]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
a5135e595866322da424e07a2a75dc170e7aa0d2
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state))
200                                 list_add_tail(&sh->lru, &conf->delayed_list);
201                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202                                    sh->bm_seq - conf->seq_write > 0)
203                                 list_add_tail(&sh->lru, &conf->bitmap_list);
204                         else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212                                 if (atomic_dec_return(&conf->preread_active_stripes)
213                                     < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         atomic_dec(&conf->active_stripes);
216                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217                                 list_add_tail(&sh->lru, &conf->inactive_list);
218                                 wake_up(&conf->wait_for_stripe);
219                                 if (conf->retry_read_aligned)
220                                         md_wakeup_thread(conf->mddev->thread);
221                         }
222                 }
223         }
224 }
225
226 static void release_stripe(struct stripe_head *sh)
227 {
228         struct r5conf *conf = sh->raid_conf;
229         unsigned long flags;
230
231         spin_lock_irqsave(&conf->device_lock, flags);
232         __release_stripe(conf, sh);
233         spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238         pr_debug("remove_hash(), stripe %llu\n",
239                 (unsigned long long)sh->sector);
240
241         hlist_del_init(&sh->hash);
242 }
243
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246         struct hlist_head *hp = stripe_hash(conf, sh->sector);
247
248         pr_debug("insert_hash(), stripe %llu\n",
249                 (unsigned long long)sh->sector);
250
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         if (list_empty(&conf->inactive_list))
262                 goto out;
263         first = conf->inactive_list.next;
264         sh = list_entry(first, struct stripe_head, lru);
265         list_del_init(first);
266         remove_hash(sh);
267         atomic_inc(&conf->active_stripes);
268 out:
269         return sh;
270 }
271
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274         struct page *p;
275         int i;
276         int num = sh->raid_conf->pool_size;
277
278         for (i = 0; i < num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh)
288 {
289         int i;
290         int num = sh->raid_conf->pool_size;
291
292         for (i = 0; i < num; i++) {
293                 struct page *page;
294
295                 if (!(page = alloc_page(GFP_KERNEL))) {
296                         return 1;
297                 }
298                 sh->dev[i].page = page;
299         }
300         return 0;
301 }
302
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305                             struct stripe_head *sh);
306
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309         struct r5conf *conf = sh->raid_conf;
310         int i;
311
312         BUG_ON(atomic_read(&sh->count) != 0);
313         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314         BUG_ON(stripe_operations_active(sh));
315
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         WARN_ON(1);
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353                 if (sh->sector == sector && sh->generation == generation)
354                         return sh;
355         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356         return NULL;
357 }
358
359 /*
360  * Need to check if array has failed when deciding whether to:
361  *  - start an array
362  *  - remove non-faulty devices
363  *  - add a spare
364  *  - allow a reshape
365  * This determination is simple when no reshape is happening.
366  * However if there is a reshape, we need to carefully check
367  * both the before and after sections.
368  * This is because some failed devices may only affect one
369  * of the two sections, and some non-in_sync devices may
370  * be insync in the section most affected by failed devices.
371  */
372 static int calc_degraded(struct r5conf *conf)
373 {
374         int degraded, degraded2;
375         int i;
376
377         rcu_read_lock();
378         degraded = 0;
379         for (i = 0; i < conf->previous_raid_disks; i++) {
380                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381                 if (!rdev || test_bit(Faulty, &rdev->flags))
382                         degraded++;
383                 else if (test_bit(In_sync, &rdev->flags))
384                         ;
385                 else
386                         /* not in-sync or faulty.
387                          * If the reshape increases the number of devices,
388                          * this is being recovered by the reshape, so
389                          * this 'previous' section is not in_sync.
390                          * If the number of devices is being reduced however,
391                          * the device can only be part of the array if
392                          * we are reverting a reshape, so this section will
393                          * be in-sync.
394                          */
395                         if (conf->raid_disks >= conf->previous_raid_disks)
396                                 degraded++;
397         }
398         rcu_read_unlock();
399         if (conf->raid_disks == conf->previous_raid_disks)
400                 return degraded;
401         rcu_read_lock();
402         degraded2 = 0;
403         for (i = 0; i < conf->raid_disks; i++) {
404                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405                 if (!rdev || test_bit(Faulty, &rdev->flags))
406                         degraded2++;
407                 else if (test_bit(In_sync, &rdev->flags))
408                         ;
409                 else
410                         /* not in-sync or faulty.
411                          * If reshape increases the number of devices, this
412                          * section has already been recovered, else it
413                          * almost certainly hasn't.
414                          */
415                         if (conf->raid_disks <= conf->previous_raid_disks)
416                                 degraded2++;
417         }
418         rcu_read_unlock();
419         if (degraded2 > degraded)
420                 return degraded2;
421         return degraded;
422 }
423
424 static int has_failed(struct r5conf *conf)
425 {
426         int degraded;
427
428         if (conf->mddev->reshape_position == MaxSector)
429                 return conf->mddev->degraded > conf->max_degraded;
430
431         degraded = calc_degraded(conf);
432         if (degraded > conf->max_degraded)
433                 return 1;
434         return 0;
435 }
436
437 static struct stripe_head *
438 get_active_stripe(struct r5conf *conf, sector_t sector,
439                   int previous, int noblock, int noquiesce)
440 {
441         struct stripe_head *sh;
442
443         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
444
445         spin_lock_irq(&conf->device_lock);
446
447         do {
448                 wait_event_lock_irq(conf->wait_for_stripe,
449                                     conf->quiesce == 0 || noquiesce,
450                                     conf->device_lock, /* nothing */);
451                 sh = __find_stripe(conf, sector, conf->generation - previous);
452                 if (!sh) {
453                         if (!conf->inactive_blocked)
454                                 sh = get_free_stripe(conf);
455                         if (noblock && sh == NULL)
456                                 break;
457                         if (!sh) {
458                                 conf->inactive_blocked = 1;
459                                 wait_event_lock_irq(conf->wait_for_stripe,
460                                                     !list_empty(&conf->inactive_list) &&
461                                                     (atomic_read(&conf->active_stripes)
462                                                      < (conf->max_nr_stripes *3/4)
463                                                      || !conf->inactive_blocked),
464                                                     conf->device_lock,
465                                                     );
466                                 conf->inactive_blocked = 0;
467                         } else
468                                 init_stripe(sh, sector, previous);
469                 } else {
470                         if (atomic_read(&sh->count)) {
471                                 BUG_ON(!list_empty(&sh->lru)
472                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
473                         } else {
474                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
475                                         atomic_inc(&conf->active_stripes);
476                                 if (list_empty(&sh->lru) &&
477                                     !test_bit(STRIPE_EXPANDING, &sh->state))
478                                         BUG();
479                                 list_del_init(&sh->lru);
480                         }
481                 }
482         } while (sh == NULL);
483
484         if (sh)
485                 atomic_inc(&sh->count);
486
487         spin_unlock_irq(&conf->device_lock);
488         return sh;
489 }
490
491 /* Determine if 'data_offset' or 'new_data_offset' should be used
492  * in this stripe_head.
493  */
494 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
495 {
496         sector_t progress = conf->reshape_progress;
497         /* Need a memory barrier to make sure we see the value
498          * of conf->generation, or ->data_offset that was set before
499          * reshape_progress was updated.
500          */
501         smp_rmb();
502         if (progress == MaxSector)
503                 return 0;
504         if (sh->generation == conf->generation - 1)
505                 return 0;
506         /* We are in a reshape, and this is a new-generation stripe,
507          * so use new_data_offset.
508          */
509         return 1;
510 }
511
512 static void
513 raid5_end_read_request(struct bio *bi, int error);
514 static void
515 raid5_end_write_request(struct bio *bi, int error);
516
517 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
518 {
519         struct r5conf *conf = sh->raid_conf;
520         int i, disks = sh->disks;
521
522         might_sleep();
523
524         for (i = disks; i--; ) {
525                 int rw;
526                 int replace_only = 0;
527                 struct bio *bi, *rbi;
528                 struct md_rdev *rdev, *rrdev = NULL;
529                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
530                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
531                                 rw = WRITE_FUA;
532                         else
533                                 rw = WRITE;
534                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
535                         rw = READ;
536                 else if (test_and_clear_bit(R5_WantReplace,
537                                             &sh->dev[i].flags)) {
538                         rw = WRITE;
539                         replace_only = 1;
540                 } else
541                         continue;
542                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
543                         rw |= REQ_SYNC;
544
545                 bi = &sh->dev[i].req;
546                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
547
548                 bi->bi_rw = rw;
549                 rbi->bi_rw = rw;
550                 if (rw & WRITE) {
551                         bi->bi_end_io = raid5_end_write_request;
552                         rbi->bi_end_io = raid5_end_write_request;
553                 } else
554                         bi->bi_end_io = raid5_end_read_request;
555
556                 rcu_read_lock();
557                 rrdev = rcu_dereference(conf->disks[i].replacement);
558                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
559                 rdev = rcu_dereference(conf->disks[i].rdev);
560                 if (!rdev) {
561                         rdev = rrdev;
562                         rrdev = NULL;
563                 }
564                 if (rw & WRITE) {
565                         if (replace_only)
566                                 rdev = NULL;
567                         if (rdev == rrdev)
568                                 /* We raced and saw duplicates */
569                                 rrdev = NULL;
570                 } else {
571                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
572                                 rdev = rrdev;
573                         rrdev = NULL;
574                 }
575
576                 if (rdev && test_bit(Faulty, &rdev->flags))
577                         rdev = NULL;
578                 if (rdev)
579                         atomic_inc(&rdev->nr_pending);
580                 if (rrdev && test_bit(Faulty, &rrdev->flags))
581                         rrdev = NULL;
582                 if (rrdev)
583                         atomic_inc(&rrdev->nr_pending);
584                 rcu_read_unlock();
585
586                 /* We have already checked bad blocks for reads.  Now
587                  * need to check for writes.  We never accept write errors
588                  * on the replacement, so we don't to check rrdev.
589                  */
590                 while ((rw & WRITE) && rdev &&
591                        test_bit(WriteErrorSeen, &rdev->flags)) {
592                         sector_t first_bad;
593                         int bad_sectors;
594                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
595                                               &first_bad, &bad_sectors);
596                         if (!bad)
597                                 break;
598
599                         if (bad < 0) {
600                                 set_bit(BlockedBadBlocks, &rdev->flags);
601                                 if (!conf->mddev->external &&
602                                     conf->mddev->flags) {
603                                         /* It is very unlikely, but we might
604                                          * still need to write out the
605                                          * bad block log - better give it
606                                          * a chance*/
607                                         md_check_recovery(conf->mddev);
608                                 }
609                                 /*
610                                  * Because md_wait_for_blocked_rdev
611                                  * will dec nr_pending, we must
612                                  * increment it first.
613                                  */
614                                 atomic_inc(&rdev->nr_pending);
615                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
616                         } else {
617                                 /* Acknowledged bad block - skip the write */
618                                 rdev_dec_pending(rdev, conf->mddev);
619                                 rdev = NULL;
620                         }
621                 }
622
623                 if (rdev) {
624                         if (s->syncing || s->expanding || s->expanded
625                             || s->replacing)
626                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
627
628                         set_bit(STRIPE_IO_STARTED, &sh->state);
629
630                         bi->bi_bdev = rdev->bdev;
631                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
632                                 __func__, (unsigned long long)sh->sector,
633                                 bi->bi_rw, i);
634                         atomic_inc(&sh->count);
635                         if (use_new_offset(conf, sh))
636                                 bi->bi_sector = (sh->sector
637                                                  + rdev->new_data_offset);
638                         else
639                                 bi->bi_sector = (sh->sector
640                                                  + rdev->data_offset);
641                         bi->bi_flags = 1 << BIO_UPTODATE;
642                         bi->bi_idx = 0;
643                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
644                         bi->bi_io_vec[0].bv_offset = 0;
645                         bi->bi_size = STRIPE_SIZE;
646                         bi->bi_next = NULL;
647                         if (rrdev)
648                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
649                         generic_make_request(bi);
650                 }
651                 if (rrdev) {
652                         if (s->syncing || s->expanding || s->expanded
653                             || s->replacing)
654                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
655
656                         set_bit(STRIPE_IO_STARTED, &sh->state);
657
658                         rbi->bi_bdev = rrdev->bdev;
659                         pr_debug("%s: for %llu schedule op %ld on "
660                                  "replacement disc %d\n",
661                                 __func__, (unsigned long long)sh->sector,
662                                 rbi->bi_rw, i);
663                         atomic_inc(&sh->count);
664                         if (use_new_offset(conf, sh))
665                                 rbi->bi_sector = (sh->sector
666                                                   + rrdev->new_data_offset);
667                         else
668                                 rbi->bi_sector = (sh->sector
669                                                   + rrdev->data_offset);
670                         rbi->bi_flags = 1 << BIO_UPTODATE;
671                         rbi->bi_idx = 0;
672                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
673                         rbi->bi_io_vec[0].bv_offset = 0;
674                         rbi->bi_size = STRIPE_SIZE;
675                         rbi->bi_next = NULL;
676                         generic_make_request(rbi);
677                 }
678                 if (!rdev && !rrdev) {
679                         if (rw & WRITE)
680                                 set_bit(STRIPE_DEGRADED, &sh->state);
681                         pr_debug("skip op %ld on disc %d for sector %llu\n",
682                                 bi->bi_rw, i, (unsigned long long)sh->sector);
683                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
684                         set_bit(STRIPE_HANDLE, &sh->state);
685                 }
686         }
687 }
688
689 static struct dma_async_tx_descriptor *
690 async_copy_data(int frombio, struct bio *bio, struct page *page,
691         sector_t sector, struct dma_async_tx_descriptor *tx)
692 {
693         struct bio_vec *bvl;
694         struct page *bio_page;
695         int i;
696         int page_offset;
697         struct async_submit_ctl submit;
698         enum async_tx_flags flags = 0;
699
700         if (bio->bi_sector >= sector)
701                 page_offset = (signed)(bio->bi_sector - sector) * 512;
702         else
703                 page_offset = (signed)(sector - bio->bi_sector) * -512;
704
705         if (frombio)
706                 flags |= ASYNC_TX_FENCE;
707         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
708
709         bio_for_each_segment(bvl, bio, i) {
710                 int len = bvl->bv_len;
711                 int clen;
712                 int b_offset = 0;
713
714                 if (page_offset < 0) {
715                         b_offset = -page_offset;
716                         page_offset += b_offset;
717                         len -= b_offset;
718                 }
719
720                 if (len > 0 && page_offset + len > STRIPE_SIZE)
721                         clen = STRIPE_SIZE - page_offset;
722                 else
723                         clen = len;
724
725                 if (clen > 0) {
726                         b_offset += bvl->bv_offset;
727                         bio_page = bvl->bv_page;
728                         if (frombio)
729                                 tx = async_memcpy(page, bio_page, page_offset,
730                                                   b_offset, clen, &submit);
731                         else
732                                 tx = async_memcpy(bio_page, page, b_offset,
733                                                   page_offset, clen, &submit);
734                 }
735                 /* chain the operations */
736                 submit.depend_tx = tx;
737
738                 if (clen < len) /* hit end of page */
739                         break;
740                 page_offset +=  len;
741         }
742
743         return tx;
744 }
745
746 static void ops_complete_biofill(void *stripe_head_ref)
747 {
748         struct stripe_head *sh = stripe_head_ref;
749         struct bio *return_bi = NULL;
750         struct r5conf *conf = sh->raid_conf;
751         int i;
752
753         pr_debug("%s: stripe %llu\n", __func__,
754                 (unsigned long long)sh->sector);
755
756         /* clear completed biofills */
757         spin_lock_irq(&conf->device_lock);
758         for (i = sh->disks; i--; ) {
759                 struct r5dev *dev = &sh->dev[i];
760
761                 /* acknowledge completion of a biofill operation */
762                 /* and check if we need to reply to a read request,
763                  * new R5_Wantfill requests are held off until
764                  * !STRIPE_BIOFILL_RUN
765                  */
766                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
767                         struct bio *rbi, *rbi2;
768
769                         BUG_ON(!dev->read);
770                         rbi = dev->read;
771                         dev->read = NULL;
772                         while (rbi && rbi->bi_sector <
773                                 dev->sector + STRIPE_SECTORS) {
774                                 rbi2 = r5_next_bio(rbi, dev->sector);
775                                 if (!raid5_dec_bi_phys_segments(rbi)) {
776                                         rbi->bi_next = return_bi;
777                                         return_bi = rbi;
778                                 }
779                                 rbi = rbi2;
780                         }
781                 }
782         }
783         spin_unlock_irq(&conf->device_lock);
784         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
785
786         return_io(return_bi);
787
788         set_bit(STRIPE_HANDLE, &sh->state);
789         release_stripe(sh);
790 }
791
792 static void ops_run_biofill(struct stripe_head *sh)
793 {
794         struct dma_async_tx_descriptor *tx = NULL;
795         struct r5conf *conf = sh->raid_conf;
796         struct async_submit_ctl submit;
797         int i;
798
799         pr_debug("%s: stripe %llu\n", __func__,
800                 (unsigned long long)sh->sector);
801
802         for (i = sh->disks; i--; ) {
803                 struct r5dev *dev = &sh->dev[i];
804                 if (test_bit(R5_Wantfill, &dev->flags)) {
805                         struct bio *rbi;
806                         spin_lock_irq(&conf->device_lock);
807                         dev->read = rbi = dev->toread;
808                         dev->toread = NULL;
809                         spin_unlock_irq(&conf->device_lock);
810                         while (rbi && rbi->bi_sector <
811                                 dev->sector + STRIPE_SECTORS) {
812                                 tx = async_copy_data(0, rbi, dev->page,
813                                         dev->sector, tx);
814                                 rbi = r5_next_bio(rbi, dev->sector);
815                         }
816                 }
817         }
818
819         atomic_inc(&sh->count);
820         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
821         async_trigger_callback(&submit);
822 }
823
824 static void mark_target_uptodate(struct stripe_head *sh, int target)
825 {
826         struct r5dev *tgt;
827
828         if (target < 0)
829                 return;
830
831         tgt = &sh->dev[target];
832         set_bit(R5_UPTODATE, &tgt->flags);
833         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834         clear_bit(R5_Wantcompute, &tgt->flags);
835 }
836
837 static void ops_complete_compute(void *stripe_head_ref)
838 {
839         struct stripe_head *sh = stripe_head_ref;
840
841         pr_debug("%s: stripe %llu\n", __func__,
842                 (unsigned long long)sh->sector);
843
844         /* mark the computed target(s) as uptodate */
845         mark_target_uptodate(sh, sh->ops.target);
846         mark_target_uptodate(sh, sh->ops.target2);
847
848         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
849         if (sh->check_state == check_state_compute_run)
850                 sh->check_state = check_state_compute_result;
851         set_bit(STRIPE_HANDLE, &sh->state);
852         release_stripe(sh);
853 }
854
855 /* return a pointer to the address conversion region of the scribble buffer */
856 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
857                                  struct raid5_percpu *percpu)
858 {
859         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int disks = sh->disks;
866         struct page **xor_srcs = percpu->scribble;
867         int target = sh->ops.target;
868         struct r5dev *tgt = &sh->dev[target];
869         struct page *xor_dest = tgt->page;
870         int count = 0;
871         struct dma_async_tx_descriptor *tx;
872         struct async_submit_ctl submit;
873         int i;
874
875         pr_debug("%s: stripe %llu block: %d\n",
876                 __func__, (unsigned long long)sh->sector, target);
877         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
878
879         for (i = disks; i--; )
880                 if (i != target)
881                         xor_srcs[count++] = sh->dev[i].page;
882
883         atomic_inc(&sh->count);
884
885         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
886                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
887         if (unlikely(count == 1))
888                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
889         else
890                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
891
892         return tx;
893 }
894
895 /* set_syndrome_sources - populate source buffers for gen_syndrome
896  * @srcs - (struct page *) array of size sh->disks
897  * @sh - stripe_head to parse
898  *
899  * Populates srcs in proper layout order for the stripe and returns the
900  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
901  * destination buffer is recorded in srcs[count] and the Q destination
902  * is recorded in srcs[count+1]].
