drive,
4185                  * or P or Q if they were recomputed
4186                  */
4187                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4188                 if (s->failed == 2) {
4189                         dev = &sh->dev[s->failed_num[1]];
4190                         s->locked++;
4191                         set_bit(R5_LOCKED, &dev->flags);
4192                         set_bit(R5_Wantwrite, &dev->flags);
4193                 }
4194                 if (s->failed >= 1) {
4195                         dev = &sh->dev[s->failed_num[0]];
4196                         s->locked++;
4197                         set_bit(R5_LOCKED, &dev->flags);
4198                         set_bit(R5_Wantwrite, &dev->flags);
4199                 }
4200                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4201                         dev = &sh->dev[pd_idx];
4202                         s->locked++;
4203                         set_bit(R5_LOCKED, &dev->flags);
4204                         set_bit(R5_Wantwrite, &dev->flags);
4205                 }
4206                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4207                         dev = &sh->dev[qd_idx];
4208                         s->locked++;
4209                         set_bit(R5_LOCKED, &dev->flags);
4210                         set_bit(R5_Wantwrite, &dev->flags);
4211                 }
4212                 clear_bit(STRIPE_DEGRADED, &sh->state);
4213
4214                 set_bit(STRIPE_INSYNC, &sh->state);
4215                 break;
4216         case check_state_run:
4217         case check_state_run_q:
4218         case check_state_run_pq:
4219                 break; /* we will be called again upon completion */
4220         case check_state_check_result:
4221                 sh->check_state = check_state_idle;
4222
4223                 /* handle a successful check operation, if parity is correct
4224                  * we are done.  Otherwise update the mismatch count and repair
4225                  * parity if !MD_RECOVERY_CHECK
4226                  */
4227                 if (sh->ops.zero_sum_result == 0) {
4228                         /* both parities are correct */
4229                         if (!s->failed)
4230                                 set_bit(STRIPE_INSYNC, &sh->state);
4231                         else {
4232                                 /* in contrast to the raid5 case we can validate
4233                                  * parity, but still have a failure to write
4234                                  * back
4235                                  */
4236                                 sh->check_state = check_state_compute_result;
4237                                 /* Returning at this point means that we may go
4238                                  * off and bring p and/or q uptodate again so
4239                                  * we make sure to check zero_sum_result again
4240                                  * to verify if p or q need writeback
4241                                  */
4242                         }
4243                 } else {
4244                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4245                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4246                                 /* don't try to repair!! */
4247                                 set_bit(STRIPE_INSYNC, &sh->state);
4248                                 pr_warn_ratelimited("%s: mismatch sector in range "
4249                                                     "%llu-%llu\n", mdname(conf->mddev),
4250                                                     (unsigned long long) sh->sector,
4251                                                     (unsigned long long) sh->sector +
4252                                                     STRIPE_SECTORS);
4253                         } else {
4254                                 int *target = &sh->ops.target;
4255
4256                                 sh->ops.target = -1;
4257                                 sh->ops.target2 = -1;
4258                                 sh->check_state = check_state_compute_run;
4259                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4260                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4261                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4262                                         set_bit(R5_Wantcompute,
4263                                                 &sh->dev[pd_idx].flags);
4264                                         *target = pd_idx;
4265                                         target = &sh->ops.target2;
4266                                         s->uptodate++;
4267                                 }
4268                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4269                                         set_bit(R5_Wantcompute,
4270                                                 &sh->dev[qd_idx].flags);
4271                                         *target = qd_idx;
4272                                         s->uptodate++;
4273                                 }
4274                         }
4275                 }
4276                 break;
4277         case check_state_compute_run:
4278                 break;
4279         default:
4280                 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4281                         __func__, sh->check_state,
4282                         (unsigned long long) sh->sector);
4283                 BUG();
4284         }
4285 }
4286
4287 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4288 {
4289         int i;
4290
4291         /* We have read all the blocks in this stripe and now we need to
4292          * copy some of them into a target stripe for expand.
4293          */
4294         struct dma_async_tx_descriptor *tx = NULL;
4295         BUG_ON(sh->batch_head);
4296         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4297         for (i = 0; i < sh->disks; i++)
4298                 if (i != sh->pd_idx && i != sh->qd_idx) {
4299                         int dd_idx, j;
4300                         struct stripe_head *sh2;
4301                         struct async_submit_ctl submit;
4302
4303                         sector_t bn = raid5_compute_blocknr(sh, i, 1);
4304                         sector_t s = raid5_compute_sector(conf, bn, 0,
4305                                                           &dd_idx, NULL);
4306                         sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4307                         if (sh2 == NULL)
4308                                 /* so far only the early blocks of this stripe
4309                                  * have been requested.  When later blocks
4310                                  * get requested, we will try again
4311                                  */
4312                                 continue;
4313                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4314                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4315                                 /* must have already done this block */
4316                                 raid5_release_stripe(sh2);
4317                                 continue;
4318                         }
4319
4320                         /* place all the copies on one channel */
4321                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4322                         tx = async_memcpy(sh2->dev[dd_idx].page,
4323                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
4324                                           &submit);
4325
4326                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4327                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4328                         for (j = 0; j < conf->raid_disks; j++)
4329                                 if (j != sh2->pd_idx &&
4330                                     j != sh2->qd_idx &&
4331                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
4332                                         break;
4333                         if (j == conf->raid_disks) {
4334                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4335                                 set_bit(STRIPE_HANDLE, &sh2->state);
4336                         }
4337                         raid5_release_stripe(sh2);
4338
4339                 }
4340         /* done submitting copies, wait for them to complete */
4341         async_tx_quiesce(&tx);
4342 }
4343
4344 /*
4345  * handle_stripe - do things to a stripe.
4346  *
4347  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4348  * state of various bits to see what needs to be done.
4349  * Possible results:
4350  *    return some read requests which now have data
4351  *    return some write requests which are safely on storage
4352  *    schedule a read on some buffers
4353  *    schedule a write of some buffers
4354  *    return confirmation of parity correctness
4355  *
4356  */
4357
4358 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4359 {
4360         struct r5conf *conf = sh->raid_conf;
4361         int disks = sh->disks;
4362         struct r5dev *dev;
4363         int i;
4364         int do_recovery = 0;
4365
4366         memset(s, 0, sizeof(*s));
4367
4368         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4369         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4370         s->failed_num[0] = -1;
4371         s->failed_num[1] = -1;
4372         s->log_failed = r5l_log_disk_error(conf);
4373
4374         /* Now to look around and see what can be done */
4375         rcu_read_lock();
4376         for (i=disks; i--; ) {
4377                 struct md_rdev *rdev;
4378                 sector_t first_bad;
4379                 int bad_sectors;
4380                 int is_bad = 0;
4381
4382                 dev = &sh->dev[i];
4383
4384                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4385                          i, dev->flags,
4386                          dev->toread, dev->towrite, dev->written);
4387                 /* maybe we can reply to a read
4388                  *
4389                  * new wantfill requests are only permitted while
4390                  * ops_complete_biofill is guaranteed to be inactive
4391                  */
4392                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4393                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4394                         set_bit(R5_Wantfill, &dev->flags);
4395
4396                 /* now count some things */
4397                 if (test_bit(R5_LOCKED, &dev->flags))
4398                         s->locked++;
4399                 if (test_bit(R5_UPTODATE, &dev->flags))
4400                         s->uptodate++;
4401                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4402                         s->compute++;
4403                         BUG_ON(s->compute > 2);
4404                 }
4405
4406                 if (test_bit(R5_Wantfill, &dev->flags))
4407                         s->to_fill++;
4408                 else if (dev->toread)
4409                         s->to_read++;
4410                 if (dev->towrite) {
4411                         s->to_write++;
4412                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4413                                 s->non_overwrite++;
4414                 }
4415                 if (dev->written)
4416                         s->written++;
4417                 /* Prefer to use the replacement for reads, but only
4418                  * if it is recovered enough and has no bad blocks.
4419                  */
4420                 rdev = rcu_dereference(conf->disks[i].replacement);
4421                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4422                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4423                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4424                                  &first_bad, &bad_sectors))
4425                         set_bit(R5_ReadRepl, &dev->flags);
4426                 else {
4427                         if (rdev && !test_bit(Faulty, &rdev->flags))
4428                                 set_bit(R5_NeedReplace, &dev->flags);
4429                         else
4430                                 clear_bit(R5_NeedReplace, &dev->flags);
4431                         rdev = rcu_dereference(conf->disks[i].rdev);
4432                         clear_bit(R5_ReadRepl, &dev->flags);
4433                 }
4434                 if (rdev && test_bit(Faulty, &rdev->flags))
4435                         rdev = NULL;
4436                 if (rdev) {
4437                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4438                                              &first_bad, &bad_sectors);
4439                         if (s->blocked_rdev == NULL
4440                             && (test_bit(Blocked, &rdev->flags)
4441                                 || is_bad < 0)) {
4442                                 if (is_bad < 0)
4443                                         set_bit(BlockedBadBlocks,
4444                                                 &rdev->flags);
4445                                 s->blocked_rdev = rdev;
4446                                 atomic_inc(&rdev->nr_pending);
4447                         }
4448                 }
4449                 clear_bit(R5_Insync, &dev->flags);
4450                 if (!rdev)
4451                         /* Not in-sync */;
4452                 else if (is_bad) {
4453                         /* also not in-sync */
4454                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4455                             test_bit(R5_UPTODATE, &dev->flags)) {
4456                                 /* treat as in-sync, but with a read error
4457                                  * which we can now try to correct
4458                                  */
4459                                 set_bit(R5_Insync, &dev->flags);
4460                                 set_bit(R5_ReadError, &dev->flags);
4461                         }
4462                 } else if (test_bit(In_sync, &rdev->flags))
4463                         set_bit(R5_Insync, &dev->flags);
4464                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4465                         /* in sync if before recovery_offset */
4466                         set_bit(R5_Insync, &dev->flags);
4467                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4468                          test_bit(R5_Expanded, &dev->flags))
4469                         /* If we've reshaped into here, we assume it is Insync.
4470                          * We will shortly update recovery_offset to make
4471                          * it official.
4472                          */
4473                         set_bit(R5_Insync, &dev->flags);
4474
4475                 if (test_bit(R5_WriteError, &dev->flags)) {
4476                         /* This flag does not apply to '.replacement'
4477                          * only to .rdev, so make sure to check that*/
4478                         struct md_rdev *rdev2 = rcu_dereference(
4479                                 conf->disks[i].rdev);
4480                         if (rdev2 == rdev)
4481                                 clear_bit(R5_Insync, &dev->flags);
4482                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4483                                 s->handle_bad_blocks = 1;
4484                                 atomic_inc(&rdev2->nr_pending);
4485                         } else
4486                                 clear_bit(R5_WriteError, &dev->flags);
4487                 }
4488                 if (test_bit(R5_MadeGood, &dev->flags)) {
4489                         /* This flag does not apply to '.replacement'
4490                          * only to .rdev, so make sure to check that*/
4491                         struct md_rdev *rdev2 = rcu_dereference(
4492                                 conf->disks[i].rdev);
4493                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4494                                 s->handle_bad_blocks = 1;
4495                                 atomic_inc(&rdev2->nr_pending);
4496                         } else
4497                                 clear_bit(R5_MadeGood, &dev->flags);
4498                 }
4499                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4500                         struct md_rdev *rdev2 = rcu_dereference(
4501                                 conf->disks[i].replacement);
4502                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4503                                 s->handle_bad_blocks = 1;
4504                                 atomic_inc(&rdev2->nr_pending);
4505                         } else
4506                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4507                 }
4508                 if (!test_bit(R5_Insync, &dev->flags)) {
4509                         /* The ReadError flag will just be confusing now */
4510                         clear_bit(R5_ReadError, &dev->flags);
4511                         clear_bit(R5_ReWrite, &dev->flags);
4512                 }
4513                 if (test_bit(R5_ReadError, &dev->flags))
4514                         clear_bit(R5_Insync, &dev->flags);
4515                 if (!test_bit(R5_Insync, &dev->flags)) {
4516                         if (s->failed < 2)
4517                                 s->failed_num[s->failed] = i;
4518                         s->failed++;
4519                         if (rdev && !test_bit(Faulty, &rdev->flags))
4520                                 do_recovery = 1;
4521                 }
4522
4523                 if (test_bit(R5_InJournal, &dev->flags))
4524                         s->injournal++;
4525                 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4526                         s->just_cached++;
4527         }
4528         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4529                 /* If there is a failed device being replaced,
4530                  *     we must be recovering.
4531                  * else if we are after recovery_cp, we must be syncing
4532                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4533                  * else we can only be replacing
4534                  * sync and recovery both need to read all devices, and so
4535                  * use the same flag.
4536                  */
4537                 if (do_recovery ||
4538                     sh->sector >= conf->mddev->recovery_cp ||
4539                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4540                         s->syncing = 1;
4541                 else
4542                         s->replacing = 1;
4543         }
4544         rcu_read_unlock();
4545 }
4546
4547 static int clear_batch_ready(struct stripe_head *sh)
4548 {
4549         /* Return '1' if this is a member of batch, or
4550          * '0' if it is a lone stripe or a head which can now be
4551          * handled.
4552          */
4553         struct stripe_head *tmp;
4554         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4555                 return (sh->batch_head && sh->batch_head != sh);
4556         spin_lock(&sh->stripe_lock);
4557         if (!sh->batch_head) {
4558                 spin_unlock(&sh->stripe_lock);
4559                 return 0;
4560         }
4561
4562         /*
4563          * this stripe could be added to a batch list before we check
4564          * BATCH_READY, skips it
4565          */
4566         if (sh->batch_head != sh) {
4567                 spin_unlock(&sh->stripe_lock);
4568                 return 1;
4569         }
4570         spin_lock(&sh->batch_lock);
4571         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4572                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4573         spin_unlock(&sh->batch_lock);
4574         spin_unlock(&sh->stripe_lock);
4575
4576         /*
4577          * BATCH_READY is cleared, no new stripes can be added.
4578          * batch_list can be accessed without lock
4579          */
4580         return 0;
4581 }
4582
4583 static void break_stripe_batch_list(struct stripe_head *head_sh,
4584                                     unsigned long handle_flags)
4585 {
4586         struct stripe_head *sh, *next;
4587         int i;
4588         int do_wakeup = 0;
4589
4590         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4591
4592                 list_del_init(&sh->batch_list);
4593
4594                 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4595                                           (1 << STRIPE_SYNCING) |
4596                                           (1 << STRIPE_REPLACED) |
4597                                           (1 << STRIPE_DELAYED) |
4598                                           (1 << STRIPE_BIT_DELAY) |
4599                                           (1 << STRIPE_FULL_WRITE) |
4600                                           (1 << STRIPE_BIOFILL_RUN) |
4601                                           (1 << STRIPE_COMPUTE_RUN)  |
4602                                           (1 << STRIPE_OPS_REQ_PENDING) |
4603                                           (1 << STRIPE_DISCARD) |
4604                                           (1 << STRIPE_BATCH_READY) |
4605                                           (1 << STRIPE_BATCH_ERR) |
4606                                           (1 << STRIPE_BITMAP_PENDING)),
4607                         "stripe state: %lx\n", sh->state);
4608                 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4609                                               (1 << STRIPE_REPLACED)),
4610                         "head stripe state: %lx\n", head_sh->state);
4611
4612                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4613                                             (1 << STRIPE_PREREAD_ACTIVE) |
4614                                             (1 << STRIPE_DEGRADED)),
4615                               head_sh->state & (1 << STRIPE_INSYNC));
4616
4617                 sh->check_state = head_sh->check_state;
4618                 sh->reconstruct_state = head_sh->reconstruct_state;
4619                 for (i = 0; i < sh->disks; i++) {
4620                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4621                                 do_wakeup = 1;
4622                         sh->dev[i].flags = head_sh->dev[i].flags &
4623                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4624                 }
4625                 spin_lock_irq(&sh->stripe_lock);
4626                 sh->batch_head = NULL;
4627                 spin_unlock_irq(&sh->stripe_lock);
4628                 if (handle_flags == 0 ||
4629                     sh->state & handle_flags)
4630                         set_bit(STRIPE_HANDLE, &sh->state);
4631                 raid5_release_stripe(sh);
4632         }
4633         spin_lock_irq(&head_sh->stripe_lock);
4634         head_sh->batch_head = NULL;
4635         spin_unlock_irq(&head_sh->stripe_lock);
4636         for (i = 0; i < head_sh->disks; i++)
4637                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4638                         do_wakeup = 1;
4639         if (head_sh->state & handle_flags)
4640                 set_bit(STRIPE_HANDLE, &head_sh->state);
4641
4642         if (do_wakeup)
4643                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4644 }
4645
4646 static void handle_stripe(struct stripe_head *sh)
4647 {
4648         struct stripe_head_state s;
4649         struct r5conf *conf = sh->raid_conf;
4650         int i;
4651         int prexor;
4652         int disks = sh->disks;
4653         struct r5dev *pdev, *qdev;
4654
4655         clear_bit(STRIPE_HANDLE, &sh->state);
4656         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4657                 /* already being handled, ensure it gets handled
4658                  * again when current action finishes */
4659                 set_bit(STRIPE_HANDLE, &sh->state);
4660                 return;
4661         }
4662
4663         if (clear_batch_ready(sh) ) {
4664                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4665                 return;
4666         }
4667
4668         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4669                 break_stripe_batch_list(sh, 0);
4670
4671         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4672                 spin_lock(&sh->stripe_lock);
4673                 /*
4674                  * Cannot process 'sync' concurrently with 'discard'.
4675                  * Flush data in r5cache before 'sync'.
