]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/md/raid5.c
d38d235cc39d4999096f92045293989a108ce7db
[mv-sheeva.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state))
200                                 list_add_tail(&sh->lru, &conf->delayed_list);
201                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202                                    sh->bm_seq - conf->seq_write > 0)
203                                 list_add_tail(&sh->lru, &conf->bitmap_list);
204                         else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212                                 if (atomic_dec_return(&conf->preread_active_stripes)
213                                     < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         atomic_dec(&conf->active_stripes);
216                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217                                 list_add_tail(&sh->lru, &conf->inactive_list);
218                                 wake_up(&conf->wait_for_stripe);
219                                 if (conf->retry_read_aligned)
220                                         md_wakeup_thread(conf->mddev->thread);
221                         }
222                 }
223         }
224 }
225
226 static void release_stripe(struct stripe_head *sh)
227 {
228         struct r5conf *conf = sh->raid_conf;
229         unsigned long flags;
230
231         spin_lock_irqsave(&conf->device_lock, flags);
232         __release_stripe(conf, sh);
233         spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238         pr_debug("remove_hash(), stripe %llu\n",
239                 (unsigned long long)sh->sector);
240
241         hlist_del_init(&sh->hash);
242 }
243
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246         struct hlist_head *hp = stripe_hash(conf, sh->sector);
247
248         pr_debug("insert_hash(), stripe %llu\n",
249                 (unsigned long long)sh->sector);
250
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         if (list_empty(&conf->inactive_list))
262                 goto out;
263         first = conf->inactive_list.next;
264         sh = list_entry(first, struct stripe_head, lru);
265         list_del_init(first);
266         remove_hash(sh);
267         atomic_inc(&conf->active_stripes);
268 out:
269         return sh;
270 }
271
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274         struct page *p;
275         int i;
276         int num = sh->raid_conf->pool_size;
277
278         for (i = 0; i < num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh)
288 {
289         int i;
290         int num = sh->raid_conf->pool_size;
291
292         for (i = 0; i < num; i++) {
293                 struct page *page;
294
295                 if (!(page = alloc_page(GFP_KERNEL))) {
296                         return 1;
297                 }
298                 sh->dev[i].page = page;
299         }
300         return 0;
301 }
302
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305                             struct stripe_head *sh);
306
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309         struct r5conf *conf = sh->raid_conf;
310         int i;
311
312         BUG_ON(atomic_read(&sh->count) != 0);
313         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314         BUG_ON(stripe_operations_active(sh));
315
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         WARN_ON(1);
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353                 if (sh->sector == sector && sh->generation == generation)
354                         return sh;
355         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356         return NULL;
357 }
358
359 /*
360  * Need to check if array has failed when deciding whether to:
361  *  - start an array
362  *  - remove non-faulty devices
363  *  - add a spare
364  *  - allow a reshape
365  * This determination is simple when no reshape is happening.
366  * However if there is a reshape, we need to carefully check
367  * both the before and after sections.
368  * This is because some failed devices may only affect one
369  * of the two sections, and some non-in_sync devices may
370  * be insync in the section most affected by failed devices.
371  */
372 static int calc_degraded(struct r5conf *conf)
373 {
374         int degraded, degraded2;
375         int i;
376
377         rcu_read_lock();
378         degraded = 0;
379         for (i = 0; i < conf->previous_raid_disks; i++) {
380                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381                 if (!rdev || test_bit(Faulty, &rdev->flags))
382                         degraded++;
383                 else if (test_bit(In_sync, &rdev->flags))
384                         ;
385                 else
386                         /* not in-sync or faulty.
387                          * If the reshape increases the number of devices,
388                          * this is being recovered by the reshape, so
389                          * this 'previous' section is not in_sync.
390                          * If the number of devices is being reduced however,
391                          * the device can only be part of the array if
392                          * we are reverting a reshape, so this section will
393                          * be in-sync.
394                          */
395                         if (conf->raid_disks >= conf->previous_raid_disks)
396                                 degraded++;
397         }
398         rcu_read_unlock();
399         if (conf->raid_disks == conf->previous_raid_disks)
400                 return degraded;
401         rcu_read_lock();
402         degraded2 = 0;
403         for (i = 0; i < conf->raid_disks; i++) {
404                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405                 if (!rdev || test_bit(Faulty, &rdev->flags))
406                         degraded2++;
407                 else if (test_bit(In_sync, &rdev->flags))
408                         ;
409                 else
410                         /* not in-sync or faulty.
411                          * If reshape increases the number of devices, this
412                          * section has already been recovered, else it
413                          * almost certainly hasn't.
414                          */
415                         if (conf->raid_disks <= conf->previous_raid_disks)
416                                 degraded2++;
417         }
418         rcu_read_unlock();
419         if (degraded2 > degraded)
420                 return degraded2;
421         return degraded;
422 }
423
424 static int has_failed(struct r5conf *conf)
425 {
426         int degraded;
427
428         if (conf->mddev->reshape_position == MaxSector)
429                 return conf->mddev->degraded > conf->max_degraded;
430
431         degraded = calc_degraded(conf);
432         if (degraded > conf->max_degraded)
433                 return 1;
434         return 0;
435 }
436
437 static struct stripe_head *
438 get_active_stripe(struct r5conf *conf, sector_t sector,
439                   int previous, int noblock, int noquiesce)
440 {
441         struct stripe_head *sh;
442
443         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
444
445         spin_lock_irq(&conf->device_lock);
446
447         do {
448                 wait_event_lock_irq(conf->wait_for_stripe,
449                                     conf->quiesce == 0 || noquiesce,
450                                     conf->device_lock, /* nothing */);
451                 sh = __find_stripe(conf, sector, conf->generation - previous);
452                 if (!sh) {
453                         if (!conf->inactive_blocked)
454                                 sh = get_free_stripe(conf);
455                         if (noblock && sh == NULL)
456                                 break;
457                         if (!sh) {
458                                 conf->inactive_blocked = 1;
459                                 wait_event_lock_irq(conf->wait_for_stripe,
460                                                     !list_empty(&conf->inactive_list) &&
461                                                     (atomic_read(&conf->active_stripes)
462                                                      < (conf->max_nr_stripes *3/4)
463                                                      || !conf->inactive_blocked),
464                                                     conf->device_lock,
465                                                     );
466                                 conf->inactive_blocked = 0;
467                         } else
468                                 init_stripe(sh, sector, previous);
469                 } else {
470                         if (atomic_read(&sh->count)) {
471                                 BUG_ON(!list_empty(&sh->lru)
472                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
473                         } else {
474                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
475                                         atomic_inc(&conf->active_stripes);
476                                 if (list_empty(&sh->lru) &&
477                                     !test_bit(STRIPE_EXPANDING, &sh->state))
478                                         BUG();
479                                 list_del_init(&sh->lru);
480                         }
481                 }
482         } while (sh == NULL);
483
484         if (sh)
485                 atomic_inc(&sh->count);
486
487         spin_unlock_irq(&conf->device_lock);
488         return sh;
489 }
490
491 static void
492 raid5_end_read_request(struct bio *bi, int error);
493 static void
494 raid5_end_write_request(struct bio *bi, int error);
495
496 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
497 {
498         struct r5conf *conf = sh->raid_conf;
499         int i, disks = sh->disks;
500
501         might_sleep();
502
503         for (i = disks; i--; ) {
504                 int rw;
505                 int replace_only = 0;
506                 struct bio *bi, *rbi;
507                 struct md_rdev *rdev, *rrdev = NULL;
508                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
509                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
510                                 rw = WRITE_FUA;
511                         else
512                                 rw = WRITE;
513                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
514                         rw = READ;
515                 else if (test_and_clear_bit(R5_WantReplace,
516                                             &sh->dev[i].flags)) {
517                         rw = WRITE;
518                         replace_only = 1;
519                 } else
520                         continue;
521
522                 bi = &sh->dev[i].req;
523                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
524
525                 bi->bi_rw = rw;
526                 rbi->bi_rw = rw;
527                 if (rw & WRITE) {
528                         bi->bi_end_io = raid5_end_write_request;
529                         rbi->bi_end_io = raid5_end_write_request;
530                 } else
531                         bi->bi_end_io = raid5_end_read_request;
532
533                 rcu_read_lock();
534                 rrdev = rcu_dereference(conf->disks[i].replacement);
535                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
536                 rdev = rcu_dereference(conf->disks[i].rdev);
537                 if (!rdev) {
538                         rdev = rrdev;
539                         rrdev = NULL;
540                 }
541                 if (rw & WRITE) {
542                         if (replace_only)
543                                 rdev = NULL;
544                         if (rdev == rrdev)
545                                 /* We raced and saw duplicates */
546                                 rrdev = NULL;
547                 } else {
548                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
549                                 rdev = rrdev;
550                         rrdev = NULL;
551                 }
552
553                 if (rdev && test_bit(Faulty, &rdev->flags))
554                         rdev = NULL;
555                 if (rdev)
556                         atomic_inc(&rdev->nr_pending);
557                 if (rrdev && test_bit(Faulty, &rrdev->flags))
558                         rrdev = NULL;
559                 if (rrdev)
560                         atomic_inc(&rrdev->nr_pending);
561                 rcu_read_unlock();
562
563                 /* We have already checked bad blocks for reads.  Now
564                  * need to check for writes.  We never accept write errors
565                  * on the replacement, so we don't to check rrdev.
566                  */
567                 while ((rw & WRITE) && rdev &&
568                        test_bit(WriteErrorSeen, &rdev->flags)) {
569                         sector_t first_bad;
570                         int bad_sectors;
571                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
572                                               &first_bad, &bad_sectors);
573                         if (!bad)
574                                 break;
575
576                         if (bad < 0) {
577                                 set_bit(BlockedBadBlocks, &rdev->flags);
578                                 if (!conf->mddev->external &&
579                                     conf->mddev->flags) {
580                                         /* It is very unlikely, but we might
581                                          * still need to write out the
582                                          * bad block log - better give it
583                                          * a chance*/
584                                         md_check_recovery(conf->mddev);
585                                 }
586                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
587                         } else {
588                                 /* Acknowledged bad block - skip the write */
589                                 rdev_dec_pending(rdev, conf->mddev);
590                                 rdev = NULL;
591                         }
592                 }
593
594                 if (rdev) {
595                         if (s->syncing || s->expanding || s->expanded
596                             || s->replacing)
597                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
598
599                         set_bit(STRIPE_IO_STARTED, &sh->state);
600
601                         bi->bi_bdev = rdev->bdev;
602                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
603                                 __func__, (unsigned long long)sh->sector,
604                                 bi->bi_rw, i);
605                         atomic_inc(&sh->count);
606                         bi->bi_sector = sh->sector + rdev->data_offset;
607                         bi->bi_flags = 1 << BIO_UPTODATE;
608                         bi->bi_idx = 0;
609                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
610                         bi->bi_io_vec[0].bv_offset = 0;
611                         bi->bi_size = STRIPE_SIZE;
612                         bi->bi_next = NULL;
613                         if (rrdev)
614                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
615                         generic_make_request(bi);
616                 }
617                 if (rrdev) {
618                         if (s->syncing || s->expanding || s->expanded
619                             || s->replacing)
620                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
621
622                         set_bit(STRIPE_IO_STARTED, &sh->state);
623
624                         rbi->bi_bdev = rrdev->bdev;
625                         pr_debug("%s: for %llu schedule op %ld on "
626                                  "replacement disc %d\n",
627                                 __func__, (unsigned long long)sh->sector,
628                                 rbi->bi_rw, i);
629                         atomic_inc(&sh->count);
630                         rbi->bi_sector = sh->sector + rrdev->data_offset;
631                         rbi->bi_flags = 1 << BIO_UPTODATE;
632                         rbi->bi_idx = 0;
633                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
634                         rbi->bi_io_vec[0].bv_offset = 0;
635                         rbi->bi_size = STRIPE_SIZE;
636                         rbi->bi_next = NULL;
637                         generic_make_request(rbi);
638                 }
639                 if (!rdev && !rrdev) {
640                         if (rw & WRITE)
641                                 set_bit(STRIPE_DEGRADED, &sh->state);
642                         pr_debug("skip op %ld on disc %d for sector %llu\n",
643                                 bi->bi_rw, i, (unsigned long long)sh->sector);
644                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
645                         set_bit(STRIPE_HANDLE, &sh->state);
646                 }
647         }
648 }
649
650 static struct dma_async_tx_descriptor *
651 async_copy_data(int frombio, struct bio *bio, struct page *page,
652         sector_t sector, struct dma_async_tx_descriptor *tx)
653 {
654         struct bio_vec *bvl;
655         struct page *bio_page;
656         int i;
657         int page_offset;
658         struct async_submit_ctl submit;
659         enum async_tx_flags flags = 0;
660
661         if (bio->bi_sector >= sector)
662                 page_offset = (signed)(bio->bi_sector - sector) * 512;
663         else
664                 page_offset = (signed)(sector - bio->bi_sector) * -512;
665
666         if (frombio)
667                 flags |= ASYNC_TX_FENCE;
668         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
669
670         bio_for_each_segment(bvl, bio, i) {
671                 int len = bvl->bv_len;
672                 int clen;
673                 int b_offset = 0;
674
675                 if (page_offset < 0) {
676                         b_offset = -page_offset;
677                         page_offset += b_offset;
678                         len -= b_offset;
679                 }
680
681                 if (len > 0 && page_offset + len > STRIPE_SIZE)
682                         clen = STRIPE_SIZE - page_offset;
683                 else
684                         clen = len;
685
686                 if (clen > 0) {
687                         b_offset += bvl->bv_offset;
688                         bio_page = bvl->bv_page;
689                         if (frombio)
690                                 tx = async_memcpy(page, bio_page, page_offset,
691                                                   b_offset, clen, &submit);
692                         else
693                                 tx = async_memcpy(bio_page, page, b_offset,
694                                                   page_offset, clen, &submit);
695                 }
696                 /* chain the operations */
697                 submit.depend_tx = tx;
698
699                 if (clen < len) /* hit end of page */
700                         break;
701                 page_offset +=  len;
702         }
703
704         return tx;
705 }
706
707 static void ops_complete_biofill(void *stripe_head_ref)
708 {
709         struct stripe_head *sh = stripe_head_ref;
710         struct bio *return_bi = NULL;
711         struct r5conf *conf = sh->raid_conf;
712         int i;
713
714         pr_debug("%s: stripe %llu\n", __func__,
715                 (unsigned long long)sh->sector);
716
717         /* clear completed biofills */
718         spin_lock_irq(&conf->device_lock);
719         for (i = sh->disks; i--; ) {
720                 struct r5dev *dev = &sh->dev[i];
721
722                 /* acknowledge completion of a biofill operation */
723                 /* and check if we need to reply to a read request,
724                  * new R5_Wantfill requests are held off until
725                  * !STRIPE_BIOFILL_RUN
726                  */
727                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
728                         struct bio *rbi, *rbi2;
729
730                         BUG_ON(!dev->read);
731                         rbi = dev->read;
732                         dev->read = NULL;
733                         while (rbi && rbi->bi_sector <
734                                 dev->sector + STRIPE_SECTORS) {
735                                 rbi2 = r5_next_bio(rbi, dev->sector);
736                                 if (!raid5_dec_bi_phys_segments(rbi)) {
737                                         rbi->bi_next = return_bi;
738                                         return_bi = rbi;
739                                 }
740                                 rbi = rbi2;
741                         }
742                 }
743         }
744         spin_unlock_irq(&conf->device_lock);
745         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
746
747         return_io(return_bi);
748
749         set_bit(STRIPE_HANDLE, &sh->state);
750         release_stripe(sh);
751 }
752
753 static void ops_run_biofill(struct stripe_head *sh)
754 {
755         struct dma_async_tx_descriptor *tx = NULL;
756         struct r5conf *conf = sh->raid_conf;
757         struct async_submit_ctl submit;
758         int i;
759
760         pr_debug("%s: stripe %llu\n", __func__,
761                 (unsigned long long)sh->sector);
762
763         for (i = sh->disks; i--; ) {
764                 struct r5dev *dev = &sh->dev[i];
765                 if (test_bit(R5_Wantfill, &dev->flags)) {
766                         struct bio *rbi;
767                         spin_lock_irq(&conf->device_lock);
768                         dev->read = rbi = dev->toread;
769                         dev->toread = NULL;
770                         spin_unlock_irq(&conf->device_lock);
771                         while (rbi && rbi->bi_sector <
772                                 dev->sector + STRIPE_SECTORS) {
773                                 tx = async_copy_data(0, rbi, dev->page,
774                                         dev->sector, tx);
775                                 rbi = r5_next_bio(rbi, dev->sector);
776                         }
777                 }
778         }
779
780         atomic_inc(&sh->count);
781         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
782         async_trigger_callback(&submit);
783 }
784
785 static void mark_target_uptodate(struct stripe_head *sh, int target)
786 {
787         struct r5dev *tgt;
788
789         if (target < 0)
790                 return;
791
792         tgt = &sh->dev[target];
793         set_bit(R5_UPTODATE, &tgt->flags);
794         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
795         clear_bit(R5_Wantcompute, &tgt->flags);
796 }
797
798 static void ops_complete_compute(void *stripe_head_ref)
799 {
800         struct stripe_head *sh = stripe_head_ref;
801
802         pr_debug("%s: stripe %llu\n", __func__,
803                 (unsigned long long)sh->sector);
804
805         /* mark the computed target(s) as uptodate */
806         mark_target_uptodate(sh, sh->ops.target);
807         mark_target_uptodate(sh, sh->ops.target2);
808
809         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
810         if (sh->check_state == check_state_compute_run)
811                 sh->check_state = check_state_compute_result;
812         set_bit(STRIPE_HANDLE, &sh->state);
813         release_stripe(sh);
814 }
815
816 /* return a pointer to the address conversion region of the scribble buffer */
817 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
818                                  struct raid5_percpu *percpu)
819 {
820         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
821 }
822
823 static struct dma_async_tx_descriptor *
824 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
825 {
826         int disks = sh->disks;
827         struct page **xor_srcs = percpu->scribble;
828         int target = sh->ops.target;
829         struct r5dev *tgt = &sh->dev[target];
830         struct page *xor_dest = tgt->page;
831         int count = 0;
832         struct dma_async_tx_descriptor *tx;
833         struct async_submit_ctl submit;
834         int i;
835
836         pr_debug("%s: stripe %llu block: %d\n",
837                 __func__, (unsigned long long)sh->sector, target);
838         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
839
840         for (i = disks; i--; )
841                 if (i != target)
842                         xor_srcs[count++] = sh->dev[i].page;
843
844         atomic_inc(&sh->count);
845
846         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
847                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
848         if (unlikely(count == 1))
849                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
850         else
851                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
852
853         return tx;
854 }
855
856 /* set_syndrome_sources - populate source buffers for gen_syndrome
857  * @srcs - (struct page *) array of size sh->disks
858  * @sh - stripe_head to parse
859  *
860  * Populates srcs in proper layout order for the stripe and returns the
861  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
862  * destination buffer is recorded in srcs[count] and the Q destination
863  * is recorded in srcs[count+1]].