903  */
904 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
905 {
906         int disks = sh->disks;
907         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
908         int d0_idx = raid6_d0(sh);
909         int count;
910         int i;
911
912         for (i = 0; i < disks; i++)
913                 srcs[i] = NULL;
914
915         count = 0;
916         i = d0_idx;
917         do {
918                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
919
920                 srcs[slot] = sh->dev[i].page;
921                 i = raid6_next_disk(i, disks);
922         } while (i != d0_idx);
923
924         return syndrome_disks;
925 }
926
927 static struct dma_async_tx_descriptor *
928 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
929 {
930         int disks = sh->disks;
931         struct page **blocks = percpu->scribble;
932         int target;
933         int qd_idx = sh->qd_idx;
934         struct dma_async_tx_descriptor *tx;
935         struct async_submit_ctl submit;
936         struct r5dev *tgt;
937         struct page *dest;
938         int i;
939         int count;
940
941         if (sh->ops.target < 0)
942                 target = sh->ops.target2;
943         else if (sh->ops.target2 < 0)
944                 target = sh->ops.target;
945         else
946                 /* we should only have one valid target */
947                 BUG();
948         BUG_ON(target < 0);
949         pr_debug("%s: stripe %llu block: %d\n",
950                 __func__, (unsigned long long)sh->sector, target);
951
952         tgt = &sh->dev[target];
953         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
954         dest = tgt->page;
955
956         atomic_inc(&sh->count);
957
958         if (target == qd_idx) {
959                 count = set_syndrome_sources(blocks, sh);
960                 blocks[count] = NULL; /* regenerating p is not necessary */
961                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
962                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
963                                   ops_complete_compute, sh,
964                                   to_addr_conv(sh, percpu));
965                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
966         } else {
967                 /* Compute any data- or p-drive using XOR */
968                 count = 0;
969                 for (i = disks; i-- ; ) {
970                         if (i == target || i == qd_idx)
971                                 continue;
972                         blocks[count++] = sh->dev[i].page;
973                 }
974
975                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
976                                   NULL, ops_complete_compute, sh,
977                                   to_addr_conv(sh, percpu));
978                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
979         }
980
981         return tx;
982 }
983
984 static struct dma_async_tx_descriptor *
985 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
986 {
987         int i, count, disks = sh->disks;
988         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
989         int d0_idx = raid6_d0(sh);
990         int faila = -1, failb = -1;
991         int target = sh->ops.target;
992         int target2 = sh->ops.target2;
993         struct r5dev *tgt = &sh->dev[target];
994         struct r5dev *tgt2 = &sh->dev[target2];
995         struct dma_async_tx_descriptor *tx;
996         struct page **blocks = percpu->scribble;
997         struct async_submit_ctl submit;
998
999         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1000                  __func__, (unsigned long long)sh->sector, target, target2);
1001         BUG_ON(target < 0 || target2 < 0);
1002         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1003         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1004
1005         /* we need to open-code set_syndrome_sources to handle the
1006          * slot number conversion for 'faila' and 'failb'
1007          */
1008         for (i = 0; i < disks ; i++)
1009                 blocks[i] = NULL;
1010         count = 0;
1011         i = d0_idx;
1012         do {
1013                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1014
1015                 blocks[slot] = sh->dev[i].page;
1016
1017                 if (i == target)
1018                         faila = slot;
1019                 if (i == target2)
1020                         failb = slot;
1021                 i = raid6_next_disk(i, disks);
1022         } while (i != d0_idx);
1023
1024         BUG_ON(faila == failb);
1025         if (failb < faila)
1026                 swap(faila, failb);
1027         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1028                  __func__, (unsigned long long)sh->sector, faila, failb);
1029
1030         atomic_inc(&sh->count);
1031
1032         if (failb == syndrome_disks+1) {
1033                 /* Q disk is one of the missing disks */
1034                 if (faila == syndrome_disks) {
1035                         /* Missing P+Q, just recompute */
1036                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037                                           ops_complete_compute, sh,
1038                                           to_addr_conv(sh, percpu));
1039                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1040                                                   STRIPE_SIZE, &submit);
1041                 } else {
1042                         struct page *dest;
1043                         int data_target;
1044                         int qd_idx = sh->qd_idx;
1045
1046                         /* Missing D+Q: recompute D from P, then recompute Q */
1047                         if (target == qd_idx)
1048                                 data_target = target2;
1049                         else
1050                                 data_target = target;
1051
1052                         count = 0;
1053                         for (i = disks; i-- ; ) {
1054                                 if (i == data_target || i == qd_idx)
1055                                         continue;
1056                                 blocks[count++] = sh->dev[i].page;
1057                         }
1058                         dest = sh->dev[data_target].page;
1059                         init_async_submit(&submit,
1060                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1061                                           NULL, NULL, NULL,
1062                                           to_addr_conv(sh, percpu));
1063                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1064                                        &submit);
1065
1066                         count = set_syndrome_sources(blocks, sh);
1067                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1068                                           ops_complete_compute, sh,
1069                                           to_addr_conv(sh, percpu));
1070                         return async_gen_syndrome(blocks, 0, count+2,
1071                                                   STRIPE_SIZE, &submit);
1072                 }
1073         } else {
1074                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1075                                   ops_complete_compute, sh,
1076                                   to_addr_conv(sh, percpu));
1077                 if (failb == syndrome_disks) {
1078                         /* We're missing D+P. */
1079                         return async_raid6_datap_recov(syndrome_disks+2,
1080                                                        STRIPE_SIZE, faila,
1081                                                        blocks, &submit);
1082                 } else {
1083                         /* We're missing D+D. */
1084                         return async_raid6_2data_recov(syndrome_disks+2,
1085                                                        STRIPE_SIZE, faila, failb,
1086                                                        blocks, &submit);
1087                 }
1088         }
1089 }
1090
1091
1092 static void ops_complete_prexor(void *stripe_head_ref)
1093 {
1094         struct stripe_head *sh = stripe_head_ref;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098 }
1099
1100 static struct dma_async_tx_descriptor *
1101 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1102                struct dma_async_tx_descriptor *tx)
1103 {
1104         int disks = sh->disks;
1105         struct page **xor_srcs = percpu->scribble;
1106         int count = 0, pd_idx = sh->pd_idx, i;
1107         struct async_submit_ctl submit;
1108
1109         /* existing parity data subtracted */
1110         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1111
1112         pr_debug("%s: stripe %llu\n", __func__,
1113                 (unsigned long long)sh->sector);
1114
1115         for (i = disks; i--; ) {
1116                 struct r5dev *dev = &sh->dev[i];
1117                 /* Only process blocks that are known to be uptodate */
1118                 if (test_bit(R5_Wantdrain, &dev->flags))
1119                         xor_srcs[count++] = dev->page;
1120         }
1121
1122         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1123                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1124         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1125
1126         return tx;
1127 }
1128
1129 static struct dma_async_tx_descriptor *
1130 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1131 {
1132         int disks = sh->disks;
1133         int i;
1134
1135         pr_debug("%s: stripe %llu\n", __func__,
1136                 (unsigned long long)sh->sector);
1137
1138         for (i = disks; i--; ) {
1139                 struct r5dev *dev = &sh->dev[i];
1140                 struct bio *chosen;
1141
1142                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1143                         struct bio *wbi;
1144
1145                         spin_lock_irq(&sh->raid_conf->device_lock);
1146                         chosen = dev->towrite;
1147                         dev->towrite = NULL;
1148                         BUG_ON(dev->written);
1149                         wbi = dev->written = chosen;
1150                         spin_unlock_irq(&sh->raid_conf->device_lock);
1151
1152                         while (wbi && wbi->bi_sector <
1153                                 dev->sector + STRIPE_SECTORS) {
1154                                 if (wbi->bi_rw & REQ_FUA)
1155                                         set_bit(R5_WantFUA, &dev->flags);
1156                                 if (wbi->bi_rw & REQ_SYNC)
1157                                         set_bit(R5_SyncIO, &dev->flags);
1158                                 tx = async_copy_data(1, wbi, dev->page,
1159                                         dev->sector, tx);
1160                                 wbi = r5_next_bio(wbi, dev->sector);
1161                         }
1162                 }
1163         }
1164
1165         return tx;
1166 }
1167
1168 static void ops_complete_reconstruct(void *stripe_head_ref)
1169 {
1170         struct stripe_head *sh = stripe_head_ref;
1171         int disks = sh->disks;
1172         int pd_idx = sh->pd_idx;
1173         int qd_idx = sh->qd_idx;
1174         int i;
1175         bool fua = false, sync = false;
1176
1177         pr_debug("%s: stripe %llu\n", __func__,
1178                 (unsigned long long)sh->sector);
1179
1180         for (i = disks; i--; ) {
1181                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1182                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1183         }
1184
1185         for (i = disks; i--; ) {
1186                 struct r5dev *dev = &sh->dev[i];
1187
1188                 if (dev->written || i == pd_idx || i == qd_idx) {
1189                         set_bit(R5_UPTODATE, &dev->flags);
1190                         if (fua)
1191                                 set_bit(R5_WantFUA, &dev->flags);
1192                         if (sync)
1193                                 set_bit(R5_SyncIO, &dev->flags);
1194                 }
1195         }
1196
1197         if (sh->reconstruct_state == reconstruct_state_drain_run)
1198                 sh->reconstruct_state = reconstruct_state_drain_result;
1199         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1200                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1201         else {
1202                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1203                 sh->reconstruct_state = reconstruct_state_result;
1204         }
1205
1206         set_bit(STRIPE_HANDLE, &sh->state);
1207         release_stripe(sh);
1208 }
1209
1210 static void
1211 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1212                      struct dma_async_tx_descriptor *tx)
1213 {
1214         int disks = sh->disks;
1215         struct page **xor_srcs = percpu->scribble;
1216         struct async_submit_ctl submit;
1217         int count = 0, pd_idx = sh->pd_idx, i;
1218         struct page *xor_dest;
1219         int prexor = 0;
1220         unsigned long flags;
1221
1222         pr_debug("%s: stripe %llu\n", __func__,
1223                 (unsigned long long)sh->sector);
1224
1225         /* check if prexor is active which means only process blocks
1226          * that are part of a read-modify-write (written)
1227          */
1228         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1229                 prexor = 1;
1230                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1231                 for (i = disks; i--; ) {
1232                         struct r5dev *dev = &sh->dev[i];
1233                         if (dev->written)
1234                                 xor_srcs[count++] = dev->page;
1235                 }
1236         } else {
1237                 xor_dest = sh->dev[pd_idx].page;
1238                 for (i = disks; i--; ) {
1239                         struct r5dev *dev = &sh->dev[i];
1240                         if (i != pd_idx)
1241                                 xor_srcs[count++] = dev->page;
1242                 }
1243         }
1244
1245         /* 1/ if we prexor'd then the dest is reused as a source
1246          * 2/ if we did not prexor then we are redoing the parity
1247          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1248          * for the synchronous xor case
1249          */
1250         flags = ASYNC_TX_ACK |
1251                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1252
1253         atomic_inc(&sh->count);
1254
1255         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1256                           to_addr_conv(sh, percpu));
1257         if (unlikely(count == 1))
1258                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1259         else
1260                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1261 }
1262
1263 static void
1264 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1265                      struct dma_async_tx_descriptor *tx)
1266 {
1267         struct async_submit_ctl submit;
1268         struct page **blocks = percpu->scribble;
1269         int count;
1270
1271         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1272
1273         count = set_syndrome_sources(blocks, sh);
1274
1275         atomic_inc(&sh->count);
1276
1277         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1278                           sh, to_addr_conv(sh, percpu));
1279         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1280 }
1281
1282 static void ops_complete_check(void *stripe_head_ref)
1283 {
1284         struct stripe_head *sh = stripe_head_ref;
1285
1286         pr_debug("%s: stripe %llu\n", __func__,
1287                 (unsigned long long)sh->sector);
1288
1289         sh->check_state = check_state_check_result;
1290         set_bit(STRIPE_HANDLE, &sh->state);
1291         release_stripe(sh);
1292 }
1293
1294 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1295 {
1296         int disks = sh->disks;
1297         int pd_idx = sh->pd_idx;
1298         int qd_idx = sh->qd_idx;
1299         struct page *xor_dest;
1300         struct page **xor_srcs = percpu->scribble;
1301         struct dma_async_tx_descriptor *tx;
1302         struct async_submit_ctl submit;
1303         int count;
1304         int i;
1305
1306         pr_debug("%s: stripe %llu\n", __func__,
1307                 (unsigned long long)sh->sector);
1308
1309         count = 0;
1310         xor_dest = sh->dev[pd_idx].page;
1311         xor_srcs[count++] = xor_dest;
1312         for (i = disks; i--; ) {
1313                 if (i == pd_idx || i == qd_idx)
1314                         continue;
1315                 xor_srcs[count++] = sh->dev[i].page;
1316         }
1317
1318         init_async_submit(&submit, 0, NULL, NULL, NULL,
1319                           to_addr_conv(sh, percpu));
1320         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1321                            &sh->ops.zero_sum_result, &submit);
1322
1323         atomic_inc(&sh->count);
1324         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1325         tx = async_trigger_callback(&submit);
1326 }
1327
1328 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1329 {
1330         struct page **srcs = percpu->scribble;
1331         struct async_submit_ctl submit;
1332         int count;
1333
1334         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1335                 (unsigned long long)sh->sector, checkp);
1336
1337         count = set_syndrome_sources(srcs, sh);
1338         if (!checkp)
1339                 srcs[count] = NULL;
1340
1341         atomic_inc(&sh->count);
1342         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1343                           sh, to_addr_conv(sh, percpu));
1344         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1345                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1346 }
1347
1348 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1349 {
1350         int overlap_clear = 0, i, disks = sh->disks;
1351         struct dma_async_tx_descriptor *tx = NULL;
1352         struct r5conf *conf = sh->raid_conf;
1353         int level = conf->level;
1354         struct raid5_percpu *percpu;
1355         unsigned long cpu;
1356
1357         cpu = get_cpu();
1358         percpu = per_cpu_ptr(conf->percpu, cpu);
1359         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1360                 ops_run_biofill(sh);
1361                 overlap_clear++;
1362         }
1363
1364         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1365                 if (level < 6)
1366                         tx = ops_run_compute5(sh, percpu);
1367                 else {
1368                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1369                                 tx = ops_run_compute6_1(sh, percpu);
1370                         else
1371                                 tx = ops_run_compute6_2(sh, percpu);
1372                 }
1373                 /* terminate the chain if reconstruct is not set to be run */
1374                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1375                         async_tx_ack(tx);
1376         }
1377
1378         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1379                 tx = ops_run_prexor(sh, percpu, tx);
1380
1381         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1382                 tx = ops_run_biodrain(sh, tx);
1383                 overlap_clear++;
1384         }
1385
1386         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1387                 if (level < 6)
1388                         ops_run_reconstruct5(sh, percpu, tx);
1389                 else
1390                         ops_run_reconstruct6(sh, percpu, tx);
1391         }
1392
1393         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1394                 if (sh->check_state == check_state_run)
1395                         ops_run_check_p(sh, percpu);
1396                 else if (sh->check_state == check_state_run_q)
1397                         ops_run_check_pq(sh, percpu, 0);
1398                 else if (sh->check_state == check_state_run_pq)
1399                         ops_run_check_pq(sh, percpu, 1);
1400                 else
1401                         BUG();
1402         }
1403
1404         if (overlap_clear)
1405                 for (i = disks; i--; ) {
1406                         struct r5dev *dev = &sh->dev[i];
1407                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1408                                 wake_up(&sh->raid_conf->wait_for_overlap);
1409                 }
1410         put_cpu();
1411 }
1412
1413 #ifdef CONFIG_MULTICORE_RAID456
1414 static void async_run_ops(void *param, async_cookie_t cookie)
1415 {
1416         struct stripe_head *sh = param;
1417         unsigned long ops_request = sh->ops.request;
1418
1419         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1420         wake_up(&sh->ops.wait_for_ops);
1421
1422         __raid_run_ops(sh, ops_request);
1423         release_stripe(sh);
1424 }
1425
1426 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1427 {
1428         /* since handle_stripe can be called outside of raid5d context
1429          * we need to ensure sh->ops.request is de-staged before another
1430          * request arrives
1431          */
1432         wait_event(sh->ops.wait_for_ops,
1433                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1434         sh->ops.request = ops_request;
1435
1436         atomic_inc(&sh->count);
1437         async_schedule(async_run_ops, sh);
1438 }
1439 #else
1440 #define raid_run_ops __raid_run_ops
1441 #endif
1442
1443 static int grow_one_stripe(struct r5conf *conf)
1444 {
1445         struct stripe_head *sh;
1446         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1447         if (!sh)
1448                 return 0;
1449
1450         sh->raid_conf = conf;
1451         #ifdef CONFIG_MULTICORE_RAID456
1452         init_waitqueue_head(&sh->ops.wait_for_ops);
1453         #endif
1454
1455         if (grow_buffers(sh)) {
1456                 shrink_buffers(sh);
1457                 kmem_cache_free(conf->slab_cache, sh);
1458                 return 0;
1459         }
1460         /* we just created an active stripe so... */
1461         atomic_set(&sh->count, 1);
1462         atomic_inc(&conf->active_stripes);
1463         INIT_LIST_HEAD(&sh->lru);
1464         release_stripe(sh);
1465         return 1;
1466 }
1467
1468 static int grow_stripes(struct r5conf *conf, int num)
1469 {
1470         struct kmem_cache *sc;
1471         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1472
1473         if (conf->mddev->gendisk)
1474                 sprintf(conf->cache_name[0],
1475                         "raid%d-%s", conf->level, mdname(conf->mddev));
1476         else
1477                 sprintf(conf->cache_name[0],
1478                         "raid%d-%p", conf->level, conf->mddev);
1479         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1480
1481         conf->active_name = 0;
1482         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1483                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1484                                0, 0, NULL);
1485         if (!sc)
1486                 return 1;
1487         conf->slab_cache = sc;
1488         conf->pool_size = devs;
1489         while (num--)
1490                 if (!grow_one_stripe(conf))
1491                         return 1;
1492         return 0;
1493 }
1494
1495 /**
1496  * scribble_len - return the required size of the scribble region
1497  * @num - total number of disks in the array
1498  *
1499  * The size must be enough to contain:
1500  * 1/ a struct page pointer for each device in the array +2
1501  * 2/ room to convert each entry in (1) to its corresponding dma
1502  *    (dma_map_page()) or page (page_address()) address.
1503  *
1504  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1505  * calculate over all devices (not just the data blocks), using zeros in place
1506  * of the P and Q blocks.
1507  */
1508 static size_t scribble_len(int num)
1509 {
1510         size_t len;
1511
1512         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1513
1514         return len;
1515 }
1516
1517 static int resize_stripes(struct r5conf *conf, int newsize)
1518 {
1519         /* Make all the stripes able to hold 'newsize' devices.
1520          * New slots in each stripe get 'page' set to a new page.
1521          *
1522          * This happens in stages:
1523          * 1/ create a new kmem_cache and allocate the required number of
1524          *    stripe_heads.
1525          * 2/ gather all the old stripe_heads and tranfer the pages across
1526          *    to the new stripe_heads.  This will have the side effect of
1527          *    freezing the array as once all stripe_heads have been collected,
1528          *    no IO will be possible.  Old stripe heads are freed once their
1529          *    pages have been transferred over, and the old kmem_cache is
1530          *    freed when all stripes are done.
1531          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1532          *    we simple return a failre status - no need to clean anything up.
1533          * 4/ allocate new pages for the new slots in the new stripe_heads.
1534          *    If this fails, we don't bother trying the shrink the
1535          *    stripe_heads down again, we just leave them as they are.
1536          *    As each stripe_head is processed the new one is released into
1537          *    active service.
1538          *
1539          * Once step2 is started, we cannot afford to wait for a write,
1540          * so we use GFP_NOIO allocations.
1541          */
1542         struct stripe_head *osh, *nsh;
1543         LIST_HEAD(newstripes);
1544         struct disk_info *ndisks;
1545         unsigned long cpu;
1546         int err;
1547         struct kmem_cache *sc;
1548         int i;
1549
1550         if (newsize <= conf->pool_size)
1551                 return 0; /* never bother to shrink */
1552
1553         err = md_allow_write(conf->mddev);
1554         if (err)
1555                 return err;
1556
1557         /* Step 1 */
1558         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1559                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1560                                0, 0, NULL);
1561         if (!sc)
1562                 return -ENOMEM;
1563
1564         for (i = conf->max_nr_stripes; i; i--) {
1565                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1566                 if (!nsh)
1567                         break;
1568
1569                 nsh->raid_conf = conf;
1570                 #ifdef CONFIG_MULTICORE_RAID456
1571                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1572                 #endif
1573
1574                 list_add(&nsh->lru, &newstripes);
1575         }
1576         if (i) {
1577                 /* didn't get enough, give up */
1578                 while (!list_empty(&newstripes)) {
1579                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1580                         list_del(&nsh->lru);
1581                         kmem_cache_free(sc, nsh);
1582                 }
1583                 kmem_cache_destroy(sc);
1584                 return -ENOMEM;
1585         }
1586         /* Step 2 - Must use GFP_NOIO now.
1587          * OK, we have enough stripes, start collecting inactive
1588          * stripes and copying them over
1589          */
1590         list_for_each_entry(nsh, &newstripes, lru) {
1591                 spin_lock_irq(&conf->device_lock);
1592                 wait_event_lock_irq(conf->wait_for_stripe,
1593                                     !list_empty(&conf->inactive_list),
1594                                     conf->device_lock,
1595                                     );
1596                 osh = get_free_stripe(conf);
1597                 spin_unlock_irq(&conf->device_lock);
1598                 atomic_set(&nsh->count, 1);
1599                 for(i=0; i<conf->pool_size; i++)
1600                         nsh->dev[i].page = osh->dev[i].page;
1601                 for( ; i<newsize; i++)
1602                         nsh->dev[i].page = NULL;
1603                 kmem_cache_free(conf->slab_cache, osh);
1604         }
1605         kmem_cache_destroy(conf->slab_cache);
1606
1607         /* Step 3.
1608          * At this point, we are holding all the stripes so the array
1609          * is completely stalled, so now is a good time to resize
1610          * conf->disks and the scribble region
1611          */
1612         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1613         if (ndisks) {
1614                 for (i=0; i<conf->raid_disks; i++)
1615                         ndisks[i] = conf->disks[i];
1616                 kfree(conf->disks);
1617                 conf->disks = ndisks;
1618         } else
1619                 err = -ENOMEM;
1620
1621         get_online_cpus();
1622         conf->scribble_len = scribble_len(newsize);
1623         for_each_present_cpu(cpu) {
1624                 struct raid5_percpu *percpu;
1625                 void *scribble;
1626
1627                 percpu = per_cpu_ptr(conf->percpu, cpu);
1628                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1629
1630                 if (scribble) {
1631                         kfree(percpu->scribble);
1632                         percpu->scribble = scribble;
1633                 } else {
1634                         err = -ENOMEM;
1635                         break;
1636                 }
1637         }
1638         put_online_cpus();
1639
1640         /* Step 4, return new stripes to service */
1641         while(!list_empty(&newstripes)) {
1642                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1643                 list_del_init(&nsh->lru);
1644
1645                 for (i=conf->raid_disks; i < newsize; i++)
1646                         if (nsh->dev[i].page == NULL) {
1647                                 struct page *p = alloc_page(GFP_NOIO);
1648                                 nsh->dev[i].page = p;
1649                                 if (!p)
1650                                         err = -ENOMEM;
1651                         }
1652                 release_stripe(nsh);
1653         }
1654         /* critical section pass, GFP_NOIO no longer needed */
1655
1656         conf->slab_cache = sc;
1657         conf->active_name = 1-conf->active_name;
1658         conf->pool_size = newsize;
1659         return err;
1660 }
1661
1662 static int drop_one_stripe(struct r5conf *conf)
1663 {
1664         struct stripe_head *sh;
1665
1666         spin_lock_irq(&conf->device_lock);
1667         sh = get_free_stripe(conf);
1668         spin_unlock_irq(&conf->device_lock);
1669         if (!sh)
1670                 return 0;
1671         BUG_ON(atomic_read(&sh->count));
1672         shrink_buffers(sh);
1673         kmem_cache_free(conf->slab_cache, sh);
1674         atomic_dec(&conf->active_stripes);
1675         return 1;
1676 }
1677
1678 static void shrink_stripes(struct r5conf *conf)
1679 {
1680         while (drop_one_stripe(conf))
1681                 ;
1682
1683         if (conf->slab_cache)
1684                 kmem_cache_destroy(conf->slab_cache);
1685         conf->slab_cache = NULL;
1686 }
1687
1688 static void raid5_end_read_request(struct bio * bi, int error)
1689 {
1690         struct stripe_head *sh = bi->bi_private;
1691         struct r5conf *conf = sh->raid_conf;
1692         int disks = sh->disks, i;
1693         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1694         char b[BDEVNAME_SIZE];
1695         struct md_rdev *rdev = NULL;
1696         sector_t s;
1697
1698         for (i=0 ; i<disks; i++)
1699                 if (bi == &sh->dev[i].req)
1700                         break;
1701
1702         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1703                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1704                 uptodate);
1705         if (i == disks) {
1706                 BUG();
1707                 return;
1708         }
1709         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1710                 /* If replacement finished while this request was outstanding,
1711                  * 'replacement' might be NULL already.
1712                  * In that case it moved down to 'rdev'.
1713                  * rdev is not removed until all requests are finished.
1714                  */
1715                 rdev = conf->disks[i].replacement;
1716         if (!rdev)
1717                 rdev = conf->disks[i].rdev;
1718
1719         if (use_new_offset(conf, sh))
1720                 s = sh->sector + rdev->new_data_offset;
1721         else
1722                 s = sh->sector + rdev->data_offset;
1723         if (uptodate) {
1724                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1725                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1726                         /* Note that this cannot happen on a
1727                          * replacement device.  We just fail those on
1728                          * any error
1729                          */
1730                         printk_ratelimited(
1731                                 KERN_INFO
1732                                 "md/raid:%s: read error corrected"
1733                                 " (%lu sectors at %llu on %s)\n",
1734                                 mdname(conf->mddev), STRIPE_SECTORS,
1735                                 (unsigned long long)s,
1736                                 bdevname(rdev->bdev, b));
1737                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1738                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1739                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1740                 }
1741                 if (atomic_read(&rdev->read_errors))
1742                         atomic_set(&rdev->read_errors, 0);
1743         } else {
1744                 const char *bdn = bdevname(rdev->bdev, b);
1745                 int retry = 0;
1746
1747                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1748                 atomic_inc(&rdev->read_errors);
1749                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1750                         printk_ratelimited(
1751                                 KERN_WARNING
1752                                 "md/raid:%s: read error on replacement device "
1753                                 "(sector %llu on %s).\n",
1754                                 mdname(conf->mddev),
1755                                 (unsigned long long)s,
1756                                 bdn);
1757                 else if (conf->mddev->degraded >= conf->max_degraded)
1758                         printk_ratelimited(
1759                                 KERN_WARNING
1760                                 "md/raid:%s: read error not correctable "
1761                                 "(sector %llu on %s).\n",
1762                                 mdname(conf->mddev),
1763                                 (unsigned long long)s,
1764                                 bdn);
1765                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1766                         /* Oh, no!!! */
1767                         printk_ratelimited(
1768                                 KERN_WARNING
1769                                 "md/raid:%s: read error NOT corrected!! "
1770                                 "(sector %llu on %s).\n",
1771                                 mdname(conf->mddev),
1772                                 (unsigned long long)s,
1773                                 bdn);
1774                 else if (atomic_read(&rdev->read_errors)
1775                          > conf->max_nr_stripes)
1776                         printk(KERN_WARNING
1777                                "md/raid:%s: Too many read errors, failing device %s.\n",
1778                                mdname(conf->mddev), bdn);
1779                 else
1780                         retry = 1;
1781                 if (retry)
1782                         set_bit(R5_ReadError, &sh->dev[i].flags);
1783                 else {
1784                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1785                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1786                         md_error(conf->mddev, rdev);
1787                 }
1788         }
1789         rdev_dec_pending(rdev, conf->mddev);
1790         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1791         set_bit(STRIPE_HANDLE, &sh->state);
1792         release_stripe(sh);
1793 }
1794
1795 static void raid5_end_write_request(struct bio *bi, int error)
1796 {
1797         struct stripe_head *sh = bi->bi_private;
1798         struct r5conf *conf = sh->raid_conf;
1799         int disks = sh->disks, i;
1800         struct md_rdev *uninitialized_var(rdev);
1801         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1802         sector_t first_bad;
1803         int bad_sectors;
1804         int replacement = 0;
1805
1806         for (i = 0 ; i < disks; i++) {
1807                 if (bi == &sh->dev[i].req) {
1808                         rdev = conf->disks[i].rdev;
1809                         break;
1810                 }
1811                 if (bi == &sh->dev[i].rreq) {
1812                         rdev = conf->disks[i].replacement;
1813                         if (rdev)
1814                                 replacement = 1;
1815                         else
1816                                 /* rdev was removed and 'replacement'
1817                                  * replaced it.  rdev is not removed
1818                                  * until all requests are finished.