4676                  */
4677                 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4678                     !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4679                     !test_bit(STRIPE_DISCARD, &sh->state) &&
4680                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4681                         set_bit(STRIPE_SYNCING, &sh->state);
4682                         clear_bit(STRIPE_INSYNC, &sh->state);
4683                         clear_bit(STRIPE_REPLACED, &sh->state);
4684                 }
4685                 spin_unlock(&sh->stripe_lock);
4686         }
4687         clear_bit(STRIPE_DELAYED, &sh->state);
4688
4689         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4690                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4691                (unsigned long long)sh->sector, sh->state,
4692                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4693                sh->check_state, sh->reconstruct_state);
4694
4695         analyse_stripe(sh, &s);
4696
4697         if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4698                 goto finish;
4699
4700         if (s.handle_bad_blocks ||
4701             test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4702                 set_bit(STRIPE_HANDLE, &sh->state);
4703                 goto finish;
4704         }
4705
4706         if (unlikely(s.blocked_rdev)) {
4707                 if (s.syncing || s.expanding || s.expanded ||
4708                     s.replacing || s.to_write || s.written) {
4709                         set_bit(STRIPE_HANDLE, &sh->state);
4710                         goto finish;
4711                 }
4712                 /* There is nothing for the blocked_rdev to block */
4713                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4714                 s.blocked_rdev = NULL;
4715         }
4716
4717         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4718                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4719                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4720         }
4721
4722         pr_debug("locked=%d uptodate=%d to_read=%d"
4723                " to_write=%d failed=%d failed_num=%d,%d\n",
4724                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4725                s.failed_num[0], s.failed_num[1]);
4726         /*
4727          * check if the array has lost more than max_degraded devices and,
4728          * if so, some requests might need to be failed.
4729          *
4730          * When journal device failed (log_failed), we will only process
4731          * the stripe if there is data need write to raid disks
4732          */
4733         if (s.failed > conf->max_degraded ||
4734             (s.log_failed && s.injournal == 0)) {
4735                 sh->check_state = 0;
4736                 sh->reconstruct_state = 0;
4737                 break_stripe_batch_list(sh, 0);
4738                 if (s.to_read+s.to_write+s.written)
4739                         handle_failed_stripe(conf, sh, &s, disks);
4740                 if (s.syncing + s.replacing)
4741                         handle_failed_sync(conf, sh, &s);
4742         }
4743
4744         /* Now we check to see if any write operations have recently
4745          * completed
4746          */
4747         prexor = 0;
4748         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4749                 prexor = 1;
4750         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4751             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4752                 sh->reconstruct_state = reconstruct_state_idle;
4753
4754                 /* All the 'written' buffers and the parity block are ready to
4755                  * be written back to disk
4756                  */
4757                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4758                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4759                 BUG_ON(sh->qd_idx >= 0 &&
4760                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4761                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4762                 for (i = disks; i--; ) {
4763                         struct r5dev *dev = &sh->dev[i];
4764                         if (test_bit(R5_LOCKED, &dev->flags) &&
4765                                 (i == sh->pd_idx || i == sh->qd_idx ||
4766                                  dev->written || test_bit(R5_InJournal,
4767                                                           &dev->flags))) {
4768                                 pr_debug("Writing block %d\n", i);
4769                                 set_bit(R5_Wantwrite, &dev->flags);
4770                                 if (prexor)
4771                                         continue;
4772                                 if (s.failed > 1)
4773                                         continue;
4774                                 if (!test_bit(R5_Insync, &dev->flags) ||
4775                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4776                                      s.failed == 0))
4777                                         set_bit(STRIPE_INSYNC, &sh->state);
4778                         }
4779                 }
4780                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4781                         s.dec_preread_active = 1;
4782         }
4783
4784         /*
4785          * might be able to return some write requests if the parity blocks
4786          * are safe, or on a failed drive
4787          */
4788         pdev = &sh->dev[sh->pd_idx];
4789         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4790                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4791         qdev = &sh->dev[sh->qd_idx];
4792         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4793                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4794                 || conf->level < 6;
4795
4796         if (s.written &&
4797             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4798                              && !test_bit(R5_LOCKED, &pdev->flags)
4799                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4800                                  test_bit(R5_Discard, &pdev->flags))))) &&
4801             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4802                              && !test_bit(R5_LOCKED, &qdev->flags)
4803                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4804                                  test_bit(R5_Discard, &qdev->flags))))))
4805                 handle_stripe_clean_event(conf, sh, disks);
4806
4807         if (s.just_cached)
4808                 r5c_handle_cached_data_endio(conf, sh, disks);
4809         log_stripe_write_finished(sh);
4810
4811         /* Now we might consider reading some blocks, either to check/generate
4812          * parity, or to satisfy requests
4813          * or to load a block that is being partially written.
4814          */
4815         if (s.to_read || s.non_overwrite
4816             || (conf->level == 6 && s.to_write && s.failed)
4817             || (s.syncing && (s.uptodate + s.compute < disks))
4818             || s.replacing
4819             || s.expanding)
4820                 handle_stripe_fill(sh, &s, disks);
4821
4822         /*
4823          * When the stripe finishes full journal write cycle (write to journal
4824          * and raid disk), this is the clean up procedure so it is ready for
4825          * next operation.
4826          */
4827         r5c_finish_stripe_write_out(conf, sh, &s);
4828
4829         /*
4830          * Now to consider new write requests, cache write back and what else,
4831          * if anything should be read.  We do not handle new writes when:
4832          * 1/ A 'write' operation (copy+xor) is already in flight.
4833          * 2/ A 'check' operation is in flight, as it may clobber the parity
4834          *    block.
4835          * 3/ A r5c cache log write is in flight.
4836          */
4837
4838         if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4839                 if (!r5c_is_writeback(conf->log)) {
4840                         if (s.to_write)
4841                                 handle_stripe_dirtying(conf, sh, &s, disks);
4842                 } else { /* write back cache */
4843                         int ret = 0;
4844
4845                         /* First, try handle writes in caching phase */
4846                         if (s.to_write)
4847                                 ret = r5c_try_caching_write(conf, sh, &s,
4848                                                             disks);
4849                         /*
4850                          * If caching phase failed: ret == -EAGAIN
4851                          *    OR
4852                          * stripe under reclaim: !caching && injournal
4853                          *
4854                          * fall back to handle_stripe_dirtying()
4855                          */
4856                         if (ret == -EAGAIN ||
4857                             /* stripe under reclaim: !caching && injournal */
4858                             (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4859                              s.injournal > 0)) {
4860                                 ret = handle_stripe_dirtying(conf, sh, &s,
4861                                                              disks);
4862                                 if (ret == -EAGAIN)
4863                                         goto finish;
4864                         }
4865                 }
4866         }
4867
4868         /* maybe we need to check and possibly fix the parity for this stripe
4869          * Any reads will already have been scheduled, so we just see if enough
4870          * data is available.  The parity check is held off while parity
4871          * dependent operations are in flight.
4872          */
4873         if (sh->check_state ||
4874             (s.syncing && s.locked == 0 &&
4875              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4876              !test_bit(STRIPE_INSYNC, &sh->state))) {
4877                 if (conf->level == 6)
4878                         handle_parity_checks6(conf, sh, &s, disks);
4879                 else
4880                         handle_parity_checks5(conf, sh, &s, disks);
4881         }
4882
4883         if ((s.replacing || s.syncing) && s.locked == 0
4884             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4885             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4886                 /* Write out to replacement devices where possible */
4887                 for (i = 0; i < conf->raid_disks; i++)
4888                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4889                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4890                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4891                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4892                                 s.locked++;
4893                         }
4894                 if (s.replacing)
4895                         set_bit(STRIPE_INSYNC, &sh->state);
4896                 set_bit(STRIPE_REPLACED, &sh->state);
4897         }
4898         if ((s.syncing || s.replacing) && s.locked == 0 &&
4899             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4900             test_bit(STRIPE_INSYNC, &sh->state)) {
4901                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4902                 clear_bit(STRIPE_SYNCING, &sh->state);
4903                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4904                         wake_up(&conf->wait_for_overlap);
4905         }
4906
4907         /* If the failed drives are just a ReadError, then we might need
4908          * to progress the repair/check process
4909          */
4910         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4911                 for (i = 0; i < s.failed; i++) {
4912                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4913                         if (test_bit(R5_ReadError, &dev->flags)
4914                             && !test_bit(R5_LOCKED, &dev->flags)
4915                             && test_bit(R5_UPTODATE, &dev->flags)
4916                                 ) {
4917                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4918                                         set_bit(R5_Wantwrite, &dev->flags);
4919                                         set_bit(R5_ReWrite, &dev->flags);
4920                                         set_bit(R5_LOCKED, &dev->flags);
4921                                         s.locked++;
4922                                 } else {
4923                                         /* let's read it back */
4924                                         set_bit(R5_Wantread, &dev->flags);
4925                                         set_bit(R5_LOCKED, &dev->flags);
4926                                         s.locked++;
4927                                 }
4928                         }
4929                 }
4930
4931         /* Finish reconstruct operations initiated by the expansion process */
4932         if (sh->reconstruct_state == reconstruct_state_result) {
4933                 struct stripe_head *sh_src
4934                         = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4935                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4936                         /* sh cannot be written until sh_src has been read.
4937                          * so arrange for sh to be delayed a little
4938                          */
4939                         set_bit(STRIPE_DELAYED, &sh->state);
4940                         set_bit(STRIPE_HANDLE, &sh->state);
4941                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4942                                               &sh_src->state))
4943                                 atomic_inc(&conf->preread_active_stripes);
4944                         raid5_release_stripe(sh_src);
4945                         goto finish;
4946                 }
4947                 if (sh_src)
4948                         raid5_release_stripe(sh_src);
4949
4950                 sh->reconstruct_state = reconstruct_state_idle;
4951                 clear_bit(STRIPE_EXPANDING, &sh->state);
4952                 for (i = conf->raid_disks; i--; ) {
4953                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4954                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4955                         s.locked++;
4956                 }
4957         }
4958
4959         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4960             !sh->reconstruct_state) {
4961                 /* Need to write out all blocks after computing parity */
4962                 sh->disks = conf->raid_disks;
4963                 stripe_set_idx(sh->sector, conf, 0, sh);
4964                 schedule_reconstruction(sh, &s, 1, 1);
4965         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4966                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4967                 atomic_dec(&conf->reshape_stripes);
4968                 wake_up(&conf->wait_for_overlap);
4969                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4970         }
4971
4972         if (s.expanding && s.locked == 0 &&
4973             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4974                 handle_stripe_expansion(conf, sh);
4975
4976 finish:
4977         /* wait for this device to become unblocked */
4978         if (unlikely(s.blocked_rdev)) {
4979                 if (conf->mddev->external)
4980                         md_wait_for_blocked_rdev(s.blocked_rdev,
4981                                                  conf->mddev);
4982                 else
4983                         /* Internal metadata will immediately
4984                          * be written by raid5d, so we don't
4985                          * need to wait here.
4986                          */
4987                         rdev_dec_pending(s.blocked_rdev,
4988                                          conf->mddev);
4989         }
4990
4991         if (s.handle_bad_blocks)
4992                 for (i = disks; i--; ) {
4993                         struct md_rdev *rdev;
4994                         struct r5dev *dev = &sh->dev[i];
4995                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4996                                 /* We own a safe reference to the rdev */
4997                                 rdev = conf->disks[i].rdev;
4998                                 if (!rdev_set_badblocks(rdev, sh->sector,
4999                                                         STRIPE_SECTORS, 0))
5000                                         md_error(conf->mddev, rdev);
5001                                 rdev_dec_pending(rdev, conf->mddev);
5002                         }
5003                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5004                                 rdev = conf->disks[i].rdev;
5005                                 rdev_clear_badblocks(rdev, sh->sector,
5006                                                      STRIPE_SECTORS, 0);
5007                                 rdev_dec_pending(rdev, conf->mddev);
5008                         }
5009                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5010                                 rdev = conf->disks[i].replacement;
5011                                 if (!rdev)
5012                                         /* rdev have been moved down */
5013                                         rdev = conf->disks[i].rdev;
5014                                 rdev_clear_badblocks(rdev, sh->sector,
5015                                                      STRIPE_SECTORS, 0);
5016                                 rdev_dec_pending(rdev, conf->mddev);
5017                         }
5018                 }
5019
5020         if (s.ops_request)
5021                 raid_run_ops(sh, s.ops_request);
5022
5023         ops_run_io(sh, &s);
5024
5025         if (s.dec_preread_active) {
5026                 /* We delay this until after ops_run_io so that if make_request
5027                  * is waiting on a flush, it won't continue until the writes
5028                  * have actually been submitted.
5029                  */
5030                 atomic_dec(&conf->preread_active_stripes);
5031                 if (atomic_read(&conf->preread_active_stripes) <
5032                     IO_THRESHOLD)
5033                         md_wakeup_thread(conf->mddev->thread);
5034         }
5035
5036         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5037 }
5038
5039 static void raid5_activate_delayed(struct r5conf *conf)
5040 {
5041         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5042                 while (!list_empty(&conf->delayed_list)) {
5043                         struct list_head *l = conf->delayed_list.next;
5044                         struct stripe_head *sh;
5045                         sh = list_entry(l, struct stripe_head, lru);
5046                         list_del_init(l);
5047                         clear_bit(STRIPE_DELAYED, &sh->state);
5048                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5049                                 atomic_inc(&conf->preread_active_stripes);
5050                         list_add_tail(&sh->lru, &conf->hold_list);
5051                         raid5_wakeup_stripe_thread(sh);
5052                 }
5053         }
5054 }
5055
5056 static void activate_bit_delay(struct r5conf *conf,
5057         struct list_head *temp_inactive_list)
5058 {
5059         /* device_lock is held */
5060         struct list_head head;
5061         list_add(&head, &conf->bitmap_list);
5062         list_del_init(&conf->bitmap_list);
5063         while (!list_empty(&head)) {
5064                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5065                 int hash;
5066                 list_del_init(&sh->lru);
5067                 atomic_inc(&sh->count);
5068                 hash = sh->hash_lock_index;
5069                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5070         }
5071 }
5072
5073 static int raid5_congested(struct mddev *mddev, int bits)
5074 {
5075         struct r5conf *conf = mddev->private;
5076
5077         /* No difference between reads and writes.  Just check
5078          * how busy the stripe_cache is
5079          */
5080
5081         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5082                 return 1;
5083
5084         /* Also checks whether there is pressure on r5cache log space */
5085         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5086                 return 1;
5087         if (conf->quiesce)
5088                 return 1;
5089         if (atomic_read(&conf->empty_inactive_list_nr))
5090                 return 1;
5091
5092         return 0;
5093 }
5094
5095 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5096 {
5097         struct r5conf *conf = mddev->private;
5098         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5099         unsigned int chunk_sectors;
5100         unsigned int bio_sectors = bio_sectors(bio);
5101
5102         chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5103         return  chunk_sectors >=
5104                 ((sector & (chunk_sectors - 1)) + bio_sectors);
5105 }
5106
5107 /*
5108  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5109  *  later sampled by raid5d.
5110  */
5111 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112 {
5113         unsigned long flags;
5114
5115         spin_lock_irqsave(&conf->device_lock, flags);
5116
5117         bi->bi_next = conf->retry_read_aligned_list;
5118         conf->retry_read_aligned_list = bi;
5119
5120         spin_unlock_irqrestore(&conf->device_lock, flags);
5121         md_wakeup_thread(conf->mddev->thread);
5122 }
5123
5124 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125                                          unsigned int *offset)
5126 {
5127         struct bio *bi;
5128
5129         bi = conf->retry_read_aligned;
5130         if (bi) {
5131                 *offset = conf->retry_read_offset;
5132                 conf->retry_read_aligned = NULL;
5133                 return bi;
5134         }
5135         bi = conf->retry_read_aligned_list;
5136         if(bi) {
5137                 conf->retry_read_aligned_list = bi->bi_next;
5138                 bi->bi_next = NULL;
5139                 *offset = 0;
5140         }
5141
5142         return bi;
5143 }
5144
5145 /*
5146  *  The "raid5_align_endio" should check if the read succeeded and if it
5147  *  did, call bio_endio on the original bio (having bio_put the new bio
5148  *  first).
5149  *  If the read failed..
5150  */
5151 static void raid5_align_endio(struct bio *bi)
5152 {
5153         struct bio* raid_bi  = bi->bi_private;
5154         struct mddev *mddev;
5155         struct r5conf *conf;
5156         struct md_rdev *rdev;
5157         blk_status_t error = bi->bi_status;
5158
5159         bio_put(bi);
5160
5161         rdev = (void*)raid_bi->bi_next;
5162         raid_bi->bi_next = NULL;
5163         mddev = rdev->mddev;
5164         conf = mddev->private;
5165
5166         rdev_dec_pending(rdev, conf->mddev);
5167
5168         if (!error) {
5169                 bio_endio(raid_bi);
5170                 if (atomic_dec_and_test(&conf->active_aligned_reads))
5171                         wake_up(&conf->wait_for_quiescent);
5172                 return;
5173         }
5174
5175         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176
5177         add_bio_to_retry(raid_bi, conf);
5178 }
5179
5180 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5181 {
5182         struct r5conf *conf = mddev->private;
5183         int dd_idx;
5184         struct bio* align_bi;
5185         struct md_rdev *rdev;
5186         sector_t end_sector;
5187
5188         if (!in_chunk_boundary(mddev, raid_bio)) {
5189                 pr_debug("%s: non aligned\n", __func__);
5190                 return 0;
5191         }
5192         /*
5193          * use bio_clone_fast to make a copy of the bio
5194          */
5195         align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196         if (!align_bi)
5197                 return 0;
5198         /*
5199          *   set bi_end_io to a new function, and set bi_private to the
5200          *     original bio.