864  */
865 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
866 {
867         int disks = sh->disks;
868         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
869         int d0_idx = raid6_d0(sh);
870         int count;
871         int i;
872
873         for (i = 0; i < disks; i++)
874                 srcs[i] = NULL;
875
876         count = 0;
877         i = d0_idx;
878         do {
879                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
880
881                 srcs[slot] = sh->dev[i].page;
882                 i = raid6_next_disk(i, disks);
883         } while (i != d0_idx);
884
885         return syndrome_disks;
886 }
887
888 static struct dma_async_tx_descriptor *
889 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
890 {
891         int disks = sh->disks;
892         struct page **blocks = percpu->scribble;
893         int target;
894         int qd_idx = sh->qd_idx;
895         struct dma_async_tx_descriptor *tx;
896         struct async_submit_ctl submit;
897         struct r5dev *tgt;
898         struct page *dest;
899         int i;
900         int count;
901
902         if (sh->ops.target < 0)
903                 target = sh->ops.target2;
904         else if (sh->ops.target2 < 0)
905                 target = sh->ops.target;
906         else
907                 /* we should only have one valid target */
908                 BUG();
909         BUG_ON(target < 0);
910         pr_debug("%s: stripe %llu block: %d\n",
911                 __func__, (unsigned long long)sh->sector, target);
912
913         tgt = &sh->dev[target];
914         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
915         dest = tgt->page;
916
917         atomic_inc(&sh->count);
918
919         if (target == qd_idx) {
920                 count = set_syndrome_sources(blocks, sh);
921                 blocks[count] = NULL; /* regenerating p is not necessary */
922                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
923                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
924                                   ops_complete_compute, sh,
925                                   to_addr_conv(sh, percpu));
926                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
927         } else {
928                 /* Compute any data- or p-drive using XOR */
929                 count = 0;
930                 for (i = disks; i-- ; ) {
931                         if (i == target || i == qd_idx)
932                                 continue;
933                         blocks[count++] = sh->dev[i].page;
934                 }
935
936                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
937                                   NULL, ops_complete_compute, sh,
938                                   to_addr_conv(sh, percpu));
939                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
940         }
941
942         return tx;
943 }
944
945 static struct dma_async_tx_descriptor *
946 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
947 {
948         int i, count, disks = sh->disks;
949         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
950         int d0_idx = raid6_d0(sh);
951         int faila = -1, failb = -1;
952         int target = sh->ops.target;
953         int target2 = sh->ops.target2;
954         struct r5dev *tgt = &sh->dev[target];
955         struct r5dev *tgt2 = &sh->dev[target2];
956         struct dma_async_tx_descriptor *tx;
957         struct page **blocks = percpu->scribble;
958         struct async_submit_ctl submit;
959
960         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
961                  __func__, (unsigned long long)sh->sector, target, target2);
962         BUG_ON(target < 0 || target2 < 0);
963         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
964         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
965
966         /* we need to open-code set_syndrome_sources to handle the
967          * slot number conversion for 'faila' and 'failb'
968          */
969         for (i = 0; i < disks ; i++)
970                 blocks[i] = NULL;
971         count = 0;
972         i = d0_idx;
973         do {
974                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
975
976                 blocks[slot] = sh->dev[i].page;
977
978                 if (i == target)
979                         faila = slot;
980                 if (i == target2)
981                         failb = slot;
982                 i = raid6_next_disk(i, disks);
983         } while (i != d0_idx);
984
985         BUG_ON(faila == failb);
986         if (failb < faila)
987                 swap(faila, failb);
988         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
989                  __func__, (unsigned long long)sh->sector, faila, failb);
990
991         atomic_inc(&sh->count);
992
993         if (failb == syndrome_disks+1) {
994                 /* Q disk is one of the missing disks */
995                 if (faila == syndrome_disks) {
996                         /* Missing P+Q, just recompute */
997                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
998                                           ops_complete_compute, sh,
999                                           to_addr_conv(sh, percpu));
1000                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1001                                                   STRIPE_SIZE, &submit);
1002                 } else {
1003                         struct page *dest;
1004                         int data_target;
1005                         int qd_idx = sh->qd_idx;
1006
1007                         /* Missing D+Q: recompute D from P, then recompute Q */
1008                         if (target == qd_idx)
1009                                 data_target = target2;
1010                         else
1011                                 data_target = target;
1012
1013                         count = 0;
1014                         for (i = disks; i-- ; ) {
1015                                 if (i == data_target || i == qd_idx)
1016                                         continue;
1017                                 blocks[count++] = sh->dev[i].page;
1018                         }
1019                         dest = sh->dev[data_target].page;
1020                         init_async_submit(&submit,
1021                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1022                                           NULL, NULL, NULL,
1023                                           to_addr_conv(sh, percpu));
1024                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1025                                        &submit);
1026
1027                         count = set_syndrome_sources(blocks, sh);
1028                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1029                                           ops_complete_compute, sh,
1030                                           to_addr_conv(sh, percpu));
1031                         return async_gen_syndrome(blocks, 0, count+2,
1032                                                   STRIPE_SIZE, &submit);
1033                 }
1034         } else {
1035                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1036                                   ops_complete_compute, sh,
1037                                   to_addr_conv(sh, percpu));
1038                 if (failb == syndrome_disks) {
1039                         /* We're missing D+P. */
1040                         return async_raid6_datap_recov(syndrome_disks+2,
1041                                                        STRIPE_SIZE, faila,
1042                                                        blocks, &submit);
1043                 } else {
1044                         /* We're missing D+D. */
1045                         return async_raid6_2data_recov(syndrome_disks+2,
1046                                                        STRIPE_SIZE, faila, failb,
1047                                                        blocks, &submit);
1048                 }
1049         }
1050 }
1051
1052
1053 static void ops_complete_prexor(void *stripe_head_ref)
1054 {
1055         struct stripe_head *sh = stripe_head_ref;
1056
1057         pr_debug("%s: stripe %llu\n", __func__,
1058                 (unsigned long long)sh->sector);
1059 }
1060
1061 static struct dma_async_tx_descriptor *
1062 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1063                struct dma_async_tx_descriptor *tx)
1064 {
1065         int disks = sh->disks;
1066         struct page **xor_srcs = percpu->scribble;
1067         int count = 0, pd_idx = sh->pd_idx, i;
1068         struct async_submit_ctl submit;
1069
1070         /* existing parity data subtracted */
1071         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1072
1073         pr_debug("%s: stripe %llu\n", __func__,
1074                 (unsigned long long)sh->sector);
1075
1076         for (i = disks; i--; ) {
1077                 struct r5dev *dev = &sh->dev[i];
1078                 /* Only process blocks that are known to be uptodate */
1079                 if (test_bit(R5_Wantdrain, &dev->flags))
1080                         xor_srcs[count++] = dev->page;
1081         }
1082
1083         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1084                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1085         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1086
1087         return tx;
1088 }
1089
1090 static struct dma_async_tx_descriptor *
1091 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1092 {
1093         int disks = sh->disks;
1094         int i;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098
1099         for (i = disks; i--; ) {
1100                 struct r5dev *dev = &sh->dev[i];
1101                 struct bio *chosen;
1102
1103                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1104                         struct bio *wbi;
1105
1106                         spin_lock_irq(&sh->raid_conf->device_lock);
1107                         chosen = dev->towrite;
1108                         dev->towrite = NULL;
1109                         BUG_ON(dev->written);
1110                         wbi = dev->written = chosen;
1111                         spin_unlock_irq(&sh->raid_conf->device_lock);
1112
1113                         while (wbi && wbi->bi_sector <
1114                                 dev->sector + STRIPE_SECTORS) {
1115                                 if (wbi->bi_rw & REQ_FUA)
1116                                         set_bit(R5_WantFUA, &dev->flags);
1117                                 tx = async_copy_data(1, wbi, dev->page,
1118                                         dev->sector, tx);
1119                                 wbi = r5_next_bio(wbi, dev->sector);
1120                         }
1121                 }
1122         }
1123
1124         return tx;
1125 }
1126
1127 static void ops_complete_reconstruct(void *stripe_head_ref)
1128 {
1129         struct stripe_head *sh = stripe_head_ref;
1130         int disks = sh->disks;
1131         int pd_idx = sh->pd_idx;
1132         int qd_idx = sh->qd_idx;
1133         int i;
1134         bool fua = false;
1135
1136         pr_debug("%s: stripe %llu\n", __func__,
1137                 (unsigned long long)sh->sector);
1138
1139         for (i = disks; i--; )
1140                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1141
1142         for (i = disks; i--; ) {
1143                 struct r5dev *dev = &sh->dev[i];
1144
1145                 if (dev->written || i == pd_idx || i == qd_idx) {
1146                         set_bit(R5_UPTODATE, &dev->flags);
1147                         if (fua)
1148                                 set_bit(R5_WantFUA, &dev->flags);
1149                 }
1150         }
1151
1152         if (sh->reconstruct_state == reconstruct_state_drain_run)
1153                 sh->reconstruct_state = reconstruct_state_drain_result;
1154         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1155                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1156         else {
1157                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1158                 sh->reconstruct_state = reconstruct_state_result;
1159         }
1160
1161         set_bit(STRIPE_HANDLE, &sh->state);
1162         release_stripe(sh);
1163 }
1164
1165 static void
1166 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1167                      struct dma_async_tx_descriptor *tx)
1168 {
1169         int disks = sh->disks;
1170         struct page **xor_srcs = percpu->scribble;
1171         struct async_submit_ctl submit;
1172         int count = 0, pd_idx = sh->pd_idx, i;
1173         struct page *xor_dest;
1174         int prexor = 0;
1175         unsigned long flags;
1176
1177         pr_debug("%s: stripe %llu\n", __func__,
1178                 (unsigned long long)sh->sector);
1179
1180         /* check if prexor is active which means only process blocks
1181          * that are part of a read-modify-write (written)
1182          */
1183         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1184                 prexor = 1;
1185                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1186                 for (i = disks; i--; ) {
1187                         struct r5dev *dev = &sh->dev[i];
1188                         if (dev->written)
1189                                 xor_srcs[count++] = dev->page;
1190                 }
1191         } else {
1192                 xor_dest = sh->dev[pd_idx].page;
1193                 for (i = disks; i--; ) {
1194                         struct r5dev *dev = &sh->dev[i];
1195                         if (i != pd_idx)
1196                                 xor_srcs[count++] = dev->page;
1197                 }
1198         }
1199
1200         /* 1/ if we prexor'd then the dest is reused as a source
1201          * 2/ if we did not prexor then we are redoing the parity
1202          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1203          * for the synchronous xor case
1204          */
1205         flags = ASYNC_TX_ACK |
1206                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1207
1208         atomic_inc(&sh->count);
1209
1210         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1211                           to_addr_conv(sh, percpu));
1212         if (unlikely(count == 1))
1213                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1214         else
1215                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1216 }
1217
1218 static void
1219 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1220                      struct dma_async_tx_descriptor *tx)
1221 {
1222         struct async_submit_ctl submit;
1223         struct page **blocks = percpu->scribble;
1224         int count;
1225
1226         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1227
1228         count = set_syndrome_sources(blocks, sh);
1229
1230         atomic_inc(&sh->count);
1231
1232         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1233                           sh, to_addr_conv(sh, percpu));
1234         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1235 }
1236
1237 static void ops_complete_check(void *stripe_head_ref)
1238 {
1239         struct stripe_head *sh = stripe_head_ref;
1240
1241         pr_debug("%s: stripe %llu\n", __func__,
1242                 (unsigned long long)sh->sector);
1243
1244         sh->check_state = check_state_check_result;
1245         set_bit(STRIPE_HANDLE, &sh->state);
1246         release_stripe(sh);
1247 }
1248
1249 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1250 {
1251         int disks = sh->disks;
1252         int pd_idx = sh->pd_idx;
1253         int qd_idx = sh->qd_idx;
1254         struct page *xor_dest;
1255         struct page **xor_srcs = percpu->scribble;
1256         struct dma_async_tx_descriptor *tx;
1257         struct async_submit_ctl submit;
1258         int count;
1259         int i;
1260
1261         pr_debug("%s: stripe %llu\n", __func__,
1262                 (unsigned long long)sh->sector);
1263
1264         count = 0;
1265         xor_dest = sh->dev[pd_idx].page;
1266         xor_srcs[count++] = xor_dest;
1267         for (i = disks; i--; ) {
1268                 if (i == pd_idx || i == qd_idx)
1269                         continue;
1270                 xor_srcs[count++] = sh->dev[i].page;
1271         }
1272
1273         init_async_submit(&submit, 0, NULL, NULL, NULL,
1274                           to_addr_conv(sh, percpu));
1275         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1276                            &sh->ops.zero_sum_result, &submit);
1277
1278         atomic_inc(&sh->count);
1279         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1280         tx = async_trigger_callback(&submit);
1281 }
1282
1283 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1284 {
1285         struct page **srcs = percpu->scribble;
1286         struct async_submit_ctl submit;
1287         int count;
1288
1289         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1290                 (unsigned long long)sh->sector, checkp);
1291
1292         count = set_syndrome_sources(srcs, sh);
1293         if (!checkp)
1294                 srcs[count] = NULL;
1295
1296         atomic_inc(&sh->count);
1297         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1298                           sh, to_addr_conv(sh, percpu));
1299         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1300                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1301 }
1302
1303 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304 {
1305         int overlap_clear = 0, i, disks = sh->disks;
1306         struct dma_async_tx_descriptor *tx = NULL;
1307         struct r5conf *conf = sh->raid_conf;
1308         int level = conf->level;
1309         struct raid5_percpu *percpu;
1310         unsigned long cpu;
1311
1312         cpu = get_cpu();
1313         percpu = per_cpu_ptr(conf->percpu, cpu);
1314         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1315                 ops_run_biofill(sh);
1316                 overlap_clear++;
1317         }
1318
1319         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1320                 if (level < 6)
1321                         tx = ops_run_compute5(sh, percpu);
1322                 else {
1323                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1324                                 tx = ops_run_compute6_1(sh, percpu);
1325                         else
1326                                 tx = ops_run_compute6_2(sh, percpu);
1327                 }
1328                 /* terminate the chain if reconstruct is not set to be run */
1329                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1330                         async_tx_ack(tx);
1331         }
1332
1333         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1334                 tx = ops_run_prexor(sh, percpu, tx);
1335
1336         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1337                 tx = ops_run_biodrain(sh, tx);
1338                 overlap_clear++;
1339         }
1340
1341         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1342                 if (level < 6)
1343                         ops_run_reconstruct5(sh, percpu, tx);
1344                 else
1345                         ops_run_reconstruct6(sh, percpu, tx);
1346         }
1347
1348         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1349                 if (sh->check_state == check_state_run)
1350                         ops_run_check_p(sh, percpu);
1351                 else if (sh->check_state == check_state_run_q)
1352                         ops_run_check_pq(sh, percpu, 0);
1353                 else if (sh->check_state == check_state_run_pq)
1354                         ops_run_check_pq(sh, percpu, 1);
1355                 else
1356                         BUG();
1357         }
1358
1359         if (overlap_clear)
1360                 for (i = disks; i--; ) {
1361                         struct r5dev *dev = &sh->dev[i];
1362                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1363                                 wake_up(&sh->raid_conf->wait_for_overlap);
1364                 }
1365         put_cpu();
1366 }
1367
1368 #ifdef CONFIG_MULTICORE_RAID456
1369 static void async_run_ops(void *param, async_cookie_t cookie)
1370 {
1371         struct stripe_head *sh = param;
1372         unsigned long ops_request = sh->ops.request;
1373
1374         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1375         wake_up(&sh->ops.wait_for_ops);
1376
1377         __raid_run_ops(sh, ops_request);
1378         release_stripe(sh);
1379 }
1380
1381 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1382 {
1383         /* since handle_stripe can be called outside of raid5d context
1384          * we need to ensure sh->ops.request is de-staged before another
1385          * request arrives
1386          */
1387         wait_event(sh->ops.wait_for_ops,
1388                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1389         sh->ops.request = ops_request;
1390
1391         atomic_inc(&sh->count);
1392         async_schedule(async_run_ops, sh);
1393 }
1394 #else
1395 #define raid_run_ops __raid_run_ops
1396 #endif
1397
1398 static int grow_one_stripe(struct r5conf *conf)
1399 {
1400         struct stripe_head *sh;
1401         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1402         if (!sh)
1403                 return 0;
1404
1405         sh->raid_conf = conf;
1406         #ifdef CONFIG_MULTICORE_RAID456
1407         init_waitqueue_head(&sh->ops.wait_for_ops);
1408         #endif
1409
1410         if (grow_buffers(sh)) {
1411                 shrink_buffers(sh);
1412                 kmem_cache_free(conf->slab_cache, sh);
1413                 return 0;
1414         }
1415         /* we just created an active stripe so... */
1416         atomic_set(&sh->count, 1);
1417         atomic_inc(&conf->active_stripes);
1418         INIT_LIST_HEAD(&sh->lru);
1419         release_stripe(sh);
1420         return 1;
1421 }
1422
1423 static int grow_stripes(struct r5conf *conf, int num)
1424 {
1425         struct kmem_cache *sc;
1426         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1427
1428         if (conf->mddev->gendisk)
1429                 sprintf(conf->cache_name[0],
1430                         "raid%d-%s", conf->level, mdname(conf->mddev));
1431         else
1432                 sprintf(conf->cache_name[0],
1433                         "raid%d-%p", conf->level, conf->mddev);
1434         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1435
1436         conf->active_name = 0;
1437         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1438                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1439                                0, 0, NULL);
1440         if (!sc)
1441                 return 1;
1442         conf->slab_cache = sc;
1443         conf->pool_size = devs;
1444         while (num--)
1445                 if (!grow_one_stripe(conf))
1446                         return 1;
1447         return 0;
1448 }
1449
1450 /**
1451  * scribble_len - return the required size of the scribble region
1452  * @num - total number of disks in the array
1453  *
1454  * The size must be enough to contain:
1455  * 1/ a struct page pointer for each device in the array +2
1456  * 2/ room to convert each entry in (1) to its corresponding dma
1457  *    (dma_map_page()) or page (page_address()) address.
1458  *
1459  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1460  * calculate over all devices (not just the data blocks), using zeros in place
1461  * of the P and Q blocks.
1462  */
1463 static size_t scribble_len(int num)
1464 {
1465         size_t len;
1466
1467         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1468
1469         return len;
1470 }
1471
1472 static int resize_stripes(struct r5conf *conf, int newsize)
1473 {
1474         /* Make all the stripes able to hold 'newsize' devices.
1475          * New slots in each stripe get 'page' set to a new page.
1476          *
1477          * This happens in stages:
1478          * 1/ create a new kmem_cache and allocate the required number of
1479          *    stripe_heads.
1480          * 2/ gather all the old stripe_heads and tranfer the pages across
1481          *    to the new stripe_heads.  This will have the side effect of
1482          *    freezing the array as once all stripe_heads have been collected,
1483          *    no IO will be possible.  Old stripe heads are freed once their
1484          *    pages have been transferred over, and the old kmem_cache is
1485          *    freed when all stripes are done.
1486          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1487          *    we simple return a failre status - no need to clean anything up.
1488          * 4/ allocate new pages for the new slots in the new stripe_heads.
1489          *    If this fails, we don't bother trying the shrink the
1490          *    stripe_heads down again, we just leave them as they are.
1491          *    As each stripe_head is processed the new one is released into
1492          *    active service.
1493          *
1494          * Once step2 is started, we cannot afford to wait for a write,
1495          * so we use GFP_NOIO allocations.
1496          */
1497         struct stripe_head *osh, *nsh;
1498         LIST_HEAD(newstripes);
1499         struct disk_info *ndisks;
1500         unsigned long cpu;
1501         int err;
1502         struct kmem_cache *sc;
1503         int i;
1504
1505         if (newsize <= conf->pool_size)
1506                 return 0; /* never bother to shrink */
1507
1508         err = md_allow_write(conf->mddev);
1509         if (err)
1510                 return err;
1511
1512         /* Step 1 */
1513         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1514                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1515                                0, 0, NULL);
1516         if (!sc)
1517                 return -ENOMEM;
1518
1519         for (i = conf->max_nr_stripes; i; i--) {
1520                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1521                 if (!nsh)
1522                         break;
1523
1524                 nsh->raid_conf = conf;
1525                 #ifdef CONFIG_MULTICORE_RAID456
1526                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1527                 #endif
1528
1529                 list_add(&nsh->lru, &newstripes);
1530         }
1531         if (i) {
1532                 /* didn't get enough, give up */
1533                 while (!list_empty(&newstripes)) {
1534                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1535                         list_del(&nsh->lru);
1536                         kmem_cache_free(sc, nsh);
1537                 }
1538                 kmem_cache_destroy(sc);
1539                 return -ENOMEM;
1540         }
1541         /* Step 2 - Must use GFP_NOIO now.
1542          * OK, we have enough stripes, start collecting inactive
1543          * stripes and copying them over
1544          */
1545         list_for_each_entry(nsh, &newstripes, lru) {
1546                 spin_lock_irq(&conf->device_lock);
1547                 wait_event_lock_irq(conf->wait_for_stripe,
1548                                     !list_empty(&conf->inactive_list),
1549                                     conf->device_lock,
1550                                     );
1551                 osh = get_free_stripe(conf);
1552                 spin_unlock_irq(&conf->device_lock);
1553                 atomic_set(&nsh->count, 1);
1554                 for(i=0; i<conf->pool_size; i++)
1555                         nsh->dev[i].page = osh->dev[i].page;
1556                 for( ; i<newsize; i++)
1557                         nsh->dev[i].page = NULL;
1558                 kmem_cache_free(conf->slab_cache, osh);
1559         }
1560         kmem_cache_destroy(conf->slab_cache);
1561
1562         /* Step 3.
1563          * At this point, we are holding all the stripes so the array
1564          * is completely stalled, so now is a good time to resize
1565          * conf->disks and the scribble region
1566          */
1567         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1568         if (ndisks) {
1569                 for (i=0; i<conf->raid_disks; i++)
1570                         ndisks[i] = conf->disks[i];
1571                 kfree(conf->disks);
1572                 conf->disks = ndisks;
1573         } else
1574                 err = -ENOMEM;
1575
1576         get_online_cpus();
1577         conf->scribble_len = scribble_len(newsize);
1578         for_each_present_cpu(cpu) {
1579                 struct raid5_percpu *percpu;
1580                 void *scribble;
1581
1582                 percpu = per_cpu_ptr(conf->percpu, cpu);
1583                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1584
1585                 if (scribble) {
1586                         kfree(percpu->scribble);
1587                         percpu->scribble = scribble;
1588                 } else {
1589                         err = -ENOMEM;
1590                         break;
1591                 }
1592         }
1593         put_online_cpus();
1594
1595         /* Step 4, return new stripes to service */
1596         while(!list_empty(&newstripes)) {
1597                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1598                 list_del_init(&nsh->lru);
1599
1600                 for (i=conf->raid_disks; i < newsize; i++)
1601                         if (nsh->dev[i].page == NULL) {
1602                                 struct page *p = alloc_page(GFP_NOIO);
1603                                 nsh->dev[i].page = p;
1604                                 if (!p)
1605                                         err = -ENOMEM;
1606                         }
1607                 release_stripe(nsh);
1608         }
1609         /* critical section pass, GFP_NOIO no longer needed */
1610
1611         conf->slab_cache = sc;
1612         conf->active_name = 1-conf->active_name;
1613         conf->pool_size = newsize;
1614         return err;
1615 }
1616
1617 static int drop_one_stripe(struct r5conf *conf)
1618 {
1619         struct stripe_head *sh;
1620
1621         spin_lock_irq(&conf->device_lock);
1622         sh = get_free_stripe(conf);
1623         spin_unlock_irq(&conf->device_lock);
1624         if (!sh)
1625                 return 0;
1626         BUG_ON(atomic_read(&sh->count));
1627         shrink_buffers(sh);
1628         kmem_cache_free(conf->slab_cache, sh);
1629         atomic_dec(&conf->active_stripes);
1630         return 1;
1631 }
1632
1633 static void shrink_stripes(struct r5conf *conf)
1634 {
1635         while (drop_one_stripe(conf))
1636                 ;
1637
1638         if (conf->slab_cache)
1639                 kmem_cache_destroy(conf->slab_cache);
1640         conf->slab_cache = NULL;
1641 }
1642
1643 static void raid5_end_read_request(struct bio * bi, int error)
1644 {
1645         struct stripe_head *sh = bi->bi_private;
1646         struct r5conf *conf = sh->raid_conf;
1647         int disks = sh->disks, i;
1648         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1649         char b[BDEVNAME_SIZE];
1650         struct md_rdev *rdev = NULL;
1651
1652
1653         for (i=0 ; i<disks; i++)
1654                 if (bi == &sh->dev[i].req)
1655                         break;
1656
1657         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1658                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659                 uptodate);
1660         if (i == disks) {
1661                 BUG();
1662                 return;
1663         }
1664         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1665                 /* If replacement finished while this request was outstanding,
1666                  * 'replacement' might be NULL already.
1667                  * In that case it moved down to 'rdev'.
1668                  * rdev is not removed until all requests are finished.
1669                  */
1670                 rdev = conf->disks[i].replacement;
1671         if (!rdev)
1672                 rdev = conf->disks[i].rdev;
1673
1674         if (uptodate) {
1675                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1676                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1677                         /* Note that this cannot happen on a
1678                          * replacement device.  We just fail those on
1679                          * any error
1680                          */
1681                         printk_ratelimited(
1682                                 KERN_INFO
1683                                 "md/raid:%s: read error corrected"
1684                                 " (%lu sectors at %llu on %s)\n",
1685                                 mdname(conf->mddev), STRIPE_SECTORS,
1686                                 (unsigned long long)(sh->sector
1687                                                      + rdev->data_offset),
1688                                 bdevname(rdev->bdev, b));
1689                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1690                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1691                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1692                 }
1693                 if (atomic_read(&rdev->read_errors))
1694                         atomic_set(&rdev->read_errors, 0);
1695         } else {
1696                 const char *bdn = bdevname(rdev->bdev, b);
1697                 int retry = 0;
1698
1699                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1700                 atomic_inc(&rdev->read_errors);
1701                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1702                         printk_ratelimited(
1703                                 KERN_WARNING
1704                                 "md/raid:%s: read error on replacement device "
1705                                 "(sector %llu on %s).\n",
1706                                 mdname(conf->mddev),
1707                                 (unsigned long long)(sh->sector
1708                                                      + rdev->data_offset),
1709                                 bdn);
1710                 else if (conf->mddev->degraded >= conf->max_degraded)
1711                         printk_ratelimited(
1712                                 KERN_WARNING
1713                                 "md/raid:%s: read error not correctable "
1714                                 "(sector %llu on %s).\n",
1715                                 mdname(conf->mddev),
1716                                 (unsigned long long)(sh->sector
1717                                                      + rdev->data_offset),
1718                                 bdn);
1719                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1720                         /* Oh, no!!! */
1721                         printk_ratelimited(
1722                                 KERN_WARNING
1723                                 "md/raid:%s: read error NOT corrected!! "
1724                                 "(sector %llu on %s).\n",
1725                                 mdname(conf->mddev),
1726                                 (unsigned long long)(sh->sector
1727                                                      + rdev->data_offset),
1728                                 bdn);
1729                 else if (atomic_read(&rdev->read_errors)
1730                          > conf->max_nr_stripes)
1731                         printk(KERN_WARNING
1732                                "md/raid:%s: Too many read errors, failing device %s.\n",
1733                                mdname(conf->mddev), bdn);
1734                 else
1735                         retry = 1;
1736                 if (retry)
1737                         set_bit(R5_ReadError, &sh->dev[i].flags);
1738                 else {
1739                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1740                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1741                         md_error(conf->mddev, rdev);
1742                 }
1743         }
1744         rdev_dec_pending(rdev, conf->mddev);
1745         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1746         set_bit(STRIPE_HANDLE, &sh->state);
1747         release_stripe(sh);
1748 }
1749
1750 static void raid5_end_write_request(struct bio *bi, int error)
1751 {
1752         struct stripe_head *sh = bi->bi_private;
1753         struct r5conf *conf = sh->raid_conf;
1754         int disks = sh->disks, i;
1755         struct md_rdev *uninitialized_var(rdev);
1756         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1757         sector_t first_bad;
1758         int bad_sectors;
1759         int replacement = 0;
1760
1761         for (i = 0 ; i < disks; i++) {
1762                 if (bi == &sh->dev[i].req) {
1763                         rdev = conf->disks[i].rdev;
1764                         break;
1765                 }
1766                 if (bi == &sh->dev[i].rreq) {
1767                         rdev = conf->disks[i].replacement;
1768                         if (rdev)
1769                                 replacement = 1;
1770                         else
1771                                 /* rdev was removed and 'replacement'
1772                                  * replaced it.  rdev is not removed
1773                                  * until all requests are finished.