1819                                  */
1820                                 rdev = conf->disks[i].rdev;
1821                         break;
1822                 }
1823         }
1824         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1825                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1826                 uptodate);
1827         if (i == disks) {
1828                 BUG();
1829                 return;
1830         }
1831
1832         if (replacement) {
1833                 if (!uptodate)
1834                         md_error(conf->mddev, rdev);
1835                 else if (is_badblock(rdev, sh->sector,
1836                                      STRIPE_SECTORS,
1837                                      &first_bad, &bad_sectors))
1838                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1839         } else {
1840                 if (!uptodate) {
1841                         set_bit(WriteErrorSeen, &rdev->flags);
1842                         set_bit(R5_WriteError, &sh->dev[i].flags);
1843                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1844                                 set_bit(MD_RECOVERY_NEEDED,
1845                                         &rdev->mddev->recovery);
1846                 } else if (is_badblock(rdev, sh->sector,
1847                                        STRIPE_SECTORS,
1848                                        &first_bad, &bad_sectors))
1849                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1850         }
1851         rdev_dec_pending(rdev, conf->mddev);
1852
1853         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1854                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1855         set_bit(STRIPE_HANDLE, &sh->state);
1856         release_stripe(sh);
1857 }
1858
1859 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1860         
1861 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1862 {
1863         struct r5dev *dev = &sh->dev[i];
1864
1865         bio_init(&dev->req);
1866         dev->req.bi_io_vec = &dev->vec;
1867         dev->req.bi_vcnt++;
1868         dev->req.bi_max_vecs++;
1869         dev->req.bi_private = sh;
1870         dev->vec.bv_page = dev->page;
1871
1872         bio_init(&dev->rreq);
1873         dev->rreq.bi_io_vec = &dev->rvec;
1874         dev->rreq.bi_vcnt++;
1875         dev->rreq.bi_max_vecs++;
1876         dev->rreq.bi_private = sh;
1877         dev->rvec.bv_page = dev->page;
1878
1879         dev->flags = 0;
1880         dev->sector = compute_blocknr(sh, i, previous);
1881 }
1882
1883 static void error(struct mddev *mddev, struct md_rdev *rdev)
1884 {
1885         char b[BDEVNAME_SIZE];
1886         struct r5conf *conf = mddev->private;
1887         unsigned long flags;
1888         pr_debug("raid456: error called\n");
1889
1890         spin_lock_irqsave(&conf->device_lock, flags);
1891         clear_bit(In_sync, &rdev->flags);
1892         mddev->degraded = calc_degraded(conf);
1893         spin_unlock_irqrestore(&conf->device_lock, flags);
1894         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1895
1896         set_bit(Blocked, &rdev->flags);
1897         set_bit(Faulty, &rdev->flags);
1898         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1899         printk(KERN_ALERT
1900                "md/raid:%s: Disk failure on %s, disabling device.\n"
1901                "md/raid:%s: Operation continuing on %d devices.\n",
1902                mdname(mddev),
1903                bdevname(rdev->bdev, b),
1904                mdname(mddev),
1905                conf->raid_disks - mddev->degraded);
1906 }
1907
1908 /*
1909  * Input: a 'big' sector number,
1910  * Output: index of the data and parity disk, and the sector # in them.
1911  */
1912 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1913                                      int previous, int *dd_idx,
1914                                      struct stripe_head *sh)
1915 {
1916         sector_t stripe, stripe2;
1917         sector_t chunk_number;
1918         unsigned int chunk_offset;
1919         int pd_idx, qd_idx;
1920         int ddf_layout = 0;
1921         sector_t new_sector;
1922         int algorithm = previous ? conf->prev_algo
1923                                  : conf->algorithm;
1924         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1925                                          : conf->chunk_sectors;
1926         int raid_disks = previous ? conf->previous_raid_disks
1927                                   : conf->raid_disks;
1928         int data_disks = raid_disks - conf->max_degraded;
1929
1930         /* First compute the information on this sector */
1931
1932         /*
1933          * Compute the chunk number and the sector offset inside the chunk
1934          */
1935         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1936         chunk_number = r_sector;
1937
1938         /*
1939          * Compute the stripe number
1940          */
1941         stripe = chunk_number;
1942         *dd_idx = sector_div(stripe, data_disks);
1943         stripe2 = stripe;
1944         /*
1945          * Select the parity disk based on the user selected algorithm.
1946          */
1947         pd_idx = qd_idx = -1;
1948         switch(conf->level) {
1949         case 4:
1950                 pd_idx = data_disks;
1951                 break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1956                         if (*dd_idx >= pd_idx)
1957                                 (*dd_idx)++;
1958                         break;
1959                 case ALGORITHM_RIGHT_ASYMMETRIC:
1960                         pd_idx = sector_div(stripe2, raid_disks);
1961                         if (*dd_idx >= pd_idx)
1962                                 (*dd_idx)++;
1963                         break;
1964                 case ALGORITHM_LEFT_SYMMETRIC:
1965                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1966                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1967                         break;
1968                 case ALGORITHM_RIGHT_SYMMETRIC:
1969                         pd_idx = sector_div(stripe2, raid_disks);
1970                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1971                         break;
1972                 case ALGORITHM_PARITY_0:
1973                         pd_idx = 0;
1974                         (*dd_idx)++;
1975                         break;
1976                 case ALGORITHM_PARITY_N:
1977                         pd_idx = data_disks;
1978                         break;
1979                 default:
1980                         BUG();
1981                 }
1982                 break;
1983         case 6:
1984
1985                 switch (algorithm) {
1986                 case ALGORITHM_LEFT_ASYMMETRIC:
1987                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1988                         qd_idx = pd_idx + 1;
1989                         if (pd_idx == raid_disks-1) {
1990                                 (*dd_idx)++;    /* Q D D D P */
1991                                 qd_idx = 0;
1992                         } else if (*dd_idx >= pd_idx)
1993                                 (*dd_idx) += 2; /* D D P Q D */
1994                         break;
1995                 case ALGORITHM_RIGHT_ASYMMETRIC:
1996                         pd_idx = sector_div(stripe2, raid_disks);
1997                         qd_idx = pd_idx + 1;
1998                         if (pd_idx == raid_disks-1) {
1999                                 (*dd_idx)++;    /* Q D D D P */
2000                                 qd_idx = 0;
2001                         } else if (*dd_idx >= pd_idx)
2002                                 (*dd_idx) += 2; /* D D P Q D */
2003                         break;
2004                 case ALGORITHM_LEFT_SYMMETRIC:
2005                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2006                         qd_idx = (pd_idx + 1) % raid_disks;
2007                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2008                         break;
2009                 case ALGORITHM_RIGHT_SYMMETRIC:
2010                         pd_idx = sector_div(stripe2, raid_disks);
2011                         qd_idx = (pd_idx + 1) % raid_disks;
2012                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2013                         break;
2014
2015                 case ALGORITHM_PARITY_0:
2016                         pd_idx = 0;
2017                         qd_idx = 1;
2018                         (*dd_idx) += 2;
2019                         break;
2020                 case ALGORITHM_PARITY_N:
2021                         pd_idx = data_disks;
2022                         qd_idx = data_disks + 1;
2023                         break;
2024
2025                 case ALGORITHM_ROTATING_ZERO_RESTART:
2026                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2027                          * of blocks for computing Q is different.
2028                          */
2029                         pd_idx = sector_div(stripe2, raid_disks);
2030                         qd_idx = pd_idx + 1;
2031                         if (pd_idx == raid_disks-1) {
2032                                 (*dd_idx)++;    /* Q D D D P */
2033                                 qd_idx = 0;
2034                         } else if (*dd_idx >= pd_idx)
2035                                 (*dd_idx) += 2; /* D D P Q D */
2036                         ddf_layout = 1;
2037                         break;
2038
2039                 case ALGORITHM_ROTATING_N_RESTART:
2040                         /* Same a left_asymmetric, by first stripe is
2041                          * D D D P Q  rather than
2042                          * Q D D D P
2043                          */
2044                         stripe2 += 1;
2045                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2046                         qd_idx = pd_idx + 1;
2047                         if (pd_idx == raid_disks-1) {
2048                                 (*dd_idx)++;    /* Q D D D P */
2049                                 qd_idx = 0;
2050                         } else if (*dd_idx >= pd_idx)
2051                                 (*dd_idx) += 2; /* D D P Q D */
2052                         ddf_layout = 1;
2053                         break;
2054
2055                 case ALGORITHM_ROTATING_N_CONTINUE:
2056                         /* Same as left_symmetric but Q is before P */
2057                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2058                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2059                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2060                         ddf_layout = 1;
2061                         break;
2062
2063                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2064                         /* RAID5 left_asymmetric, with Q on last device */
2065                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2066                         if (*dd_idx >= pd_idx)
2067                                 (*dd_idx)++;
2068                         qd_idx = raid_disks - 1;
2069                         break;
2070
2071                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2072                         pd_idx = sector_div(stripe2, raid_disks-1);
2073                         if (*dd_idx >= pd_idx)
2074                                 (*dd_idx)++;
2075                         qd_idx = raid_disks - 1;
2076                         break;
2077
2078                 case ALGORITHM_LEFT_SYMMETRIC_6:
2079                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2080                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2081                         qd_idx = raid_disks - 1;
2082                         break;
2083
2084                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2085                         pd_idx = sector_div(stripe2, raid_disks-1);
2086                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2087                         qd_idx = raid_disks - 1;
2088                         break;
2089
2090                 case ALGORITHM_PARITY_0_6:
2091                         pd_idx = 0;
2092                         (*dd_idx)++;
2093                         qd_idx = raid_disks - 1;
2094                         break;
2095
2096                 default:
2097                         BUG();
2098                 }
2099                 break;
2100         }
2101
2102         if (sh) {
2103                 sh->pd_idx = pd_idx;
2104                 sh->qd_idx = qd_idx;
2105                 sh->ddf_layout = ddf_layout;
2106         }
2107         /*
2108          * Finally, compute the new sector number
2109          */
2110         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2111         return new_sector;
2112 }
2113
2114
2115 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2116 {
2117         struct r5conf *conf = sh->raid_conf;
2118         int raid_disks = sh->disks;
2119         int data_disks = raid_disks - conf->max_degraded;
2120         sector_t new_sector = sh->sector, check;
2121         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2122                                          : conf->chunk_sectors;
2123         int algorithm = previous ? conf->prev_algo
2124                                  : conf->algorithm;
2125         sector_t stripe;
2126         int chunk_offset;
2127         sector_t chunk_number;
2128         int dummy1, dd_idx = i;
2129         sector_t r_sector;
2130         struct stripe_head sh2;
2131
2132
2133         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2134         stripe = new_sector;
2135
2136         if (i == sh->pd_idx)
2137                 return 0;
2138         switch(conf->level) {
2139         case 4: break;
2140         case 5:
2141                 switch (algorithm) {
2142                 case ALGORITHM_LEFT_ASYMMETRIC:
2143                 case ALGORITHM_RIGHT_ASYMMETRIC:
2144                         if (i > sh->pd_idx)
2145                                 i--;
2146                         break;
2147                 case ALGORITHM_LEFT_SYMMETRIC:
2148                 case ALGORITHM_RIGHT_SYMMETRIC:
2149                         if (i < sh->pd_idx)
2150                                 i += raid_disks;
2151                         i -= (sh->pd_idx + 1);
2152                         break;
2153                 case ALGORITHM_PARITY_0:
2154                         i -= 1;
2155                         break;
2156                 case ALGORITHM_PARITY_N:
2157                         break;
2158                 default:
2159                         BUG();
2160                 }
2161                 break;
2162         case 6:
2163                 if (i == sh->qd_idx)
2164                         return 0; /* It is the Q disk */
2165                 switch (algorithm) {
2166                 case ALGORITHM_LEFT_ASYMMETRIC:
2167                 case ALGORITHM_RIGHT_ASYMMETRIC:
2168                 case ALGORITHM_ROTATING_ZERO_RESTART:
2169                 case ALGORITHM_ROTATING_N_RESTART:
2170                         if (sh->pd_idx == raid_disks-1)
2171                                 i--;    /* Q D D D P */
2172                         else if (i > sh->pd_idx)
2173                                 i -= 2; /* D D P Q D */
2174                         break;
2175                 case ALGORITHM_LEFT_SYMMETRIC:
2176                 case ALGORITHM_RIGHT_SYMMETRIC:
2177                         if (sh->pd_idx == raid_disks-1)
2178                                 i--; /* Q D D D P */
2179                         else {
2180                                 /* D D P Q D */
2181                                 if (i < sh->pd_idx)
2182                                         i += raid_disks;
2183                                 i -= (sh->pd_idx + 2);
2184                         }
2185                         break;
2186                 case ALGORITHM_PARITY_0:
2187                         i -= 2;
2188                         break;
2189                 case ALGORITHM_PARITY_N:
2190                         break;
2191                 case ALGORITHM_ROTATING_N_CONTINUE:
2192                         /* Like left_symmetric, but P is before Q */
2193                         if (sh->pd_idx == 0)
2194                                 i--;    /* P D D D Q */
2195                         else {
2196                                 /* D D Q P D */
2197                                 if (i < sh->pd_idx)
2198                                         i += raid_disks;
2199                                 i -= (sh->pd_idx + 1);
2200                         }
2201                         break;
2202                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2203                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2204                         if (i > sh->pd_idx)
2205                                 i--;
2206                         break;
2207                 case ALGORITHM_LEFT_SYMMETRIC_6:
2208                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2209                         if (i < sh->pd_idx)
2210                                 i += data_disks + 1;
2211                         i -= (sh->pd_idx + 1);
2212                         break;
2213                 case ALGORITHM_PARITY_0_6:
2214                         i -= 1;
2215                         break;
2216                 default:
2217                         BUG();
2218                 }
2219                 break;
2220         }
2221
2222         chunk_number = stripe * data_disks + i;
2223         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2224
2225         check = raid5_compute_sector(conf, r_sector,
2226                                      previous, &dummy1, &sh2);
2227         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2228                 || sh2.qd_idx != sh->qd_idx) {
2229                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2230                        mdname(conf->mddev));
2231                 return 0;
2232         }
2233         return r_sector;
2234 }
2235
2236
2237 static void
2238 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2239                          int rcw, int expand)
2240 {
2241         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2242         struct r5conf *conf = sh->raid_conf;
2243         int level = conf->level;
2244
2245         if (rcw) {
2246                 /* if we are not expanding this is a proper write request, and
2247                  * there will be bios with new data to be drained into the
2248                  * stripe cache
2249                  */
2250                 if (!expand) {
2251                         sh->reconstruct_state = reconstruct_state_drain_run;
2252                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2253                 } else
2254                         sh->reconstruct_state = reconstruct_state_run;
2255
2256                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2257
2258                 for (i = disks; i--; ) {
2259                         struct r5dev *dev = &sh->dev[i];
2260
2261                         if (dev->towrite) {
2262                                 set_bit(R5_LOCKED, &dev->flags);
2263                                 set_bit(R5_Wantdrain, &dev->flags);
2264                                 if (!expand)
2265                                         clear_bit(R5_UPTODATE, &dev->flags);
2266                                 s->locked++;
2267                         }
2268                 }
2269                 if (s->locked + conf->max_degraded == disks)
2270                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2271                                 atomic_inc(&conf->pending_full_writes);
2272         } else {
2273                 BUG_ON(level == 6);
2274                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2275                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2276
2277                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2278                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2279                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2280                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2281
2282                 for (i = disks; i--; ) {
2283                         struct r5dev *dev = &sh->dev[i];
2284                         if (i == pd_idx)
2285                                 continue;
2286
2287                         if (dev->towrite &&
2288                             (test_bit(R5_UPTODATE, &dev->flags) ||
2289                              test_bit(R5_Wantcompute, &dev->flags))) {
2290                                 set_bit(R5_Wantdrain, &dev->flags);
2291                                 set_bit(R5_LOCKED, &dev->flags);
2292                                 clear_bit(R5_UPTODATE, &dev->flags);
2293                                 s->locked++;
2294                         }
2295                 }
2296         }
2297
2298         /* keep the parity disk(s) locked while asynchronous operations
2299          * are in flight
2300          */
2301         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2302         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2303         s->locked++;
2304
2305         if (level == 6) {
2306                 int qd_idx = sh->qd_idx;
2307                 struct r5dev *dev = &sh->dev[qd_idx];
2308
2309                 set_bit(R5_LOCKED, &dev->flags);
2310                 clear_bit(R5_UPTODATE, &dev->flags);
2311                 s->locked++;
2312         }
2313
2314         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2315                 __func__, (unsigned long long)sh->sector,
2316                 s->locked, s->ops_request);
2317 }
2318
2319 /*
2320  * Each stripe/dev can have one or more bion attached.
2321  * toread/towrite point to the first in a chain.
2322  * The bi_next chain must be in order.
2323  */
2324 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2325 {
2326         struct bio **bip;
2327         struct r5conf *conf = sh->raid_conf;
2328         int firstwrite=0;
2329
2330         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2331                 (unsigned long long)bi->bi_sector,
2332                 (unsigned long long)sh->sector);
2333
2334
2335         spin_lock_irq(&conf->device_lock);
2336         if (forwrite) {
2337                 bip = &sh->dev[dd_idx].towrite;
2338                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2339                         firstwrite = 1;
2340         } else
2341                 bip = &sh->dev[dd_idx].toread;
2342         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2343                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2344                         goto overlap;
2345                 bip = & (*bip)->bi_next;
2346         }
2347         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2348                 goto overlap;
2349
2350         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2351         if (*bip)
2352                 bi->bi_next = *bip;
2353         *bip = bi;
2354         bi->bi_phys_segments++;
2355
2356         if (forwrite) {
2357                 /* check if page is covered */
2358                 sector_t sector = sh->dev[dd_idx].sector;
2359                 for (bi=sh->dev[dd_idx].towrite;
2360                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2361                              bi && bi->bi_sector <= sector;
2362                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2363                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2364                                 sector = bi->bi_sector + (bi->bi_size>>9);
2365                 }
2366                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2367                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2368         }
2369         spin_unlock_irq(&conf->device_lock);
2370
2371         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2372                 (unsigned long long)(*bip)->bi_sector,
2373                 (unsigned long long)sh->sector, dd_idx);
2374
2375         if (conf->mddev->bitmap && firstwrite) {
2376                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2377                                   STRIPE_SECTORS, 0);
2378                 sh->bm_seq = conf->seq_flush+1;
2379                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2380         }
2381         return 1;
2382
2383  overlap:
2384         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2385         spin_unlock_irq(&conf->device_lock);
2386         return 0;
2387 }
2388
2389 static void end_reshape(struct r5conf *conf);
2390
2391 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2392                             struct stripe_head *sh)
2393 {
2394         int sectors_per_chunk =
2395                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2396         int dd_idx;
2397         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2398         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2399
2400         raid5_compute_sector(conf,
2401                              stripe * (disks - conf->max_degraded)
2402                              *sectors_per_chunk + chunk_offset,
2403                              previous,
2404                              &dd_idx, sh);
2405 }
2406
2407 static void
2408 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2409                                 struct stripe_head_state *s, int disks,
2410                                 struct bio **return_bi)
2411 {
2412         int i;
2413         for (i = disks; i--; ) {
2414                 struct bio *bi;
2415                 int bitmap_end = 0;
2416
2417                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2418                         struct md_rdev *rdev;
2419                         rcu_read_lock();
2420                         rdev = rcu_dereference(conf->disks[i].rdev);
2421                         if (rdev && test_bit(In_sync, &rdev->flags))
2422                                 atomic_inc(&rdev->nr_pending);
2423                         else
2424                                 rdev = NULL;
2425                         rcu_read_unlock();
2426                         if (rdev) {
2427                                 if (!rdev_set_badblocks(
2428                                             rdev,
2429                                             sh->sector,
2430                                             STRIPE_SECTORS, 0))
2431                                         md_error(conf->mddev, rdev);
2432                                 rdev_dec_pending(rdev, conf->mddev);
2433                         }
2434                 }
2435                 spin_lock_irq(&conf->device_lock);
2436                 /* fail all writes first */
2437                 bi = sh->dev[i].towrite;
2438                 sh->dev[i].towrite = NULL;
2439                 if (bi) {
2440                         s->to_write--;
2441                         bitmap_end = 1;
2442                 }
2443
2444                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2445                         wake_up(&conf->wait_for_overlap);
2446
2447                 while (bi && bi->bi_sector <
2448                         sh->dev[i].sector + STRIPE_SECTORS) {
2449                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2450                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2451                         if (!raid5_dec_bi_phys_segments(bi)) {
2452                                 md_write_end(conf->mddev);
2453                                 bi->bi_next = *return_bi;
2454                                 *return_bi = bi;
2455                         }
2456                         bi = nextbi;
2457                 }
2458                 /* and fail all 'written' */
2459                 bi = sh->dev[i].written;
2460                 sh->dev[i].written = NULL;
2461                 if (bi) bitmap_end = 1;
2462                 while (bi && bi->bi_sector <
2463                        sh->dev[i].sector + STRIPE_SECTORS) {
2464                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2465                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2466                         if (!raid5_dec_bi_phys_segments(bi)) {
2467                                 md_write_end(conf->mddev);
2468                                 bi->bi_next = *return_bi;
2469                                 *return_bi = bi;
2470                         }
2471                         bi = bi2;
2472                 }
2473
2474                 /* fail any reads if this device is non-operational and
2475                  * the data has not reached the cache yet.
2476                  */
2477                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2478                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2479                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2480                         bi = sh->dev[i].toread;
2481                         sh->dev[i].toread = NULL;
2482                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2483                                 wake_up(&conf->wait_for_overlap);
2484                         if (bi) s->to_read--;
2485                         while (bi && bi->bi_sector <
2486                                sh->dev[i].sector + STRIPE_SECTORS) {
2487                                 struct bio *nextbi =
2488                                         r5_next_bio(bi, sh->dev[i].sector);
2489                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2490                                 if (!raid5_dec_bi_phys_segments(bi)) {
2491                                         bi->bi_next = *return_bi;
2492                                         *return_bi = bi;
2493                                 }
2494                                 bi = nextbi;
2495                         }
2496                 }
2497                 spin_unlock_irq(&conf->device_lock);
2498                 if (bitmap_end)
2499                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2500                                         STRIPE_SECTORS, 0, 0);
2501                 /* If we were in the middle of a write the parity block might
2502                  * still be locked - so just clear all R5_LOCKED flags
2503                  */
2504                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2505         }
2506
2507         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2508                 if (atomic_dec_and_test(&conf->pending_full_writes))
2509                         md_wakeup_thread(conf->mddev->thread);
2510 }
2511
2512 static void
2513 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2514                    struct stripe_head_state *s)
2515 {
2516         int abort = 0;
2517         int i;
2518
2519         clear_bit(STRIPE_SYNCING, &sh->state);
2520         s->syncing = 0;
2521         s->replacing = 0;
2522         /* There is nothing more to do for sync/check/repair.
2523          * Don't even need to abort as that is handled elsewhere
2524          * if needed, and not always wanted e.g. if there is a known
2525          * bad block here.
2526          * For recover/replace we need to record a bad block on all
2527          * non-sync devices, or abort the recovery
2528          */
2529         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2530                 /* During recovery devices cannot be removed, so
2531                  * locking and refcounting of rdevs is not needed
2532                  */
2533                 for (i = 0; i < conf->raid_disks; i++) {
2534                         struct md_rdev *rdev = conf->disks[i].rdev;
2535                         if (rdev
2536                             && !test_bit(Faulty, &rdev->flags)
2537                             && !test_bit(In_sync, &rdev->flags)
2538                             && !rdev_set_badblocks(rdev, sh->sector,
2539                                                    STRIPE_SECTORS, 0))
2540                                 abort = 1;
2541                         rdev = conf->disks[i].replacement;
2542                         if (rdev
2543                             && !test_bit(Faulty, &rdev->flags)
2544                             && !test_bit(In_sync, &rdev->flags)
2545                             && !rdev_set_badblocks(rdev, sh->sector,
2546                                                    STRIPE_SECTORS, 0))
2547                                 abort = 1;
2548                 }
2549                 if (abort)
2550                         conf->recovery_disabled =
2551                                 conf->mddev->recovery_disabled;
2552         }
2553         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2554 }
2555
2556 static int want_replace(struct stripe_head *sh, int disk_idx)
2557 {
2558         struct md_rdev *rdev;
2559         int rv = 0;
2560         /* Doing recovery so rcu locking not required */
2561         rdev = sh->raid_conf->disks[disk_idx].replacement;
2562         if (rdev
2563             && !test_bit(Faulty, &rdev->flags)
2564             && !test_bit(In_sync, &rdev->flags)
2565             && (rdev->recovery_offset <= sh->sector
2566                 || rdev->mddev->recovery_cp <= sh->sector))
2567                 rv = 1;
2568
2569         return rv;
2570 }
2571
2572 /* fetch_block - checks the given member device to see if its data needs
2573  * to be read or computed to satisfy a request.