5201          */
5202         align_bi->bi_end_io  = raid5_align_endio;
5203         align_bi->bi_private = raid_bio;
5204         /*
5205          *      compute position
5206          */
5207         align_bi->bi_iter.bi_sector =
5208                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209                                      0, &dd_idx, NULL);
5210
5211         end_sector = bio_end_sector(align_bi);
5212         rcu_read_lock();
5213         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214         if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215             rdev->recovery_offset < end_sector) {
5216                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217                 if (rdev &&
5218                     (test_bit(Faulty, &rdev->flags) ||
5219                     !(test_bit(In_sync, &rdev->flags) ||
5220                       rdev->recovery_offset >= end_sector)))
5221                         rdev = NULL;
5222         }
5223
5224         if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225                 rcu_read_unlock();
5226                 bio_put(align_bi);
5227                 return 0;
5228         }
5229
5230         if (rdev) {
5231                 sector_t first_bad;
5232                 int bad_sectors;
5233
5234                 atomic_inc(&rdev->nr_pending);
5235                 rcu_read_unlock();
5236                 raid_bio->bi_next = (void*)rdev;
5237                 align_bi->bi_bdev =  rdev->bdev;
5238                 bio_clear_flag(align_bi, BIO_SEG_VALID);
5239
5240                 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5241                                 bio_sectors(align_bi),
5242                                 &first_bad, &bad_sectors)) {
5243                         bio_put(align_bi);
5244                         rdev_dec_pending(rdev, mddev);
5245                         return 0;
5246                 }
5247
5248                 /* No reshape active, so we can trust rdev->data_offset */
5249                 align_bi->bi_iter.bi_sector += rdev->data_offset;
5250
5251                 spin_lock_irq(&conf->device_lock);
5252                 wait_event_lock_irq(conf->wait_for_quiescent,
5253                                     conf->quiesce == 0,
5254                                     conf->device_lock);
5255                 atomic_inc(&conf->active_aligned_reads);
5256                 spin_unlock_irq(&conf->device_lock);
5257
5258                 if (mddev->gendisk)
5259                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5260                                               align_bi, disk_devt(mddev->gendisk),
5261                                               raid_bio->bi_iter.bi_sector);
5262                 generic_make_request(align_bi);
5263                 return 1;
5264         } else {
5265                 rcu_read_unlock();
5266                 bio_put(align_bi);
5267                 return 0;
5268         }
5269 }
5270
5271 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272 {
5273         struct bio *split;
5274         sector_t sector = raid_bio->bi_iter.bi_sector;
5275         unsigned chunk_sects = mddev->chunk_sectors;
5276         unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277
5278         if (sectors < bio_sectors(raid_bio)) {
5279                 struct r5conf *conf = mddev->private;
5280                 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281                 bio_chain(split, raid_bio);
5282                 generic_make_request(raid_bio);
5283                 raid_bio = split;
5284         }
5285
5286         if (!raid5_read_one_chunk(mddev, raid_bio))
5287                 return raid_bio;
5288
5289         return NULL;
5290 }
5291
5292 /* __get_priority_stripe - get the next stripe to process
5293  *
5294  * Full stripe writes are allowed to pass preread active stripes up until
5295  * the bypass_threshold is exceeded.  In general the bypass_count
5296  * increments when the handle_list is handled before the hold_list; however, it
5297  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298  * stripe with in flight i/o.  The bypass_count will be reset when the
5299  * head of the hold_list has changed, i.e. the head was promoted to the
5300  * handle_list.
5301  */
5302 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303 {
5304         struct stripe_head *sh, *tmp;
5305         struct list_head *handle_list = NULL;
5306         struct r5worker_group *wg;
5307         bool second_try = !r5c_is_writeback(conf->log) &&
5308                 !r5l_log_disk_error(conf);
5309         bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310                 r5l_log_disk_error(conf);
5311
5312 again:
5313         wg = NULL;
5314         sh = NULL;
5315         if (conf->worker_cnt_per_group == 0) {
5316                 handle_list = try_loprio ? &conf->loprio_list :
5317                                         &conf->handle_list;
5318         } else if (group != ANY_GROUP) {
5319                 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320                                 &conf->worker_groups[group].handle_list;
5321                 wg = &conf->worker_groups[group];
5322         } else {
5323                 int i;
5324                 for (i = 0; i < conf->group_cnt; i++) {
5325                         handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326                                 &conf->worker_groups[i].handle_list;
5327                         wg = &conf->worker_groups[i];
5328                         if (!list_empty(handle_list))
5329                                 break;
5330                 }
5331         }
5332
5333         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334                   __func__,
5335                   list_empty(handle_list) ? "empty" : "busy",
5336                   list_empty(&conf->hold_list) ? "empty" : "busy",
5337                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
5339         if (!list_empty(handle_list)) {
5340                 sh = list_entry(handle_list->next, typeof(*sh), lru);
5341
5342                 if (list_empty(&conf->hold_list))
5343                         conf->bypass_count = 0;
5344                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345                         if (conf->hold_list.next == conf->last_hold)
5346                                 conf->bypass_count++;
5347                         else {
5348                                 conf->last_hold = conf->hold_list.next;
5349                                 conf->bypass_count -= conf->bypass_threshold;
5350                                 if (conf->bypass_count < 0)
5351                                         conf->bypass_count = 0;
5352                         }
5353                 }
5354         } else if (!list_empty(&conf->hold_list) &&
5355                    ((conf->bypass_threshold &&
5356                      conf->bypass_count > conf->bypass_threshold) ||
5357                     atomic_read(&conf->pending_full_writes) == 0)) {
5358
5359                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
5360                         if (conf->worker_cnt_per_group == 0 ||
5361                             group == ANY_GROUP ||
5362                             !cpu_online(tmp->cpu) ||
5363                             cpu_to_group(tmp->cpu) == group) {
5364                                 sh = tmp;
5365                                 break;
5366                         }
5367                 }
5368
5369                 if (sh) {
5370                         conf->bypass_count -= conf->bypass_threshold;
5371                         if (conf->bypass_count < 0)
5372                                 conf->bypass_count = 0;
5373                 }
5374                 wg = NULL;
5375         }
5376
5377         if (!sh) {
5378                 if (second_try)
5379                         return NULL;
5380                 second_try = true;
5381                 try_loprio = !try_loprio;
5382                 goto again;
5383         }
5384
5385         if (wg) {
5386                 wg->stripes_cnt--;
5387                 sh->group = NULL;
5388         }
5389         list_del_init(&sh->lru);
5390         BUG_ON(atomic_inc_return(&sh->count) != 1);
5391         return sh;
5392 }
5393
5394 struct raid5_plug_cb {
5395         struct blk_plug_cb      cb;
5396         struct list_head        list;
5397         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5398 };
5399
5400 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401 {
5402         struct raid5_plug_cb *cb = container_of(
5403                 blk_cb, struct raid5_plug_cb, cb);
5404         struct stripe_head *sh;
5405         struct mddev *mddev = cb->cb.data;
5406         struct r5conf *conf = mddev->private;
5407         int cnt = 0;
5408         int hash;
5409
5410         if (cb->list.next && !list_empty(&cb->list)) {
5411                 spin_lock_irq(&conf->device_lock);
5412                 while (!list_empty(&cb->list)) {
5413                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414                         list_del_init(&sh->lru);
5415                         /*
5416                          * avoid race release_stripe_plug() sees
5417                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418                          * is still in our list
5419                          */
5420                         smp_mb__before_atomic();
5421                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422                         /*
5423                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5424                          * case, the count is always > 1 here
5425                          */
5426                         hash = sh->hash_lock_index;
5427                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5428                         cnt++;
5429                 }
5430                 spin_unlock_irq(&conf->device_lock);
5431         }
5432         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433                                      NR_STRIPE_HASH_LOCKS);
5434         if (mddev->queue)
5435                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436         kfree(cb);
5437 }
5438
5439 static void release_stripe_plug(struct mddev *mddev,
5440                                 struct stripe_head *sh)
5441 {
5442         struct blk_plug_cb *blk_cb = blk_check_plugged(
5443                 raid5_unplug, mddev,
5444                 sizeof(struct raid5_plug_cb));
5445         struct raid5_plug_cb *cb;
5446
5447         if (!blk_cb) {
5448                 raid5_release_stripe(sh);
5449                 return;
5450         }
5451
5452         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
5454         if (cb->list.next == NULL) {
5455                 int i;
5456                 INIT_LIST_HEAD(&cb->list);
5457                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459         }
5460
5461         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462                 list_add_tail(&sh->lru, &cb->list);
5463         else
5464                 raid5_release_stripe(sh);
5465 }
5466
5467 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468 {
5469         struct r5conf *conf = mddev->private;
5470         sector_t logical_sector, last_sector;
5471         struct stripe_head *sh;
5472         int stripe_sectors;
5473
5474         if (mddev->reshape_position != MaxSector)
5475                 /* Skip discard while reshape is happening */
5476                 return;
5477
5478         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480
5481         bi->bi_next = NULL;
5482
5483         stripe_sectors = conf->chunk_sectors *
5484                 (conf->raid_disks - conf->max_degraded);
5485         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486                                                stripe_sectors);
5487         sector_div(last_sector, stripe_sectors);
5488
5489         logical_sector *= conf->chunk_sectors;
5490         last_sector *= conf->chunk_sectors;
5491
5492         for (; logical_sector < last_sector;
5493              logical_sector += STRIPE_SECTORS) {
5494                 DEFINE_WAIT(w);
5495                 int d;
5496         again:
5497                 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5498                 prepare_to_wait(&conf->wait_for_overlap, &w,
5499                                 TASK_UNINTERRUPTIBLE);
5500                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5501                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5502                         raid5_release_stripe(sh);
5503                         schedule();
5504                         goto again;
5505                 }
5506                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507                 spin_lock_irq(&sh->stripe_lock);
5508                 for (d = 0; d < conf->raid_disks; d++) {
5509                         if (d == sh->pd_idx || d == sh->qd_idx)
5510                                 continue;
5511                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5512                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5513                                 spin_unlock_irq(&sh->stripe_lock);
5514                                 raid5_release_stripe(sh);
5515                                 schedule();
5516                                 goto again;
5517                         }
5518                 }
5519                 set_bit(STRIPE_DISCARD, &sh->state);
5520                 finish_wait(&conf->wait_for_overlap, &w);
5521                 sh->overwrite_disks = 0;
5522                 for (d = 0; d < conf->raid_disks; d++) {
5523                         if (d == sh->pd_idx || d == sh->qd_idx)
5524                                 continue;
5525                         sh->dev[d].towrite = bi;
5526                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5527                         bio_inc_remaining(bi);
5528                         md_write_inc(mddev, bi);
5529                         sh->overwrite_disks++;
5530                 }
5531                 spin_unlock_irq(&sh->stripe_lock);
5532                 if (conf->mddev->bitmap) {
5533                         for (d = 0;
5534                              d < conf->raid_disks - conf->max_degraded;
5535                              d++)
5536                                 bitmap_startwrite(mddev->bitmap,
5537                                                   sh->sector,
5538                                                   STRIPE_SECTORS,
5539                                                   0);
5540                         sh->bm_seq = conf->seq_flush + 1;
5541                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5542                 }
5543
5544                 set_bit(STRIPE_HANDLE, &sh->state);
5545                 clear_bit(STRIPE_DELAYED, &sh->state);
5546                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5547                         atomic_inc(&conf->preread_active_stripes);
5548                 release_stripe_plug(mddev, sh);
5549         }
5550
5551         bio_endio(bi);
5552 }
5553
5554 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5555 {
5556         struct r5conf *conf = mddev->private;
5557         int dd_idx;
5558         sector_t new_sector;
5559         sector_t logical_sector, last_sector;
5560         struct stripe_head *sh;
5561         const int rw = bio_data_dir(bi);
5562         DEFINE_WAIT(w);
5563         bool do_prepare;
5564         bool do_flush = false;
5565
5566         if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5567                 int ret = r5l_handle_flush_request(conf->log, bi);
5568
5569                 if (ret == 0)
5570                         return true;
5571                 if (ret == -ENODEV) {
5572                         md_flush_request(mddev, bi);
5573                         return true;
5574                 }
5575                 /* ret == -EAGAIN, fallback */
5576                 /*
5577                  * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578                  * we need to flush journal device
5579                  */
5580                 do_flush = bi->bi_opf & REQ_PREFLUSH;
5581         }
5582
5583         if (!md_write_start(mddev, bi))
5584                 return false;
5585         /*
5586          * If array is degraded, better not do chunk aligned read because
5587          * later we might have to read it again in order to reconstruct
5588          * data on failed drives.
5589          */
5590         if (rw == READ && mddev->degraded == 0 &&
5591             mddev->reshape_position == MaxSector) {
5592                 bi = chunk_aligned_read(mddev, bi);
5593                 if (!bi)
5594                         return true;
5595         }
5596
5597         if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5598                 make_discard_request(mddev, bi);
5599                 md_write_end(mddev);
5600                 return true;
5601         }
5602
5603         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5604         last_sector = bio_end_sector(bi);
5605         bi->bi_next = NULL;
5606
5607         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5608         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5609                 int previous;
5610                 int seq;
5611
5612                 do_prepare = false;
5613         retry:
5614                 seq = read_seqcount_begin(&conf->gen_lock);
5615                 previous = 0;
5616                 if (do_prepare)
5617                         prepare_to_wait(&conf->wait_for_overlap, &w,
5618                                 TASK_UNINTERRUPTIBLE);
5619                 if (unlikely(conf->reshape_progress != MaxSector)) {
5620                         /* spinlock is needed as reshape_progress may be
5621                          * 64bit on a 32bit platform, and so it might be
5622                          * possible to see a half-updated value
5623                          * Of course reshape_progress could change after
5624                          * the lock is dropped, so once we get a reference
5625                          * to the stripe that we think it is, we will have
5626                          * to check again.
5627                          */
5628                         spin_lock_irq(&conf->device_lock);
5629                         if (mddev->reshape_backwards
5630                             ? logical_sector < conf->reshape_progress
5631                             : logical_sector >= conf->reshape_progress) {
5632                                 previous = 1;
5633                         } else {
5634                                 if (mddev->reshape_backwards
5635                                     ? logical_sector < conf->reshape_safe
5636                                     : logical_sector >= conf->reshape_safe) {
5637                                         spin_unlock_irq(&conf->device_lock);
5638                                         schedule();
5639                                         do_prepare = true;
5640                                         goto retry;
5641                                 }
5642                         }
5643                         spin_unlock_irq(&conf->device_lock);
5644                 }
5645
5646                 new_sector = raid5_compute_sector(conf, logical_sector,
5647                                                   previous,
5648                                                   &dd_idx, NULL);
5649                 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650                         (unsigned long long)new_sector,
5651                         (unsigned long long)logical_sector);
5652
5653                 sh = raid5_get_active_stripe(conf, new_sector, previous,
5654                                        (bi->bi_opf & REQ_RAHEAD), 0);
5655                 if (sh) {
5656                         if (unlikely(previous)) {
5657                                 /* expansion might have moved on while waiting for a
5658                                  * stripe, so we must do the range check again.
5659                                  * Expansion could still move past after this
5660                                  * test, but as we are holding a reference to
5661                                  * 'sh', we know that if that happens,
5662                                  *  STRIPE_EXPANDING will get set and the expansion
5663                                  * won't proceed until we finish with the stripe.
5664                                  */
5665                                 int must_retry = 0;
5666                                 spin_lock_irq(&conf->device_lock);
5667                                 if (mddev->reshape_backwards
5668                                     ? logical_sector >= conf->reshape_progress
5669                                     : logical_sector < conf->reshape_progress)
5670                                         /* mismatch, need to try again */
5671                                         must_retry = 1;
5672                                 spin_unlock_irq(&conf->device_lock);
5673                                 if (must_retry) {
5674                                         raid5_release_stripe(sh);
5675                                         schedule();
5676                                         do_prepare = true;
5677                                         goto retry;
5678                                 }
5679                         }
5680                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681                                 /* Might have got the wrong stripe_head
5682                                  * by accident
5683                                  */
5684                                 raid5_release_stripe(sh);
5685                                 goto retry;
5686                         }
5687
5688                         if (rw == WRITE &&
5689                             logical_sector >= mddev->suspend_lo &&
5690                             logical_sector < mddev->suspend_hi) {
5691                                 raid5_release_stripe(sh);
5692                                 /* As the suspend_* range is controlled by
5693                                  * userspace, we want an interruptible
5694                                  * wait.
5695                                  */
5696                                 prepare_to_wait(&conf->wait_for_overlap,
5697                                                 &w, TASK_INTERRUPTIBLE);
5698                                 if (logical_sector >= mddev->suspend_lo &&
5699                                     logical_sector < mddev->suspend_hi) {
5700                                         sigset_t full, old;
5701                                         sigfillset(&full);
5702                                         sigprocmask(SIG_BLOCK, &full, &old);
5703                                         schedule();
5704                                         sigprocmask(SIG_SETMASK, &old, NULL);
5705                                         do_prepare = true;
5706                                 }
5707                                 goto retry;
5708                         }
5709
5710                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5711                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5712                                 /* Stripe is busy expanding or
5713                                  * add failed due to overlap.  Flush everything
5714                                  * and wait a while
5715                                  */
5716                                 md_wakeup_thread(mddev->thread);
5717                                 raid5_release_stripe(sh);
5718                                 schedule();
5719                                 do_prepare = true;
5720                                 goto retry;
5721                         }
5722                         if (do_flush) {
5723                                 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5724                                 /* we only need flush for one stripe */
5725                                 do_flush = false;
5726                         }
5727
5728                         set_bit(STRIPE_HANDLE, &sh->state);
5729                         clear_bit(STRIPE_DELAYED, &sh->state);
5730                         if ((!sh->batch_head || sh == sh->batch_head) &&
5731                             (bi->bi_opf & REQ_SYNC) &&
5732                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5733                                 atomic_inc(&conf->preread_active_stripes);
5734                         release_stripe_plug(mddev, sh);
5735                 } else {
5736                         /* cannot get stripe for read-ahead, just give-up */
5737                         bi->bi_status = BLK_STS_IOERR;
5738                         break;
5739                 }
5740         }
5741         finish_wait(&conf->wait_for_overlap, &w);
5742
5743         if (rw == WRITE)
5744                 md_write_end(mddev);
5745         bio_endio(bi);
5746         return true;
5747 }
5748
5749 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5750
5751 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5752 {
5753         /* reshaping is quite different to recovery/resync so it is
5754          * handled quite separately ... here.
5755          *
5756          * On each call to sync_request, we gather one chunk worth of
5757          * destination stripes and flag them as expanding.
5758          * Then we find all the source stripes and request reads.
5759          * As the reads complete, handle_stripe will copy the data
5760          * into the destination stripe and release that stripe.