1774                                  */
1775                                 rdev = conf->disks[i].rdev;
1776                         break;
1777                 }
1778         }
1779         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1780                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1781                 uptodate);
1782         if (i == disks) {
1783                 BUG();
1784                 return;
1785         }
1786
1787         if (replacement) {
1788                 if (!uptodate)
1789                         md_error(conf->mddev, rdev);
1790                 else if (is_badblock(rdev, sh->sector,
1791                                      STRIPE_SECTORS,
1792                                      &first_bad, &bad_sectors))
1793                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1794         } else {
1795                 if (!uptodate) {
1796                         set_bit(WriteErrorSeen, &rdev->flags);
1797                         set_bit(R5_WriteError, &sh->dev[i].flags);
1798                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1799                                 set_bit(MD_RECOVERY_NEEDED,
1800                                         &rdev->mddev->recovery);
1801                 } else if (is_badblock(rdev, sh->sector,
1802                                        STRIPE_SECTORS,
1803                                        &first_bad, &bad_sectors))
1804                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1805         }
1806         rdev_dec_pending(rdev, conf->mddev);
1807
1808         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1809                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1810         set_bit(STRIPE_HANDLE, &sh->state);
1811         release_stripe(sh);
1812 }
1813
1814 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1815         
1816 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1817 {
1818         struct r5dev *dev = &sh->dev[i];
1819
1820         bio_init(&dev->req);
1821         dev->req.bi_io_vec = &dev->vec;
1822         dev->req.bi_vcnt++;
1823         dev->req.bi_max_vecs++;
1824         dev->req.bi_private = sh;
1825         dev->vec.bv_page = dev->page;
1826
1827         bio_init(&dev->rreq);
1828         dev->rreq.bi_io_vec = &dev->rvec;
1829         dev->rreq.bi_vcnt++;
1830         dev->rreq.bi_max_vecs++;
1831         dev->rreq.bi_private = sh;
1832         dev->rvec.bv_page = dev->page;
1833
1834         dev->flags = 0;
1835         dev->sector = compute_blocknr(sh, i, previous);
1836 }
1837
1838 static void error(struct mddev *mddev, struct md_rdev *rdev)
1839 {
1840         char b[BDEVNAME_SIZE];
1841         struct r5conf *conf = mddev->private;
1842         unsigned long flags;
1843         pr_debug("raid456: error called\n");
1844
1845         spin_lock_irqsave(&conf->device_lock, flags);
1846         clear_bit(In_sync, &rdev->flags);
1847         mddev->degraded = calc_degraded(conf);
1848         spin_unlock_irqrestore(&conf->device_lock, flags);
1849         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1850
1851         set_bit(Blocked, &rdev->flags);
1852         set_bit(Faulty, &rdev->flags);
1853         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1854         printk(KERN_ALERT
1855                "md/raid:%s: Disk failure on %s, disabling device.\n"
1856                "md/raid:%s: Operation continuing on %d devices.\n",
1857                mdname(mddev),
1858                bdevname(rdev->bdev, b),
1859                mdname(mddev),
1860                conf->raid_disks - mddev->degraded);
1861 }
1862
1863 /*
1864  * Input: a 'big' sector number,
1865  * Output: index of the data and parity disk, and the sector # in them.
1866  */
1867 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1868                                      int previous, int *dd_idx,
1869                                      struct stripe_head *sh)
1870 {
1871         sector_t stripe, stripe2;
1872         sector_t chunk_number;
1873         unsigned int chunk_offset;
1874         int pd_idx, qd_idx;
1875         int ddf_layout = 0;
1876         sector_t new_sector;
1877         int algorithm = previous ? conf->prev_algo
1878                                  : conf->algorithm;
1879         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1880                                          : conf->chunk_sectors;
1881         int raid_disks = previous ? conf->previous_raid_disks
1882                                   : conf->raid_disks;
1883         int data_disks = raid_disks - conf->max_degraded;
1884
1885         /* First compute the information on this sector */
1886
1887         /*
1888          * Compute the chunk number and the sector offset inside the chunk
1889          */
1890         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1891         chunk_number = r_sector;
1892
1893         /*
1894          * Compute the stripe number
1895          */
1896         stripe = chunk_number;
1897         *dd_idx = sector_div(stripe, data_disks);
1898         stripe2 = stripe;
1899         /*
1900          * Select the parity disk based on the user selected algorithm.
1901          */
1902         pd_idx = qd_idx = -1;
1903         switch(conf->level) {
1904         case 4:
1905                 pd_idx = data_disks;
1906                 break;
1907         case 5:
1908                 switch (algorithm) {
1909                 case ALGORITHM_LEFT_ASYMMETRIC:
1910                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1911                         if (*dd_idx >= pd_idx)
1912                                 (*dd_idx)++;
1913                         break;
1914                 case ALGORITHM_RIGHT_ASYMMETRIC:
1915                         pd_idx = sector_div(stripe2, raid_disks);
1916                         if (*dd_idx >= pd_idx)
1917                                 (*dd_idx)++;
1918                         break;
1919                 case ALGORITHM_LEFT_SYMMETRIC:
1920                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1921                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1922                         break;
1923                 case ALGORITHM_RIGHT_SYMMETRIC:
1924                         pd_idx = sector_div(stripe2, raid_disks);
1925                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1926                         break;
1927                 case ALGORITHM_PARITY_0:
1928                         pd_idx = 0;
1929                         (*dd_idx)++;
1930                         break;
1931                 case ALGORITHM_PARITY_N:
1932                         pd_idx = data_disks;
1933                         break;
1934                 default:
1935                         BUG();
1936                 }
1937                 break;
1938         case 6:
1939
1940                 switch (algorithm) {
1941                 case ALGORITHM_LEFT_ASYMMETRIC:
1942                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1943                         qd_idx = pd_idx + 1;
1944                         if (pd_idx == raid_disks-1) {
1945                                 (*dd_idx)++;    /* Q D D D P */
1946                                 qd_idx = 0;
1947                         } else if (*dd_idx >= pd_idx)
1948                                 (*dd_idx) += 2; /* D D P Q D */
1949                         break;
1950                 case ALGORITHM_RIGHT_ASYMMETRIC:
1951                         pd_idx = sector_div(stripe2, raid_disks);
1952                         qd_idx = pd_idx + 1;
1953                         if (pd_idx == raid_disks-1) {
1954                                 (*dd_idx)++;    /* Q D D D P */
1955                                 qd_idx = 0;
1956                         } else if (*dd_idx >= pd_idx)
1957                                 (*dd_idx) += 2; /* D D P Q D */
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1961                         qd_idx = (pd_idx + 1) % raid_disks;
1962                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1963                         break;
1964                 case ALGORITHM_RIGHT_SYMMETRIC:
1965                         pd_idx = sector_div(stripe2, raid_disks);
1966                         qd_idx = (pd_idx + 1) % raid_disks;
1967                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1968                         break;
1969
1970                 case ALGORITHM_PARITY_0:
1971                         pd_idx = 0;
1972                         qd_idx = 1;
1973                         (*dd_idx) += 2;
1974                         break;
1975                 case ALGORITHM_PARITY_N:
1976                         pd_idx = data_disks;
1977                         qd_idx = data_disks + 1;
1978                         break;
1979
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1982                          * of blocks for computing Q is different.
1983                          */
1984                         pd_idx = sector_div(stripe2, raid_disks);
1985                         qd_idx = pd_idx + 1;
1986                         if (pd_idx == raid_disks-1) {
1987                                 (*dd_idx)++;    /* Q D D D P */
1988                                 qd_idx = 0;
1989                         } else if (*dd_idx >= pd_idx)
1990                                 (*dd_idx) += 2; /* D D P Q D */
1991                         ddf_layout = 1;
1992                         break;
1993
1994                 case ALGORITHM_ROTATING_N_RESTART:
1995                         /* Same a left_asymmetric, by first stripe is
1996                          * D D D P Q  rather than
1997                          * Q D D D P
1998                          */
1999                         stripe2 += 1;
2000                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2001                         qd_idx = pd_idx + 1;
2002                         if (pd_idx == raid_disks-1) {
2003                                 (*dd_idx)++;    /* Q D D D P */
2004                                 qd_idx = 0;
2005                         } else if (*dd_idx >= pd_idx)
2006                                 (*dd_idx) += 2; /* D D P Q D */
2007                         ddf_layout = 1;
2008                         break;
2009
2010                 case ALGORITHM_ROTATING_N_CONTINUE:
2011                         /* Same as left_symmetric but Q is before P */
2012                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2013                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2014                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2015                         ddf_layout = 1;
2016                         break;
2017
2018                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2019                         /* RAID5 left_asymmetric, with Q on last device */
2020                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2021                         if (*dd_idx >= pd_idx)
2022                                 (*dd_idx)++;
2023                         qd_idx = raid_disks - 1;
2024                         break;
2025
2026                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2027                         pd_idx = sector_div(stripe2, raid_disks-1);
2028                         if (*dd_idx >= pd_idx)
2029                                 (*dd_idx)++;
2030                         qd_idx = raid_disks - 1;
2031                         break;
2032
2033                 case ALGORITHM_LEFT_SYMMETRIC_6:
2034                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2035                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2036                         qd_idx = raid_disks - 1;
2037                         break;
2038
2039                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2040                         pd_idx = sector_div(stripe2, raid_disks-1);
2041                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2042                         qd_idx = raid_disks - 1;
2043                         break;
2044
2045                 case ALGORITHM_PARITY_0_6:
2046                         pd_idx = 0;
2047                         (*dd_idx)++;
2048                         qd_idx = raid_disks - 1;
2049                         break;
2050
2051                 default:
2052                         BUG();
2053                 }
2054                 break;
2055         }
2056
2057         if (sh) {
2058                 sh->pd_idx = pd_idx;
2059                 sh->qd_idx = qd_idx;
2060                 sh->ddf_layout = ddf_layout;
2061         }
2062         /*
2063          * Finally, compute the new sector number
2064          */
2065         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2066         return new_sector;
2067 }
2068
2069
2070 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2071 {
2072         struct r5conf *conf = sh->raid_conf;
2073         int raid_disks = sh->disks;
2074         int data_disks = raid_disks - conf->max_degraded;
2075         sector_t new_sector = sh->sector, check;
2076         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2077                                          : conf->chunk_sectors;
2078         int algorithm = previous ? conf->prev_algo
2079                                  : conf->algorithm;
2080         sector_t stripe;
2081         int chunk_offset;
2082         sector_t chunk_number;
2083         int dummy1, dd_idx = i;
2084         sector_t r_sector;
2085         struct stripe_head sh2;
2086
2087
2088         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2089         stripe = new_sector;
2090
2091         if (i == sh->pd_idx)
2092                 return 0;
2093         switch(conf->level) {
2094         case 4: break;
2095         case 5:
2096                 switch (algorithm) {
2097                 case ALGORITHM_LEFT_ASYMMETRIC:
2098                 case ALGORITHM_RIGHT_ASYMMETRIC:
2099                         if (i > sh->pd_idx)
2100                                 i--;
2101                         break;
2102                 case ALGORITHM_LEFT_SYMMETRIC:
2103                 case ALGORITHM_RIGHT_SYMMETRIC:
2104                         if (i < sh->pd_idx)
2105                                 i += raid_disks;
2106                         i -= (sh->pd_idx + 1);
2107                         break;
2108                 case ALGORITHM_PARITY_0:
2109                         i -= 1;
2110                         break;
2111                 case ALGORITHM_PARITY_N:
2112                         break;
2113                 default:
2114                         BUG();
2115                 }
2116                 break;
2117         case 6:
2118                 if (i == sh->qd_idx)
2119                         return 0; /* It is the Q disk */
2120                 switch (algorithm) {
2121                 case ALGORITHM_LEFT_ASYMMETRIC:
2122                 case ALGORITHM_RIGHT_ASYMMETRIC:
2123                 case ALGORITHM_ROTATING_ZERO_RESTART:
2124                 case ALGORITHM_ROTATING_N_RESTART:
2125                         if (sh->pd_idx == raid_disks-1)
2126                                 i--;    /* Q D D D P */
2127                         else if (i > sh->pd_idx)
2128                                 i -= 2; /* D D P Q D */
2129                         break;
2130                 case ALGORITHM_LEFT_SYMMETRIC:
2131                 case ALGORITHM_RIGHT_SYMMETRIC:
2132                         if (sh->pd_idx == raid_disks-1)
2133                                 i--; /* Q D D D P */
2134                         else {
2135                                 /* D D P Q D */
2136                                 if (i < sh->pd_idx)
2137                                         i += raid_disks;
2138                                 i -= (sh->pd_idx + 2);
2139                         }
2140                         break;
2141                 case ALGORITHM_PARITY_0:
2142                         i -= 2;
2143                         break;
2144                 case ALGORITHM_PARITY_N:
2145                         break;
2146                 case ALGORITHM_ROTATING_N_CONTINUE:
2147                         /* Like left_symmetric, but P is before Q */
2148                         if (sh->pd_idx == 0)
2149                                 i--;    /* P D D D Q */
2150                         else {
2151                                 /* D D Q P D */
2152                                 if (i < sh->pd_idx)
2153                                         i += raid_disks;
2154                                 i -= (sh->pd_idx + 1);
2155                         }
2156                         break;
2157                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2158                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2159                         if (i > sh->pd_idx)
2160                                 i--;
2161                         break;
2162                 case ALGORITHM_LEFT_SYMMETRIC_6:
2163                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2164                         if (i < sh->pd_idx)
2165                                 i += data_disks + 1;
2166                         i -= (sh->pd_idx + 1);
2167                         break;
2168                 case ALGORITHM_PARITY_0_6:
2169                         i -= 1;
2170                         break;
2171                 default:
2172                         BUG();
2173                 }
2174                 break;
2175         }
2176
2177         chunk_number = stripe * data_disks + i;
2178         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2179
2180         check = raid5_compute_sector(conf, r_sector,
2181                                      previous, &dummy1, &sh2);
2182         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2183                 || sh2.qd_idx != sh->qd_idx) {
2184                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2185                        mdname(conf->mddev));
2186                 return 0;
2187         }
2188         return r_sector;
2189 }
2190
2191
2192 static void
2193 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2194                          int rcw, int expand)
2195 {
2196         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2197         struct r5conf *conf = sh->raid_conf;
2198         int level = conf->level;
2199
2200         if (rcw) {
2201                 /* if we are not expanding this is a proper write request, and
2202                  * there will be bios with new data to be drained into the
2203                  * stripe cache
2204                  */
2205                 if (!expand) {
2206                         sh->reconstruct_state = reconstruct_state_drain_run;
2207                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2208                 } else
2209                         sh->reconstruct_state = reconstruct_state_run;
2210
2211                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2212
2213                 for (i = disks; i--; ) {
2214                         struct r5dev *dev = &sh->dev[i];
2215
2216                         if (dev->towrite) {
2217                                 set_bit(R5_LOCKED, &dev->flags);
2218                                 set_bit(R5_Wantdrain, &dev->flags);
2219                                 if (!expand)
2220                                         clear_bit(R5_UPTODATE, &dev->flags);
2221                                 s->locked++;
2222                         }
2223                 }
2224                 if (s->locked + conf->max_degraded == disks)
2225                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2226                                 atomic_inc(&conf->pending_full_writes);
2227         } else {
2228                 BUG_ON(level == 6);
2229                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2230                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2231
2232                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2233                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2234                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2235                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2236
2237                 for (i = disks; i--; ) {
2238                         struct r5dev *dev = &sh->dev[i];
2239                         if (i == pd_idx)
2240                                 continue;
2241
2242                         if (dev->towrite &&
2243                             (test_bit(R5_UPTODATE, &dev->flags) ||
2244                              test_bit(R5_Wantcompute, &dev->flags))) {
2245                                 set_bit(R5_Wantdrain, &dev->flags);
2246                                 set_bit(R5_LOCKED, &dev->flags);
2247                                 clear_bit(R5_UPTODATE, &dev->flags);
2248                                 s->locked++;
2249                         }
2250                 }
2251         }
2252
2253         /* keep the parity disk(s) locked while asynchronous operations
2254          * are in flight
2255          */
2256         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2257         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2258         s->locked++;
2259
2260         if (level == 6) {
2261                 int qd_idx = sh->qd_idx;
2262                 struct r5dev *dev = &sh->dev[qd_idx];
2263
2264                 set_bit(R5_LOCKED, &dev->flags);
2265                 clear_bit(R5_UPTODATE, &dev->flags);
2266                 s->locked++;
2267         }
2268
2269         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2270                 __func__, (unsigned long long)sh->sector,
2271                 s->locked, s->ops_request);
2272 }
2273
2274 /*
2275  * Each stripe/dev can have one or more bion attached.
2276  * toread/towrite point to the first in a chain.
2277  * The bi_next chain must be in order.
2278  */
2279 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2280 {
2281         struct bio **bip;
2282         struct r5conf *conf = sh->raid_conf;
2283         int firstwrite=0;
2284
2285         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2286                 (unsigned long long)bi->bi_sector,
2287                 (unsigned long long)sh->sector);
2288
2289
2290         spin_lock_irq(&conf->device_lock);
2291         if (forwrite) {
2292                 bip = &sh->dev[dd_idx].towrite;
2293                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2294                         firstwrite = 1;
2295         } else
2296                 bip = &sh->dev[dd_idx].toread;
2297         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2298                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2299                         goto overlap;
2300                 bip = & (*bip)->bi_next;
2301         }
2302         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2303                 goto overlap;
2304
2305         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2306         if (*bip)
2307                 bi->bi_next = *bip;
2308         *bip = bi;
2309         bi->bi_phys_segments++;
2310
2311         if (forwrite) {
2312                 /* check if page is covered */
2313                 sector_t sector = sh->dev[dd_idx].sector;
2314                 for (bi=sh->dev[dd_idx].towrite;
2315                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2316                              bi && bi->bi_sector <= sector;
2317                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2318                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2319                                 sector = bi->bi_sector + (bi->bi_size>>9);
2320                 }
2321                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2322                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2323         }
2324         spin_unlock_irq(&conf->device_lock);
2325
2326         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2327                 (unsigned long long)(*bip)->bi_sector,
2328                 (unsigned long long)sh->sector, dd_idx);
2329
2330         if (conf->mddev->bitmap && firstwrite) {
2331                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2332                                   STRIPE_SECTORS, 0);
2333                 sh->bm_seq = conf->seq_flush+1;
2334                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2335         }
2336         return 1;
2337
2338  overlap:
2339         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2340         spin_unlock_irq(&conf->device_lock);
2341         return 0;
2342 }
2343
2344 static void end_reshape(struct r5conf *conf);
2345
2346 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2347                             struct stripe_head *sh)
2348 {
2349         int sectors_per_chunk =
2350                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2351         int dd_idx;
2352         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2353         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2354
2355         raid5_compute_sector(conf,
2356                              stripe * (disks - conf->max_degraded)
2357                              *sectors_per_chunk + chunk_offset,
2358                              previous,
2359                              &dd_idx, sh);
2360 }
2361
2362 static void
2363 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2364                                 struct stripe_head_state *s, int disks,
2365                                 struct bio **return_bi)
2366 {
2367         int i;
2368         for (i = disks; i--; ) {
2369                 struct bio *bi;
2370                 int bitmap_end = 0;
2371
2372                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2373                         struct md_rdev *rdev;
2374                         rcu_read_lock();
2375                         rdev = rcu_dereference(conf->disks[i].rdev);
2376                         if (rdev && test_bit(In_sync, &rdev->flags))
2377                                 atomic_inc(&rdev->nr_pending);
2378                         else
2379                                 rdev = NULL;
2380                         rcu_read_unlock();
2381                         if (rdev) {
2382                                 if (!rdev_set_badblocks(
2383                                             rdev,
2384                                             sh->sector,
2385                                             STRIPE_SECTORS, 0))
2386                                         md_error(conf->mddev, rdev);
2387                                 rdev_dec_pending(rdev, conf->mddev);
2388                         }
2389                 }
2390                 spin_lock_irq(&conf->device_lock);
2391                 /* fail all writes first */
2392                 bi = sh->dev[i].towrite;
2393                 sh->dev[i].towrite = NULL;
2394                 if (bi) {
2395                         s->to_write--;
2396                         bitmap_end = 1;
2397                 }
2398
2399                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2400                         wake_up(&conf->wait_for_overlap);
2401
2402                 while (bi && bi->bi_sector <
2403                         sh->dev[i].sector + STRIPE_SECTORS) {
2404                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2405                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2406                         if (!raid5_dec_bi_phys_segments(bi)) {
2407                                 md_write_end(conf->mddev);
2408                                 bi->bi_next = *return_bi;
2409                                 *return_bi = bi;
2410                         }
2411                         bi = nextbi;
2412                 }
2413                 /* and fail all 'written' */
2414                 bi = sh->dev[i].written;
2415                 sh->dev[i].written = NULL;
2416                 if (bi) bitmap_end = 1;
2417                 while (bi && bi->bi_sector <
2418                        sh->dev[i].sector + STRIPE_SECTORS) {
2419                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2420                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2421                         if (!raid5_dec_bi_phys_segments(bi)) {
2422                                 md_write_end(conf->mddev);
2423                                 bi->bi_next = *return_bi;
2424                                 *return_bi = bi;
2425                         }
2426                         bi = bi2;
2427                 }
2428
2429                 /* fail any reads if this device is non-operational and
2430                  * the data has not reached the cache yet.
2431                  */
2432                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2433                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2434                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2435                         bi = sh->dev[i].toread;
2436                         sh->dev[i].toread = NULL;
2437                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2438                                 wake_up(&conf->wait_for_overlap);
2439                         if (bi) s->to_read--;
2440                         while (bi && bi->bi_sector <
2441                                sh->dev[i].sector + STRIPE_SECTORS) {
2442                                 struct bio *nextbi =
2443                                         r5_next_bio(bi, sh->dev[i].sector);
2444                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2445                                 if (!raid5_dec_bi_phys_segments(bi)) {
2446                                         bi->bi_next = *return_bi;
2447                                         *return_bi = bi;
2448                                 }
2449                                 bi = nextbi;
2450                         }
2451                 }
2452                 spin_unlock_irq(&conf->device_lock);
2453                 if (bitmap_end)
2454                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2455                                         STRIPE_SECTORS, 0, 0);
2456                 /* If we were in the middle of a write the parity block might
2457                  * still be locked - so just clear all R5_LOCKED flags
2458                  */
2459                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2460         }
2461
2462         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2463                 if (atomic_dec_and_test(&conf->pending_full_writes))
2464                         md_wakeup_thread(conf->mddev->thread);
2465 }
2466
2467 static void
2468 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2469                    struct stripe_head_state *s)
2470 {
2471         int abort = 0;
2472         int i;
2473
2474         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2475         clear_bit(STRIPE_SYNCING, &sh->state);
2476         s->syncing = 0;
2477         s->replacing = 0;
2478         /* There is nothing more to do for sync/check/repair.
2479          * For recover/replace we need to record a bad block on all
2480          * non-sync devices, or abort the recovery
2481          */
2482         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2483                 return;
2484         /* During recovery devices cannot be removed, so locking and
2485          * refcounting of rdevs is not needed
2486          */
2487         for (i = 0; i < conf->raid_disks; i++) {
2488                 struct md_rdev *rdev = conf->disks[i].rdev;
2489                 if (rdev
2490                     && !test_bit(Faulty, &rdev->flags)
2491                     && !test_bit(In_sync, &rdev->flags)
2492                     && !rdev_set_badblocks(rdev, sh->sector,
2493                                            STRIPE_SECTORS, 0))
2494                         abort = 1;
2495                 rdev = conf->disks[i].replacement;
2496                 if (rdev
2497                     && !test_bit(Faulty, &rdev->flags)
2498                     && !test_bit(In_sync, &rdev->flags)
2499                     && !rdev_set_badblocks(rdev, sh->sector,
2500                                            STRIPE_SECTORS, 0))
2501                         abort = 1;
2502         }
2503         if (abort) {
2504                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2505                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2506         }
2507 }
2508
2509 static int want_replace(struct stripe_head *sh, int disk_idx)
2510 {
2511         struct md_rdev *rdev;
2512         int rv = 0;
2513         /* Doing recovery so rcu locking not required */
2514         rdev = sh->raid_conf->disks[disk_idx].replacement;
2515         if (rdev
2516             && !test_bit(Faulty, &rdev->flags)
2517             && !test_bit(In_sync, &rdev->flags)
2518             && (rdev->recovery_offset <= sh->sector
2519                 || rdev->mddev->recovery_cp <= sh->sector))
2520                 rv = 1;
2521
2522         return rv;
2523 }
2524
2525 /* fetch_block - checks the given member device to see if its data needs
2526  * to be read or computed to satisfy a request.