2574  *
2575  * Returns 1 when no more member devices need to be checked, otherwise returns
2576  * 0 to tell the loop in handle_stripe_fill to continue
2577  */
2578 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2579                        int disk_idx, int disks)
2580 {
2581         struct r5dev *dev = &sh->dev[disk_idx];
2582         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2583                                   &sh->dev[s->failed_num[1]] };
2584
2585         /* is the data in this block needed, and can we get it? */
2586         if (!test_bit(R5_LOCKED, &dev->flags) &&
2587             !test_bit(R5_UPTODATE, &dev->flags) &&
2588             (dev->toread ||
2589              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2590              s->syncing || s->expanding ||
2591              (s->replacing && want_replace(sh, disk_idx)) ||
2592              (s->failed >= 1 && fdev[0]->toread) ||
2593              (s->failed >= 2 && fdev[1]->toread) ||
2594              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2595               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2596              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2597                 /* we would like to get this block, possibly by computing it,
2598                  * otherwise read it if the backing disk is insync
2599                  */
2600                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2601                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2602                 if ((s->uptodate == disks - 1) &&
2603                     (s->failed && (disk_idx == s->failed_num[0] ||
2604                                    disk_idx == s->failed_num[1]))) {
2605                         /* have disk failed, and we're requested to fetch it;
2606                          * do compute it
2607                          */
2608                         pr_debug("Computing stripe %llu block %d\n",
2609                                (unsigned long long)sh->sector, disk_idx);
2610                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2611                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2612                         set_bit(R5_Wantcompute, &dev->flags);
2613                         sh->ops.target = disk_idx;
2614                         sh->ops.target2 = -1; /* no 2nd target */
2615                         s->req_compute = 1;
2616                         /* Careful: from this point on 'uptodate' is in the eye
2617                          * of raid_run_ops which services 'compute' operations
2618                          * before writes. R5_Wantcompute flags a block that will
2619                          * be R5_UPTODATE by the time it is needed for a
2620                          * subsequent operation.
2621                          */
2622                         s->uptodate++;
2623                         return 1;
2624                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2625                         /* Computing 2-failure is *very* expensive; only
2626                          * do it if failed >= 2
2627                          */
2628                         int other;
2629                         for (other = disks; other--; ) {
2630                                 if (other == disk_idx)
2631                                         continue;
2632                                 if (!test_bit(R5_UPTODATE,
2633                                       &sh->dev[other].flags))
2634                                         break;
2635                         }
2636                         BUG_ON(other < 0);
2637                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2638                                (unsigned long long)sh->sector,
2639                                disk_idx, other);
2640                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2641                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2642                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2643                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2644                         sh->ops.target = disk_idx;
2645                         sh->ops.target2 = other;
2646                         s->uptodate += 2;
2647                         s->req_compute = 1;
2648                         return 1;
2649                 } else if (test_bit(R5_Insync, &dev->flags)) {
2650                         set_bit(R5_LOCKED, &dev->flags);
2651                         set_bit(R5_Wantread, &dev->flags);
2652                         s->locked++;
2653                         pr_debug("Reading block %d (sync=%d)\n",
2654                                 disk_idx, s->syncing);
2655                 }
2656         }
2657
2658         return 0;
2659 }
2660
2661 /**
2662  * handle_stripe_fill - read or compute data to satisfy pending requests.
2663  */
2664 static void handle_stripe_fill(struct stripe_head *sh,
2665                                struct stripe_head_state *s,
2666                                int disks)
2667 {
2668         int i;
2669
2670         /* look for blocks to read/compute, skip this if a compute
2671          * is already in flight, or if the stripe contents are in the
2672          * midst of changing due to a write
2673          */
2674         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2675             !sh->reconstruct_state)
2676                 for (i = disks; i--; )
2677                         if (fetch_block(sh, s, i, disks))
2678                                 break;
2679         set_bit(STRIPE_HANDLE, &sh->state);
2680 }
2681
2682
2683 /* handle_stripe_clean_event
2684  * any written block on an uptodate or failed drive can be returned.
2685  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2686  * never LOCKED, so we don't need to test 'failed' directly.
2687  */
2688 static void handle_stripe_clean_event(struct r5conf *conf,
2689         struct stripe_head *sh, int disks, struct bio **return_bi)
2690 {
2691         int i;
2692         struct r5dev *dev;
2693
2694         for (i = disks; i--; )
2695                 if (sh->dev[i].written) {
2696                         dev = &sh->dev[i];
2697                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2698                                 test_bit(R5_UPTODATE, &dev->flags)) {
2699                                 /* We can return any write requests */
2700                                 struct bio *wbi, *wbi2;
2701                                 int bitmap_end = 0;
2702                                 pr_debug("Return write for disc %d\n", i);
2703                                 spin_lock_irq(&conf->device_lock);
2704                                 wbi = dev->written;
2705                                 dev->written = NULL;
2706                                 while (wbi && wbi->bi_sector <
2707                                         dev->sector + STRIPE_SECTORS) {
2708                                         wbi2 = r5_next_bio(wbi, dev->sector);
2709                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2710                                                 md_write_end(conf->mddev);
2711                                                 wbi->bi_next = *return_bi;
2712                                                 *return_bi = wbi;
2713                                         }
2714                                         wbi = wbi2;
2715                                 }
2716                                 if (dev->towrite == NULL)
2717                                         bitmap_end = 1;
2718                                 spin_unlock_irq(&conf->device_lock);
2719                                 if (bitmap_end)
2720                                         bitmap_endwrite(conf->mddev->bitmap,
2721                                                         sh->sector,
2722                                                         STRIPE_SECTORS,
2723                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2724                                                         0);
2725                         }
2726                 }
2727
2728         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2729                 if (atomic_dec_and_test(&conf->pending_full_writes))
2730                         md_wakeup_thread(conf->mddev->thread);
2731 }
2732
2733 static void handle_stripe_dirtying(struct r5conf *conf,
2734                                    struct stripe_head *sh,
2735                                    struct stripe_head_state *s,
2736                                    int disks)
2737 {
2738         int rmw = 0, rcw = 0, i;
2739         if (conf->max_degraded == 2) {
2740                 /* RAID6 requires 'rcw' in current implementation
2741                  * Calculate the real rcw later - for now fake it
2742                  * look like rcw is cheaper
2743                  */
2744                 rcw = 1; rmw = 2;
2745         } else for (i = disks; i--; ) {
2746                 /* would I have to read this buffer for read_modify_write */
2747                 struct r5dev *dev = &sh->dev[i];
2748                 if ((dev->towrite || i == sh->pd_idx) &&
2749                     !test_bit(R5_LOCKED, &dev->flags) &&
2750                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2751                       test_bit(R5_Wantcompute, &dev->flags))) {
2752                         if (test_bit(R5_Insync, &dev->flags))
2753                                 rmw++;
2754                         else
2755                                 rmw += 2*disks;  /* cannot read it */
2756                 }
2757                 /* Would I have to read this buffer for reconstruct_write */
2758                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2759                     !test_bit(R5_LOCKED, &dev->flags) &&
2760                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2761                     test_bit(R5_Wantcompute, &dev->flags))) {
2762                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2763                         else
2764                                 rcw += 2*disks;
2765                 }
2766         }
2767         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2768                 (unsigned long long)sh->sector, rmw, rcw);
2769         set_bit(STRIPE_HANDLE, &sh->state);
2770         if (rmw < rcw && rmw > 0)
2771                 /* prefer read-modify-write, but need to get some data */
2772                 for (i = disks; i--; ) {
2773                         struct r5dev *dev = &sh->dev[i];
2774                         if ((dev->towrite || i == sh->pd_idx) &&
2775                             !test_bit(R5_LOCKED, &dev->flags) &&
2776                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2777                             test_bit(R5_Wantcompute, &dev->flags)) &&
2778                             test_bit(R5_Insync, &dev->flags)) {
2779                                 if (
2780                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2781                                         pr_debug("Read_old block "
2782                                                 "%d for r-m-w\n", i);
2783                                         set_bit(R5_LOCKED, &dev->flags);
2784                                         set_bit(R5_Wantread, &dev->flags);
2785                                         s->locked++;
2786                                 } else {
2787                                         set_bit(STRIPE_DELAYED, &sh->state);
2788                                         set_bit(STRIPE_HANDLE, &sh->state);
2789                                 }
2790                         }
2791                 }
2792         if (rcw <= rmw && rcw > 0) {
2793                 /* want reconstruct write, but need to get some data */
2794                 rcw = 0;
2795                 for (i = disks; i--; ) {
2796                         struct r5dev *dev = &sh->dev[i];
2797                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2798                             i != sh->pd_idx && i != sh->qd_idx &&
2799                             !test_bit(R5_LOCKED, &dev->flags) &&
2800                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2801                               test_bit(R5_Wantcompute, &dev->flags))) {
2802                                 rcw++;
2803                                 if (!test_bit(R5_Insync, &dev->flags))
2804                                         continue; /* it's a failed drive */
2805                                 if (
2806                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2807                                         pr_debug("Read_old block "
2808                                                 "%d for Reconstruct\n", i);
2809                                         set_bit(R5_LOCKED, &dev->flags);
2810                                         set_bit(R5_Wantread, &dev->flags);
2811                                         s->locked++;
2812                                 } else {
2813                                         set_bit(STRIPE_DELAYED, &sh->state);
2814                                         set_bit(STRIPE_HANDLE, &sh->state);
2815                                 }
2816                         }
2817                 }
2818         }
2819         /* now if nothing is locked, and if we have enough data,
2820          * we can start a write request
2821          */
2822         /* since handle_stripe can be called at any time we need to handle the
2823          * case where a compute block operation has been submitted and then a
2824          * subsequent call wants to start a write request.  raid_run_ops only
2825          * handles the case where compute block and reconstruct are requested
2826          * simultaneously.  If this is not the case then new writes need to be
2827          * held off until the compute completes.
2828          */
2829         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2830             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2831             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2832                 schedule_reconstruction(sh, s, rcw == 0, 0);
2833 }
2834
2835 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2836                                 struct stripe_head_state *s, int disks)
2837 {
2838         struct r5dev *dev = NULL;
2839
2840         set_bit(STRIPE_HANDLE, &sh->state);
2841
2842         switch (sh->check_state) {
2843         case check_state_idle:
2844                 /* start a new check operation if there are no failures */
2845                 if (s->failed == 0) {
2846                         BUG_ON(s->uptodate != disks);
2847                         sh->check_state = check_state_run;
2848                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2849                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2850                         s->uptodate--;
2851                         break;
2852                 }
2853                 dev = &sh->dev[s->failed_num[0]];
2854                 /* fall through */
2855         case check_state_compute_result:
2856                 sh->check_state = check_state_idle;
2857                 if (!dev)
2858                         dev = &sh->dev[sh->pd_idx];
2859
2860                 /* check that a write has not made the stripe insync */
2861                 if (test_bit(STRIPE_INSYNC, &sh->state))
2862                         break;
2863
2864                 /* either failed parity check, or recovery is happening */
2865                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2866                 BUG_ON(s->uptodate != disks);
2867
2868                 set_bit(R5_LOCKED, &dev->flags);
2869                 s->locked++;
2870                 set_bit(R5_Wantwrite, &dev->flags);
2871
2872                 clear_bit(STRIPE_DEGRADED, &sh->state);
2873                 set_bit(STRIPE_INSYNC, &sh->state);
2874                 break;
2875         case check_state_run:
2876                 break; /* we will be called again upon completion */
2877         case check_state_check_result:
2878                 sh->check_state = check_state_idle;
2879
2880                 /* if a failure occurred during the check operation, leave
2881                  * STRIPE_INSYNC not set and let the stripe be handled again
2882                  */
2883                 if (s->failed)
2884                         break;
2885
2886                 /* handle a successful check operation, if parity is correct
2887                  * we are done.  Otherwise update the mismatch count and repair
2888                  * parity if !MD_RECOVERY_CHECK
2889                  */
2890                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2891                         /* parity is correct (on disc,
2892                          * not in buffer any more)
2893                          */
2894                         set_bit(STRIPE_INSYNC, &sh->state);
2895                 else {
2896                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2897                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2898                                 /* don't try to repair!! */
2899                                 set_bit(STRIPE_INSYNC, &sh->state);
2900                         else {
2901                                 sh->check_state = check_state_compute_run;
2902                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2903                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2904                                 set_bit(R5_Wantcompute,
2905                                         &sh->dev[sh->pd_idx].flags);
2906                                 sh->ops.target = sh->pd_idx;
2907                                 sh->ops.target2 = -1;
2908                                 s->uptodate++;
2909                         }
2910                 }
2911                 break;
2912         case check_state_compute_run:
2913                 break;
2914         default:
2915                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2916                        __func__, sh->check_state,
2917                        (unsigned long long) sh->sector);
2918                 BUG();
2919         }
2920 }
2921
2922
2923 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2924                                   struct stripe_head_state *s,
2925                                   int disks)
2926 {
2927         int pd_idx = sh->pd_idx;
2928         int qd_idx = sh->qd_idx;
2929         struct r5dev *dev;
2930
2931         set_bit(STRIPE_HANDLE, &sh->state);
2932
2933         BUG_ON(s->failed > 2);
2934
2935         /* Want to check and possibly repair P and Q.
2936          * However there could be one 'failed' device, in which
2937          * case we can only check one of them, possibly using the
2938          * other to generate missing data
2939          */
2940
2941         switch (sh->check_state) {
2942         case check_state_idle:
2943                 /* start a new check operation if there are < 2 failures */
2944                 if (s->failed == s->q_failed) {
2945                         /* The only possible failed device holds Q, so it
2946                          * makes sense to check P (If anything else were failed,
2947                          * we would have used P to recreate it).
2948                          */
2949                         sh->check_state = check_state_run;
2950                 }
2951                 if (!s->q_failed && s->failed < 2) {
2952                         /* Q is not failed, and we didn't use it to generate
2953                          * anything, so it makes sense to check it
2954                          */
2955                         if (sh->check_state == check_state_run)
2956                                 sh->check_state = check_state_run_pq;
2957                         else
2958                                 sh->check_state = check_state_run_q;
2959                 }
2960
2961                 /* discard potentially stale zero_sum_result */
2962                 sh->ops.zero_sum_result = 0;
2963
2964                 if (sh->check_state == check_state_run) {
2965                         /* async_xor_zero_sum destroys the contents of P */
2966                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2967                         s->uptodate--;
2968                 }
2969                 if (sh->check_state >= check_state_run &&
2970                     sh->check_state <= check_state_run_pq) {
2971                         /* async_syndrome_zero_sum preserves P and Q, so
2972                          * no need to mark them !uptodate here
2973                          */
2974                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2975                         break;
2976                 }
2977
2978                 /* we have 2-disk failure */
2979                 BUG_ON(s->failed != 2);
2980                 /* fall through */
2981         case check_state_compute_result:
2982                 sh->check_state = check_state_idle;
2983
2984                 /* check that a write has not made the stripe insync */
2985                 if (test_bit(STRIPE_INSYNC, &sh->state))
2986                         break;
2987
2988                 /* now write out any block on a failed drive,
2989                  * or P or Q if they were recomputed
2990                  */
2991                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2992                 if (s->failed == 2) {
2993                         dev = &sh->dev[s->failed_num[1]];
2994                         s->locked++;
2995                         set_bit(R5_LOCKED, &dev->flags);
2996                         set_bit(R5_Wantwrite, &dev->flags);
2997                 }
2998                 if (s->failed >= 1) {
2999                         dev = &sh->dev[s->failed_num[0]];
3000                         s->locked++;
3001                         set_bit(R5_LOCKED, &dev->flags);
3002                         set_bit(R5_Wantwrite, &dev->flags);
3003                 }
3004                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3005                         dev = &sh->dev[pd_idx];
3006                         s->locked++;
3007                         set_bit(R5_LOCKED, &dev->flags);
3008                         set_bit(R5_Wantwrite, &dev->flags);
3009                 }
3010                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3011                         dev = &sh->dev[qd_idx];
3012                         s->locked++;
3013                         set_bit(R5_LOCKED, &dev->flags);
3014                         set_bit(R5_Wantwrite, &dev->flags);
3015                 }
3016                 clear_bit(STRIPE_DEGRADED, &sh->state);
3017
3018                 set_bit(STRIPE_INSYNC, &sh->state);
3019                 break;
3020         case check_state_run:
3021         case check_state_run_q:
3022         case check_state_run_pq:
3023                 break; /* we will be called again upon completion */
3024         case check_state_check_result:
3025                 sh->check_state = check_state_idle;
3026
3027                 /* handle a successful check operation, if parity is correct
3028                  * we are done.  Otherwise update the mismatch count and repair
3029                  * parity if !MD_RECOVERY_CHECK
3030                  */
3031                 if (sh->ops.zero_sum_result == 0) {
3032                         /* both parities are correct */
3033                         if (!s->failed)
3034                                 set_bit(STRIPE_INSYNC, &sh->state);
3035                         else {
3036                                 /* in contrast to the raid5 case we can validate
3037                                  * parity, but still have a failure to write
3038                                  * back
3039                                  */
3040                                 sh->check_state = check_state_compute_result;
3041                                 /* Returning at this point means that we may go
3042                                  * off and bring p and/or q uptodate again so
3043                                  * we make sure to check zero_sum_result again
3044                                  * to verify if p or q need writeback
3045                                  */
3046                         }
3047                 } else {
3048                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3049                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3050                                 /* don't try to repair!! */
3051                                 set_bit(STRIPE_INSYNC, &sh->state);
3052                         else {
3053                                 int *target = &sh->ops.target;
3054
3055                                 sh->ops.target = -1;
3056                                 sh->ops.target2 = -1;
3057                                 sh->check_state = check_state_compute_run;
3058                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3059                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3060                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3061                                         set_bit(R5_Wantcompute,
3062                                                 &sh->dev[pd_idx].flags);
3063                                         *target = pd_idx;
3064                                         target = &sh->ops.target2;
3065                                         s->uptodate++;
3066                                 }
3067                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3068                                         set_bit(R5_Wantcompute,
3069                                                 &sh->dev[qd_idx].flags);
3070                                         *target = qd_idx;
3071                                         s->uptodate++;
3072                                 }
3073                         }
3074                 }
3075                 break;
3076         case check_state_compute_run:
3077                 break;
3078         default:
3079                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3080                        __func__, sh->check_state,
3081                        (unsigned long long) sh->sector);
3082                 BUG();
3083         }
3084 }
3085
3086 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3087 {
3088         int i;
3089
3090         /* We have read all the blocks in this stripe and now we need to
3091          * copy some of them into a target stripe for expand.
3092          */
3093         struct dma_async_tx_descriptor *tx = NULL;
3094         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3095         for (i = 0; i < sh->disks; i++)
3096                 if (i != sh->pd_idx && i != sh->qd_idx) {
3097                         int dd_idx, j;
3098                         struct stripe_head *sh2;
3099                         struct async_submit_ctl submit;
3100
3101                         sector_t bn = compute_blocknr(sh, i, 1);
3102                         sector_t s = raid5_compute_sector(conf, bn, 0,
3103                                                           &dd_idx, NULL);
3104                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3105                         if (sh2 == NULL)
3106                                 /* so far only the early blocks of this stripe
3107                                  * have been requested.  When later blocks
3108                                  * get requested, we will try again
3109                                  */
3110                                 continue;
3111                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3112                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3113                                 /* must have already done this block */
3114                                 release_stripe(sh2);
3115                                 continue;
3116                         }
3117
3118                         /* place all the copies on one channel */
3119                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3120                         tx = async_memcpy(sh2->dev[dd_idx].page,
3121                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3122                                           &submit);
3123
3124                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3125                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3126                         for (j = 0; j < conf->raid_disks; j++)
3127                                 if (j != sh2->pd_idx &&
3128                                     j != sh2->qd_idx &&
3129                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3130                                         break;
3131                         if (j == conf->raid_disks) {
3132                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3133                                 set_bit(STRIPE_HANDLE, &sh2->state);
3134                         }
3135                         release_stripe(sh2);
3136
3137                 }
3138         /* done submitting copies, wait for them to complete */
3139         if (tx) {
3140                 async_tx_ack(tx);
3141                 dma_wait_for_async_tx(tx);
3142         }
3143 }
3144
3145 /*
3146  * handle_stripe - do things to a stripe.
3147  *
3148  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3149  * state of various bits to see what needs to be done.
3150  * Possible results:
3151  *    return some read requests which now have data
3152  *    return some write requests which are safely on storage
3153  *    schedule a read on some buffers
3154  *    schedule a write of some buffers
3155  *    return confirmation of parity correctness
3156  *
3157  */
3158
3159 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3160 {
3161         struct r5conf *conf = sh->raid_conf;
3162         int disks = sh->disks;
3163         struct r5dev *dev;
3164         int i;
3165         int do_recovery = 0;
3166
3167         memset(s, 0, sizeof(*s));
3168
3169         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3170         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3171         s->failed_num[0] = -1;
3172         s->failed_num[1] = -1;
3173
3174         /* Now to look around and see what can be done */
3175         rcu_read_lock();
3176         spin_lock_irq(&conf->device_lock);
3177         for (i=disks; i--; ) {
3178                 struct md_rdev *rdev;
3179                 sector_t first_bad;
3180                 int bad_sectors;
3181                 int is_bad = 0;
3182
3183                 dev = &sh->dev[i];
3184
3185                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3186                          i, dev->flags,
3187                          dev->toread, dev->towrite, dev->written);
3188                 /* maybe we can reply to a read
3189                  *
3190                  * new wantfill requests are only permitted while
3191                  * ops_complete_biofill is guaranteed to be inactive
3192                  */
3193                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3194                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3195                         set_bit(R5_Wantfill, &dev->flags);
3196
3197                 /* now count some things */
3198                 if (test_bit(R5_LOCKED, &dev->flags))
3199                         s->locked++;
3200                 if (test_bit(R5_UPTODATE, &dev->flags))
3201                         s->uptodate++;
3202                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3203                         s->compute++;
3204                         BUG_ON(s->compute > 2);
3205                 }
3206
3207                 if (test_bit(R5_Wantfill, &dev->flags))
3208                         s->to_fill++;
3209                 else if (dev->toread)
3210                         s->to_read++;
3211                 if (dev->towrite) {
3212                         s->to_write++;
3213                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3214                                 s->non_overwrite++;
3215                 }
3216                 if (dev->written)
3217                         s->written++;
3218                 /* Prefer to use the replacement for reads, but only
3219                  * if it is recovered enough and has no bad blocks.
3220                  */
3221                 rdev = rcu_dereference(conf->disks[i].replacement);
3222                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3223                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3224                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3225                                  &first_bad, &bad_sectors))
3226                         set_bit(R5_ReadRepl, &dev->flags);
3227                 else {
3228                         if (rdev)
3229                                 set_bit(R5_NeedReplace, &dev->flags);
3230                         rdev = rcu_dereference(conf->disks[i].rdev);
3231                         clear_bit(R5_ReadRepl, &dev->flags);
3232                 }
3233                 if (rdev && test_bit(Faulty, &rdev->flags))
3234                         rdev = NULL;
3235                 if (rdev) {
3236                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3237                                              &first_bad, &bad_sectors);
3238                         if (s->blocked_rdev == NULL
3239                             && (test_bit(Blocked, &rdev->flags)
3240                                 || is_bad < 0)) {
3241                                 if (is_bad < 0)
3242                                         set_bit(BlockedBadBlocks,
3243                                                 &rdev->flags);
3244                                 s->blocked_rdev = rdev;
3245                                 atomic_inc(&rdev->nr_pending);
3246                         }
3247                 }
3248                 clear_bit(R5_Insync, &dev->flags);
3249                 if (!rdev)
3250                         /* Not in-sync */;
3251                 else if (is_bad) {
3252                         /* also not in-sync */
3253                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3254                             test_bit(R5_UPTODATE, &dev->flags)) {
3255                                 /* treat as in-sync, but with a read error
3256                                  * which we can now try to correct
3257                                  */
3258                                 set_bit(R5_Insync, &dev->flags);
3259                                 set_bit(R5_ReadError, &dev->flags);
3260                         }
3261                 } else if (test_bit(In_sync, &rdev->flags))
3262                         set_bit(R5_Insync, &dev->flags);
3263                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3264                         /* in sync if before recovery_offset */
3265                         set_bit(R5_Insync, &dev->flags);
3266                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3267                          test_bit(R5_Expanded, &dev->flags))
3268                         /* If we've reshaped into here, we assume it is Insync.