5761          */
5762         struct r5conf *conf = mddev->private;
5763         struct stripe_head *sh;
5764         sector_t first_sector, last_sector;
5765         int raid_disks = conf->previous_raid_disks;
5766         int data_disks = raid_disks - conf->max_degraded;
5767         int new_data_disks = conf->raid_disks - conf->max_degraded;
5768         int i;
5769         int dd_idx;
5770         sector_t writepos, readpos, safepos;
5771         sector_t stripe_addr;
5772         int reshape_sectors;
5773         struct list_head stripes;
5774         sector_t retn;
5775
5776         if (sector_nr == 0) {
5777                 /* If restarting in the middle, skip the initial sectors */
5778                 if (mddev->reshape_backwards &&
5779                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5780                         sector_nr = raid5_size(mddev, 0, 0)
5781                                 - conf->reshape_progress;
5782                 } else if (mddev->reshape_backwards &&
5783                            conf->reshape_progress == MaxSector) {
5784                         /* shouldn't happen, but just in case, finish up.*/
5785                         sector_nr = MaxSector;
5786                 } else if (!mddev->reshape_backwards &&
5787                            conf->reshape_progress > 0)
5788                         sector_nr = conf->reshape_progress;
5789                 sector_div(sector_nr, new_data_disks);
5790                 if (sector_nr) {
5791                         mddev->curr_resync_completed = sector_nr;
5792                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5793                         *skipped = 1;
5794                         retn = sector_nr;
5795                         goto finish;
5796                 }
5797         }
5798
5799         /* We need to process a full chunk at a time.
5800          * If old and new chunk sizes differ, we need to process the
5801          * largest of these
5802          */
5803
5804         reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5805
5806         /* We update the metadata at least every 10 seconds, or when
5807          * the data about to be copied would over-write the source of
5808          * the data at the front of the range.  i.e. one new_stripe
5809          * along from reshape_progress new_maps to after where
5810          * reshape_safe old_maps to
5811          */
5812         writepos = conf->reshape_progress;
5813         sector_div(writepos, new_data_disks);
5814         readpos = conf->reshape_progress;
5815         sector_div(readpos, data_disks);
5816         safepos = conf->reshape_safe;
5817         sector_div(safepos, data_disks);
5818         if (mddev->reshape_backwards) {
5819                 BUG_ON(writepos < reshape_sectors);
5820                 writepos -= reshape_sectors;
5821                 readpos += reshape_sectors;
5822                 safepos += reshape_sectors;
5823         } else {
5824                 writepos += reshape_sectors;
5825                 /* readpos and safepos are worst-case calculations.
5826                  * A negative number is overly pessimistic, and causes
5827                  * obvious problems for unsigned storage.  So clip to 0.
5828                  */
5829                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5830                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5831         }
5832
5833         /* Having calculated the 'writepos' possibly use it
5834          * to set 'stripe_addr' which is where we will write to.
5835          */
5836         if (mddev->reshape_backwards) {
5837                 BUG_ON(conf->reshape_progress == 0);
5838                 stripe_addr = writepos;
5839                 BUG_ON((mddev->dev_sectors &
5840                         ~((sector_t)reshape_sectors - 1))
5841                        - reshape_sectors - stripe_addr
5842                        != sector_nr);
5843         } else {
5844                 BUG_ON(writepos != sector_nr + reshape_sectors);
5845                 stripe_addr = sector_nr;
5846         }
5847
5848         /* 'writepos' is the most advanced device address we might write.
5849          * 'readpos' is the least advanced device address we might read.
5850          * 'safepos' is the least address recorded in the metadata as having
5851          *     been reshaped.
5852          * If there is a min_offset_diff, these are adjusted either by
5853          * increasing the safepos/readpos if diff is negative, or
5854          * increasing writepos if diff is positive.
5855          * If 'readpos' is then behind 'writepos', there is no way that we can
5856          * ensure safety in the face of a crash - that must be done by userspace
5857          * making a backup of the data.  So in that case there is no particular
5858          * rush to update metadata.
5859          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5860          * update the metadata to advance 'safepos' to match 'readpos' so that
5861          * we can be safe in the event of a crash.
5862          * So we insist on updating metadata if safepos is behind writepos and
5863          * readpos is beyond writepos.
5864          * In any case, update the metadata every 10 seconds.
5865          * Maybe that number should be configurable, but I'm not sure it is
5866          * worth it.... maybe it could be a multiple of safemode_delay???
5867          */
5868         if (conf->min_offset_diff < 0) {
5869                 safepos += -conf->min_offset_diff;
5870                 readpos += -conf->min_offset_diff;
5871         } else
5872                 writepos += conf->min_offset_diff;
5873
5874         if ((mddev->reshape_backwards
5875              ? (safepos > writepos && readpos < writepos)
5876              : (safepos < writepos && readpos > writepos)) ||
5877             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5878                 /* Cannot proceed until we've updated the superblock... */
5879                 wait_event(conf->wait_for_overlap,
5880                            atomic_read(&conf->reshape_stripes)==0
5881                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5882                 if (atomic_read(&conf->reshape_stripes) != 0)
5883                         return 0;
5884                 mddev->reshape_position = conf->reshape_progress;
5885                 mddev->curr_resync_completed = sector_nr;
5886                 conf->reshape_checkpoint = jiffies;
5887                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5888                 md_wakeup_thread(mddev->thread);
5889                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5890                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5891                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5892                         return 0;
5893                 spin_lock_irq(&conf->device_lock);
5894                 conf->reshape_safe = mddev->reshape_position;
5895                 spin_unlock_irq(&conf->device_lock);
5896                 wake_up(&conf->wait_for_overlap);
5897                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5898         }
5899
5900         INIT_LIST_HEAD(&stripes);
5901         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5902                 int j;
5903                 int skipped_disk = 0;
5904                 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5905                 set_bit(STRIPE_EXPANDING, &sh->state);
5906                 atomic_inc(&conf->reshape_stripes);
5907                 /* If any of this stripe is beyond the end of the old
5908                  * array, then we need to zero those blocks
5909                  */
5910                 for (j=sh->disks; j--;) {
5911                         sector_t s;
5912                         if (j == sh->pd_idx)
5913                                 continue;
5914                         if (conf->level == 6 &&
5915                             j == sh->qd_idx)
5916                                 continue;
5917                         s = raid5_compute_blocknr(sh, j, 0);
5918                         if (s < raid5_size(mddev, 0, 0)) {
5919                                 skipped_disk = 1;
5920                                 continue;
5921                         }
5922                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5923                         set_bit(R5_Expanded, &sh->dev[j].flags);
5924                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5925                 }
5926                 if (!skipped_disk) {
5927                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5928                         set_bit(STRIPE_HANDLE, &sh->state);
5929                 }
5930                 list_add(&sh->lru, &stripes);
5931         }
5932         spin_lock_irq(&conf->device_lock);
5933         if (mddev->reshape_backwards)
5934                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5935         else
5936                 conf->reshape_progress += reshape_sectors * new_data_disks;
5937         spin_unlock_irq(&conf->device_lock);
5938         /* Ok, those stripe are ready. We can start scheduling
5939          * reads on the source stripes.
5940          * The source stripes are determined by mapping the first and last
5941          * block on the destination stripes.
5942          */
5943         first_sector =
5944                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5945                                      1, &dd_idx, NULL);
5946         last_sector =
5947                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5948                                             * new_data_disks - 1),
5949                                      1, &dd_idx, NULL);
5950         if (last_sector >= mddev->dev_sectors)
5951                 last_sector = mddev->dev_sectors - 1;
5952         while (first_sector <= last_sector) {
5953                 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5954                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5955                 set_bit(STRIPE_HANDLE, &sh->state);
5956                 raid5_release_stripe(sh);
5957                 first_sector += STRIPE_SECTORS;
5958         }
5959         /* Now that the sources are clearly marked, we can release
5960          * the destination stripes
5961          */
5962         while (!list_empty(&stripes)) {
5963                 sh = list_entry(stripes.next, struct stripe_head, lru);
5964                 list_del_init(&sh->lru);
5965                 raid5_release_stripe(sh);
5966         }
5967         /* If this takes us to the resync_max point where we have to pause,
5968          * then we need to write out the superblock.
5969          */
5970         sector_nr += reshape_sectors;
5971         retn = reshape_sectors;
5972 finish:
5973         if (mddev->curr_resync_completed > mddev->resync_max ||
5974             (sector_nr - mddev->curr_resync_completed) * 2
5975             >= mddev->resync_max - mddev->curr_resync_completed) {
5976                 /* Cannot proceed until we've updated the superblock... */
5977                 wait_event(conf->wait_for_overlap,
5978                            atomic_read(&conf->reshape_stripes) == 0
5979                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5980                 if (atomic_read(&conf->reshape_stripes) != 0)
5981                         goto ret;
5982                 mddev->reshape_position = conf->reshape_progress;
5983                 mddev->curr_resync_completed = sector_nr;
5984                 conf->reshape_checkpoint = jiffies;
5985                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5986                 md_wakeup_thread(mddev->thread);
5987                 wait_event(mddev->sb_wait,
5988                            !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5989                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5990                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5991                         goto ret;
5992                 spin_lock_irq(&conf->device_lock);
5993                 conf->reshape_safe = mddev->reshape_position;
5994                 spin_unlock_irq(&conf->device_lock);
5995                 wake_up(&conf->wait_for_overlap);
5996                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5997         }
5998 ret:
5999         return retn;
6000 }
6001
6002 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6003                                           int *skipped)
6004 {
6005         struct r5conf *conf = mddev->private;
6006         struct stripe_head *sh;
6007         sector_t max_sector = mddev->dev_sectors;
6008         sector_t sync_blocks;
6009         int still_degraded = 0;
6010         int i;
6011
6012         if (sector_nr >= max_sector) {
6013                 /* just being told to finish up .. nothing much to do */
6014
6015                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6016                         end_reshape(conf);
6017                         return 0;
6018                 }
6019
6020                 if (mddev->curr_resync < max_sector) /* aborted */
6021                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6022                                         &sync_blocks, 1);
6023                 else /* completed sync */
6024                         conf->fullsync = 0;
6025                 bitmap_close_sync(mddev->bitmap);
6026
6027                 return 0;
6028         }
6029
6030         /* Allow raid5_quiesce to complete */
6031         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6032
6033         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6034                 return reshape_request(mddev, sector_nr, skipped);
6035
6036         /* No need to check resync_max as we never do more than one
6037          * stripe, and as resync_max will always be on a chunk boundary,
6038          * if the check in md_do_sync didn't fire, there is no chance
6039          * of overstepping resync_max here
6040          */
6041
6042         /* if there is too many failed drives and we are trying
6043          * to resync, then assert that we are finished, because there is
6044          * nothing we can do.
6045          */
6046         if (mddev->degraded >= conf->max_degraded &&
6047             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6048                 sector_t rv = mddev->dev_sectors - sector_nr;
6049                 *skipped = 1;
6050                 return rv;
6051         }
6052         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6053             !conf->fullsync &&
6054             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6055             sync_blocks >= STRIPE_SECTORS) {
6056                 /* we can skip this block, and probably more */
6057                 sync_blocks /= STRIPE_SECTORS;
6058                 *skipped = 1;
6059                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6060         }
6061
6062         bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6063
6064         sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6065         if (sh == NULL) {
6066                 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6067                 /* make sure we don't swamp the stripe cache if someone else
6068                  * is trying to get access
6069                  */
6070                 schedule_timeout_uninterruptible(1);
6071         }
6072         /* Need to check if array will still be degraded after recovery/resync
6073          * Note in case of > 1 drive failures it's possible we're rebuilding
6074          * one drive while leaving another faulty drive in array.
6075          */
6076         rcu_read_lock();
6077         for (i = 0; i < conf->raid_disks; i++) {
6078                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6079
6080                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6081                         still_degraded = 1;
6082         }
6083         rcu_read_unlock();
6084
6085         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6086
6087         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6088         set_bit(STRIPE_HANDLE, &sh->state);
6089
6090         raid5_release_stripe(sh);
6091
6092         return STRIPE_SECTORS;
6093 }
6094
6095 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6096                                unsigned int offset)
6097 {
6098         /* We may not be able to submit a whole bio at once as there
6099          * may not be enough stripe_heads available.
6100          * We cannot pre-allocate enough stripe_heads as we may need
6101          * more than exist in the cache (if we allow ever large chunks).
6102          * So we do one stripe head at a time and record in
6103          * ->bi_hw_segments how many have been done.
6104          *
6105          * We *know* that this entire raid_bio is in one chunk, so
6106          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6107          */
6108         struct stripe_head *sh;
6109         int dd_idx;
6110         sector_t sector, logical_sector, last_sector;
6111         int scnt = 0;
6112         int handled = 0;
6113
6114         logical_sector = raid_bio->bi_iter.bi_sector &
6115                 ~((sector_t)STRIPE_SECTORS-1);
6116         sector = raid5_compute_sector(conf, logical_sector,
6117                                       0, &dd_idx, NULL);
6118         last_sector = bio_end_sector(raid_bio);
6119
6120         for (; logical_sector < last_sector;
6121              logical_sector += STRIPE_SECTORS,
6122                      sector += STRIPE_SECTORS,
6123                      scnt++) {
6124
6125                 if (scnt < offset)
6126                         /* already done this stripe */
6127                         continue;
6128
6129                 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6130
6131                 if (!sh) {
6132                         /* failed to get a stripe - must wait */
6133                         conf->retry_read_aligned = raid_bio;
6134                         conf->retry_read_offset = scnt;
6135                         return handled;
6136                 }
6137
6138                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6139                         raid5_release_stripe(sh);
6140                         conf->retry_read_aligned = raid_bio;
6141                         conf->retry_read_offset = scnt;
6142                         return handled;
6143                 }
6144
6145                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6146                 handle_stripe(sh);
6147                 raid5_release_stripe(sh);
6148                 handled++;
6149         }
6150
6151         bio_endio(raid_bio);
6152
6153         if (atomic_dec_and_test(&conf->active_aligned_reads))
6154                 wake_up(&conf->wait_for_quiescent);
6155         return handled;
6156 }
6157
6158 static int handle_active_stripes(struct r5conf *conf, int group,
6159                                  struct r5worker *worker,
6160                                  struct list_head *temp_inactive_list)
6161 {
6162         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6163         int i, batch_size = 0, hash;
6164         bool release_inactive = false;
6165
6166         while (batch_size < MAX_STRIPE_BATCH &&
6167                         (sh = __get_priority_stripe(conf, group)) != NULL)
6168                 batch[batch_size++] = sh;
6169
6170         if (batch_size == 0) {
6171                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6172                         if (!list_empty(temp_inactive_list + i))
6173                                 break;
6174                 if (i == NR_STRIPE_HASH_LOCKS) {
6175                         spin_unlock_irq(&conf->device_lock);
6176                         r5l_flush_stripe_to_raid(conf->log);
6177                         spin_lock_irq(&conf->device_lock);
6178                         return batch_size;
6179                 }
6180                 release_inactive = true;
6181         }
6182         spin_unlock_irq(&conf->device_lock);
6183
6184         release_inactive_stripe_list(conf, temp_inactive_list,
6185                                      NR_STRIPE_HASH_LOCKS);
6186
6187         r5l_flush_stripe_to_raid(conf->log);
6188         if (release_inactive) {
6189                 spin_lock_irq(&conf->device_lock);
6190                 return 0;
6191         }
6192
6193         for (i = 0; i < batch_size; i++)
6194                 handle_stripe(batch[i]);
6195         log_write_stripe_run(conf);
6196
6197         cond_resched();
6198
6199         spin_lock_irq(&conf->device_lock);
6200         for (i = 0; i < batch_size; i++) {
6201                 hash = batch[i]->hash_lock_index;
6202                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6203         }
6204         return batch_size;
6205 }
6206
6207 static void raid5_do_work(struct work_struct *work)
6208 {
6209         struct r5worker *worker = container_of(work, struct r5worker, work);
6210         struct r5worker_group *group = worker->group;
6211         struct r5conf *conf = group->conf;
6212         struct mddev *mddev = conf->mddev;
6213         int group_id = group - conf->worker_groups;
6214         int handled;
6215         struct blk_plug plug;
6216
6217         pr_debug("+++ raid5worker active\n");
6218
6219         blk_start_plug(&plug);
6220         handled = 0;
6221         spin_lock_irq(&conf->device_lock);
6222         while (1) {
6223                 int batch_size, released;
6224
6225                 released = release_stripe_list(conf, worker->temp_inactive_list);
6226
6227                 batch_size = handle_active_stripes(conf, group_id, worker,
6228                                                    worker->temp_inactive_list);
6229                 worker->working = false;
6230                 if (!batch_size && !released)
6231                         break;
6232                 handled += batch_size;
6233                 wait_event_lock_irq(mddev->sb_wait,
6234                         !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6235                         conf->device_lock);
6236         }
6237         pr_debug("%d stripes handled\n", handled);
6238
6239         spin_unlock_irq(&conf->device_lock);
6240         blk_finish_plug(&plug);
6241
6242         pr_debug("--- raid5worker inactive\n");
6243 }
6244
6245 /*
6246  * This is our raid5 kernel thread.
6247  *
6248  * We scan the hash table for stripes which can be handled now.
6249  * During the scan, completed stripes are saved for us by the interrupt
6250  * handler, so that they will not have to wait for our next wakeup.