2527  *
2528  * Returns 1 when no more member devices need to be checked, otherwise returns
2529  * 0 to tell the loop in handle_stripe_fill to continue
2530  */
2531 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2532                        int disk_idx, int disks)
2533 {
2534         struct r5dev *dev = &sh->dev[disk_idx];
2535         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2536                                   &sh->dev[s->failed_num[1]] };
2537
2538         /* is the data in this block needed, and can we get it? */
2539         if (!test_bit(R5_LOCKED, &dev->flags) &&
2540             !test_bit(R5_UPTODATE, &dev->flags) &&
2541             (dev->toread ||
2542              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2543              s->syncing || s->expanding ||
2544              (s->replacing && want_replace(sh, disk_idx)) ||
2545              (s->failed >= 1 && fdev[0]->toread) ||
2546              (s->failed >= 2 && fdev[1]->toread) ||
2547              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2548               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2549              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2550                 /* we would like to get this block, possibly by computing it,
2551                  * otherwise read it if the backing disk is insync
2552                  */
2553                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2554                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2555                 if ((s->uptodate == disks - 1) &&
2556                     (s->failed && (disk_idx == s->failed_num[0] ||
2557                                    disk_idx == s->failed_num[1]))) {
2558                         /* have disk failed, and we're requested to fetch it;
2559                          * do compute it
2560                          */
2561                         pr_debug("Computing stripe %llu block %d\n",
2562                                (unsigned long long)sh->sector, disk_idx);
2563                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2564                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2565                         set_bit(R5_Wantcompute, &dev->flags);
2566                         sh->ops.target = disk_idx;
2567                         sh->ops.target2 = -1; /* no 2nd target */
2568                         s->req_compute = 1;
2569                         /* Careful: from this point on 'uptodate' is in the eye
2570                          * of raid_run_ops which services 'compute' operations
2571                          * before writes. R5_Wantcompute flags a block that will
2572                          * be R5_UPTODATE by the time it is needed for a
2573                          * subsequent operation.
2574                          */
2575                         s->uptodate++;
2576                         return 1;
2577                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2578                         /* Computing 2-failure is *very* expensive; only
2579                          * do it if failed >= 2
2580                          */
2581                         int other;
2582                         for (other = disks; other--; ) {
2583                                 if (other == disk_idx)
2584                                         continue;
2585                                 if (!test_bit(R5_UPTODATE,
2586                                       &sh->dev[other].flags))
2587                                         break;
2588                         }
2589                         BUG_ON(other < 0);
2590                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2591                                (unsigned long long)sh->sector,
2592                                disk_idx, other);
2593                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2594                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2595                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2596                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2597                         sh->ops.target = disk_idx;
2598                         sh->ops.target2 = other;
2599                         s->uptodate += 2;
2600                         s->req_compute = 1;
2601                         return 1;
2602                 } else if (test_bit(R5_Insync, &dev->flags)) {
2603                         set_bit(R5_LOCKED, &dev->flags);
2604                         set_bit(R5_Wantread, &dev->flags);
2605                         s->locked++;
2606                         pr_debug("Reading block %d (sync=%d)\n",
2607                                 disk_idx, s->syncing);
2608                 }
2609         }
2610
2611         return 0;
2612 }
2613
2614 /**
2615  * handle_stripe_fill - read or compute data to satisfy pending requests.
2616  */
2617 static void handle_stripe_fill(struct stripe_head *sh,
2618                                struct stripe_head_state *s,
2619                                int disks)
2620 {
2621         int i;
2622
2623         /* look for blocks to read/compute, skip this if a compute
2624          * is already in flight, or if the stripe contents are in the
2625          * midst of changing due to a write
2626          */
2627         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2628             !sh->reconstruct_state)
2629                 for (i = disks; i--; )
2630                         if (fetch_block(sh, s, i, disks))
2631                                 break;
2632         set_bit(STRIPE_HANDLE, &sh->state);
2633 }
2634
2635
2636 /* handle_stripe_clean_event
2637  * any written block on an uptodate or failed drive can be returned.
2638  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2639  * never LOCKED, so we don't need to test 'failed' directly.
2640  */
2641 static void handle_stripe_clean_event(struct r5conf *conf,
2642         struct stripe_head *sh, int disks, struct bio **return_bi)
2643 {
2644         int i;
2645         struct r5dev *dev;
2646
2647         for (i = disks; i--; )
2648                 if (sh->dev[i].written) {
2649                         dev = &sh->dev[i];
2650                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2651                                 test_bit(R5_UPTODATE, &dev->flags)) {
2652                                 /* We can return any write requests */
2653                                 struct bio *wbi, *wbi2;
2654                                 int bitmap_end = 0;
2655                                 pr_debug("Return write for disc %d\n", i);
2656                                 spin_lock_irq(&conf->device_lock);
2657                                 wbi = dev->written;
2658                                 dev->written = NULL;
2659                                 while (wbi && wbi->bi_sector <
2660                                         dev->sector + STRIPE_SECTORS) {
2661                                         wbi2 = r5_next_bio(wbi, dev->sector);
2662                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2663                                                 md_write_end(conf->mddev);
2664                                                 wbi->bi_next = *return_bi;
2665                                                 *return_bi = wbi;
2666                                         }
2667                                         wbi = wbi2;
2668                                 }
2669                                 if (dev->towrite == NULL)
2670                                         bitmap_end = 1;
2671                                 spin_unlock_irq(&conf->device_lock);
2672                                 if (bitmap_end)
2673                                         bitmap_endwrite(conf->mddev->bitmap,
2674                                                         sh->sector,
2675                                                         STRIPE_SECTORS,
2676                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2677                                                         0);
2678                         }
2679                 }
2680
2681         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2682                 if (atomic_dec_and_test(&conf->pending_full_writes))
2683                         md_wakeup_thread(conf->mddev->thread);
2684 }
2685
2686 static void handle_stripe_dirtying(struct r5conf *conf,
2687                                    struct stripe_head *sh,
2688                                    struct stripe_head_state *s,
2689                                    int disks)
2690 {
2691         int rmw = 0, rcw = 0, i;
2692         if (conf->max_degraded == 2) {
2693                 /* RAID6 requires 'rcw' in current implementation
2694                  * Calculate the real rcw later - for now fake it
2695                  * look like rcw is cheaper
2696                  */
2697                 rcw = 1; rmw = 2;
2698         } else for (i = disks; i--; ) {
2699                 /* would I have to read this buffer for read_modify_write */
2700                 struct r5dev *dev = &sh->dev[i];
2701                 if ((dev->towrite || i == sh->pd_idx) &&
2702                     !test_bit(R5_LOCKED, &dev->flags) &&
2703                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2704                       test_bit(R5_Wantcompute, &dev->flags))) {
2705                         if (test_bit(R5_Insync, &dev->flags))
2706                                 rmw++;
2707                         else
2708                                 rmw += 2*disks;  /* cannot read it */
2709                 }
2710                 /* Would I have to read this buffer for reconstruct_write */
2711                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2712                     !test_bit(R5_LOCKED, &dev->flags) &&
2713                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2714                     test_bit(R5_Wantcompute, &dev->flags))) {
2715                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2716                         else
2717                                 rcw += 2*disks;
2718                 }
2719         }
2720         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2721                 (unsigned long long)sh->sector, rmw, rcw);
2722         set_bit(STRIPE_HANDLE, &sh->state);
2723         if (rmw < rcw && rmw > 0)
2724                 /* prefer read-modify-write, but need to get some data */
2725                 for (i = disks; i--; ) {
2726                         struct r5dev *dev = &sh->dev[i];
2727                         if ((dev->towrite || i == sh->pd_idx) &&
2728                             !test_bit(R5_LOCKED, &dev->flags) &&
2729                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2730                             test_bit(R5_Wantcompute, &dev->flags)) &&
2731                             test_bit(R5_Insync, &dev->flags)) {
2732                                 if (
2733                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2734                                         pr_debug("Read_old block "
2735                                                 "%d for r-m-w\n", i);
2736                                         set_bit(R5_LOCKED, &dev->flags);
2737                                         set_bit(R5_Wantread, &dev->flags);
2738                                         s->locked++;
2739                                 } else {
2740                                         set_bit(STRIPE_DELAYED, &sh->state);
2741                                         set_bit(STRIPE_HANDLE, &sh->state);
2742                                 }
2743                         }
2744                 }
2745         if (rcw <= rmw && rcw > 0) {
2746                 /* want reconstruct write, but need to get some data */
2747                 rcw = 0;
2748                 for (i = disks; i--; ) {
2749                         struct r5dev *dev = &sh->dev[i];
2750                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2751                             i != sh->pd_idx && i != sh->qd_idx &&
2752                             !test_bit(R5_LOCKED, &dev->flags) &&
2753                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2754                               test_bit(R5_Wantcompute, &dev->flags))) {
2755                                 rcw++;
2756                                 if (!test_bit(R5_Insync, &dev->flags))
2757                                         continue; /* it's a failed drive */
2758                                 if (
2759                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2760                                         pr_debug("Read_old block "
2761                                                 "%d for Reconstruct\n", i);
2762                                         set_bit(R5_LOCKED, &dev->flags);
2763                                         set_bit(R5_Wantread, &dev->flags);
2764                                         s->locked++;
2765                                 } else {
2766                                         set_bit(STRIPE_DELAYED, &sh->state);
2767                                         set_bit(STRIPE_HANDLE, &sh->state);
2768                                 }
2769                         }
2770                 }
2771         }
2772         /* now if nothing is locked, and if we have enough data,
2773          * we can start a write request
2774          */
2775         /* since handle_stripe can be called at any time we need to handle the
2776          * case where a compute block operation has been submitted and then a
2777          * subsequent call wants to start a write request.  raid_run_ops only
2778          * handles the case where compute block and reconstruct are requested
2779          * simultaneously.  If this is not the case then new writes need to be
2780          * held off until the compute completes.
2781          */
2782         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2783             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2784             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2785                 schedule_reconstruction(sh, s, rcw == 0, 0);
2786 }
2787
2788 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2789                                 struct stripe_head_state *s, int disks)
2790 {
2791         struct r5dev *dev = NULL;
2792
2793         set_bit(STRIPE_HANDLE, &sh->state);
2794
2795         switch (sh->check_state) {
2796         case check_state_idle:
2797                 /* start a new check operation if there are no failures */
2798                 if (s->failed == 0) {
2799                         BUG_ON(s->uptodate != disks);
2800                         sh->check_state = check_state_run;
2801                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2802                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2803                         s->uptodate--;
2804                         break;
2805                 }
2806                 dev = &sh->dev[s->failed_num[0]];
2807                 /* fall through */
2808         case check_state_compute_result:
2809                 sh->check_state = check_state_idle;
2810                 if (!dev)
2811                         dev = &sh->dev[sh->pd_idx];
2812
2813                 /* check that a write has not made the stripe insync */
2814                 if (test_bit(STRIPE_INSYNC, &sh->state))
2815                         break;
2816
2817                 /* either failed parity check, or recovery is happening */
2818                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2819                 BUG_ON(s->uptodate != disks);
2820
2821                 set_bit(R5_LOCKED, &dev->flags);
2822                 s->locked++;
2823                 set_bit(R5_Wantwrite, &dev->flags);
2824
2825                 clear_bit(STRIPE_DEGRADED, &sh->state);
2826                 set_bit(STRIPE_INSYNC, &sh->state);
2827                 break;
2828         case check_state_run:
2829                 break; /* we will be called again upon completion */
2830         case check_state_check_result:
2831                 sh->check_state = check_state_idle;
2832
2833                 /* if a failure occurred during the check operation, leave
2834                  * STRIPE_INSYNC not set and let the stripe be handled again
2835                  */
2836                 if (s->failed)
2837                         break;
2838
2839                 /* handle a successful check operation, if parity is correct
2840                  * we are done.  Otherwise update the mismatch count and repair
2841                  * parity if !MD_RECOVERY_CHECK
2842                  */
2843                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2844                         /* parity is correct (on disc,
2845                          * not in buffer any more)
2846                          */
2847                         set_bit(STRIPE_INSYNC, &sh->state);
2848                 else {
2849                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2850                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2851                                 /* don't try to repair!! */
2852                                 set_bit(STRIPE_INSYNC, &sh->state);
2853                         else {
2854                                 sh->check_state = check_state_compute_run;
2855                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2856                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2857                                 set_bit(R5_Wantcompute,
2858                                         &sh->dev[sh->pd_idx].flags);
2859                                 sh->ops.target = sh->pd_idx;
2860                                 sh->ops.target2 = -1;
2861                                 s->uptodate++;
2862                         }
2863                 }
2864                 break;
2865         case check_state_compute_run:
2866                 break;
2867         default:
2868                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2869                        __func__, sh->check_state,
2870                        (unsigned long long) sh->sector);
2871                 BUG();
2872         }
2873 }
2874
2875
2876 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2877                                   struct stripe_head_state *s,
2878                                   int disks)
2879 {
2880         int pd_idx = sh->pd_idx;
2881         int qd_idx = sh->qd_idx;
2882         struct r5dev *dev;
2883
2884         set_bit(STRIPE_HANDLE, &sh->state);
2885
2886         BUG_ON(s->failed > 2);
2887
2888         /* Want to check and possibly repair P and Q.
2889          * However there could be one 'failed' device, in which
2890          * case we can only check one of them, possibly using the
2891          * other to generate missing data
2892          */
2893
2894         switch (sh->check_state) {
2895         case check_state_idle:
2896                 /* start a new check operation if there are < 2 failures */
2897                 if (s->failed == s->q_failed) {
2898                         /* The only possible failed device holds Q, so it
2899                          * makes sense to check P (If anything else were failed,
2900                          * we would have used P to recreate it).
2901                          */
2902                         sh->check_state = check_state_run;
2903                 }
2904                 if (!s->q_failed && s->failed < 2) {
2905                         /* Q is not failed, and we didn't use it to generate
2906                          * anything, so it makes sense to check it
2907                          */
2908                         if (sh->check_state == check_state_run)
2909                                 sh->check_state = check_state_run_pq;
2910                         else
2911                                 sh->check_state = check_state_run_q;
2912                 }
2913
2914                 /* discard potentially stale zero_sum_result */
2915                 sh->ops.zero_sum_result = 0;
2916
2917                 if (sh->check_state == check_state_run) {
2918                         /* async_xor_zero_sum destroys the contents of P */
2919                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2920                         s->uptodate--;
2921                 }
2922                 if (sh->check_state >= check_state_run &&
2923                     sh->check_state <= check_state_run_pq) {
2924                         /* async_syndrome_zero_sum preserves P and Q, so
2925                          * no need to mark them !uptodate here
2926                          */
2927                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2928                         break;
2929                 }
2930
2931                 /* we have 2-disk failure */
2932                 BUG_ON(s->failed != 2);
2933                 /* fall through */
2934         case check_state_compute_result:
2935                 sh->check_state = check_state_idle;
2936
2937                 /* check that a write has not made the stripe insync */
2938                 if (test_bit(STRIPE_INSYNC, &sh->state))
2939                         break;
2940
2941                 /* now write out any block on a failed drive,
2942                  * or P or Q if they were recomputed
2943                  */
2944                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2945                 if (s->failed == 2) {
2946                         dev = &sh->dev[s->failed_num[1]];
2947                         s->locked++;
2948                         set_bit(R5_LOCKED, &dev->flags);
2949                         set_bit(R5_Wantwrite, &dev->flags);
2950                 }
2951                 if (s->failed >= 1) {
2952                         dev = &sh->dev[s->failed_num[0]];
2953                         s->locked++;
2954                         set_bit(R5_LOCKED, &dev->flags);
2955                         set_bit(R5_Wantwrite, &dev->flags);
2956                 }
2957                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2958                         dev = &sh->dev[pd_idx];
2959                         s->locked++;
2960                         set_bit(R5_LOCKED, &dev->flags);
2961                         set_bit(R5_Wantwrite, &dev->flags);
2962                 }
2963                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2964                         dev = &sh->dev[qd_idx];
2965                         s->locked++;
2966                         set_bit(R5_LOCKED, &dev->flags);
2967                         set_bit(R5_Wantwrite, &dev->flags);
2968                 }
2969                 clear_bit(STRIPE_DEGRADED, &sh->state);
2970
2971                 set_bit(STRIPE_INSYNC, &sh->state);
2972                 break;
2973         case check_state_run:
2974         case check_state_run_q:
2975         case check_state_run_pq:
2976                 break; /* we will be called again upon completion */
2977         case check_state_check_result:
2978                 sh->check_state = check_state_idle;
2979
2980                 /* handle a successful check operation, if parity is correct
2981                  * we are done.  Otherwise update the mismatch count and repair
2982                  * parity if !MD_RECOVERY_CHECK
2983                  */
2984                 if (sh->ops.zero_sum_result == 0) {
2985                         /* both parities are correct */
2986                         if (!s->failed)
2987                                 set_bit(STRIPE_INSYNC, &sh->state);
2988                         else {
2989                                 /* in contrast to the raid5 case we can validate
2990                                  * parity, but still have a failure to write
2991                                  * back
2992                                  */
2993                                 sh->check_state = check_state_compute_result;
2994                                 /* Returning at this point means that we may go
2995                                  * off and bring p and/or q uptodate again so
2996                                  * we make sure to check zero_sum_result again
2997                                  * to verify if p or q need writeback
2998                                  */
2999                         }
3000                 } else {
3001                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3002                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3003                                 /* don't try to repair!! */
3004                                 set_bit(STRIPE_INSYNC, &sh->state);
3005                         else {
3006                                 int *target = &sh->ops.target;
3007
3008                                 sh->ops.target = -1;
3009                                 sh->ops.target2 = -1;
3010                                 sh->check_state = check_state_compute_run;
3011                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3012                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3013                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3014                                         set_bit(R5_Wantcompute,
3015                                                 &sh->dev[pd_idx].flags);
3016                                         *target = pd_idx;
3017                                         target = &sh->ops.target2;
3018                                         s->uptodate++;
3019                                 }
3020                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3021                                         set_bit(R5_Wantcompute,
3022                                                 &sh->dev[qd_idx].flags);
3023                                         *target = qd_idx;
3024                                         s->uptodate++;
3025                                 }
3026                         }
3027                 }
3028                 break;
3029         case check_state_compute_run:
3030                 break;
3031         default:
3032                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3033                        __func__, sh->check_state,
3034                        (unsigned long long) sh->sector);
3035                 BUG();
3036         }
3037 }
3038
3039 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3040 {
3041         int i;
3042
3043         /* We have read all the blocks in this stripe and now we need to
3044          * copy some of them into a target stripe for expand.
3045          */
3046         struct dma_async_tx_descriptor *tx = NULL;
3047         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3048         for (i = 0; i < sh->disks; i++)
3049                 if (i != sh->pd_idx && i != sh->qd_idx) {
3050                         int dd_idx, j;
3051                         struct stripe_head *sh2;
3052                         struct async_submit_ctl submit;
3053
3054                         sector_t bn = compute_blocknr(sh, i, 1);
3055                         sector_t s = raid5_compute_sector(conf, bn, 0,
3056                                                           &dd_idx, NULL);
3057                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3058                         if (sh2 == NULL)
3059                                 /* so far only the early blocks of this stripe
3060                                  * have been requested.  When later blocks
3061                                  * get requested, we will try again
3062                                  */
3063                                 continue;
3064                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3065                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3066                                 /* must have already done this block */
3067                                 release_stripe(sh2);
3068                                 continue;
3069                         }
3070
3071                         /* place all the copies on one channel */
3072                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3073                         tx = async_memcpy(sh2->dev[dd_idx].page,
3074                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3075                                           &submit);
3076
3077                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3078                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3079                         for (j = 0; j < conf->raid_disks; j++)
3080                                 if (j != sh2->pd_idx &&
3081                                     j != sh2->qd_idx &&
3082                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3083                                         break;
3084                         if (j == conf->raid_disks) {
3085                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3086                                 set_bit(STRIPE_HANDLE, &sh2->state);
3087                         }
3088                         release_stripe(sh2);
3089
3090                 }
3091         /* done submitting copies, wait for them to complete */
3092         if (tx) {
3093                 async_tx_ack(tx);
3094                 dma_wait_for_async_tx(tx);
3095         }
3096 }
3097
3098 /*
3099  * handle_stripe - do things to a stripe.
3100  *
3101  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3102  * state of various bits to see what needs to be done.
3103  * Possible results:
3104  *    return some read requests which now have data
3105  *    return some write requests which are safely on storage
3106  *    schedule a read on some buffers
3107  *    schedule a write of some buffers
3108  *    return confirmation of parity correctness
3109  *
3110  */
3111
3112 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3113 {
3114         struct r5conf *conf = sh->raid_conf;
3115         int disks = sh->disks;
3116         struct r5dev *dev;
3117         int i;
3118         int do_recovery = 0;
3119
3120         memset(s, 0, sizeof(*s));
3121
3122         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3123         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3124         s->failed_num[0] = -1;
3125         s->failed_num[1] = -1;
3126
3127         /* Now to look around and see what can be done */
3128         rcu_read_lock();
3129         spin_lock_irq(&conf->device_lock);
3130         for (i=disks; i--; ) {
3131                 struct md_rdev *rdev;
3132                 sector_t first_bad;
3133                 int bad_sectors;
3134                 int is_bad = 0;
3135
3136                 dev = &sh->dev[i];
3137
3138                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3139                          i, dev->flags,
3140                          dev->toread, dev->towrite, dev->written);
3141                 /* maybe we can reply to a read
3142                  *
3143                  * new wantfill requests are only permitted while
3144                  * ops_complete_biofill is guaranteed to be inactive
3145                  */
3146                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3147                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3148                         set_bit(R5_Wantfill, &dev->flags);
3149
3150                 /* now count some things */
3151                 if (test_bit(R5_LOCKED, &dev->flags))
3152                         s->locked++;
3153                 if (test_bit(R5_UPTODATE, &dev->flags))
3154                         s->uptodate++;
3155                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3156                         s->compute++;
3157                         BUG_ON(s->compute > 2);
3158                 }
3159
3160                 if (test_bit(R5_Wantfill, &dev->flags))
3161                         s->to_fill++;
3162                 else if (dev->toread)
3163                         s->to_read++;
3164                 if (dev->towrite) {
3165                         s->to_write++;
3166                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3167                                 s->non_overwrite++;
3168                 }
3169                 if (dev->written)
3170                         s->written++;
3171                 /* Prefer to use the replacement for reads, but only
3172                  * if it is recovered enough and has no bad blocks.
3173                  */
3174                 rdev = rcu_dereference(conf->disks[i].replacement);
3175                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3176                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3177                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3178                                  &first_bad, &bad_sectors))
3179                         set_bit(R5_ReadRepl, &dev->flags);
3180                 else {
3181                         if (rdev)
3182                                 set_bit(R5_NeedReplace, &dev->flags);
3183                         rdev = rcu_dereference(conf->disks[i].rdev);
3184                         clear_bit(R5_ReadRepl, &dev->flags);
3185                 }
3186                 if (rdev && test_bit(Faulty, &rdev->flags))
3187                         rdev = NULL;
3188                 if (rdev) {
3189                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3190                                              &first_bad, &bad_sectors);
3191                         if (s->blocked_rdev == NULL
3192                             && (test_bit(Blocked, &rdev->flags)
3193                                 || is_bad < 0)) {
3194                                 if (is_bad < 0)
3195                                         set_bit(BlockedBadBlocks,
3196                                                 &rdev->flags);
3197                                 s->blocked_rdev = rdev;
3198                                 atomic_inc(&rdev->nr_pending);
3199                         }
3200                 }
3201                 clear_bit(R5_Insync, &dev->flags);
3202                 if (!rdev)
3203                         /* Not in-sync */;
3204                 else if (is_bad) {
3205                         /* also not in-sync */
3206                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3207                                 /* treat as in-sync, but with a read error
3208                                  * which we can now try to correct
3209                                  */
3210                                 set_bit(R5_Insync, &dev->flags);
3211                                 set_bit(R5_ReadError, &dev->flags);
3212                         }
3213                 } else if (test_bit(In_sync, &rdev->flags))
3214                         set_bit(R5_Insync, &dev->flags);
3215                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3216                         /* in sync if before recovery_offset */
3217                         set_bit(R5_Insync, &dev->flags);
3218                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3219                          test_bit(R5_Expanded, &dev->flags))
3220                         /* If we've reshaped into here, we assume it is Insync.