3269                          * We will shortly update recovery_offset to make
3270                          * it official.
3271                          */
3272                         set_bit(R5_Insync, &dev->flags);
3273
3274                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3275                         /* This flag does not apply to '.replacement'
3276                          * only to .rdev, so make sure to check that*/
3277                         struct md_rdev *rdev2 = rcu_dereference(
3278                                 conf->disks[i].rdev);
3279                         if (rdev2 == rdev)
3280                                 clear_bit(R5_Insync, &dev->flags);
3281                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3282                                 s->handle_bad_blocks = 1;
3283                                 atomic_inc(&rdev2->nr_pending);
3284                         } else
3285                                 clear_bit(R5_WriteError, &dev->flags);
3286                 }
3287                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3288                         /* This flag does not apply to '.replacement'
3289                          * only to .rdev, so make sure to check that*/
3290                         struct md_rdev *rdev2 = rcu_dereference(
3291                                 conf->disks[i].rdev);
3292                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3293                                 s->handle_bad_blocks = 1;
3294                                 atomic_inc(&rdev2->nr_pending);
3295                         } else
3296                                 clear_bit(R5_MadeGood, &dev->flags);
3297                 }
3298                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3299                         struct md_rdev *rdev2 = rcu_dereference(
3300                                 conf->disks[i].replacement);
3301                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3302                                 s->handle_bad_blocks = 1;
3303                                 atomic_inc(&rdev2->nr_pending);
3304                         } else
3305                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3306                 }
3307                 if (!test_bit(R5_Insync, &dev->flags)) {
3308                         /* The ReadError flag will just be confusing now */
3309                         clear_bit(R5_ReadError, &dev->flags);
3310                         clear_bit(R5_ReWrite, &dev->flags);
3311                 }
3312                 if (test_bit(R5_ReadError, &dev->flags))
3313                         clear_bit(R5_Insync, &dev->flags);
3314                 if (!test_bit(R5_Insync, &dev->flags)) {
3315                         if (s->failed < 2)
3316                                 s->failed_num[s->failed] = i;
3317                         s->failed++;
3318                         if (rdev && !test_bit(Faulty, &rdev->flags))
3319                                 do_recovery = 1;
3320                 }
3321         }
3322         spin_unlock_irq(&conf->device_lock);
3323         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3324                 /* If there is a failed device being replaced,
3325                  *     we must be recovering.
3326                  * else if we are after recovery_cp, we must be syncing
3327                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3328                  * else we can only be replacing
3329                  * sync and recovery both need to read all devices, and so
3330                  * use the same flag.
3331                  */
3332                 if (do_recovery ||
3333                     sh->sector >= conf->mddev->recovery_cp ||
3334                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3335                         s->syncing = 1;
3336                 else
3337                         s->replacing = 1;
3338         }
3339         rcu_read_unlock();
3340 }
3341
3342 static void handle_stripe(struct stripe_head *sh)
3343 {
3344         struct stripe_head_state s;
3345         struct r5conf *conf = sh->raid_conf;
3346         int i;
3347         int prexor;
3348         int disks = sh->disks;
3349         struct r5dev *pdev, *qdev;
3350
3351         clear_bit(STRIPE_HANDLE, &sh->state);
3352         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3353                 /* already being handled, ensure it gets handled
3354                  * again when current action finishes */
3355                 set_bit(STRIPE_HANDLE, &sh->state);
3356                 return;
3357         }
3358
3359         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3360                 set_bit(STRIPE_SYNCING, &sh->state);
3361                 clear_bit(STRIPE_INSYNC, &sh->state);
3362         }
3363         clear_bit(STRIPE_DELAYED, &sh->state);
3364
3365         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3366                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3367                (unsigned long long)sh->sector, sh->state,
3368                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3369                sh->check_state, sh->reconstruct_state);
3370
3371         analyse_stripe(sh, &s);
3372
3373         if (s.handle_bad_blocks) {
3374                 set_bit(STRIPE_HANDLE, &sh->state);
3375                 goto finish;
3376         }
3377
3378         if (unlikely(s.blocked_rdev)) {
3379                 if (s.syncing || s.expanding || s.expanded ||
3380                     s.replacing || s.to_write || s.written) {
3381                         set_bit(STRIPE_HANDLE, &sh->state);
3382                         goto finish;
3383                 }
3384                 /* There is nothing for the blocked_rdev to block */
3385                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3386                 s.blocked_rdev = NULL;
3387         }
3388
3389         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3390                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3391                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3392         }
3393
3394         pr_debug("locked=%d uptodate=%d to_read=%d"
3395                " to_write=%d failed=%d failed_num=%d,%d\n",
3396                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3397                s.failed_num[0], s.failed_num[1]);
3398         /* check if the array has lost more than max_degraded devices and,
3399          * if so, some requests might need to be failed.
3400          */
3401         if (s.failed > conf->max_degraded) {
3402                 sh->check_state = 0;
3403                 sh->reconstruct_state = 0;
3404                 if (s.to_read+s.to_write+s.written)
3405                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3406                 if (s.syncing + s.replacing)
3407                         handle_failed_sync(conf, sh, &s);
3408         }
3409
3410         /*
3411          * might be able to return some write requests if the parity blocks
3412          * are safe, or on a failed drive
3413          */
3414         pdev = &sh->dev[sh->pd_idx];
3415         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3416                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3417         qdev = &sh->dev[sh->qd_idx];
3418         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3419                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3420                 || conf->level < 6;
3421
3422         if (s.written &&
3423             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3424                              && !test_bit(R5_LOCKED, &pdev->flags)
3425                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3426             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3427                              && !test_bit(R5_LOCKED, &qdev->flags)
3428                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3429                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3430
3431         /* Now we might consider reading some blocks, either to check/generate
3432          * parity, or to satisfy requests
3433          * or to load a block that is being partially written.
3434          */
3435         if (s.to_read || s.non_overwrite
3436             || (conf->level == 6 && s.to_write && s.failed)
3437             || (s.syncing && (s.uptodate + s.compute < disks))
3438             || s.replacing
3439             || s.expanding)
3440                 handle_stripe_fill(sh, &s, disks);
3441
3442         /* Now we check to see if any write operations have recently
3443          * completed
3444          */
3445         prexor = 0;
3446         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3447                 prexor = 1;
3448         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3449             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3450                 sh->reconstruct_state = reconstruct_state_idle;
3451
3452                 /* All the 'written' buffers and the parity block are ready to
3453                  * be written back to disk
3454                  */
3455                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3456                 BUG_ON(sh->qd_idx >= 0 &&
3457                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3458                 for (i = disks; i--; ) {
3459                         struct r5dev *dev = &sh->dev[i];
3460                         if (test_bit(R5_LOCKED, &dev->flags) &&
3461                                 (i == sh->pd_idx || i == sh->qd_idx ||
3462                                  dev->written)) {
3463                                 pr_debug("Writing block %d\n", i);
3464                                 set_bit(R5_Wantwrite, &dev->flags);
3465                                 if (prexor)
3466                                         continue;
3467                                 if (!test_bit(R5_Insync, &dev->flags) ||
3468                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3469                                      s.failed == 0))
3470                                         set_bit(STRIPE_INSYNC, &sh->state);
3471                         }
3472                 }
3473                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3474                         s.dec_preread_active = 1;
3475         }
3476
3477         /* Now to consider new write requests and what else, if anything
3478          * should be read.  We do not handle new writes when:
3479          * 1/ A 'write' operation (copy+xor) is already in flight.
3480          * 2/ A 'check' operation is in flight, as it may clobber the parity
3481          *    block.
3482          */
3483         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3484                 handle_stripe_dirtying(conf, sh, &s, disks);
3485
3486         /* maybe we need to check and possibly fix the parity for this stripe
3487          * Any reads will already have been scheduled, so we just see if enough
3488          * data is available.  The parity check is held off while parity
3489          * dependent operations are in flight.
3490          */
3491         if (sh->check_state ||
3492             (s.syncing && s.locked == 0 &&
3493              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3494              !test_bit(STRIPE_INSYNC, &sh->state))) {
3495                 if (conf->level == 6)
3496                         handle_parity_checks6(conf, sh, &s, disks);
3497                 else
3498                         handle_parity_checks5(conf, sh, &s, disks);
3499         }
3500
3501         if (s.replacing && s.locked == 0
3502             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3503                 /* Write out to replacement devices where possible */
3504                 for (i = 0; i < conf->raid_disks; i++)
3505                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3506                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3507                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3508                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3509                                 s.locked++;
3510                         }
3511                 set_bit(STRIPE_INSYNC, &sh->state);
3512         }
3513         if ((s.syncing || s.replacing) && s.locked == 0 &&
3514             test_bit(STRIPE_INSYNC, &sh->state)) {
3515                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3516                 clear_bit(STRIPE_SYNCING, &sh->state);
3517         }
3518
3519         /* If the failed drives are just a ReadError, then we might need
3520          * to progress the repair/check process
3521          */
3522         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3523                 for (i = 0; i < s.failed; i++) {
3524                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3525                         if (test_bit(R5_ReadError, &dev->flags)
3526                             && !test_bit(R5_LOCKED, &dev->flags)
3527                             && test_bit(R5_UPTODATE, &dev->flags)
3528                                 ) {
3529                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3530                                         set_bit(R5_Wantwrite, &dev->flags);
3531                                         set_bit(R5_ReWrite, &dev->flags);
3532                                         set_bit(R5_LOCKED, &dev->flags);
3533                                         s.locked++;
3534                                 } else {
3535                                         /* let's read it back */
3536                                         set_bit(R5_Wantread, &dev->flags);
3537                                         set_bit(R5_LOCKED, &dev->flags);
3538                                         s.locked++;
3539                                 }
3540                         }
3541                 }
3542
3543
3544         /* Finish reconstruct operations initiated by the expansion process */
3545         if (sh->reconstruct_state == reconstruct_state_result) {
3546                 struct stripe_head *sh_src
3547                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3548                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3549                         /* sh cannot be written until sh_src has been read.
3550                          * so arrange for sh to be delayed a little
3551                          */
3552                         set_bit(STRIPE_DELAYED, &sh->state);
3553                         set_bit(STRIPE_HANDLE, &sh->state);
3554                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3555                                               &sh_src->state))
3556                                 atomic_inc(&conf->preread_active_stripes);
3557                         release_stripe(sh_src);
3558                         goto finish;
3559                 }
3560                 if (sh_src)
3561                         release_stripe(sh_src);
3562
3563                 sh->reconstruct_state = reconstruct_state_idle;
3564                 clear_bit(STRIPE_EXPANDING, &sh->state);
3565                 for (i = conf->raid_disks; i--; ) {
3566                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3567                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3568                         s.locked++;
3569                 }
3570         }
3571
3572         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3573             !sh->reconstruct_state) {
3574                 /* Need to write out all blocks after computing parity */
3575                 sh->disks = conf->raid_disks;
3576                 stripe_set_idx(sh->sector, conf, 0, sh);
3577                 schedule_reconstruction(sh, &s, 1, 1);
3578         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3579                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3580                 atomic_dec(&conf->reshape_stripes);
3581                 wake_up(&conf->wait_for_overlap);
3582                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3583         }
3584
3585         if (s.expanding && s.locked == 0 &&
3586             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3587                 handle_stripe_expansion(conf, sh);
3588
3589 finish:
3590         /* wait for this device to become unblocked */
3591         if (unlikely(s.blocked_rdev)) {
3592                 if (conf->mddev->external)
3593                         md_wait_for_blocked_rdev(s.blocked_rdev,
3594                                                  conf->mddev);
3595                 else
3596                         /* Internal metadata will immediately
3597                          * be written by raid5d, so we don't
3598                          * need to wait here.
3599                          */
3600                         rdev_dec_pending(s.blocked_rdev,
3601                                          conf->mddev);
3602         }
3603
3604         if (s.handle_bad_blocks)
3605                 for (i = disks; i--; ) {
3606                         struct md_rdev *rdev;
3607                         struct r5dev *dev = &sh->dev[i];
3608                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3609                                 /* We own a safe reference to the rdev */
3610                                 rdev = conf->disks[i].rdev;
3611                                 if (!rdev_set_badblocks(rdev, sh->sector,
3612                                                         STRIPE_SECTORS, 0))
3613                                         md_error(conf->mddev, rdev);
3614                                 rdev_dec_pending(rdev, conf->mddev);
3615                         }
3616                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3617                                 rdev = conf->disks[i].rdev;
3618                                 rdev_clear_badblocks(rdev, sh->sector,
3619                                                      STRIPE_SECTORS, 0);
3620                                 rdev_dec_pending(rdev, conf->mddev);
3621                         }
3622                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3623                                 rdev = conf->disks[i].replacement;
3624                                 if (!rdev)
3625                                         /* rdev have been moved down */
3626                                         rdev = conf->disks[i].rdev;
3627                                 rdev_clear_badblocks(rdev, sh->sector,
3628                                                      STRIPE_SECTORS, 0);
3629                                 rdev_dec_pending(rdev, conf->mddev);
3630                         }
3631                 }
3632
3633         if (s.ops_request)
3634                 raid_run_ops(sh, s.ops_request);
3635
3636         ops_run_io(sh, &s);
3637
3638         if (s.dec_preread_active) {
3639                 /* We delay this until after ops_run_io so that if make_request
3640                  * is waiting on a flush, it won't continue until the writes
3641                  * have actually been submitted.
3642                  */
3643                 atomic_dec(&conf->preread_active_stripes);
3644                 if (atomic_read(&conf->preread_active_stripes) <
3645                     IO_THRESHOLD)
3646                         md_wakeup_thread(conf->mddev->thread);
3647         }
3648
3649         return_io(s.return_bi);
3650
3651         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3652 }
3653
3654 static void raid5_activate_delayed(struct r5conf *conf)
3655 {
3656         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3657                 while (!list_empty(&conf->delayed_list)) {
3658                         struct list_head *l = conf->delayed_list.next;
3659                         struct stripe_head *sh;
3660                         sh = list_entry(l, struct stripe_head, lru);
3661                         list_del_init(l);
3662                         clear_bit(STRIPE_DELAYED, &sh->state);
3663                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3664                                 atomic_inc(&conf->preread_active_stripes);
3665                         list_add_tail(&sh->lru, &conf->hold_list);
3666                 }
3667         }
3668 }
3669
3670 static void activate_bit_delay(struct r5conf *conf)
3671 {
3672         /* device_lock is held */
3673         struct list_head head;
3674         list_add(&head, &conf->bitmap_list);
3675         list_del_init(&conf->bitmap_list);
3676         while (!list_empty(&head)) {
3677                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3678                 list_del_init(&sh->lru);
3679                 atomic_inc(&sh->count);
3680                 __release_stripe(conf, sh);
3681         }
3682 }
3683
3684 int md_raid5_congested(struct mddev *mddev, int bits)
3685 {
3686         struct r5conf *conf = mddev->private;
3687
3688         /* No difference between reads and writes.  Just check
3689          * how busy the stripe_cache is
3690          */
3691
3692         if (conf->inactive_blocked)
3693                 return 1;
3694         if (conf->quiesce)
3695                 return 1;
3696         if (list_empty_careful(&conf->inactive_list))
3697                 return 1;
3698
3699         return 0;
3700 }
3701 EXPORT_SYMBOL_GPL(md_raid5_congested);
3702
3703 static int raid5_congested(void *data, int bits)
3704 {
3705         struct mddev *mddev = data;
3706
3707         return mddev_congested(mddev, bits) ||
3708                 md_raid5_congested(mddev, bits);
3709 }
3710
3711 /* We want read requests to align with chunks where possible,
3712  * but write requests don't need to.
3713  */
3714 static int raid5_mergeable_bvec(struct request_queue *q,
3715                                 struct bvec_merge_data *bvm,
3716                                 struct bio_vec *biovec)
3717 {
3718         struct mddev *mddev = q->queuedata;
3719         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3720         int max;
3721         unsigned int chunk_sectors = mddev->chunk_sectors;
3722         unsigned int bio_sectors = bvm->bi_size >> 9;
3723
3724         if ((bvm->bi_rw & 1) == WRITE)
3725                 return biovec->bv_len; /* always allow writes to be mergeable */
3726
3727         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3728                 chunk_sectors = mddev->new_chunk_sectors;
3729         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3730         if (max < 0) max = 0;
3731         if (max <= biovec->bv_len && bio_sectors == 0)
3732                 return biovec->bv_len;
3733         else
3734                 return max;
3735 }
3736
3737
3738 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3739 {
3740         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3741         unsigned int chunk_sectors = mddev->chunk_sectors;
3742         unsigned int bio_sectors = bio->bi_size >> 9;
3743
3744         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3745                 chunk_sectors = mddev->new_chunk_sectors;
3746         return  chunk_sectors >=
3747                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3748 }
3749
3750 /*
3751  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3752  *  later sampled by raid5d.
3753  */
3754 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3755 {
3756         unsigned long flags;
3757
3758         spin_lock_irqsave(&conf->device_lock, flags);
3759
3760         bi->bi_next = conf->retry_read_aligned_list;
3761         conf->retry_read_aligned_list = bi;
3762
3763         spin_unlock_irqrestore(&conf->device_lock, flags);
3764         md_wakeup_thread(conf->mddev->thread);
3765 }
3766
3767
3768 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3769 {
3770         struct bio *bi;
3771
3772         bi = conf->retry_read_aligned;
3773         if (bi) {
3774                 conf->retry_read_aligned = NULL;
3775                 return bi;
3776         }
3777         bi = conf->retry_read_aligned_list;
3778         if(bi) {
3779                 conf->retry_read_aligned_list = bi->bi_next;
3780                 bi->bi_next = NULL;
3781                 /*
3782                  * this sets the active strip count to 1 and the processed
3783                  * strip count to zero (upper 8 bits)
3784                  */
3785                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3786         }
3787
3788         return bi;
3789 }
3790
3791
3792 /*
3793  *  The "raid5_align_endio" should check if the read succeeded and if it
3794  *  did, call bio_endio on the original bio (having bio_put the new bio
3795  *  first).
3796  *  If the read failed..
3797  */
3798 static void raid5_align_endio(struct bio *bi, int error)
3799 {
3800         struct bio* raid_bi  = bi->bi_private;
3801         struct mddev *mddev;
3802         struct r5conf *conf;
3803         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3804         struct md_rdev *rdev;
3805
3806         bio_put(bi);
3807
3808         rdev = (void*)raid_bi->bi_next;
3809         raid_bi->bi_next = NULL;
3810         mddev = rdev->mddev;
3811         conf = mddev->private;
3812
3813         rdev_dec_pending(rdev, conf->mddev);
3814
3815         if (!error && uptodate) {
3816                 bio_endio(raid_bi, 0);
3817                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3818                         wake_up(&conf->wait_for_stripe);
3819                 return;
3820         }
3821
3822
3823         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3824
3825         add_bio_to_retry(raid_bi, conf);
3826 }
3827
3828 static int bio_fits_rdev(struct bio *bi)
3829 {
3830         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3831
3832         if ((bi->bi_size>>9) > queue_max_sectors(q))
3833                 return 0;
3834         blk_recount_segments(q, bi);
3835         if (bi->bi_phys_segments > queue_max_segments(q))
3836                 return 0;
3837
3838         if (q->merge_bvec_fn)
3839                 /* it's too hard to apply the merge_bvec_fn at this stage,
3840                  * just just give up
3841                  */
3842                 return 0;
3843
3844         return 1;
3845 }
3846
3847
3848 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3849 {
3850         struct r5conf *conf = mddev->private;
3851         int dd_idx;
3852         struct bio* align_bi;
3853         struct md_rdev *rdev;
3854         sector_t end_sector;
3855
3856         if (!in_chunk_boundary(mddev, raid_bio)) {
3857                 pr_debug("chunk_aligned_read : non aligned\n");
3858                 return 0;
3859         }
3860         /*
3861          * use bio_clone_mddev to make a copy of the bio
3862          */
3863         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3864         if (!align_bi)
3865                 return 0;
3866         /*
3867          *   set bi_end_io to a new function, and set bi_private to the
3868          *     original bio.
3869          */
3870         align_bi->bi_end_io  = raid5_align_endio;
3871         align_bi->bi_private = raid_bio;
3872         /*
3873          *      compute position
3874          */
3875         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3876                                                     0,
3877                                                     &dd_idx, NULL);
3878
3879         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3880         rcu_read_lock();
3881         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3882         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3883             rdev->recovery_offset < end_sector) {
3884                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3885                 if (rdev &&
3886                     (test_bit(Faulty, &rdev->flags) ||
3887                     !(test_bit(In_sync, &rdev->flags) ||
3888                       rdev->recovery_offset >= end_sector)))
3889                         rdev = NULL;
3890         }
3891         if (rdev) {
3892                 sector_t first_bad;
3893                 int bad_sectors;
3894
3895                 atomic_inc(&rdev->nr_pending);
3896                 rcu_read_unlock();
3897                 raid_bio->bi_next = (void*)rdev;
3898                 align_bi->bi_bdev =  rdev->bdev;
3899                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3900
3901                 if (!bio_fits_rdev(align_bi) ||
3902                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3903                                 &first_bad, &bad_sectors)) {
3904                         /* too big in some way, or has a known bad block */
3905                         bio_put(align_bi);
3906                         rdev_dec_pending(rdev, mddev);
3907                         return 0;
3908                 }
3909
3910                 /* No reshape active, so we can trust rdev->data_offset */
3911                 align_bi->bi_sector += rdev->data_offset;
3912
3913                 spin_lock_irq(&conf->device_lock);
3914                 wait_event_lock_irq(conf->wait_for_stripe,
3915                                     conf->quiesce == 0,
3916                                     conf->device_lock, /* nothing */);
3917                 atomic_inc(&conf->active_aligned_reads);
3918                 spin_unlock_irq(&conf->device_lock);
3919
3920                 generic_make_request(align_bi);
3921                 return 1;
3922         } else {
3923                 rcu_read_unlock();
3924                 bio_put(align_bi);
3925                 return 0;
3926         }
3927 }
3928
3929 /* __get_priority_stripe - get the next stripe to process
3930  *
3931  * Full stripe writes are allowed to pass preread active stripes up until
3932  * the bypass_threshold is exceeded.  In general the bypass_count
3933  * increments when the handle_list is handled before the hold_list; however, it
3934  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3935  * stripe with in flight i/o.  The bypass_count will be reset when the
3936  * head of the hold_list has changed, i.e. the head was promoted to the
3937  * handle_list.
3938  */
3939 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3940 {
3941         struct stripe_head *sh;
3942
3943         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3944                   __func__,
3945                   list_empty(&conf->handle_list) ? "empty" : "busy",
3946                   list_empty(&conf->hold_list) ? "empty" : "busy",
3947                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3948
3949         if (!list_empty(&conf->handle_list)) {
3950                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3951
3952                 if (list_empty(&conf->hold_list))
3953                         conf->bypass_count = 0;
3954                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3955                         if (conf->hold_list.next == conf->last_hold)
3956                                 conf->bypass_count++;
3957                         else {
3958                                 conf->last_hold = conf->hold_list.next;
3959                                 conf->bypass_count -= conf->bypass_threshold;
3960                                 if (conf->bypass_count < 0)
3961                                         conf->bypass_count = 0;
3962                         }
3963                 }
3964         } else if (!list_empty(&conf->hold_list) &&
3965                    ((conf->bypass_threshold &&
3966                      conf->bypass_count > conf->bypass_threshold) ||
3967                     atomic_read(&conf->pending_full_writes) == 0)) {
3968                 sh = list_entry(conf->hold_list.next,
3969                                 typeof(*sh), lru);
3970                 conf->bypass_count -= conf->bypass_threshold;
3971                 if (conf->bypass_count < 0)
3972                         conf->bypass_count = 0;
3973         } else
3974                 return NULL;
3975
3976         list_del_init(&sh->lru);
3977         atomic_inc(&sh->count);
3978         BUG_ON(atomic_read(&sh->count) != 1);
3979         return sh;
3980 }
3981
3982 static void make_request(struct mddev *mddev, struct bio * bi)
3983 {
3984         struct r5conf *conf = mddev->private;
3985         int dd_idx;
3986         sector_t new_sector;
3987         sector_t logical_sector, last_sector;
3988         struct stripe_head *sh;
3989         const int rw = bio_data_dir(bi);
3990         int remaining;
3991         int plugged;
3992
3993         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3994                 md_flush_request(mddev, bi);
3995                 return;
3996         }
3997
3998         md_write_start(mddev, bi);
3999
4000         if (rw == READ &&
4001              mddev->reshape_position == MaxSector &&
4002              chunk_aligned_read(mddev,bi))
4003                 return;
4004
4005         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4006         last_sector = bi->bi_sector + (bi->bi_size>>9);
4007         bi->bi_next = NULL;
4008         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4009
4010         plugged = mddev_check_plugged(mddev);
4011         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4012                 DEFINE_WAIT(w);
4013                 int previous;
4014
4015         retry:
4016                 previous = 0;
4017                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4018                 if (unlikely(conf->reshape_progress != MaxSector)) {
4019                         /* spinlock is needed as reshape_progress may be
4020                          * 64bit on a 32bit platform, and so it might be
4021                          * possible to see a half-updated value
4022                          * Of course reshape_progress could change after
4023                          * the lock is dropped, so once we get a reference
4024                          * to the stripe that we think it is, we will have
4025                          * to check again.