6251  */
6252 static void raid5d(struct md_thread *thread)
6253 {
6254         struct mddev *mddev = thread->mddev;
6255         struct r5conf *conf = mddev->private;
6256         int handled;
6257         struct blk_plug plug;
6258
6259         pr_debug("+++ raid5d active\n");
6260
6261         md_check_recovery(mddev);
6262
6263         blk_start_plug(&plug);
6264         handled = 0;
6265         spin_lock_irq(&conf->device_lock);
6266         while (1) {
6267                 struct bio *bio;
6268                 int batch_size, released;
6269                 unsigned int offset;
6270
6271                 released = release_stripe_list(conf, conf->temp_inactive_list);
6272                 if (released)
6273                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
6274
6275                 if (
6276                     !list_empty(&conf->bitmap_list)) {
6277                         /* Now is a good time to flush some bitmap updates */
6278                         conf->seq_flush++;
6279                         spin_unlock_irq(&conf->device_lock);
6280                         bitmap_unplug(mddev->bitmap);
6281                         spin_lock_irq(&conf->device_lock);
6282                         conf->seq_write = conf->seq_flush;
6283                         activate_bit_delay(conf, conf->temp_inactive_list);
6284                 }
6285                 raid5_activate_delayed(conf);
6286
6287                 while ((bio = remove_bio_from_retry(conf, &offset))) {
6288                         int ok;
6289                         spin_unlock_irq(&conf->device_lock);
6290                         ok = retry_aligned_read(conf, bio, offset);
6291                         spin_lock_irq(&conf->device_lock);
6292                         if (!ok)
6293                                 break;
6294                         handled++;
6295                 }
6296
6297                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6298                                                    conf->temp_inactive_list);
6299                 if (!batch_size && !released)
6300                         break;
6301                 handled += batch_size;
6302
6303                 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6304                         spin_unlock_irq(&conf->device_lock);
6305                         md_check_recovery(mddev);
6306                         spin_lock_irq(&conf->device_lock);
6307                 }
6308         }
6309         pr_debug("%d stripes handled\n", handled);
6310
6311         spin_unlock_irq(&conf->device_lock);
6312         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6313             mutex_trylock(&conf->cache_size_mutex)) {
6314                 grow_one_stripe(conf, __GFP_NOWARN);
6315                 /* Set flag even if allocation failed.  This helps
6316                  * slow down allocation requests when mem is short
6317                  */
6318                 set_bit(R5_DID_ALLOC, &conf->cache_state);
6319                 mutex_unlock(&conf->cache_size_mutex);
6320         }
6321
6322         flush_deferred_bios(conf);
6323
6324         r5l_flush_stripe_to_raid(conf->log);
6325
6326         async_tx_issue_pending_all();
6327         blk_finish_plug(&plug);
6328
6329         pr_debug("--- raid5d inactive\n");
6330 }
6331
6332 static ssize_t
6333 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6334 {
6335         struct r5conf *conf;
6336         int ret = 0;
6337         spin_lock(&mddev->lock);
6338         conf = mddev->private;
6339         if (conf)
6340                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6341         spin_unlock(&mddev->lock);
6342         return ret;
6343 }
6344
6345 int
6346 raid5_set_cache_size(struct mddev *mddev, int size)
6347 {
6348         struct r5conf *conf = mddev->private;
6349
6350         if (size <= 16 || size > 32768)
6351                 return -EINVAL;
6352
6353         conf->min_nr_stripes = size;
6354         mutex_lock(&conf->cache_size_mutex);
6355         while (size < conf->max_nr_stripes &&
6356                drop_one_stripe(conf))
6357                 ;
6358         mutex_unlock(&conf->cache_size_mutex);
6359
6360         md_allow_write(mddev);
6361
6362         mutex_lock(&conf->cache_size_mutex);
6363         while (size > conf->max_nr_stripes)
6364                 if (!grow_one_stripe(conf, GFP_KERNEL))
6365                         break;
6366         mutex_unlock(&conf->cache_size_mutex);
6367
6368         return 0;
6369 }
6370 EXPORT_SYMBOL(raid5_set_cache_size);
6371
6372 static ssize_t
6373 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6374 {
6375         struct r5conf *conf;
6376         unsigned long new;
6377         int err;
6378
6379         if (len >= PAGE_SIZE)
6380                 return -EINVAL;
6381         if (kstrtoul(page, 10, &new))
6382                 return -EINVAL;
6383         err = mddev_lock(mddev);
6384         if (err)
6385                 return err;
6386         conf = mddev->private;
6387         if (!conf)
6388                 err = -ENODEV;
6389         else
6390                 err = raid5_set_cache_size(mddev, new);
6391         mddev_unlock(mddev);
6392
6393         return err ?: len;
6394 }
6395
6396 static struct md_sysfs_entry
6397 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6398                                 raid5_show_stripe_cache_size,
6399                                 raid5_store_stripe_cache_size);
6400
6401 static ssize_t
6402 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6403 {
6404         struct r5conf *conf = mddev->private;
6405         if (conf)
6406                 return sprintf(page, "%d\n", conf->rmw_level);
6407         else
6408                 return 0;
6409 }
6410
6411 static ssize_t
6412 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6413 {
6414         struct r5conf *conf = mddev->private;
6415         unsigned long new;
6416
6417         if (!conf)
6418                 return -ENODEV;
6419
6420         if (len >= PAGE_SIZE)
6421                 return -EINVAL;
6422
6423         if (kstrtoul(page, 10, &new))
6424                 return -EINVAL;
6425
6426         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6427                 return -EINVAL;
6428
6429         if (new != PARITY_DISABLE_RMW &&
6430             new != PARITY_ENABLE_RMW &&
6431             new != PARITY_PREFER_RMW)
6432                 return -EINVAL;
6433
6434         conf->rmw_level = new;
6435         return len;
6436 }
6437
6438 static struct md_sysfs_entry
6439 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6440                          raid5_show_rmw_level,
6441                          raid5_store_rmw_level);
6442
6443
6444 static ssize_t
6445 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6446 {
6447         struct r5conf *conf;
6448         int ret = 0;
6449         spin_lock(&mddev->lock);
6450         conf = mddev->private;
6451         if (conf)
6452                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6453         spin_unlock(&mddev->lock);
6454         return ret;
6455 }
6456
6457 static ssize_t
6458 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6459 {
6460         struct r5conf *conf;
6461         unsigned long new;
6462         int err;
6463
6464         if (len >= PAGE_SIZE)
6465                 return -EINVAL;
6466         if (kstrtoul(page, 10, &new))
6467                 return -EINVAL;
6468
6469         err = mddev_lock(mddev);
6470         if (err)
6471                 return err;
6472         conf = mddev->private;
6473         if (!conf)
6474                 err = -ENODEV;
6475         else if (new > conf->min_nr_stripes)
6476                 err = -EINVAL;
6477         else
6478                 conf->bypass_threshold = new;
6479         mddev_unlock(mddev);
6480         return err ?: len;
6481 }
6482
6483 static struct md_sysfs_entry
6484 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6485                                         S_IRUGO | S_IWUSR,
6486                                         raid5_show_preread_threshold,
6487                                         raid5_store_preread_threshold);
6488
6489 static ssize_t
6490 raid5_show_skip_copy(struct mddev *mddev, char *page)
6491 {
6492         struct r5conf *conf;
6493         int ret = 0;
6494         spin_lock(&mddev->lock);
6495         conf = mddev->private;
6496         if (conf)
6497                 ret = sprintf(page, "%d\n", conf->skip_copy);
6498         spin_unlock(&mddev->lock);
6499         return ret;
6500 }
6501
6502 static ssize_t
6503 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6504 {
6505         struct r5conf *conf;
6506         unsigned long new;
6507         int err;
6508
6509         if (len >= PAGE_SIZE)
6510                 return -EINVAL;
6511         if (kstrtoul(page, 10, &new))
6512                 return -EINVAL;
6513         new = !!new;
6514
6515         err = mddev_lock(mddev);
6516         if (err)
6517                 return err;
6518         conf = mddev->private;
6519         if (!conf)
6520                 err = -ENODEV;
6521         else if (new != conf->skip_copy) {
6522                 mddev_suspend(mddev);
6523                 conf->skip_copy = new;
6524                 if (new)
6525                         mddev->queue->backing_dev_info->capabilities |=
6526                                 BDI_CAP_STABLE_WRITES;
6527                 else
6528                         mddev->queue->backing_dev_info->capabilities &=
6529                                 ~BDI_CAP_STABLE_WRITES;
6530                 mddev_resume(mddev);
6531         }
6532         mddev_unlock(mddev);
6533         return err ?: len;
6534 }
6535
6536 static struct md_sysfs_entry
6537 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6538                                         raid5_show_skip_copy,
6539                                         raid5_store_skip_copy);
6540
6541 static ssize_t
6542 stripe_cache_active_show(struct mddev *mddev, char *page)
6543 {
6544         struct r5conf *conf = mddev->private;
6545         if (conf)
6546                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6547         else
6548                 return 0;
6549 }
6550
6551 static struct md_sysfs_entry
6552 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6553
6554 static ssize_t
6555 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6556 {
6557         struct r5conf *conf;
6558         int ret = 0;
6559         spin_lock(&mddev->lock);
6560         conf = mddev->private;
6561         if (conf)
6562                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6563         spin_unlock(&mddev->lock);
6564         return ret;
6565 }
6566
6567 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6568                                int *group_cnt,
6569                                int *worker_cnt_per_group,
6570                                struct r5worker_group **worker_groups);
6571 static ssize_t
6572 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6573 {
6574         struct r5conf *conf;
6575         unsigned long new;
6576         int err;
6577         struct r5worker_group *new_groups, *old_groups;
6578         int group_cnt, worker_cnt_per_group;
6579
6580         if (len >= PAGE_SIZE)
6581                 return -EINVAL;
6582         if (kstrtoul(page, 10, &new))
6583                 return -EINVAL;
6584
6585         err = mddev_lock(mddev);
6586         if (err)
6587                 return err;
6588         conf = mddev->private;
6589         if (!conf)
6590                 err = -ENODEV;
6591         else if (new != conf->worker_cnt_per_group) {
6592                 mddev_suspend(mddev);
6593
6594                 old_groups = conf->worker_groups;
6595                 if (old_groups)
6596                         flush_workqueue(raid5_wq);
6597
6598                 err = alloc_thread_groups(conf, new,
6599                                           &group_cnt, &worker_cnt_per_group,
6600                                           &new_groups);
6601                 if (!err) {
6602                         spin_lock_irq(&conf->device_lock);
6603                         conf->group_cnt = group_cnt;
6604                         conf->worker_cnt_per_group = worker_cnt_per_group;
6605                         conf->worker_groups = new_groups;
6606                         spin_unlock_irq(&conf->device_lock);
6607
6608                         if (old_groups)
6609                                 kfree(old_groups[0].workers);
6610                         kfree(old_groups);
6611                 }
6612                 mddev_resume(mddev);
6613         }
6614         mddev_unlock(mddev);
6615
6616         return err ?: len;
6617 }
6618
6619 static struct md_sysfs_entry
6620 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6621                                 raid5_show_group_thread_cnt,
6622                                 raid5_store_group_thread_cnt);
6623
6624 static struct attribute *raid5_attrs[] =  {
6625         &raid5_stripecache_size.attr,
6626         &raid5_stripecache_active.attr,
6627         &raid5_preread_bypass_threshold.attr,
6628         &raid5_group_thread_cnt.attr,
6629         &raid5_skip_copy.attr,
6630         &raid5_rmw_level.attr,
6631         &r5c_journal_mode.attr,
6632         NULL,
6633 };
6634 static struct attribute_group raid5_attrs_group = {
6635         .name = NULL,
6636         .attrs = raid5_attrs,
6637 };
6638
6639 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6640                                int *group_cnt,
6641                                int *worker_cnt_per_group,
6642                                struct r5worker_group **worker_groups)
6643 {
6644         int i, j, k;
6645         ssize_t size;
6646         struct r5worker *workers;
6647
6648         *worker_cnt_per_group = cnt;
6649         if (cnt == 0) {
6650                 *group_cnt = 0;
6651                 *worker_groups = NULL;
6652                 return 0;
6653         }
6654         *group_cnt = num_possible_nodes();
6655         size = sizeof(struct r5worker) * cnt;
6656         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6657         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6658                                 *group_cnt, GFP_NOIO);
6659         if (!*worker_groups || !workers) {
6660                 kfree(workers);
6661                 kfree(*worker_groups);
6662                 return -ENOMEM;
6663         }
6664
6665         for (i = 0; i < *group_cnt; i++) {
6666                 struct r5worker_group *group;
6667
6668                 group = &(*worker_groups)[i];
6669                 INIT_LIST_HEAD(&group->handle_list);
6670                 INIT_LIST_HEAD(&group->loprio_list);
6671                 group->conf = conf;
6672                 group->workers = workers + i * cnt;
6673
6674                 for (j = 0; j < cnt; j++) {
6675                         struct r5worker *worker = group->workers + j;
6676                         worker->group = group;
6677                         INIT_WORK(&worker->work, raid5_do_work);
6678
6679                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6680                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6681                 }
6682         }
6683
6684         return 0;
6685 }
6686
6687 static void free_thread_groups(struct r5conf *conf)
6688 {
6689         if (conf->worker_groups)
6690                 kfree(conf->worker_groups[0].workers);
6691         kfree(conf->worker_groups);
6692         conf->worker_groups = NULL;
6693 }
6694
6695 static sector_t
6696 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6697 {
6698         struct r5conf *conf = mddev->private;
6699
6700         if (!sectors)
6701                 sectors = mddev->dev_sectors;
6702         if (!raid_disks)
6703                 /* size is defined by the smallest of previous and new size */
6704                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6705
6706         sectors &= ~((sector_t)conf->chunk_sectors - 1);
6707         sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6708         return sectors * (raid_disks - conf->max_degraded);
6709 }
6710
6711 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6712 {
6713         safe_put_page(percpu->spare_page);
6714         if (percpu->scribble)
6715                 flex_array_free(percpu->scribble);
6716         percpu->spare_page = NULL;
6717         percpu->scribble = NULL;
6718 }
6719
6720 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6721 {
6722         if (conf->level == 6 && !percpu->spare_page)
6723                 percpu->spare_page = alloc_page(GFP_KERNEL);
6724         if (!percpu->scribble)
6725                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6726                                                       conf->previous_raid_disks),
6727                                                   max(conf->chunk_sectors,
6728                                                       conf->prev_chunk_sectors)
6729                                                    / STRIPE_SECTORS,
6730                                                   GFP_KERNEL);
6731
6732         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6733                 free_scratch_buffer(conf, percpu);
6734                 return -ENOMEM;
6735         }
6736
6737         return 0;
6738 }
6739
6740 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6741 {
6742         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6743
6744         free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6745         return 0;
6746 }
6747
6748 static void raid5_free_percpu(struct r5conf *conf)
6749 {
6750         if (!conf->percpu)
6751                 return;
6752
6753         cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6754         free_percpu(conf->percpu);
6755 }
6756
6757 static void free_conf(struct r5conf *conf)
6758 {
6759         int i;
6760
6761         log_exit(conf);
6762
6763         if (conf->shrinker.nr_deferred)
6764                 unregister_shrinker(&conf->shrinker);
6765
6766         free_thread_groups(conf);
6767         shrink_stripes(conf);
6768         raid5_free_percpu(conf);
6769         for (i = 0; i < conf->pool_size; i++)
6770                 if (conf->disks[i].extra_page)
6771                         put_page(conf->disks[i].extra_page);
6772         kfree(conf->disks);
6773         if (conf->bio_split)
6774                 bioset_free(conf->bio_split);
6775         kfree(conf->stripe_hashtbl);
6776         kfree(conf->pending_data);
6777         kfree(conf);
6778 }
6779
6780 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6781 {
6782         struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6783         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6784
6785         if (alloc_scratch_buffer(conf, percpu)) {
6786                 pr_warn("%s: failed memory allocation for cpu%u\n",
6787                         __func__, cpu);
6788                 return -ENOMEM;
6789         }
6790         return 0;
6791 }
6792
6793 static int raid5_alloc_percpu(struct r5conf *conf)
6794 {
6795         int err = 0;
6796
6797         conf->percpu = alloc_percpu(struct raid5_percpu);
6798         if (!conf->percpu)
6799                 return -ENOMEM;
6800
6801         err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6802         if (!err) {
6803                 conf->scribble_disks = max(conf->raid_disks,
6804                         conf->previous_raid_disks);
6805                 conf->scribble_sectors = max(conf->chunk_sectors,
6806                         conf->prev_chunk_sectors);
6807         }
6808         return err;
6809 }
6810
6811 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6812                                       struct shrink_control *sc)
6813 {
6814         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6815         unsigned long ret = SHRINK_STOP;
6816
6817         if (mutex_trylock(&conf->cache_size_mutex)) {
6818                 ret= 0;
6819                 while (ret < sc->nr_to_scan &&
6820                        conf->max_nr_stripes > conf->min_nr_stripes) {
6821                         if (drop_one_stripe(conf) == 0) {
6822                                 ret = SHRINK_STOP;
6823                                 break;
6824                         }
6825                         ret++;
6826                 }
6827                 mutex_unlock(&conf->cache_size_mutex);
6828         }
6829         return ret;
6830 }
6831
6832 static unsigned long raid5_cache_count(struct shrinker *shrink,
6833                                        struct shrink_control *sc)
6834 {
6835         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6836
6837         if (conf->max_nr_stripes < conf->min_nr_stripes)
6838                 /* unlikely, but not impossible */
6839                 return 0;
6840         return conf->max_nr_stripes - conf->min_nr_stripes;
6841 }
6842
6843 static struct r5conf *setup_conf(struct mddev *mddev)
6844 {
6845         struct r5conf *conf;
6846         int raid_disk, memory, max_disks;
6847         struct md_rdev *rdev;
6848         struct disk_info *disk;
6849         char pers_name[6];
6850         int i;
6851         int group_cnt, worker_cnt_per_group;
6852         struct r5worker_group *new_group;
6853
6854         if (mddev->new_level != 5
6855             && mddev->new_level != 4
6856             && mddev->new_level != 6) {
6857                 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6858                         mdname(mddev), mddev->new_level);
6859                 return ERR_PTR(-EIO);
6860         }
6861         if ((mddev->new_level == 5
6862              && !algorithm_valid_raid5(mddev->new_layout)) ||
6863             (mddev->new_level == 6
6864              && !algorithm_valid_raid6(mddev->new_layout))) {
6865                 pr_warn("md/raid:%s: layout %d not supported\n",
6866                         mdname(mddev), mddev->new_layout);
6867                 return ERR_PTR(-EIO);
6868         }
6869         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6870                 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6871                         mdname(mddev), mddev->raid_disks);
6872                 return ERR_PTR(-EINVAL);
6873         }
6874
6875         if (!mddev->new_chunk_sectors ||
6876             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6877             !is_power_of_2(mddev->new_chunk_sectors)) {
6878                 pr_warn("md/raid:%s: invalid chunk size %d\n",
6879                         mdname(mddev), mddev->new_chunk_sectors << 9);
6880                 return ERR_PTR(-EINVAL);
6881         }
6882
6883         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6884         if (conf == NULL)
6885                 goto abort;
6886         INIT_LIST_HEAD(&conf->free_list);
6887         INIT_LIST_HEAD(&conf->pending_list);
6888         conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6889                 PENDING_IO_MAX, GFP_KERNEL);
6890         if (!conf->pending_data)
6891                 goto abort;
6892         for (i = 0; i < PENDING_IO_MAX; i++)
6893                 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6894         /* Don't enable multi-threading by default*/
6895         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6896                                  &new_group)) {
6897                 conf->group_cnt = group_cnt;
6898                 conf->worker_cnt_per_group = worker_cnt_per_group;
6899                 conf->worker_groups = new_group;
6900         } else
6901                 goto abort;
6902         spin_lock_init(&conf->device_lock);
6903         seqcount_init(&conf->gen_lock);
6904         mutex_init(&conf->cache_size_mutex);
6905         init_waitqueue_head(&conf->wait_for_quiescent);
6906         init_waitqueue_head(&conf->wait_for_stripe);
6907         init_waitqueue_head(&conf->wait_for_overlap);
6908         INIT_LIST_HEAD(&conf->handle_list);
6909         INIT_LIST_HEAD(&conf->loprio_list);
6910         INIT_LIST_HEAD(&conf->hold_list);
6911         INIT_LIST_HEAD(&conf->delayed_list);
6912         INIT_LIST_HEAD(&conf->bitmap_list);
6913         init_llist_head(&conf->released_stripes);
6914         atomic_set(&conf->active_stripes, 0);
6915         atomic_set(&conf->preread_active_stripes, 0);
6916         atomic_set(&conf->active_aligned_reads, 0);
6917         spin_lock_init(&conf->pending_bios_lock);
6918         conf->batch_bio_dispatch = true;
6919         rdev_for_each(rdev, mddev) {
6920                 if (test_bit(Journal, &rdev->flags))
6921                         continue;
6922                 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6923                         conf->batch_bio_dispatch = false;
6924                         break;
6925                 }
6926         }
6927
6928         conf->bypass_threshold = BYPASS_THRESHOLD;
6929         conf->recovery_disabled = mddev->recovery_disabled - 1;
6930
6931         conf->raid_disks = mddev->raid_disks;
6932         if (mddev->reshape_position == MaxSector)
6933                 conf->previous_raid_disks = mddev->raid_disks;
6934         else
6935                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6936         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6937
6938         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6939                               GFP_KERNEL);
6940
6941         if (!conf->disks)
6942                 goto abort;
6943
6944         for (i = 0; i < max_disks; i++) {
6945                 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6946                 if (!conf->disks[i].extra_page)
6947                         goto abort;
6948         }
6949
6950         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6951         if (!conf->bio_split)
6952                 goto abort;
6953         conf->mddev = mddev;
6954
6955         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6956                 goto abort;
6957
6958         /* We init hash_locks[0] separately to that it can be used
6959          * as the reference lock in the spin_lock_nest_lock() call
6960          * in lock_all_device_hash_locks_irq in order to convince
6961          * lockdep that we know what we are doing.