3221                          * We will shortly update recovery_offset to make
3222                          * it official.
3223                          */
3224                         set_bit(R5_Insync, &dev->flags);
3225
3226                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3227                         /* This flag does not apply to '.replacement'
3228                          * only to .rdev, so make sure to check that*/
3229                         struct md_rdev *rdev2 = rcu_dereference(
3230                                 conf->disks[i].rdev);
3231                         if (rdev2 == rdev)
3232                                 clear_bit(R5_Insync, &dev->flags);
3233                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3234                                 s->handle_bad_blocks = 1;
3235                                 atomic_inc(&rdev2->nr_pending);
3236                         } else
3237                                 clear_bit(R5_WriteError, &dev->flags);
3238                 }
3239                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3240                         /* This flag does not apply to '.replacement'
3241                          * only to .rdev, so make sure to check that*/
3242                         struct md_rdev *rdev2 = rcu_dereference(
3243                                 conf->disks[i].rdev);
3244                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3245                                 s->handle_bad_blocks = 1;
3246                                 atomic_inc(&rdev2->nr_pending);
3247                         } else
3248                                 clear_bit(R5_MadeGood, &dev->flags);
3249                 }
3250                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3251                         struct md_rdev *rdev2 = rcu_dereference(
3252                                 conf->disks[i].replacement);
3253                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3254                                 s->handle_bad_blocks = 1;
3255                                 atomic_inc(&rdev2->nr_pending);
3256                         } else
3257                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3258                 }
3259                 if (!test_bit(R5_Insync, &dev->flags)) {
3260                         /* The ReadError flag will just be confusing now */
3261                         clear_bit(R5_ReadError, &dev->flags);
3262                         clear_bit(R5_ReWrite, &dev->flags);
3263                 }
3264                 if (test_bit(R5_ReadError, &dev->flags))
3265                         clear_bit(R5_Insync, &dev->flags);
3266                 if (!test_bit(R5_Insync, &dev->flags)) {
3267                         if (s->failed < 2)
3268                                 s->failed_num[s->failed] = i;
3269                         s->failed++;
3270                         if (rdev && !test_bit(Faulty, &rdev->flags))
3271                                 do_recovery = 1;
3272                 }
3273         }
3274         spin_unlock_irq(&conf->device_lock);
3275         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3276                 /* If there is a failed device being replaced,
3277                  *     we must be recovering.
3278                  * else if we are after recovery_cp, we must be syncing
3279                  * else we can only be replacing
3280                  * sync and recovery both need to read all devices, and so
3281                  * use the same flag.
3282                  */
3283                 if (do_recovery ||
3284                     sh->sector >= conf->mddev->recovery_cp)
3285                         s->syncing = 1;
3286                 else
3287                         s->replacing = 1;
3288         }
3289         rcu_read_unlock();
3290 }
3291
3292 static void handle_stripe(struct stripe_head *sh)
3293 {
3294         struct stripe_head_state s;
3295         struct r5conf *conf = sh->raid_conf;
3296         int i;
3297         int prexor;
3298         int disks = sh->disks;
3299         struct r5dev *pdev, *qdev;
3300
3301         clear_bit(STRIPE_HANDLE, &sh->state);
3302         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3303                 /* already being handled, ensure it gets handled
3304                  * again when current action finishes */
3305                 set_bit(STRIPE_HANDLE, &sh->state);
3306                 return;
3307         }
3308
3309         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3310                 set_bit(STRIPE_SYNCING, &sh->state);
3311                 clear_bit(STRIPE_INSYNC, &sh->state);
3312         }
3313         clear_bit(STRIPE_DELAYED, &sh->state);
3314
3315         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3316                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3317                (unsigned long long)sh->sector, sh->state,
3318                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3319                sh->check_state, sh->reconstruct_state);
3320
3321         analyse_stripe(sh, &s);
3322
3323         if (s.handle_bad_blocks) {
3324                 set_bit(STRIPE_HANDLE, &sh->state);
3325                 goto finish;
3326         }
3327
3328         if (unlikely(s.blocked_rdev)) {
3329                 if (s.syncing || s.expanding || s.expanded ||
3330                     s.replacing || s.to_write || s.written) {
3331                         set_bit(STRIPE_HANDLE, &sh->state);
3332                         goto finish;
3333                 }
3334                 /* There is nothing for the blocked_rdev to block */
3335                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3336                 s.blocked_rdev = NULL;
3337         }
3338
3339         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3340                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3341                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3342         }
3343
3344         pr_debug("locked=%d uptodate=%d to_read=%d"
3345                " to_write=%d failed=%d failed_num=%d,%d\n",
3346                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3347                s.failed_num[0], s.failed_num[1]);
3348         /* check if the array has lost more than max_degraded devices and,
3349          * if so, some requests might need to be failed.
3350          */
3351         if (s.failed > conf->max_degraded) {
3352                 sh->check_state = 0;
3353                 sh->reconstruct_state = 0;
3354                 if (s.to_read+s.to_write+s.written)
3355                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3356                 if (s.syncing + s.replacing)
3357                         handle_failed_sync(conf, sh, &s);
3358         }
3359
3360         /*
3361          * might be able to return some write requests if the parity blocks
3362          * are safe, or on a failed drive
3363          */
3364         pdev = &sh->dev[sh->pd_idx];
3365         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3366                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3367         qdev = &sh->dev[sh->qd_idx];
3368         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3369                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3370                 || conf->level < 6;
3371
3372         if (s.written &&
3373             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3374                              && !test_bit(R5_LOCKED, &pdev->flags)
3375                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3376             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3377                              && !test_bit(R5_LOCKED, &qdev->flags)
3378                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3379                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3380
3381         /* Now we might consider reading some blocks, either to check/generate
3382          * parity, or to satisfy requests
3383          * or to load a block that is being partially written.
3384          */
3385         if (s.to_read || s.non_overwrite
3386             || (conf->level == 6 && s.to_write && s.failed)
3387             || (s.syncing && (s.uptodate + s.compute < disks))
3388             || s.replacing
3389             || s.expanding)
3390                 handle_stripe_fill(sh, &s, disks);
3391
3392         /* Now we check to see if any write operations have recently
3393          * completed
3394          */
3395         prexor = 0;
3396         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3397                 prexor = 1;
3398         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3399             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3400                 sh->reconstruct_state = reconstruct_state_idle;
3401
3402                 /* All the 'written' buffers and the parity block are ready to
3403                  * be written back to disk
3404                  */
3405                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3406                 BUG_ON(sh->qd_idx >= 0 &&
3407                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3408                 for (i = disks; i--; ) {
3409                         struct r5dev *dev = &sh->dev[i];
3410                         if (test_bit(R5_LOCKED, &dev->flags) &&
3411                                 (i == sh->pd_idx || i == sh->qd_idx ||
3412                                  dev->written)) {
3413                                 pr_debug("Writing block %d\n", i);
3414                                 set_bit(R5_Wantwrite, &dev->flags);
3415                                 if (prexor)
3416                                         continue;
3417                                 if (!test_bit(R5_Insync, &dev->flags) ||
3418                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3419                                      s.failed == 0))
3420                                         set_bit(STRIPE_INSYNC, &sh->state);
3421                         }
3422                 }
3423                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3424                         s.dec_preread_active = 1;
3425         }
3426
3427         /* Now to consider new write requests and what else, if anything
3428          * should be read.  We do not handle new writes when:
3429          * 1/ A 'write' operation (copy+xor) is already in flight.
3430          * 2/ A 'check' operation is in flight, as it may clobber the parity
3431          *    block.
3432          */
3433         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3434                 handle_stripe_dirtying(conf, sh, &s, disks);
3435
3436         /* maybe we need to check and possibly fix the parity for this stripe
3437          * Any reads will already have been scheduled, so we just see if enough
3438          * data is available.  The parity check is held off while parity
3439          * dependent operations are in flight.
3440          */
3441         if (sh->check_state ||
3442             (s.syncing && s.locked == 0 &&
3443              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3444              !test_bit(STRIPE_INSYNC, &sh->state))) {
3445                 if (conf->level == 6)
3446                         handle_parity_checks6(conf, sh, &s, disks);
3447                 else
3448                         handle_parity_checks5(conf, sh, &s, disks);
3449         }
3450
3451         if (s.replacing && s.locked == 0
3452             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3453                 /* Write out to replacement devices where possible */
3454                 for (i = 0; i < conf->raid_disks; i++)
3455                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3456                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3457                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3458                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3459                                 s.locked++;
3460                         }
3461                 set_bit(STRIPE_INSYNC, &sh->state);
3462         }
3463         if ((s.syncing || s.replacing) && s.locked == 0 &&
3464             test_bit(STRIPE_INSYNC, &sh->state)) {
3465                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3466                 clear_bit(STRIPE_SYNCING, &sh->state);
3467         }
3468
3469         /* If the failed drives are just a ReadError, then we might need
3470          * to progress the repair/check process
3471          */
3472         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3473                 for (i = 0; i < s.failed; i++) {
3474                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3475                         if (test_bit(R5_ReadError, &dev->flags)
3476                             && !test_bit(R5_LOCKED, &dev->flags)
3477                             && test_bit(R5_UPTODATE, &dev->flags)
3478                                 ) {
3479                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3480                                         set_bit(R5_Wantwrite, &dev->flags);
3481                                         set_bit(R5_ReWrite, &dev->flags);
3482                                         set_bit(R5_LOCKED, &dev->flags);
3483                                         s.locked++;
3484                                 } else {
3485                                         /* let's read it back */
3486                                         set_bit(R5_Wantread, &dev->flags);
3487                                         set_bit(R5_LOCKED, &dev->flags);
3488                                         s.locked++;
3489                                 }
3490                         }
3491                 }
3492
3493
3494         /* Finish reconstruct operations initiated by the expansion process */
3495         if (sh->reconstruct_state == reconstruct_state_result) {
3496                 struct stripe_head *sh_src
3497                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3498                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3499                         /* sh cannot be written until sh_src has been read.
3500                          * so arrange for sh to be delayed a little
3501                          */
3502                         set_bit(STRIPE_DELAYED, &sh->state);
3503                         set_bit(STRIPE_HANDLE, &sh->state);
3504                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3505                                               &sh_src->state))
3506                                 atomic_inc(&conf->preread_active_stripes);
3507                         release_stripe(sh_src);
3508                         goto finish;
3509                 }
3510                 if (sh_src)
3511                         release_stripe(sh_src);
3512
3513                 sh->reconstruct_state = reconstruct_state_idle;
3514                 clear_bit(STRIPE_EXPANDING, &sh->state);
3515                 for (i = conf->raid_disks; i--; ) {
3516                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3517                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3518                         s.locked++;
3519                 }
3520         }
3521
3522         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3523             !sh->reconstruct_state) {
3524                 /* Need to write out all blocks after computing parity */
3525                 sh->disks = conf->raid_disks;
3526                 stripe_set_idx(sh->sector, conf, 0, sh);
3527                 schedule_reconstruction(sh, &s, 1, 1);
3528         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3529                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3530                 atomic_dec(&conf->reshape_stripes);
3531                 wake_up(&conf->wait_for_overlap);
3532                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3533         }
3534
3535         if (s.expanding && s.locked == 0 &&
3536             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3537                 handle_stripe_expansion(conf, sh);
3538
3539 finish:
3540         /* wait for this device to become unblocked */
3541         if (conf->mddev->external && unlikely(s.blocked_rdev))
3542                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3543
3544         if (s.handle_bad_blocks)
3545                 for (i = disks; i--; ) {
3546                         struct md_rdev *rdev;
3547                         struct r5dev *dev = &sh->dev[i];
3548                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3549                                 /* We own a safe reference to the rdev */
3550                                 rdev = conf->disks[i].rdev;
3551                                 if (!rdev_set_badblocks(rdev, sh->sector,
3552                                                         STRIPE_SECTORS, 0))
3553                                         md_error(conf->mddev, rdev);
3554                                 rdev_dec_pending(rdev, conf->mddev);
3555                         }
3556                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3557                                 rdev = conf->disks[i].rdev;
3558                                 rdev_clear_badblocks(rdev, sh->sector,
3559                                                      STRIPE_SECTORS);
3560                                 rdev_dec_pending(rdev, conf->mddev);
3561                         }
3562                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3563                                 rdev = conf->disks[i].replacement;
3564                                 if (!rdev)
3565                                         /* rdev have been moved down */
3566                                         rdev = conf->disks[i].rdev;
3567                                 rdev_clear_badblocks(rdev, sh->sector,
3568                                                      STRIPE_SECTORS);
3569                                 rdev_dec_pending(rdev, conf->mddev);
3570                         }
3571                 }
3572
3573         if (s.ops_request)
3574                 raid_run_ops(sh, s.ops_request);
3575
3576         ops_run_io(sh, &s);
3577
3578         if (s.dec_preread_active) {
3579                 /* We delay this until after ops_run_io so that if make_request
3580                  * is waiting on a flush, it won't continue until the writes
3581                  * have actually been submitted.
3582                  */
3583                 atomic_dec(&conf->preread_active_stripes);
3584                 if (atomic_read(&conf->preread_active_stripes) <
3585                     IO_THRESHOLD)
3586                         md_wakeup_thread(conf->mddev->thread);
3587         }
3588
3589         return_io(s.return_bi);
3590
3591         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3592 }
3593
3594 static void raid5_activate_delayed(struct r5conf *conf)
3595 {
3596         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3597                 while (!list_empty(&conf->delayed_list)) {
3598                         struct list_head *l = conf->delayed_list.next;
3599                         struct stripe_head *sh;
3600                         sh = list_entry(l, struct stripe_head, lru);
3601                         list_del_init(l);
3602                         clear_bit(STRIPE_DELAYED, &sh->state);
3603                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3604                                 atomic_inc(&conf->preread_active_stripes);
3605                         list_add_tail(&sh->lru, &conf->hold_list);
3606                 }
3607         }
3608 }
3609
3610 static void activate_bit_delay(struct r5conf *conf)
3611 {
3612         /* device_lock is held */
3613         struct list_head head;
3614         list_add(&head, &conf->bitmap_list);
3615         list_del_init(&conf->bitmap_list);
3616         while (!list_empty(&head)) {
3617                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3618                 list_del_init(&sh->lru);
3619                 atomic_inc(&sh->count);
3620                 __release_stripe(conf, sh);
3621         }
3622 }
3623
3624 int md_raid5_congested(struct mddev *mddev, int bits)
3625 {
3626         struct r5conf *conf = mddev->private;
3627
3628         /* No difference between reads and writes.  Just check
3629          * how busy the stripe_cache is
3630          */
3631
3632         if (conf->inactive_blocked)
3633                 return 1;
3634         if (conf->quiesce)
3635                 return 1;
3636         if (list_empty_careful(&conf->inactive_list))
3637                 return 1;
3638
3639         return 0;
3640 }
3641 EXPORT_SYMBOL_GPL(md_raid5_congested);
3642
3643 static int raid5_congested(void *data, int bits)
3644 {
3645         struct mddev *mddev = data;
3646
3647         return mddev_congested(mddev, bits) ||
3648                 md_raid5_congested(mddev, bits);
3649 }
3650
3651 /* We want read requests to align with chunks where possible,
3652  * but write requests don't need to.
3653  */
3654 static int raid5_mergeable_bvec(struct request_queue *q,
3655                                 struct bvec_merge_data *bvm,
3656                                 struct bio_vec *biovec)
3657 {
3658         struct mddev *mddev = q->queuedata;
3659         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3660         int max;
3661         unsigned int chunk_sectors = mddev->chunk_sectors;
3662         unsigned int bio_sectors = bvm->bi_size >> 9;
3663
3664         if ((bvm->bi_rw & 1) == WRITE)
3665                 return biovec->bv_len; /* always allow writes to be mergeable */
3666
3667         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3668                 chunk_sectors = mddev->new_chunk_sectors;
3669         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3670         if (max < 0) max = 0;
3671         if (max <= biovec->bv_len && bio_sectors == 0)
3672                 return biovec->bv_len;
3673         else
3674                 return max;
3675 }
3676
3677
3678 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3679 {
3680         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3681         unsigned int chunk_sectors = mddev->chunk_sectors;
3682         unsigned int bio_sectors = bio->bi_size >> 9;
3683
3684         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3685                 chunk_sectors = mddev->new_chunk_sectors;
3686         return  chunk_sectors >=
3687                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3688 }
3689
3690 /*
3691  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3692  *  later sampled by raid5d.
3693  */
3694 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3695 {
3696         unsigned long flags;
3697
3698         spin_lock_irqsave(&conf->device_lock, flags);
3699
3700         bi->bi_next = conf->retry_read_aligned_list;
3701         conf->retry_read_aligned_list = bi;
3702
3703         spin_unlock_irqrestore(&conf->device_lock, flags);
3704         md_wakeup_thread(conf->mddev->thread);
3705 }
3706
3707
3708 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3709 {
3710         struct bio *bi;
3711
3712         bi = conf->retry_read_aligned;
3713         if (bi) {
3714                 conf->retry_read_aligned = NULL;
3715                 return bi;
3716         }
3717         bi = conf->retry_read_aligned_list;
3718         if(bi) {
3719                 conf->retry_read_aligned_list = bi->bi_next;
3720                 bi->bi_next = NULL;
3721                 /*
3722                  * this sets the active strip count to 1 and the processed
3723                  * strip count to zero (upper 8 bits)
3724                  */
3725                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3726         }
3727
3728         return bi;
3729 }
3730
3731
3732 /*
3733  *  The "raid5_align_endio" should check if the read succeeded and if it
3734  *  did, call bio_endio on the original bio (having bio_put the new bio
3735  *  first).
3736  *  If the read failed..
3737  */
3738 static void raid5_align_endio(struct bio *bi, int error)
3739 {
3740         struct bio* raid_bi  = bi->bi_private;
3741         struct mddev *mddev;
3742         struct r5conf *conf;
3743         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3744         struct md_rdev *rdev;
3745
3746         bio_put(bi);
3747
3748         rdev = (void*)raid_bi->bi_next;
3749         raid_bi->bi_next = NULL;
3750         mddev = rdev->mddev;
3751         conf = mddev->private;
3752
3753         rdev_dec_pending(rdev, conf->mddev);
3754
3755         if (!error && uptodate) {
3756                 bio_endio(raid_bi, 0);
3757                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3758                         wake_up(&conf->wait_for_stripe);
3759                 return;
3760         }
3761
3762
3763         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3764
3765         add_bio_to_retry(raid_bi, conf);
3766 }
3767
3768 static int bio_fits_rdev(struct bio *bi)
3769 {
3770         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3771
3772         if ((bi->bi_size>>9) > queue_max_sectors(q))
3773                 return 0;
3774         blk_recount_segments(q, bi);
3775         if (bi->bi_phys_segments > queue_max_segments(q))
3776                 return 0;
3777
3778         if (q->merge_bvec_fn)
3779                 /* it's too hard to apply the merge_bvec_fn at this stage,
3780                  * just just give up
3781                  */
3782                 return 0;
3783
3784         return 1;
3785 }
3786
3787
3788 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3789 {
3790         struct r5conf *conf = mddev->private;
3791         int dd_idx;
3792         struct bio* align_bi;
3793         struct md_rdev *rdev;
3794         sector_t end_sector;
3795
3796         if (!in_chunk_boundary(mddev, raid_bio)) {
3797                 pr_debug("chunk_aligned_read : non aligned\n");
3798                 return 0;
3799         }
3800         /*
3801          * use bio_clone_mddev to make a copy of the bio
3802          */
3803         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3804         if (!align_bi)
3805                 return 0;
3806         /*
3807          *   set bi_end_io to a new function, and set bi_private to the
3808          *     original bio.
3809          */
3810         align_bi->bi_end_io  = raid5_align_endio;
3811         align_bi->bi_private = raid_bio;
3812         /*
3813          *      compute position
3814          */
3815         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3816                                                     0,
3817                                                     &dd_idx, NULL);
3818
3819         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3820         rcu_read_lock();
3821         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3822         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3823             rdev->recovery_offset < end_sector) {
3824                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3825                 if (rdev &&
3826                     (test_bit(Faulty, &rdev->flags) ||
3827                     !(test_bit(In_sync, &rdev->flags) ||
3828                       rdev->recovery_offset >= end_sector)))
3829                         rdev = NULL;
3830         }
3831         if (rdev) {
3832                 sector_t first_bad;
3833                 int bad_sectors;
3834
3835                 atomic_inc(&rdev->nr_pending);
3836                 rcu_read_unlock();
3837                 raid_bio->bi_next = (void*)rdev;
3838                 align_bi->bi_bdev =  rdev->bdev;
3839                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3840                 align_bi->bi_sector += rdev->data_offset;
3841
3842                 if (!bio_fits_rdev(align_bi) ||
3843                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3844                                 &first_bad, &bad_sectors)) {
3845                         /* too big in some way, or has a known bad block */
3846                         bio_put(align_bi);
3847                         rdev_dec_pending(rdev, mddev);
3848                         return 0;
3849                 }
3850
3851                 spin_lock_irq(&conf->device_lock);
3852                 wait_event_lock_irq(conf->wait_for_stripe,
3853                                     conf->quiesce == 0,
3854                                     conf->device_lock, /* nothing */);
3855                 atomic_inc(&conf->active_aligned_reads);
3856                 spin_unlock_irq(&conf->device_lock);
3857
3858                 generic_make_request(align_bi);
3859                 return 1;
3860         } else {
3861                 rcu_read_unlock();
3862                 bio_put(align_bi);
3863                 return 0;
3864         }
3865 }
3866
3867 /* __get_priority_stripe - get the next stripe to process
3868  *
3869  * Full stripe writes are allowed to pass preread active stripes up until
3870  * the bypass_threshold is exceeded.  In general the bypass_count
3871  * increments when the handle_list is handled before the hold_list; however, it
3872  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3873  * stripe with in flight i/o.  The bypass_count will be reset when the
3874  * head of the hold_list has changed, i.e. the head was promoted to the
3875  * handle_list.