4026                          */
4027                         spin_lock_irq(&conf->device_lock);
4028                         if (mddev->reshape_backwards
4029                             ? logical_sector < conf->reshape_progress
4030                             : logical_sector >= conf->reshape_progress) {
4031                                 previous = 1;
4032                         } else {
4033                                 if (mddev->reshape_backwards
4034                                     ? logical_sector < conf->reshape_safe
4035                                     : logical_sector >= conf->reshape_safe) {
4036                                         spin_unlock_irq(&conf->device_lock);
4037                                         schedule();
4038                                         goto retry;
4039                                 }
4040                         }
4041                         spin_unlock_irq(&conf->device_lock);
4042                 }
4043
4044                 new_sector = raid5_compute_sector(conf, logical_sector,
4045                                                   previous,
4046                                                   &dd_idx, NULL);
4047                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4048                         (unsigned long long)new_sector, 
4049                         (unsigned long long)logical_sector);
4050
4051                 sh = get_active_stripe(conf, new_sector, previous,
4052                                        (bi->bi_rw&RWA_MASK), 0);
4053                 if (sh) {
4054                         if (unlikely(previous)) {
4055                                 /* expansion might have moved on while waiting for a
4056                                  * stripe, so we must do the range check again.
4057                                  * Expansion could still move past after this
4058                                  * test, but as we are holding a reference to
4059                                  * 'sh', we know that if that happens,
4060                                  *  STRIPE_EXPANDING will get set and the expansion
4061                                  * won't proceed until we finish with the stripe.
4062                                  */
4063                                 int must_retry = 0;
4064                                 spin_lock_irq(&conf->device_lock);
4065                                 if (mddev->reshape_backwards
4066                                     ? logical_sector >= conf->reshape_progress
4067                                     : logical_sector < conf->reshape_progress)
4068                                         /* mismatch, need to try again */
4069                                         must_retry = 1;
4070                                 spin_unlock_irq(&conf->device_lock);
4071                                 if (must_retry) {
4072                                         release_stripe(sh);
4073                                         schedule();
4074                                         goto retry;
4075                                 }
4076                         }
4077
4078                         if (rw == WRITE &&
4079                             logical_sector >= mddev->suspend_lo &&
4080                             logical_sector < mddev->suspend_hi) {
4081                                 release_stripe(sh);
4082                                 /* As the suspend_* range is controlled by
4083                                  * userspace, we want an interruptible
4084                                  * wait.
4085                                  */
4086                                 flush_signals(current);
4087                                 prepare_to_wait(&conf->wait_for_overlap,
4088                                                 &w, TASK_INTERRUPTIBLE);
4089                                 if (logical_sector >= mddev->suspend_lo &&
4090                                     logical_sector < mddev->suspend_hi)
4091                                         schedule();
4092                                 goto retry;
4093                         }
4094
4095                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4096                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4097                                 /* Stripe is busy expanding or
4098                                  * add failed due to overlap.  Flush everything
4099                                  * and wait a while
4100                                  */
4101                                 md_wakeup_thread(mddev->thread);
4102                                 release_stripe(sh);
4103                                 schedule();
4104                                 goto retry;
4105                         }
4106                         finish_wait(&conf->wait_for_overlap, &w);
4107                         set_bit(STRIPE_HANDLE, &sh->state);
4108                         clear_bit(STRIPE_DELAYED, &sh->state);
4109                         if ((bi->bi_rw & REQ_SYNC) &&
4110                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4111                                 atomic_inc(&conf->preread_active_stripes);
4112                         release_stripe(sh);
4113                 } else {
4114                         /* cannot get stripe for read-ahead, just give-up */
4115                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4116                         finish_wait(&conf->wait_for_overlap, &w);
4117                         break;
4118                 }
4119                         
4120         }
4121         if (!plugged)
4122                 md_wakeup_thread(mddev->thread);
4123
4124         spin_lock_irq(&conf->device_lock);
4125         remaining = raid5_dec_bi_phys_segments(bi);
4126         spin_unlock_irq(&conf->device_lock);
4127         if (remaining == 0) {
4128
4129                 if ( rw == WRITE )
4130                         md_write_end(mddev);
4131
4132                 bio_endio(bi, 0);
4133         }
4134 }
4135
4136 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4137
4138 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4139 {
4140         /* reshaping is quite different to recovery/resync so it is
4141          * handled quite separately ... here.
4142          *
4143          * On each call to sync_request, we gather one chunk worth of
4144          * destination stripes and flag them as expanding.
4145          * Then we find all the source stripes and request reads.
4146          * As the reads complete, handle_stripe will copy the data
4147          * into the destination stripe and release that stripe.
4148          */
4149         struct r5conf *conf = mddev->private;
4150         struct stripe_head *sh;
4151         sector_t first_sector, last_sector;
4152         int raid_disks = conf->previous_raid_disks;
4153         int data_disks = raid_disks - conf->max_degraded;
4154         int new_data_disks = conf->raid_disks - conf->max_degraded;
4155         int i;
4156         int dd_idx;
4157         sector_t writepos, readpos, safepos;
4158         sector_t stripe_addr;
4159         int reshape_sectors;
4160         struct list_head stripes;
4161
4162         if (sector_nr == 0) {
4163                 /* If restarting in the middle, skip the initial sectors */
4164                 if (mddev->reshape_backwards &&
4165                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4166                         sector_nr = raid5_size(mddev, 0, 0)
4167                                 - conf->reshape_progress;
4168                 } else if (!mddev->reshape_backwards &&
4169                            conf->reshape_progress > 0)
4170                         sector_nr = conf->reshape_progress;
4171                 sector_div(sector_nr, new_data_disks);
4172                 if (sector_nr) {
4173                         mddev->curr_resync_completed = sector_nr;
4174                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4175                         *skipped = 1;
4176                         return sector_nr;
4177                 }
4178         }
4179
4180         /* We need to process a full chunk at a time.
4181          * If old and new chunk sizes differ, we need to process the
4182          * largest of these
4183          */
4184         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4185                 reshape_sectors = mddev->new_chunk_sectors;
4186         else
4187                 reshape_sectors = mddev->chunk_sectors;
4188
4189         /* We update the metadata at least every 10 seconds, or when
4190          * the data about to be copied would over-write the source of
4191          * the data at the front of the range.  i.e. one new_stripe
4192          * along from reshape_progress new_maps to after where
4193          * reshape_safe old_maps to
4194          */
4195         writepos = conf->reshape_progress;
4196         sector_div(writepos, new_data_disks);
4197         readpos = conf->reshape_progress;
4198         sector_div(readpos, data_disks);
4199         safepos = conf->reshape_safe;
4200         sector_div(safepos, data_disks);
4201         if (mddev->reshape_backwards) {
4202                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4203                 readpos += reshape_sectors;
4204                 safepos += reshape_sectors;
4205         } else {
4206                 writepos += reshape_sectors;
4207                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4208                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4209         }
4210
4211         /* Having calculated the 'writepos' possibly use it
4212          * to set 'stripe_addr' which is where we will write to.
4213          */
4214         if (mddev->reshape_backwards) {
4215                 BUG_ON(conf->reshape_progress == 0);
4216                 stripe_addr = writepos;
4217                 BUG_ON((mddev->dev_sectors &
4218                         ~((sector_t)reshape_sectors - 1))
4219                        - reshape_sectors - stripe_addr
4220                        != sector_nr);
4221         } else {
4222                 BUG_ON(writepos != sector_nr + reshape_sectors);
4223                 stripe_addr = sector_nr;
4224         }
4225
4226         /* 'writepos' is the most advanced device address we might write.
4227          * 'readpos' is the least advanced device address we might read.
4228          * 'safepos' is the least address recorded in the metadata as having
4229          *     been reshaped.
4230          * If there is a min_offset_diff, these are adjusted either by
4231          * increasing the safepos/readpos if diff is negative, or
4232          * increasing writepos if diff is positive.
4233          * If 'readpos' is then behind 'writepos', there is no way that we can
4234          * ensure safety in the face of a crash - that must be done by userspace
4235          * making a backup of the data.  So in that case there is no particular
4236          * rush to update metadata.
4237          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4238          * update the metadata to advance 'safepos' to match 'readpos' so that
4239          * we can be safe in the event of a crash.
4240          * So we insist on updating metadata if safepos is behind writepos and
4241          * readpos is beyond writepos.
4242          * In any case, update the metadata every 10 seconds.
4243          * Maybe that number should be configurable, but I'm not sure it is
4244          * worth it.... maybe it could be a multiple of safemode_delay???
4245          */
4246         if (conf->min_offset_diff < 0) {
4247                 safepos += -conf->min_offset_diff;
4248                 readpos += -conf->min_offset_diff;
4249         } else
4250                 writepos += conf->min_offset_diff;
4251
4252         if ((mddev->reshape_backwards
4253              ? (safepos > writepos && readpos < writepos)
4254              : (safepos < writepos && readpos > writepos)) ||
4255             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4256                 /* Cannot proceed until we've updated the superblock... */
4257                 wait_event(conf->wait_for_overlap,
4258                            atomic_read(&conf->reshape_stripes)==0);
4259                 mddev->reshape_position = conf->reshape_progress;
4260                 mddev->curr_resync_completed = sector_nr;
4261                 conf->reshape_checkpoint = jiffies;
4262                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4263                 md_wakeup_thread(mddev->thread);
4264                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4265                            kthread_should_stop());
4266                 spin_lock_irq(&conf->device_lock);
4267                 conf->reshape_safe = mddev->reshape_position;
4268                 spin_unlock_irq(&conf->device_lock);
4269                 wake_up(&conf->wait_for_overlap);
4270                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4271         }
4272
4273         INIT_LIST_HEAD(&stripes);
4274         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4275                 int j;
4276                 int skipped_disk = 0;
4277                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4278                 set_bit(STRIPE_EXPANDING, &sh->state);
4279                 atomic_inc(&conf->reshape_stripes);
4280                 /* If any of this stripe is beyond the end of the old
4281                  * array, then we need to zero those blocks
4282                  */
4283                 for (j=sh->disks; j--;) {
4284                         sector_t s;
4285                         if (j == sh->pd_idx)
4286                                 continue;
4287                         if (conf->level == 6 &&
4288                             j == sh->qd_idx)
4289                                 continue;
4290                         s = compute_blocknr(sh, j, 0);
4291                         if (s < raid5_size(mddev, 0, 0)) {
4292                                 skipped_disk = 1;
4293                                 continue;
4294                         }
4295                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4296                         set_bit(R5_Expanded, &sh->dev[j].flags);
4297                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4298                 }
4299                 if (!skipped_disk) {
4300                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4301                         set_bit(STRIPE_HANDLE, &sh->state);
4302                 }
4303                 list_add(&sh->lru, &stripes);
4304         }
4305         spin_lock_irq(&conf->device_lock);
4306         if (mddev->reshape_backwards)
4307                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4308         else
4309                 conf->reshape_progress += reshape_sectors * new_data_disks;
4310         spin_unlock_irq(&conf->device_lock);
4311         /* Ok, those stripe are ready. We can start scheduling
4312          * reads on the source stripes.
4313          * The source stripes are determined by mapping the first and last
4314          * block on the destination stripes.
4315          */
4316         first_sector =
4317                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4318                                      1, &dd_idx, NULL);
4319         last_sector =
4320                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4321                                             * new_data_disks - 1),
4322                                      1, &dd_idx, NULL);
4323         if (last_sector >= mddev->dev_sectors)
4324                 last_sector = mddev->dev_sectors - 1;
4325         while (first_sector <= last_sector) {
4326                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4327                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4328                 set_bit(STRIPE_HANDLE, &sh->state);
4329                 release_stripe(sh);
4330                 first_sector += STRIPE_SECTORS;
4331         }
4332         /* Now that the sources are clearly marked, we can release
4333          * the destination stripes
4334          */
4335         while (!list_empty(&stripes)) {
4336                 sh = list_entry(stripes.next, struct stripe_head, lru);
4337                 list_del_init(&sh->lru);
4338                 release_stripe(sh);
4339         }
4340         /* If this takes us to the resync_max point where we have to pause,
4341          * then we need to write out the superblock.
4342          */
4343         sector_nr += reshape_sectors;
4344         if ((sector_nr - mddev->curr_resync_completed) * 2
4345             >= mddev->resync_max - mddev->curr_resync_completed) {
4346                 /* Cannot proceed until we've updated the superblock... */
4347                 wait_event(conf->wait_for_overlap,
4348                            atomic_read(&conf->reshape_stripes) == 0);
4349                 mddev->reshape_position = conf->reshape_progress;
4350                 mddev->curr_resync_completed = sector_nr;
4351                 conf->reshape_checkpoint = jiffies;
4352                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4353                 md_wakeup_thread(mddev->thread);
4354                 wait_event(mddev->sb_wait,
4355                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4356                            || kthread_should_stop());
4357                 spin_lock_irq(&conf->device_lock);
4358                 conf->reshape_safe = mddev->reshape_position;
4359                 spin_unlock_irq(&conf->device_lock);
4360                 wake_up(&conf->wait_for_overlap);
4361                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4362         }
4363         return reshape_sectors;
4364 }
4365
4366 /* FIXME go_faster isn't used */
4367 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4368 {
4369         struct r5conf *conf = mddev->private;
4370         struct stripe_head *sh;
4371         sector_t max_sector = mddev->dev_sectors;
4372         sector_t sync_blocks;
4373         int still_degraded = 0;
4374         int i;
4375
4376         if (sector_nr >= max_sector) {
4377                 /* just being told to finish up .. nothing much to do */
4378
4379                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4380                         end_reshape(conf);
4381                         return 0;
4382                 }
4383
4384                 if (mddev->curr_resync < max_sector) /* aborted */
4385                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4386                                         &sync_blocks, 1);
4387                 else /* completed sync */
4388                         conf->fullsync = 0;
4389                 bitmap_close_sync(mddev->bitmap);
4390
4391                 return 0;
4392         }
4393
4394         /* Allow raid5_quiesce to complete */
4395         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4396
4397         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4398                 return reshape_request(mddev, sector_nr, skipped);
4399
4400         /* No need to check resync_max as we never do more than one
4401          * stripe, and as resync_max will always be on a chunk boundary,
4402          * if the check in md_do_sync didn't fire, there is no chance
4403          * of overstepping resync_max here
4404          */
4405
4406         /* if there is too many failed drives and we are trying
4407          * to resync, then assert that we are finished, because there is
4408          * nothing we can do.
4409          */
4410         if (mddev->degraded >= conf->max_degraded &&
4411             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4412                 sector_t rv = mddev->dev_sectors - sector_nr;
4413                 *skipped = 1;
4414                 return rv;
4415         }
4416         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4417             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4418             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4419                 /* we can skip this block, and probably more */
4420                 sync_blocks /= STRIPE_SECTORS;
4421                 *skipped = 1;
4422                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4423         }
4424
4425         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4426
4427         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4428         if (sh == NULL) {
4429                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4430                 /* make sure we don't swamp the stripe cache if someone else
4431                  * is trying to get access
4432                  */
4433                 schedule_timeout_uninterruptible(1);
4434         }
4435         /* Need to check if array will still be degraded after recovery/resync
4436          * We don't need to check the 'failed' flag as when that gets set,
4437          * recovery aborts.
4438          */
4439         for (i = 0; i < conf->raid_disks; i++)
4440                 if (conf->disks[i].rdev == NULL)
4441                         still_degraded = 1;
4442
4443         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4444
4445         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4446
4447         handle_stripe(sh);
4448         release_stripe(sh);
4449
4450         return STRIPE_SECTORS;
4451 }
4452
4453 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4454 {
4455         /* We may not be able to submit a whole bio at once as there
4456          * may not be enough stripe_heads available.
4457          * We cannot pre-allocate enough stripe_heads as we may need
4458          * more than exist in the cache (if we allow ever large chunks).
4459          * So we do one stripe head at a time and record in
4460          * ->bi_hw_segments how many have been done.
4461          *
4462          * We *know* that this entire raid_bio is in one chunk, so
4463          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4464          */
4465         struct stripe_head *sh;
4466         int dd_idx;
4467         sector_t sector, logical_sector, last_sector;
4468         int scnt = 0;
4469         int remaining;
4470         int handled = 0;
4471
4472         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4473         sector = raid5_compute_sector(conf, logical_sector,
4474                                       0, &dd_idx, NULL);
4475         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4476
4477         for (; logical_sector < last_sector;
4478              logical_sector += STRIPE_SECTORS,
4479                      sector += STRIPE_SECTORS,
4480                      scnt++) {
4481
4482                 if (scnt < raid5_bi_hw_segments(raid_bio))
4483                         /* already done this stripe */
4484                         continue;
4485
4486                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4487
4488                 if (!sh) {
4489                         /* failed to get a stripe - must wait */
4490                         raid5_set_bi_hw_segments(raid_bio, scnt);
4491                         conf->retry_read_aligned = raid_bio;
4492                         return handled;
4493                 }
4494
4495                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4496                         release_stripe(sh);
4497                         raid5_set_bi_hw_segments(raid_bio, scnt);
4498                         conf->retry_read_aligned = raid_bio;
4499                         return handled;
4500                 }
4501
4502                 handle_stripe(sh);
4503                 release_stripe(sh);
4504                 handled++;
4505         }
4506         spin_lock_irq(&conf->device_lock);
4507         remaining = raid5_dec_bi_phys_segments(raid_bio);
4508         spin_unlock_irq(&conf->device_lock);
4509         if (remaining == 0)
4510                 bio_endio(raid_bio, 0);
4511         if (atomic_dec_and_test(&conf->active_aligned_reads))
4512                 wake_up(&conf->wait_for_stripe);
4513         return handled;
4514 }
4515
4516
4517 /*
4518  * This is our raid5 kernel thread.
4519  *
4520  * We scan the hash table for stripes which can be handled now.
4521  * During the scan, completed stripes are saved for us by the interrupt
4522  * handler, so that they will not have to wait for our next wakeup.