6962          */
6963         spin_lock_init(conf->hash_locks);
6964         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6965                 spin_lock_init(conf->hash_locks + i);
6966
6967         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6968                 INIT_LIST_HEAD(conf->inactive_list + i);
6969
6970         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6971                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6972
6973         atomic_set(&conf->r5c_cached_full_stripes, 0);
6974         INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6975         atomic_set(&conf->r5c_cached_partial_stripes, 0);
6976         INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6977         atomic_set(&conf->r5c_flushing_full_stripes, 0);
6978         atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6979
6980         conf->level = mddev->new_level;
6981         conf->chunk_sectors = mddev->new_chunk_sectors;
6982         if (raid5_alloc_percpu(conf) != 0)
6983                 goto abort;
6984
6985         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6986
6987         rdev_for_each(rdev, mddev) {
6988                 raid_disk = rdev->raid_disk;
6989                 if (raid_disk >= max_disks
6990                     || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6991                         continue;
6992                 disk = conf->disks + raid_disk;
6993
6994                 if (test_bit(Replacement, &rdev->flags)) {
6995                         if (disk->replacement)
6996                                 goto abort;
6997                         disk->replacement = rdev;
6998                 } else {
6999                         if (disk->rdev)
7000                                 goto abort;
7001                         disk->rdev = rdev;
7002                 }
7003
7004                 if (test_bit(In_sync, &rdev->flags)) {
7005                         char b[BDEVNAME_SIZE];
7006                         pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7007                                 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7008                 } else if (rdev->saved_raid_disk != raid_disk)
7009                         /* Cannot rely on bitmap to complete recovery */
7010                         conf->fullsync = 1;
7011         }
7012
7013         conf->level = mddev->new_level;
7014         if (conf->level == 6) {
7015                 conf->max_degraded = 2;
7016                 if (raid6_call.xor_syndrome)
7017                         conf->rmw_level = PARITY_ENABLE_RMW;
7018                 else
7019                         conf->rmw_level = PARITY_DISABLE_RMW;
7020         } else {
7021                 conf->max_degraded = 1;
7022                 conf->rmw_level = PARITY_ENABLE_RMW;
7023         }
7024         conf->algorithm = mddev->new_layout;
7025         conf->reshape_progress = mddev->reshape_position;
7026         if (conf->reshape_progress != MaxSector) {
7027                 conf->prev_chunk_sectors = mddev->chunk_sectors;
7028                 conf->prev_algo = mddev->layout;
7029         } else {
7030                 conf->prev_chunk_sectors = conf->chunk_sectors;
7031                 conf->prev_algo = conf->algorithm;
7032         }
7033
7034         conf->min_nr_stripes = NR_STRIPES;
7035         if (mddev->reshape_position != MaxSector) {
7036                 int stripes = max_t(int,
7037                         ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7038                         ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7039                 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7040                 if (conf->min_nr_stripes != NR_STRIPES)
7041                         pr_info("md/raid:%s: force stripe size %d for reshape\n",
7042                                 mdname(mddev), conf->min_nr_stripes);
7043         }
7044         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7045                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7046         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7047         if (grow_stripes(conf, conf->min_nr_stripes)) {
7048                 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7049                         mdname(mddev), memory);
7050                 goto abort;
7051         } else
7052                 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7053         /*
7054          * Losing a stripe head costs more than the time to refill it,
7055          * it reduces the queue depth and so can hurt throughput.
7056          * So set it rather large, scaled by number of devices.
7057          */
7058         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7059         conf->shrinker.scan_objects = raid5_cache_scan;
7060         conf->shrinker.count_objects = raid5_cache_count;
7061         conf->shrinker.batch = 128;
7062         conf->shrinker.flags = 0;
7063         if (register_shrinker(&conf->shrinker)) {
7064                 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7065                         mdname(mddev));
7066                 goto abort;
7067         }
7068
7069         sprintf(pers_name, "raid%d", mddev->new_level);
7070         conf->thread = md_register_thread(raid5d, mddev, pers_name);
7071         if (!conf->thread) {
7072                 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7073                         mdname(mddev));
7074                 goto abort;
7075         }
7076
7077         return conf;
7078
7079  abort:
7080         if (conf) {
7081                 free_conf(conf);
7082                 return ERR_PTR(-EIO);
7083         } else
7084                 return ERR_PTR(-ENOMEM);
7085 }
7086
7087 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7088 {
7089         switch (algo) {
7090         case ALGORITHM_PARITY_0:
7091                 if (raid_disk < max_degraded)
7092                         return 1;
7093                 break;
7094         case ALGORITHM_PARITY_N:
7095                 if (raid_disk >= raid_disks - max_degraded)
7096                         return 1;
7097                 break;
7098         case ALGORITHM_PARITY_0_6:
7099                 if (raid_disk == 0 ||
7100                     raid_disk == raid_disks - 1)
7101                         return 1;
7102                 break;
7103         case ALGORITHM_LEFT_ASYMMETRIC_6:
7104         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7105         case ALGORITHM_LEFT_SYMMETRIC_6:
7106         case ALGORITHM_RIGHT_SYMMETRIC_6:
7107                 if (raid_disk == raid_disks - 1)
7108                         return 1;
7109         }
7110         return 0;
7111 }
7112
7113 static int raid5_run(struct mddev *mddev)
7114 {
7115         struct r5conf *conf;
7116         int working_disks = 0;
7117         int dirty_parity_disks = 0;
7118         struct md_rdev *rdev;
7119         struct md_rdev *journal_dev = NULL;
7120         sector_t reshape_offset = 0;
7121         int i;
7122         long long min_offset_diff = 0;
7123         int first = 1;
7124
7125         if (mddev_init_writes_pending(mddev) < 0)
7126                 return -ENOMEM;
7127
7128         if (mddev->recovery_cp != MaxSector)
7129                 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7130                           mdname(mddev));
7131
7132         rdev_for_each(rdev, mddev) {
7133                 long long diff;
7134
7135                 if (test_bit(Journal, &rdev->flags)) {
7136                         journal_dev = rdev;
7137                         continue;
7138                 }
7139                 if (rdev->raid_disk < 0)
7140                         continue;
7141                 diff = (rdev->new_data_offset - rdev->data_offset);
7142                 if (first) {
7143                         min_offset_diff = diff;
7144                         first = 0;
7145                 } else if (mddev->reshape_backwards &&
7146                          diff < min_offset_diff)
7147                         min_offset_diff = diff;
7148                 else if (!mddev->reshape_backwards &&
7149                          diff > min_offset_diff)
7150                         min_offset_diff = diff;
7151         }
7152
7153         if (mddev->reshape_position != MaxSector) {
7154                 /* Check that we can continue the reshape.
7155                  * Difficulties arise if the stripe we would write to
7156                  * next is at or after the stripe we would read from next.
7157                  * For a reshape that changes the number of devices, this
7158                  * is only possible for a very short time, and mdadm makes
7159                  * sure that time appears to have past before assembling
7160                  * the array.  So we fail if that time hasn't passed.
7161                  * For a reshape that keeps the number of devices the same
7162                  * mdadm must be monitoring the reshape can keeping the
7163                  * critical areas read-only and backed up.  It will start
7164                  * the array in read-only mode, so we check for that.
7165                  */
7166                 sector_t here_new, here_old;
7167                 int old_disks;
7168                 int max_degraded = (mddev->level == 6 ? 2 : 1);
7169                 int chunk_sectors;
7170                 int new_data_disks;
7171
7172                 if (journal_dev) {
7173                         pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7174                                 mdname(mddev));
7175                         return -EINVAL;
7176                 }
7177
7178                 if (mddev->new_level != mddev->level) {
7179                         pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7180                                 mdname(mddev));
7181                         return -EINVAL;
7182                 }
7183                 old_disks = mddev->raid_disks - mddev->delta_disks;
7184                 /* reshape_position must be on a new-stripe boundary, and one
7185                  * further up in new geometry must map after here in old
7186                  * geometry.
7187                  * If the chunk sizes are different, then as we perform reshape
7188                  * in units of the largest of the two, reshape_position needs
7189                  * be a multiple of the largest chunk size times new data disks.
7190                  */
7191                 here_new = mddev->reshape_position;
7192                 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7193                 new_data_disks = mddev->raid_disks - max_degraded;
7194                 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7195                         pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7196                                 mdname(mddev));
7197                         return -EINVAL;
7198                 }
7199                 reshape_offset = here_new * chunk_sectors;
7200                 /* here_new is the stripe we will write to */
7201                 here_old = mddev->reshape_position;
7202                 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7203                 /* here_old is the first stripe that we might need to read
7204                  * from */
7205                 if (mddev->delta_disks == 0) {
7206                         /* We cannot be sure it is safe to start an in-place
7207                          * reshape.  It is only safe if user-space is monitoring
7208                          * and taking constant backups.
7209                          * mdadm always starts a situation like this in
7210                          * readonly mode so it can take control before
7211                          * allowing any writes.  So just check for that.
7212                          */
7213                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7214                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
7215                                 /* not really in-place - so OK */;
7216                         else if (mddev->ro == 0) {
7217                                 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7218                                         mdname(mddev));
7219                                 return -EINVAL;
7220                         }
7221                 } else if (mddev->reshape_backwards
7222                     ? (here_new * chunk_sectors + min_offset_diff <=
7223                        here_old * chunk_sectors)
7224                     : (here_new * chunk_sectors >=
7225                        here_old * chunk_sectors + (-min_offset_diff))) {
7226                         /* Reading from the same stripe as writing to - bad */
7227                         pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7228                                 mdname(mddev));
7229                         return -EINVAL;
7230                 }
7231                 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7232                 /* OK, we should be able to continue; */
7233         } else {
7234                 BUG_ON(mddev->level != mddev->new_level);
7235                 BUG_ON(mddev->layout != mddev->new_layout);
7236                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7237                 BUG_ON(mddev->delta_disks != 0);
7238         }
7239
7240         if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7241             test_bit(MD_HAS_PPL, &mddev->flags)) {
7242                 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7243                         mdname(mddev));
7244                 clear_bit(MD_HAS_PPL, &mddev->flags);
7245         }
7246
7247         if (mddev->private == NULL)
7248                 conf = setup_conf(mddev);
7249         else
7250                 conf = mddev->private;
7251
7252         if (IS_ERR(conf))
7253                 return PTR_ERR(conf);
7254
7255         if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7256                 if (!journal_dev) {
7257                         pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7258                                 mdname(mddev));
7259                         mddev->ro = 1;
7260                         set_disk_ro(mddev->gendisk, 1);
7261                 } else if (mddev->recovery_cp == MaxSector)
7262                         set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7263         }
7264
7265         conf->min_offset_diff = min_offset_diff;
7266         mddev->thread = conf->thread;
7267         conf->thread = NULL;
7268         mddev->private = conf;
7269
7270         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7271              i++) {
7272                 rdev = conf->disks[i].rdev;
7273                 if (!rdev && conf->disks[i].replacement) {
7274                         /* The replacement is all we have yet */
7275                         rdev = conf->disks[i].replacement;
7276                         conf->disks[i].replacement = NULL;
7277                         clear_bit(Replacement, &rdev->flags);
7278                         conf->disks[i].rdev = rdev;
7279                 }
7280                 if (!rdev)
7281                         continue;
7282                 if (conf->disks[i].replacement &&
7283                     conf->reshape_progress != MaxSector) {
7284                         /* replacements and reshape simply do not mix. */
7285                         pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7286                         goto abort;
7287                 }
7288                 if (test_bit(In_sync, &rdev->flags)) {
7289                         working_disks++;
7290                         continue;
7291                 }
7292                 /* This disc is not fully in-sync.  However if it
7293                  * just stored parity (beyond the recovery_offset),
7294                  * when we don't need to be concerned about the
7295                  * array being dirty.
7296                  * When reshape goes 'backwards', we never have
7297                  * partially completed devices, so we only need
7298                  * to worry about reshape going forwards.
7299                  */
7300                 /* Hack because v0.91 doesn't store recovery_offset properly. */
7301                 if (mddev->major_version == 0 &&
7302                     mddev->minor_version > 90)
7303                         rdev->recovery_offset = reshape_offset;
7304
7305                 if (rdev->recovery_offset < reshape_offset) {
7306                         /* We need to check old and new layout */
7307                         if (!only_parity(rdev->raid_disk,
7308                                          conf->algorithm,
7309                                          conf->raid_disks,
7310                                          conf->max_degraded))
7311                                 continue;
7312                 }
7313                 if (!only_parity(rdev->raid_disk,
7314                                  conf->prev_algo,
7315                                  conf->previous_raid_disks,
7316                                  conf->max_degraded))
7317                         continue;
7318                 dirty_parity_disks++;
7319         }
7320
7321         /*
7322          * 0 for a fully functional array, 1 or 2 for a degraded array.
7323          */
7324         mddev->degraded = raid5_calc_degraded(conf);
7325
7326         if (has_failed(conf)) {
7327                 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7328                         mdname(mddev), mddev->degraded, conf->raid_disks);
7329                 goto abort;
7330         }
7331
7332         /* device size must be a multiple of chunk size */
7333         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7334         mddev->resync_max_sectors = mddev->dev_sectors;
7335
7336         if (mddev->degraded > dirty_parity_disks &&
7337             mddev->recovery_cp != MaxSector) {
7338                 if (test_bit(MD_HAS_PPL, &mddev->flags))
7339                         pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7340                                 mdname(mddev));
7341                 else if (mddev->ok_start_degraded)
7342                         pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7343                                 mdname(mddev));
7344                 else {
7345                         pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7346                                 mdname(mddev));
7347                         goto abort;
7348                 }
7349         }
7350
7351         pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7352                 mdname(mddev), conf->level,
7353                 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7354                 mddev->new_layout);
7355
7356         print_raid5_conf(conf);
7357
7358         if (conf->reshape_progress != MaxSector) {
7359                 conf->reshape_safe = conf->reshape_progress;
7360                 atomic_set(&conf->reshape_stripes, 0);
7361                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7362                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7363                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7364                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7365                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7366                                                         "reshape");
7367         }
7368
7369         /* Ok, everything is just fine now */
7370         if (mddev->to_remove == &raid5_attrs_group)
7371                 mddev->to_remove = NULL;
7372         else if (mddev->kobj.sd &&
7373             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7374                 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7375                         mdname(mddev));
7376         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7377
7378         if (mddev->queue) {
7379                 int chunk_size;
7380                 /* read-ahead size must cover two whole stripes, which
7381                  * is 2 * (datadisks) * chunksize where 'n' is the
7382                  * number of raid devices
7383                  */
7384                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7385                 int stripe = data_disks *
7386                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7387                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7388                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7389
7390                 chunk_size = mddev->chunk_sectors << 9;
7391                 blk_queue_io_min(mddev->queue, chunk_size);
7392                 blk_queue_io_opt(mddev->queue, chunk_size *
7393                                  (conf->raid_disks - conf->max_degraded));
7394                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7395                 /*
7396                  * We can only discard a whole stripe. It doesn't make sense to
7397                  * discard data disk but write parity disk
7398                  */
7399                 stripe = stripe * PAGE_SIZE;
7400                 /* Round up to power of 2, as discard handling
7401                  * currently assumes that */
7402                 while ((stripe-1) & stripe)
7403                         stripe = (stripe | (stripe-1)) + 1;
7404                 mddev->queue->limits.discard_alignment = stripe;
7405                 mddev->queue->limits.discard_granularity = stripe;
7406
7407                 blk_queue_max_write_same_sectors(mddev->queue, 0);
7408                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7409
7410                 rdev_for_each(rdev, mddev) {
7411                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7412                                           rdev->data_offset << 9);
7413                         disk_stack_limits(mddev->gendisk, rdev->bdev,
7414                                           rdev->new_data_offset << 9);
7415                 }
7416
7417                 /*
7418                  * zeroing is required, otherwise data
7419                  * could be lost. Consider a scenario: discard a stripe
7420                  * (the stripe could be inconsistent if
7421                  * discard_zeroes_data is 0); write one disk of the
7422                  * stripe (the stripe could be inconsistent again
7423                  * depending on which disks are used to calculate
7424                  * parity); the disk is broken; The stripe data of this
7425                  * disk is lost.