3876  */
3877 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3878 {
3879         struct stripe_head *sh;
3880
3881         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3882                   __func__,
3883                   list_empty(&conf->handle_list) ? "empty" : "busy",
3884                   list_empty(&conf->hold_list) ? "empty" : "busy",
3885                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3886
3887         if (!list_empty(&conf->handle_list)) {
3888                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3889
3890                 if (list_empty(&conf->hold_list))
3891                         conf->bypass_count = 0;
3892                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3893                         if (conf->hold_list.next == conf->last_hold)
3894                                 conf->bypass_count++;
3895                         else {
3896                                 conf->last_hold = conf->hold_list.next;
3897                                 conf->bypass_count -= conf->bypass_threshold;
3898                                 if (conf->bypass_count < 0)
3899                                         conf->bypass_count = 0;
3900                         }
3901                 }
3902         } else if (!list_empty(&conf->hold_list) &&
3903                    ((conf->bypass_threshold &&
3904                      conf->bypass_count > conf->bypass_threshold) ||
3905                     atomic_read(&conf->pending_full_writes) == 0)) {
3906                 sh = list_entry(conf->hold_list.next,
3907                                 typeof(*sh), lru);
3908                 conf->bypass_count -= conf->bypass_threshold;
3909                 if (conf->bypass_count < 0)
3910                         conf->bypass_count = 0;
3911         } else
3912                 return NULL;
3913
3914         list_del_init(&sh->lru);
3915         atomic_inc(&sh->count);
3916         BUG_ON(atomic_read(&sh->count) != 1);
3917         return sh;
3918 }
3919
3920 static void make_request(struct mddev *mddev, struct bio * bi)
3921 {
3922         struct r5conf *conf = mddev->private;
3923         int dd_idx;
3924         sector_t new_sector;
3925         sector_t logical_sector, last_sector;
3926         struct stripe_head *sh;
3927         const int rw = bio_data_dir(bi);
3928         int remaining;
3929         int plugged;
3930
3931         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3932                 md_flush_request(mddev, bi);
3933                 return;
3934         }
3935
3936         md_write_start(mddev, bi);
3937
3938         if (rw == READ &&
3939              mddev->reshape_position == MaxSector &&
3940              chunk_aligned_read(mddev,bi))
3941                 return;
3942
3943         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3944         last_sector = bi->bi_sector + (bi->bi_size>>9);
3945         bi->bi_next = NULL;
3946         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3947
3948         plugged = mddev_check_plugged(mddev);
3949         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3950                 DEFINE_WAIT(w);
3951                 int disks, data_disks;
3952                 int previous;
3953
3954         retry:
3955                 previous = 0;
3956                 disks = conf->raid_disks;
3957                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3958                 if (unlikely(conf->reshape_progress != MaxSector)) {
3959                         /* spinlock is needed as reshape_progress may be
3960                          * 64bit on a 32bit platform, and so it might be
3961                          * possible to see a half-updated value
3962                          * Of course reshape_progress could change after
3963                          * the lock is dropped, so once we get a reference
3964                          * to the stripe that we think it is, we will have
3965                          * to check again.
3966                          */
3967                         spin_lock_irq(&conf->device_lock);
3968                         if (mddev->delta_disks < 0
3969                             ? logical_sector < conf->reshape_progress
3970                             : logical_sector >= conf->reshape_progress) {
3971                                 disks = conf->previous_raid_disks;
3972                                 previous = 1;
3973                         } else {
3974                                 if (mddev->delta_disks < 0
3975                                     ? logical_sector < conf->reshape_safe
3976                                     : logical_sector >= conf->reshape_safe) {
3977                                         spin_unlock_irq(&conf->device_lock);
3978                                         schedule();
3979                                         goto retry;
3980                                 }
3981                         }
3982                         spin_unlock_irq(&conf->device_lock);
3983                 }
3984                 data_disks = disks - conf->max_degraded;
3985
3986                 new_sector = raid5_compute_sector(conf, logical_sector,
3987                                                   previous,
3988                                                   &dd_idx, NULL);
3989                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3990                         (unsigned long long)new_sector, 
3991                         (unsigned long long)logical_sector);
3992
3993                 sh = get_active_stripe(conf, new_sector, previous,
3994                                        (bi->bi_rw&RWA_MASK), 0);
3995                 if (sh) {
3996                         if (unlikely(previous)) {
3997                                 /* expansion might have moved on while waiting for a
3998                                  * stripe, so we must do the range check again.
3999                                  * Expansion could still move past after this
4000                                  * test, but as we are holding a reference to
4001                                  * 'sh', we know that if that happens,
4002                                  *  STRIPE_EXPANDING will get set and the expansion
4003                                  * won't proceed until we finish with the stripe.
4004                                  */
4005                                 int must_retry = 0;
4006                                 spin_lock_irq(&conf->device_lock);
4007                                 if (mddev->delta_disks < 0
4008                                     ? logical_sector >= conf->reshape_progress
4009                                     : logical_sector < conf->reshape_progress)
4010                                         /* mismatch, need to try again */
4011                                         must_retry = 1;
4012                                 spin_unlock_irq(&conf->device_lock);
4013                                 if (must_retry) {
4014                                         release_stripe(sh);
4015                                         schedule();
4016                                         goto retry;
4017                                 }
4018                         }
4019
4020                         if (rw == WRITE &&
4021                             logical_sector >= mddev->suspend_lo &&
4022                             logical_sector < mddev->suspend_hi) {
4023                                 release_stripe(sh);
4024                                 /* As the suspend_* range is controlled by
4025                                  * userspace, we want an interruptible
4026                                  * wait.
4027                                  */
4028                                 flush_signals(current);
4029                                 prepare_to_wait(&conf->wait_for_overlap,
4030                                                 &w, TASK_INTERRUPTIBLE);
4031                                 if (logical_sector >= mddev->suspend_lo &&
4032                                     logical_sector < mddev->suspend_hi)
4033                                         schedule();
4034                                 goto retry;
4035                         }
4036
4037                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4038                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4039                                 /* Stripe is busy expanding or
4040                                  * add failed due to overlap.  Flush everything
4041                                  * and wait a while
4042                                  */
4043                                 md_wakeup_thread(mddev->thread);
4044                                 release_stripe(sh);
4045                                 schedule();
4046                                 goto retry;
4047                         }
4048                         finish_wait(&conf->wait_for_overlap, &w);
4049                         set_bit(STRIPE_HANDLE, &sh->state);
4050                         clear_bit(STRIPE_DELAYED, &sh->state);
4051                         if ((bi->bi_rw & REQ_SYNC) &&
4052                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4053                                 atomic_inc(&conf->preread_active_stripes);
4054                         release_stripe(sh);
4055                 } else {
4056                         /* cannot get stripe for read-ahead, just give-up */
4057                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4058                         finish_wait(&conf->wait_for_overlap, &w);
4059                         break;
4060                 }
4061                         
4062         }
4063         if (!plugged)
4064                 md_wakeup_thread(mddev->thread);
4065
4066         spin_lock_irq(&conf->device_lock);
4067         remaining = raid5_dec_bi_phys_segments(bi);
4068         spin_unlock_irq(&conf->device_lock);
4069         if (remaining == 0) {
4070
4071                 if ( rw == WRITE )
4072                         md_write_end(mddev);
4073
4074                 bio_endio(bi, 0);
4075         }
4076 }
4077
4078 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4079
4080 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4081 {
4082         /* reshaping is quite different to recovery/resync so it is
4083          * handled quite separately ... here.
4084          *
4085          * On each call to sync_request, we gather one chunk worth of
4086          * destination stripes and flag them as expanding.
4087          * Then we find all the source stripes and request reads.
4088          * As the reads complete, handle_stripe will copy the data
4089          * into the destination stripe and release that stripe.
4090          */
4091         struct r5conf *conf = mddev->private;
4092         struct stripe_head *sh;
4093         sector_t first_sector, last_sector;
4094         int raid_disks = conf->previous_raid_disks;
4095         int data_disks = raid_disks - conf->max_degraded;
4096         int new_data_disks = conf->raid_disks - conf->max_degraded;
4097         int i;
4098         int dd_idx;
4099         sector_t writepos, readpos, safepos;
4100         sector_t stripe_addr;
4101         int reshape_sectors;
4102         struct list_head stripes;
4103
4104         if (sector_nr == 0) {
4105                 /* If restarting in the middle, skip the initial sectors */
4106                 if (mddev->delta_disks < 0 &&
4107                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4108                         sector_nr = raid5_size(mddev, 0, 0)
4109                                 - conf->reshape_progress;
4110                 } else if (mddev->delta_disks >= 0 &&
4111                            conf->reshape_progress > 0)
4112                         sector_nr = conf->reshape_progress;
4113                 sector_div(sector_nr, new_data_disks);
4114                 if (sector_nr) {
4115                         mddev->curr_resync_completed = sector_nr;
4116                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4117                         *skipped = 1;
4118                         return sector_nr;
4119                 }
4120         }
4121
4122         /* We need to process a full chunk at a time.
4123          * If old and new chunk sizes differ, we need to process the
4124          * largest of these
4125          */
4126         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4127                 reshape_sectors = mddev->new_chunk_sectors;
4128         else
4129                 reshape_sectors = mddev->chunk_sectors;
4130
4131         /* we update the metadata when there is more than 3Meg
4132          * in the block range (that is rather arbitrary, should
4133          * probably be time based) or when the data about to be
4134          * copied would over-write the source of the data at
4135          * the front of the range.
4136          * i.e. one new_stripe along from reshape_progress new_maps
4137          * to after where reshape_safe old_maps to
4138          */
4139         writepos = conf->reshape_progress;
4140         sector_div(writepos, new_data_disks);
4141         readpos = conf->reshape_progress;
4142         sector_div(readpos, data_disks);
4143         safepos = conf->reshape_safe;
4144         sector_div(safepos, data_disks);
4145         if (mddev->delta_disks < 0) {
4146                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4147                 readpos += reshape_sectors;
4148                 safepos += reshape_sectors;
4149         } else {
4150                 writepos += reshape_sectors;
4151                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4152                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4153         }
4154
4155         /* 'writepos' is the most advanced device address we might write.
4156          * 'readpos' is the least advanced device address we might read.
4157          * 'safepos' is the least address recorded in the metadata as having
4158          *     been reshaped.
4159          * If 'readpos' is behind 'writepos', then there is no way that we can
4160          * ensure safety in the face of a crash - that must be done by userspace
4161          * making a backup of the data.  So in that case there is no particular
4162          * rush to update metadata.
4163          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4164          * update the metadata to advance 'safepos' to match 'readpos' so that
4165          * we can be safe in the event of a crash.
4166          * So we insist on updating metadata if safepos is behind writepos and
4167          * readpos is beyond writepos.
4168          * In any case, update the metadata every 10 seconds.
4169          * Maybe that number should be configurable, but I'm not sure it is
4170          * worth it.... maybe it could be a multiple of safemode_delay???
4171          */
4172         if ((mddev->delta_disks < 0
4173              ? (safepos > writepos && readpos < writepos)
4174              : (safepos < writepos && readpos > writepos)) ||
4175             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4176                 /* Cannot proceed until we've updated the superblock... */
4177                 wait_event(conf->wait_for_overlap,
4178                            atomic_read(&conf->reshape_stripes)==0);
4179                 mddev->reshape_position = conf->reshape_progress;
4180                 mddev->curr_resync_completed = sector_nr;
4181                 conf->reshape_checkpoint = jiffies;
4182                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4183                 md_wakeup_thread(mddev->thread);
4184                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4185                            kthread_should_stop());
4186                 spin_lock_irq(&conf->device_lock);
4187                 conf->reshape_safe = mddev->reshape_position;
4188                 spin_unlock_irq(&conf->device_lock);
4189                 wake_up(&conf->wait_for_overlap);
4190                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4191         }
4192
4193         if (mddev->delta_disks < 0) {
4194                 BUG_ON(conf->reshape_progress == 0);
4195                 stripe_addr = writepos;
4196                 BUG_ON((mddev->dev_sectors &
4197                         ~((sector_t)reshape_sectors - 1))
4198                        - reshape_sectors - stripe_addr
4199                        != sector_nr);
4200         } else {
4201                 BUG_ON(writepos != sector_nr + reshape_sectors);
4202                 stripe_addr = sector_nr;
4203         }
4204         INIT_LIST_HEAD(&stripes);
4205         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4206                 int j;
4207                 int skipped_disk = 0;
4208                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4209                 set_bit(STRIPE_EXPANDING, &sh->state);
4210                 atomic_inc(&conf->reshape_stripes);
4211                 /* If any of this stripe is beyond the end of the old
4212                  * array, then we need to zero those blocks
4213                  */
4214                 for (j=sh->disks; j--;) {
4215                         sector_t s;
4216                         if (j == sh->pd_idx)
4217                                 continue;
4218                         if (conf->level == 6 &&
4219                             j == sh->qd_idx)
4220                                 continue;
4221                         s = compute_blocknr(sh, j, 0);
4222                         if (s < raid5_size(mddev, 0, 0)) {
4223                                 skipped_disk = 1;
4224                                 continue;
4225                         }
4226                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4227                         set_bit(R5_Expanded, &sh->dev[j].flags);
4228                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4229                 }
4230                 if (!skipped_disk) {
4231                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4232                         set_bit(STRIPE_HANDLE, &sh->state);
4233                 }
4234                 list_add(&sh->lru, &stripes);
4235         }
4236         spin_lock_irq(&conf->device_lock);
4237         if (mddev->delta_disks < 0)
4238                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4239         else
4240                 conf->reshape_progress += reshape_sectors * new_data_disks;
4241         spin_unlock_irq(&conf->device_lock);
4242         /* Ok, those stripe are ready. We can start scheduling
4243          * reads on the source stripes.
4244          * The source stripes are determined by mapping the first and last
4245          * block on the destination stripes.
4246          */
4247         first_sector =
4248                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4249                                      1, &dd_idx, NULL);
4250         last_sector =
4251                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4252                                             * new_data_disks - 1),
4253                                      1, &dd_idx, NULL);
4254         if (last_sector >= mddev->dev_sectors)
4255                 last_sector = mddev->dev_sectors - 1;
4256         while (first_sector <= last_sector) {
4257                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4258                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4259                 set_bit(STRIPE_HANDLE, &sh->state);
4260                 release_stripe(sh);
4261                 first_sector += STRIPE_SECTORS;
4262         }
4263         /* Now that the sources are clearly marked, we can release
4264          * the destination stripes
4265          */
4266         while (!list_empty(&stripes)) {
4267                 sh = list_entry(stripes.next, struct stripe_head, lru);
4268                 list_del_init(&sh->lru);
4269                 release_stripe(sh);
4270         }
4271         /* If this takes us to the resync_max point where we have to pause,
4272          * then we need to write out the superblock.
4273          */
4274         sector_nr += reshape_sectors;
4275         if ((sector_nr - mddev->curr_resync_completed) * 2
4276             >= mddev->resync_max - mddev->curr_resync_completed) {
4277                 /* Cannot proceed until we've updated the superblock... */
4278                 wait_event(conf->wait_for_overlap,
4279                            atomic_read(&conf->reshape_stripes) == 0);
4280                 mddev->reshape_position = conf->reshape_progress;
4281                 mddev->curr_resync_completed = sector_nr;
4282                 conf->reshape_checkpoint = jiffies;
4283                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4284                 md_wakeup_thread(mddev->thread);
4285                 wait_event(mddev->sb_wait,
4286                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4287                            || kthread_should_stop());
4288                 spin_lock_irq(&conf->device_lock);
4289                 conf->reshape_safe = mddev->reshape_position;
4290                 spin_unlock_irq(&conf->device_lock);
4291                 wake_up(&conf->wait_for_overlap);
4292                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4293         }
4294         return reshape_sectors;
4295 }
4296
4297 /* FIXME go_faster isn't used */
4298 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4299 {
4300         struct r5conf *conf = mddev->private;
4301         struct stripe_head *sh;
4302         sector_t max_sector = mddev->dev_sectors;
4303         sector_t sync_blocks;
4304         int still_degraded = 0;
4305         int i;
4306
4307         if (sector_nr >= max_sector) {
4308                 /* just being told to finish up .. nothing much to do */
4309
4310                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4311                         end_reshape(conf);
4312                         return 0;
4313                 }
4314
4315                 if (mddev->curr_resync < max_sector) /* aborted */
4316                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4317                                         &sync_blocks, 1);
4318                 else /* completed sync */
4319                         conf->fullsync = 0;
4320                 bitmap_close_sync(mddev->bitmap);
4321
4322                 return 0;
4323         }
4324
4325         /* Allow raid5_quiesce to complete */
4326         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4327
4328         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4329                 return reshape_request(mddev, sector_nr, skipped);
4330
4331         /* No need to check resync_max as we never do more than one
4332          * stripe, and as resync_max will always be on a chunk boundary,
4333          * if the check in md_do_sync didn't fire, there is no chance
4334          * of overstepping resync_max here
4335          */
4336
4337         /* if there is too many failed drives and we are trying
4338          * to resync, then assert that we are finished, because there is
4339          * nothing we can do.
4340          */
4341         if (mddev->degraded >= conf->max_degraded &&
4342             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4343                 sector_t rv = mddev->dev_sectors - sector_nr;
4344                 *skipped = 1;
4345                 return rv;
4346         }
4347         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4348             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4349             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4350                 /* we can skip this block, and probably more */
4351                 sync_blocks /= STRIPE_SECTORS;
4352                 *skipped = 1;
4353                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4354         }
4355
4356         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4357
4358         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4359         if (sh == NULL) {
4360                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4361                 /* make sure we don't swamp the stripe cache if someone else
4362                  * is trying to get access
4363                  */
4364                 schedule_timeout_uninterruptible(1);
4365         }
4366         /* Need to check if array will still be degraded after recovery/resync
4367          * We don't need to check the 'failed' flag as when that gets set,
4368          * recovery aborts.
4369          */
4370         for (i = 0; i < conf->raid_disks; i++)
4371                 if (conf->disks[i].rdev == NULL)
4372                         still_degraded = 1;
4373
4374         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4375
4376         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4377
4378         handle_stripe(sh);
4379         release_stripe(sh);
4380
4381         return STRIPE_SECTORS;
4382 }
4383
4384 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4385 {
4386         /* We may not be able to submit a whole bio at once as there
4387          * may not be enough stripe_heads available.
4388          * We cannot pre-allocate enough stripe_heads as we may need
4389          * more than exist in the cache (if we allow ever large chunks).
4390          * So we do one stripe head at a time and record in
4391          * ->bi_hw_segments how many have been done.
4392          *
4393          * We *know* that this entire raid_bio is in one chunk, so
4394          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4395          */
4396         struct stripe_head *sh;
4397         int dd_idx;
4398         sector_t sector, logical_sector, last_sector;
4399         int scnt = 0;
4400         int remaining;
4401         int handled = 0;
4402
4403         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4404         sector = raid5_compute_sector(conf, logical_sector,
4405                                       0, &dd_idx, NULL);
4406         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4407
4408         for (; logical_sector < last_sector;
4409              logical_sector += STRIPE_SECTORS,
4410                      sector += STRIPE_SECTORS,
4411                      scnt++) {
4412
4413                 if (scnt < raid5_bi_hw_segments(raid_bio))
4414                         /* already done this stripe */
4415                         continue;
4416
4417                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4418
4419                 if (!sh) {
4420                         /* failed to get a stripe - must wait */
4421                         raid5_set_bi_hw_segments(raid_bio, scnt);
4422                         conf->retry_read_aligned = raid_bio;
4423                         return handled;
4424                 }
4425
4426                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4427                         release_stripe(sh);
4428                         raid5_set_bi_hw_segments(raid_bio, scnt);
4429                         conf->retry_read_aligned = raid_bio;
4430                         return handled;
4431                 }
4432
4433                 handle_stripe(sh);
4434                 release_stripe(sh);
4435                 handled++;
4436         }
4437         spin_lock_irq(&conf->device_lock);
4438         remaining = raid5_dec_bi_phys_segments(raid_bio);
4439         spin_unlock_irq(&conf->device_lock);
4440         if (remaining == 0)
4441                 bio_endio(raid_bio, 0);
4442         if (atomic_dec_and_test(&conf->active_aligned_reads))
4443                 wake_up(&conf->wait_for_stripe);
4444         return handled;
4445 }
4446
4447
4448 /*
4449  * This is our raid5 kernel thread.
4450  *
4451  * We scan the hash table for stripes which can be handled now.
4452  * During the scan, completed stripes are saved for us by the interrupt
4453  * handler, so that they will not have to wait for our next wakeup.