4523  */
4524 static void raid5d(struct mddev *mddev)
4525 {
4526         struct stripe_head *sh;
4527         struct r5conf *conf = mddev->private;
4528         int handled;
4529         struct blk_plug plug;
4530
4531         pr_debug("+++ raid5d active\n");
4532
4533         md_check_recovery(mddev);
4534
4535         blk_start_plug(&plug);
4536         handled = 0;
4537         spin_lock_irq(&conf->device_lock);
4538         while (1) {
4539                 struct bio *bio;
4540
4541                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4542                     !list_empty(&conf->bitmap_list)) {
4543                         /* Now is a good time to flush some bitmap updates */
4544                         conf->seq_flush++;
4545                         spin_unlock_irq(&conf->device_lock);
4546                         bitmap_unplug(mddev->bitmap);
4547                         spin_lock_irq(&conf->device_lock);
4548                         conf->seq_write = conf->seq_flush;
4549                         activate_bit_delay(conf);
4550                 }
4551                 if (atomic_read(&mddev->plug_cnt) == 0)
4552                         raid5_activate_delayed(conf);
4553
4554                 while ((bio = remove_bio_from_retry(conf))) {
4555                         int ok;
4556                         spin_unlock_irq(&conf->device_lock);
4557                         ok = retry_aligned_read(conf, bio);
4558                         spin_lock_irq(&conf->device_lock);
4559                         if (!ok)
4560                                 break;
4561                         handled++;
4562                 }
4563
4564                 sh = __get_priority_stripe(conf);
4565
4566                 if (!sh)
4567                         break;
4568                 spin_unlock_irq(&conf->device_lock);
4569                 
4570                 handled++;
4571                 handle_stripe(sh);
4572                 release_stripe(sh);
4573                 cond_resched();
4574
4575                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4576                         md_check_recovery(mddev);
4577
4578                 spin_lock_irq(&conf->device_lock);
4579         }
4580         pr_debug("%d stripes handled\n", handled);
4581
4582         spin_unlock_irq(&conf->device_lock);
4583
4584         async_tx_issue_pending_all();
4585         blk_finish_plug(&plug);
4586
4587         pr_debug("--- raid5d inactive\n");
4588 }
4589
4590 static ssize_t
4591 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4592 {
4593         struct r5conf *conf = mddev->private;
4594         if (conf)
4595                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4596         else
4597                 return 0;
4598 }
4599
4600 int
4601 raid5_set_cache_size(struct mddev *mddev, int size)
4602 {
4603         struct r5conf *conf = mddev->private;
4604         int err;
4605
4606         if (size <= 16 || size > 32768)
4607                 return -EINVAL;
4608         while (size < conf->max_nr_stripes) {
4609                 if (drop_one_stripe(conf))
4610                         conf->max_nr_stripes--;
4611                 else
4612                         break;
4613         }
4614         err = md_allow_write(mddev);
4615         if (err)
4616                 return err;
4617         while (size > conf->max_nr_stripes) {
4618                 if (grow_one_stripe(conf))
4619                         conf->max_nr_stripes++;
4620                 else break;
4621         }
4622         return 0;
4623 }
4624 EXPORT_SYMBOL(raid5_set_cache_size);
4625
4626 static ssize_t
4627 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4628 {
4629         struct r5conf *conf = mddev->private;
4630         unsigned long new;
4631         int err;
4632
4633         if (len >= PAGE_SIZE)
4634                 return -EINVAL;
4635         if (!conf)
4636                 return -ENODEV;
4637
4638         if (strict_strtoul(page, 10, &new))
4639                 return -EINVAL;
4640         err = raid5_set_cache_size(mddev, new);
4641         if (err)
4642                 return err;
4643         return len;
4644 }
4645
4646 static struct md_sysfs_entry
4647 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4648                                 raid5_show_stripe_cache_size,
4649                                 raid5_store_stripe_cache_size);
4650
4651 static ssize_t
4652 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4653 {
4654         struct r5conf *conf = mddev->private;
4655         if (conf)
4656                 return sprintf(page, "%d\n", conf->bypass_threshold);
4657         else
4658                 return 0;
4659 }
4660
4661 static ssize_t
4662 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4663 {
4664         struct r5conf *conf = mddev->private;
4665         unsigned long new;
4666         if (len >= PAGE_SIZE)
4667                 return -EINVAL;
4668         if (!conf)
4669                 return -ENODEV;
4670
4671         if (strict_strtoul(page, 10, &new))
4672                 return -EINVAL;
4673         if (new > conf->max_nr_stripes)
4674                 return -EINVAL;
4675         conf->bypass_threshold = new;
4676         return len;
4677 }
4678
4679 static struct md_sysfs_entry
4680 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4681                                         S_IRUGO | S_IWUSR,
4682                                         raid5_show_preread_threshold,
4683                                         raid5_store_preread_threshold);
4684
4685 static ssize_t
4686 stripe_cache_active_show(struct mddev *mddev, char *page)
4687 {
4688         struct r5conf *conf = mddev->private;
4689         if (conf)
4690                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4691         else
4692                 return 0;
4693 }
4694
4695 static struct md_sysfs_entry
4696 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4697
4698 static struct attribute *raid5_attrs[] =  {
4699         &raid5_stripecache_size.attr,
4700         &raid5_stripecache_active.attr,
4701         &raid5_preread_bypass_threshold.attr,
4702         NULL,
4703 };
4704 static struct attribute_group raid5_attrs_group = {
4705         .name = NULL,
4706         .attrs = raid5_attrs,
4707 };
4708
4709 static sector_t
4710 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4711 {
4712         struct r5conf *conf = mddev->private;
4713
4714         if (!sectors)
4715                 sectors = mddev->dev_sectors;
4716         if (!raid_disks)
4717                 /* size is defined by the smallest of previous and new size */
4718                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4719
4720         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4721         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4722         return sectors * (raid_disks - conf->max_degraded);
4723 }
4724
4725 static void raid5_free_percpu(struct r5conf *conf)
4726 {
4727         struct raid5_percpu *percpu;
4728         unsigned long cpu;
4729
4730         if (!conf->percpu)
4731                 return;
4732
4733         get_online_cpus();
4734         for_each_possible_cpu(cpu) {
4735                 percpu = per_cpu_ptr(conf->percpu, cpu);
4736                 safe_put_page(percpu->spare_page);
4737                 kfree(percpu->scribble);
4738         }
4739 #ifdef CONFIG_HOTPLUG_CPU
4740         unregister_cpu_notifier(&conf->cpu_notify);
4741 #endif
4742         put_online_cpus();
4743
4744         free_percpu(conf->percpu);
4745 }
4746
4747 static void free_conf(struct r5conf *conf)
4748 {
4749         shrink_stripes(conf);
4750         raid5_free_percpu(conf);
4751         kfree(conf->disks);
4752         kfree(conf->stripe_hashtbl);
4753         kfree(conf);
4754 }
4755
4756 #ifdef CONFIG_HOTPLUG_CPU
4757 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4758                               void *hcpu)
4759 {
4760         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4761         long cpu = (long)hcpu;
4762         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4763
4764         switch (action) {
4765         case CPU_UP_PREPARE:
4766         case CPU_UP_PREPARE_FROZEN:
4767                 if (conf->level == 6 && !percpu->spare_page)
4768                         percpu->spare_page = alloc_page(GFP_KERNEL);
4769                 if (!percpu->scribble)
4770                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4771
4772                 if (!percpu->scribble ||
4773                     (conf->level == 6 && !percpu->spare_page)) {
4774                         safe_put_page(percpu->spare_page);
4775                         kfree(percpu->scribble);
4776                         pr_err("%s: failed memory allocation for cpu%ld\n",
4777                                __func__, cpu);
4778                         return notifier_from_errno(-ENOMEM);
4779                 }
4780                 break;
4781         case CPU_DEAD:
4782         case CPU_DEAD_FROZEN:
4783                 safe_put_page(percpu->spare_page);
4784                 kfree(percpu->scribble);
4785                 percpu->spare_page = NULL;
4786                 percpu->scribble = NULL;
4787                 break;
4788         default:
4789                 break;
4790         }
4791         return NOTIFY_OK;
4792 }
4793 #endif
4794
4795 static int raid5_alloc_percpu(struct r5conf *conf)
4796 {
4797         unsigned long cpu;
4798         struct page *spare_page;
4799         struct raid5_percpu __percpu *allcpus;
4800         void *scribble;
4801         int err;
4802
4803         allcpus = alloc_percpu(struct raid5_percpu);
4804         if (!allcpus)
4805                 return -ENOMEM;
4806         conf->percpu = allcpus;
4807
4808         get_online_cpus();
4809         err = 0;
4810         for_each_present_cpu(cpu) {
4811                 if (conf->level == 6) {
4812                         spare_page = alloc_page(GFP_KERNEL);
4813                         if (!spare_page) {
4814                                 err = -ENOMEM;
4815                                 break;
4816                         }
4817                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4818                 }
4819                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4820                 if (!scribble) {
4821                         err = -ENOMEM;
4822                         break;
4823                 }
4824                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4825         }
4826 #ifdef CONFIG_HOTPLUG_CPU
4827         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4828         conf->cpu_notify.priority = 0;
4829         if (err == 0)
4830                 err = register_cpu_notifier(&conf->cpu_notify);
4831 #endif
4832         put_online_cpus();
4833
4834         return err;
4835 }
4836
4837 static struct r5conf *setup_conf(struct mddev *mddev)
4838 {
4839         struct r5conf *conf;
4840         int raid_disk, memory, max_disks;
4841         struct md_rdev *rdev;
4842         struct disk_info *disk;
4843         char pers_name[6];
4844
4845         if (mddev->new_level != 5
4846             && mddev->new_level != 4
4847             && mddev->new_level != 6) {
4848                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4849                        mdname(mddev), mddev->new_level);
4850                 return ERR_PTR(-EIO);
4851         }
4852         if ((mddev->new_level == 5
4853              && !algorithm_valid_raid5(mddev->new_layout)) ||
4854             (mddev->new_level == 6
4855              && !algorithm_valid_raid6(mddev->new_layout))) {
4856                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4857                        mdname(mddev), mddev->new_layout);
4858                 return ERR_PTR(-EIO);
4859         }
4860         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4861                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4862                        mdname(mddev), mddev->raid_disks);
4863                 return ERR_PTR(-EINVAL);
4864         }
4865
4866         if (!mddev->new_chunk_sectors ||
4867             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4868             !is_power_of_2(mddev->new_chunk_sectors)) {
4869                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4870                        mdname(mddev), mddev->new_chunk_sectors << 9);
4871                 return ERR_PTR(-EINVAL);
4872         }
4873
4874         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4875         if (conf == NULL)
4876                 goto abort;
4877         spin_lock_init(&conf->device_lock);
4878         init_waitqueue_head(&conf->wait_for_stripe);
4879         init_waitqueue_head(&conf->wait_for_overlap);
4880         INIT_LIST_HEAD(&conf->handle_list);
4881         INIT_LIST_HEAD(&conf->hold_list);
4882         INIT_LIST_HEAD(&conf->delayed_list);
4883         INIT_LIST_HEAD(&conf->bitmap_list);
4884         INIT_LIST_HEAD(&conf->inactive_list);
4885         atomic_set(&conf->active_stripes, 0);
4886         atomic_set(&conf->preread_active_stripes, 0);
4887         atomic_set(&conf->active_aligned_reads, 0);
4888         conf->bypass_threshold = BYPASS_THRESHOLD;
4889         conf->recovery_disabled = mddev->recovery_disabled - 1;
4890
4891         conf->raid_disks = mddev->raid_disks;
4892         if (mddev->reshape_position == MaxSector)
4893                 conf->previous_raid_disks = mddev->raid_disks;
4894         else
4895                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4896         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4897         conf->scribble_len = scribble_len(max_disks);
4898
4899         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4900                               GFP_KERNEL);
4901         if (!conf->disks)
4902                 goto abort;
4903
4904         conf->mddev = mddev;
4905
4906         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4907                 goto abort;
4908
4909         conf->level = mddev->new_level;
4910         if (raid5_alloc_percpu(conf) != 0)
4911                 goto abort;
4912
4913         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4914
4915         rdev_for_each(rdev, mddev) {
4916                 raid_disk = rdev->raid_disk;
4917                 if (raid_disk >= max_disks
4918                     || raid_disk < 0)
4919                         continue;
4920                 disk = conf->disks + raid_disk;
4921
4922                 if (test_bit(Replacement, &rdev->flags)) {
4923                         if (disk->replacement)
4924                                 goto abort;
4925                         disk->replacement = rdev;
4926                 } else {
4927                         if (disk->rdev)
4928                                 goto abort;
4929                         disk->rdev = rdev;
4930                 }
4931
4932                 if (test_bit(In_sync, &rdev->flags)) {
4933                         char b[BDEVNAME_SIZE];
4934                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4935                                " disk %d\n",
4936                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4937                 } else if (rdev->saved_raid_disk != raid_disk)
4938                         /* Cannot rely on bitmap to complete recovery */
4939                         conf->fullsync = 1;
4940         }
4941
4942         conf->chunk_sectors = mddev->new_chunk_sectors;
4943         conf->level = mddev->new_level;
4944         if (conf->level == 6)
4945                 conf->max_degraded = 2;
4946         else
4947                 conf->max_degraded = 1;
4948         conf->algorithm = mddev->new_layout;
4949         conf->max_nr_stripes = NR_STRIPES;
4950         conf->reshape_progress = mddev->reshape_position;
4951         if (conf->reshape_progress != MaxSector) {
4952                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4953                 conf->prev_algo = mddev->layout;
4954         }
4955
4956         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4957                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4958         if (grow_stripes(conf, conf->max_nr_stripes)) {
4959                 printk(KERN_ERR
4960                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4961                        mdname(mddev), memory);
4962                 goto abort;
4963         } else
4964                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4965                        mdname(mddev), memory);
4966
4967         sprintf(pers_name, "raid%d", mddev->new_level);
4968         conf->thread = md_register_thread(raid5d, mddev, pers_name);
4969         if (!conf->thread) {
4970                 printk(KERN_ERR
4971                        "md/raid:%s: couldn't allocate thread.\n",
4972                        mdname(mddev));
4973                 goto abort;
4974         }
4975
4976         return conf;
4977
4978  abort:
4979         if (conf) {
4980                 free_conf(conf);
4981                 return ERR_PTR(-EIO);
4982         } else
4983                 return ERR_PTR(-ENOMEM);
4984 }
4985
4986
4987 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4988 {
4989         switch (algo) {
4990         case ALGORITHM_PARITY_0:
4991                 if (raid_disk < max_degraded)
4992                         return 1;
4993                 break;
4994         case ALGORITHM_PARITY_N:
4995                 if (raid_disk >= raid_disks - max_degraded)
4996                         return 1;
4997                 break;
4998         case ALGORITHM_PARITY_0_6:
4999                 if (raid_disk == 0 || 
5000                     raid_disk == raid_disks - 1)
5001                         return 1;
5002                 break;
5003         case ALGORITHM_LEFT_ASYMMETRIC_6:
5004         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5005         case ALGORITHM_LEFT_SYMMETRIC_6:
5006         case ALGORITHM_RIGHT_SYMMETRIC_6:
5007                 if (raid_disk == raid_disks - 1)
5008                         return 1;
5009         }
5010         return 0;
5011 }
5012
5013 static int run(struct mddev *mddev)
5014 {
5015         struct r5conf *conf;
5016         int working_disks = 0;
5017         int dirty_parity_disks = 0;
5018         struct md_rdev *rdev;
5019         sector_t reshape_offset = 0;
5020         int i;
5021         long long min_offset_diff = 0;
5022         int first = 1;
5023
5024         if (mddev->recovery_cp != MaxSector)
5025                 printk(KERN_NOTICE "md/raid:%s: not clean"
5026                        " -- starting background reconstruction\n",
5027                        mdname(mddev));
5028
5029         rdev_for_each(rdev, mddev) {
5030                 long long diff;
5031                 if (rdev->raid_disk < 0)
5032                         continue;
5033                 diff = (rdev->new_data_offset - rdev->data_offset);
5034                 if (first) {
5035                         min_offset_diff = diff;
5036                         first = 0;
5037                 } else if (mddev->reshape_backwards &&
5038                          diff < min_offset_diff)
5039                         min_offset_diff = diff;
5040                 else if (!mddev->reshape_backwards &&
5041                          diff > min_offset_diff)
5042                         min_offset_diff = diff;
5043         }
5044
5045         if (mddev->reshape_position != MaxSector) {
5046                 /* Check that we can continue the reshape.
5047                  * Difficulties arise if the stripe we would write to
5048                  * next is at or after the stripe we would read from next.
5049                  * For a reshape that changes the number of devices, this
5050                  * is only possible for a very short time, and mdadm makes
5051                  * sure that time appears to have past before assembling
5052                  * the array.  So we fail if that time hasn't passed.
5053                  * For a reshape that keeps the number of devices the same
5054                  * mdadm must be monitoring the reshape can keeping the
5055                  * critical areas read-only and backed up.  It will start
5056                  * the array in read-only mode, so we check for that.
5057                  */
5058                 sector_t here_new, here_old;
5059                 int old_disks;
5060                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5061
5062                 if (mddev->new_level != mddev->level) {
5063                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5064                                "required - aborting.\n",
5065                                mdname(mddev));
5066                         return -EINVAL;
5067                 }
5068                 old_disks = mddev->raid_disks - mddev->delta_disks;
5069                 /* reshape_position must be on a new-stripe boundary, and one
5070                  * further up in new geometry must map after here in old
5071                  * geometry.
5072                  */
5073                 here_new = mddev->reshape_position;
5074                 if (sector_div(here_new, mddev->new_chunk_sectors *
5075                                (mddev->raid_disks - max_degraded))) {
5076                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5077                                "on a stripe boundary\n", mdname(mddev));
5078                         return -EINVAL;
5079                 }
5080                 reshape_offset = here_new * mddev->new_chunk_sectors;
5081                 /* here_new is the stripe we will write to */
5082                 here_old = mddev->reshape_position;
5083                 sector_div(here_old, mddev->chunk_sectors *
5084                            (old_disks-max_degraded));
5085                 /* here_old is the first stripe that we might need to read
5086                  * from */
5087                 if (mddev->delta_disks == 0) {
5088                         if ((here_new * mddev->new_chunk_sectors !=
5089                              here_old * mddev->chunk_sectors)) {
5090                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5091                                        " confused - aborting\n", mdname(mddev));
5092                                 return -EINVAL;
5093                         }
5094                         /* We cannot be sure it is safe to start an in-place
5095                          * reshape.  It is only safe if user-space is monitoring
5096                          * and taking constant backups.
5097                          * mdadm always starts a situation like this in
5098                          * readonly mode so it can take control before
5099                          * allowing any writes.  So just check for that.
5100                          */
5101                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5102                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5103                                 /* not really in-place - so OK */;
5104                         else if (mddev->ro == 0) {
5105                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5106                                        "must be started in read-only mode "
5107                                        "- aborting\n",
5108                                        mdname(mddev));
5109                                 return -EINVAL;
5110                         }
5111                 } else if (mddev->reshape_backwards
5112                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5113                        here_old * mddev->chunk_sectors)
5114                     : (here_new * mddev->new_chunk_sectors >=
5115                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5116                         /* Reading from the same stripe as writing to - bad */
5117                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5118                                "auto-recovery - aborting.\n",
5119                                mdname(mddev));
5120                         return -EINVAL;
5121                 }
5122                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5123                        mdname(mddev));
5124                 /* OK, we should be able to continue; */
5125         } else {
5126                 BUG_ON(mddev->level != mddev->new_level);
5127                 BUG_ON(mddev->layout != mddev->new_layout);
5128                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5129                 BUG_ON(mddev->delta_disks != 0);
5130         }
5131
5132         if (mddev->private == NULL)
5133                 conf = setup_conf(mddev);
5134         else
5135                 conf = mddev->private;
5136
5137         if (IS_ERR(conf))
5138                 return PTR_ERR(conf);
5139
5140         conf->min_offset_diff = min_offset_diff;
5141         mddev->thread = conf->thread;
5142         conf->thread = NULL;
5143         mddev->private = conf;
5144
5145         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5146              i++) {
5147                 rdev = conf->disks[i].rdev;
5148                 if (!rdev && conf->disks[i].replacement) {
5149                         /* The replacement is all we have yet */
5150                         rdev = conf->disks[i].replacement;
5151                         conf->disks[i].replacement = NULL;
5152                         clear_bit(Replacement, &rdev->flags);
5153                         conf->disks[i].rdev = rdev;
5154                 }
5155                 if (!rdev)
5156                         continue;
5157                 if (conf->disks[i].replacement &&
5158                     conf->reshape_progress != MaxSector) {
5159                         /* replacements and reshape simply do not mix. */
5160                         printk(KERN_ERR "md: cannot handle concurrent "
5161                                "replacement and reshape.\n");
5162                         goto abort;
5163                 }
5164                 if (test_bit(In_sync, &rdev->flags)) {
5165                         working_disks++;
5166                         continue;
5167                 }
5168                 /* This disc is not fully in-sync.  However if it
5169                  * just stored parity (beyond the recovery_offset),
5170                  * when we don't need to be concerned about the
5171                  * array being dirty.
5172                  * When reshape goes 'backwards', we never have
5173                  * partially completed devices, so we only need
5174                  * to worry about reshape going forwards.
5175                  */
5176                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5177                 if (mddev->major_version == 0 &&
5178                     mddev->minor_version > 90)
5179                         rdev->recovery_offset = reshape_offset;
5180                         
5181                 if (rdev->recovery_offset < reshape_offset) {
5182                         /* We need to check old and new layout */
5183                         if (!only_parity(rdev->raid_disk,
5184                                          conf->algorithm,
5185                                          conf->raid_disks,
5186                                          conf->max_degraded))
5187                                 continue;
5188                 }
5189                 if (!only_parity(rdev->raid_disk,
5190                                  conf->prev_algo,
5191                                  conf->previous_raid_disks,
5192                                  conf->max_degraded))
5193                         continue;
5194                 dirty_parity_disks++;
5195         }
5196
5197         /*
5198          * 0 for a fully functional array, 1 or 2 for a degraded array.
5199          */
5200         mddev->degraded = calc_degraded(conf);
5201
5202         if (has_failed(conf)) {
5203                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5204                         " (%d/%d failed)\n",
5205                         mdname(mddev), mddev->degraded, conf->raid_disks);
5206                 goto abort;
5207         }
5208
5209         /* device size must be a multiple of chunk size */
5210         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5211         mddev->resync_max_sectors = mddev->dev_sectors;
5212
5213         if (mddev->degraded > dirty_parity_disks &&
5214             mddev->recovery_cp != MaxSector) {
5215                 if (mddev->ok_start_degraded)
5216                         printk(KERN_WARNING
5217                                "md/raid:%s: starting dirty degraded array"
5218                                " - data corruption possible.\n",
5219                                mdname(mddev));
5220                 else {
5221                         printk(KERN_ERR
5222                                "md/raid:%s: cannot start dirty degraded array.\n",
5223                                mdname(mddev));
5224                         goto abort;
5225                 }
5226         }
5227
5228         if (mddev->degraded == 0)
5229                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5230                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5231                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5232                        mddev->new_layout);
5233         else
5234                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5235                        " out of %d devices, algorithm %d\n",
5236                        mdname(mddev), conf->level,
5237                        mddev->raid_disks - mddev->degraded,
5238                        mddev->raid_disks, mddev->new_layout);
5239
5240         print_raid5_conf(conf);
5241
5242         if (conf->reshape_progress != MaxSector) {
5243                 conf->reshape_safe = conf->reshape_progress;
5244                 atomic_set(&conf->reshape_stripes, 0);
5245                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5246                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5247                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5248                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5249                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5250                                                         "reshape");
5251         }
5252
5253
5254         /* Ok, everything is just fine now */
5255         if (mddev->to_remove == &raid5_attrs_group)
5256                 mddev->to_remove = NULL;
5257         else if (mddev->kobj.sd &&
5258             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5259                 printk(KERN_WARNING
5260                        "raid5: failed to create sysfs attributes for %s\n",
5261                        mdname(mddev));
5262         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5263
5264         if (mddev->queue) {
5265                 int chunk_size;
5266                 /* read-ahead size must cover two whole stripes, which
5267                  * is 2 * (datadisks) * chunksize where 'n' is the
5268                  * number of raid devices
5269                  */
5270                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5271                 int stripe = data_disks *
5272                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5273                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5274                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5275
5276                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5277
5278                 mddev->queue->backing_dev_info.congested_data = mddev;
5279                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5280
5281                 chunk_size = mddev->chunk_sectors << 9;
5282                 blk_queue_io_min(mddev->queue, chunk_size);
5283                 blk_queue_io_opt(mddev->queue, chunk_size *
5284                                  (conf->raid_disks - conf->max_degraded));
5285
5286                 rdev_for_each(rdev, mddev) {
5287                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5288                                           rdev->data_offset << 9);
5289                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5290                                           rdev->new_data_offset << 9);
5291                 }
5292         }
5293
5294         return 0;
5295 abort:
5296         md_unregister_thread(&mddev->thread);
5297         print_raid5_conf(conf);
5298         free_conf(conf);
5299         mddev->private = NULL;
5300         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5301         return -EIO;
5302 }
5303
5304 static int stop(struct mddev *mddev)
5305 {
5306         struct r5conf *conf = mddev->private;
5307
5308         md_unregister_thread(&mddev->thread);
5309         if (mddev->queue)
5310                 mddev->queue->backing_dev_info.congested_fn = NULL;
5311         free_conf(conf);
5312         mddev->private = NULL;
5313         mddev->to_remove = &raid5_attrs_group;
5314         return 0;
5315 }
5316
5317 static void status(struct seq_file *seq, struct mddev *mddev)
5318 {
5319         struct r5conf *conf = mddev->private;
5320         int i;
5321
5322         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5323                 mddev->chunk_sectors / 2, mddev->layout);
5324         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5325         for (i = 0; i < conf->raid_disks; i++)
5326                 seq_printf (seq, "%s",
5327                                conf->disks[i].rdev &&
5328                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5329         seq_printf (seq, "]");
5330 }
5331
5332 static void print_raid5_conf (struct r5conf *conf)
5333 {
5334         int i;
5335         struct disk_info *tmp;
5336
5337         printk(KERN_DEBUG "RAID conf printout:\n");
5338         if (!conf) {
5339                 printk("(conf==NULL)\n");
5340                 return;
5341         }
5342         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5343                conf->raid_disks,
5344                conf->raid_disks - conf->mddev->degraded);
5345
5346         for (i = 0; i < conf->raid_disks; i++) {
5347                 char b[BDEVNAME_SIZE];
5348                 tmp = conf->disks + i;
5349                 if (tmp->rdev)
5350                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5351                                i, !test_bit(Faulty, &tmp->rdev->flags),
5352                                bdevname(tmp->rdev->bdev, b));
5353         }
5354 }
5355
5356 static int raid5_spare_active(struct mddev *mddev)
5357 {
5358         int i;
5359         struct r5conf *conf = mddev->private;
5360         struct disk_info *tmp;
5361         int count = 0;
5362         unsigned long flags;
5363
5364         for (i = 0; i < conf->raid_disks; i++) {
5365                 tmp = conf->disks + i;
5366                 if (tmp->replacement
5367                     && tmp->replacement->recovery_offset == MaxSector
5368                     && !test_bit(Faulty, &tmp->replacement->flags)
5369                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5370                         /* Replacement has just become active. */
5371                         if (!tmp->rdev
5372                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5373                                 count++;
5374                         if (tmp->rdev) {
5375                                 /* Replaced device not technically faulty,
5376                                  * but we need to be sure it gets removed
5377                                  * and never re-added.
5378                                  */
5379                                 set_bit(Faulty, &tmp->rdev->flags);
5380                                 sysfs_notify_dirent_safe(
5381                                         tmp->rdev->sysfs_state);
5382                         }
5383                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5384                 } else if (tmp->rdev
5385                     && tmp->rdev->recovery_offset == MaxSector
5386                     && !test_bit(Faulty, &tmp->rdev->flags)
5387                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5388                         count++;
5389                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5390                 }
5391         }
5392         spin_lock_irqsave(&conf->device_lock, flags);
5393         mddev->degraded = calc_degraded(conf);
5394         spin_unlock_irqrestore(&conf->device_lock, flags);
5395         print_raid5_conf(conf);
5396         return count;
5397 }
5398
5399 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5400 {
5401         struct r5conf *conf = mddev->private;
5402         int err = 0;
5403         int number = rdev->raid_disk;
5404         struct md_rdev **rdevp;
5405         struct disk_info *p = conf->disks + number;
5406
5407         print_raid5_conf(conf);
5408         if (rdev == p->rdev)
5409                 rdevp = &p->rdev;
5410         else if (rdev == p->replacement)
5411                 rdevp = &p->replacement;
5412         else
5413                 return 0;
5414
5415         if (number >= conf->raid_disks &&
5416             conf->reshape_progress == MaxSector)
5417                 clear_bit(In_sync, &rdev->flags);
5418
5419         if (test_bit(In_sync, &rdev->flags) ||
5420             atomic_read(&rdev->nr_pending)) {
5421                 err = -EBUSY;
5422                 goto abort;
5423         }
5424         /* Only remove non-faulty devices if recovery
5425          * isn't possible.
5426          */
5427         if (!test_bit(Faulty, &rdev->flags) &&
5428             mddev->recovery_disabled != conf->recovery_disabled &&
5429             !has_failed(conf) &&
5430             (!p->replacement || p->replacement == rdev) &&
5431             number < conf->raid_disks) {
5432                 err = -EBUSY;
5433                 goto abort;
5434         }
5435         *rdevp = NULL;
5436         synchronize_rcu();
5437         if (atomic_read(&rdev->nr_pending)) {
5438                 /* lost the race, try later */
5439                 err = -EBUSY;
5440                 *rdevp = rdev;
5441         } else if (p->replacement) {
5442                 /* We must have just cleared 'rdev' */
5443                 p->rdev = p->replacement;
5444                 clear_bit(Replacement, &p->replacement->flags);
5445                 smp_mb(); /* Make sure other CPUs may see both as identical
5446                            * but will never see neither - if they are careful
5447                            */
5448                 p->replacement = NULL;
5449                 clear_bit(WantReplacement, &rdev->flags);
5450         } else
5451                 /* We might have just removed the Replacement as faulty-
5452                  * clear the bit just in case
5453                  */
5454                 clear_bit(WantReplacement, &rdev->flags);
5455 abort:
5456
5457         print_raid5_conf(conf);
5458         return err;
5459 }
5460
5461 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5462 {
5463         struct r5conf *conf = mddev->private;
5464         int err = -EEXIST;
5465         int disk;
5466         struct disk_info *p;
5467         int first = 0;
5468         int last = conf->raid_disks - 1;
5469
5470         if (mddev->recovery_disabled == conf->recovery_disabled)
5471                 return -EBUSY;
5472
5473         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5474                 /* no point adding a device */
5475                 return -EINVAL;
5476
5477         if (rdev->raid_disk >= 0)
5478                 first = last = rdev->raid_disk;
5479
5480         /*
5481          * find the disk ... but prefer rdev->saved_raid_disk
5482          * if possible.