7426                  *
7427                  * We only allow DISCARD if the sysadmin has confirmed that
7428                  * only safe devices are in use by setting a module parameter.
7429                  * A better idea might be to turn DISCARD into WRITE_ZEROES
7430                  * requests, as that is required to be safe.
7431                  */
7432                 if (devices_handle_discard_safely &&
7433                     mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7434                     mddev->queue->limits.discard_granularity >= stripe)
7435                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7436                                                 mddev->queue);
7437                 else
7438                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7439                                                 mddev->queue);
7440
7441                 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7442         }
7443
7444         if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7445                 goto abort;
7446
7447         return 0;
7448 abort:
7449         md_unregister_thread(&mddev->thread);
7450         print_raid5_conf(conf);
7451         free_conf(conf);
7452         mddev->private = NULL;
7453         pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7454         return -EIO;
7455 }
7456
7457 static void raid5_free(struct mddev *mddev, void *priv)
7458 {
7459         struct r5conf *conf = priv;
7460
7461         free_conf(conf);
7462         mddev->to_remove = &raid5_attrs_group;
7463 }
7464
7465 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7466 {
7467         struct r5conf *conf = mddev->private;
7468         int i;
7469
7470         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7471                 conf->chunk_sectors / 2, mddev->layout);
7472         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7473         rcu_read_lock();
7474         for (i = 0; i < conf->raid_disks; i++) {
7475                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7476                 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7477         }
7478         rcu_read_unlock();
7479         seq_printf (seq, "]");
7480 }
7481
7482 static void print_raid5_conf (struct r5conf *conf)
7483 {
7484         int i;
7485         struct disk_info *tmp;
7486
7487         pr_debug("RAID conf printout:\n");
7488         if (!conf) {
7489                 pr_debug("(conf==NULL)\n");
7490                 return;
7491         }
7492         pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7493                conf->raid_disks,
7494                conf->raid_disks - conf->mddev->degraded);
7495
7496         for (i = 0; i < conf->raid_disks; i++) {
7497                 char b[BDEVNAME_SIZE];
7498                 tmp = conf->disks + i;
7499                 if (tmp->rdev)
7500                         pr_debug(" disk %d, o:%d, dev:%s\n",
7501                                i, !test_bit(Faulty, &tmp->rdev->flags),
7502                                bdevname(tmp->rdev->bdev, b));
7503         }
7504 }
7505
7506 static int raid5_spare_active(struct mddev *mddev)
7507 {
7508         int i;
7509         struct r5conf *conf = mddev->private;
7510         struct disk_info *tmp;
7511         int count = 0;
7512         unsigned long flags;
7513
7514         for (i = 0; i < conf->raid_disks; i++) {
7515                 tmp = conf->disks + i;
7516                 if (tmp->replacement
7517                     && tmp->replacement->recovery_offset == MaxSector
7518                     && !test_bit(Faulty, &tmp->replacement->flags)
7519                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7520                         /* Replacement has just become active. */
7521                         if (!tmp->rdev
7522                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7523                                 count++;
7524                         if (tmp->rdev) {
7525                                 /* Replaced device not technically faulty,
7526                                  * but we need to be sure it gets removed
7527                                  * and never re-added.
7528                                  */
7529                                 set_bit(Faulty, &tmp->rdev->flags);
7530                                 sysfs_notify_dirent_safe(
7531                                         tmp->rdev->sysfs_state);
7532                         }
7533                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7534                 } else if (tmp->rdev
7535                     && tmp->rdev->recovery_offset == MaxSector
7536                     && !test_bit(Faulty, &tmp->rdev->flags)
7537                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7538                         count++;
7539                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7540                 }
7541         }
7542         spin_lock_irqsave(&conf->device_lock, flags);
7543         mddev->degraded = raid5_calc_degraded(conf);
7544         spin_unlock_irqrestore(&conf->device_lock, flags);
7545         print_raid5_conf(conf);
7546         return count;
7547 }
7548
7549 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7550 {
7551         struct r5conf *conf = mddev->private;
7552         int err = 0;
7553         int number = rdev->raid_disk;
7554         struct md_rdev **rdevp;
7555         struct disk_info *p = conf->disks + number;
7556
7557         print_raid5_conf(conf);
7558         if (test_bit(Journal, &rdev->flags) && conf->log) {
7559                 /*
7560                  * we can't wait pending write here, as this is called in
7561                  * raid5d, wait will deadlock.
7562                  * neilb: there is no locking about new writes here,
7563                  * so this cannot be safe.
7564                  */
7565                 if (atomic_read(&conf->active_stripes) ||
7566                     atomic_read(&conf->r5c_cached_full_stripes) ||
7567                     atomic_read(&conf->r5c_cached_partial_stripes)) {
7568                         return -EBUSY;
7569                 }
7570                 log_exit(conf);
7571                 return 0;
7572         }
7573         if (rdev == p->rdev)
7574                 rdevp = &p->rdev;
7575         else if (rdev == p->replacement)
7576                 rdevp = &p->replacement;
7577         else
7578                 return 0;
7579
7580         if (number >= conf->raid_disks &&
7581             conf->reshape_progress == MaxSector)
7582                 clear_bit(In_sync, &rdev->flags);
7583
7584         if (test_bit(In_sync, &rdev->flags) ||
7585             atomic_read(&rdev->nr_pending)) {
7586                 err = -EBUSY;
7587                 goto abort;
7588         }
7589         /* Only remove non-faulty devices if recovery
7590          * isn't possible.
7591          */
7592         if (!test_bit(Faulty, &rdev->flags) &&
7593             mddev->recovery_disabled != conf->recovery_disabled &&
7594             !has_failed(conf) &&
7595             (!p->replacement || p->replacement == rdev) &&
7596             number < conf->raid_disks) {
7597                 err = -EBUSY;
7598                 goto abort;
7599         }
7600         *rdevp = NULL;
7601         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7602                 synchronize_rcu();
7603                 if (atomic_read(&rdev->nr_pending)) {
7604                         /* lost the race, try later */
7605                         err = -EBUSY;
7606                         *rdevp = rdev;
7607                 }
7608         }
7609         if (!err) {
7610                 err = log_modify(conf, rdev, false);
7611                 if (err)
7612                         goto abort;
7613         }
7614         if (p->replacement) {
7615                 /* We must have just cleared 'rdev' */
7616                 p->rdev = p->replacement;
7617                 clear_bit(Replacement, &p->replacement->flags);
7618                 smp_mb(); /* Make sure other CPUs may see both as identical
7619                            * but will never see neither - if they are careful
7620                            */
7621                 p->replacement = NULL;
7622
7623                 if (!err)
7624                         err = log_modify(conf, p->rdev, true);
7625         }
7626
7627         clear_bit(WantReplacement, &rdev->flags);
7628 abort:
7629
7630         print_raid5_conf(conf);
7631         return err;
7632 }
7633
7634 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7635 {
7636         struct r5conf *conf = mddev->private;
7637         int err = -EEXIST;
7638         int disk;
7639         struct disk_info *p;
7640         int first = 0;
7641         int last = conf->raid_disks - 1;
7642
7643         if (test_bit(Journal, &rdev->flags)) {
7644                 if (conf->log)
7645                         return -EBUSY;
7646
7647                 rdev->raid_disk = 0;
7648                 /*
7649                  * The array is in readonly mode if journal is missing, so no
7650                  * write requests running. We should be safe
7651                  */
7652                 log_init(conf, rdev, false);
7653                 return 0;
7654         }
7655         if (mddev->recovery_disabled == conf->recovery_disabled)
7656                 return -EBUSY;
7657
7658         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7659                 /* no point adding a device */
7660                 return -EINVAL;
7661
7662         if (rdev->raid_disk >= 0)
7663                 first = last = rdev->raid_disk;
7664
7665         /*
7666          * find the disk ... but prefer rdev->saved_raid_disk
7667          * if possible.
7668          */
7669         if (rdev->saved_raid_disk >= 0 &&
7670             rdev->saved_raid_disk >= first &&
7671             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7672                 first = rdev->saved_raid_disk;
7673
7674         for (disk = first; disk <= last; disk++) {
7675                 p = conf->disks + disk;
7676                 if (p->rdev == NULL) {
7677                         clear_bit(In_sync, &rdev->flags);
7678                         rdev->raid_disk = disk;
7679                         if (rdev->saved_raid_disk != disk)
7680                                 conf->fullsync = 1;
7681                         rcu_assign_pointer(p->rdev, rdev);
7682
7683                         err = log_modify(conf, rdev, true);
7684
7685                         goto out;
7686                 }
7687         }
7688         for (disk = first; disk <= last; disk++) {
7689                 p = conf->disks + disk;
7690                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7691                     p->replacement == NULL) {
7692                         clear_bit(In_sync, &rdev->flags);
7693                         set_bit(Replacement, &rdev->flags);
7694                         rdev->raid_disk = disk;
7695                         err = 0;
7696                         conf->fullsync = 1;
7697                         rcu_assign_pointer(p->replacement, rdev);
7698                         break;
7699                 }
7700         }
7701 out:
7702         print_raid5_conf(conf);
7703         return err;
7704 }
7705
7706 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7707 {
7708         /* no resync is happening, and there is enough space
7709          * on all devices, so we can resize.
7710          * We need to make sure resync covers any new space.
7711          * If the array is shrinking we should possibly wait until
7712          * any io in the removed space completes, but it hardly seems
7713          * worth it.
7714          */
7715         sector_t newsize;
7716         struct r5conf *conf = mddev->private;
7717
7718         if (conf->log || raid5_has_ppl(conf))
7719                 return -EINVAL;
7720         sectors &= ~((sector_t)conf->chunk_sectors - 1);
7721         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7722         if (mddev->external_size &&
7723             mddev->array_sectors > newsize)
7724                 return -EINVAL;
7725         if (mddev->bitmap) {
7726                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7727                 if (ret)
7728                         return ret;
7729         }
7730         md_set_array_sectors(mddev, newsize);
7731         if (sectors > mddev->dev_sectors &&
7732             mddev->recovery_cp > mddev->dev_sectors) {
7733                 mddev->recovery_cp = mddev->dev_sectors;
7734                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7735         }
7736         mddev->dev_sectors = sectors;
7737         mddev->resync_max_sectors = sectors;
7738         return 0;
7739 }
7740
7741 static int check_stripe_cache(struct mddev *mddev)
7742 {
7743         /* Can only proceed if there are plenty of stripe_heads.
7744          * We need a minimum of one full stripe,, and for sensible progress
7745          * it is best to have about 4 times that.
7746          * If we require 4 times, then the default 256 4K stripe_heads will
7747          * allow for chunk sizes up to 256K, which is probably OK.
7748          * If the chunk size is greater, user-space should request more
7749          * stripe_heads first.
7750          */
7751         struct r5conf *conf = mddev->private;
7752         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7753             > conf->min_nr_stripes ||
7754             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7755             > conf->min_nr_stripes) {
7756                 pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7757                         mdname(mddev),
7758                         ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7759                          / STRIPE_SIZE)*4);
7760                 return 0;
7761         }
7762         return 1;
7763 }
7764
7765 static int check_reshape(struct mddev *mddev)
7766 {
7767         struct r5conf *conf = mddev->private;
7768
7769         if (conf->log || raid5_has_ppl(conf))
7770                 return -EINVAL;
7771         if (mddev->delta_disks == 0 &&
7772             mddev->new_layout == mddev->layout &&
7773             mddev->new_chunk_sectors == mddev->chunk_sectors)
7774                 return 0; /* nothing to do */
7775         if (has_failed(conf))
7776                 return -EINVAL;
7777         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7778                 /* We might be able to shrink, but the devices must
7779                  * be made bigger first.
7780                  * For raid6, 4 is the minimum size.
7781                  * Otherwise 2 is the minimum
7782                  */
7783                 int min = 2;
7784                 if (mddev->level == 6)
7785                         min = 4;
7786                 if (mddev->raid_disks + mddev->delta_disks < min)
7787                         return -EINVAL;
7788         }
7789
7790         if (!check_stripe_cache(mddev))
7791                 return -ENOSPC;
7792
7793         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7794             mddev->delta_disks > 0)
7795                 if (resize_chunks(conf,
7796                                   conf->previous_raid_disks
7797                                   + max(0, mddev->delta_disks),
7798                                   max(mddev->new_chunk_sectors,
7799                                       mddev->chunk_sectors)
7800                             ) < 0)
7801                         return -ENOMEM;
7802
7803         if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7804                 return 0; /* never bother to shrink */
7805         return resize_stripes(conf, (conf->previous_raid_disks
7806                                      + mddev->delta_disks));
7807 }
7808
7809 static int raid5_start_reshape(struct mddev *mddev)
7810 {
7811         struct r5conf *conf = mddev->private;
7812         struct md_rdev *rdev;
7813         int spares = 0;
7814         unsigned long flags;
7815
7816         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7817                 return -EBUSY;
7818
7819         if (!check_stripe_cache(mddev))
7820                 return -ENOSPC;
7821
7822         if (has_failed(conf))
7823                 return -EINVAL;
7824
7825         rdev_for_each(rdev, mddev) {
7826                 if (!test_bit(In_sync, &rdev->flags)
7827                     && !test_bit(Faulty, &rdev->flags))
7828                         spares++;
7829         }
7830
7831         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7832                 /* Not enough devices even to make a degraded array
7833                  * of that size
7834                  */
7835                 return -EINVAL;
7836
7837         /* Refuse to reduce size of the array.  Any reductions in
7838          * array size must be through explicit setting of array_size
7839          * attribute.
7840          */
7841         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7842             < mddev->array_sectors) {
7843                 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7844                         mdname(mddev));
7845                 return -EINVAL;
7846         }
7847
7848         atomic_set(&conf->reshape_stripes, 0);
7849         spin_lock_irq(&conf->device_lock);
7850         write_seqcount_begin(&conf->gen_lock);
7851         conf->previous_raid_disks = conf->raid_disks;
7852         conf->raid_disks += mddev->delta_disks;
7853         conf->prev_chunk_sectors = conf->chunk_sectors;
7854         conf->chunk_sectors = mddev->new_chunk_sectors;
7855         conf->prev_algo = conf->algorithm;
7856         conf->algorithm = mddev->new_layout;
7857         conf->generation++;
7858         /* Code that selects data_offset needs to see the generation update
7859          * if reshape_progress has been set - so a memory barrier needed.
7860          */
7861         smp_mb();
7862         if (mddev->reshape_backwards)
7863                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7864         else
7865                 conf->reshape_progress = 0;
7866         conf->reshape_safe = conf->reshape_progress;
7867         write_seqcount_end(&conf->gen_lock);
7868         spin_unlock_irq(&conf->device_lock);
7869
7870         /* Now make sure any requests that proceeded on the assumption
7871          * the reshape wasn't running - like Discard or Read - have
7872          * completed.
7873          */
7874         mddev_suspend(mddev);
7875         mddev_resume(mddev);
7876
7877         /* Add some new drives, as many as will fit.
7878          * We know there are enough to make the newly sized array work.
7879          * Don't add devices if we are reducing the number of
7880          * devices in the array.  This is because it is not possible
7881          * to correctly record the "partially reconstructed" state of
7882          * such devices during the reshape and confusion could result.
7883          */
7884         if (mddev->delta_disks >= 0) {
7885                 rdev_for_each(rdev, mddev)
7886                         if (rdev->raid_disk < 0 &&
7887                             !test_bit(Faulty, &rdev->flags)) {
7888                                 if (raid5_add_disk(mddev, rdev) == 0) {
7889                                         if (rdev->raid_disk
7890                                             >= conf->previous_raid_disks)
7891                                                 set_bit(In_sync, &rdev->flags);
7892                                         else
7893                                                 rdev->recovery_offset = 0;
7894
7895                                         if (sysfs_link_rdev(mddev, rdev))
7896                                                 /* Failure here is OK */;
7897                                 }
7898                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7899                                    && !test_bit(Faulty, &rdev->flags)) {
7900                                 /* This is a spare that was manually added */
7901                                 set_bit(In_sync, &rdev->flags);
7902                         }
7903
7904                 /* When a reshape changes the number of devices,
7905                  * ->degraded is measured against the larger of the
7906                  * pre and post number of devices.
7907                  */
7908                 spin_lock_irqsave(&conf->device_lock, flags);
7909                 mddev->degraded = raid5_calc_degraded(conf);
7910                 spin_unlock_irqrestore(&conf->device_lock, flags);
7911         }
7912         mddev->raid_disks = conf->raid_disks;
7913         mddev->reshape_position = conf->reshape_progress;
7914         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7915
7916         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7917         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7918         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7919         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7920         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7921         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7922                                                 "reshape");
7923         if (!mddev->sync_thread) {
7924                 mddev->recovery = 0;
7925                 spin_lock_irq(&conf->device_lock);
7926                 write_seqcount_begin(&conf->gen_lock);
7927                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7928                 mddev->new_chunk_sectors =
7929                         conf->chunk_sectors = conf->prev_chunk_sectors;
7930                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7931                 rdev_for_each(rdev, mddev)
7932                         rdev->new_data_offset = rdev->data_offset;
7933                 smp_wmb();
7934                 conf->generation --;
7935                 conf->reshape_progress = MaxSector;
7936                 mddev->reshape_position = MaxSector;
7937                 write_seqcount_end(&conf->gen_lock);
7938                 spin_unlock_irq(&conf->device_lock);
7939                 return -EAGAIN;
7940         }
7941         conf->reshape_checkpoint = jiffies;
7942         md_wakeup_thread(mddev->sync_thread);
7943         md_new_event(mddev);
7944         return 0;
7945 }
7946
7947 /* This is called from the reshape thread and should make any
7948  * changes needed in 'conf'
7949  */
7950 static void end_reshape(struct r5conf *conf)
7951 {
7952
7953         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7954                 struct md_rdev *rdev;
7955
7956                 spin_lock_irq(&conf->device_lock);
7957                 conf->previous_raid_disks = conf->raid_disks;
7958                 rdev_for_each(rdev, conf->mddev)
7959                         rdev->data_offset = rdev->new_data_offset;
7960                 smp_wmb();
7961                 conf->reshape_progress = MaxSector;
7962                 conf->mddev->reshape_position = MaxSector;
7963                 spin_unlock_irq(&conf->device_lock);
7964                 wake_up(&conf->wait_for_overlap);
7965
7966                 /* read-ahead size must cover two whole stripes, which is
7967                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7968                  */
7969                 if (conf->mddev->queue) {
7970                         int data_disks = conf->raid_disks - conf->max_degraded;
7971                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7972                                                    / PAGE_SIZE);
7973                         if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7974                                 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7975                 }
7976         }
7977 }
7978
7979 /* This is called from the raid5d thread with mddev_lock held.