4454  */
4455 static void raid5d(struct mddev *mddev)
4456 {
4457         struct stripe_head *sh;
4458         struct r5conf *conf = mddev->private;
4459         int handled;
4460         struct blk_plug plug;
4461
4462         pr_debug("+++ raid5d active\n");
4463
4464         md_check_recovery(mddev);
4465
4466         blk_start_plug(&plug);
4467         handled = 0;
4468         spin_lock_irq(&conf->device_lock);
4469         while (1) {
4470                 struct bio *bio;
4471
4472                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4473                     !list_empty(&conf->bitmap_list)) {
4474                         /* Now is a good time to flush some bitmap updates */
4475                         conf->seq_flush++;
4476                         spin_unlock_irq(&conf->device_lock);
4477                         bitmap_unplug(mddev->bitmap);
4478                         spin_lock_irq(&conf->device_lock);
4479                         conf->seq_write = conf->seq_flush;
4480                         activate_bit_delay(conf);
4481                 }
4482                 if (atomic_read(&mddev->plug_cnt) == 0)
4483                         raid5_activate_delayed(conf);
4484
4485                 while ((bio = remove_bio_from_retry(conf))) {
4486                         int ok;
4487                         spin_unlock_irq(&conf->device_lock);
4488                         ok = retry_aligned_read(conf, bio);
4489                         spin_lock_irq(&conf->device_lock);
4490                         if (!ok)
4491                                 break;
4492                         handled++;
4493                 }
4494
4495                 sh = __get_priority_stripe(conf);
4496
4497                 if (!sh)
4498                         break;
4499                 spin_unlock_irq(&conf->device_lock);
4500                 
4501                 handled++;
4502                 handle_stripe(sh);
4503                 release_stripe(sh);
4504                 cond_resched();
4505
4506                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4507                         md_check_recovery(mddev);
4508
4509                 spin_lock_irq(&conf->device_lock);
4510         }
4511         pr_debug("%d stripes handled\n", handled);
4512
4513         spin_unlock_irq(&conf->device_lock);
4514
4515         async_tx_issue_pending_all();
4516         blk_finish_plug(&plug);
4517
4518         pr_debug("--- raid5d inactive\n");
4519 }
4520
4521 static ssize_t
4522 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4523 {
4524         struct r5conf *conf = mddev->private;
4525         if (conf)
4526                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4527         else
4528                 return 0;
4529 }
4530
4531 int
4532 raid5_set_cache_size(struct mddev *mddev, int size)
4533 {
4534         struct r5conf *conf = mddev->private;
4535         int err;
4536
4537         if (size <= 16 || size > 32768)
4538                 return -EINVAL;
4539         while (size < conf->max_nr_stripes) {
4540                 if (drop_one_stripe(conf))
4541                         conf->max_nr_stripes--;
4542                 else
4543                         break;
4544         }
4545         err = md_allow_write(mddev);
4546         if (err)
4547                 return err;
4548         while (size > conf->max_nr_stripes) {
4549                 if (grow_one_stripe(conf))
4550                         conf->max_nr_stripes++;
4551                 else break;
4552         }
4553         return 0;
4554 }
4555 EXPORT_SYMBOL(raid5_set_cache_size);
4556
4557 static ssize_t
4558 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4559 {
4560         struct r5conf *conf = mddev->private;
4561         unsigned long new;
4562         int err;
4563
4564         if (len >= PAGE_SIZE)
4565                 return -EINVAL;
4566         if (!conf)
4567                 return -ENODEV;
4568
4569         if (strict_strtoul(page, 10, &new))
4570                 return -EINVAL;
4571         err = raid5_set_cache_size(mddev, new);
4572         if (err)
4573                 return err;
4574         return len;
4575 }
4576
4577 static struct md_sysfs_entry
4578 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4579                                 raid5_show_stripe_cache_size,
4580                                 raid5_store_stripe_cache_size);
4581
4582 static ssize_t
4583 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4584 {
4585         struct r5conf *conf = mddev->private;
4586         if (conf)
4587                 return sprintf(page, "%d\n", conf->bypass_threshold);
4588         else
4589                 return 0;
4590 }
4591
4592 static ssize_t
4593 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4594 {
4595         struct r5conf *conf = mddev->private;
4596         unsigned long new;
4597         if (len >= PAGE_SIZE)
4598                 return -EINVAL;
4599         if (!conf)
4600                 return -ENODEV;
4601
4602         if (strict_strtoul(page, 10, &new))
4603                 return -EINVAL;
4604         if (new > conf->max_nr_stripes)
4605                 return -EINVAL;
4606         conf->bypass_threshold = new;
4607         return len;
4608 }
4609
4610 static struct md_sysfs_entry
4611 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4612                                         S_IRUGO | S_IWUSR,
4613                                         raid5_show_preread_threshold,
4614                                         raid5_store_preread_threshold);
4615
4616 static ssize_t
4617 stripe_cache_active_show(struct mddev *mddev, char *page)
4618 {
4619         struct r5conf *conf = mddev->private;
4620         if (conf)
4621                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4622         else
4623                 return 0;
4624 }
4625
4626 static struct md_sysfs_entry
4627 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4628
4629 static struct attribute *raid5_attrs[] =  {
4630         &raid5_stripecache_size.attr,
4631         &raid5_stripecache_active.attr,
4632         &raid5_preread_bypass_threshold.attr,
4633         NULL,
4634 };
4635 static struct attribute_group raid5_attrs_group = {
4636         .name = NULL,
4637         .attrs = raid5_attrs,
4638 };
4639
4640 static sector_t
4641 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4642 {
4643         struct r5conf *conf = mddev->private;
4644
4645         if (!sectors)
4646                 sectors = mddev->dev_sectors;
4647         if (!raid_disks)
4648                 /* size is defined by the smallest of previous and new size */
4649                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4650
4651         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4652         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4653         return sectors * (raid_disks - conf->max_degraded);
4654 }
4655
4656 static void raid5_free_percpu(struct r5conf *conf)
4657 {
4658         struct raid5_percpu *percpu;
4659         unsigned long cpu;
4660
4661         if (!conf->percpu)
4662                 return;
4663
4664         get_online_cpus();
4665         for_each_possible_cpu(cpu) {
4666                 percpu = per_cpu_ptr(conf->percpu, cpu);
4667                 safe_put_page(percpu->spare_page);
4668                 kfree(percpu->scribble);
4669         }
4670 #ifdef CONFIG_HOTPLUG_CPU
4671         unregister_cpu_notifier(&conf->cpu_notify);
4672 #endif
4673         put_online_cpus();
4674
4675         free_percpu(conf->percpu);
4676 }
4677
4678 static void free_conf(struct r5conf *conf)
4679 {
4680         shrink_stripes(conf);
4681         raid5_free_percpu(conf);
4682         kfree(conf->disks);
4683         kfree(conf->stripe_hashtbl);
4684         kfree(conf);
4685 }
4686
4687 #ifdef CONFIG_HOTPLUG_CPU
4688 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4689                               void *hcpu)
4690 {
4691         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4692         long cpu = (long)hcpu;
4693         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4694
4695         switch (action) {
4696         case CPU_UP_PREPARE:
4697         case CPU_UP_PREPARE_FROZEN:
4698                 if (conf->level == 6 && !percpu->spare_page)
4699                         percpu->spare_page = alloc_page(GFP_KERNEL);
4700                 if (!percpu->scribble)
4701                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4702
4703                 if (!percpu->scribble ||
4704                     (conf->level == 6 && !percpu->spare_page)) {
4705                         safe_put_page(percpu->spare_page);
4706                         kfree(percpu->scribble);
4707                         pr_err("%s: failed memory allocation for cpu%ld\n",
4708                                __func__, cpu);
4709                         return notifier_from_errno(-ENOMEM);
4710                 }
4711                 break;
4712         case CPU_DEAD:
4713         case CPU_DEAD_FROZEN:
4714                 safe_put_page(percpu->spare_page);
4715                 kfree(percpu->scribble);
4716                 percpu->spare_page = NULL;
4717                 percpu->scribble = NULL;
4718                 break;
4719         default:
4720                 break;
4721         }
4722         return NOTIFY_OK;
4723 }
4724 #endif
4725
4726 static int raid5_alloc_percpu(struct r5conf *conf)
4727 {
4728         unsigned long cpu;
4729         struct page *spare_page;
4730         struct raid5_percpu __percpu *allcpus;
4731         void *scribble;
4732         int err;
4733
4734         allcpus = alloc_percpu(struct raid5_percpu);
4735         if (!allcpus)
4736                 return -ENOMEM;
4737         conf->percpu = allcpus;
4738
4739         get_online_cpus();
4740         err = 0;
4741         for_each_present_cpu(cpu) {
4742                 if (conf->level == 6) {
4743                         spare_page = alloc_page(GFP_KERNEL);
4744                         if (!spare_page) {
4745                                 err = -ENOMEM;
4746                                 break;
4747                         }
4748                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4749                 }
4750                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4751                 if (!scribble) {
4752                         err = -ENOMEM;
4753                         break;
4754                 }
4755                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4756         }
4757 #ifdef CONFIG_HOTPLUG_CPU
4758         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4759         conf->cpu_notify.priority = 0;
4760         if (err == 0)
4761                 err = register_cpu_notifier(&conf->cpu_notify);
4762 #endif
4763         put_online_cpus();
4764
4765         return err;
4766 }
4767
4768 static struct r5conf *setup_conf(struct mddev *mddev)
4769 {
4770         struct r5conf *conf;
4771         int raid_disk, memory, max_disks;
4772         struct md_rdev *rdev;
4773         struct disk_info *disk;
4774
4775         if (mddev->new_level != 5
4776             && mddev->new_level != 4
4777             && mddev->new_level != 6) {
4778                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4779                        mdname(mddev), mddev->new_level);
4780                 return ERR_PTR(-EIO);
4781         }
4782         if ((mddev->new_level == 5
4783              && !algorithm_valid_raid5(mddev->new_layout)) ||
4784             (mddev->new_level == 6
4785              && !algorithm_valid_raid6(mddev->new_layout))) {
4786                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4787                        mdname(mddev), mddev->new_layout);
4788                 return ERR_PTR(-EIO);
4789         }
4790         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4791                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4792                        mdname(mddev), mddev->raid_disks);
4793                 return ERR_PTR(-EINVAL);
4794         }
4795
4796         if (!mddev->new_chunk_sectors ||
4797             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4798             !is_power_of_2(mddev->new_chunk_sectors)) {
4799                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4800                        mdname(mddev), mddev->new_chunk_sectors << 9);
4801                 return ERR_PTR(-EINVAL);
4802         }
4803
4804         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4805         if (conf == NULL)
4806                 goto abort;
4807         spin_lock_init(&conf->device_lock);
4808         init_waitqueue_head(&conf->wait_for_stripe);
4809         init_waitqueue_head(&conf->wait_for_overlap);
4810         INIT_LIST_HEAD(&conf->handle_list);
4811         INIT_LIST_HEAD(&conf->hold_list);
4812         INIT_LIST_HEAD(&conf->delayed_list);
4813         INIT_LIST_HEAD(&conf->bitmap_list);
4814         INIT_LIST_HEAD(&conf->inactive_list);
4815         atomic_set(&conf->active_stripes, 0);
4816         atomic_set(&conf->preread_active_stripes, 0);
4817         atomic_set(&conf->active_aligned_reads, 0);
4818         conf->bypass_threshold = BYPASS_THRESHOLD;
4819         conf->recovery_disabled = mddev->recovery_disabled - 1;
4820
4821         conf->raid_disks = mddev->raid_disks;
4822         if (mddev->reshape_position == MaxSector)
4823                 conf->previous_raid_disks = mddev->raid_disks;
4824         else
4825                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4826         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4827         conf->scribble_len = scribble_len(max_disks);
4828
4829         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4830                               GFP_KERNEL);
4831         if (!conf->disks)
4832                 goto abort;
4833
4834         conf->mddev = mddev;
4835
4836         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4837                 goto abort;
4838
4839         conf->level = mddev->new_level;
4840         if (raid5_alloc_percpu(conf) != 0)
4841                 goto abort;
4842
4843         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4844
4845         list_for_each_entry(rdev, &mddev->disks, same_set) {
4846                 raid_disk = rdev->raid_disk;
4847                 if (raid_disk >= max_disks
4848                     || raid_disk < 0)
4849                         continue;
4850                 disk = conf->disks + raid_disk;
4851
4852                 if (test_bit(Replacement, &rdev->flags)) {
4853                         if (disk->replacement)
4854                                 goto abort;
4855                         disk->replacement = rdev;
4856                 } else {
4857                         if (disk->rdev)
4858                                 goto abort;
4859                         disk->rdev = rdev;
4860                 }
4861
4862                 if (test_bit(In_sync, &rdev->flags)) {
4863                         char b[BDEVNAME_SIZE];
4864                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4865                                " disk %d\n",
4866                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4867                 } else if (rdev->saved_raid_disk != raid_disk)
4868                         /* Cannot rely on bitmap to complete recovery */
4869                         conf->fullsync = 1;
4870         }
4871
4872         conf->chunk_sectors = mddev->new_chunk_sectors;
4873         conf->level = mddev->new_level;
4874         if (conf->level == 6)
4875                 conf->max_degraded = 2;
4876         else
4877                 conf->max_degraded = 1;
4878         conf->algorithm = mddev->new_layout;
4879         conf->max_nr_stripes = NR_STRIPES;
4880         conf->reshape_progress = mddev->reshape_position;
4881         if (conf->reshape_progress != MaxSector) {
4882                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4883                 conf->prev_algo = mddev->layout;
4884         }
4885
4886         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4887                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4888         if (grow_stripes(conf, conf->max_nr_stripes)) {
4889                 printk(KERN_ERR
4890                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4891                        mdname(mddev), memory);
4892                 goto abort;
4893         } else
4894                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4895                        mdname(mddev), memory);
4896
4897         conf->thread = md_register_thread(raid5d, mddev, NULL);
4898         if (!conf->thread) {
4899                 printk(KERN_ERR
4900                        "md/raid:%s: couldn't allocate thread.\n",
4901                        mdname(mddev));
4902                 goto abort;
4903         }
4904
4905         return conf;
4906
4907  abort:
4908         if (conf) {
4909                 free_conf(conf);
4910                 return ERR_PTR(-EIO);
4911         } else
4912                 return ERR_PTR(-ENOMEM);
4913 }
4914
4915
4916 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4917 {
4918         switch (algo) {
4919         case ALGORITHM_PARITY_0:
4920                 if (raid_disk < max_degraded)
4921                         return 1;
4922                 break;
4923         case ALGORITHM_PARITY_N:
4924                 if (raid_disk >= raid_disks - max_degraded)
4925                         return 1;
4926                 break;
4927         case ALGORITHM_PARITY_0_6:
4928                 if (raid_disk == 0 || 
4929                     raid_disk == raid_disks - 1)
4930                         return 1;
4931                 break;
4932         case ALGORITHM_LEFT_ASYMMETRIC_6:
4933         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4934         case ALGORITHM_LEFT_SYMMETRIC_6:
4935         case ALGORITHM_RIGHT_SYMMETRIC_6:
4936                 if (raid_disk == raid_disks - 1)
4937                         return 1;
4938         }
4939         return 0;
4940 }
4941
4942 static int run(struct mddev *mddev)
4943 {
4944         struct r5conf *conf;
4945         int working_disks = 0;
4946         int dirty_parity_disks = 0;
4947         struct md_rdev *rdev;
4948         sector_t reshape_offset = 0;
4949         int i;
4950
4951         if (mddev->recovery_cp != MaxSector)
4952                 printk(KERN_NOTICE "md/raid:%s: not clean"
4953                        " -- starting background reconstruction\n",
4954                        mdname(mddev));
4955         if (mddev->reshape_position != MaxSector) {
4956                 /* Check that we can continue the reshape.
4957                  * Currently only disks can change, it must
4958                  * increase, and we must be past the point where
4959                  * a stripe over-writes itself
4960                  */
4961                 sector_t here_new, here_old;
4962                 int old_disks;
4963                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4964
4965                 if (mddev->new_level != mddev->level) {
4966                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4967                                "required - aborting.\n",
4968                                mdname(mddev));
4969                         return -EINVAL;
4970                 }
4971                 old_disks = mddev->raid_disks - mddev->delta_disks;
4972                 /* reshape_position must be on a new-stripe boundary, and one
4973                  * further up in new geometry must map after here in old
4974                  * geometry.
4975                  */
4976                 here_new = mddev->reshape_position;
4977                 if (sector_div(here_new, mddev->new_chunk_sectors *
4978                                (mddev->raid_disks - max_degraded))) {
4979                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4980                                "on a stripe boundary\n", mdname(mddev));
4981                         return -EINVAL;
4982                 }
4983                 reshape_offset = here_new * mddev->new_chunk_sectors;
4984                 /* here_new is the stripe we will write to */
4985                 here_old = mddev->reshape_position;
4986                 sector_div(here_old, mddev->chunk_sectors *
4987                            (old_disks-max_degraded));
4988                 /* here_old is the first stripe that we might need to read
4989                  * from */
4990                 if (mddev->delta_disks == 0) {
4991                         /* We cannot be sure it is safe to start an in-place
4992                          * reshape.  It is only safe if user-space if monitoring
4993                          * and taking constant backups.
4994                          * mdadm always starts a situation like this in
4995                          * readonly mode so it can take control before
4996                          * allowing any writes.  So just check for that.
4997                          */
4998                         if ((here_new * mddev->new_chunk_sectors != 
4999                              here_old * mddev->chunk_sectors) ||
5000                             mddev->ro == 0) {
5001                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5002                                        " in read-only mode - aborting\n",
5003                                        mdname(mddev));
5004                                 return -EINVAL;
5005                         }
5006                 } else if (mddev->delta_disks < 0
5007                     ? (here_new * mddev->new_chunk_sectors <=
5008                        here_old * mddev->chunk_sectors)
5009                     : (here_new * mddev->new_chunk_sectors >=
5010                        here_old * mddev->chunk_sectors)) {
5011                         /* Reading from the same stripe as writing to - bad */
5012                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5013                                "auto-recovery - aborting.\n",
5014                                mdname(mddev));
5015                         return -EINVAL;
5016                 }
5017                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5018                        mdname(mddev));
5019                 /* OK, we should be able to continue; */
5020         } else {
5021                 BUG_ON(mddev->level != mddev->new_level);
5022                 BUG_ON(mddev->layout != mddev->new_layout);
5023                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5024                 BUG_ON(mddev->delta_disks != 0);
5025         }
5026
5027         if (mddev->private == NULL)
5028                 conf = setup_conf(mddev);
5029         else
5030                 conf = mddev->private;
5031
5032         if (IS_ERR(conf))
5033                 return PTR_ERR(conf);
5034
5035         mddev->thread = conf->thread;
5036         conf->thread = NULL;
5037         mddev->private = conf;
5038
5039         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5040              i++) {
5041                 rdev = conf->disks[i].rdev;
5042                 if (!rdev && conf->disks[i].replacement) {
5043                         /* The replacement is all we have yet */
5044                         rdev = conf->disks[i].replacement;
5045                         conf->disks[i].replacement = NULL;
5046                         clear_bit(Replacement, &rdev->flags);
5047                         conf->disks[i].rdev = rdev;
5048                 }
5049                 if (!rdev)
5050                         continue;
5051                 if (conf->disks[i].replacement &&
5052                     conf->reshape_progress != MaxSector) {
5053                         /* replacements and reshape simply do not mix. */
5054                         printk(KERN_ERR "md: cannot handle concurrent "
5055                                "replacement and reshape.\n");
5056                         goto abort;
5057                 }
5058                 if (test_bit(In_sync, &rdev->flags)) {
5059                         working_disks++;
5060                         continue;
5061                 }
5062                 /* This disc is not fully in-sync.  However if it
5063                  * just stored parity (beyond the recovery_offset),
5064                  * when we don't need to be concerned about the
5065                  * array being dirty.
5066                  * When reshape goes 'backwards', we never have
5067                  * partially completed devices, so we only need
5068                  * to worry about reshape going forwards.
5069                  */
5070                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5071                 if (mddev->major_version == 0 &&
5072                     mddev->minor_version > 90)
5073                         rdev->recovery_offset = reshape_offset;
5074                         
5075                 if (rdev->recovery_offset < reshape_offset) {
5076                         /* We need to check old and new layout */
5077                         if (!only_parity(rdev->raid_disk,
5078                                          conf->algorithm,
5079                                          conf->raid_disks,
5080                                          conf->max_degraded))
5081                                 continue;
5082                 }
5083                 if (!only_parity(rdev->raid_disk,
5084                                  conf->prev_algo,
5085                                  conf->previous_raid_disks,
5086                                  conf->max_degraded))
5087                         continue;
5088                 dirty_parity_disks++;
5089         }
5090
5091         /*
5092          * 0 for a fully functional array, 1 or 2 for a degraded array.
5093          */
5094         mddev->degraded = calc_degraded(conf);
5095
5096         if (has_failed(conf)) {
5097                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5098                         " (%d/%d failed)\n",
5099                         mdname(mddev), mddev->degraded, conf->raid_disks);
5100                 goto abort;
5101         }
5102
5103         /* device size must be a multiple of chunk size */
5104         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5105         mddev->resync_max_sectors = mddev->dev_sectors;
5106
5107         if (mddev->degraded > dirty_parity_disks &&
5108             mddev->recovery_cp != MaxSector) {
5109                 if (mddev->ok_start_degraded)
5110                         printk(KERN_WARNING
5111                                "md/raid:%s: starting dirty degraded array"
5112                                " - data corruption possible.\n",
5113                                mdname(mddev));
5114                 else {
5115                         printk(KERN_ERR
5116                                "md/raid:%s: cannot start dirty degraded array.\n",
5117                                mdname(mddev));
5118                         goto abort;
5119                 }
5120         }
5121
5122         if (mddev->degraded == 0)
5123                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5124                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5125                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5126                        mddev->new_layout);
5127         else
5128                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5129                        " out of %d devices, algorithm %d\n",
5130                        mdname(mddev), conf->level,
5131                        mddev->raid_disks - mddev->degraded,
5132                        mddev->raid_disks, mddev->new_layout);
5133
5134         print_raid5_conf(conf);
5135
5136         if (conf->reshape_progress != MaxSector) {
5137                 conf->reshape_safe = conf->reshape_progress;
5138                 atomic_set(&conf->reshape_stripes, 0);
5139                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5140                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5141                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5142                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5143                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5144                                                         "reshape");
5145         }
5146
5147
5148         /* Ok, everything is just fine now */
5149         if (mddev->to_remove == &raid5_attrs_group)
5150                 mddev->to_remove = NULL;
5151         else if (mddev->kobj.sd &&
5152             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5153                 printk(KERN_WARNING
5154                        "raid5: failed to create sysfs attributes for %s\n",
5155                        mdname(mddev));
5156         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5157
5158         if (mddev->queue) {
5159                 int chunk_size;
5160                 /* read-ahead size must cover two whole stripes, which
5161                  * is 2 * (datadisks) * chunksize where 'n' is the
5162                  * number of raid devices
5163                  */
5164                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5165                 int stripe = data_disks *
5166                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5167                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5168                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5169
5170                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5171
5172                 mddev->queue->backing_dev_info.congested_data = mddev;
5173                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5174
5175                 chunk_size = mddev->chunk_sectors << 9;
5176                 blk_queue_io_min(mddev->queue, chunk_size);
5177                 blk_queue_io_opt(mddev->queue, chunk_size *
5178                                  (conf->raid_disks - conf->max_degraded));
5179
5180                 list_for_each_entry(rdev, &mddev->disks, same_set)
5181                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5182                                           rdev->data_offset << 9);
5183         }
5184
5185         return 0;
5186 abort:
5187         md_unregister_thread(&mddev->thread);
5188         print_raid5_conf(conf);
5189         free_conf(conf);
5190         mddev->private = NULL;
5191         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5192         return -EIO;
5193 }
5194
5195 static int stop(struct mddev *mddev)
5196 {
5197         struct r5conf *conf = mddev->private;
5198
5199         md_unregister_thread(&mddev->thread);
5200         if (mddev->queue)
5201                 mddev->queue->backing_dev_info.congested_fn = NULL;
5202         free_conf(conf);
5203         mddev->private = NULL;
5204         mddev->to_remove = &raid5_attrs_group;
5205         return 0;
5206 }
5207
5208 static void status(struct seq_file *seq, struct mddev *mddev)
5209 {
5210         struct r5conf *conf = mddev->private;
5211         int i;
5212
5213         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5214                 mddev->chunk_sectors / 2, mddev->layout);
5215         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5216         for (i = 0; i < conf->raid_disks; i++)
5217                 seq_printf (seq, "%s",
5218                                conf->disks[i].rdev &&
5219                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5220         seq_printf (seq, "]");
5221 }
5222
5223 static void print_raid5_conf (struct r5conf *conf)
5224 {
5225         int i;
5226         struct disk_info *tmp;
5227
5228         printk(KERN_DEBUG "RAID conf printout:\n");
5229         if (!conf) {
5230                 printk("(conf==NULL)\n");
5231                 return;
5232         }
5233         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5234                conf->raid_disks,
5235                conf->raid_disks - conf->mddev->degraded);
5236
5237         for (i = 0; i < conf->raid_disks; i++) {
5238                 char b[BDEVNAME_SIZE];
5239                 tmp = conf->disks + i;
5240                 if (tmp->rdev)
5241                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5242                                i, !test_bit(Faulty, &tmp->rdev->flags),
5243                                bdevname(tmp->rdev->bdev, b));
5244         }
5245 }
5246
5247 static int raid5_spare_active(struct mddev *mddev)
5248 {
5249         int i;
5250         struct r5conf *conf = mddev->private;
5251         struct disk_info *tmp;
5252         int count = 0;
5253         unsigned long flags;
5254
5255         for (i = 0; i < conf->raid_disks; i++) {
5256                 tmp = conf->disks + i;
5257                 if (tmp->replacement
5258                     && tmp->replacement->recovery_offset == MaxSector
5259                     && !test_bit(Faulty, &tmp->replacement->flags)
5260                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5261                         /* Replacement has just become active. */
5262                         if (!tmp->rdev
5263                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5264                                 count++;
5265                         if (tmp->rdev) {
5266                                 /* Replaced device not technically faulty,
5267                                  * but we need to be sure it gets removed
5268                                  * and never re-added.
5269                                  */
5270                                 set_bit(Faulty, &tmp->rdev->flags);
5271                                 sysfs_notify_dirent_safe(
5272                                         tmp->rdev->sysfs_state);
5273                         }
5274                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5275                 } else if (tmp->rdev
5276                     && tmp->rdev->recovery_offset == MaxSector
5277                     && !test_bit(Faulty, &tmp->rdev->flags)
5278                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5279                         count++;
5280                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5281                 }
5282         }
5283         spin_lock_irqsave(&conf->device_lock, flags);
5284         mddev->degraded = calc_degraded(conf);
5285         spin_unlock_irqrestore(&conf->device_lock, flags);
5286         print_raid5_conf(conf);
5287         return count;
5288 }
5289
5290 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5291 {
5292         struct r5conf *conf = mddev->private;
5293         int err = 0;
5294         int number = rdev->raid_disk;
5295         struct md_rdev **rdevp;
5296         struct disk_info *p = conf->disks + number;
5297
5298         print_raid5_conf(conf);
5299         if (rdev == p->rdev)
5300                 rdevp = &p->rdev;
5301         else if (rdev == p->replacement)
5302                 rdevp = &p->replacement;
5303         else
5304                 return 0;
5305
5306         if (number >= conf->raid_disks &&
5307             conf->reshape_progress == MaxSector)
5308                 clear_bit(In_sync, &rdev->flags);
5309
5310         if (test_bit(In_sync, &rdev->flags) ||
5311             atomic_read(&rdev->nr_pending)) {
5312                 err = -EBUSY;
5313                 goto abort;
5314         }
5315         /* Only remove non-faulty devices if recovery
5316          * isn't possible.
5317          */
5318         if (!test_bit(Faulty, &rdev->flags) &&
5319             mddev->recovery_disabled != conf->recovery_disabled &&
5320             !has_failed(conf) &&
5321             (!p->replacement || p->replacement == rdev) &&
5322             number < conf->raid_disks) {
5323                 err = -EBUSY;
5324                 goto abort;
5325         }
5326         *rdevp = NULL;
5327         synchronize_rcu();
5328         if (atomic_read(&rdev->nr_pending)) {
5329                 /* lost the race, try later */
5330                 err = -EBUSY;
5331                 *rdevp = rdev;
5332         } else if (p->replacement) {
5333                 /* We must have just cleared 'rdev' */
5334                 p->rdev = p->replacement;
5335                 clear_bit(Replacement, &p->replacement->flags);
5336                 smp_mb(); /* Make sure other CPUs may see both as identical
5337                            * but will never see neither - if they are careful
5338                            */
5339                 p->replacement = NULL;
5340                 clear_bit(WantReplacement, &rdev->flags);
5341         } else
5342                 /* We might have just removed the Replacement as faulty-
5343                  * clear the bit just in case
5344                  */
5345                 clear_bit(WantReplacement, &rdev->flags);
5346 abort:
5347
5348         print_raid5_conf(conf);
5349         return err;
5350 }
5351
5352 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5353 {
5354         struct r5conf *conf = mddev->private;
5355         int err = -EEXIST;
5356         int disk;
5357         struct disk_info *p;
5358         int first = 0;
5359         int last = conf->raid_disks - 1;
5360
5361         if (mddev->recovery_disabled == conf->recovery_disabled)
5362                 return -EBUSY;
5363
5364         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5365                 /* no point adding a device */
5366                 return -EINVAL;
5367
5368         if (rdev->raid_disk >= 0)
5369                 first = last = rdev->raid_disk;
5370
5371         /*
5372          * find the disk ... but prefer rdev->saved_raid_disk
5373          * if possible.