5483          */
5484         if (rdev->saved_raid_disk >= 0 &&
5485             rdev->saved_raid_disk >= first &&
5486             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5487                 first = rdev->saved_raid_disk;
5488
5489         for (disk = first; disk <= last; disk++) {
5490                 p = conf->disks + disk;
5491                 if (p->rdev == NULL) {
5492                         clear_bit(In_sync, &rdev->flags);
5493                         rdev->raid_disk = disk;
5494                         err = 0;
5495                         if (rdev->saved_raid_disk != disk)
5496                                 conf->fullsync = 1;
5497                         rcu_assign_pointer(p->rdev, rdev);
5498                         goto out;
5499                 }
5500         }
5501         for (disk = first; disk <= last; disk++) {
5502                 p = conf->disks + disk;
5503                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5504                     p->replacement == NULL) {
5505                         clear_bit(In_sync, &rdev->flags);
5506                         set_bit(Replacement, &rdev->flags);
5507                         rdev->raid_disk = disk;
5508                         err = 0;
5509                         conf->fullsync = 1;
5510                         rcu_assign_pointer(p->replacement, rdev);
5511                         break;
5512                 }
5513         }
5514 out:
5515         print_raid5_conf(conf);
5516         return err;
5517 }
5518
5519 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5520 {
5521         /* no resync is happening, and there is enough space
5522          * on all devices, so we can resize.
5523          * We need to make sure resync covers any new space.
5524          * If the array is shrinking we should possibly wait until
5525          * any io in the removed space completes, but it hardly seems
5526          * worth it.
5527          */
5528         sector_t newsize;
5529         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5530         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5531         if (mddev->external_size &&
5532             mddev->array_sectors > newsize)
5533                 return -EINVAL;
5534         if (mddev->bitmap) {
5535                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5536                 if (ret)
5537                         return ret;
5538         }
5539         md_set_array_sectors(mddev, newsize);
5540         set_capacity(mddev->gendisk, mddev->array_sectors);
5541         revalidate_disk(mddev->gendisk);
5542         if (sectors > mddev->dev_sectors &&
5543             mddev->recovery_cp > mddev->dev_sectors) {
5544                 mddev->recovery_cp = mddev->dev_sectors;
5545                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5546         }
5547         mddev->dev_sectors = sectors;
5548         mddev->resync_max_sectors = sectors;
5549         return 0;
5550 }
5551
5552 static int check_stripe_cache(struct mddev *mddev)
5553 {
5554         /* Can only proceed if there are plenty of stripe_heads.
5555          * We need a minimum of one full stripe,, and for sensible progress
5556          * it is best to have about 4 times that.
5557          * If we require 4 times, then the default 256 4K stripe_heads will
5558          * allow for chunk sizes up to 256K, which is probably OK.
5559          * If the chunk size is greater, user-space should request more
5560          * stripe_heads first.
5561          */
5562         struct r5conf *conf = mddev->private;
5563         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5564             > conf->max_nr_stripes ||
5565             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5566             > conf->max_nr_stripes) {
5567                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5568                        mdname(mddev),
5569                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5570                         / STRIPE_SIZE)*4);
5571                 return 0;
5572         }
5573         return 1;
5574 }
5575
5576 static int check_reshape(struct mddev *mddev)
5577 {
5578         struct r5conf *conf = mddev->private;
5579
5580         if (mddev->delta_disks == 0 &&
5581             mddev->new_layout == mddev->layout &&
5582             mddev->new_chunk_sectors == mddev->chunk_sectors)
5583                 return 0; /* nothing to do */
5584         if (has_failed(conf))
5585                 return -EINVAL;
5586         if (mddev->delta_disks < 0) {
5587                 /* We might be able to shrink, but the devices must
5588                  * be made bigger first.
5589                  * For raid6, 4 is the minimum size.
5590                  * Otherwise 2 is the minimum
5591                  */
5592                 int min = 2;
5593                 if (mddev->level == 6)
5594                         min = 4;
5595                 if (mddev->raid_disks + mddev->delta_disks < min)
5596                         return -EINVAL;
5597         }
5598
5599         if (!check_stripe_cache(mddev))
5600                 return -ENOSPC;
5601
5602         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5603 }
5604
5605 static int raid5_start_reshape(struct mddev *mddev)
5606 {
5607         struct r5conf *conf = mddev->private;
5608         struct md_rdev *rdev;
5609         int spares = 0;
5610         unsigned long flags;
5611
5612         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5613                 return -EBUSY;
5614
5615         if (!check_stripe_cache(mddev))
5616                 return -ENOSPC;
5617
5618         if (has_failed(conf))
5619                 return -EINVAL;
5620
5621         rdev_for_each(rdev, mddev) {
5622                 if (!test_bit(In_sync, &rdev->flags)
5623                     && !test_bit(Faulty, &rdev->flags))
5624                         spares++;
5625         }
5626
5627         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5628                 /* Not enough devices even to make a degraded array
5629                  * of that size
5630                  */
5631                 return -EINVAL;
5632
5633         /* Refuse to reduce size of the array.  Any reductions in
5634          * array size must be through explicit setting of array_size
5635          * attribute.
5636          */
5637         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5638             < mddev->array_sectors) {
5639                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5640                        "before number of disks\n", mdname(mddev));
5641                 return -EINVAL;
5642         }
5643
5644         atomic_set(&conf->reshape_stripes, 0);
5645         spin_lock_irq(&conf->device_lock);
5646         conf->previous_raid_disks = conf->raid_disks;
5647         conf->raid_disks += mddev->delta_disks;
5648         conf->prev_chunk_sectors = conf->chunk_sectors;
5649         conf->chunk_sectors = mddev->new_chunk_sectors;
5650         conf->prev_algo = conf->algorithm;
5651         conf->algorithm = mddev->new_layout;
5652         conf->generation++;
5653         /* Code that selects data_offset needs to see the generation update
5654          * if reshape_progress has been set - so a memory barrier needed.
5655          */
5656         smp_mb();
5657         if (mddev->reshape_backwards)
5658                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5659         else
5660                 conf->reshape_progress = 0;
5661         conf->reshape_safe = conf->reshape_progress;
5662         spin_unlock_irq(&conf->device_lock);
5663
5664         /* Add some new drives, as many as will fit.
5665          * We know there are enough to make the newly sized array work.
5666          * Don't add devices if we are reducing the number of
5667          * devices in the array.  This is because it is not possible
5668          * to correctly record the "partially reconstructed" state of
5669          * such devices during the reshape and confusion could result.
5670          */
5671         if (mddev->delta_disks >= 0) {
5672                 rdev_for_each(rdev, mddev)
5673                         if (rdev->raid_disk < 0 &&
5674                             !test_bit(Faulty, &rdev->flags)) {
5675                                 if (raid5_add_disk(mddev, rdev) == 0) {
5676                                         if (rdev->raid_disk
5677                                             >= conf->previous_raid_disks)
5678                                                 set_bit(In_sync, &rdev->flags);
5679                                         else
5680                                                 rdev->recovery_offset = 0;
5681
5682                                         if (sysfs_link_rdev(mddev, rdev))
5683                                                 /* Failure here is OK */;
5684                                 }
5685                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5686                                    && !test_bit(Faulty, &rdev->flags)) {
5687                                 /* This is a spare that was manually added */
5688                                 set_bit(In_sync, &rdev->flags);
5689                         }
5690
5691                 /* When a reshape changes the number of devices,
5692                  * ->degraded is measured against the larger of the
5693                  * pre and post number of devices.
5694                  */
5695                 spin_lock_irqsave(&conf->device_lock, flags);
5696                 mddev->degraded = calc_degraded(conf);
5697                 spin_unlock_irqrestore(&conf->device_lock, flags);
5698         }
5699         mddev->raid_disks = conf->raid_disks;
5700         mddev->reshape_position = conf->reshape_progress;
5701         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5702
5703         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5704         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5705         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5706         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5707         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5708                                                 "reshape");
5709         if (!mddev->sync_thread) {
5710                 mddev->recovery = 0;
5711                 spin_lock_irq(&conf->device_lock);
5712                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5713                 rdev_for_each(rdev, mddev)
5714                         rdev->new_data_offset = rdev->data_offset;
5715                 smp_wmb();
5716                 conf->reshape_progress = MaxSector;
5717                 mddev->reshape_position = MaxSector;
5718                 spin_unlock_irq(&conf->device_lock);
5719                 return -EAGAIN;
5720         }
5721         conf->reshape_checkpoint = jiffies;
5722         md_wakeup_thread(mddev->sync_thread);
5723         md_new_event(mddev);
5724         return 0;
5725 }
5726
5727 /* This is called from the reshape thread and should make any
5728  * changes needed in 'conf'
5729  */
5730 static void end_reshape(struct r5conf *conf)
5731 {
5732
5733         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5734                 struct md_rdev *rdev;
5735
5736                 spin_lock_irq(&conf->device_lock);
5737                 conf->previous_raid_disks = conf->raid_disks;
5738                 rdev_for_each(rdev, conf->mddev)
5739                         rdev->data_offset = rdev->new_data_offset;
5740                 smp_wmb();
5741                 conf->reshape_progress = MaxSector;
5742                 spin_unlock_irq(&conf->device_lock);
5743                 wake_up(&conf->wait_for_overlap);
5744
5745                 /* read-ahead size must cover two whole stripes, which is
5746                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5747                  */
5748                 if (conf->mddev->queue) {
5749                         int data_disks = conf->raid_disks - conf->max_degraded;
5750                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5751                                                    / PAGE_SIZE);
5752                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5753                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5754                 }
5755         }
5756 }
5757
5758 /* This is called from the raid5d thread with mddev_lock held.
5759  * It makes config changes to the device.
5760  */
5761 static void raid5_finish_reshape(struct mddev *mddev)
5762 {
5763         struct r5conf *conf = mddev->private;
5764
5765         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5766
5767                 if (mddev->delta_disks > 0) {
5768                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5769                         set_capacity(mddev->gendisk, mddev->array_sectors);
5770                         revalidate_disk(mddev->gendisk);
5771                 } else {
5772                         int d;
5773                         spin_lock_irq(&conf->device_lock);
5774                         mddev->degraded = calc_degraded(conf);
5775                         spin_unlock_irq(&conf->device_lock);
5776                         for (d = conf->raid_disks ;
5777                              d < conf->raid_disks - mddev->delta_disks;
5778                              d++) {
5779                                 struct md_rdev *rdev = conf->disks[d].rdev;
5780                                 if (rdev)
5781                                         clear_bit(In_sync, &rdev->flags);
5782                                 rdev = conf->disks[d].replacement;
5783                                 if (rdev)
5784                                         clear_bit(In_sync, &rdev->flags);
5785                         }
5786                 }
5787                 mddev->layout = conf->algorithm;
5788                 mddev->chunk_sectors = conf->chunk_sectors;
5789                 mddev->reshape_position = MaxSector;
5790                 mddev->delta_disks = 0;
5791                 mddev->reshape_backwards = 0;
5792         }
5793 }
5794
5795 static void raid5_quiesce(struct mddev *mddev, int state)
5796 {
5797         struct r5conf *conf = mddev->private;
5798
5799         switch(state) {
5800         case 2: /* resume for a suspend */
5801                 wake_up(&conf->wait_for_overlap);
5802                 break;
5803
5804         case 1: /* stop all writes */
5805                 spin_lock_irq(&conf->device_lock);
5806                 /* '2' tells resync/reshape to pause so that all
5807                  * active stripes can drain
5808                  */
5809                 conf->quiesce = 2;
5810                 wait_event_lock_irq(conf->wait_for_stripe,
5811                                     atomic_read(&conf->active_stripes) == 0 &&
5812                                     atomic_read(&conf->active_aligned_reads) == 0,
5813                                     conf->device_lock, /* nothing */);
5814                 conf->quiesce = 1;
5815                 spin_unlock_irq(&conf->device_lock);
5816                 /* allow reshape to continue */
5817                 wake_up(&conf->wait_for_overlap);
5818                 break;
5819
5820         case 0: /* re-enable writes */
5821                 spin_lock_irq(&conf->device_lock);
5822                 conf->quiesce = 0;
5823                 wake_up(&conf->wait_for_stripe);
5824                 wake_up(&conf->wait_for_overlap);
5825                 spin_unlock_irq(&conf->device_lock);
5826                 break;
5827         }
5828 }
5829
5830
5831 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5832 {
5833         struct r0conf *raid0_conf = mddev->private;
5834         sector_t sectors;
5835
5836         /* for raid0 takeover only one zone is supported */
5837         if (raid0_conf->nr_strip_zones > 1) {
5838                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5839                        mdname(mddev));
5840                 return ERR_PTR(-EINVAL);
5841         }
5842
5843         sectors = raid0_conf->strip_zone[0].zone_end;
5844         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5845         mddev->dev_sectors = sectors;
5846         mddev->new_level = level;
5847         mddev->new_layout = ALGORITHM_PARITY_N;
5848         mddev->new_chunk_sectors = mddev->chunk_sectors;
5849         mddev->raid_disks += 1;
5850         mddev->delta_disks = 1;
5851         /* make sure it will be not marked as dirty */
5852         mddev->recovery_cp = MaxSector;
5853
5854         return setup_conf(mddev);
5855 }
5856
5857
5858 static void *raid5_takeover_raid1(struct mddev *mddev)
5859 {
5860         int chunksect;
5861
5862         if (mddev->raid_disks != 2 ||
5863             mddev->degraded > 1)
5864                 return ERR_PTR(-EINVAL);
5865
5866         /* Should check if there are write-behind devices? */
5867
5868         chunksect = 64*2; /* 64K by default */
5869
5870         /* The array must be an exact multiple of chunksize */
5871         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5872                 chunksect >>= 1;
5873
5874         if ((chunksect<<9) < STRIPE_SIZE)
5875                 /* array size does not allow a suitable chunk size */
5876                 return ERR_PTR(-EINVAL);
5877
5878         mddev->new_level = 5;
5879         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5880         mddev->new_chunk_sectors = chunksect;
5881
5882         return setup_conf(mddev);
5883 }
5884
5885 static void *raid5_takeover_raid6(struct mddev *mddev)
5886 {
5887         int new_layout;
5888
5889         switch (mddev->layout) {
5890         case ALGORITHM_LEFT_ASYMMETRIC_6:
5891                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5892                 break;
5893         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5894                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5895                 break;
5896         case ALGORITHM_LEFT_SYMMETRIC_6:
5897                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5898                 break;
5899         case ALGORITHM_RIGHT_SYMMETRIC_6:
5900                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5901                 break;
5902         case ALGORITHM_PARITY_0_6:
5903                 new_layout = ALGORITHM_PARITY_0;
5904                 break;
5905         case ALGORITHM_PARITY_N:
5906                 new_layout = ALGORITHM_PARITY_N;
5907                 break;
5908         default:
5909                 return ERR_PTR(-EINVAL);
5910         }
5911         mddev->new_level = 5;
5912         mddev->new_layout = new_layout;
5913         mddev->delta_disks = -1;
5914         mddev->raid_disks -= 1;
5915         return setup_conf(mddev);
5916 }
5917
5918
5919 static int raid5_check_reshape(struct mddev *mddev)
5920 {
5921         /* For a 2-drive array, the layout and chunk size can be changed
5922          * immediately as not restriping is needed.
5923          * For larger arrays we record the new value - after validation
5924          * to be used by a reshape pass.
5925          */
5926         struct r5conf *conf = mddev->private;
5927         int new_chunk = mddev->new_chunk_sectors;
5928
5929         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5930                 return -EINVAL;
5931         if (new_chunk > 0) {
5932                 if (!is_power_of_2(new_chunk))
5933                         return -EINVAL;
5934                 if (new_chunk < (PAGE_SIZE>>9))
5935                         return -EINVAL;
5936                 if (mddev->array_sectors & (new_chunk-1))
5937                         /* not factor of array size */
5938                         return -EINVAL;
5939         }
5940
5941         /* They look valid */
5942
5943         if (mddev->raid_disks == 2) {
5944                 /* can make the change immediately */
5945                 if (mddev->new_layout >= 0) {
5946                         conf->algorithm = mddev->new_layout;
5947                         mddev->layout = mddev->new_layout;
5948                 }
5949                 if (new_chunk > 0) {
5950                         conf->chunk_sectors = new_chunk ;
5951                         mddev->chunk_sectors = new_chunk;
5952                 }
5953                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5954                 md_wakeup_thread(mddev->thread);
5955         }
5956         return check_reshape(mddev);
5957 }
5958
5959 static int raid6_check_reshape(struct mddev *mddev)
5960 {
5961         int new_chunk = mddev->new_chunk_sectors;
5962
5963         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5964                 return -EINVAL;
5965         if (new_chunk > 0) {
5966                 if (!is_power_of_2(new_chunk))
5967                         return -EINVAL;
5968                 if (new_chunk < (PAGE_SIZE >> 9))
5969                         return -EINVAL;
5970                 if (mddev->array_sectors & (new_chunk-1))
5971                         /* not factor of array size */
5972                         return -EINVAL;
5973         }
5974
5975         /* They look valid */
5976         return check_reshape(mddev);
5977 }
5978
5979 static void *raid5_takeover(struct mddev *mddev)
5980 {
5981         /* raid5 can take over:
5982          *  raid0 - if there is only one strip zone - make it a raid4 layout
5983          *  raid1 - if there are two drives.  We need to know the chunk size
5984          *  raid4 - trivial - just use a raid4 layout.
5985          *  raid6 - Providing it is a *_6 layout
5986          */
5987         if (mddev->level == 0)
5988                 return raid45_takeover_raid0(mddev, 5);
5989         if (mddev->level == 1)
5990                 return raid5_takeover_raid1(mddev);
5991         if (mddev->level == 4) {
5992                 mddev->new_layout = ALGORITHM_PARITY_N;
5993                 mddev->new_level = 5;
5994                 return setup_conf(mddev);
5995         }
5996         if (mddev->level == 6)
5997                 return raid5_takeover_raid6(mddev);
5998
5999         return ERR_PTR(-EINVAL);
6000 }
6001
6002 static void *raid4_takeover(struct mddev *mddev)
6003 {
6004         /* raid4 can take over:
6005          *  raid0 - if there is only one strip zone
6006          *  raid5 - if layout is right
6007          */
6008         if (mddev->level == 0)
6009                 return raid45_takeover_raid0(mddev, 4);
6010         if (mddev->level == 5 &&
6011             mddev->layout == ALGORITHM_PARITY_N) {
6012                 mddev->new_layout = 0;
6013                 mddev->new_level = 4;
6014                 return setup_conf(mddev);
6015         }
6016         return ERR_PTR(-EINVAL);
6017 }
6018
6019 static struct md_personality raid5_personality;
6020
6021 static void *raid6_takeover(struct mddev *mddev)
6022 {
6023         /* Currently can only take over a raid5.  We map the
6024          * personality to an equivalent raid6 personality
6025          * with the Q block at the end.
6026          */
6027         int new_layout;
6028
6029         if (mddev->pers != &raid5_personality)
6030                 return ERR_PTR(-EINVAL);
6031         if (mddev->degraded > 1)
6032                 return ERR_PTR(-EINVAL);
6033         if (mddev->raid_disks > 253)
6034                 return ERR_PTR(-EINVAL);
6035         if (mddev->raid_disks < 3)
6036                 return ERR_PTR(-EINVAL);
6037
6038         switch (mddev->layout) {
6039         case ALGORITHM_LEFT_ASYMMETRIC:
6040                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6041                 break;
6042         case ALGORITHM_RIGHT_ASYMMETRIC:
6043                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6044                 break;
6045         case ALGORITHM_LEFT_SYMMETRIC:
6046                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6047                 break;
6048         case ALGORITHM_RIGHT_SYMMETRIC:
6049                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6050                 break;
6051         case ALGORITHM_PARITY_0:
6052                 new_layout = ALGORITHM_PARITY_0_6;
6053                 break;
6054         case ALGORITHM_PARITY_N:
6055                 new_layout = ALGORITHM_PARITY_N;
6056                 break;
6057         default:
6058                 return ERR_PTR(-EINVAL);
6059         }
6060         mddev->new_level = 6;
6061         mddev->new_layout = new_layout;
6062         mddev->delta_disks = 1;
6063         mddev->raid_disks += 1;
6064         return setup_conf(mddev);
6065 }
6066
6067
6068 static struct md_personality raid6_personality =
6069 {
6070         .name           = "raid6",
6071         .level          = 6,
6072         .owner          = THIS_MODULE,
6073         .make_request   = make_request,
6074         .run            = run,
6075         .stop           = stop,
6076         .status         = status,
6077         .error_handler  = error,
6078         .hot_add_disk   = raid5_add_disk,
6079         .hot_remove_disk= raid5_remove_disk,
6080         .spare_active   = raid5_spare_active,
6081         .sync_request   = sync_request,
6082         .resize         = raid5_resize,
6083         .size           = raid5_size,
6084         .check_reshape  = raid6_check_reshape,
6085         .start_reshape  = raid5_start_reshape,
6086         .finish_reshape = raid5_finish_reshape,
6087         .quiesce        = raid5_quiesce,
6088         .takeover       = raid6_takeover,
6089 };
6090 static struct md_personality raid5_personality =
6091 {
6092         .name           = "raid5",
6093         .level          = 5,
6094         .owner          = THIS_MODULE,
6095         .make_request   = make_request,
6096         .run            = run,
6097         .stop           = stop,
6098         .status         = status,
6099         .error_handler  = error,
6100         .hot_add_disk   = raid5_add_disk,
6101         .hot_remove_disk= raid5_remove_disk,
6102         .spare_active   = raid5_spare_active,
6103         .sync_request   = sync_request,
6104         .resize         = raid5_resize,
6105         .size           = raid5_size,
6106         .check_reshape  = raid5_check_reshape,
6107         .start_reshape  = raid5_start_reshape,
6108         .finish_reshape = raid5_finish_reshape,
6109         .quiesce        = raid5_quiesce,
6110         .takeover       = raid5_takeover,
6111 };
6112
6113 static struct md_personality raid4_personality =
6114 {
6115         .name           = "raid4",
6116         .level          = 4,
6117         .owner          = THIS_MODULE,
6118         .make_request   = make_request,
6119         .run            = run,
6120         .stop           = stop,
6121         .status         = status,
6122         .error_handler  = error,
6123         .hot_add_disk   = raid5_add_disk,
6124         .hot_remove_disk= raid5_remove_disk,
6125         .spare_active   = raid5_spare_active,
6126         .sync_request   = sync_request,
6127         .resize         = raid5_resize,
6128         .size           = raid5_size,
6129         .check_reshape  = raid5_check_reshape,
6130         .start_reshape  = raid5_start_reshape,
6131         .finish_reshape = raid5_finish_reshape,
6132         .quiesce        = raid5_quiesce,
6133         .takeover       = raid4_takeover,
6134 };
6135
6136 static int __init raid5_init(void)
6137 {
6138         register_md_personality(&raid6_personality);
6139         register_md_personality(&raid5_personality);
6140         register_md_personality(&raid4_personality);
6141         return 0;
6142 }
6143
6144 static void raid5_exit(void)
6145 {
6146         unregister_md_personality(&raid6_personality);
6147         unregister_md_personality(&raid5_personality);
6148         unregister_md_personality(&raid4_personality);
6149 }
6150
6151 module_init(raid5_init);
6152 module_exit(raid5_exit);
6153 MODULE_LICENSE("GPL");
6154 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6155 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6156 MODULE_ALIAS("md-raid5");
6157 MODULE_ALIAS("md-raid4");
6158 MODULE_ALIAS("md-level-5");
6159 MODULE_ALIAS("md-level-4");
6160 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6161 MODULE_ALIAS("md-raid6");
6162 MODULE_ALIAS("md-level-6");
6163
6164 /* This used to be two separate modules, they were: */
6165 MODULE_ALIAS("raid5");
6166 MODULE_ALIAS("raid6");