7980  * It makes config changes to the device.
7981  */
7982 static void raid5_finish_reshape(struct mddev *mddev)
7983 {
7984         struct r5conf *conf = mddev->private;
7985
7986         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7987
7988                 if (mddev->delta_disks > 0) {
7989                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7990                         if (mddev->queue) {
7991                                 set_capacity(mddev->gendisk, mddev->array_sectors);
7992                                 revalidate_disk(mddev->gendisk);
7993                         }
7994                 } else {
7995                         int d;
7996                         spin_lock_irq(&conf->device_lock);
7997                         mddev->degraded = raid5_calc_degraded(conf);
7998                         spin_unlock_irq(&conf->device_lock);
7999                         for (d = conf->raid_disks ;
8000                              d < conf->raid_disks - mddev->delta_disks;
8001                              d++) {
8002                                 struct md_rdev *rdev = conf->disks[d].rdev;
8003                                 if (rdev)
8004                                         clear_bit(In_sync, &rdev->flags);
8005                                 rdev = conf->disks[d].replacement;
8006                                 if (rdev)
8007                                         clear_bit(In_sync, &rdev->flags);
8008                         }
8009                 }
8010                 mddev->layout = conf->algorithm;
8011                 mddev->chunk_sectors = conf->chunk_sectors;
8012                 mddev->reshape_position = MaxSector;
8013                 mddev->delta_disks = 0;
8014                 mddev->reshape_backwards = 0;
8015         }
8016 }
8017
8018 static void raid5_quiesce(struct mddev *mddev, int state)
8019 {
8020         struct r5conf *conf = mddev->private;
8021
8022         switch(state) {
8023         case 2: /* resume for a suspend */
8024                 wake_up(&conf->wait_for_overlap);
8025                 break;
8026
8027         case 1: /* stop all writes */
8028                 lock_all_device_hash_locks_irq(conf);
8029                 /* '2' tells resync/reshape to pause so that all
8030                  * active stripes can drain
8031                  */
8032                 r5c_flush_cache(conf, INT_MAX);
8033                 conf->quiesce = 2;
8034                 wait_event_cmd(conf->wait_for_quiescent,
8035                                     atomic_read(&conf->active_stripes) == 0 &&
8036                                     atomic_read(&conf->active_aligned_reads) == 0,
8037                                     unlock_all_device_hash_locks_irq(conf),
8038                                     lock_all_device_hash_locks_irq(conf));
8039                 conf->quiesce = 1;
8040                 unlock_all_device_hash_locks_irq(conf);
8041                 /* allow reshape to continue */
8042                 wake_up(&conf->wait_for_overlap);
8043                 break;
8044
8045         case 0: /* re-enable writes */
8046                 lock_all_device_hash_locks_irq(conf);
8047                 conf->quiesce = 0;
8048                 wake_up(&conf->wait_for_quiescent);
8049                 wake_up(&conf->wait_for_overlap);
8050                 unlock_all_device_hash_locks_irq(conf);
8051                 break;
8052         }
8053         r5l_quiesce(conf->log, state);
8054 }
8055
8056 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8057 {
8058         struct r0conf *raid0_conf = mddev->private;
8059         sector_t sectors;
8060
8061         /* for raid0 takeover only one zone is supported */
8062         if (raid0_conf->nr_strip_zones > 1) {
8063                 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8064                         mdname(mddev));
8065                 return ERR_PTR(-EINVAL);
8066         }
8067
8068         sectors = raid0_conf->strip_zone[0].zone_end;
8069         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8070         mddev->dev_sectors = sectors;
8071         mddev->new_level = level;
8072         mddev->new_layout = ALGORITHM_PARITY_N;
8073         mddev->new_chunk_sectors = mddev->chunk_sectors;
8074         mddev->raid_disks += 1;
8075         mddev->delta_disks = 1;
8076         /* make sure it will be not marked as dirty */
8077         mddev->recovery_cp = MaxSector;
8078
8079         return setup_conf(mddev);
8080 }
8081
8082 static void *raid5_takeover_raid1(struct mddev *mddev)
8083 {
8084         int chunksect;
8085         void *ret;
8086
8087         if (mddev->raid_disks != 2 ||
8088             mddev->degraded > 1)
8089                 return ERR_PTR(-EINVAL);
8090
8091         /* Should check if there are write-behind devices? */
8092
8093         chunksect = 64*2; /* 64K by default */
8094
8095         /* The array must be an exact multiple of chunksize */
8096         while (chunksect && (mddev->array_sectors & (chunksect-1)))
8097                 chunksect >>= 1;
8098
8099         if ((chunksect<<9) < STRIPE_SIZE)
8100                 /* array size does not allow a suitable chunk size */
8101                 return ERR_PTR(-EINVAL);
8102
8103         mddev->new_level = 5;
8104         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8105         mddev->new_chunk_sectors = chunksect;
8106
8107         ret = setup_conf(mddev);
8108         if (!IS_ERR(ret))
8109                 mddev_clear_unsupported_flags(mddev,
8110                         UNSUPPORTED_MDDEV_FLAGS);
8111         return ret;
8112 }
8113
8114 static void *raid5_takeover_raid6(struct mddev *mddev)
8115 {
8116         int new_layout;
8117
8118         switch (mddev->layout) {
8119         case ALGORITHM_LEFT_ASYMMETRIC_6:
8120                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8121                 break;
8122         case ALGORITHM_RIGHT_ASYMMETRIC_6:
8123                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8124                 break;
8125         case ALGORITHM_LEFT_SYMMETRIC_6:
8126                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8127                 break;
8128         case ALGORITHM_RIGHT_SYMMETRIC_6:
8129                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8130                 break;
8131         case ALGORITHM_PARITY_0_6:
8132                 new_layout = ALGORITHM_PARITY_0;
8133                 break;
8134         case ALGORITHM_PARITY_N:
8135                 new_layout = ALGORITHM_PARITY_N;
8136                 break;
8137         default:
8138                 return ERR_PTR(-EINVAL);
8139         }
8140         mddev->new_level = 5;
8141         mddev->new_layout = new_layout;
8142         mddev->delta_disks = -1;
8143         mddev->raid_disks -= 1;
8144         return setup_conf(mddev);
8145 }
8146
8147 static int raid5_check_reshape(struct mddev *mddev)
8148 {
8149         /* For a 2-drive array, the layout and chunk size can be changed
8150          * immediately as not restriping is needed.
8151          * For larger arrays we record the new value - after validation
8152          * to be used by a reshape pass.
8153          */
8154         struct r5conf *conf = mddev->private;
8155         int new_chunk = mddev->new_chunk_sectors;
8156
8157         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8158                 return -EINVAL;
8159         if (new_chunk > 0) {
8160                 if (!is_power_of_2(new_chunk))
8161                         return -EINVAL;
8162                 if (new_chunk < (PAGE_SIZE>>9))
8163                         return -EINVAL;
8164                 if (mddev->array_sectors & (new_chunk-1))
8165                         /* not factor of array size */
8166                         return -EINVAL;
8167         }
8168
8169         /* They look valid */
8170
8171         if (mddev->raid_disks == 2) {
8172                 /* can make the change immediately */
8173                 if (mddev->new_layout >= 0) {
8174                         conf->algorithm = mddev->new_layout;
8175                         mddev->layout = mddev->new_layout;
8176                 }
8177                 if (new_chunk > 0) {
8178                         conf->chunk_sectors = new_chunk ;
8179                         mddev->chunk_sectors = new_chunk;
8180                 }
8181                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8182                 md_wakeup_thread(mddev->thread);
8183         }
8184         return check_reshape(mddev);
8185 }
8186
8187 static int raid6_check_reshape(struct mddev *mddev)
8188 {
8189         int new_chunk = mddev->new_chunk_sectors;
8190
8191         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8192                 return -EINVAL;
8193         if (new_chunk > 0) {
8194                 if (!is_power_of_2(new_chunk))
8195                         return -EINVAL;
8196                 if (new_chunk < (PAGE_SIZE >> 9))
8197                         return -EINVAL;
8198                 if (mddev->array_sectors & (new_chunk-1))
8199                         /* not factor of array size */
8200                         return -EINVAL;
8201         }
8202
8203         /* They look valid */
8204         return check_reshape(mddev);
8205 }
8206
8207 static void *raid5_takeover(struct mddev *mddev)
8208 {
8209         /* raid5 can take over:
8210          *  raid0 - if there is only one strip zone - make it a raid4 layout
8211          *  raid1 - if there are two drives.  We need to know the chunk size
8212          *  raid4 - trivial - just use a raid4 layout.
8213          *  raid6 - Providing it is a *_6 layout
8214          */
8215         if (mddev->level == 0)
8216                 return raid45_takeover_raid0(mddev, 5);
8217         if (mddev->level == 1)
8218                 return raid5_takeover_raid1(mddev);
8219         if (mddev->level == 4) {
8220                 mddev->new_layout = ALGORITHM_PARITY_N;
8221                 mddev->new_level = 5;
8222                 return setup_conf(mddev);
8223         }
8224         if (mddev->level == 6)
8225                 return raid5_takeover_raid6(mddev);
8226
8227         return ERR_PTR(-EINVAL);
8228 }
8229
8230 static void *raid4_takeover(struct mddev *mddev)
8231 {
8232         /* raid4 can take over:
8233          *  raid0 - if there is only one strip zone
8234          *  raid5 - if layout is right
8235          */
8236         if (mddev->level == 0)
8237                 return raid45_takeover_raid0(mddev, 4);
8238         if (mddev->level == 5 &&
8239             mddev->layout == ALGORITHM_PARITY_N) {
8240                 mddev->new_layout = 0;
8241                 mddev->new_level = 4;
8242                 return setup_conf(mddev);
8243         }
8244         return ERR_PTR(-EINVAL);
8245 }
8246
8247 static struct md_personality raid5_personality;
8248
8249 static void *raid6_takeover(struct mddev *mddev)
8250 {
8251         /* Currently can only take over a raid5.  We map the
8252          * personality to an equivalent raid6 personality
8253          * with the Q block at the end.
8254          */
8255         int new_layout;
8256
8257         if (mddev->pers != &raid5_personality)
8258                 return ERR_PTR(-EINVAL);
8259         if (mddev->degraded > 1)
8260                 return ERR_PTR(-EINVAL);
8261         if (mddev->raid_disks > 253)
8262                 return ERR_PTR(-EINVAL);
8263         if (mddev->raid_disks < 3)
8264                 return ERR_PTR(-EINVAL);
8265
8266         switch (mddev->layout) {
8267         case ALGORITHM_LEFT_ASYMMETRIC:
8268                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8269                 break;
8270         case ALGORITHM_RIGHT_ASYMMETRIC:
8271                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8272                 break;
8273         case ALGORITHM_LEFT_SYMMETRIC:
8274                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8275                 break;
8276         case ALGORITHM_RIGHT_SYMMETRIC:
8277                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8278                 break;
8279         case ALGORITHM_PARITY_0:
8280                 new_layout = ALGORITHM_PARITY_0_6;
8281                 break;
8282         case ALGORITHM_PARITY_N:
8283                 new_layout = ALGORITHM_PARITY_N;
8284                 break;
8285         default:
8286                 return ERR_PTR(-EINVAL);
8287         }
8288         mddev->new_level = 6;
8289         mddev->new_layout = new_layout;
8290         mddev->delta_disks = 1;
8291         mddev->raid_disks += 1;
8292         return setup_conf(mddev);
8293 }
8294
8295 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8296 {
8297         struct r5conf *conf;
8298         int err;
8299
8300         err = mddev_lock(mddev);
8301         if (err)
8302                 return err;
8303         conf = mddev->private;
8304         if (!conf) {
8305                 mddev_unlock(mddev);
8306                 return -ENODEV;
8307         }
8308
8309         if (strncmp(buf, "ppl", 3) == 0) {
8310                 /* ppl only works with RAID 5 */
8311                 if (!raid5_has_ppl(conf) && conf->level == 5) {
8312                         err = log_init(conf, NULL, true);
8313                         if (!err) {
8314                                 err = resize_stripes(conf, conf->pool_size);
8315                                 if (err)
8316                                         log_exit(conf);
8317                         }
8318                 } else
8319                         err = -EINVAL;
8320         } else if (strncmp(buf, "resync", 6) == 0) {
8321                 if (raid5_has_ppl(conf)) {
8322                         mddev_suspend(mddev);
8323                         log_exit(conf);
8324                         mddev_resume(mddev);
8325                         err = resize_stripes(conf, conf->pool_size);
8326                 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8327                            r5l_log_disk_error(conf)) {
8328                         bool journal_dev_exists = false;
8329                         struct md_rdev *rdev;
8330
8331                         rdev_for_each(rdev, mddev)
8332                                 if (test_bit(Journal, &rdev->flags)) {
8333                                         journal_dev_exists = true;
8334                                         break;
8335                                 }
8336
8337                         if (!journal_dev_exists) {
8338                                 mddev_suspend(mddev);
8339                                 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8340                                 mddev_resume(mddev);
8341                         } else  /* need remove journal device first */
8342                                 err = -EBUSY;
8343                 } else
8344                         err = -EINVAL;
8345         } else {
8346                 err = -EINVAL;
8347         }
8348
8349         if (!err)
8350                 md_update_sb(mddev, 1);
8351
8352         mddev_unlock(mddev);
8353
8354         return err;
8355 }
8356
8357 static struct md_personality raid6_personality =
8358 {
8359         .name           = "raid6",
8360         .level          = 6,
8361         .owner          = THIS_MODULE,
8362         .make_request   = raid5_make_request,
8363         .run            = raid5_run,
8364         .free           = raid5_free,
8365         .status         = raid5_status,
8366         .error_handler  = raid5_error,
8367         .hot_add_disk   = raid5_add_disk,
8368         .hot_remove_disk= raid5_remove_disk,
8369         .spare_active   = raid5_spare_active,
8370         .sync_request   = raid5_sync_request,
8371         .resize         = raid5_resize,
8372         .size           = raid5_size,
8373         .check_reshape  = raid6_check_reshape,
8374         .start_reshape  = raid5_start_reshape,
8375         .finish_reshape = raid5_finish_reshape,
8376         .quiesce        = raid5_quiesce,
8377         .takeover       = raid6_takeover,
8378         .congested      = raid5_congested,
8379         .change_consistency_policy = raid5_change_consistency_policy,
8380 };
8381 static struct md_personality raid5_personality =
8382 {
8383         .name           = "raid5",
8384         .level          = 5,
8385         .owner          = THIS_MODULE,
8386         .make_request   = raid5_make_request,
8387         .run            = raid5_run,
8388         .free           = raid5_free,
8389         .status         = raid5_status,
8390         .error_handler  = raid5_error,
8391         .hot_add_disk   = raid5_add_disk,
8392         .hot_remove_disk= raid5_remove_disk,
8393         .spare_active   = raid5_spare_active,
8394         .sync_request   = raid5_sync_request,
8395         .resize         = raid5_resize,
8396         .size           = raid5_size,
8397         .check_reshape  = raid5_check_reshape,
8398         .start_reshape  = raid5_start_reshape,
8399         .finish_reshape = raid5_finish_reshape,
8400         .quiesce        = raid5_quiesce,
8401         .takeover       = raid5_takeover,
8402         .congested      = raid5_congested,
8403         .change_consistency_policy = raid5_change_consistency_policy,
8404 };
8405
8406 static struct md_personality raid4_personality =
8407 {
8408         .name           = "raid4",
8409         .level          = 4,
8410         .owner          = THIS_MODULE,
8411         .make_request   = raid5_make_request,
8412         .run            = raid5_run,
8413         .free           = raid5_free,
8414         .status         = raid5_status,
8415         .error_handler  = raid5_error,
8416         .hot_add_disk   = raid5_add_disk,
8417         .hot_remove_disk= raid5_remove_disk,
8418         .spare_active   = raid5_spare_active,
8419         .sync_request   = raid5_sync_request,
8420         .resize         = raid5_resize,
8421         .size           = raid5_size,
8422         .check_reshape  = raid5_check_reshape,
8423         .start_reshape  = raid5_start_reshape,
8424         .finish_reshape = raid5_finish_reshape,
8425         .quiesce        = raid5_quiesce,
8426         .takeover       = raid4_takeover,
8427         .congested      = raid5_congested,
8428         .change_consistency_policy = raid5_change_consistency_policy,
8429 };
8430
8431 static int __init raid5_init(void)
8432 {
8433         int ret;
8434
8435         raid5_wq = alloc_workqueue("raid5wq",
8436                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8437         if (!raid5_wq)
8438                 return -ENOMEM;
8439
8440         ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8441                                       "md/raid5:prepare",
8442                                       raid456_cpu_up_prepare,
8443                                       raid456_cpu_dead);
8444         if (ret) {
8445                 destroy_workqueue(raid5_wq);
8446                 return ret;
8447         }
8448         register_md_personality(&raid6_personality);
8449         register_md_personality(&raid5_personality);
8450         register_md_personality(&raid4_personality);
8451         return 0;
8452 }
8453
8454 static void raid5_exit(void)
8455 {
8456         unregister_md_personality(&raid6_personality);
8457         unregister_md_personality(&raid5_personality);
8458         unregister_md_personality(&raid4_personality);
8459         cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8460         destroy_workqueue(raid5_wq);
8461 }
8462
8463 module_init(raid5_init);
8464 module_exit(raid5_exit);
8465 MODULE_LICENSE("GPL");
8466 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8467 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8468 MODULE_ALIAS("md-raid5");
8469 MODULE_ALIAS("md-raid4");
8470 MODULE_ALIAS("md-level-5");
8471 MODULE_ALIAS("md-level-4");
8472 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8473 MODULE_ALIAS("md-raid6");
8474 MODULE_ALIAS("md-level-6");
8475
8476 /* This used to be two separate modules, they were: */
8477 MODULE_ALIAS("raid5");
8478 MODULE_ALIAS("raid6");