5374          */
5375         if (rdev->saved_raid_disk >= 0 &&
5376             rdev->saved_raid_disk >= first &&
5377             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5378                 disk = rdev->saved_raid_disk;
5379         else
5380                 disk = first;
5381         for ( ; disk <= last ; disk++) {
5382                 p = conf->disks + disk;
5383                 if (p->rdev == NULL) {
5384                         clear_bit(In_sync, &rdev->flags);
5385                         rdev->raid_disk = disk;
5386                         err = 0;
5387                         if (rdev->saved_raid_disk != disk)
5388                                 conf->fullsync = 1;
5389                         rcu_assign_pointer(p->rdev, rdev);
5390                         break;
5391                 }
5392                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5393                     p->replacement == NULL) {
5394                         clear_bit(In_sync, &rdev->flags);
5395                         set_bit(Replacement, &rdev->flags);
5396                         rdev->raid_disk = disk;
5397                         err = 0;
5398                         conf->fullsync = 1;
5399                         rcu_assign_pointer(p->replacement, rdev);
5400                         break;
5401                 }
5402         }
5403         print_raid5_conf(conf);
5404         return err;
5405 }
5406
5407 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5408 {
5409         /* no resync is happening, and there is enough space
5410          * on all devices, so we can resize.
5411          * We need to make sure resync covers any new space.
5412          * If the array is shrinking we should possibly wait until
5413          * any io in the removed space completes, but it hardly seems
5414          * worth it.
5415          */
5416         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5417         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5418                                                mddev->raid_disks));
5419         if (mddev->array_sectors >
5420             raid5_size(mddev, sectors, mddev->raid_disks))
5421                 return -EINVAL;
5422         set_capacity(mddev->gendisk, mddev->array_sectors);
5423         revalidate_disk(mddev->gendisk);
5424         if (sectors > mddev->dev_sectors &&
5425             mddev->recovery_cp > mddev->dev_sectors) {
5426                 mddev->recovery_cp = mddev->dev_sectors;
5427                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5428         }
5429         mddev->dev_sectors = sectors;
5430         mddev->resync_max_sectors = sectors;
5431         return 0;
5432 }
5433
5434 static int check_stripe_cache(struct mddev *mddev)
5435 {
5436         /* Can only proceed if there are plenty of stripe_heads.
5437          * We need a minimum of one full stripe,, and for sensible progress
5438          * it is best to have about 4 times that.
5439          * If we require 4 times, then the default 256 4K stripe_heads will
5440          * allow for chunk sizes up to 256K, which is probably OK.
5441          * If the chunk size is greater, user-space should request more
5442          * stripe_heads first.
5443          */
5444         struct r5conf *conf = mddev->private;
5445         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5446             > conf->max_nr_stripes ||
5447             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5448             > conf->max_nr_stripes) {
5449                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5450                        mdname(mddev),
5451                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5452                         / STRIPE_SIZE)*4);
5453                 return 0;
5454         }
5455         return 1;
5456 }
5457
5458 static int check_reshape(struct mddev *mddev)
5459 {
5460         struct r5conf *conf = mddev->private;
5461
5462         if (mddev->delta_disks == 0 &&
5463             mddev->new_layout == mddev->layout &&
5464             mddev->new_chunk_sectors == mddev->chunk_sectors)
5465                 return 0; /* nothing to do */
5466         if (mddev->bitmap)
5467                 /* Cannot grow a bitmap yet */
5468                 return -EBUSY;
5469         if (has_failed(conf))
5470                 return -EINVAL;
5471         if (mddev->delta_disks < 0) {
5472                 /* We might be able to shrink, but the devices must
5473                  * be made bigger first.
5474                  * For raid6, 4 is the minimum size.
5475                  * Otherwise 2 is the minimum
5476                  */
5477                 int min = 2;
5478                 if (mddev->level == 6)
5479                         min = 4;
5480                 if (mddev->raid_disks + mddev->delta_disks < min)
5481                         return -EINVAL;
5482         }
5483
5484         if (!check_stripe_cache(mddev))
5485                 return -ENOSPC;
5486
5487         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5488 }
5489
5490 static int raid5_start_reshape(struct mddev *mddev)
5491 {
5492         struct r5conf *conf = mddev->private;
5493         struct md_rdev *rdev;
5494         int spares = 0;
5495         unsigned long flags;
5496
5497         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5498                 return -EBUSY;
5499
5500         if (!check_stripe_cache(mddev))
5501                 return -ENOSPC;
5502
5503         list_for_each_entry(rdev, &mddev->disks, same_set)
5504                 if (!test_bit(In_sync, &rdev->flags)
5505                     && !test_bit(Faulty, &rdev->flags))
5506                         spares++;
5507
5508         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5509                 /* Not enough devices even to make a degraded array
5510                  * of that size
5511                  */
5512                 return -EINVAL;
5513
5514         /* Refuse to reduce size of the array.  Any reductions in
5515          * array size must be through explicit setting of array_size
5516          * attribute.
5517          */
5518         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5519             < mddev->array_sectors) {
5520                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5521                        "before number of disks\n", mdname(mddev));
5522                 return -EINVAL;
5523         }
5524
5525         atomic_set(&conf->reshape_stripes, 0);
5526         spin_lock_irq(&conf->device_lock);
5527         conf->previous_raid_disks = conf->raid_disks;
5528         conf->raid_disks += mddev->delta_disks;
5529         conf->prev_chunk_sectors = conf->chunk_sectors;
5530         conf->chunk_sectors = mddev->new_chunk_sectors;
5531         conf->prev_algo = conf->algorithm;
5532         conf->algorithm = mddev->new_layout;
5533         if (mddev->delta_disks < 0)
5534                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5535         else
5536                 conf->reshape_progress = 0;
5537         conf->reshape_safe = conf->reshape_progress;
5538         conf->generation++;
5539         spin_unlock_irq(&conf->device_lock);
5540
5541         /* Add some new drives, as many as will fit.
5542          * We know there are enough to make the newly sized array work.
5543          * Don't add devices if we are reducing the number of
5544          * devices in the array.  This is because it is not possible
5545          * to correctly record the "partially reconstructed" state of
5546          * such devices during the reshape and confusion could result.
5547          */
5548         if (mddev->delta_disks >= 0) {
5549                 list_for_each_entry(rdev, &mddev->disks, same_set)
5550                         if (rdev->raid_disk < 0 &&
5551                             !test_bit(Faulty, &rdev->flags)) {
5552                                 if (raid5_add_disk(mddev, rdev) == 0) {
5553                                         if (rdev->raid_disk
5554                                             >= conf->previous_raid_disks)
5555                                                 set_bit(In_sync, &rdev->flags);
5556                                         else
5557                                                 rdev->recovery_offset = 0;
5558
5559                                         if (sysfs_link_rdev(mddev, rdev))
5560                                                 /* Failure here is OK */;
5561                                 }
5562                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5563                                    && !test_bit(Faulty, &rdev->flags)) {
5564                                 /* This is a spare that was manually added */
5565                                 set_bit(In_sync, &rdev->flags);
5566                         }
5567
5568                 /* When a reshape changes the number of devices,
5569                  * ->degraded is measured against the larger of the
5570                  * pre and post number of devices.
5571                  */
5572                 spin_lock_irqsave(&conf->device_lock, flags);
5573                 mddev->degraded = calc_degraded(conf);
5574                 spin_unlock_irqrestore(&conf->device_lock, flags);
5575         }
5576         mddev->raid_disks = conf->raid_disks;
5577         mddev->reshape_position = conf->reshape_progress;
5578         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5579
5580         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5581         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5582         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5583         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5584         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5585                                                 "reshape");
5586         if (!mddev->sync_thread) {
5587                 mddev->recovery = 0;
5588                 spin_lock_irq(&conf->device_lock);
5589                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5590                 conf->reshape_progress = MaxSector;
5591                 mddev->reshape_position = MaxSector;
5592                 spin_unlock_irq(&conf->device_lock);
5593                 return -EAGAIN;
5594         }
5595         conf->reshape_checkpoint = jiffies;
5596         md_wakeup_thread(mddev->sync_thread);
5597         md_new_event(mddev);
5598         return 0;
5599 }
5600
5601 /* This is called from the reshape thread and should make any
5602  * changes needed in 'conf'
5603  */
5604 static void end_reshape(struct r5conf *conf)
5605 {
5606
5607         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5608
5609                 spin_lock_irq(&conf->device_lock);
5610                 conf->previous_raid_disks = conf->raid_disks;
5611                 conf->reshape_progress = MaxSector;
5612                 spin_unlock_irq(&conf->device_lock);
5613                 wake_up(&conf->wait_for_overlap);
5614
5615                 /* read-ahead size must cover two whole stripes, which is
5616                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5617                  */
5618                 if (conf->mddev->queue) {
5619                         int data_disks = conf->raid_disks - conf->max_degraded;
5620                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5621                                                    / PAGE_SIZE);
5622                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5623                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5624                 }
5625         }
5626 }
5627
5628 /* This is called from the raid5d thread with mddev_lock held.
5629  * It makes config changes to the device.
5630  */
5631 static void raid5_finish_reshape(struct mddev *mddev)
5632 {
5633         struct r5conf *conf = mddev->private;
5634
5635         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5636
5637                 if (mddev->delta_disks > 0) {
5638                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5639                         set_capacity(mddev->gendisk, mddev->array_sectors);
5640                         revalidate_disk(mddev->gendisk);
5641                 } else {
5642                         int d;
5643                         spin_lock_irq(&conf->device_lock);
5644                         mddev->degraded = calc_degraded(conf);
5645                         spin_unlock_irq(&conf->device_lock);
5646                         for (d = conf->raid_disks ;
5647                              d < conf->raid_disks - mddev->delta_disks;
5648                              d++) {
5649                                 struct md_rdev *rdev = conf->disks[d].rdev;
5650                                 if (rdev &&
5651                                     raid5_remove_disk(mddev, rdev) == 0) {
5652                                         sysfs_unlink_rdev(mddev, rdev);
5653                                         rdev->raid_disk = -1;
5654                                 }
5655                         }
5656                 }
5657                 mddev->layout = conf->algorithm;
5658                 mddev->chunk_sectors = conf->chunk_sectors;
5659                 mddev->reshape_position = MaxSector;
5660                 mddev->delta_disks = 0;
5661         }
5662 }
5663
5664 static void raid5_quiesce(struct mddev *mddev, int state)
5665 {
5666         struct r5conf *conf = mddev->private;
5667
5668         switch(state) {
5669         case 2: /* resume for a suspend */
5670                 wake_up(&conf->wait_for_overlap);
5671                 break;
5672
5673         case 1: /* stop all writes */
5674                 spin_lock_irq(&conf->device_lock);
5675                 /* '2' tells resync/reshape to pause so that all
5676                  * active stripes can drain
5677                  */
5678                 conf->quiesce = 2;
5679                 wait_event_lock_irq(conf->wait_for_stripe,
5680                                     atomic_read(&conf->active_stripes) == 0 &&
5681                                     atomic_read(&conf->active_aligned_reads) == 0,
5682                                     conf->device_lock, /* nothing */);
5683                 conf->quiesce = 1;
5684                 spin_unlock_irq(&conf->device_lock);
5685                 /* allow reshape to continue */
5686                 wake_up(&conf->wait_for_overlap);
5687                 break;
5688
5689         case 0: /* re-enable writes */
5690                 spin_lock_irq(&conf->device_lock);
5691                 conf->quiesce = 0;
5692                 wake_up(&conf->wait_for_stripe);
5693                 wake_up(&conf->wait_for_overlap);
5694                 spin_unlock_irq(&conf->device_lock);
5695                 break;
5696         }
5697 }
5698
5699
5700 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5701 {
5702         struct r0conf *raid0_conf = mddev->private;
5703         sector_t sectors;
5704
5705         /* for raid0 takeover only one zone is supported */
5706         if (raid0_conf->nr_strip_zones > 1) {
5707                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5708                        mdname(mddev));
5709                 return ERR_PTR(-EINVAL);
5710         }
5711
5712         sectors = raid0_conf->strip_zone[0].zone_end;
5713         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5714         mddev->dev_sectors = sectors;
5715         mddev->new_level = level;
5716         mddev->new_layout = ALGORITHM_PARITY_N;
5717         mddev->new_chunk_sectors = mddev->chunk_sectors;
5718         mddev->raid_disks += 1;
5719         mddev->delta_disks = 1;
5720         /* make sure it will be not marked as dirty */
5721         mddev->recovery_cp = MaxSector;
5722
5723         return setup_conf(mddev);
5724 }
5725
5726
5727 static void *raid5_takeover_raid1(struct mddev *mddev)
5728 {
5729         int chunksect;
5730
5731         if (mddev->raid_disks != 2 ||
5732             mddev->degraded > 1)
5733                 return ERR_PTR(-EINVAL);
5734
5735         /* Should check if there are write-behind devices? */
5736
5737         chunksect = 64*2; /* 64K by default */
5738
5739         /* The array must be an exact multiple of chunksize */
5740         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5741                 chunksect >>= 1;
5742
5743         if ((chunksect<<9) < STRIPE_SIZE)
5744                 /* array size does not allow a suitable chunk size */
5745                 return ERR_PTR(-EINVAL);
5746
5747         mddev->new_level = 5;
5748         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5749         mddev->new_chunk_sectors = chunksect;
5750
5751         return setup_conf(mddev);
5752 }
5753
5754 static void *raid5_takeover_raid6(struct mddev *mddev)
5755 {
5756         int new_layout;
5757
5758         switch (mddev->layout) {
5759         case ALGORITHM_LEFT_ASYMMETRIC_6:
5760                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5761                 break;
5762         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5763                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5764                 break;
5765         case ALGORITHM_LEFT_SYMMETRIC_6:
5766                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5767                 break;
5768         case ALGORITHM_RIGHT_SYMMETRIC_6:
5769                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5770                 break;
5771         case ALGORITHM_PARITY_0_6:
5772                 new_layout = ALGORITHM_PARITY_0;
5773                 break;
5774         case ALGORITHM_PARITY_N:
5775                 new_layout = ALGORITHM_PARITY_N;
5776                 break;
5777         default:
5778                 return ERR_PTR(-EINVAL);
5779         }
5780         mddev->new_level = 5;
5781         mddev->new_layout = new_layout;
5782         mddev->delta_disks = -1;
5783         mddev->raid_disks -= 1;
5784         return setup_conf(mddev);
5785 }
5786
5787
5788 static int raid5_check_reshape(struct mddev *mddev)
5789 {
5790         /* For a 2-drive array, the layout and chunk size can be changed
5791          * immediately as not restriping is needed.
5792          * For larger arrays we record the new value - after validation
5793          * to be used by a reshape pass.
5794          */
5795         struct r5conf *conf = mddev->private;
5796         int new_chunk = mddev->new_chunk_sectors;
5797
5798         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5799                 return -EINVAL;
5800         if (new_chunk > 0) {
5801                 if (!is_power_of_2(new_chunk))
5802                         return -EINVAL;
5803                 if (new_chunk < (PAGE_SIZE>>9))
5804                         return -EINVAL;
5805                 if (mddev->array_sectors & (new_chunk-1))
5806                         /* not factor of array size */
5807                         return -EINVAL;
5808         }
5809
5810         /* They look valid */
5811
5812         if (mddev->raid_disks == 2) {
5813                 /* can make the change immediately */
5814                 if (mddev->new_layout >= 0) {
5815                         conf->algorithm = mddev->new_layout;
5816                         mddev->layout = mddev->new_layout;
5817                 }
5818                 if (new_chunk > 0) {
5819                         conf->chunk_sectors = new_chunk ;
5820                         mddev->chunk_sectors = new_chunk;
5821                 }
5822                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5823                 md_wakeup_thread(mddev->thread);
5824         }
5825         return check_reshape(mddev);
5826 }
5827
5828 static int raid6_check_reshape(struct mddev *mddev)
5829 {
5830         int new_chunk = mddev->new_chunk_sectors;
5831
5832         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5833                 return -EINVAL;
5834         if (new_chunk > 0) {
5835                 if (!is_power_of_2(new_chunk))
5836                         return -EINVAL;
5837                 if (new_chunk < (PAGE_SIZE >> 9))
5838                         return -EINVAL;
5839                 if (mddev->array_sectors & (new_chunk-1))
5840                         /* not factor of array size */
5841                         return -EINVAL;
5842         }
5843
5844         /* They look valid */
5845         return check_reshape(mddev);
5846 }
5847
5848 static void *raid5_takeover(struct mddev *mddev)
5849 {
5850         /* raid5 can take over:
5851          *  raid0 - if there is only one strip zone - make it a raid4 layout
5852          *  raid1 - if there are two drives.  We need to know the chunk size
5853          *  raid4 - trivial - just use a raid4 layout.
5854          *  raid6 - Providing it is a *_6 layout
5855          */
5856         if (mddev->level == 0)
5857                 return raid45_takeover_raid0(mddev, 5);
5858         if (mddev->level == 1)
5859                 return raid5_takeover_raid1(mddev);
5860         if (mddev->level == 4) {
5861                 mddev->new_layout = ALGORITHM_PARITY_N;
5862                 mddev->new_level = 5;
5863                 return setup_conf(mddev);
5864         }
5865         if (mddev->level == 6)
5866                 return raid5_takeover_raid6(mddev);
5867
5868         return ERR_PTR(-EINVAL);
5869 }
5870
5871 static void *raid4_takeover(struct mddev *mddev)
5872 {
5873         /* raid4 can take over:
5874          *  raid0 - if there is only one strip zone
5875          *  raid5 - if layout is right
5876          */
5877         if (mddev->level == 0)
5878                 return raid45_takeover_raid0(mddev, 4);
5879         if (mddev->level == 5 &&
5880             mddev->layout == ALGORITHM_PARITY_N) {
5881                 mddev->new_layout = 0;
5882                 mddev->new_level = 4;
5883                 return setup_conf(mddev);
5884         }
5885         return ERR_PTR(-EINVAL);
5886 }
5887
5888 static struct md_personality raid5_personality;
5889
5890 static void *raid6_takeover(struct mddev *mddev)
5891 {
5892         /* Currently can only take over a raid5.  We map the
5893          * personality to an equivalent raid6 personality
5894          * with the Q block at the end.
5895          */
5896         int new_layout;
5897
5898         if (mddev->pers != &raid5_personality)
5899                 return ERR_PTR(-EINVAL);
5900         if (mddev->degraded > 1)
5901                 return ERR_PTR(-EINVAL);
5902         if (mddev->raid_disks > 253)
5903                 return ERR_PTR(-EINVAL);
5904         if (mddev->raid_disks < 3)
5905                 return ERR_PTR(-EINVAL);
5906
5907         switch (mddev->layout) {
5908         case ALGORITHM_LEFT_ASYMMETRIC:
5909                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5910                 break;
5911         case ALGORITHM_RIGHT_ASYMMETRIC:
5912                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5913                 break;
5914         case ALGORITHM_LEFT_SYMMETRIC:
5915                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5916                 break;
5917         case ALGORITHM_RIGHT_SYMMETRIC:
5918                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5919                 break;
5920         case ALGORITHM_PARITY_0:
5921                 new_layout = ALGORITHM_PARITY_0_6;
5922                 break;
5923         case ALGORITHM_PARITY_N:
5924                 new_layout = ALGORITHM_PARITY_N;
5925                 break;
5926         default:
5927                 return ERR_PTR(-EINVAL);
5928         }
5929         mddev->new_level = 6;
5930         mddev->new_layout = new_layout;
5931         mddev->delta_disks = 1;
5932         mddev->raid_disks += 1;
5933         return setup_conf(mddev);
5934 }
5935
5936
5937 static struct md_personality raid6_personality =
5938 {
5939         .name           = "raid6",
5940         .level          = 6,
5941         .owner          = THIS_MODULE,
5942         .make_request   = make_request,
5943         .run            = run,
5944         .stop           = stop,
5945         .status         = status,
5946         .error_handler  = error,
5947         .hot_add_disk   = raid5_add_disk,
5948         .hot_remove_disk= raid5_remove_disk,
5949         .spare_active   = raid5_spare_active,
5950         .sync_request   = sync_request,
5951         .resize         = raid5_resize,
5952         .size           = raid5_size,
5953         .check_reshape  = raid6_check_reshape,
5954         .start_reshape  = raid5_start_reshape,
5955         .finish_reshape = raid5_finish_reshape,
5956         .quiesce        = raid5_quiesce,
5957         .takeover       = raid6_takeover,
5958 };
5959 static struct md_personality raid5_personality =
5960 {
5961         .name           = "raid5",
5962         .level          = 5,
5963         .owner          = THIS_MODULE,
5964         .make_request   = make_request,
5965         .run            = run,
5966         .stop           = stop,
5967         .status         = status,
5968         .error_handler  = error,
5969         .hot_add_disk   = raid5_add_disk,
5970         .hot_remove_disk= raid5_remove_disk,
5971         .spare_active   = raid5_spare_active,
5972         .sync_request   = sync_request,
5973         .resize         = raid5_resize,
5974         .size           = raid5_size,
5975         .check_reshape  = raid5_check_reshape,
5976         .start_reshape  = raid5_start_reshape,
5977         .finish_reshape = raid5_finish_reshape,
5978         .quiesce        = raid5_quiesce,
5979         .takeover       = raid5_takeover,
5980 };
5981
5982 static struct md_personality raid4_personality =
5983 {
5984         .name           = "raid4",
5985         .level          = 4,
5986         .owner          = THIS_MODULE,
5987         .make_request   = make_request,
5988         .run            = run,
5989         .stop           = stop,
5990         .status         = status,
5991         .error_handler  = error,
5992         .hot_add_disk   = raid5_add_disk,
5993         .hot_remove_disk= raid5_remove_disk,
5994         .spare_active   = raid5_spare_active,
5995         .sync_request   = sync_request,
5996         .resize         = raid5_resize,
5997         .size           = raid5_size,
5998         .check_reshape  = raid5_check_reshape,
5999         .start_reshape  = raid5_start_reshape,
6000         .finish_reshape = raid5_finish_reshape,
6001         .quiesce        = raid5_quiesce,
6002         .takeover       = raid4_takeover,
6003 };
6004
6005 static int __init raid5_init(void)
6006 {
6007         register_md_personality(&raid6_personality);
6008         register_md_personality(&raid5_personality);
6009         register_md_personality(&raid4_personality);
6010         return 0;
6011 }
6012
6013 static void raid5_exit(void)
6014 {
6015         unregister_md_personality(&raid6_personality);
6016         unregister_md_personality(&raid5_personality);
6017         unregister_md_personality(&raid4_personality);
6018 }
6019
6020 module_init(raid5_init);
6021 module_exit(raid5_exit);
6022 MODULE_LICENSE("GPL");
6023 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6024 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6025 MODULE_ALIAS("md-raid5");
6026 MODULE_ALIAS("md-raid4");
6027 MODULE_ALIAS("md-level-5");
6028 MODULE_ALIAS("md-level-4");
6029 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6030 MODULE_ALIAS("md-raid6");
6031 MODULE_ALIAS("md-level-6");
6032
6033 /* This used to be two separate modules, they were: */
6034 MODULE_ALIAS("raid5");
6035 MODULE_ALIAS("raid6");